The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 2614
Back to Result List

Analytical Modeling of Self-Healing and Super Healing in Cementitious Materials

  • Self-healing materials have recently become more popular due to their capability to autonomously and autogenously repair the damage in cementitious materials. The concept of self-healing gives the damaged material the ability to recover its stiffness. This gives a difference in comparing with a material that is not subjected to healing. Once this material is damaged, it cannot sustain loading dueSelf-healing materials have recently become more popular due to their capability to autonomously and autogenously repair the damage in cementitious materials. The concept of self-healing gives the damaged material the ability to recover its stiffness. This gives a difference in comparing with a material that is not subjected to healing. Once this material is damaged, it cannot sustain loading due to the stiffness degradation. Numerical modeling of self-healing materials is still in its infancy. Multiple experimental researches were conducted in literature to describe the behavior of self-healing of cementitious materials. However, few numerical investigations were undertaken. The thesis presents an analytical framework of self-healing and super healing materials based on continuum damage-healing mechanics. Through this framework, we aim to describe the recovery and strengthening of material stiffness and strength. A simple damage healing law is proposed and applied on concrete material. The proposed damage-healing law is based on a new time-dependent healing variable. The damage-healing model is applied on isotropic concrete material at the macroscale under tensile load. Both autonomous and autogenous self-healing mechanisms are simulated under different loading conditions. These two mechanisms are denoted in the present work by coupled and uncoupled self-healing mechanisms, respectively. We assume in the coupled self-healing that the healing occurs at the same time with damage evolution, while we assume in the uncoupled self-healing that the healing occurs when the material is deformed and subjected to a rest period (damage is constant). In order to describe both coupled and uncoupled healing mechanisms, a one-dimensional element is subjected to different types of loading history. In the same context, derivation of nonlinear self-healing theory is given, and comparison of linear and nonlinear damage-healing models is carried out using both coupled and uncoupled self-healing mechanisms. The nonlinear healing theory includes generalized nonlinear and quadratic healing models. The healing efficiency is studied by varying the values of the healing rest period and the parameter describing the material characteristics. In addition, theoretical formulation of different self-healing variables is presented for both isotropic and anisotropic maerials. The healing variables are defined based on the recovery in elastic modulus, shear modulus, Poisson's ratio, and bulk modulus. The evolution of the healing variable calculated based on cross-section as function of the healing variable calculated based on elastic stiffness is presented in both hypotheses of elastic strain equivalence and elastic energy equivalence. The components of the fourth-rank healing tensor are also obtained in the case of isotropic elasticity, plane stress and plane strain. Recent research revealed that self-healing presents a crucial solution also for the strengthening of the materials. This new concept has been termed ``Super Healing``. Once the stiffness of the material is recovered, further healing can result as a strengthening material. In the present thesis, new theory of super healing materials is defined in isotropic and anisotropic cases using sound mathematical and mechanical principles which are applied in linear and nonlinear super healing theories. Additionally, the link of the proposed theory with the theory of undamageable materials is outlined. In order to describe the super healing efficiency in linear and nonlinear theories, the ratio of effective stress to nominal stress is calculated as function of the super healing variable. In addition, the hypotheses of elastic strain and elastic energy equivalence are applied. In the same context, new super healing matrix in plane strain is proposed based on continuum damage-healing mechanics. In the present work, we also focus on numerical modeling of impact behavior of reinforced concrete slabs using the commercial finite element package Abaqus/Explicit. Plain and reinforced concrete slabs of unconfined compressive strength 41 MPa are simulated under impact of ogive-nosed hard projectile. The constitutive material modeling of the concrete and steel reinforcement bars is performed using the Johnson-Holmquist-2 damage and the Johnson-Cook plasticity material models, respectively. Damage diameters and residual velocities obtained by the numerical model are compared with the experimental results and effect of steel reinforcement and projectile diameter is studied.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Doctoral Thesis
Author: Chahmi Oucif
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.4229Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20200831-42296Cite-Link
Referee:Prof. Dr.-Ing. Timon RabczukORCiDGND, Prof. Dr.-Ing. habil. Carsten KönkeGND, Prof. Dr. Esteban Samaniego
Advisor:Prof. Dr.-Ing. Timon RabczukORCiDGND
Language:English
Date of Publication (online):2020/08/23
Date of first Publication:2020/08/23
Date of final exam:2020/07/27
Release Date:2020/08/31
Publishing Institution:Bauhaus-Universität Weimar
Granting Institution:Bauhaus-Universität Weimar, Fakultät Bauingenieurwesen
Institutes:Fakultät Bauingenieurwesen / Institut für Strukturmechanik
Pagenumber:208
Tag:Autogenous; Autonomous; Concrete; Damage; Healing; Super Healing
GND Keyword:Schaden; Beschädigung; Selbstheilung; Zementbeton
Dewey Decimal Classification:500 Naturwissenschaften und Mathematik
600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
BKL-Classification:56 Bauwesen
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen (CC BY-NC-SA 4.0)