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Abstract. In this paper we discuss combinations of the Dirac operator with the radial Euler
operator in R3. In particular we present a unified approach to treat the time independent
relativistic Schrödinger equation, also called Klein-Gordon equation on spheres.
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1 INTRODUCTION

The Klein-Gordon equation is a relativistic version of the Schrödinger equation. It de-
scribes the motion of a quantum scalar or pseudoscalar field, a field whose quanta are spinless
particles. The Klein-Gordon equation describes the quantum amplitude for finding a point
particle in various places, cf. for instance [4, 13]. It can be expressed in the form

(∆x − λ2 − 1

c2
∂2

∂t2
)u(x; t) = 0,

where λ = mc
~ is a real positive. More precisely, m represents the mass of the particle, c

the speed of light and ~ is the Planck number. While the Dirac equation describes the spin-
ning electron, the Klein-Gordon equation describes the spin-less pion, which is a composite
particle.

In the time-independent case the homogeneous Klein-Gordon equation simplifies to

(∆x − λ2)u(x) = 0.

As explained extensively in the literature, see for example [7, 8, 9, 10] and elsewhere, with the
quaternionic calculus one can factorize the Klein-Gordon operator viz

∆x − λ2 = −(Dx − iλ)(Dx + iλ)

where Dx :=
∑3

i=1
∂
∂xi
ei is the Euclidean Dirac operator and where the elements e1, e2, e3 are

the elementary quaternionic imaginary units. The study of the solutions to the original scalar
second order equation is thus reduced to study vector valued eigensolutions to the first order
Dirac operator associated to purely imaginary eigenvalues. We can construct every solution to
the time independent Klein-Gordon equation from solutions to (Dx ± iλ)f = 0.

For eigensolutions to the first order Euclidean Dirac operator it was possible to develop a
powerful higher dimensional version of complex function theory, see for instance [7, 9, 15, 16,
12]. By means of these function theoretical methods it was possible to set up fully analytic rep-
resentation formulas for the solutions to the homogeneous and inhomogeneous Klein-Gordon
in the three dimensional Euclidean space in terms of quaternionic integral operators.

Due to the curved nature of space-time, it is strongly motivated to also develop function
theoretic methods to treat the Klein-Gordon equations on manifolds in 4 real variables. In [2]
we deal with the time independent Klein-Gordon equation on the 3-torus.

Here, in this paper we want to study radially symmetric solutions to Dirac type equations
and in particular radially symmetric solutions to the Klein-Gordon equation within one unified
model. This is done by involving the radial Euler operator E :=

∑3
i=1 xi

∂
∂xi

which provides
us with the scalar three dimensional analogue of the complex radial theta operator θ := z d

dz
.

After having introduced the preliminary tools in Section 2, in Section 3 we look at the
system [

D− iλ− αE
]
f = 0, (1)
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where α may be an arbitrary non-zero real positive parameter and λ be an arbitrary non-zero
real.

For general positive real values α = 1
R

the solutions to (1) are physically interpreted as
solutions of time-independent Klein-Gordon equation on a sphere of radius R; R can be in-
terpreted as the current radius at t = t0 of a four-dimensional spherical symmetric universe at
time t0 > 0, which started to expand at t = 0 up from its big bang.

In the limit case α→ 0 we re-obtain the classical time-independent solutions to the Klein-
Gordon equation in a Euclidean flat infinite four-dimensional universe.

This has a natural interpretation: Let us consider the set of Klein-Gordon equation on a
sequence of expanding spheres of radius R > 0. In the limit case α → 0 which physically
means that the radius R→ +∞, we naturally end up in the setting of the Euclidean flat space.
This would refer to the situation t = +∞ in which an ever expanding four-dimensional spher-
ical universe has extended to an infinite size. In Euclidean flat case the system (1) simplifies
to (D − iλ)f = 0 whence we are in the classical setting.

Notice that in the case α = 1 one recognizes the regular solutions of the Dirac equation on
the unit sphere described in [11, 14] as well as the regular solutions on the projective space
R1,3 which were discussed in the recent work [6].

Finally, at the end of Section 3, we also present another radially symmetric variant of the
original Klein-Gordon system.

