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Abstract

Problem and objective of the work

Porous materials are an emerging branch of engineering materials that

are composed of two elements: One element is a solid (matrix), and the

other element is either liquid or gas. Pores can be distributed within the

solid matrix of porous materials with different shapes and sizes. In addi-

tion, porous materials are lightweight, flexible, and have higher resistance

to crack propagation, specific thermal, mechanical, and magnetic proper-

ties. These properties are necessary for manufacturing engineering struc-

tures such as beams and other engineering structures. These materials are

widely used in solid mechanics and are considered a good replacement for

classical materials by many researchers recently. Producing lightweight

materials has been developed because of the possibility of exploiting the

properties of these materials. Various types of porous material are gener-

ated naturally or artificially for a specific application such as bones and

foams. Like functionally graded materials, pore distribution patterns can

be uniform or non-uniform. Biot’s theory is a well-developed theory to

study the behavior of poroelastic materials which investigates the interac-

tion between fluid and solid phases of a fluid-saturated porous medium.

Functionally graded porous materials (FGPM) are widely used in mod-

ern industries, such as aerospace, automotive, and biomechanics. These

advanced materials have some specific properties compared to materials

with a classic structure. They are extremely light, while they have spe-

cific strength in mechanical and high-temperature environments. FGPMs

are characterized by a gradual variation of material parameters over the

volume. Although these materials can be made naturally, it is possible to
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design and manufacture them for a specific application. Therefore, many

studies have been done to analyze the mechanical and thermal properties

of FGPM structures especially beams.

Biot was the pioneer in formulating the linear elasticity and thermoelastic-

ity equations of porous material. Since then, Biot’s formulation has been

developed in continuum mechanics which is named poroelasticity. There

are obstacles to analyze the behavior of these materials accurately like the

shape of the pores, the distribution of pores in the material, and the be-

havior of the fluid (or gas) that saturated pores. Indeed, most of the en-

gineering structures made of FGPM have nonlinear governing equations.

Therefore, it is difficult to study engineering structures by solving these

complicated equations.

The main purpose of this dissertation is to analyze porous materials in en-

gineering structures. For this purpose, the complex equations of porous

materials have been simplified and applied in engineering problems so

that the effect of all parameters of porous materials on the behavior of en-

gineering structure has been investigated.

The effect of important parameters of porous materials on beam behavior

including pores compressibility, porosity distribution, thermal expansion

of fluid within pores, interaction of stresses between pores and material

matrix due to temperature increase, effects of pore size, material thick-

ness and saturated pores with fluid and unsaturated conditions are inves-

tigated.

Two methods, deep energy method and exact solution, have been used

to reduce the problem hypotheses, increase accuracy, increase processing

speed, and apply these in engineering structures. In both methods, they

are analyzed nonlinear and complex equations of porous materials.

To increase the accuracy of analysis and study of the effect of shear forces,

Timoshenko and Reddy’s beam theories have been used. Also, neural net-

works such as residual and fully connected networks are designed to have

high accuracy and less processing time than other computational methods.
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State of scientific knowledge

The use of porous materials in the industry is increasing due to high re-

sistance to external forces, lightweight, high resistance to heat shock, con-

trollable thermal expansion, and good thermal and acoustic insulation.

An exact solution expresses the whole physics and mathematics of a prob-

lem. The exact solutions for the nonlinear response of FGPM based on the

beam’s theories subjected to thermal and mechanical loads usually are not

easy tasks. Thus, it is presented approximate solutions like the neural net-

work method.

Artificial neural network (ANN) is an alternative approach in the compu-

tational mechanics for solving approximately complicated equations. Us-

ing ANN is beneficial because of lower computational cost, easy training,

analyzing more details, and parallel computing. Moreover, the results are

comparable with the results of analytical solutions.

With the development of digital and computational systems, it has be-

come possible to use neural networks to analyze complex problems such

as porous material equations.

