
Technologies for
Reusing Text from the Web

From the
Faculty of Media

of the
Bauhaus-Universität Weimar

Germany

The Accepted Dissertation of
Martin Potthast

To Obtain the Academic Degree of
Dr. rer. nat.

Advisor: Prof. Dr. Benno M. Stein
Reviewer: Paul D. Clough, PhD

Oral Exam: December 16, 2011

Für meine Väter

Contents

Preface v

1 Introduction 1
1.1 Related Research and Technologies 2
1.2 Contributions of this Thesis 8
1.3 A Brief Introduction to Information Retrieval 14

I Text Reuse 24

2 Detecting Near-duplicate Text Reuse 25
2.1 Near-duplicate Detection Based on Fingerprinting . . 26
2.2 Fingerprint Construction 28
2.3 Evaluating Fingerprint Algorithms 36

3 Detecting Cross-Language Text Reuse 43
3.1 Differences to Monolingual Text Reuse Detection . . . 44
3.2 Measuring Cross-Language Text Similarity 47
3.3 Evaluating Cross-Language Text Similarity Models . 54

4 Evaluating Plagiarism Detectors 68
4.1 Detection Performance Measures 71
4.2 An Evaluation Corpus for Plagiarism Detectors 75
4.3 Three Evaluation Competitions 87

iii

II Language Reuse 105

5 Web Comments for Multimedia Retrieval 106
5.1 A Survey of Comment-related Research 107
5.2 Filtering, Ranking, and Summarizing Comments . . . 117
5.3 Measuring Cross-Media Item Similarity 128

6 Web N-Grams for Keyword Retrieval 137
6.1 A Survey of Query Segmentation 138
6.2 Two Query Segmentation Algorithms 142
6.3 Evaluating Query Segmentation Algorithms 151

7 Web N-Grams for Writing Assistance 167
7.1 Text Correctness Versus Text Commonness 168
7.2 N-Gram Retrieval with Wildcard Queries 171
7.3 Visualizing Wildcard Search Results 178

8 Conclusion 184

Bibliography 188

iv

Preface

Abstract

Texts from the web can be reused individually or in large quantities.
The former is called text reuse and the latter language reuse. We first
present a comprehensive overview of the different ways in which
text and language is reused today, and how exactly information
retrieval technologies can be applied in this respect. The remainder
of the thesis then deals with specific retrieval tasks. In general, our
contributions consist of models and algorithms, their evaluation,
and for that purpose, large-scale corpus construction.

The thesis divides into two parts. The first part introduces tech-
nologies for text reuse detection, and our contributions are as follows:
(1) A unified view of projecting-based and embedding-based finger-
printing for near-duplicate detection and the first time evaluation
of fingerprint algorithms on Wikipedia revision histories as a new,
large-scale corpus of near-duplicates. (2) A new retrieval model for
the quantification of cross-language text similarity, which gets by
without parallel corpora. We have evaluated the model in compar-
ison to other models on many different pairs of languages. (3) An
evaluation framework for text reuse and particularly plagiarism de-
tectors, which consists of tailored detection performance measures
and a large-scale corpus of automatically generated and manually
written plagiarism cases. The latter have been obtained via crowd-

v

sourcing. This framework has been successfully applied to evalu-
ate many different state-of-the-art plagiarism detection approaches
within three international evaluation competitions.

The second part introduces technologies that solve three retrieval
tasks based on language reuse, and our contributions are as follows:
(4) A new model for the comparison of textual and non-textual
web items across media, which exploits web comments as a source
of information about the topic of an item. In this connection, we
identify web comments as a largely neglected information source
and introduce the rationale of comment retrieval. (5) Two new
algorithms for query segmentation, which exploit web n-grams and
Wikipedia as a means of discerning the user intent of a keyword
query. Moreover, we crowdsource a new corpus for the evaluation of
query segmentation which surpasses existing corpora by two orders
of magnitude. (6) A new writing assistance tool called NETSPEAK,
which is a search engine for commonly used language. NETSPEAK

indexes the web in the form of web n-grams as a source of writing
examples and implements a wildcard query processor on top of it.

vi

Danksagung

Mein Dank gilt Prof. Dr. Benno Stein, unter dessen Anleitung diese
Arbeit entstanden ist. Sein Blick für das Wesentliche und sein un-
stillbarer Wissensdurst waren und sind mir ein großes Vorbild.
Ich danke auch den Mitgliedern seiner Arbeitsgruppe Maik An-
derka, Steven Burrows, Tim Gollub, Matthias Hagen, Dennis Hoppe,
Nedim Lipka, Sven Meyer zu Eißen und Peter Prettenhofer, die mir
bei zahllosen Gelegenheiten tatkräftig und inspirierend zur Seite
standen. Weiterhin danke ich Patrick Riehmann und Bernd Fröhlich
sowie Alberto Barrón-Cedeño und Paolo Rosso für die fruchtbare
interdisziplinäre und internationale Zusammenarbeit. Ich danke
Paul Clough für die Begutachtung dieser Arbeit.

Ich möchte mich auch bei Dietmar Bratke, Jürgen Eismann,
Nadin Glaser, Maria-Theresa Hansens, Melanie Hennig, Dana
Horch, Antje Klahn, Hildegard Kühndorf, Tina Meinhardt, Christin
Oehmichen und Ursula Schmidt bedanken, die fortwährend bei
der Überwindung (verwaltungs)technischer Hürden halfen und
Kontakt zur Öffentlichkeit herstellten.

Besonders möchte ich mich bei den mehr als 40 Studenten be-
danken, die sich in Projekten und Abschlussarbeiten sowie als Hilfs-
kräfte für meine Forschung begeistern konnten. Ohne sie wäre die
Bandbreite der Themen dieser Arbeit nicht machbar gewesen. An
dieser Stelle möchte ich vor allem Steffen Becker, Christof Bräutigam,
Andreas Eiselt, Robert Gerling, Teresa Holfeld, Alexander Kümmel,
Fabian Loose und nicht zuletzt Martin Trenkmann hervorheben, die
sich weit über ihr planmäßiges Studium hinaus für mich engagiert
und an zahlreichen meiner Veröffentlichungen beteiligt haben.

Abschließend danke ich meinen Familien und Freunden für ihre
Unterstützung, insbesondere Stephan Bongartz, Daniel, Wiebke,
Marc und Merle Potthast, Steffi, Leonie und Louisa Daniel, Gabi
und Günter Aab, Georg Potthast und Hildegard Knoke, Ellinor
Pfützner, sowie Martin Weitert, Daniel Warner und Christian Ederer.

vii

Chapter 1

Introduction

To reuse something means to use it again after the first time. While
this concept is ubiquitous in all our lives it is less well-known in
connection with text—at least not by that name. Better known
are things like quotations, translations, paraphrases, metaphrases,
summaries, boilerplate text, and plagiarism, all of which can be
grouped under the term “text reuse” (see Figure 1.1). Reusing text is
an integral part of writing in many genres so that the above kinds
of reuse are widespread. The extent to which text is reused today,
however, is still largely unknown, which is partly due to a lack of
tools to study the phenomenon at scale.

Large quantities of text can be found on the web, readily available
for reuse. Besides reusing them individually, certain tasks can be ac-
complished by analyzing them as a whole, which is called language
reuse. Herein lies the potential to uncover new forms of reuse since
texts have countless relations with other web items. Hence, from a
computer science perspective, we ask the following questions:

• How and to what extent can text reuse be detected?

• What tasks can be supported by language reuse from the web?

1

CHAPTER 1. INTRODUCTION 2

Summarization

Paraphrase

TranslationQuotation Boilerplate

Metaphrase

Plagiarism

Text Reuse

Figure 1.1: Taxonomy of the well-known forms of text reuse.

In this thesis, we tackle a selection of problems related to these
questions using technologies from information retrieval. Before-
hand, we give an overview of related research and technologies
(Section 1.1), detail the contributions made (Section 1.2), and intro-
duce the necessary information retrieval terminology (Section 1.3).

1.1 Related Research and Technologies

Text reuse is the reuse of individual texts, whereas language reuse is
the reuse of large quantities of texts at the same time. For example,
a translator reuses a text by translating it without using other texts,
whereas a linguist reuses language by reviewing many occurrences
of a word in different texts to better understand all its meanings.
More generally, the reuse of a text happens linearly and independent
of other texts, while language is reused by exploiting properties that
many texts have in common. It is interesting to note that, for a
human, reusing a single text in a sensible way is much easier than
reusing large text collections, while for a computer, it is the other
way around. The following two subsections overview research fields
and technologies related to text reuse and language reuse, and to
our research questions in particular.

CHAPTER 1. INTRODUCTION 3

Thesis

Search Copy & Paste Modify

Search I‘m Feeling Lucky

Figure 1.2: The basic steps of reusing a text from the web.

1.1.1 Text Reuse

Text reuse technologies can be divided into the categories support
and detection.1 Looking at the history of copying and printing,
however, it becomes apparent that support technologies are far
ahead: starting with the invention of the printing press, the costs of
duplicating a text decreased dramatically so that nowadays every
word processor supports instant text duplication via copy and paste
commands. In combination with the increasing number of texts on
the web, quick access to them via search engines, and the ongoing
digitization efforts, texts can seemingly be reused at peak efficiency.
Today, text reuse—and plagiarism in particular—often happens as
follows (see Figure 1.2): first a web search for a suitable source is
conducted, then text from that source is copied, and finally, the
copied text is possibly modified. By contrast, detection technologies
are still in their infancy. In what follows, the basic principles of
detecting text reuse, and related research are reviewed.

1Note that detection technologies inadvertently support text reuse, for example,
when they are used to modify a reused text until it cannot be detected anymore. This
implies an arms race between reusing authors and reuse detectors. But as long as
computers don’t outsmart humans, the reusing authors will always win, though
at significantly higher costs. Hence, if the intention of detecting text reuse is its
prevention, a realistic goal is to raise the costs of getting away undetected up to a
point at which most reusing authors consider writing a text themselves less laborious.

CHAPTER 1. INTRODUCTION 4

Detecting Text Reuse If one is given a document of uncertain origi-
nality, and the task of identifying all passages of reused text therein,
there are three ways to accomplish this manually: (1) by searching
for documents that may have served as original to the author of
the suspicious document, (2) by checking whether the suspicious
document has been written by its alleged author or someone else,
and (3) by checking whether all passages of the suspicious document
have been written by the same author. The first alternative attempts
to retrace the steps of a reusing author depicted in Figure 1.2. The
latter two are derived from the fact that humans are capable of rec-
ognizing authors by their writing style or changes thereof. Basically,
however, all three alternatives boil down to comparing (passages of)
the suspicious document one by one to others, looking for a “strik-
ing resemblance” in terms of syntax and semantics. If a document
resembles the suspicious document in terms of certain syntactic char-
acteristics that indicate writing style, they may have been written by
the same author. If a document resembles the suspicious document
in terms of semantics, it may be an original. Ideally, the suspicious
document would be compared thus to all other documents available,
but in practice, because of the efforts involved, one has to limit com-
parisons to a reasonable number of “candidate documents.” Hence,
these candidates must be chosen carefully in order to maximize the
likelihood of finding the true originals, if there are any.

It is here where technology can help to scale up investigations,
namely by automating the search for candidate documents, and by
automating the comparisons. In [212] we have proposed a generic
retrieval process to detect text reuse and plagiarism (see Figure 1.3).
The first two steps of this process, candidate retrieval and detailed
comparison, correspond to the two aforementioned possibilities
of automation. The third step, knowledge-based post-processing,
involves distinguishing different kinds of text reuse, filtering false
detections, identifying citations, and visualizing modifications made
on the reused text in order for a tool to be of further assistance.

CHAPTER 1. INTRODUCTION 5

Document
collection

Candidate
retrieval

Detailed
comparison

Text Reuse Detection

Suspicious
passages

Candidate
documents

Knowledge-based
post-processing

Suspicious
document

Figure 1.3: The basic steps of detecting reused text.

Related Research As a research field, text reuse has received but little
attention. Among the first to conduct research on this topic have
been researchers from the University of Sheffield in the course of a
research project called Meter, a short for “Measuring Text Reuse.”2

Their primary focus was text reuse within the domain of journal-
ism, and their goals included the development of a corpus of cases
of journalistic text reuse as well as the development of methods
to detect them automatically. Following up this project was one
from Lancaster University in which the technologies developed in
the aforementioned project were used to study text reuse in jour-
nalism from the 17th century.3 Later on, a third project started at
the University of Massachusetts Amherst to study methods for text
reuse detection on the web.4 Apart from the research done in these
projects, hardly anything else can be found. Despite the fact that
text reuse is a more general concept than plagiarism, the latter has
received comparably a lot more attention in terms of publications.
This includes research in many different research fields, including

2http://www.dcs.shef.ac.uk/nlp/meter, see also [43, 48]
3http://www.lancs.ac.uk/fass/projects/newsbooks/reuse.htm
4http://ciir.cs.umass.edu/research/textreuse.html, see also [19]

http://www.dcs.shef.ac.uk/nlp/meter
http://www.lancs.ac.uk/fass/projects/newsbooks/reuse.htm
http://ciir.cs.umass.edu/research/textreuse.html

CHAPTER 1. INTRODUCTION 6

law, medicine, biology, and computer science. Most research on
detecting text reuse comes from two sub-fields of computer science,
namely natural language processing and information retrieval. Here,
different research topics are dedicated to the detection of all kinds
of text reuse shown in Figure 1.1, such as plagiarism, paraphrases,
quotations, boilerplate text, and translations. The topics are called
plagiarism detection, paraphrase identification, near-duplicate de-
tection, and cross-lingual parallel corpus construction. While all of
them are primarily concerned with analyzing text semantics, the
topics author identification and intrinsic plagiarism detection deal
with syntax characteristics of texts that reveal authorial style.

1.1.2 Language Reuse

There are hardly any publicly known language reuse technologies.
Perhaps the oldest one is the so-called concordancer which is a spe-
cialized search engine used by linguists to study language usage in
large corpora of texts. A concordance [sic] is an index which allows
for immediate access to all occurrences of a given keyword including
the various contexts in which they are used. Such indexes have been
constructed manually since the middle ages, whereas today, they are
constructed on-the-fly by concordancers. Perhaps the most widely
known technologies based on language reuse is machine translation
(e.g., Google Translate), where existing translations are reused to
translate previously unseen texts. Besides machine translation, lan-
guage is increasingly being reused in support of solving a variety of
computational tasks. This typically happens behind the scenes of a
system, the details of which are often hidden from its users.

As a research field, language reuse has not yet been recognized
or studied systematically. Instead, language reuse is conducted
independently—and rather implicitly—in many different research
fields, such as linguistics, digital humanities, information visual-
ization, natural language processing, information retrieval, and

CHAPTER 1. INTRODUCTION 7

machine learning. In linguistics, language is reused as a matter of
course to learn more about language. This includes research within
computer linguistics on tools, such as concordancers, as well as
the systematic acquisition of text data within corpus linguistics. In
this connection, the web-as-corpus initiative should be mentioned
which has recognized the web itself as a corpus for study. In the dig-
ital humanities, a topic called “culturomics” has recently emerged,
which mashes up tools similar to concordancers with corpora of
books from as many time periods as possible in order to study how
cultural developments are reflected within language use over time,
and to predict future trends based on today’s language [135]. In
information visualization, an emerging sub-field is visual analytics,
which is about combining data mining and visualization to better
make sense of large amounts of data, including text. Here, an often
studied topic are keyword-in-context visualizations, which is in fact
a synonym of concordance visualizations.

In natural language processing, one of the grant challenges is
to teach computers to write on a given topic. Since computers are
not yet capable of doing that, one of the straightforward solutions
is to reuse language written by humans for this task. This solution
is currently applied in order to automatically generate translations,
paraphrases, and summaries. In fact, the term “language reuse” has
been coined in connection with automatic text summarization [178].
Since generating text reliably is still out of reach for computers,
an emerging field of research and development is to crowdsource
translations, paraphrases, and summaries. In information retrieval
and machine learning, language is reused to support a variety of
tasks. We have not attempted to map out all of these tasks, but there
are two large sources of language which are being reused frequently
in diverse ways: Wikipedia and web n-grams. Wikipedia has proven
to be an important resource for many tasks; Medelyan et al. [133]
give a comprehensive overview. Similarly, since large corpora of
web n-grams (i.e., short phrases up to n words and their frequency of

CHAPTER 1. INTRODUCTION 8

occurrence on the web) became available, many tasks can be solved
more easily or with better performance or both. Particularly the
Web 1T 5-gram Corpus [26] released by Google has had a sizable
impact on research. But besides these two, there are numerous other
text corpora big and small, enriched with meta information that
make them valuable resources for language reuse.

Given this potpourri of use cases, it is not entirely clear which
tasks and classes of problems can be solved in part or in full by
means of language reuse. An obvious example is automatic text
generation, but apparently, besides the syntax and semantics of texts
also meta information and context relations can be exploited. The
not so obvious problems which may benefit from language reuse
are indeed difficult to be identified, let alone enumerated.

1.2 Contributions of this Thesis

The thesis in hand divides into two parts. In the first part we shed
light on the question of how and to what extent reused text can be
detected. The second part is concerned with the question of what
tasks can be supported by language reuse.

1.2.1 Text Reuse

The general approach to automatically detect text reuse is similar
to that of manual detection for all the different kinds of reuse de-
picted in Figure 1.1, but there is no one-fits-all approach. Hence,
our research on detecting text reuse focuses on three kinds of reuse,
namely quotations, boilerplate text, and translations. Another key
aspect of our research is the development of the first standardized
evaluation framework for text reuse and plagiarism detectors.

Quotations and boilerplate text are two of a kind since both have
in common that a reused text is hardly modified and therefore nearly
identical to its original source. In the literature, these two kinds of

CHAPTER 1. INTRODUCTION 9

reuse are hence often grouped under the term “near-duplicates.” In
Chapter 2 we present a unifying overview and a large-scale evalua-
tion of fingerprinting methods for the detection of near-duplicates.
For the first time, connections between fingerprinting methods that
employ a projection-based dimensionality reduction and those based
on embedding are discussed and compared. The results of our eval-
uations suggest that the projection-based method supershingling
performs best among the evaluated algorithms. Another insight
from this evaluation is that the low-dimensional embeddings of
texts produced as an intermediate step of fuzzy-fingerprinting can
also be used as a retrieval model, rather than the fingerprints com-
puted from them. These embeddings can be computed in linear
time in the text length and they perform comparable to the standard
vector space model but with a smaller memory footprint.

Translations are a significant challenge for text reuse detection
since one cannot rely on syntactical similarities between a reused
text and its original. Modeling the semantics of a text and map-
ping it from one language to another usually involves setting up
translation dictionaries, or collecting large numbers of translations
in so-called parallel corpora in order to build a machine translator.
Such resources are difficult to obtain in practice and the technologies
involved difficult to handle. In Chapter 3 we introduce a new model
for the comparison of texts across languages that gets by without
translation dictionaries, parallel corpora, and machine translation.
Instead, our model relies on comparable corpora. They are a much
cheaper resource, since only pairs of texts about the same topic are
required for the languages in question. For instance, Wikipedia is a
comparable corpus as it comprises large quantities of texts whose
topic has been described exhaustively, but independently in many
languages. Our model exploits the multilingual topic relations of
Wikipedia articles to quantify text similarity across languages. In a
large-scale evaluation on 6 pairs of languages, our model performs
comparable to or better than two traditional approaches.

