• search hit 4 of 50
Back to Result List

Implicit solutions with consistent additive and multiplicative components

  • This work describes an algorithm and corresponding software for incorporating general nonlinear multiple-point equality constraints in a implicit sparse direct solver. It is shown that direct addressing of sparse matrices is possible in general circumstances, circumventing the traditional linear or binary search for introducing (generalized) constituents to a sparse matrix. Nested and arbitrarilyThis work describes an algorithm and corresponding software for incorporating general nonlinear multiple-point equality constraints in a implicit sparse direct solver. It is shown that direct addressing of sparse matrices is possible in general circumstances, circumventing the traditional linear or binary search for introducing (generalized) constituents to a sparse matrix. Nested and arbitrarily interconnected multiple-point constraints are introduced by processing of multiplicative constituents with a built-in topological ordering of the resulting directed graph. A classification of discretization methods is performed and some re-classified problems are described and solved under this proposed perspective. The dependence relations between solution methods, algorithms and constituents becomes apparent. Fracture algorithms can be naturally casted in this framework. Solutions based on control equations are also directly incorporated as equality constraints. We show that arbitrary constituents can be used as long as the resulting directed graph is acyclic. It is also shown that graph partitions and orderings should be performed in the innermost part of the algorithm, a fact with some peculiar consequences. The core of our implicit code is described, specifically new algorithms for direct access of sparse matrices (by means of the clique structure) and general constituent processing. It is demonstrated that the graph structure of the second derivatives of the equality constraints are cliques (or pseudo-elements) and are naturally included as such. A complete algorithm is presented which allows a complete automation of equality constraints, avoiding the need of pre-sorting. Verification applications in four distinct areas are shown: single and multiple rigid body dynamics, solution control and computational fracture.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Article
Author: Pedro Areias, Timon RabczukORCiDGND, D. Dias-da-Costa, E.B. Piresh
DOI (Cite-Link):https://doi.org/10.1016/j.finel.2012.03.007Cite-Link
Parent Title (English):Finite Elements in Analysis and Design
Language:English
Date of Publication (online):2017/08/26
Year of first Publication:2012
Release Date:2017/08/26
Publishing Institution:Bauhaus-Universität Weimar
Institutes:Fakultät Bauingenieurwesen / Institut für Strukturmechanik
First Page:15
Last Page:31
GND Keyword:Angewandte Mathematik; Strukturmechanik
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften
500 Naturwissenschaften und Mathematik / 510 Mathematik / 519 Wahrscheinlichkeiten, angewandte Mathematik
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
50 Technik allgemein / 50.31 Technische Mechanik
Licence (German):License Logo Copyright All Rights Reserved - only metadata