• search hit 3 of 3
Back to Result List

ORTHOGONAL DECOMPOSITIONS AND THEIR APPLICATIONS

  • It is well known that complex quaternion analysis plays an important role in the study of higher order boundary value problems of mathematical physics. Following the ideas given for real quaternion analysis, the paper deals with certain orthogonal decompositions of the complex quaternion Hilbert space into its subspaces of null solutions of Dirac type operator with an arbitrary complex potential.It is well known that complex quaternion analysis plays an important role in the study of higher order boundary value problems of mathematical physics. Following the ideas given for real quaternion analysis, the paper deals with certain orthogonal decompositions of the complex quaternion Hilbert space into its subspaces of null solutions of Dirac type operator with an arbitrary complex potential. We then apply them to consider related boundary value problems, and to prove the existence and uniqueness as well as the explicit representation formulae of the underlying solutions.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Conference Proceeding
Author: Hoai Thu Le, Joao Morais, Wolfgang Sprößig
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.2772Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170314-27729Cite-Link
URL:http://euklid.bauing.uni-weimar.de/ikm2012
ISSN:1611-4086
Parent Title (English):Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar
Editor: Klaus GürlebeckGND, Tom LahmerORCiDGND, Frank WernerORCiDGND
Language:English
Date of Publication (online):2017/03/03
Date of first Publication:2012/07/04
Release Date:2017/03/14
Publishing Institution:Bauhaus-Universität Weimar
Creating Corporation:Bauhaus-Universität Weimar
Institutes:Bauhaus-Universität Weimar / In Zusammenarbeit mit der Bauhaus-Universität Weimar
Pagenumber:10
GND Keyword:Angewandte Informatik; Angewandte Mathematik; Computerunterstütztes Verfahren
Dewey Decimal Classification:000 Informatik, Informationswissenschaft, allgemeine Werke / 000 Informatik, Wissen, Systeme
500 Naturwissenschaften und Mathematik / 510 Mathematik
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 19. 2012
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)