CHAPTER 1. INTRODUCTION 10

Evaluating a text reuse detector encompasses building a corpus
in which a large number of cases of reused text is found as well as
developing performance measures that quantify to what extent the
detector is capable of retrieving them. Ideally, the corpus and the
measures are publicly available so that researchers may use them
to ensure comparability of results across papers. After an extensive
review of literature related to automatic text reuse and plagiarism
detection, however, it turns out that no such standard corpus exists
and that the performance measures employed disregard important
aspects of detecting text reuse. In Chapter 4 we present the first
standardized evaluation framework for text reuse and plagiarism
detectors. It comprises a large-scale corpus with more than 60 000
plagiarism cases of all kinds, about 4 000 of which have been para-
phrased manually via crowdsourcing. In addition we have devised
performance measures that are tailored to assessing the performance
of plagiarism detectors and that take into account specific character-
istics not measured by traditional measures. We furthermore report
on the results of three evaluation competitions we organized using
our framework in which a total of 32 plagiarism detectors have
been evaluated. The insights gained from these workshops have
advanced the state of the art in text reuse and plagiarism detection.

Altogether, our contributions to detecting text reuse shed light
onto important problems: efficient retrieval, multilingual retrieval,
and retrieval evaluation. The latter two have not been addressed in
sufficient detail before.

1.2.2 Language Reuse

Language can be reused in many ways to solve computational prob-
lems. We have identified three new ways of doing so with texts from
the web, allowing for models and algorithms that compare web
items across media, determine intended quotations in a keyword
query, and assist writers with searching for words.

CHAPTER 1. INTRODUCTION 11

Multimedia items make up a significant portion of the web these
days, and naturally web users search for them, too. Web search
engines hence face the problem of matching keyword queries against
multimedia items. Traditional approaches to this problem rely on
corpora of multimedia items which have been manually annotated
with keywords and they train machine learning algorithms to learn
the connection between low-level item features and keywords. Such
corpora are available only on a small scale. In Chapter 5 we identify
web comments on multimedia items as a source of information
about them, a source which has been neglected until now. We
introduce a new retrieval model that is capable of quantifying the
topical similarity of two web items of arbitrary media. The model
uses the combined text from all comments on the items in order to
represent them. Our comprehensive literature survey reveals that
web comments in general have not been studied well in information
retrieval. We organize the retrieval tasks related to web comments
and conduct four experimental case studies.

Keyword queries are the predominant form of web search
queries. Although almost all search engines offer advanced op-
tions, allowing their users to narrow down a search, few users are
even aware of them. One such option is to quote phrases in a query
to search for webpages that contain them verbatim, which speeds
up retrieval. In Chapter 6 we introduce a new algorithm to auto-
matically insert quotes into keyword queries around phrases which
would have likely been quoted by a web searcher. The basic assump-
tion of our approach is that only phrases should be quoted which
are sufficiently frequent on the web, and we reuse a large portion of
the web in the form of n-grams as a representative sample of web
phrases. In a large-scale evaluation we show that our algorithm out-
performs 8 other algorithms that rely on significantly more complex
features. We furthermore construct a new corpus of 50 000 manually
quoted queries via crowdsourcing which is two orders of magnitude
larger than the current standard corpus.

CHAPTER 1. INTRODUCTION 12

Writing is not so much about what to write, but how. Finding the
right words to say something is essential to maximize understanding
in a text’s target audience. Today, in many research fields English
is the language of science. However, most scientists’ first language
isn’t English, which brings about difficulties for them. For instance,
second language speakers often lack the vocabulary and usage skills
of native speakers. Searching for words, however, has not been well
supported until now. In Chapter 7 we introduce Netspeak, a new
kind of word search engine. Netspeak reuses the web as a corpus
of writing examples. It indexes the web in the form of n-grams and
implements wildcard search on top of that. Search queries are short
phrases where wildcards are inserted at positions of doubt. Given a
query, Netspeak retrieves matching n-grams, ranked according to
their occurrence frequency on the web. This way, commonly used
phrases can be distinguished from less common ones.

Altogether, we show three new ways to accomplish specific tasks
by means of language reuse: cross-media item comparison, keyword
search, and word search. There may be countless possibilities of
reusing language to support computational tasks, yet identifying
and exploiting them is the main challenge.

1.2.3 Text Reuse in this Thesis

The thesis in hand is a thesis by publication and hence an example
of scientific text reuse. A thesis by publication collects and organizes
the author’s prior scientific publications, whereas vital contributions
have already been subject to the scrutiny of external peer-reviewers.
Table 1.1 gives an overview of the publications that are collected in
this thesis and where they have been published previously.

CHAPTER 1. INTRODUCTION 13

Table 1.1: Overview of text reuse within this thesis.

Reused Text
Original Text

Venue Type Length Year Reference

Chapter 2 DIR workshop full 2007 [210]
ICTIR conference full 2007 [211]
GFKL conference full 2008 [165]

Chapter 3 ECIR conference short 2008 [166]
ECIR conference poster 2010 [6]
LRE journal full 2011 [174]

Chapter 4 PAN@SEPLN workshop full 2009 [169]
COLING conference full 2010 [171]

CLEF conference full 2010 [170]
CLEF conference full 2011 [175]

Chapter 5 SIGIR conference poster 2009 [162]
WWW conference poster 2010 [172]
TIST journal full 2012 [35]

Chapter 6 SIGIR conference poster 2010 [81]
WWW conference full 2011 [82]

Chapter 7 ECIR conference short 2010 [214]
PacificVis conference full 2011 [183]

CHAPTER 1. INTRODUCTION 14

1.3 A Brief Introduction to Information Retrieval

In a nutshell, research and development in information retrieval is
concerned with building systems that help people to recover the, to
them, useful portions of data stored on computers.

Today, web search engines are prime examples of information
retrieval systems, and their importance for the web can not be un-
derestimated. Since the web cannot be used effectively without
search engines, hardly any further motivation for information re-
trieval is required. The starting point for research and development
is a person who perceives a certain need for information and who
eventually decides to do something about it. All of us, frequently,
perceive information needs, at work and at leisure. Few, however,
reify the need itself but rather its cause: for instance, when noticing
a gap of knowledge while doing something [97]. However, gaps of
knowledge hardly account for all types of information needs, and
while they are still subject to research, suffice it to say that infor-
mation needs are interrelated with and arise from the fundamental
human needs and our innate desire to satisfy them. There are three
possible courses of action to satisfy an information need:

1. To ask someone else.

2. To search a collection of documents.

3. To reason based on prior knowledge.

The choice of action depends on the information need at hand. For
example, when Bob needs Alice’s new cell phone number, he may
ask a common friend or search Alice’s profile on a social network,
while reasoning what the new number might be is pointless. But
then, when Eve tries to recall the circle of fifths, she may look it up
in a book or deduce it from the mnemonic “Father Charles Goes
Down And Ends Battle” that she memorized earlier, while asking
someone else might be embarrassing for her, being a musician.

CHAPTER 1. INTRODUCTION 15

All of these actions can be, and indeed are, supported by tech-
nology. Traditionally, the focus of information retrieval has been
on search, but there is really no reason for such limitations since its
main goal is to help satisfying all kinds of information needs.

Related Work With the advent of computers, information retrieval
grew out of library science in response to the accelerating growth of
digital data. It is a sub-discipline of information science. Research in
information retrieval is by definition interdisciplinary (i.e., it takes
advantage of whatever method or technology that helps to accom-
plish the task of satisfying information needs). The usual suspects in
this connection are databases; (computer) linguistics and natural lan-
guage processing; statistics, data mining, and machine learning; as
well as information visualization and human-computer interaction.
Technologies from these fields are applied for data organization and
storage; for syntactic and semantic analyses of natural language
text; for theoretical analyses of retrieval approaches, pattern discov-
ery, and their discrimination; as well as for visual preparation of
retrieved information and improving system interfaces. Much more
can be said about the contributions of either field to information
retrieval, whereas the latter has had a lot of impact on them, too.

A number of information retrieval primers are available: those
of Rijsbergen [184], Salton and McGill [195], and Baeza-Yates and
Ribeiro-Neto [7] are among the most influential. The book of Man-
ning et al. [128] provides an up-to-date introduction. Regarding web
information retrieval, and search engines in particular, the books of
Witten et al. [230] and Croft et al. [53] must also be mentioned.

1.3.1 Information Retrieval Terminology

This section outlines a formal framework of information retrieval,
defining most of the terminology that is being used along the way,
namely queries, data, information, relevance, retrieval models, re-
trieval tasks, retrieval processes, and retrieval systems.

CHAPTER 1. INTRODUCTION 16

Again, the starting point is a person’s information need, denoted
by q, where all people’s information needs are denoted by Q. Note
that q is often used interchangeably to refer to different aspects
of a person’s need, such as the cognitive need, the need’s cause,
the need’s topic, the way need’s expression, and the expression’s
formalized version called query. The formulation of a query is the
interface between human and machine, since the query has to be
formulated in the query language of the retrieval system used. For
instance, the query language of a web search engine basically defines
valid queries to be lists of keywords from the vocabulary of the web.

The data supposed to contain information related to a given q
is denoted by D. This can be all kinds of digital data; usually text,
imagery, audio, and video. Information, in this connection, is de-
fined as the useful portions of D, where a data portion’s usefulness
depends on its capability to satisfy the information need q. A data
portion that is useful with regard to q is said to be relevant to q.
Defining information this way brings about the problem that, inas-
much as the people’s information needs Q cannot be enumerated,
so can’t the information in D. Therefore, information retrieval sys-
tems make use of the fact that the data in D is usually organized
in documents, so that each document d in D contains information
about a particular topic. This way, information retrieval boils down
to identifying a document d ∈ D that is relevant to q.

The relevance of a document d to a query q is measured by means
of a retrieval model R = 〈α, β, ρ〉. In general, R consists of the
representation functions α : D → D and β : Q→ Q and a relevance
function ρ : D×Q→ R. Both α and β map documents d ∈ D and
queries q ∈ Q onto purposeful, machine-readable abstractions d and
q that represent their human-readable counterparts d and q in the
computations. The relevance function maps a pair of representations
(d, q) onto a real value that is supposed to quantify the relevance of
d to q. By convention, the bigger the relevance value of d to q, the
more relevant it is—that is, according to the retrieval model used.

CHAPTER 1. INTRODUCTION 17

Given a query q, a set of documents D, and a retrieval modelR,
retrieving documents from D is the same as ranking them in de-
scending order of their relevance to q. The ranked list may already
be presented to the user who may study them until the information
need is satisfied or the search is deemed unsuccessful. To obtain a
binary relevance decision on every document, a relevance threshold
τ has to be specified that divides D into disjunct sets of, suppos-
edly, relevant documents D+ = {d | d ∈ D and ρ(d, q) ≥ τ} and
non-relevant documents D− = D \ D+.

The above outlines the formal framework within which most
information retrieval solutions can be described. However, not all
information needs are the same, and there is of course no one-fits-all
retrieval model. In practice, retrieval models are tailored to solve
particular retrieval tasks, which in turn are formal descriptions of
real-world problems that imply an information need. For example,
consider the well-known task of web search:

Web Search. Given a set of web documents D and a
keyword query q, the task is to find all documents in D
that are relevant to the information need underlying q.

A retrieval model for this task will be very different from, say, a
model for search by example:

Search by Example. Given a set of documents D and a
document dq for a query, the task is to find all documents
in D that are similar to dq.

Retrieval models are operationalized in the form of retrieval pro-
cesses. For one, a retrieval process is the procedural description of
steps to be taken and sub-problems to be solved in order to com-
pute α, β, and ρ of a givenR. For another, it also often includes the
software architecture and data structures used to implementR effi-
ciently, robust, and scalable. Finally, a retrieval system implements
one or more retrieval models and offers an interface to use them.

CHAPTER 1. INTRODUCTION 18

1.3.2 Information Retrieval Evaluation

As with all technical solutions to real-world problems, sure enough,
the first question about a new information retrieval system is: “Does
it work?” A thorough answer to this question requires the evalua-
tion of the system with regard to different performance yardsticks.
In research, most evaluations are done in laboratory experiments,
which recreate the real world situation underlying a retrieval task
on a relatively small scale and in a controlled environment. They are
purposeful abstractions of the real world, disregarding everything
that does not pertain to the retrieval task while striving for realism
on everything that does. When designing an experiment, there are
tradeoffs to be made with regard to realism and many demands to
be met, such as ensuring its replicability. However, an overview
of all parameters and requirements that govern experiment design
is beyond the scope of this section; for further reading we refer to
the aforementioned primers as well as Vorhees and Harman [227]
and Robertson [187], who survey the history of information retrieval
evaluation up to the present day. In what follows, we exemplify
methods for the evaluation of information retrieval systems, regard-
ing the quality of retrieval models, the speed of retrieval processes,
and the usability of a system’s user interface.

To assess the quality of a retrieval model R, two things are
needed: (1) a corpus of documents D along with queries Q so that for
every q ∈ Q a subset of documents D∗ ⊂ D exists which are known
to be relevant to q, and (2) performance measures that quantify the
success of R in retrieving D∗ for a given q by comparing it with
the obtained retrieval results D+. Constructing a realistic corpus
and choosing reasonable performance measures is of the utmost
importance: the validity of the evaluation results rests with them, let
alone the decision to invest further in the evaluated retrieval model.

CHAPTER 1. INTRODUCTION 19

Corpora that consist of documents and queries whose relevance
relation is known are usually handmade, but sometimes they can
also be constructed automatically, or in the best case, sampled from
real queries and their relevant documents. In case a corpus is con-
structed manually, human judges are presented with pairs of queries
and documents and asked to second-guess the information needs
underlying the queries in order to judge whether the document pre-
sented alongside a query is relevant to it. Obviously, this approach
to corpus construction limits the size of a corpus, since the num-
ber of pairs of queries and documents grows in O(|D| · |Q|). The
situation is aggravated by the fact that even expert human judges
make errors so that more than one judgment is required for every
query-document pair; the more the better. Hence, oftentimes, a
post-retrieval evaluation on the basis of pooling is conducted by
applying retrieval models to a corpus of queries and documents
whose relevance relation is unknown and by judging samples of
pairs of queries and documents from the obtained retrieval results
until an estimation of the overall quality of each model becomes
possible. In case a corpus can be constructed automatically, special
attention needs to be paid noz to introduce biases of any kind into
the corpus. In case a retrieval system is already in use or queries and
documents relevant to them can be mined from another application
domain, a corpus can be constructed by means of statistical sam-
pling of queries and documents. Anyway, a corpus should contain a
representative sample of the population of documents and queries
found in the real situation underlying a retrieval task. Statistical
representativeness, however, may not always be achieved since not
all variables and their distributions are known a-priori, and since the
real situation underlying task often cannot be overviewed entirely.

A straightforward way to performance measurement is to count
the errors a retrieval model R makes when retrieving documents
from a corpus D for a given q under a relevance threshold τ. Errors,
in this connection, are irrelevant documents considered relevant,

CHAPTER 1. INTRODUCTION 20

Table 1.2: Confusion matrix of retrieval modelR for a given q, when applied
on document collection D under relevance threshold τ.

Prediction Actual Σ

ofR under τ Relevant Irrelevant

Relevant |D+ ∩ D∗| |D+ \ D∗| |D+|
Irrelevant |D− ∩ D∗| |D− \ D∗| |D−|

Σ |D∗| |D \ D∗| |D|

and vice versa. Likewise, the model’s correct decisions are counted.
These counts are typically arranged in a so-called confusion ma-
trix, which contrasts the instances whereR confuses relevance and
irrelevance with those where it doesn’t (see Table 1.2).

Confusion matrices are a useful tool to overview the performance
of a single retrieval model, but they are cumbersome when compar-
ing many models, since they do not suggest a ranking among them.
Therefore, measures have been proposed that combine the absolute
values of a confusion matrix into single, relative performance values,
each based on different presumptions and each emphasizing differ-
ent performance aspects. The two most often applied measures in
information retrieval are precision and recall:

prec(D+, D∗) =
|D+ ∩ D∗|
|D+| ; rec(D+, D∗) =

|D+ ∩ D∗|
|D∗| .

These measures focus on the subset of relevant documents D∗ of
D for a given q rather than the typically much larger subset of
irrelevant documents; precision measures the purity of the set of
retrieved documents D+, whereas recall measures its completeness
regarding D∗. The domain of both measures is [0, 1], where 0 denotes
minimum and 1 maximum performance. When designing a retrieval
model, performance gains on one of the measures usually come at
the price of losses on the other. Note, however, that perfect recall
can be achieved simply by adjusting τ so that all documents are

CHAPTER 1. INTRODUCTION 21

considered relevant (i.e., D+ = D). Hence, only the two of them
paint a clear picture of a retrieval model’s performance. However,
they allow only for a partial order among retrieval models: one
retrieval model outperforms another if, and only if, it does so on both
precision and recall. To obtain a total order, the two measures can
be combined into a single performance value using the F-Measure
(i.e., the weighted harmonic mean of precision and recall):

Fb(D+, D∗) =
(1 + b2) · prec(D+, D∗) · rec(D+, D∗)

b2 · prec(D+, D∗) + rec(D+, D∗)
,

where b ∈ [0, ∞) and b < 1 emphasizes precision, b > 1 empha-
sizes recall, and b = 1 gives both equal weight. Again, the domain
of the F-Measure is [0, 1], 0 denoting minimum, and 1 maximum
performance. The harmonic mean is used instead of the arithmetic
mean since the latter would map a naïve retrieval model that re-
turns D+ = D onto a performance value close to 0.5 if |D∗| � |D|,
whereas the former maps it onto a more sensible performance value
close to 0. Note that all of the above measures still depend on
the choice of relevance threshold τ for R; however, it is common
practice to choose the threshold τ that maximizes the performance
measure under consideration (i.e., to assume best case performance).
Also, the performances of different retrieval models can be com-
pared only if they have been obtained based on the same evaluation
corpus D. Naturally, experiments should be repeated for many
different queries, averaging the results.

The three aforementioned measures represent one of the most
common approaches to measure and compare the performance of
retrieval models. Yet, there are plenty of other approaches to perfor-
mance measurement and visualization, including precision-recall
graphs, the receiver operating characteristic, the normalized dis-
counted cumulative gain, and many more. We refrain from introduc-
ing all of these measures here, since the choice of measure depends
on the retrieval task at hand, and since each measure is best ex-
plained alongside a practical application.

