Eigenvalue Distribution for the Stokes Operator

  • The aim of this talk is to show that the methods used by Métivier and Lapidus to study the eigenvalue distribution of elliptic operators (e.g., of the Dirichlet Laplacian) can be adapted to the study of the similar problem for the Stokes operator. In this way we get asymptotic formulae for the eigenvalues of the latter operator even in the case when the underlying domain has an extremely irregular (fractal) boundary. In the case the boundary is not that irregular (e.g., when it is Lipschitz) the estimates we obtain are much better than the ones we can find in the current literature.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Document Type:Article
Author: A. M. Caetano
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.500Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20111215-5005Cite-Link
Language:English
Date of Publication (online):2005/03/11
Year of first Publication:1997
Release Date:2005/03/11
Institutes:Fakultät Bauingenieurwesen / Professur Informatik im Bauwesen
GND Keyword:Stokes-Problem; Eigenwert
Source:Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen , IKM , 14 , 1997 , Weimar , Bauhaus-Universität
Dewey Decimal Classification:600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Licence (German):License Logo In Copyright