• search hit 7 of 49
Back to Result List

ON MASSLESS FIELD EQUATION IN HIGHER DIMENSIONS

  • The paper is devoted to a study of properties of homogeneous solutions of massless field equation in higher dimensions. We first treat the case of dimension 4. Here we use the two-component spinor language (developed for purposes of general relativity). We describe how are massless field operators related to a higher spin analogues of the de Rham sequence - the so calledThe paper is devoted to a study of properties of homogeneous solutions of massless field equation in higher dimensions. We first treat the case of dimension 4. Here we use the two-component spinor language (developed for purposes of general relativity). We describe how are massless field operators related to a higher spin analogues of the de Rham sequence - the so called Bernstein-Gel'fand-Gel'fand (BGG) complexes - and how are they related to the twisted Dirac operators. Then we study similar question in higher (even) dimensions. Here we have to use more tools from representation theory of the orthogonal group. We recall the definition of massless field equations in higher dimensions and relations to higher dimensional conformal BGG complexes. Then we discuss properties of homogeneous solutions of massless field equation. Using some recent techniques for decomposition of tensor products of irreducible $Spin(m)$-modules, we are able to add some new results on a structure of the spaces of homogenous solutions of massless field equations. In particular, we show that the kernel of the massless field equation in a given homogeneity contains at least on specific irreducible submodule.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: Vladimir Soucek
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.2892Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170314-28925Cite-Link
URL:http://euklid.bauing.uni-weimar.de/ikm2009/paper.html
ISSN:1611-4086
Editor: Klaus GürlebeckGND, Carsten KönkeORCiDGND
Language:English
Date of Publication (online):2017/03/14
Date of first Publication:2010/07/14
Release Date:2017/03/14
Publishing Institution:Bauhaus-Universität Weimar
Creating Corporation:Bauhaus-Universität Weimar
Institutes:Bauhaus-Universität Weimar / In Zusammenarbeit mit der Bauhaus-Universität Weimar
Pagenumber:13
Tag:Computer Science Models in Engineering; Multiscale and Multiphysical Models; Scientific Computing
GND Keyword:Angewandte Informatik; Angewandte Mathematik; Architektur <Informatik>; Computerunterstütztes Verfahren
Dewey Decimal Classification:000 Informatik, Informationswissenschaft, allgemeine Werke / 000 Informatik, Wissen, Systeme
500 Naturwissenschaften und Mathematik / 510 Mathematik
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 18. 2009
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)