CHAPTER 1. INTRODUCTION 22

Finally, the speed of a retrieval process and the usability of a
retrieval system’s interface can be evaluated. Regarding speed, an
analysis of a retrieval process’s runtime complexity tells something
about its scalability. Successful retrieval systems face thousands up
to billions of queries a day, dependent on their success, so that one
of the main goals is to achieve at least linear runtime. However,
an absolute runtime measurement of the average time to answer a
query is also important, since this tells something about the quality
of the implementation of the retrieval process in question. Regarding
usability, the interface of a retrieval system should be designed so as
to support querying and it should visualize the retrieval results in
a useful manner. While following basic interface design principles,
such as simplicity and minimalism, may be a good start, the only
way to tell whether the target audience will accept and use a retrieval
system is to conduct user studies and user monitoring. In the former
case, test users are asked to answer predefined search queries using
a system and then to answer a questionnaire about their experience,
while in the latter case the system is released and its users’ behavior
is monitored in order to draw conclusions about their satisfaction.

1.3.3 Discussion

There are other schools of information retrieval that arrange and
formalize its building blocks differently. Many, particularly those
presented in the aforementioned primers, focus on keyword search.
Above, we take a pragmatic approach in that we consider retrieval
tasks and retrieval models as basic framework to explain solutions to
satisfy real-world information needs, whereas solutions may differ
wildly and even be incompatible to one another in terms of their
theoretical or empirical foundations. This pragmatism is rooted in
the fact that there is no Grant Theory of information retrieval, yet,
and rumor has it there never will be [186].

CHAPTER 1. INTRODUCTION 23

Web search engines have severely lowered the bar for conducting
research in its broadest sense, and people use them to find answers
to even the simplest of questions. Web search engines have made us
realize information needs at an heretofore unknown scale, which is
one of information retrieval’s major achievements. An this is in fact
what research in information retrieval is all about: identifying and
then satisfying information needs we didn’t even know we had.

Part I

Text Reuse

24

Chapter 2

Detecting Near-duplicate Text Reuse

In this chapter we study methods to detect cases of text reuse where
the reused text is close to identical to its original. Reusing a text
without modifying it is difficult to be accomplished: for example, a
reused text is typically reformatted to blend in with the remainder
of the document, comments or omissions are added to quotations
(e.g., “[sic]” after misspelled words), variable portions of boilerplate
text are modified, or small modifications are made in a plagiarized
text to hide this fact. Hence, technologies to detect such cases of text
reuse cannot rely on the reused text being exactly the same as its
original but have to be robust to slight or even heavy modifications.

A sub-field of information retrieval called near-duplicate detec-
tion deals with this kind of matching. Near-duplicates occur in
many document collections, from which the most prominent one
is the web. Studies show that about 30% of all web documents
are duplicates of others [33, 63]. Examples include mirror sites,
revisions and versioned documents, and boilerplate texts such as
disclaimers [243]. The negative impact of near-duplicates on web
search engines is twofold: indexes waste storage space and search
results can be cluttered with almost identical entries.

25

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 26

Within our research, we have studied different approaches to
near-duplicate detection, and this chapter compiles an in-depth
overview of our respective publications [123, 161, 165, 209, 210, 211].
Section 2.1 introduces a formal framework for the detection of near-
duplicate texts based on a technique called fingerprinting. Sec-
tion 2.2 details the principles of constructing fingerprints and sur-
veys the relevant algorithms from the literature. Section 2.3 reports
on a large-scale evaluation of a selection of these algorithms.

Our contributions are as follows. First, a unified view of the
diverse existing approaches to near-duplicate detection. Most promi-
nently, two major paradigms of near-duplicate detection are identi-
fied and compared for the first time, namely, projecting-based finger-
printing and embedding-based fingerprinting. Moreover, we show
that the latter is a space partitioning method. Finally, within our
evaluation, we compare well-known algorithms of both paradigms,
and propose a new, representative evaluation corpus for this pur-
pose. The evaluation itself provides new insights regarding the
performance characteristics of the evaluated algorithms.

2.1 Near-duplicate Detection Based on Fingerprinting

Text-based information retrieval in general deals with the search in
a large document collection D. In this connection, we distinguish
between a “real” document d ∈ D and its computer representa-
tion d under a given retrieval model. Likewise, D denotes the set
of computer representations of the real documents in D. Typically,
a document representation d is an m-dimensional feature vector,
which means that the objects in D can be considered as points in the
m-dimensional vector space. The similarity between two documents
d and dq is inversely proportional to the distance of their feature
vectors d and dq. It is measured by a function ϕ(d, dq) which maps
onto [0, 1], with 0 and 1 indicating no and a maximum similarity
respectively; ϕ may rely on the l1-norm, the l2-norm, or on the angle

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 27

between the feature vectors. Obviously, the most similar document
d∗ ∈ D respecting a query document dq maximizes ϕ. The task of
finding d∗ is called nearest neighbor search. The task of finding
all documents whose similarity is within an ε-environment of dq is
called similarity search, and when restricting the search so that the
ε-environment is small, say, the similarity of the documents sought-
after to dq is close to 1, the task is also known as near-duplicate
detection. Here, two documents d and dq are considered as near-
duplicates if the following condition holds:

ϕ(d, dq) ≥ 1− ε with 0 < ε� 1.

A solution to the outlined problem shall provide a high retrieval
performance in terms of precision and recall, and at the same time
a high runtime performance, which are competitive objectives. Re-
garding retrieval performance, the optimal approach to identify
two documents d and dq as near-duplicates under a given retrieval
model is to compute their representations d and dq, and to measure
their similarity directly. With this approach, the computation of the
set Dq ⊂ D which contains all near-duplicates of dq in D requires
O(|D|) time, say, linear time in the collection size. Documents are
typically represented with a high dimensionality m, where “high”
means m > 10, which forecloses a sub-linear search based on spatial
indexes, such as kd-trees, quad-trees, or R-trees. In this case, these
data structures are outperformed by an exhaustive comparison [228].
If the document representations are sparse, which is typical in infor-
mation retrieval, this fact can be exploited to speed up an exhaustive
comparison: by utilizing an inverted index, documents having noth-
ing in common with dq can be pruned from the search. However,
the runtime complexity with this approach remains in O(|D|).

By relaxing the retrieval requirements in terms of precision and
recall, the runtime performance can be further improved. Basic
idea is to approximate the similarity between d and dq within a
k-dimensional space, with k � m, by means of fingerprinting. A

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 28

fingerprint Fd of a document d is a k-dimensional vector whose ele-
ments are natural numbers computed from d using a certain hash
function. If two fingerprints Fd and Fdq have at least κ hash values in
common, with κ ≤ k, it is assumed that d and dq are near-duplicates.
Let FD =

⋃
d∈D Fd denote the union of the fingerprints of all docu-

ments in D, then a fingerprint index µ : FD → D can be constructed
which maps each hash value x ∈ FD onto the power set of D, so
that µ(x) is the set of documents that share x in their fingerprints.
If κ = 1 is assumed, the retrieval of near-duplicate documents Dq
from D for a given query document dq can be accomplished in O(1)
time by computing dq’s fingerprint Fdq and then Dq =

⋃
x∈Fdq

µ(x).

2.2 Fingerprint Construction

This section introduces both a unifying framework and the underly-
ing principles for a wide range of fingerprint algorithms. The con-
struction of a fingerprint Fd of document d can be organized within
four steps, consisting of representation, dimensionality reduction,
quantization, and encoding (see Figure 2.1 for an illustration):

1. Representation of d as a high-dimensional feature vector d
under a given retrieval model.

2. Dimensionality reduction by projecting or by embedding. Al-
gorithms of the former type select dimensions in d whose
values occur unmodified in the low-dimensional vector d′.
Algorithms of the latter type reformulate d as a whole to ob-
tain d′, maintaining as much information as possible.

3. Quantization is the mapping of the elements in d′ onto small
integer numbers, obtaining d′′.

4. Encoding is the computation of one or several codes from d′′,
which together form the fingerprint Fd.

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 29

Fingerprinting

Fingerprint

dd d' Fd

Representation

Document

Encoding

Quantized
vector

Quantization
Dimensionality reduction

High-dim.
vector

Low-dim.
vector

Projecting
(chunk selection)

Embedding

Figure 2.1: The construction of a fingerprint Fd of a document d. After the
dimensionality reduction step, the low-dimensional vector d′ is quantized
and then encoded into Fd.

Fingerprint algorithms differ mainly in their dimensionality re-
duction method. Figure 2.2 organizes the methods alongside well-
known fingerprint algorithms.1 Before going into detail, we compare
the orders of magnitude that can be expected from a dimensionality
reduction. The dimension m of vectors used to represent documents
depends on the retrieval model employed. Most retrieval models
chunk a document which yields a vocabulary T. T is the union set
of all chunks (terms, 1-grams, or n-grams in general) that occur in
at least one document representation d from a collection D. Hence,
d may be understood as an m-dimensional vector whose compo-
nents correspond to the chunks in T. In practice, however, only a
fraction of the components of a given representation d have a non-
zero weight. A more efficient way to encode such sparse vectors
is a list of (descriptor, weight)-tuples, disregarding all zero-weight

1We have excluded latent and hidden variable models (such as LSI, pLSI,
LDA, etc.), which also embed documents into a low-dimensional space, since their
exponential runtimes disqualify them for large-scale use.

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 30

Dimensionality
reduction

Projecting-
based

Embedding-
based

Methods Algorithms
Collection-relative

(Pseudo-)
Random

Synchronized

Local
Cascading super-, megashingling

random, sliding window

shingling, prefix anchors,
hashed breakpoints,
winnowing

rare chunks
SPEX, I-Match

Knowledge-based

Randomized

fuzzy-fingerprinting

locality-sensitive hashing

Figure 2.2: Taxonomy of dimensionality reduction methods (left), aligned
with fingerprint algorithms using them (right).

dimensions. It is important not to confuse the encoding size of a
document |d| with the dimensionality of its vector space m = |T|.
Figure 2.3 contrasts the dimensionality of different document spaces
with the respective sizes of the document representations d.

2.2.1 Projecting-based Fingerprinting

A chunk or an n-gram of a document d is a sequence of n consecutive
words from d. Let Cd be the set of all chunks of d. The size of Cd is at
most |d| − n, say, it is withinO(|d|). Let d be a vector representation
of d where each c ∈ Cd is used as descriptor of a dimension with
non-zero weight. If dimensionality reduction is done by projecting,
a fingerprint Fd for document d can be formally defined as follows:

Fd = {h(c) | c ∈ Cd and σ(c) = true},

where σ denotes a chunk selection heuristic that becomes true if a
chunk fulfills a certain property, and h denotes a hash function, such
as MD5 or Rabin’s hash function, which maps chunks to natural
numbers, serving as a means for quantization. Usually the identity
mapping is applied as encoding rule, but for example, the authors
of [32] describe a more intricate encoding rule called supershingling.

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 31

101 106 108107102

102 103

Size of document
representation d

Dimension of
document space

Embedding

Projecting
(chunk selection)

1-gram space, standard vector space

Space with efficient spatial indexes
Practical embedding space

Shingling space

n-gram space (n > 2)

101

Standard 1-gram VSM vector

Keyword vector
Prefix class vector

Shingle vector

n-gram VSM vector

105

Figure 2.3: The diagram contrasts the dimensions of different document
spaces with the sizes of the document representations. Also, the dimension-
ality reduction typically achieved with fingerprint algorithms is shown.

The objective of σ is to select chunks to be part of a fingerprint
which are best-suited for a reliable near-duplicate identification.
Table 2.1 presents a unified overview of existing projecting-based
near-duplicate detection algorithms, and their respective chunk
selection heuristics, whereas a heuristic is of one of the types denoted
in Figure 2.2. In this connection, we emphasize the distinction
between chunk selection heuristics that reach their decision relative
to a given collection of documents compared to those which don’t.
This distinction pays tribute to the fact that, typically, the former is
much more efficient with respect to runtime, while the latter enables
one to integrate global considerations as well as knowledge from the
retrieval task. Note, however, that a document-specific dimension
reduction presumes a closed retrieval situation [207].

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 32

Table 2.1: Summary of chunk selection heuristics. The rows contain the
name of the fingerprint algorithm along with the constraints that are to be
fulfilled by a chunk in order to be selected by σ.

Algorithm Reference Chunk selection heuristic σ(c)

rare chunks [83] c occurs once in D
SPEX [24] c occurs at least twice in D
I-Match [41, 50, 111] c = d; excluding non-discriminant terms of d

shingling [32] c ∈ {c1, . . . , ck}, {c1, . . . , ck} ⊂rand Cd
prefix anchor [126] c starts with a particular prefix, or

[83] c starts with a prefix which is infrequent in d
hashed breakpoints [126] h(c)’s last byte is 0, or

[30] c’s last word’s hash value is 0
winnowing [197] c minimizes h(c) in a window sliding over d

random misc. c is part of a local random choice from Cd
one of a sliding window misc. c starts at word i mod m in d; 1 ≤ m ≤ |d|

super- / megashingling [32, 63] c is a combination of hashed chunks
which have been selected with shingling

2.2.2 Embedding-based Fingerprinting

An embedding-based fingerprint Fd for a document d is typically
constructed with a technique called locality (or similarity) sensitive
hashing [96]. Unlike standard hash functions, which aim at minimiz-
ing hash collisions, a similarity sensitive hash function hϕ : D→ U,
where U ⊂ N, is designed to produce hash collisions with a high
probability if a pair of objects d and dq from D are similar. Ideally,
such a hash function would fulfill the following property [206]:

hϕ(d) = hϕ(dq)︸ ︷︷ ︸
α

⇔ ϕ(d, dq) ≥ 1− ε︸ ︷︷ ︸
β

,

where d, dq ∈ D and 0 < ε � 1. That is, a hash collision between
two elements from D indicates a high similarity between them and
vice versa. The most salient property of hϕ is the simplification of a
fine-grained similarity quantification, operationalized as similarity
function ϕ, to the binary concept “similar or not similar.” However,

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 33

hϕ hϕh'ϕ

Figure 2.4: A set of documents projected in the two-dimensional plane. A
hash function hϕ partitions the space into regions that are characterized by
different hash values. Even if two documents are very similar to each other,
they may be mapped onto different hash keys (left). This threshold-behavior
can be alleviated by employing several functions hϕ and h′ϕ (right).

this property cannot be guaranteed: if α ; β, collisions occur for
pairs of documents which are not near-duplicates, and if α : β, not
all pairs of near-duplicate documents are mapped onto the same
hash value. The former relates to the concept of precision and the
latter to that of recall. In fact, α⇐ β can be disproved: given a hash
function hϕ, it statically determines a hash value for every document
in existence, and as a consequence, defines an absolute partitioning
of the space of document representations.2 Therefore, highly similar
documents may exist which are mapped onto different hash values.

Figure 2.4 illustrates this connection: despite their high similarity
(= low distance), a hash function hϕ will map some of the document
representations onto different hash values. By employing a second
hash function h′ϕ, which defines a different partitioning, the logical
disjunction of both functions can be used to map more of the near-
duplicates onto the same hash value. In practice, one can observe
a monotonic relationship between the number k of hash functions
used simultaneously and the achieved recall, but there is no free
lunch: the improved recall is bought with a decrease in precision.

2By contrast, a complete similarity graph underlying a set D of document repre-
sentations defines for each element its specific partitioning.

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 34

For a given document d, a fingerprint Fd is constructed as follows:

Fd = {h(i)ϕ (d) | i ∈ {1, . . . , k}}.

Two kinds of similarity sensitive hash functions have been pro-
posed: fuzzy-fingerprinting and locality-sensitive hashing. The
former exploits domain knowledge, whereas the latter grounds
on domain-independent randomization techniques (see again Fig-
ure 2.2). In what follows, we describe these hash functions in detail.

Fuzzy-Fingerprinting Fuzzy-fingerprinting is a similarity sensitive
hash function designed for, but not limited to text information re-
trieval [206]. It defines a small number of k ∈ [10, 100] prefix equiv-
alence classes. A prefix class, for short, contains all terms starting
with a given prefix. For the Latin alphabet, 26i prefix classes can be
defined, where i denotes prefix length. For a given vector represen-
tation d, hϕ(d) computes as follows (see Figure 2.5): (1) Embedding
of d into a k-dimensional space whose dimensions quantify the dis-
tribution of the index terms in d with respect to the k prefix classes.
The embedded vector d′ is normalized by computing its difference
from the vector of expected values. The expected values for each
prefix class dimension are pre-computed based on a large document
collection. (2) Quantization of each vector component of d′ by means
of fuzzification. A fuzzification scheme ρ : R → {1, . . . , r} is used
which maps the real-valued deviations from the expectation in d′

onto one of r deviation intervals, thus obtaining the quantized vec-
tor d′′. (3) Encoding of d′′ by summation of its vector components:

h(ρ)ϕ (d) =
k−1

∑
i=0

δ
(ρ)
i · r

i, with δ
(ρ)
i ∈ {0, . . . , r− 1},

where δ
(ρ)
i is the i-th vector component of d′′, which represents the

fuzzified deviation from the expectation of the i-th component of d′,
when applying fuzzification scheme ρ.

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 35

Vector space
with sample
document and
random vectors

Real number line

d

a1
ak

a2

ai . d
TDot product

computation

819855783Hash value

�
�

�

Locality-sensitive Hashing

A priori probabilities
of prefix classes

Distribution of prefix
classes in sample

Normalization
and difference
computation

Fuzzification

213235632Hash value

� �
�

�

Fuzzy-Fingerprinting

Figure 2.5: The basic steps of hashing with fuzzy-fingerprinting and locality-
sensitive hashing.

Locality-Sensitive Hashing Locality-sensitive hashing (LSH) is a
generic framework for the randomized construction of hash func-
tions [96]. Based on a family Hϕ of simple hash functions h,
h : D → U, a locality-sensitive hash function hϕ is a combination
of k functions h ∈ Hϕ obtained by an independent and identically
distributed random choice. When using summation as combination
rule the construction of hϕ(d) is defined as follows:

hϕ(d) =
k

∑
i=1

hi(d), with {h1, . . . , hk} ⊂rand Hϕ.

Several hash families Hϕ that are applicable for text-based informa-
tion retrieval have been proposed [40, 57, 15]; our focus lies on the
approach of Datar et al. [57]. The idea of this hash family is to map
a document representation d to a real number by computing the dot

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 36

product aT ·d, where a is a random vector whose vector components
are chosen independently from a given probability distribution. The
real number line is divided into equidistant intervals of width r each
of which having assigned a unique natural number, and the result
of the dot product is identified with the number of its enclosing
interval. Under this approach the construction of hϕ for a given list
ρ = (a1, . . . , ak) of random vectors reads as follows:

h(ρ)ϕ (d) =
k

∑
i=1

⌊
aT

i · d + c
r

⌋
,

where c ∈ [0, r] is chosen randomly to allow for all possible segmen-
tations of the real number line (see Figure 2.5 for an illustration).