Methods used

The analytical approach is defined as finding exact solution for differen-

tial equations known as governing equations. Exact solution is the math-

ematical solution for these equations. The nonlinear bending and post-

buckling of functionally graded porous beams are subjected to mechani-

cal and thermal loadings based on the Euler-Bernoulli, Timoshenko, and

Reddy-Bickford beams theories. Exact solutions were presented for the

nonlinear response of FGPM based on the beam’s theories subjected to

thermal and mechanical loads. In contrast to an approximate solution, the

exact solution expresses the whole physics and mathematics of behavior

of porous materials beam.



vi

Artificial neural network (ANN): In computational mechanics, neural net-

works have various applications in modeling, solving differential equa-

tions, making a pattern for experimental data, pattern recognition, signal

processing, time-series analysis, etc. The approach for obtaining the ex-

tremum (i.e., minima or maxima) of the variational formulation based on

strain energy has been enhanced thanks to recent advances in digital sys-

tems and artificial neural network technologies. Deep energy methods,

for example, help us to solve variational problems numerically. In this

study, a neural network is developed to minimize the strain energy using

the deep energy method. The strain energy is considered as the objective

function of the neural network. The neural network is performed in Py-

Torch with Adam optimizer as a training algorithm. The architecture of

networks is designed in two types of networks, the residual and the fully

connected.

Results

This dissertation investigates the behavior of porous materials in engineer-

ing structures such as beams. Also, the governing equations of porous ma-

terials have been studied and analyzed in mechanical and thermal fields.

The complex equations of porous materials are simplified, and these equa-

tions have been developed for application in engineering structures. In ad-

dition, methods for solving complex equations of porous materials have

been selected that have the least assumptions and simplifications. More-

over, the used methods give less analysis time and higher accuracy than

other computational methods. The development and application of the

results of this work can optimize the analysis of porous materials in en-

gineering software. The results of the analysis in the three theories of the

beam and the two methods are as follows:

• Using both methods (DEM and exact solution), a beam made of

porous material was analyzed in Euler–Bernoulli beam theory and
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the results of both modes were compared. Although the theory is

simple, it gives us a good overview of the behavior of porous mate-

rials. In this analysis, it was shown that how the distribution and the

size of pores affect the behavior of the beam. The compressibility of

the pores when they are saturated with fluid is clearly investigated

and shows how much it affects the strength and compressibility of

the whole porous material.

• In the analysis of beams under heat field, the effect of thermal expan-

sion of the fluid inside the pores on the stresses and thermal forces

created in the porous material is shown and the results are compared

with the results of porous materials with unsaturated pores.

• An Exact solution were presented for the nonlinear response of FGPM

based on the beam’s theory subjected to thermal and mechanical

loads. In contrast to an approximate solution, the exact solution ex-

presses the whole physics and mathematics of behavior of porous

materials beam.

• The deep energy method has been developed here to minimize the

strain energy of porous material. In such a way that my neural net-

work design has greatly increased the accuracy of calculations and

reduced processing time.

• Timoshenko and Reddy’s theories have been used to increase the

accuracy and effect of shear forces on the behavior of porous beams.

These beam theories are extended versions of Euler-Bernoulli beam

theory that include shear deformations. In the results, it is observed

that the accuracy of calculations in Reddy-Bickford theory is higher

than Euler–Bernoulli and Timoshenko beam theories.

• The results of the thermal and mechanical analysis of porous mate-

rials with saturated and unsaturated pores are compared with the
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results obtained for homogeneous materials. Finally, to show the ac-

curacy of the work results, the results of this study are compared

with previous literature.
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Chapter 1

Introduction

1.1 Motivation

Functionally graded porous materials are composite materials that the

structure and properties of pores (�uid inside pores and shape of pores)

gradually vary over volume, resulting in corresponding changes in the

properties of the material. Materials such as metal foam and some biologi-

cal structures are FGPMs. The ability to create material with speci�c prop-

erties had a huge impact on the manufacturing industry. Lightweight,

controlled expansion with pore properties and high resistance to ther-

mal shock makes modern FGPMs an excellent candidate for complex re-

quirements, such as engineering structures that work in high-temperature

�elds. Therefore, mechanical and thermal analysis of FGPM structures es-

pecially beam-type structures is an inescapable step for design purposes.

