• Monogenic functions play a role in quaternion analysis similarly to that of holomorphic functions in complex analysis. A holomorphic function with nonvanishing complex derivative is a conformal mapping. It is well-known that in Rn+1, n ≥ 2 the set of conformal mappings is restricted to the set of Möbius transformations only and that the Möbius transformations are not monogenic. The paper deals with a locally geometric mapping property of a subset of monogenic functions with nonvanishing hypercomplex derivatives (named M-conformal mappings). It is proved that M-conformal mappings orthogonal to all monogenic constants admit a certain change of solid angles and vice versa, that change can characterize such mappings. In addition, we determine planes in which those mappings behave like conformal mappings in the complex plane.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Document Type:Conference Proceeding
Author: Manh Hung Nguyen, Klaus GürlebeckGND
DOI (Cite-Link):https://doi.org/10.25643/bauhaus-universitaet.2783Cite-Link
URN (Cite-Link):https://nbn-resolving.org/urn:nbn:de:gbv:wim2-20170314-27833Cite-Link
Parent Title (English):Digital Proceedings, International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering : July 04 - 06 2012, Bauhaus-University Weimar
Editor: Klaus GürlebeckGND, Tom LahmerORCiDGND, Frank WernerORCiDGND
Date of Publication (online):2017/03/03
Date of first Publication:2012/07/04
Release Date:2017/03/14
Publishing Institution:Bauhaus-Universität Weimar
Creating Corporation:Bauhaus-Universität Weimar
Institutes:Fakultät Bauingenieurwesen / Institut für Mathematik-Bauphysik
GND Keyword:Angewandte Informatik; Angewandte Mathematik; Computerunterstütztes Verfahren
Dewey Decimal Classification:000 Informatik, Informationswissenschaft, allgemeine Werke / 000 Informatik, Wissen, Systeme
500 Naturwissenschaften und Mathematik / 510 Mathematik
BKL-Classification:31 Mathematik / 31.80 Angewandte Mathematik
56 Bauwesen / 56.03 Methoden im Bauingenieurwesen
Collections:Bauhaus-Universität Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar / Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, IKM, Weimar, 19. 2012
Licence (German):License Logo Creative Commons 4.0 - Namensnennung-Nicht kommerziell (CC BY-NC 4.0)