A lower bound for the retrieval quality of locality-sensitive hash-
ing can be stated: if the average distance of a document to its nearest
neighbor is known in advance, hϕ can be adjusted so that the re-
trieval probability for the nearest neighbor is above a certain thresh-
old [71]. This fact follows from the locality-sensitivity of a hash
family Hϕ, which claims that, for any h ∈ Hϕ, the probability of a
hash collision of two documents increases with their similarity.3

2.3 Evaluating Fingerprint Algorithms

When evaluating near-duplicate detection algorithms, one faces the
problem of choosing a representative corpus for the retrieval situa-
tion which provides a realistic basis to measure both precision and
recall. Today’s standard corpora, such as the TREC or Reuters Cor-
pus Volume 1 [190], have deficiencies in this respect: the distribution
of similarities decreases exponentially from a very high number of
low similarities to a very low number of high similarities. Figure 2.6

3In order to guarantee a hash family being locality-sensitive, the distribution must
be α-stable. An example for such a distribution is the Gaussian distribution. For
further theoretical background we refer to [95, 144].

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 37

0 0.2 0.4 0.6 0.8 1

Similarity Interval

 0.0001

 0.001

 0.01

 0.1

1

R
at

io
 o

f S
im

ila
rit

ie
s

Wikipedia article revisions

RCV1

Figure 2.6: Similarity distribution of the documents in the Reuters Corpus
Volume 1 (RCV1) and the Wikipedia article revisions.

illustrates this characteristic on the Reuters Corpus Volume 1. This
fact allows only for precision evaluations since recall performance
depends on very few pairs of documents. Also the corpora em-
ployed in the near-duplicate evaluations found in [84, 85, 235] lack
in this respect; moreover, they are custom-built and not publicly
available. Conrad and Schriber [49] attempt to overcome this issue
by the artificial construction of a suitable corpus.

For the evaluation of near-duplicate detection algorithms, we
propose to use Wikipedia including all revisions of all Wikipedia
articles.4 Wikipedia periodically publishes snapshots of itself which
are available free of charge. The snapshot used in our experiments
was the one of August 16, 2006, comprising about 6 million articles
with more than 80 million revisions. A pilot study revealed that an
article’s revisions are often very similar to one another: the expected
similarity between two article revisions is about 0.5. Since Wikipedia
articles undergo constant editing, the corpus meets the requirements
of a meaningful evaluation of near-duplicate detection algorithms.

4http://en.wikipedia.org/wiki/Wikipedia:Download

http://en.wikipedia.org/wiki/Wikipedia:Download

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 38

Experiment 1: Fingerprinting Performance We analyzed a selection
of the fingerprint algorithms with a total of 7 million pairs of doc-
uments, using the following strategy: each article’s first revision
serves as query document dq and is compared to all other revisions
as well as to the first revision of its immediate successor article. The
former ensures a large number of near-duplicates and hence ensures
the reliability of the recall values; the latter is to gather sufficient data
to evaluate the precision. Figure 2.6 shows the obtained similarity
distribution; the similarities are almost evenly distributed. Figure 2.7
presents the results of our experiments in the form of precision-over-
similarity curves (top) and recall-over-similarity curves (bottom).
The curves are computed as follows: for a number of similarity
thresholds from the interval [0, 1] the set of document pairs whose
similarity is above a certain threshold is determined. Each such set
is compared to the set of near-duplicates identified by a particular
fingerprinting method. From the intersection of these sets then the
threshold-specific precision and recall values are computed in the
standard way. As can be seen in the plots, the chunking-based meth-
ods perform better than similarity sensitive hashing, while hashed
breakpoint chunking performs best. It must be added, however,
that the fingerprints of hashed breakpoint chunking and shingling
comprised 50 times more hash values to represent a document than
those of fuzzy-fingerprinting and supershingling, which puts into
perspective the performance difference between these methods.

Experiment 2: Dimensionality Reduction Performance Furthermore,
we have evaluated the quality of the low-dimensional document
representation d′ obtained from the dimensionality reduction step
when computing the fingerprint of a document d. In particular,
we compared the ranking performance of shingling with that of
locality-sensitive hashing and fuzzy-fingerprinting, while varying
the dimensionality k of the space into which documents were pro-
jected or embedded, respectively. For each pair of the mentioned
fingerprint algorithms and k ∈ {10, 50, 100}, the following exper-

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 39

0

 0.2

 0.4

 0.6

 0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

FF

LSH
SSh

Sh

HBC

0

 0.2

 0.4

 0.6

 0.8

1

0 0.2 0.4 0.6 0.8 1

R
ec

al
l

Similarity

FF

LSH
SSh

ShHBC

Shingling
Supershingling
Hashed breakpoint chunking
Fuzzy-fingerprinting
Locality-sensitive hashing

Sh
SSh
HBC
FF
LSH

Fingerprint algorithms:

Figure 2.7: Precision and recall over similarity for 5 fingerprint algorithms.

iment was repeated 1000 times, averaging the results: (1) a query
document dq was chosen at random from one category of the Reuters
corpus. (2) 1000 other documents, chosen at random from the same
category as dq, were ranked according to their similarity to dq using
the fingerprint method in question. (3) The same documents were
ranked again according to their similarity to dq, this time using a
high-dimensional representation based on the standard vector space
model. (4) The rank correlation of the two rankings was computed
using Kendall’s τ. More precisely, six correlations were computed
regarding the top most similar documents to dq having at least a
similarity of 0, 0.25, 0.5, 0.65, 0.8, and 0.9.

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 40

Rationale for computing the correlation of a ranking obtained
with a low-dimensional document representation and that from a
high-dimensional representation is to investigate whether the low-
dimensional representation may replace the high-dimensional one
in practice. Say, if the low-dimensional representation is capable
of approximating the ranking obtained with vector space model
closely, it can be used in lieu of this model.

Figure 2.8 shows the results of this experiment. As can be seen,
an increase in the similarity threshold goes along with an increase
in rank correlation. Shingling performs worst; the rank correla-
tion at medium similarity thresholds is considerable smaller than
those of the other models. Both locality-sensitive hashing and fuzzy-
fingerprinting show a high rank correlation, where the former out-
performs the latter. A reduction in the dimensionality impairs the
rank correlation for all approaches. Here, the compact models based
on embedding are affected by at most 25%, whereas shingling de-
creases by more than 75%. Considering the third row, both embed-
ding LSH and fuzzy-fingerprinting perform similar.

2.3.1 Conclusions and Future Work

Algorithms for near-duplicate detection are applied for retrieval
tasks such as web mining, text reuse and plagiarism detection, and
corporate storage maintenance. In this chapter, we developed an
integrative view to existing technologies for near-duplicate detec-
tion. Theoretical considerations and practical evaluations show that
shingling, supershingling, and fuzzy-fingerprinting perform best in
terms of retrieval recall, retrieval precision, and chunk index size.
Moreover, a new, publicly available corpus is proposed, which over-
comes weaknesses of the standard corpora when analyzing use cases
from the field of near duplicate detection.

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 41

 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250

C
or

re
la

tio
n

Similarity threshold

C
or

re
la

tio
n

C
or

re
la

tio
n

Shingling Fuzzy-fingerprinting

100 dimensions

50 dimensions

10 dimensions

Locality-sensitive hashing

 0

 0.2

 0.4

 0.6

 0.8

 1
 0

 0.2

 0.4

 0.6

 0.8

 1

0.90.80.650.50.250
Similarity threshold

0.90.80.650.50.250
Similarity threshold

Figure 2.8: Correlation of rankings obtained with low-dimensional represen-
tations to those obtained with the high-dimensional standard vector space
model. Each plot quantifies the achieved rank correlation value, dependent
on six similarity thresholds, as an average over 1000 rankings.

CHAPTER 2. DETECTING NEAR-DUPLICATE TEXT REUSE 42

Another insight presented in this chapter related to the sim-
ple construction of low-dimensional document representations, as
opposed to the more intricate methods used in latent and hid-
den variable models, such as the singular value decomposition
employed by LSI. In this connection, the embeddings produced
within fuzzy-fingerprinting and locality-sensitive hashing provide
for a lightweight alternative in terms of runtime. Finally, from a
practical point of view, fingerprinting can only be employed for
near-duplicate detection and retrieval if one has access to the whole
document collection, so their fingerprints can be computed and in-
dexed offline. Since, for example, text reuse detection is supposed
to happen on web scale, this can hardly be accomplished by others
than the major search engine companies.

Chapter 3

Detecting Cross-Language Text Reuse

In this chapter we study methods to detect cases of text reuse across
languages. These methods are applied when collecting training
material for machine translation systems or evidence of plagia-
rism. Regarding the latter, we assume that plagiarism does not
stop at language barriers. For instance, non-English speaking schol-
ars often write homeworks in their native languages, whereas sci-
entific discourse to refer to is often published in English. Cross-
language plagiarism detection has attracted considerable atten-
tion [10, 38, 159, 166, 177]. The detection of translated text reuse
relates to cross-language information retrieval, a sub-field of infor-
mation retrieval dealing with satisfying information needs across
languages. According to internet statistics services, English is still
the top language found on the web, but in total, all other languages
together dwarf the size of the English portion of the web.

Within our research, we have studied different techniques that
may be applied for the purpose of cross-language text reuse de-
tection, and this chapter compiles an in-depth overview of our re-
spective publications [6, 166, 174]. Section 3.1 revisits the retrieval
process for text reuse detection introduced in Chapter 1, emphasiz-
ing the differences that have to be dealt with in a multilingual setting.

43

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 44

Section 3.2 surveys retrieval models for the detailed comparison of
documents across languages and continues to introduce three re-
cent models called CL-CNG [132], CL-ESA [166], and CL-ASA [10].
Section 3.3 presents a large-scale evaluation of the three mentioned
retrieval models. All experiments were repeated on test collections
sampled from the parallel JRC-Acquis corpus and the comparable
Wikipedia corpus. Each test collection contains aligned documents
written in English, Spanish, German, French, Dutch, and Polish.

Our contributions are the following: besides the comprehen-
sive discussion of alternative methods for cross-language text reuse
detection, our most important contribution is the cross-language
explicit semantic analysis model (CL-ESA), which is a new model
for the assessment of cross-language text similarity. Moreover, we
report on a large-scale evaluation which compares CL-ESA with two
other models. An important observation is the applicability of Wi-
kipedia as a comparable corpus. The chapter concludes with a first
time discussion of the feasibility of cross-language fingerprinting.

3.1 Differences to Monolingual Text Reuse Detection

In this chapter we revisit the three-step text reuse retrieval process
shown in Figure 1.3, placing emphasis on applying it in a multi-
lingual setting. Let dq denote a suspicious document written in
language L, and let D′ denote a document collection written in an-
other language L′. The detection of a text passage in dq that is reused
from some document in D′ can still be organized within the afore-
mentioned three steps candidate retrieval, detailed comparison, and
knowledge-based post-processing (see Figure 1.3):

1. Candidate Retrieval. From D′ a set of candidate documents D′q
is retrieved where each document is likely to contain passages
that are very similar to certain passages in dq. This step re-
quires methods to map the topic of dq from L to L′.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 45

Candidate retrievalFocused search

Hash-based search

dq

d'q

Keyword
extraction

Keyword
extraction

Fingerprinting

Keyword
index of D'
Keyword

index of D'

Fingerprint
index of D'

Candidate
documents D'q

Machine
translation IR

Hashindex
lookup

CLIR

Figure 3.1: Retrieval process for candidate retrieval within cross-language
text reuse detection.

2. Detailed Comparison. Each document in D′q is compared
passage-wise with dq, using a cross-language retrieval model.
If a high similarity is measured for a pair of passages, a possi-
ble case of cross-language reuse is assumed.

3. Knowledge-based Post-Processing. Filtering of false positives
from the candidate documents, visualization of the remainder.

We identify three alternatives candidate retrieval of candidate
documents across languages. They all demonstrate solutions for
this task, utilizing well-known methods from cross-language in-
formation retrieval (CLIR), monolingual information retrieval (IR),
and hash-based search. Figure 3.1 shows the alternatives. The
approaches divide into methods based on a focused search and
methods based on hash-based search. The former reuse existing
keyword indexes and well-known keyword retrieval methods to
retrieve D′q, the latter rely on a fingerprint index of D′ where text
passages are mapped onto sets of hash codes.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 46

Approach 1 Research in cross-language information retrieval ad-
dresses keyword query tasks in first place, where for a user-specified
query q in language L documents are to be retrieved from a collec-
tion D′ in language L′. By contrast, our task is a so-called “query
by example task”, where the query is the document dq, and docu-
ments similar to dq are to be retrieved from D′. Given a keyword
extraction algorithm both tasks are solved in the same way using
standard CLIR methods: translation of the keywords from L to L′

and querying of a keyword index which stores D′.

Approach 2 In this approach dq is translated from L to L′ with ma-
chine translation technology, obtaining d′q. Afterwards keyword ex-
traction is applied to d′q, similar to Approach 1, and the keyword in-
dex of D′ is queried with the extracted words in order to retrieve D′q.
This approach compares to the first one in terms of retrieval quality.

Approach 3 The fingerprint Fd of a document d is a small set of
integers computed from d in a way so that similar documents
are mapped onto the same hash values with a high probability.
Given dq’s translation d′q, the candidate documents may be retrieved
by querying a fingerprint index of D′ with Fd′q . Alternatively, one
may attempt fingerprinting across languages without first translat-
ing dq to d′q. This option has not been investigated until now.

Remarks Given the choice among the outlined alternatives the ques-
tion is: “Which way to go?” We argue as follows: there is no reason
to disregard existing web indexes, such as the keyword indexes
maintained by the major search engines. This favors Approach 1
and 2, and it is up to the developer if he trusts the CLIR approach
more than the combination of machine translation and IR, or vice
versa. Both approaches require careful development and adjustment
in order to work in practice. Approach 3 looks good on paper, but it

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 47

presumes that either the machine translation of dq yields a document
d′q which is a near-duplicate of the original text reused in dq, or that
cross-language fingerprinting can be realized. The former is unlikely
as a text has numerous possible translations and machine translation
technology is not mature enough to be controlled in this way, while
the latter turns out to be infeasible as well.

3.2 Measuring Cross-Language Text Similarity

This section surveys retrieval models which can be applied in the
detailed analysis step of cross-language text reuse detection; they
measure the cross-language similarity between passages of the query
document dq and passages of the candidate documents in D′q. Three
retrieval models are described in detail, the cross-language character
3-gram model, the cross-language explicit semantic analysis model,
and the cross-language alignment-based similarity analysis model.

3.2.1 Terminology and Related Work

In information retrieval, two documents dq and d′ are compared us-
ing a retrieval modelR, which provides the means to compute doc-
ument representations dq and d′ as well as a similarity function ϕ:
ϕ(dq, d′) maps onto a real value which indicates the topic similarity
of dq and d′. A common retrieval model is the vector space model
(VSM) which represents documents as term vectors and measures
their similarity using the cosine similarity. However, deductions
that come at no expense in monolingual retrieval are difficult to be
achieved between two languages L and L′: terms, named entities,
time or currency expressions, etc. have to be identified and mapped
from L to L′, which entails the problem of translation ambiguity.

We distinguish four kinds of cross-language retrieval models (see
Figure 3.2): (1) models based on language syntax, (2) models based
on dictionaries, gazetteers, rules, and thesauri, (3) models based on

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 48

Cross-language retrieval model

based on
parallel corpora:

CL-ASA, CL-LSI, CL-KCCA

based on
dictionaries:

CL-VSM, Eurovoc-based

based on
comparable corpora:

CL-ESA

based on
syntax:

CL-CNG

Figure 3.2: Taxonomy of cross-language retrieval models.

comparable corpora, and (4) models based on parallel corpora. Mod-
els of the first kind rely on syntactical similarities between languages
and on the appearance of foreign words. Models of the second kind
can be called cross-language vector space models: they bridge the
language barrier by translating words or concepts, such as locations,
dates, and number expressions. Models of the third and fourth kind
have to be trained on an aligned corpus consisting of documents
from the languages to be compared. The two approaches differ with
respect to the required degree of alignment: comparable alignment
refers to documents in different languages describing roughly the
same topic, while parallel alignment refers to documents that are
translations of one another whose words or sentences have been
mapped manually or heuristically to their respective translations.1

Obviously the latter poses a much higher requirement than the
former. The following models have been proposed:

• CL-CNG represents documents by character n-grams [132].
• CL-VSM and Eurovoc-based model construct a vector space

model [117, 176, 215].
• CL-ESA exploits correlations of the vocabulary of comparable

corpora [166, 233].
• CL-ASA is based on statistical machine translation [10].
• CL-LSI performs latent semantic indexing [62, 119].
• CL-KCCA uses a kernel canonical correlation analysis [226].

1There has been much confusion concerning corpora termed “parallel” and “com-
parable”; the authors of [131] provide a consistent definition.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 49

The alternatives imply a trade-off between retrieval quality and
retrieval speed. Also, the availability of necessary resources for
all considered languages is a concern. CL-CNG can be straightfor-
wardly operationalized and requires only little language-specific
adjustments (e.g., alphabet normalization by removal of diacritics).
The CL-VSM variants offer a retrieval speed comparable to that of
the VSM in monolingual information retrieval, but the availabil-
ity of handmade translation dictionaries depends on the frequency
of translations between the respective languages. Moreover, this
model requires significant efforts with respect to disambiguation and
domain-specific term translations [8, 215]. CL-LSI and CL-KCCA
are reported to achieve a high retrieval quality, but their runtime
behavior disqualifies them for many practical applications: at the
heart of both models is a singular value decomposition of a term-
document matrix which has cubic runtime. This is why we chose to
compare CL-CNG, CL-ESA, and CL-ASA. All of them are reported
to provide a reasonable retrieval quality, they require no manual
fine-tuning, pretty few cross-language resources, and they can be
scaled to work in a real-world setting. A comparison of these models
is also interesting since they operationalize different paradigms for
cross-language similarity assessment.

3.2.2 Cross-Language Character n-Gram Model (CL-CNG)

Character n-grams for cross-language information retrieval achieve
a remarkable performance in keyword retrieval for languages with
syntactical similarities [132]. We expect that this approach extends
to measuring the cross-language document similarity between such
languages as well. Given a pre-defined alphabet Σ and an n ∈ [1, 5],
a document d is represented as a vector d whose dimension is in
O(|Σ|n). Obviously d is sparse, since only a fraction of the possible
n-grams occur in a given d. In analogy to the VSM, the elements
in d can be weighted according to a standard weighting scheme,

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 50

and two documents d and d′ can be compared with a standard
measure ϕ(d, d′). Here we choose Σ = {a, . . . , z, 0, . . . , 9}, n = 3,
tf ·idf -weighting, and the cosine similarity as ϕ. In what follows, we
refer to this model variant as CL-C3G.

3.2.3 Cross-Language Explicit Semantic Analysis (CL-ESA)

In [166], we introduce the CL-ESA model as an extension of the
explicit semantic analysis model (ESA) [68, 233]. ESA represents a
document d relative to a so-called index collection DI . More pre-
cisely, d is represented by its similarities to the documents in DI .
These similarities, in turn, are computed with a monolingual re-
trieval model such as the VSM [208]:

d|DI
= AT

DI
· dVSM,

where AT
DI

denotes the matrix transpose of the term-document ma-
trix of DI , and dVSM denotes the term vector representation of d.
Again, various term weighting schemes may be applied.