2 PRELIMINARIES

Let {e1, e2, e3} be the standard basis of R3. We embed R3 into the quaternions H whose
elements have the form a = a0e0 + a with a = a1e1 + a2e2 + a3e3. Here e0 := 1 is the neutral
element concerning multiplication. In the quaternionic calculus one has the multiplication
rules e1e2 = e3 = −e2e1, e2e3 = e1 = −e3e2, e3e1 = e2 = −e1e3, and eje0 = e0ej and
e2j = −1 for all j = 1, 2, 3. By H ⊗R C we obtain the complexified quaternions. These will
be denoted by H(C). Their elements have the form

∑3
j=0 ajej where aj are complex numbers

aj = aj1 + iaj2. The complex imaginary unit satisfies iej = eji for all j = 0, 1, 2, 3. The
scalar part a0e0 of a (complex) quaternion will be denoted by Sc(a). On H(C) one considers
a standard (pseudo)norm defined by ‖a‖ = (

∑3
j=0 |aj|2)1/2 where | · | is the usual absolute

value.
An important property of monogenic function that we crucially apply in this paper is the

special structure of its Laurent expansion. Following e.g. [5], each function that is (left)
monogenic in an annular domain of the form {x ∈ R3 , 0 ≤ r < |x| < R ≤ +∞} has a
unique Laurent expansion of the form

f(x) =
+∞∑
m=0

(
Pm(x) +Qm(x)

)
(2)

where the functions Pm are homogeneous monogenic polynomials of total degree m having
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the form
Pm(x) =

∑
m2+n3=m

Vm2,m3(x)am2,m3

with
am2,m3 =

1

4π

∫
|x|=ρ

qm2,m3(w)dσ(w)f(w).

The functions Qm are the corresponding outer monogenic homogeneous functions of degree
−(2 +m) of the form

Qm(x) =
∑

m2+m3=m

qm2,m3(x)bm2,m3

with
bm2,m3 =

1

4π

∫
|x|=ρ

Vm2,m3(w)dσ(w)f(w)

where r < ρ < R. Here, Vm2,m3 stand for the Fueter polynomials, see for instance[5] in the
vector formalism the representation

Vm2,m3(x) :=
1

|m|!
∑

(xσ(1) + x1e1eσ(1)) . . . (xσ(|m|) + x1e1eσ(|m|)) (3)

where |m| := m2 + m3, σ(i) ∈ {2, 3} and the summation runs over all distinguishable per-
mutations of the expressions (xσ(i) +x1e1eσ(i)) without repetitions. The expressions qm2,n3(x)
denote the partial derivatives of the Cauchy kernel function q0(x) = − x

|x|3 , i.e. qm2,m3(x) :=
∂m2+m3

∂x
m2
2 ∂x

m3
3
q0(x).

3 MAIN RESULTS

For the system (D− iλ− αE) f = 0, we obtain the following result:

Theorem 1 Let f be a H(C)-valued function that satisfies in the n-dimensional open ball
|x| < R (R > 0) the differential equation (D− iλ− αE) f = 0 for α > 0 and λ ∈ R\{0}.
Then there exists a sequence of monogenic homogeneous polynomials of total degree m =
0, 1, 2, . . ., say Pm(x), such that in each open ball |x| < r with 0 < r < R

f(x) =
+∞∑
m=0

(
am(|x|) + bm(|x|) x

|x|

)
Pm(x)

where

am(|x|) = 2F1(
iλ

2α
+
m

2
,
iλ

2α
+
m+ 1

2
;m+

3

2
;−α2|x|2),

bm(|x|) = −iλ+ αm

2m+ 3
|x| 2F1(1 +

iλ

2α
+
m

2
,
iλ

2α
+
m+ 1

2
;m+

5

2
;−α2|x|2).
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Sketch of the proof. We begin by introducing spherical coordinates (r, ω), where r = |x|,
ω = x

|x| ∈ S
3 := {ω ∈ R3 ||ω| = 1}. To solve the above given system, we make the following

ansatz

f(x) =
+∞∑
m=0

am(r)Pm(r ω) + bm(r)ωPm(r ω),

where Pm are inner spherical monogenics of degree m.

For each degree m = 0, 1, 2, . . . each associated homogeneity term of this series represen-
tation satisfies itself the partial differential equation:[

D− iλ− αxE
](
am(r)Pm(r ω) + bm(r)ωPm(r ω)

)
= 0. (4)

In order to proceed we need to know the result of the action of the Euler operator and the Dirac
operator on each single term of (4). Following our previous paper [1], we have for the first
term

E[am(r)Pm(r ω)] = r a′m(r)Pm(r ω) +mam(r)Pm(r ω). (5)

For the second term we have

E[bm(r)ω Pm(r ω)] = r b′m(r)ω Pm(r ω) +mbm(r)ω Pm(r ω). (6)

The action of the Dirac operator on the first term is

D[am(r)Pm(r ω)] = a′m(r)ω Pm(r ω). (7)

Finally, the action of the Dirac operator on the second term is

D[bm(r)ω Pm(r ω)] = −2 + 2m

r
bm(r)Pm(r ω)− b′m(r)ω Pm(r ω). (8)