Natural substances Fig 1.1 and many arti�cial substances made for special

applications in various industries Fig 1.2 are rationalized by considering

them with porous theory.

In particular, smart materials based on porous materials such as foams

and gels are rapidly burgeoning �eld, that has yet to be fully exploited and

explored. Smart materials and structures have properties that can change

in response to changes in their environment. For example, tunable vibra-

tion dampers for vehicles and for protecting buildings from earthquakes

work by changing their stiffness using electrical �elds make by piezoelec-

tric materials. They require an electric �eld to change their properties. As a
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FIGURE 1.1: Different kinds of natural porous materials,
(a) Human bone under SEM, (b) Honeycomb structure,
(c) Fungi mushrooms, (d) Voronoi structure in bubbles, (e)

Wing of a dragon�y, (f) leaf structure [1].

result, they absorb vibrations according to environmental conditions. An-

other example, tunable vibration dampers of arti�cial feet that are made of

saturated porous material for a disabled runner and are controlled by fer-

ro�uid and magnetic �eld. The density of ferro�uid in the pores changes

by increasing the magnetic �eld since the natural frequencies of arti�cial

feet will be changed and the vibrations will be damped in different situ-

ations. The proposed Mechanical Metamaterials can tune their stiffness

by a purely mechanical technology that does not rely on electric power so

that it could be cheaper and more robust.

Modern computational power can explore full parameter space for ratio-

nal design systematically and exhaustively. According to the burgeoning

movement, the development of porous materials has now become an ac-

tive multidisciplinary �eld of research. Theoretical analysis based on the
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physical insight gained through the poroelastic theory will derive a sim-

ple theoretical model. It aims that the model can compare with the mod-

els that appeared in the traditional �eld of mechanics of materials, which

allows for many engineers, scientists, as well as students to easily under-

stand the mechanics of �exible structures. However, Accurate analysis of

the behavior of porous materials still poses many challenges due to the

complex structure and impact of pore characteristics. And It may be dif-

�cult to obtain an exact solution, thereby it will be considered to switch

to an alternative method such as approximate solutions based on energy

balance that can capture the physical insight and provide the design prin-

ciple.

From the dif�cult equations created in the theoretical and experimental

studies of porous materials, the arti�cial neural network (ANN) analysis

performs the advantages of lower computational cost, easy training, and

parallel computing. New research is starting to use arti�cial neural net-

work solutions for the poroelasticity equations or analysis of experimental

data.

1.2 Literature review

Poroelasticity is a �eld of continuum mechanics that analyzes the material

behavior consisting of an elastic matrix with �uid-saturated pores. The

earliest method of analyzing the behavior of porous materials, was intro-

duced by Terzaghi. he assumed that soil is laterally restricted and hence

undergoes uni-axial deformations. Both the solid and �uid constituents of

the porous medium are considered in-compressible in Terzaghi's method

[5]. Biot [6] provided a general three-dimensional theory of elastic de-

formation of �uid-in�ltrated porous media that abolished the limitation

of incompressible constituents. In addition, as a variable work conjugate

to the pore pressure, the increment of �uid content per unit volume was

introduced. In his landmark paper on poroelasticity, Biot introduced the
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following bulk dynamic and kinematic variables (in the current notation);

the total stress tensor, the �uid pressure, the solid strain tensor, and the

variation of �uid volume content. This theory was reformulated in [7]

using the concept of partial stresses. In the Biot model, the deformable

porous medium is viewed as a continuum consisting of a solid phase and

a �uid phase. The medium stress-strain relations are generally expressed

in terms of elastic constants of the solid and �uid phases.

Porous materials have extensively been used in engineering owing to their

remarkable properties, such as their lightweight nature, large speci�c sur-

face, �exibility, and high resistance to crack propagation. These materials

are commonly used in foams, sound absorption, heat insulation, and elec-

trical applications [2]. Hence, there are numerous contributions studying

poroelasticity, for instance, the Buckling of porous beams with varying

properties is described by [8]. They used shear deformation theory to ob-

tain the critical buckling load. In this work, the effect of porosity on the

strength and buckling load of the beam is investigated too. presented the

analytical, numerical, and experimental studies on the critical buckling

load for plate and beam made of foam with two layers of perfect material.