If a second index collection D′I in another language is given such
that the documents in D′I have a topical one-to-one correspondence
to the documents in DI , the ESA representations in both languages
become comparable. For example, the cross-language similarity
between d and d′ can be expressed as ϕ(d|DI

, d′|D′I
). Figure 3.3 illus-

trates this principle for two languages but CL-ESA naturally extends
to multiple languages. Moreover, it gets by without translation tech-
nology, be it dictionary-based or other. The model requires merely
a comparable corpus of documents written in different languages
about similar topics. These documents may still be written indepen-
dently of each other. An example for such a corpus is Wikipedia,
where numerous concepts are covered in many languages.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 51

ϕ

Cross-language
similarity

0.5

0.2

... 0.2

0.3

...0.1

0.3

...

DI

ϕ
0.1
0.0
0.2

0.2
0.1
0.0

0.4

0.1

...

0.2

0.7

...

ϕ ϕ

0.5

0.2

... 0.2

0.3

...0.1

0.3

...

D'I

0.4

0.1

...

0.2

0.7

...

ϕ ϕ

ϕ
0.1
0.0
0.2

0.2
0.1
0.0

Language L’Language L

Document
representations
(e.g., VSM)

Index Collection
(e.g., Wikipedia)

Cross-language
vector space

Figure 3.3: Illustration of cross-language explicit semantic analysis.

3.2.4 Cross-Language Alignment-based Similarity Analysis (CL-ASA)

The CL-ASA model is based on statistical machine translation tech-
nology; it combines a two-step probabilistic translation and simi-
larity analysis [10]. Given dq, written in L, and a document d′ from
a collection D′ written in L′, the model estimates the probability
that d′ is a translation of dq is estimated according to Bayes’ rule:

p(d′ | dq) =
p(d′) p(dq | d′)

p(dq)
.

p(dq) does not depend on d′ and hence is neglected. From a machine
translation viewpoint p(dq | d′) is known as translation model proba-
bility; it is computed using a statistical bilingual dictionary. p(d′) is
known as language model probability; the underlying language model

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 52

represents the target language L′ in order to obtain grammatically
acceptable text in a translation [34]. Since the goal is to measure
the similarities of dq with documents written in L′, and not actually
translating dq into L′, two adapted sub-models are proposed: (1) the
adapted translation model is a non-probabilistic measure w(dq | d′),
and (2) the language model is replaced by a length model $(d′), which
depends on document lengths instead of language structures. Based
on these adaptions the following similarity measure is defined:

ϕ(dq, d′) = s(d′ | dq) = $(d′) w(dq | d′).

Unlike other similarity measures, this one is not normalized; note
that the partial order induced among documents resembles the order
of other similarity measures. The following paragraphs describe the
adapted translation model w(dq | d′) and the length model $(d′).

Translation Model Adaption The translation model requires a sta-
tistical bilingual dictionary. Given the vocabularies of the lan-
guages X ∈ L and Y ∈ L′, the bilingual dictionary provides
estimates of the translation probabilities p(x, y) for every x ∈ X
and y ∈ Y . This distribution expresses the probability for a word x
to be a valid translation of a word y. The bilingual dictionary is
estimated using the well-known IBM M1 alignment model [34, 147],
which has been successfully applied in monolingual and cross-
lingual information retrieval tasks [22, 158]. To generate a bilingual
dictionary, M1 requires a sentence-aligned parallel corpus.2 The
translation probability of two texts d and d′ is originally defined as:

p(d | d′) = ∏
x∈d

∑
y∈d′

p(x, y),

where p(x, y) is the probability that the word x is a translation
of the word y. The model was demonstrated to generate good

2The estimation is carried out on the basis of the EM algorithm [14, 59]. See [34,
159] for an explanation of the bilingual dictionary estimation process.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 53

Table 3.1: Length factors for translations between the language pairs L-L′.
A µ > 1 implies |d| < |d′| for d and its translation d′.

Parameter en-de en-es en-fr en-nl en-pl

µ 1.089 1.138 1.093 1.143 1.216
σ 0.268 0.631 0.157 1.885 6.399

sentence translations, but since entire documents of variable lengths
are considered, the formula is adapted as follows:

w(d | d′) = ∑
x∈d

∑
y∈d′

p(x, y).

The weight w(d | d′) increases if valid translations (x, y) appear in
the implied vocabularies. For a word x with p(x, y) = 0 and for
all y ∈ d′, w(d | d′) is decreased by 0.1.

Length Model Though it is unlikely to find a pair of translated doc-
uments d and d′ such that |d| = |d′|, their lengths will be closely
related by a certain length factor for each language pair. In accor-
dance with [177], the length model probability is defined as follows:

$(d′) = exp

(
−0.5

(
(|d′|/|d|)− µ

σ

)2
)

,

where µ and σ are the average and the standard deviation of the
character lengths between translations of documents from L to L′.
Observe that in cases where a translation d′ of a document dq has
not the expected length, the similarity ϕ(dq, d′) is reduced. Table 3.1
lists the values for µ and σ that are used in our evaluation; these
values have been estimated using the JRC-Acquis corpus.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 54

3.3 Evaluating Cross-Language Text Similarity Models

In our evaluation, we evaluate and compare CL-C3G, CL-ESA, and
CL-ASA in a ranking task. Three experiments are conducted on
two test collections with each model and over all language pairs
whose first language is English and whose second language is one
of Spanish, German, French, Dutch, and Polish. In total, more than
100 million similarities are computed with each model.

3.3.1 Corpora for Training and Evaluation

To train the retrieval models and to test their performance we ex-
tracted large collections from the parallel corpus JRC-Acquis and the
comparable corpus Wikipedia. The JRC-Acquis Multilingual Parallel
Corpus comprises legal documents from the European Union which
have been translated and aligned with respect to 22 languages [216].
The Wikipedia encyclopedia is considered to be a comparable cor-
pus since it comprises documents from more than 200 languages
which are linked across languages in case they describe the same
topic [166]. From these corpora only those documents are consid-
ered for which aligned versions exist in all of the aforementioned
languages: JRC-Acquis contains 23 564 such documents, and Wiki-
pedia contains 45 984 documents, excluding articles that are lists of
things or that describe a date.3

The extracted documents from both corpora are divided into a
training collection that is used to train the respective retrieval model,
and a test collection that is used in the experiments (4 collections in
total). The JRC-Acquis test collection and the Wikipedia test collec-
tion contain 10 000 aligned documents each, and the corresponding
training collections contain the remainder. In total, the test collec-

3If only pairs of languages are considered, many more aligned documents can
be extracted from Wikipedia, e.g., currently more than 200 000 between English and
German.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 55

tions comprise 120 000 documents: 10 000 documents per corpus
× 2 corpora × 6 languages. As described above, CL-ESA requires
the comparable Wikipedia training collection as index collection,
whereas CL-ASA requires the parallel JRC-Acquis training collec-
tion to train bilingual dictionaries for all of the considered language
pairs. CL-C3G requires no training.

3.3.2 Comparing CL-C3G, CL-ESA, and CL-ASA

Let dq be a query document from a test collection D, let D′ be the
documents aligned with those in D, and let d′q denote the document
that is aligned with dq. The following experiments have been re-
peated for 1 000 randomly selected query documents with all three
retrieval models on both test collections, averaging the results.

Experiment 1: Cross-language Ranking Given dq, all documents in D′

are ranked according to their cross-language similarity to dq; the
retrieval rank of d′q is recorded. Ideally, d′q should be on the first or,
at least, on one of the top ranks. This experiment resembles the situ-
ation of cross-language text reuse detection in which (a passage of)
a document is given and its translation has to be retrieved from a
collection of documents. The results of the experiment are shown in
Figure 3.4 as recall-over-rank plots.

Observe that CL-ASA achieves near-perfect performance on the
JRC-Acquis test collection, while its performance on the Wikipe-
dia test collection is poor for all language pairs. CL-ESA achieves
medium to good performance on both collections, dependent on the
language pair, and so does CL-C3G, which outperforms CL-ESA in
most cases. With respect to the different language pairings, all mod-
els vary in their performance, but, except for CL-ASA and CL-C3G
on the English-Polish portion of JRC-Acquis (bottom right plot), the
performance characteristics are the same on all language pairs.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 56

en-de

 0
 0.2

 0.4

 0.6

 0.8

 1

R
ec

al
l

 JRC-Acquis

en-es

Wikipedia

en-fr

en-nl

1 2 3 4 5 10 20 50
Rank

en-pl

Language
Pair

CL-ASA

CL-ESA

CL-C3G

 0
 0.2

 0.4

 0.6

 0.8
 1

R
ec

al
l

 0
 0.2

 0.4

 0.6

 0.8
 1

R
ec

al
l

 0
 0.2

 0.4

 0.6

 0.8
 1

R
ec

al
l

 0
 0.2

 0.4

 0.6

 0.8
 1

R
ec

al
l

1 2 3 4 5 10 20 50
Rank

Figure 3.4: Results of Experiment 1.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 57

It follows that CL-ASA has, in general, a large variance in its
performance, while CL-ESA and CL-C3G show a stable performance
across the corpora. Remember that JRC-Acquis is a parallel corpus
while Wikipedia is a comparable corpus, so that CL-ASA seems to be
working much better on translations than on comparable documents.
Interestingly, CL-ESA and CL-C3G work better on comparable doc-
uments than on translations. An explanation for these findings is
that the JRC-Acquis corpus is biased to some extent; it contains
only legislative texts from the European Union and is hence pretty
homogeneous. In this respect, both CL-ESA and CL-C3G appear
much less susceptible than CL-ASA, while the latter may perform
better when trained on a more diverse parallel corpus. The Polish
portion of JRC-Acquis seems to be a problem for both CL-ASA and
CL-C3G, but less so for CL-ESA, which shows that the latter can
cope even with less related languages.

Experiment 2: Bilingual Rank Correlation Given a pair of aligned
documents dq ∈ D and d′q ∈ D′, the documents from D′ are ranked
twice: (1) with respect to their cross-language similarity to dq using
one of the cross-language retrieval models, and, (2) with respect to
their monolingual similarity to d′q using the vector space model. The
top 100 ranks of the two rankings are compared using Spearman’s ρ,
a rank correlation coefficient which measures the disagreement and
agreement of rankings as a value between -1 and 1. This experiment
relates to “diagonalization:” a monolingual reference ranking is
compared to a cross-lingual test ranking. This experiment can be
considered as a standard ranking task where documents have to
be ranked according to their similarity to a document written in
another language. The results of the experiment are reported as
averaged rank correlations in Table 3.2.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 58

Table 3.2: Results of Experiment 2.

Language Wikipedia JRC-Acquis
Pair CL-ASA CL-ESA CL-C3G CL-ASA CL-ESA CL-C3G

en-de 0.14 0.58 0.37 0.47 0.31 0.28
en-es 0.18 0.17 0.10 0.66 0.51 0.42
en-fr 0.16 0.29 0.20 0.38 0.54 0.55
en-nl 0.14 0.17 0.11 0.58 0.33 0.31
en-pl 0.11 0.40 0.22 0.15 0.35 0.15

As in Experiment 1, CL-ASA performs good on JRC-Acquis and
unsatisfactory on Wikipedia. In contrast to Experiment 1, CL-ESA
performs similar to both CL-CNG and CL-ESA on JRC-Acquis with
respect to different language pairs, and it outperforms CL-ASA
on Wikipedia. Again, unlike in the first experiment, CL-C3G is
outperformed by CL-ESA. With respect to the different language
pairings all models show weaknesses (e.g., CL-ASA on English-
Polish and, CL-ESA as well as CL-C3G on English-Spanish and
English-Dutch). It follows that CL-ESA is more applicable as a
general purpose retrieval model than are CL-ASA or CL-C3G, while
special care needs to be taken with respect to the involved languages.
We argue that the reason for the varying performance is rooted in
the varying quality of the employed language-specific indexing
pipelines and not in the retrieval models themselves.

Experiment 3: Cross-Language Similarity Distribution This experi-
ment contrasts the similarity distributions of comparable documents
and parallel documents. It shall give an idea about what can be ex-
pected from each retrieval model; the experiment cannot directly be
used to compare the models or to tell something about their quality.
Rather, it tells something about the range of cross-language simi-
larity values one will measure when using the model, in particular,
which values indicate a high similarity and which values indicate a
low similarity. The results of the experiment are shown in Figure 3.5
as plots of ratio of similarities-over-similarity intervals.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 59

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

0 0.2 0.4 0.6 0.8 1
Similarity Interval (CL-ESA, CL-C3G)

0 100 200 300 400 500
Similarity Interval (CL-ASA)

en-de

en-es

en-fr

en-nl

en-pl

Language
Pair

 JRC-AcquisWikipedia

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

0 0.2 0.4 0.6 0.8 1
Similarity Interval (CL-ESA, CL-C3G)

0 100 200 300 400 500
Similarity Interval (CL-ASA)

CL-ASA CL-C3G

CL-ESA

Figure 3.5: Results of Experiment 3.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 60

Observe that the similarity distributions of CL-ASA has been
plotted on a different scale than those of CL-ESA and CL-C3G: the
top x-axis of the plots shows the range of similarities measured
with CL-ASA, the bottom x-axis shows the range of similarities mea-
sured with the other models. This is necessary since the similarities
computed with CL-ASA are not normalized. The absolute values
measured with the three retrieval models are not important, but the
order they induce among the compared documents is. In fact, this
holds for every retrieval model, be it cross-lingual or no. This is
also why the similarity values computed with two models cannot
be compared to one another: for example, the similarity distribution
of CL-ESA looks “better” than that of CL-C3G because it is more to
the right, but in fact, CL-C3G outperforms CL-ESA in Experiment 1.

3.3.3 Adjusting CL-ESA

The following three experiments shed light on how to adjust CL-
ESA. Moreover, we provide insights about how many languages
CL-ESA can represent at the same time, and how fast it can be built.

Experiment 4: Dimensionality CL-ESA’s retrieval quality and run-
time depend on its dimensionality, which in turn corresponds the
size of its index collection |DI |. In this experiment, we repeat Ex-
periments 1, 2, and 3 while varying the dimensionality from 10 to
100 000 index documents. Figure 3.6 shows the results of this ex-
periment. As can be seen, the dimensionality |DI | of CL-ESA is
its most important parameter: it can be used to seamlessly adjust
the retrieval performance of CL-ESA from absolute failure to near
perfection. The recall at rank plots for Experiment 1 show this be-
havior. The results for Experiment 2 show that the rank correlation
of CL-ESA and the vector space model increases with the number of
dimensions, however, perfect correlation is not reached. This is not
too surprising as CL-ESA and ESA, by design, incorporates more

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 61

Experiment 1

105

10

Experiment 3Experiment 2 Dimensions

104

103

102

1 2 3 4 5 10 20 50
Rank

0 0.2 0.4 0.6 0.8 1
Similarity Interval

 0
 0.2

 0.4

 0.6

 0.8
 1

R
ec

al
l

 0
 0.2

 0.4

 0.6

 0.8
 1

R
ec

al
l

 0
 0.2

 0.4

 0.6

 0.8
 1

R
ec

al
l

 0
 0.2

 0.4

 0.6

 0.8
 1

R
ec

al
l

 0
 0.2

 0.4

 0.6

 0.8
 1

R
ec

al
l

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

Wikipedia
0.72

JRC-Acquis
0.81

Wikipedia
0.61

JRC-Acquis
0.46

Wikipedia
0.44

JRC-Acquis
0.20

Wikipedia
0.22

JRC-Acquis
0.09

Wikipedia
0.07

JRC-Acquis
0.04

JRC-Acquis Wikipedia

Bilingual
rank correlation

Figure 3.6: Results of Experiment 4.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 62

information into its representation than the vector space model does,
so that differences within the top ranks are to be expected. Hence,
the less than perfect correlation values at high dimensionalities do
not necessarily indicate a bad performance of CL-ESA. The simi-
larity distributions of CL-ESA at different dimensionalities reveal
that the smaller the dimensionality is, the more similar become the
measured similarities, whereas at 10 dimensions, many similarities
are 0. The higher the dimensionality, the steeper the distributions
become, centering around an expected similarity of 0.5 to 0.6.

Experiment 5: Multilingualism CL-ESA is a multilingual retrieval
model in that it is capable of representing documents from more than
two languages within the same vector space, allowing for immediate
comparisons. This property fully depends on the underlying index
collections from the languages in question, and how well their topic
alignment is. Starting with the two most prominent languages in
Wikipedia, English and German, we evaluate how many concepts
are described in both languages, and how many remain in the inter-
section set if more languages are considered, ordered by their total
number of articles in Wikipedia. The left plot in Figure 3.7 shows
the results of this experiment. Unsurprisingly, the number of con-
cepts for which articles are available in all three languages English,
German, and French is smaller than for English and German alone.
When adding more languages, the overlap decreases exponentially.
In particular, a strong reduction can be observed when Japanese is
added to the set of languages, and another when Chinese is added.
This indicates that “cultural distance” between languages is a strong
factor. Once the portion of Wikipedia written in the constructed
language Volapük is added to the set, no intersecting concepts could
be found anymore. Mind, however, that this plot may not show the
complete picture: if the languages in Wikipedia are not considered
ordered by their size but by geographical, cultural, or linguistic
relations, there may be more intersecting concepts in the respective

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 63

0

10

102

103

104

105

In
te

rs
ec

tin
g

co
nc

ep
ts

+vo+fi+no+zh+ru+sv+es+pt+it+nl+ja+pl+fren
+de Languages

10510410310210
Dimensions

Ti
m

e
(m

s)

0

10

102

103

104

VSM
Internal memory

External memory

Figure 3.7: Left: number of intersecting concepts between Wikipedia’s
languages. The languages are organized in descending order of the number
of available articles. Right: average time to index a document under ESA,
depending on the number of dimensions.

groups. And if only two languages are considered, the number of
shared concepts between the English portion of Wikipedia and a
non-English portion and will be much higher in most cases.

Experiment 6: Indexing Time Since much depends on the size of the
index collection DI underlying CL-ESA, which has an immediate
effect of the time to index a document, we conducted runtime ex-
periments as well. The right plot in Figure 3.7 shows the averaged
runtimes, dependent on the size of the index collection. The time
to index a document is between 10 to 100 milliseconds at small di-
mensionalities, which is comparable to the time to compute a vector
space representation (cf. Figure 3.7, right plot). With increasing di-
mensionality, and especially if one has to resort to external memory,
the time to index a documents increase exponentially. Employed
hardware: Intel Core 2 Duo processor at 2 GHz and 1 GB RAM.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 64

Discussion If, for example, a high retrieval quality is desired, doc-
uments should be represented as 105-dimensional concept vectors:
ranking with respect to a particular query document will provide
similar documents on the top ranks with high accuracy. High re-
trieval quality comes at the price that with the current Wikipedia
corpus only 2 languages can be represented at the same time, and
that the time to index a document will be high. If high retrieval
speed or a high multilingualism is desired, documents should be
represented as 1000-dimensional concept vectors. At a lower dimen-
sion, the retrieval quality deteriorates significantly. A reasonable
trade-off between retrieval quality and runtime is achieved for a
concept space dimensionality between 1 000 and 10 000.