Next one applies the calculus rules (5), (6), (7) and (8) to (4). Due to the linear independence of
the functions Pm(r ω) and ω Pm(r ω) we obtain the following system of differential equations

−b′m(r)− α r a′m(r)− (αm+ iλ) am(r)− 2 + 2m

r
bm(r) = 0

a′m(r)− α r b′m(r)− (αm+ iλ) bm(r) = 0.

whose solutions turn out to have the above stated form.
Remark. In the particular case α = 1 we obtain the regular solutions of the Dirac equation

on the projective space R1,3 treated in [6].
In what follows we write z = x0 + x, where x =

∑3
i=1 eixi ∈ R3, for an element of the

space of quarternions H. The quarternions are of course isomorphic to R4. Furthermore, we
write D := ∂

∂x0
+
∑3

i=1 ei
∂
∂xi

for the Dirac operator on the quaternionic space H.

In the particular case α = 1 in which the expressions for am and bm simplify to

am(|x|) = 2F1(
iλ

2
+
m

2
,
iλ

2
+
m+ 1

2
;m+

3
2
;−|x|2),

bm(|x|) = − iλ+m

2m+ 3
|x| 2F1(1 +

iλ

2
+
m

2
,
iλ

2
+
m+ 1

2
;m+

5
2
;−|x|2)
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we recognize the regular solutions of the Dirac equation

D(|x|iλf(x/|x|)) = 0 (9)

on the unit sphere of R4 [11, 14] and

D(xiλ0 g(x/x0)) = 0 (10)

on the projective space R1,3 treated in [6]. The solutions of equation (9) are the eigenfunction
of the spherical Cauchy-Riemann operator and can be interpreted in the cases where λ are
non-zero reals as solutions to the Klein-Gordon equation on the unit sphere. The equation
satisfied by g(y), where y stands for the vector x/x0, is

Dyg −
1

x0

Eyg −
iλ

x0

g = 0.

Here Dy is again the usual Dirac operator in R3. The subscript indicates that the operator is
applied to the vector variable y.

When putting x0 = R to project on the tangent plane at x = R to the sphere of radius R
centered at the origin, we see that for α = 1

R
> 0 an arbitrary positive number, the solutions

to (1) may thus be physically interpreted as solutions to the time independent Klein-Gordon
equations on the sphere of arbitrary radius R > 0. Notice that λ may be any arbitrary non-
zero real number. Thus, indeed all vector-valued solutions to (1) are solutions to the time
independent Klein-Gordon equation on the sphere of radius R when one puts α = 1

R
and vice

versa all solutions to the time independent Klein-Gordon equation appear as vector-valued
solutions of (1) because (1) is a first order equation.

In the limit case α = 0 we obtain the function class investigated in [16].
An important variant of the previous system is the following one:

Theorem 2 Let f be a H(C)-valued function that satisfies in the 3-dimensional open ball
|x| < R (R > 0) the differential equation

[
D− iλ− αxE

]
f = 0 for real parameters α > 0

and λ ∈ R\{0}. Then there exists a sequence of monogenic homogeneous polynomials of
total degree m = 0, 1, 2, . . ., say Pm(x), such that in each open ball |x| < r with 0 < r < R

f(x) =
+∞∑
m=0

(
am(|x|) + bm(|x|) x

|x|

)
Pm(x)

where

d =

√
(2 + 2m)2 +

4λ2

α
,

am(|x|) = (1− α|x|2)
1
2
− 1

4
d ×

× F (
5

4
+

1

2
m− 1

4
d, 1 +

1

2
m− 1

4
d;m+

3

2
;α|x|2),

bm(|x|) = − λ

3 + 2m
|x|(1− α|x|2)

1
2
− 1

4
d ×

×F (1 +
1

2
m− 1

4
d,

3

2
+

1

2
m− 1

4
d;m+

5

2
;α|x|2).
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To solve this system one can apply the same arguments as in the proof of the previous one.
After having computed the action of the Dirac and the Euler operator one again separates the
parts belonging to the spherical inner and outer monogenics. This then leads to the following
system of ODE for the radial coefficients am and bm:

(αr2 − 1) b′m(r)− iλ am(r) +
1

r
− (2 + 2m+ αmr2)bm(r) = 0

(1− αr2) a′m(r)− iλ bm(r)− αmr am(r) = 0.

Again, this system can be solved by applying classical methods from ODE and we obtain the
above stated result. For details, we refer to [3].

4 ACKNOWLEDGMENTS

Isabel Cação gratefully acknowledges the financial support from the R&D unit Matemática
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