They obtained global and local buckling-wrinkling of the face sheets of

sandwich beams and sandwich circular plates. They also compared val-

ues of the critical load obtained by the analytical, numerical (FEM), and

experimental methods. Wen [9] investigated analytical solutions for the

deformation of a thick circular plate saturated by an incompressible �uid.

The buckling analysis of circular porous plates under radial compressive

load based on the CPT and higher-order shear deformation theory was

given by Jabbari et al. [10, 11]. In these papers, the effect of pore pressure

on the critical buckling load of the plate and the effect of important pa-

rameters of poroelastic material on buckling capacity are investigated.

Thermal analysis of functionally graded porous materials is one of the im-

portant �elds of research in geology and also with the development of
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technology, it has become possible to make pore-based materials in mod-

ern thermal insulation and engineering structures that are exposed to tem-

perature �elds and have high resistance to heat shock. Biot was the pio-

neer in formulating linear thermoelasticity equations of porous materials

[12]. Biot's theory has been developed to study a variety of thermoporoe-

lastic problems. For instance, an analytical method was introduced for

the thermal consolidation of a saturated porous hollow cylinder with in-

�nite length by Zimmerman [13]. He analyzed the pore pressure and dis-

placement of the porous material subjected to a thermal �eld. Ghasemi

and Diek [14] presented a solution of non-isothermal poroelastic theory

describing the behavior of shale materials. They investigated the effect

of temperature changes on the pore pressure and the chemical properties

of a swelling shell. Gelet et. al [15] analyzed a fully coupled �nite ele-

ment formulation for a thermo-poro-elastic dual porous medium under

non-isothermal conditions. The primary variables in their work were the

displacements, the pore �uid pressure, the pressure of the �uid in the �s-

sures, and the temperature of the system. Mojahedin et. al [16], [17], [18]

studied the behavior of FGPM structures subjected to thermal �elds utiliz-

ing different computational methods to solve governing equations. More-

over, they investigated the effect of the pore's properties and distribution

in the porous material behavior under drained and undrained conditions

using the developed formulation of thermo-poroelastic of Biot's theory.

Most of the engineering structures made of functionally graded material

have nonlinear governing equations because of the complex nature of FG

material. Therefore, it is dif�cult to study these structures by solving these

complicated equations. Arti�cial neural network (ANN) is an alternative

approach in computational mechanics for solving complicated equations.

Using ANN is bene�cial because of lower computational cost, easy train-

ing, analyzing more details, and parallel computing. Moreover, the re-

sults are comparable with the results of analytical solutions. In computa-

tional mechanics, neural networks have various applications in the area of
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modeling, solving differential equations, making a pattern for experimen-

tal data, pattern recognition, signal processing, time-series analysis, etc.

[19], [20], [21]. Many studies have been reported in the literature using

ANN to solve partial differential equations (PDEs) of engineering struc-

tures. Lagaris et al. [22] performed ANN for solving initial and boundary

value differential equations. They conducted a deep learning method to

adjust parameters (weights) in the algorithm to solve partial differential

equations. Then boundary conditions were applied to the results obtained

from ANN. The results of the method compromised with the results ob-

tained using the Galerkin FEM. Shirvani et al. [23] introduced performing

Multilayer Perceptron and Radial Basis Function (RBF) neural networks

to solve both ordinary (ODE) and partial differential equations. They pro-

vided an energy function using differential equations and the boundary

conditions through a network. The network parameters (weights and bi-

ases) were updated using an unsupervised training method. Nabian and

Meidani [24] presented an ANN to solve a high dimensional random par-

tial differential equations of diffusion and heat conduction problems. The

architecture of the deep neural network was a type of residual network.

They validated their results by comparing them with the results obtained

from Monte Carlo �nite element method. Madenci and Gulcu [25] pre-

sented an algorithm that was a combination of the deep neural network

method and �nite element method to analyze functionally graded mate-

rial beams. In their study, the mechanical properties of FGM are optimized

to obtain the expected de�ection of the Timoshenko beam. Anitescu et al.