3.3.4 The Difficulties of Cross-language Fingerprinting

In Section 2.1 we have introduced fingerprinting as a technology for
the task of near-duplicate detection. The question remains whether
fingerprinting can also be applied across languages. In [6] we found
that it can’t, but first things first: is there even such a thing as a pair
of documents from different languages which are near-duplicates?

The notion of near-duplicate documents is a matter of frequent
debate within the community, but judging from the proposed so-
lutions (see Table 2.1), the majority of researchers expect a high
syntactical similarity (that is, shared word n-grams) between near-
duplicate documents while allowing for small differences. The clos-
est thing to syntactical duplication across languages is a metaphrase
(i.e., a literal word-by-word translation). However, since most pairs
of languages do not have a common vocabulary, no syntactical over-
laps beyond character n-grams can be expected for such translations.
Also, most translations are not metaphrases but paraphrases, so that
we resort to the definition of a paraphrase as a working definition for
a pair of cross-language near-duplicate documents: two documents
(from different languages) which are semantically equivalent.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 65

A prerequisite for fingerprinting is a retrieval model which rep-
resents documents in way so that the representations can be used
to check pairs of documents for being near-duplicate or no. The
cross-language retrieval models introduced in this chapter may be
used for this purpose, but they cannot be combined with all of the
available fingerprint algorithms. In fact, because of the lack of syn-
tactical overlap between languages, only one technique can be used:
the locality-sensitive hashing (LSH) framework. LSH is a context-
free framework, since it is entirely rooted in algebra. Its purpose is
to map vectors, which are similar according to a certain similarity
or distance measure, onto the same hash value. Together with a re-
trieval model which produces vector representations for documents,
LSH is used to identify near-duplicates.

Given a query document dq written in language L and a (very
large) collection of documents D′ written in L′, the task of cross-
language near-duplicate detection is to retrieve a subset D′q ⊂ D′,
containing all near-duplicates of dq, say:

d′ ∈ D′q ⇒ ϕ(dq, d′) ≥ 1− ε,

where ϕ is a similarity measure and dq and d′ are vector represen-
tations of dq and d′ under a cross-language retrieval model. D′q is
called the ε-neighborhood of dq. To accomplish this task, finger-
prints Fdq and Fd are constructed which comprise a number k of hash
values computed with k different similarity sensitive hash functions
hϕ : D′ → N, where D′ the set of cross-language vector represen-
tations of D′. If Fdq and Fd share at least some of their hash values,
dq and d are considered near-duplicates.

A reasonable setting for ε may be 0.4, which can be derived
from the results of Experiment 3 in Section 3.3.2 (see Figure 3.5).
At ε = 0.4, a maximum recall of about 0.5 can be expected. How-
ever, when comparing this with the results of our fingerprinting
experiments in Chapter 2, it becomes obvious that cross-language
fingerprinting cannot be realized this way: locality-sensitive hashing

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 66

works only if the vector similarities of near-duplicates are above 0.9
(see Figure 2.6).4 In conclusion, unless a retrieval model is conceived
which maps near-duplicates onto vectors whose algebraic similarity
is above 0.9, fingerprinting cannot be applied across languages.

3.3.5 Conclusions and Future Work

Cross-language text reuse is an important direction of research on
detecting text but is still in its infancy. We pointed out a basic re-
trieval strategy for this task, including two important subtasks which
require special attention: multilingual candidate retrieval for text
reuse from the web, and the detailed comparison of two documents
across languages. With respect to the former, well-known and less
well-known state-of-the-art research is reviewed. With respect to the
latter, we survey existing retrieval models and describe three of them
in detail, namely the cross-language character n-gram model (CL-
CNG), the cross-language explicit semantic analysis (CL-ESA) and
the cross-language alignment-based similarity analysis (CL-ASA).
For these models we report on a large-scale comparative evaluation.
Moreover, we conduct an in-depth evaluation of CL-ESA.

The evaluation covers 6 experiments on two aligned corpora: the
comparable Wikipedia corpus and the parallel JRC-Acquis corpus.
In the experiments the models are employed in different tasks re-
lated to cross-language ranking in order to determine whether or
not they can be used to retrieve highly similar documents across
languages. Our findings include that the CL-C3G model and the CL-
ESA model are in general better suited for this task, while CL-ASA
achieves good results on professional and automatic translations.
CL-CNG outperforms CL-ESA and CL-ASA. However, unlike the

4Theoretically, the LSH framework can be adjusted to support a reliable detection
of near-duplicates even if their vector representations have low absolute similarity
values, however, this comes at the price of precision and a significantly higher
dimensionality of the document fingerprints, which altogether defeats the goal of
fingerprinting to improve the retrieval runtime of near-duplicate detection.

CHAPTER 3. DETECTING CROSS-LANGUAGE TEXT REUSE 67

former, CL-ESA and CL-ASA can also be used on syntactically dif-
ferent languages. The experiments specific to the parameters of
CL-ESA reveal, that the model can be flexibly adjusted to meet re-
quirements such as high quality or high speed as well as a tradeoff
between the two. CL-ESA can also be used to represent documents
from more than two languages at the same time.

Chapter 4

Evaluating Plagiarism Detectors

Research and development on automatic plagiarism detection is one
of the most prominent topics in the broad field of text reuse. Various
papers have been published on the topic, and many commercial
software systems are being developed. However, when asked to
name the best algorithm or the best system for plagiarism detection,
hardly any evidence can be found to make an educated guess among
the alternatives. One reason for this is that the research field of text
reuse and plagiarism detection lacks a controlled evaluation frame-
work. The lack of an evaluation framework is a serious problem for
every empirical research field. We have addressed this shortcoming
for plagiarism detection in the context of our series of evaluation
workshops called PAN. This chapter presents the evaluation frame-
work we have developed in the past years and the evaluation results
obtained, thus compiling an overview of our respective publica-
tions [168, 169, 170, 171, 175]. But before going into details, we
survey the state of the art in evaluating plagiarism detection, which
has not been studied systematically until now.

68

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 69

Table 4.1: Summary of the plagiarism detection evaluations in 205 papers,
from which 104 deal with text and 101 deal with code.

Evaluation Aspect Text Code

Experiment Task
local collection 80% 95%
web retrieval 15% 0%
other 5% 5%

Performance Measure
precision, recall 43% 18%
manual, similarity 35% 69%
runtime only 15% 1%
other 7% 12%

Comparison
none 46% 51%
parameter settings 19% 9%
other algorithms 35% 40%

Evaluation Aspect Text Code

Corpus Acquisition
existing corpus 20% 18%
homemade corpus 80% 82%

Corpus Size [# documents]
[1, 10) 11% 9%
[10, 102) 19% 31%
[102, 103) 38% 37%
[103, 104) 8% 18%
[104, 105) 16% 5%
[105, 106) 8% 0%

Survey of Plagiarism Detection Evaluations We have queried aca-
demic databases and search engines to get an overview of all kinds of
contributions to automatic plagiarism detection. Altogether 275 pa-
pers were retrieved, from which 139 deal with plagiarism detection
in text, 123 with plagiarism detection in code, and 13 with other
media types. From the papers related to text and code, we analyzed
the 205 which present evaluations. Our analysis covers the follow-
ing aspects: experiment tasks, performance measures, underlying
corpora, and, whether comparisons to other plagiarism detection
approaches were conducted. Table 4.1 summarizes our findings.

With respect to the experiment tasks, the majority of the ap-
proaches perform overlap detection by exhaustive comparison
against some locally stored document collection—albeit a web re-
trieval scenario is more realistic. We explain this shortcoming by two
facts, namely that the web cannot be utilized easily as a corpus, and
that in the case of code plagiarism the focus is on collusion detection

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 70

in student courseworks. With respect to performance measures, the
picture is less clear: a manual result evaluation based on similarity
measures is used about the same number of times for text (35%),
and even more often for code (69%), as an automatic computation
of precision and recall. 21% and 13% of the evaluations on text and
code use custom measures or examine only the detection runtime.
This indicates that precision and recall may not be well-defined in
the context of plagiarism detection. Moreover, comparisons to exist-
ing research are conducted in less than half of the papers, a fact that
underlines the lack of an evaluation framework.

The right-hand side of Table 4.1 overviews two corpus-related
aspects: the use of existing corpora versus the use of handmade
corpora, and the size distribution of the used corpora. In particular,
we found that researchers follow two strategies to compile a corpus.
Small corpora (<1 000 documents) are built from student course-
works or from arbitrary documents into which plagiarism-alike
overlap is manually inserted. Large corpora (>1 000 documents)
are collected from sources where overlap occurs more frequently,
such as rewritten versions of news wire articles, or from consecutive
versions of open source software. Altogether, we see a need for an
open, commonly used plagiarism detection corpus.

Related Work There are some surveys about automatic plagiarism
detection in text [42, 44, 130] and in code [86, 191, 193, 194]. These
papers, as well as nearly all papers from our survey, omit a discus-
sion of evaluation methodologies; the following four papers are an
exception. In [229] the authors introduce graph-based performance
measures for code plagiarism detection intended for unsupervised
evaluations. We argue that evaluations in this field should be done
in a supervised manner, while the proposed measures have not been
adopted since their first publication. In [169] we introduce prelimi-
nary parts of our framework. The focus of that paper, however, is

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 71

more on the comparison of the detection approaches that were sub-
mitted to the first PAN plagiarism detection competition. In [45, 46]
the authors report on an unnamed corpus that comprises 57 cases
of simulated plagiarism. We refer to this corpus as the Clough09
corpus; a comparison to our approach is given later on. Finally, a
related corpus is the METER corpus, which has been the only alterna-
tive for the text domain up to now [47]. It comprises 445 cases of text
reuse among 1 716 news articles. Although the corpus can be used
to evaluate plagiarism detection, its structure does not support this
task. This might be the reason why it has not been used more often.
Furthermore, it is questionable how similar cases of news reuse and
plagiarism are, since plagiarists strive to remain undetected.

Contributions Besides the above survey, our contributions are the
following: Section 4.1 presents formal foundations for the evaluation
of plagiarism detectors and hence text reuse detectors in general,
introducing three performance measures. Section 4.2 introduces
methods to create artificial and simulated plagiarism cases on a large
scale, and the PAN plagiarism corpus in which these methods have
been operationalized. We compare our corpus with the Clough09
corpus and the METER corpus, which reveals important insights for
the different kinds of text reuse in these corpora. Finally, Section 4.3
reports on the results of the first three editions of our series of PAN
evaluation workshops, in which the proposed framework has been
successfully employed to evaluate 32 plagiarism detectors.

4.1 Detection Performance Measures

This section introduces measures to quantify the precision and recall
performance of a plagiarism detector; we present a micro-averaged
and a macro-averaged variant. Moreover, the so-called detection

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 72

granularity is introduced, which quantifies whether the contiguity
of plagiarized text passages is properly recognized. This concept is
important: a low granularity simplifies both the human inspection
of algorithmically detected passages as well as an algorithmic style
analysis within a potential post-process. The three measures can
be applied in isolation but also be combined into a single, overall
score called plagdet. A reference implementation of the performance
measures is published as part of our evaluation framework.

Precision, Recall, and Granularity Let dplg denote a document
that contains plagiarism. A plagiarism case in dplg is a 4-tuple
s = 〈splg, dplg, ssrc, dsrc〉, where splg is a plagiarized passage in
dplg, and ssrc is its original counterpart in some source docu-
ment dsrc. Likewise, a plagiarism detection for dplg is denoted as
r = 〈rplg, dplg, rsrc, d′src〉; r associates an allegedly plagiarized pas-
sage rplg in dplg with a passage rsrc in d′src. We say that r detects s
iff rplg ∩ splg 6= ∅, rsrc ∩ ssrc 6= ∅, and d′src = dsrc. It is assumed
that different plagiarized passages in dplg do not intersect, whereas
no such restriction applies for detections in dplg. Finally, S and R
denote sets of plagiarism cases and detections.

The above 4-tuples resemble an intuitive view of plagiarism de-
tection, but subsequent notations can be simplified using an equiv-
alent, more concise view: a document d is represented as a set of
references to its characters d = {(1, d), . . . , (|d|, d)}, where (i, d)
refers to the i-th character in d. A plagiarism case s is then repre-
sented as s = splg ∪ ssrc, where splg ⊆ dplg and ssrc ⊆ dsrc. The
character references in splg and ssrc form the passages splg and ssrc.
Likewise, a detection r is represented as r = rplg ∪ rsrc. It follows
that r detects s iff rplg ∩ splg 6= ∅ and rsrc ∩ ssrc 6= ∅. This way,

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 73

precision and recall of R under S can be measured micro-averaged:

precmicro(S, R) =
|⋃(s,r)∈(S×R)(s u r)|

|⋃r∈R r| , (4.1)

recmicro(S, R) =
|⋃(s,r)∈(S×R)(s u r)|

|⋃s∈S s| , (4.2)

where s u r =

{
s ∩ r if r detects s,

∅ otherwise.

Similarly, precision and recall can be measured macro-averaged:

precmacro(S, R) =
1
|R| ∑

r∈R

|⋃s∈S(s u r)|
|r| , (4.3)

recmacro(S, R) =
1
|S| ∑

s∈S

|⋃r∈R(s u r)|
|s| , (4.4)

The former measures are simpler to be computed, whereas the latter
have the advantage to be unaffected by a plagiarism case’s length.

Besides precision and recall there is another concept that char-
acterizes the power of a detection algorithm, namely, whether a
plagiarism case s ∈ S is detected as a whole or in several pieces. The
latter can be observed in today’s commercial plagiarism detectors,
and the user is left to combine these pieces into a consistent approx-
imation of s. Ideally, an algorithm should report detections R in a
one-to-one manner to the true cases S. To capture this characteristic
we define the detection granularity of R under S:

gran(S, R) =
1
|SR| ∑

s∈SR

|Rs|, (4.5)

where SR ⊆ S are plagiarism cases detected by detection in R, and
Rs ⊆ R are detections that detect a given s:

SR = {s | s ∈ S ∧ ∃r ∈ R : r detects s},
Rs = {r | r ∈ R ∧ r detects s}.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 74

The domain of gran(S, R) is [1, |R|], with 1 indicating the desired
one-to-one correspondence and |R| indicating the worst case, where
a single s ∈ S is detected over and over again.

Precision, recall, and granularity allow for a partial ordering
among plagiarism detection algorithms. To obtain an absolute order
they must be combined to an overall score:

plagdet(S, R) =
Fα

log2(1 + gran(S, R))
, (4.6)

where Fα denotes the F-Measure (i.e., the weighted harmonic mean
of precision and recall). We suggest using α = 1 where precision and
recall are equally weighted, since there is currently no indication
that either of the two is more important. We take the logarithm of
the granularity to decrease its impact on the overall score.

Discussion Plagiarism detection is both a retrieval task and an ex-
traction task. In light of this fact, not only retrieval performance
but also extraction accuracy becomes important, the latter of which
being neglected in the literature. Our measures incorporate both.
Another design objective of our measures is minimization of re-
strictions imposed on plagiarism detectors. While plagiarism cases
within a document are unlikely to have more than one source, im-
precision or lack of evidence may cause humans or algorithms to
report overlapping detections (e.g., when being unsure about the
true source of a plagiarized passage). The measures (4.1)-(4.4) pro-
vide for a sensible treatment of this fact since the set-based passage
representations eliminate duplicate detections of characters. Finally,
the macro-averaged variants allot equal weight to each plagiarism
case, regardless of its length. Conversely, the micro-averaged vari-
ants favor the detection of long plagiarism passages, which are
generally easier to be detected. Which of these variants is to be
preferred, however, is still an open question.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 75

4.2 An Evaluation Corpus for Plagiarism Detectors

This section organizes and analyzes the practices that are employed—
most of the time implicitly—for the construction of plagiarism cor-
pora. We introduce three levels of plagiarism authenticity, namely
real, simulated, and artificial plagiarism. It turns out that simulated
plagiarism and artificial plagiarism are the only viable alternatives
for corpus construction. We propose a new approach to scale up
the generation of simulated plagiarism based on crowdsourcing,
and heuristics to generate artificial plagiarism. Moreover, based on
these methods, we compile the PAN plagiarism corpus which is the
first corpus of its kind that contains both a large number and a high
diversity of simulated and artificial plagiarism cases.

4.2.1 Real, Simulated, and Artificial Plagiarism

Syntactically, a plagiarism case is the result of copying a passage ssrc
from a source document into another document dplg. Since verbatim
copies can be detected easily, plagiarists often modify ssrc to obfus-
cate their illegitimate act. This behavior must be modeled when
constructing a corpus for plagiarism detection, which can be done
at three levels of authenticity. Ideally, one would secretly observe
many plagiarists and use their real plagiarism cases; realistically, one
could resort to plagiarism cases which have been detected in the
past. The following aspects object against this approach:

• The distribution of detected real plagiarism is skewed towards
ease of detectability.

• The acquisition of real plagiarism is expensive since it is often
concealed from the public.

• Publishing real plagiarism possibly requires consents from the
plagiarist and the original author.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 76

• A public corpus of real plagiarism cases is questionable from
an ethical and legal viewpoint.

• Anonymizing real plagiarism is rendered difficult due to web
search engines and author identification technologies.

It is hence more practical to let people create plagiarism cases by
“purposeful” modifications, or to tap resources that contain similar
kinds of text reuse. We subsume these strategies under the term
simulated plagiarism. The first strategy has often been applied in
the past, though on a small scale and without a public release of
the corpora; the second strategy comes in the form of the METER

corpus [47]. Note that, from a psychological viewpoint, people who
simulate plagiarism act under a different mental attitude than pla-
giarists. From a linguistic viewpoint, however, it is unclear whether
real plagiarism differs from simulated plagiarism.

A third possibility is to generate plagiarism algorithmically [37,
169, 192], which we call artificial plagiarism. Generating artificial
plagiarism cases is a non-trivial task if one requires semantic equiva-
lence between a source passage ssrc and the passage splg obtained
by an automatic obfuscation of ssrc. Such semantics-preserving algo-
rithms are still in their infancy; however, the similarity computation
between texts is usually done on the basis of document models like
the bag of words model and not on the basis of the original text,
which makes obfuscation amenable to simpler approaches.

4.2.2 Creating Simulated Plagiarism

Our approach to scale up the creation of simulated plagiarism is
based on Amazon’s Mechanical Turk (AMT), a commercial crowd-
sourcing service [9]. This service has gathered considerable interest
among researchers and practitioners alike (e.g., to recreate TREC
assessments [3], but also to write and translate texts [5]). We offered
the following task on AMT: Rewrite the original text found below [on

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 77

Table 4.2: Summary of 4 000 Mechanical Turk tasks done by 907 workers.

