Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 5 von 6
Zurück zur Trefferliste

Investigation on Energetic Efficiency of Reactor Systems for Oxidation of Micro-Pollutants by Immobilized Active Titanium Dioxide Photocatalysis

  • In this work, the degradation performance for the photocatalytic oxidation of eight micropollutants (amisulpride, benzotriazole, candesartan, carbamazepine, diclofenac, gabapentin, methlybenzotriazole, and metoprolol) within real secondary effluent was investigated using three different reactor designs. For all reactor types, the influence of irradiation power on its reaction rate and energeticIn this work, the degradation performance for the photocatalytic oxidation of eight micropollutants (amisulpride, benzotriazole, candesartan, carbamazepine, diclofenac, gabapentin, methlybenzotriazole, and metoprolol) within real secondary effluent was investigated using three different reactor designs. For all reactor types, the influence of irradiation power on its reaction rate and energetic efficiency was investigated. Flat cell and batch reactor showed almost similar substance specific degradation behavior. Within the immersion rotary body reactor, benzotriazole and methylbenzotriazole showed a significantly lower degradation affinity. The flat cell reactor achieved the highest mean degradation rate, with half time values ranging from 5 to 64 min with a mean of 18 min, due to its high catalysts surface to hydraulic volume ratio. The EE/O values were calculated for all micro-pollutants as well as the mean degradation rate constant of each experimental step. The lowest substance specific energy per order (EE/O) values of 5 kWh/m3 were measured for benzotriazole within the batch reactor. The batch reactor also reached the lowest mean values (11.8–15.9 kWh/m3) followed by the flat cell reactor (21.0–37.0 kWh/m3) and immersion rotary body reactor (23.9–41.0 kWh/m3). Catalyst arrangement and irradiation power were identified as major influences on the energetic performance of the reactors. Low radiation intensities as well as the use of submerged catalyst arrangement allowed a reduction in energy demand by a factor of 3–4. A treatment according to existing treatment goals of wastewater treatment plants (80% total degradation) was achieved using the batch reactor with a calculated energy demand of 7000 Wh/m3.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • Gefördert durch das Programm Open Access Publizieren der DFG und den Publikationsfonds der Bauhaus-Universität Weimar.

Metadaten exportieren

Metadaten
Dokumentart:Artikel (Wissenschaftlicher)
Verfasserangaben:M.Sc. Simon MehlingORCiD, Prof-Dr. Tobias SchnabelORCiDGND, Prof.-Dr. Jörg LondongORCiDGND
DOI (Zitierlink):https://doi.org/10.3390/w14172681Zitierlink
URN (Zitierlink):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20220912-47130Zitierlink
URL:https://www.mdpi.com/2073-4441/14/17/2681
Titel des übergeordneten Werkes (Deutsch):Water
Verlag:MDPI
Verlagsort:Basel
Sprache:Englisch
Datum der Veröffentlichung (online):29.08.2022
Datum der Erstveröffentlichung:29.08.2022
Datum der Freischaltung:12.09.2022
Veröffentlichende Institution:Bauhaus-Universität Weimar
Institute und Partnereinrichtugen:Fakultät Bauingenieurwesen / Bauhaus-Institut für zukunftsweisende Infrastruktursysteme (b.is)
Jahrgang:2022
Ausgabe / Heft:Volume 14, issue 7, article 2681
Seitenzahl:15
Erste Seite:1
Letzte Seite:15
Freies Schlagwort / Tag:OA-Publikationsfonds2022
energy per order; micro-pollutant treatment; photocatalysis; reactor design; titanium dioxid
GND-Schlagwort:Fotokatalyse; Abwasserreinigung
DDC-Klassifikation:600 Technik, Medizin, angewandte Wissenschaften
BKL-Klassifikation:58 Chemische Technik, Umwelttechnik, verschiedene Techno-
Open Access Publikationsfonds:Open-Access-Publikationsfonds 2022
Lizenz (Deutsch):License Logo Creative Commons 4.0 - Namensnennung (CC BY 4.0)