[26] conducted an ANN to solve second-order boundary value problems.

The main focus of their work was increasing the robustness of the neu-

ral network approximation which leads to reducing computational costs

noticeably.
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1.3 Objectives of the dissertation

The main objectives of the present dissertation generally are divided into

two categories: �rst, investigating the mechanical and thermal properties

of porous materials and extraction equations from poroelastic theory. In-

troducing the effect of pore properties like Biot's coef�cient and modulus,

Skempton coef�cient, thermal expansion coef�cient for pores and solids,

etc. It investigated the effect of the pore properties on the strain energy of

the porous material in drained and undrained conditions using the devel-

oped formulation of Biot's thermo-poroelastic theory. The strain energy is

derived from the nonlinear formulation of the beam theories.

It is obtained from the variational formulation deriving from the strain

energy of functionally graded porous material. Variational principles are

commonly used in solving problems in computational mechanics. Find-

ing the extremum of the energy form of a system has some advantages.

For example, complex problems can be analyzed with fewer assumptions,

so the physical implications of the equations are more clearly expressed.

Second, it is obtained the closed-form solutions and numerical analysis for

the bending and post-buckling con�gurations of FGPM's beams with var-

ious boundary conditions based on the Euler–Bernoulli, Timoshenko, and

higher-order beam theory.

In numerical solution, a neural network is developed to minimize the

strain energy using the deep energy method. In this approach, The strain

energy is considered as the objective function of the neural network. The

neural network is performed in PyTorch with Adam optimizer as a train-

ing algorithm. The effect of different boundary conditions is applied using

the penalty method.

1.4 Overview of the dissertation

The dissertation topic, methodology, objectives, and innovations are in-

troduced in the previous sections. The rest of the thesis is organized as
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follows:

Chapter 2 contains the fundamental formulations of the porous materials,

which are used in this dissertation. In this chapter, It is introduced pore

properties and important coef�cients for analyzing the behavior of porous

materials. The notion of a functionally graded material is of fundamental

importance in this thesis. Some basic concepts in the theory of the material

are therefore discussed in this chapter.

Chapter 3 presents the non-linear static responses of FGPM beams sub-

jected to in-plane thermal loading and distributed force. It is obtained an

exact, closed-form solution for the response of clamped and simply sup-

ported boundary conditions FGPM beams. The formulations are devel-

oped based on the strain energy which is derived from the beam's theories.

The fundamental formulations of the neural network (NN) approach, which

are used in this dissertation, are presented in Chapter 4. In this chapter, a

neural network is developed to minimize the strain energy using the deep

energy method.

Chapter 5 sums up the results from chapter 3 and 4 of this thesis through

a conclusion. In this chapter, the results of the neural network method are

validated by comparing them with the analytical solution obtained from

chapter 4 and literature. In addition, some recommendations for future

work are suggested.

Finally, chapter ??presents the neural network code which is implemented

in PyTorch.
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FIGURE 1.2: Different kinds of arti�cial porous materials,
(a) Homogeneous closed-cell foam, (b) Nonhomogeneous
closed-cell foam, Homogeneous open-cell metal foam(c)
[2], (d) polymer foams [3], (e) and (f) Lightweight concrete

foam [4]
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Chapter 2

Porous and Cellular Materials

in Structures

2.1 Porous Material

In the last few decades, porous and cellular materials have been used

widely in modern technologies. For this reason, modeling deformation

and manufacturing of the materials has been of great interest due to its

application in various scienti�c �elds including material sciences, biome-

chanics, geophysics, physical chemistry, and soil mechanics. Particularly

in mechanical sciences, these materials are commonly used in foams, sound

absorption, heat insulation, and electrical applications. The reason for this

is some remarkable properties of these materials, that are comparable with

classical structural materials, such as their lightweight nature, large spe-

ci�c surface, �exibility, and high resistance to crack propagation [2]. The

analysis of a full range of porous material responses, from linear to non-

linear, and from partial uncoupling to fully coupled, can be complex and

unwieldy. The goal of this thesis is limited to classical linear elasticity and

poroelasticity rather than a more general term of poromechanics. The the-

ory of poroelasticity was developed originally by Terzaghi [5] for a good

approximation of the real behavior of soft soils, and it has been studied

extensively since. The theory was extended by many researchers, but the

comprehensive formulation has been introduced by Biot [6], and it has
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been applied extensively in various modelings.