Worker Demographics

Age Education
18, 19 10% HS 11%
20–29 37% College 30%
30–39 16% BSc. 17%
40–49 7% MSc. 11%
50–59 4% Dr. 2%
60–69 1%
n/a 25% n/a 29%

Native Speaker Gender
yes 62% male 37%
no 14% female 39%
n/a 23% n/a 24%

Prof. Writer Plagiarized
yes 10% yes 16%
no 66% no 60%
n/a 24% n/a 25%

Task Statistics

Tasks per Worker
average 15
std. deviation 20
minimum 1
maximum 103

Work Time (minutes)
average 14
std. deviation 21
minimum 1
maximum 180

Compensation
pay per task 0.5 US$
rejected results 25%

the task webpage] so that the rewritten version has the same meaning as
the original, but with a different wording and phrasing. Imagine a scholar
copying a friend’s homework just before class, or imagine a plagiarist will-
ing to use the original text without proper citation. We furthermore
disclosed to the worker that our aim with this task was research.

Workers were required to be fluent in English reading and writ-
ing, and they were informed that every result was to be reviewed.
A questionnaire displayed alongside the task description asked
about worker demographics, such as age, gender, education, etc.
In particular, we asked whether the worker has ever plagiarized.
Completing the questionnaire was optional in order to minimize
false answers, but still, these numbers have to be taken with a grain
of salt: the Mechanical Turk is not the best platform for surveys.
Table 4.2 overviews the worker demographics and task statistics.
The average worker appears to be a well-educated male or female

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 78

in the twenties whose mother tongue is English. 16% of the workers
claim to have plagiarized, and if at least the order of magnitude can
be taken seriously this shows that plagiarism is a prevalent problem.
A number of pilot experiments were conducted to determine the
pay per task, depending on the text length and the task completion
time: for 50 US-cents about 500 words get rewritten in about half an
hour. We observed that changing the pay per task has proportional
effect on the task completion time, but not on result quality. This
observation is in concordance with earlier research [129].

The top row of Table 4.3 contrasts a source passage and its rewrit-
ten, plagiarized passage obtained via Mechanical Turk. As can
be seen, the edits made are substantial while the semantics have
been entirely preserved. In this example, the discourse remains
unchanged, while expressions are less concise. The worker replaced
certain concepts and phrases with synonyms or equivalent figures
of speech. It must be noted, however, that a number of typos and
grammar errors can be found (i.e., we copied the text without change
from the results submitted). For example, the worker writes “enough
man” instead of “enough men,” “St. John” instead of “St. Johns,”
and “degrees to the north latitude” instead of “degrees north lat-
itude.” Partly, such errors are slips of the pen as workers often
do not double-check their work, and partly they arise from a lack
of knowledge about the concepts discussed in the source passage.
Though we have manually reviewed all of the 4 000 texts that have
been rewritten via Mechanical Turk, in each text, we have done only
spot checks to verify that it is English and about the same topic as
the original. We have not checked spelling and grammar so that it is
yet unknown how prevalent such errors are in the corpus.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 79

Table 4.3: Example of a simulated plagiarism case via Mechanical Turk, and
two artificial plagiarism cases.

Source Passage Simulated Plagiarism (AMT)

The emigrants who sailed with Gilbert
were better fitted for a crusade than
a colony, and, disappointed at not at
once finding mines of gold and silver,
many deserted; and soon there were not
enough sailors to man all the four ships.
Accordingly, the Swallow was sent back
to England with the sick; and with the
remainder of the fleet, well supplied at
St. John’s with fish and other necessaries,
Gilbert (August 20) sailed south as far
as forty-four degrees north latitude. Off
Sable Island a storm assailed them, and
the largest of the vessels, called the De-
light, carrying most of the provisions,
was driven on a rock and went to pieces.

[Excerpt from “Abraham Lincoln: A History” by
John Nicolay and John Hay.]

The people who left their countries and
sailed with Gilbert were more suited for
fighting the crusades than for leading a
settled life in the colonies. They were
bitterly disappointed as it was not the
America that they had expected. Since
they did not immediately find gold and
silver mines, many deserted. At one
stage, there were not even enough man
to help sail the four ships. So the Swal-
low was sent back to England carrying
the sick. The other fleet was supplied
with fish and the other necessities from
St. John. On August 20, Gilbert had
sailed as far as forty-four degrees to the
north latitude. His ship known as the
Delight, which bore all the required sup-
plies, was attacked by a violent storm
near Sable Island. The storm had driven
it into a rock shattering it into pieces.

Artificial Plagiarism (low obfuscation) Artificial Plagiarism (high obfuscation)

Other Sable Island a storm assailed them,
and the largest of the vessels, called the
Delight, carrying most of the provisions,
was driven on a rock and went to pieces.
Accordingly, the immerse was sent back
to England with the disappointed; and
with the remainder of the fleet, soon sup-
plied at St. John’s with pisces and off
necessaries, Gilbert (August 20) sailed
south as sick as forty-four degrees north
latitude. The emigrants who sailed with
Gilbert were better fitted for a crusade
than a colony, and, far at not at once find-
ing excavation of gold and silver, many
deserted; and well there were not enough
sailors to man all the four ships.

The emigrants who sailed with John were
better supplied for the gold than a colony,
and, deserted at not at once happen ex-
cavation of crusade silver, many disap-
pointed; and well there were not enough
sailors to man all most four derelict.
Soon, the swallow was assailed back to
England with the other; and with the re-
mainder of a fish, accordingly fitted at St.
Gilbert’ Room with fleet and sick neces-
saries, Gilbert (August 20) sailed south as
far as forty-four degrees north. Off Sable
Island a storm sent them, and the largest
of the vessels, name the Delight, carry-
ing the congregation of a provisions, was
driven on the rock and went to pieces.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 80

4.2.3 Creating Artificial Plagiarism

To create an artificial plagiarism case splg from a given source pas-
sage ssrc, we employ three obfuscation strategies:

• Random Text Operations. splg is created from ssrc by shuf-
fling, removing, inserting, or replacing words or short phrases
at random. Insertions and replacements are taken from the
document dplg where splg is to be inserted.

• Semantic Word Variation. splg is created from ssrc by replacing
words with their synonyms, antonyms, hyponyms, or hyper-
nyms, chosen at random. A word is kept if none are available.

• POS-preserving Word Shuffling. The sequence of parts of
speech in ssrc is determined and splg is created by shuffling
words at random while retaining the original POS sequence.

The strategies are adjusted by varying the number of operations
made on ssrc, and by limiting the range of affected phrases, allowing
for different degrees of obfuscation. For our corpus, we adjusted
them to match an intuitive understanding of a “low” and a “high”
obfuscation. The bottom row of Table 4.3 shows two examples of
artificial plagiarism which have been obfuscated using different com-
binations of the above strategies, when applying them repeatedly
on the source passage. Some additional heuristics are used to ensure
that the texts do not contain obvious defects, such as capitalized
words in the middle of a sentence or punctuation marks following
each other closely. Unsurprisingly, however, these strategies do not
produce text which is grammatically correct or semantically equiva-
lent to the source passage. Of course other obfuscation strategies are
conceivable (e.g., based on automatic paraphrasing methods [11]),
but the above strategies were preferred for reasons of performance
and since many current plagiarism detection algorithms treat text as
bag of words (i.e., disregarding word order).

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 81

Table 4.4: Corpus statistics of the PAN plagiarism corpus in the versions
2009, 2010, and 2011 (i.e., PAN-PC-09, PAN-PC-10, and PAN-PC-11). The
corpora consist of 41 223, 27 073, and 26 939 documents as well as 94 217,
68 566, and 61 069 plagiarism cases, respectively.

Document Statistics

Year / Version 2009 2010 2011

Document Purpose
source documents 50% 50% 50%
suspicious documents

– with plagiarism 25% 25% 25%
– w/o plagiarism 25% 25% 25%

Detection Task
external detection 70%

100%
82%

intrinsic detection 30% 18%

Plagiarism per Document (fraction)
hardly (0.05-0.2) 45% 45% 57%
medium (0.2-0.5) 15% 15% 15%
much (0.5-0.8) 25% 25% 18%
entirely (>0.8) 15% 15% 10%

Document Length (pages)
short (1-10) 50% 50% 50%
medium (10-100) 35% 35% 35%
long (100-1000) 15% 15% 15%

Plagiarism Case Statistics

Year / Version 2009 2010 2011

Obfuscation (degree/tool)
none 49% 40% 18%
artificial

– paraphrase (low) 28% 22% 32%
– paraphrase (high) 14% 22% 31%
– translation (auto) 9% 12% 10%

simulated
– paraphrase (AMT) — 4% 8%
– translation (AMT)∗ — — 1%

Topic Match
intra-topic cases — 50% —
inter-topic cases — 50% —

Case Length (words)
short (50-150) 34% 34% 35%
medium (300-500) 33% 33% 38%
long (3000-5000) 33% 33% 27%
∗machine translation, then manual correction

4.2.4 The PAN Plagiarism Corpus

We have employed the aforementioned strategies to generate sim-
ulated and artificial plagiarism for the PAN plagiarism corpus. A
new version of this corpus was constructed for each of the annual
PAN plagiarism detection competitions in 2009, 2010, and 2011, each
one improving upon its predecessor. Besides the above obfuscation
strategies, several other parameters have been varied (see Table 4.4
for a detailed overview). The documents used for the corpus are
derived from books obtained from the Project Gutenberg.1

1http://www.gutenberg.org

http://www.gutenberg.org

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 82

Document Purpose Every document in the corpus serves one of two
purposes: it is either used as a source for plagiarism or as a docu-
ment suspicious of plagiarism. The latter divide into documents
which actually contain plagiarism and documents that don’t. The
documents without plagiarism allow to evaluate whether a detector
can distinguish plagiarism cases from natural, accidental overlaps
between random pairs of documents.

Detection Task The corpus divides into two parts (Dplg, Dsrc, S) and
(Dplg, S), corresponding to the two paradigms of plagiarism detec-
tion mentioned in the introduction (see Section 1.1.1): the first part
is used for the subtask of external plagiarism detection, the second
part for intrinsic plagiarism detection. In external plagiarism detec-
tion, one is given a set Dplg of documents suspicious of plagiarism,
a set Dsrc of potential source documents, and the task to identify all
of the actual plagiarism cases S between the two. In intrinsic plagia-
rism detection, one is given a set Dplg of documents suspicious of
plagiarism, and the task to identify all plagiarism cases S in them.
This can be accomplished without referring to source documents
by checking, based on a writing style analysis, whether all passages
of a suspicious document have been written by the same author. If
this is not the case, the respective passages are possibly plagiarized.
Hence, the source documents used to generate the plagiarism cases
are omitted in this part of the corpus. Also, the intrinsic plagiarism
cases are not obfuscated to preserve the writing style of the orig-
inal author; the percentages of unobfuscated plagiarism cases in
the corpora include the the cases belonging to the intrinsic part. In
the 2010 version of the corpus, the two parts of the corpus were
merged in order to make the corpus more realistic: in practice, one
cannot expect a clean separation of plagiarism cases whose sources
can be found from those whose sources are unavailable. However,
since merging the two subtasks turned out to be too difficult for the
participants of the competition, the 2011 corpus was split up again.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 83

Obfuscation Besides using the aforementioned obfuscation strate-
gies, unobfuscated as well as translated plagiarism has been gen-
erated. The 2009 version contains only artificial plagiarism, the
2010 version for the first time simulated plagiarism, and the 2011 ver-
sion in addition simulated translations. The artificially translated
plagiarism was generated using Google Translate, while the sim-
ulated translations were generated by combining machine trans-
lation with a manual correction on AMT. This was done in order
to foreclose workers on Mechanical Turk to just submit machine
translations of texts to be translated.

Topic Match For the 2010 version of the corpus, we attempted to
generate plagiarism cases between topically related documents. To
this end, the source documents and the suspicious documents were
clustered into k = 30 clusters using bisecting k-means [241]. Then an
equal share of plagiarism cases were generated for pairs of source
documents and suspicious documents within as well as between
clusters. Presuming clusters correspond to (broad) topics, we thus
obtained intra-topic and inter-topic plagiarism.

Plagiarism per Document, Document Length, and Case Length The
corpora contain documents with different amounts of plagiarism as
well as documents and plagiarism cases of different lengths. These
parameters have not changed much, though, since they appear to
have little influence on detection performance.

Discussion The corpus contains documents for almost all param-
eter combinations: short documents with an unobfuscated, short
plagiarism case, resulting in a 5% fraction of plagiarism, but also
large documents with several obfuscated plagiarism cases of vary-
ing lengths, copied from different source documents and resulting
in fractions of plagiarism up to 100%. The fraction of plagiarism per

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 84

document and the degree of obfuscation per case determine the dif-
ficulty of the cases. Since the true distributions of these parameters
in real plagiarism are unknown, sensible estimations were made for
the corpus. For example, there are more simple plagiarism cases
than complex ones, where “simple” refers to short cases, hardly
plagiarism per document, and less obfuscation.

4.2.5 Corpus Validation

To validate the “quality” of the plagiarism cases created for our cor-
pus, we report on a large-scale validation study. We compare both
artificial plagiarism cases and simulated plagiarism cases to cases of
the two corpora Clough09 and METER. Presuming that the authors
of these corpora put their best efforts into the construction and an-
notation of plagiarism cases, the comparison gives insights whether
our scale-up strategies are reasonable in terms of case quality. To
foreclose the results, we observe that simulated plagiarism and, in
particular, artificial plagiarism behave similar to the two handmade
corpora. In the light of the employed strategies to construct plagia-
rism this result may or may not be surprising—however, we argue
that it is necessary to run such a comparison in order to provide a
broadly accepted evaluation framework in this sensitive area.

The experimental setup is as follows: given a plagiarism case
s = 〈splg, dplg, ssrc, dsrc〉, the plagiarized passage splg is compared
to the source passage ssrc using 10 different retrieval models. Each
model is an n-gram vector space model (VSM) where n ranges from 1
to 10 words, employing stemming, stop word removal, tf -weighting,
and the cosine similarity. Similarity values are computed for a
sample of cases from each corpus, the size of which is upperbounded
by the largest corpus: 100 similarities are sampled from each corpus.

The rationale of this setup is based on the well-known fact from
near-duplicate detection that if two documents share only a few
8-grams—so-called shingles—it is highly probable that they are du-

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 85

1

0.8

0.6

0.4

0.2

0
n = 1 2 3 4 5 6 7 8 9 10

S
im

ila
rit

y

n-gram VSM

Clough09

Artificial

Median
25% quartile

75% quartile

Simulated (AMT)

METER

Left to right:

Figure 4.1: Comparison of four text reuse corpora: each box depicts the
middle range of 100 similarities obtained from comparing source passages
to their rewritten versions using an n-gram VSM (n ∈ {1, . . . , 10} words).

plicates [32]. Another well-known fact is that two documents which
are longer than a few sentences and which are exactly about the
same topic will, with a high probability, share a considerable por-
tion of their vocabulary (i.e., they have a high similarity under a
1-gram VSM). It follows for plagiarism detection that a common
shingle between splg and ssrc pinpoints very accurately an unob-
fuscated portion of splg, while it is inevitable that even a highly
obfuscated splg will share a portion of its vocabulary with ssrc. The
same holds true for all other kinds of text reuse.

Figure 4.1 shows the obtained similarities, contrasting each n-
gram VSM and each corpus. The box plots show the middle 50% of
the respective similarity distributions as well as median similarities.
The corpora divide into groups with comparable behavior: in terms
of the similarity ranges covered, the artificial plagiarism compares
to the METER corpus, except for n ∈ {2, 3}, while the simulated

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 86

plagiarism from the Clough09 corpus behaves like that from our
corpus, but with a different amplitude. In terms of median similarity,
METER, Clough09, and our simulated plagiarism behave almost
identical, while the artificial plagiarism differs. Also note that our
simulated plagiarism as well as the Clough09 corpus contain some
cases which are hardly obfuscated.

From this experiment it can be concluded that, under an n-gram
model, artificial plagiarism shows a similar behavior compared to
simulated plagiarism. This is despite the fact that artificial plagia-
rism is not human-readable. So if a plagiarism detection algorithm
is capable of detecting artificial plagiarism when treating texts as
bags of words, it will also be, to some extent, capable of detecting
simulated, and possibly real plagiarism. Nevertheless, the similarity
range covered by artificial plagiarism is narrower than that of simu-
lated plagiarism, which may indicate that manually rewritten texts
are more diverse in practice. This behavior is unsurprising, and it
follows that simulated plagiarism should always form part of a pla-
giarism detection evaluation. The similarity range of the simulated
plagiarism obtained from Mechanical Turk is much wider than that
of the Clough09 corpus, which is probably due to the fact that many
more people have been involved and because of the comparably
wider range of topics. There is certainly a lot more that can be done
in terms of generating more realistic artificial plagiarism, and in
terms of creating simulated plagiarism with low error-rates, which
will both require further research and development. But altogether,
our strategies to scale-up the construction of plagiarism corpora
seem to work well compared to existing corpora.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 87

4.3 Three Evaluation Competitions

Using our performance measures and the plagiarism corpus, we
organized the 1st, 2nd, and 3rd international competition on plagia-
rism detection in conjunction with the PAN workshop series in 2009,
2010, and 2011. Altogether 32 groups from all over the world partic-
ipated, 9 of whom more than once. In this section, we survey their
plagiarism detectors and the best practices employed for external
and intrinsic plagiarism detection. The section concludes with a
detailed evaluation of the achieved detection performances.

Given the two parts of the PAN plagiarism corpus (Dplg, Dsrc, S)
and (Dplg, S) for external and intrinsic plagiarism detection, the
competitions divided into corresponding subtasks:

• External Plagiarism Detection.
Given Dplg and Dsrc, the task is to identify the plagiarized
passages S in Dplg, and their source passages in Dsrc.

• Intrinsic Plagiarism Detection.
Given Dplg, the task is to identify the plagiarized passages S.

Note that in the 2010 competition, these tasks were merged into one.
Moreover, each task of the competitions divided into two phases:

• Training Phase.
Release of training corpora (Dplg, Dsrc, S) and (Dplg, S) to al-
low for the development of a plagiarism detection system.

• Testing Phase.
Release of test corpora (Dplg, Dsrc) and (Dsrc), omitting the
plagiarism annotations S which are supposed to be detected
and then submitted as plagiarism detections R.

Participants were allowed to compete in either of the two tasks
or both. After the testing phase, the submitted detections were
evaluated, and the winner was determined as the participant whose
detections R best matched S on the respective test corpora.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 88

4.3.1 External Plagiarism Detection

Most of the participants submitted notebooks describing their plagia-
rism detectors. Analyzing them, it became apparent that all of them
implemented similar processes. We have unified and organized the
various approaches in a “reference retrieval process” for external
plagiarism detection. The process follows the basic steps of plagia-
rism detection outlined in the introduction (i.e., candidate retrieval,
detailed analysis, and post-processing, as shown in Figure 1.3).