2.2 Biot's Theory of Poroelasticity

The linear poroelasticity theory of Biot [12] has two features as follows:

(1) an increase of pore pressure induces dilation of the pore, and (2) com-

pression of the pore causes a rise of pore pressure. In his landmark formu-

lation on poroelasticity, Biot [6] introduced the following bulk dynamic

and kinematic variables (in the current notation): total stress tensor, si j ;

�uid pressure, p; solid strain tensor, #i j ; and variation of �uid volume con-

tent, z. In the Biot model, the deformable porous medium is viewed as

a continuum consisting of a solid phase and a �uid phase. The medium

stress-strain relations are generally expressed in terms of elastic constants

of the solid and �uid phases. The stress-strain law for the poroelasticity is

given by [27].

si j = 2G#i j + 2G
nu

1 � 2nu
#di j � padi j (2.1)

where

p = M (z � a#) (2.2)

M =
2G(nu � n)

a2(1 � 2nu)(1 � 2n)
(2.3)

nu =
n + aB(1 � 2n)/3
1 � aB(1 � 2n)/3

(2.4)

In general, the stress-strain equation in Biot's theory 2.1 compared to the

classical strain-stress equation includes parameters that present the effect

of pores, �uid properties within pores, and the coupling between �uid

and solid. As shown in the 2.1, these parameters are:

• Biot coef�cient of effective stress ( a)

• Skempton coef�cient (the pore �uid properties are introduced by the

Skempton coef�cient) ( B)
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• Biot's modulus ( M)

• Pore �uid pressure ( p)

• Variation of �uid volume content ( z)

• Poisson's ratio when pore saturated with �uid (Undrained condi-

tion) ( nu)

• G is the shear modulus of porous material

The mentioned parameters determine the behavior of the poroelastic ma-

terial. In books and articles, these parameters are introduced according to

the laboratory results and theories presented. In the next section 2.3, each

of the parameters are explained in detail.

2.3 Mechanical Description of Biot's Formulation

Poroelasticity is a subset of continuum mechanics that is the analysis of the

material consisting of an elastic matrix with �uid-saturated pores. Porous

materials are usually analyzed in drained and undrained conditions. In

short, the drained condition is the state in which the �uid inside the pores

can enter and leave the porous material. When this material is subjected to

stress, deformation in the matrix changes the volume of the pores. Since

the pores are full of �uid, not only is it possible for the body to stiffen,

but it is also possible for the �uid to move from the high-pressure part to

the low-pressure part. In this case, if the �uid is viscous, the behavior of

the material is time-dependent. The undrained condition is the state in

which the �uid inside the pores can not enter and leave its pores. And

also, conditions in which the �uid is highly compressible or only moves

between adjacent pores can be assumed to be undrained conditions.
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2.3.1 Drained and Undrained in Biot's Model

In the undrained condition, movement between the �uid and the solid

frame is ignored. The undrained condition that corresponds to Biot's model

is

si j = 2G#i j + 2G
nu

1 � 2nu
#di j � padi j (2.5)

where

z = 0, p = � M a# (2.6)

It can be observed the stress-strain equation is the same as the Stress-Strain

equation in Hooke's law, except the pressure variable is referred to the

stress, and the material constants take different meanings.

The drained response, on the other hand, corresponds to zero pore pres-

sure because the �uid moves easily and without resistance through the

material

si j = 2G#i j + 2G
nu

1 � 2nu
#di j � aM zdi j (2.7)

where

p = 0, a#= z (2.8)

By applying load in drained conditions, the response depends on time.

This reaction is because of the viscosity of the �uid, which limits the ve-

locity of the �uid's �ow. Thus, it needs to denote the movement of the

�uid in the porous formulation. Darcy's law is a well-known formulation

for seepage �ow in non-deformable porous materials. The �uid's �ow can

also be analyzed from Navier-Stokes equations [28] [27].
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