Candidate Retrieval Given a suspicious document dplg from Dplg
and the source documents Dsrc, in order to simplify the detection
of cross-language plagiarism, non-English documents among Dsrc
are translated to English using machine translation (services). Then
a subset D′src of Dsrc is retrieved that comprises candidates sources
for dplg. Basically, this is done by comparing dplg with every docu-
ment in Dsrc using a fingerprint retrieval model: dplg is represented
as a fingerprint dplg of hash values from sorted word n-grams ex-
tracted from dplg. Note that sorting the n-grams brings them into a
canonical form which cancels out obfuscation locally. Beforehand,
dplg is normalized by removing stop words, by replacing every word
with a particular word from its synonym set (if possible), and by
stemming the remainder. Again, this cancels out some obfuscation.

Since all suspicious documents in Dplg are to be analyzed
against Dsrc, the entire Dsrc is represented as fingerprints Dsrc, stored
in an inverted index. This way, postlists for the hash values of the
fingerprint dplg of any given dplg from Dplg can be retrieved, and all
documents from Dsrc referenced in at least k postlists are considered
part of D′src. Note that the value of k increases as n decreases. This
approach is equivalent to an exhaustive comparison of dplg with
every fingerprint in Dsrc using the Jaccard coefficient, but optimal
in terms of runtime efficiency when analyzing all of Dplg.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 89

Detailed Analysis A suspicious document dplg is compared in-depth
with each candidate source document dsrc ∈ D′src. This is done as
follows by means of a heuristic sequence alignment algorithm: first,
the sorted word n-grams that match exactly between dplg and dsrc
are extracted as seeds. Second, the seeds are merged stepwise into
aligned passages by applying merge rules. A merge rule decides
whether two seeds (or aligned passages) can be merged (e.g., in case
they follow each other in both documents). Typically, a number
of merge rules are organized in a precedence hierarchy: a superor-
dinate rule is applied until no two seeds can be merged anymore,
then the next subordinate rule is applied on the resulting aligned
passages, and so on until all rules have been processed. Third,
the obtained pairs of aligned passages rplg and rsrc are returned as
plagiarism detections r ∈ R, where r = 〈rplg, dplg, rsrc, dsrc〉.

Post-Processing Before being returned, the set of plagiarism detec-
tions R is filtered in order to reduce false positive detections. In
this respect, a set of “semantic” filter rules are applied: for example,
detections below a certain length or detections whose passages rplg
and rsrc do not exceed a similarity threshold under some retrieval
model may be filtered. Moreover, ambiguous detections that report
different sources for approximately the same plagiarized passage in
dplg are dealt with (e.g., by discarding the less probable alternative).

Discussion and Comparison of the Three Competitions In the course
of the three competitions, the detectors submitted have matured
and specialized to the problem domain. With regard to their practi-
cal use in a real-world setting, however, some developments must
be criticized. In general, many of the approaches work only for
plagiarism detection in local document collections, but cannot be
applied easily for plagiarism detection against the web. A novelty
since 2010 was that many participants approached cross-language
plagiarism cases straightforwardly by automatically translating all

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 90

non-English documents to English. In cross-language information
retrieval, this solution is often mentioned as an alternative to others,
but it is hardly ever applied. Reasons for this include the fact that
machine translation technologies are difficult to be set up, which
is of course alleviated to some extent by online translation services
like Google Translate. With regard to plagiarism detection, however,
this solution can again only be applied locally, and not on the web.

Most of the retrieval models for candidate retrieval employ
“brute force” fingerprinting, say, instead of selecting few n-grams
from a document as is custom with near-duplicate detection algo-
rithms like shingling and winnowing [32, 197], all n-grams are used.
The average n is about 4.2 words, but ranges from 2 to 6 have been
tried. A new development since PAN 2010 was that the n-grams
are sorted before computing their hash values. Moreover, some
participants put more effort into pre-processing (e.g., by performing
synonym normalization). Altogether, these methods can be seen
as counter-obfuscation heuristics. Fingerprinting cannot be easily
applied when retrieving source candidates from the web, so some
participants employ standard keyword retrieval technologies, such
as Lucene and Terrier. All of them, however, first chunk the source
documents and index the chunks rather than the documents, so as
to retrieve plagiarized portions of a source document more directly.
In any case, the use of inverted indexing to speed up candidate
retrieval is predominant; only few participants still resort to a naïve
exhaustive comparison of suspicious and source documents.

With regard to detailed analysis, one way or another, all partic-
ipants employ sequence alignment heuristics, but few notice the
connections to bioinformatics and image processing. Hence, due to
the lack of a formal framework, participants come up with rather
ad hoc rules. Finally, in order to minimize their granularity, some
participants discard overlapping detections with ambiguous sources
partly or altogether. It may or may not make sense to do so in a
competition, but in a real-world setting this cannot hold.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 91

4.3.2 Intrinsic Plagiarism Detection

Intrinsic plagiarism detection has been studied as an individual
subtask in the 2009 and 2011 competitions, while in 2010 it was
merged with external plagiarism detection. An analysis of the sub-
mitted notebooks reveals a generic set of building blocks all of which
employ a chunking strategy, a writing style retrieval model, and
an outlier detection algorithm; however, the specifics differ signif-
icantly. In all cases, the mentioned building blocks are arranged
within a retrieval process similar to that described by the authors
of [134, 205], the latter of which being the best performing detector
of 2009: For a given suspicious document, (1) the document is chun-
ked, (2) the chunks are represented under the style retrieval model,
and (3) style differences are identified by means of outlier detection
among the chunk representations. (4) After post-processing, the
identified chunks are returned as potentially plagiarized passages.

Chunking All of the submitted detectors employ sliding window
chunking with chunk sizes ranging from 200 to 1000 words. The
slide stepping of the window ranges from 40 to 500 words.

Retrieval Model Retrieval models for intrinsic plagiarism detection
are comprised of a model function that maps texts onto feature
representations along with a similarity measure to compare repre-
sentations. The submitted detectors use either character-based or
word-based features: for example, char-3-grams as well as other
well-known features that quantify writing style [205, 179], the 2500
most frequent char-3-grams [106], the 100 rarest words that appear in
at least 5% of all chunks [1], or a standard vector space model [146].
Notice that the choice of features determines the least sensible chunk
length, since some features require a minimum amount of text in
order to provide robust results. Regarding similarity measures, most
detectors employ measures similar to Stamatatos’ nd1 [205].

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 92

Outlier Detection Based on the style retrieval model, outlier detec-
tion attempts to identify chunks of the suspicious document that are
noticeably different from the rest. The following two strategies have
been applied: (1) measuring the deviation from the average docu-
ment style, and (2) chunk clustering. The former strategy follows the
original proposal of [134] by comparing each chunk representation
with that of the whole suspicious document [146, 179]. Rationale
of this approach is to measure the extent to which the style of a
chunk matches the average style of the whole suspicious document.
A significant deviation is interpreted as an indication of different
authorship. Chunk clustering, on the other hand, compares the
chunk representations and attempts to cluster them into groups of
similar styles, whereas the chunks of each group may have been
written by a different author [1, 106]. While a lot of finesse has to
go into outlier detection, it is important to keep in mind that these
algorithms also depend crucially on the choice of retrieval model.

Post-processing With regard to post-processing most detectors
merge overlapping and consecutive chunks that have been iden-
tified as outliers in order to decrease detection granularity.

Discussion and Comparison of the Three Competitions Intrinsic plagia-
rism detection has received less attention than external plagiarism
detection. One reason may be that intrinsic detection is still in
its infancy compared to external detection, and so is research on
combining the two. In the 2010 competition a combined plagia-
rism detection task was tried, yet the winning participant reports to
have dropped developments in favor of external plagiarism detec-
tion [104]. The third winner has successfully combined intrinsic and
external detection by employing the intrinsic detection algorithm
only on suspicious documents for which no external plagiarism has
been detected [141]. Hence, it was decided to reinstate intrinsic
plagiarism detection in 2011 as a distinct subtask.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 93

In 2009, only one detector achieved a performance above the
baseline [205], whereas in 2011, this detector was outperformed sig-
nificantly by another one [146]. This improvement, however, should
be taken with a grain of salt: the detector’s retrieval model quantifies
the uniqueness of a word with regard to the whole suspicious docu-
ment. However, during corpus construction, plagiarism cases have
been inserted into the suspicious documents from randomly chosen
source documents, so that no topic overlap between a suspicious
document and its sources can be expected (i.e., with a high proba-
bility, words have been inserted into the suspicious documents that
did not occur beforehand). A retrieval model which builds word
uniqueness features hence benefits from this construction principle.
Moreover, it is surprising that such a retrieval model performs that
well, since models based on character n-grams have previously been
shown to outperform word-based style quantification. Presumably,
this performance may not be reproduced in different settings.

These results are nonetheless important as they pinpoint a prob-
lem with constructing a corpus for intrinsic plagiarism detection.
Randomly inserting text into a document may preserve writing style,
but it obviously does not represent plagiarist behavior, and it hence
opens the door to detection approaches which may not be appli-
cable in practice. Though, at the time of writing, no better way of
constructing a corpus for intrinsic plagiarism detection evaluation
is at hand, this will be an important subject for future research.

4.3.3 Detection Performance Evaluation

We have analyzed the detection results submitted by the participants
of each competition using the performance measures precision, re-
call, granularity, and plagdet as introduced in Section 4.1. The latter
served as a means to rank the detectors, while the former three shed
light onto specific performance characteristics.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 94

PAN 2009 The first row of Figure 4.2 shows the detection perfor-
mances of the 13 detectors that took part in PAN 2009. Regarding
external plagiarism detection, the approach of Grozea et al. [76]
performs best in terms of plagdet and granularity. Yet, the approach
with top recall is the one on rank 2, while the one with top precision
is on rank 6. Otherwise, only the top three detectors achieved a
reasonable performance on all four measures, while the others each
perform poorly on at least one of them. Regarding intrinsic pla-
giarism detection, the approach of Stamatatos [205] performs best.
Since intrinsic plagiarism detection is a one-class classification task,
its baseline performance is not 0 but the performance obtained when
detecting everything as plagiarism. This is almost exactly what the
detector of Hagbi and Koppel [80] did. Interestingly, this detector is
on rank 2 while the two remaining approaches perform worse.

PAN 2010 The second row of Figure 4.2 shows the detection per-
formances of the 18 detectors that took part in PAN 2010. That year,
external and intrinsic plagiarism detection have been treated as an
integrated task. The best performing detector is that of Kasprzak
and Brandejs [104], which outperforms both the second and the
third detector by about 14% in terms of plagdet performance. The
remaining detector’s performances vary widely from good to poor
performance. When looking at precision, the detectors roughly di-
vide into two groups, namely detectors above and below a precision
of 0.7. Apparently, almost all detectors with a precision above this
threshold achieve top ranks. The recall is, with some exceptions,
proportional to the plagdet ranking, while the top 3 detectors are set
apart from the rest. Most notably, some detectors achieve a higher
recall than their ranking suggests, which pertains particularly to
the detector of Muhr et al. [141], which outperforms even the win-
ning detector. With regard to granularity, again, two groups can
be distinguished, namely detectors below and above a granularity
of 1.5. Remember that a granularity close to 1 is desirable. Again, the

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 95

External Plagiarism Detection Intrinsic Plagiarism Detection

Plagdet
Precision

Recall
Granularity

0.70 0.61 0.60 0.30 0.19 0.14 0.06 0.03 0.02 0.01
0.74 0.56 0.67 0.67 0.61 0.75 0.66 0.01 0.03 0.37
0.66 0.70 0.63 0.44 0.37 0.53 0.10 0.46 0.60 0.01
1.00 1.02 1.11 2.33 4.44 19.43 5.40 1.01 6.78 2.83

gro kas bas pal zec sch per val mal all
0.25 0.20 0.18 0.12
0.23 0.11 0.20 0.10
0.46 0.94 0.27 0.56
1.38 1.00 1.45 1.70

sta hag zec sea

PA
N

 2
00

9

0.80 0.71 0.69 0.62 0.61 0.59 0.52 0.51 0.44 0.26 0.22 0.21 0.21 0.20 0.14 0.06 0.02 0.00
0.94 0.91 0.84 0.91 0.85 0.85 0.73 0.78 0.96 0.51 0.93 0.18 0.40 0.50 0.91 0.13 0.35 0.60
0.69 0.63 0.71 0.48 0.48 0.45 0.41 0.39 0.29 0.32 0.24 0.30 0.17 0.14 0.26 0.07 0.05 0.00
1.00 1.07 1.15 1.02 1.01 1.00 1.00 1.02 1.01 1.87 2.23 1.07 1.21 1.15 6.78 2.24 17.31 8.68

kas zou muh gro obe rod per pal sob got mic cos naw gup van sua alz ift

PA
N

 2
01

0

0.56 0.42 0.35 0.25 0.23 0.20 0.19 0.08 0.00
0.94 0.81 0.91 0.71 0.85 0.45 0.44 0.28 0.01
0.40 0.34 0.23 0.15 0.16 0.16 0.14 0.09 0.00
1.00 1.22 1.06 1.01 1.23 1.29 1.17 2.18 2.00

grm gro obe coo rod rao pal naw gho
0.33 0.19 0.17 0.08 0.07
0.31 0.14 0.11 0.07 0.08
0.34 0.41 0.43 0.13 0.11
1.00 1.21 1.03 1.05 1.48

obe sta kes aki rao
Plagdet

Precision
Recall

GranularityPA
N

 2
01

1

aki Akiva [1] hag Hagbi and Koppel [80] rao Rao et al. [179]
all Allen [2] ift Iftene [93] rod Rodríguez Torrejón et al. [188, 189]
alz Alzahrani and Salim [4] kas Kasprzak et al. [104, 105] sch Scherbinin and Butakov [196]
bas Basile et al. [12] kes Kestemont et al. [106] sea Seaward and Matwin [201]
coo Cooke et al. [51] mal Malcolm and Lane [125] sob Sobha L. et al. [203]
cos Costa-jussá et al. [52] mic Micol et al. [136] sta Stamatatos [205]
gho Ghosh et al. [70] muh Muhr et al. [141] sua Suárez et al. [218]
got Gottron [72] naw Nawab et al. [142, 143] val Vallés Balaguer [223]
grm Grman and Ravas [73] obe Oberreuter et al. [145, 146] van Vania and Adriani [224]
gro Grozea et al. [74, 75, 76] pal Palkovskii et al. [149, 150, 151] zec Zechner et al. [238]
gup Gupta and Rao [79] per Pereira et al. [154, 155] zou Zou et al. [244]

Figure 4.2: Plagiarism detection performances at PAN 2009-2011. Grid
columns show the performances of a plagiarism detector in terms of plagdet,
precision, recall, and granularity. The columns are ordered by plagdet scores.
Cell shading serves as visualization, where black indicates maximum, and
white minimum performance.

detectors below the threshold tend to be ranked high, whereas the
detectors on rank two and three have a surprisingly high granularity
when compared to the others. Altogether, a lack of precision and/or
high granularity explains why some detectors with high recall get
ranked low (and vice versa), which shows that there is more than
one way to excel in plagiarism detection. Nevertheless, the winning
detector does well in all respects.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 96

From the groups that took part in PAN 2009, 5 participated again.
Note in this connection that the performances cannot be compared
directly across years, since the 2010 test corpus was constructed
differently than that of 2009, removing a number of errors. Nev-
ertheless, it can be observed that many improved their detectors’
relative performance: the detectors of Kasprzak and Brandejs [104]
and Muhr et al. [141] outperformed the 2009 winner, while the one
of Pereira et al. [155] achieved mid range performance. The detector
of Palkovskii et al. [149] maintained its relative position, and the one
of Grozea and Popescu [74] report that they have not changed their
detector but instead reused the one that won 2009.

PAN 2011 The third row of Figure 4.2 shows the detection perfor-
mances of the 12 detectors that took part in PAN 2011. Regarding
external plagiarism detection, the best performing detector of Grman
and Ravas [73] dominates all others. The second and third detector
of Grozea and Popescu [75] and Oberreuter et al. [146] achieve 33%
and 60% less plagdet performance. The precision performance of the
top five detectors is very high, while recall varies from medium to
poor. The granularity of the top five detectors is not always close to 1,
leaving room for improvement. Regarding intrinsic plagiarism de-
tection, the detector of Oberreuter et al. [146] performs best overall,
while that of Kestemont et al. [106] performs best in terms of recall.
Interestingly, both detectors achieve their performances based on
different outlier detection paradigms, namely chunk-document com-
parison and chunk-chunk comparison. With the latter, it appears to
be more difficult to achieve a good tradeoff between precision and
recall. The 2009 winning detector from Stamatatos [205] serves as a
baseline for comparison. It still outperforms all others, except that
of Oberreuter et al. which performs more than 40% better.

From the groups that took part in the previous competitions,
5 participated again, 2 of them for the third time. Again, note that
the performances cannot be compared directly across years, since

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 97

the 2011 test corpus was constructed to be much more difficult than
those of previous years, containing a lot more obfuscated plagiarism
cases at the expense of unobfuscated ones. This is why the absolute
recall and plagdet performance values are a lot lower than before.

4.3.4 Detection Performance Evaluation per Corpus Parameter

The test corpora used for the competitions comprise a number of
parameters and thus a high diversity of plagiarism cases (see Ta-
ble 4.4 for an overview). We have analyzed the detectors evaluated
at PAN 2010 and 2011 with regard to their detection performance of
plagiarism cases for each corpus parameter. The test corpus used
for PAN 2009 comprises many of these parameters as well, but a
construction weakness rendered such an evaluation impossible. Fig-
ures 4.3, 4.4, and 4.5 show the parameter-wise performances of the
detectors of PAN 2010 and PAN 2011, respectively.

Obfuscation Perhaps one of the most interesting corpus parameters
is obfuscation (i.e., the strategies to modify a plagiarized passage).
The respective rows in the aforementioned figures show the detec-
tion performances achieved per strategy. Unsurprisingly, many de-
tectors detect unobfuscated plagiarism rather well. In PAN 2010, the
top detectors also achieve good performance on artificial plagiarism
with low obfuscation, but less so in 2011: here, the recall difference
compared to unobfuscated plagiarism is higher, whereas precision
and granularity are unaffected. Plagiarism with high obfuscation
is detected less well than that with low obfuscation, but due to the
increased difficulty of the 2011 test corpus, the performance gap
towards unobfuscated plagiarism became a lot wider. The detection
performance of translated plagiarism was already quite high in 2010
and improved in 2011. No doubt, the use of machine translation
services to unify the languages of the test corpus to English works,
but as mentioned earlier, this is not applicable in practice.

Precision

.94 .91 .84 .91 .85 .85 .73 .78 .96 .51 .93 .18 .40 .50 .91 .13 .35 .60

.04 .04 .31 .69 .06 .08 .03 .06 .08 .01 .02 .04 .02 .05 .08 .04 .03 .05

.96 .92 .89 .92 .88 .88 .76 .82 .96 .52 .95 .23 .46 .54 .92 .17 .36 .67

.87 .85 .71 .86 .72 .74 .50 .66 .93 .56 .82 .08 .31 .44 .86 .03 .20 .37

.93 .90 .82 .90 .79 .82 .72 .74 .95 .44 .92 .16 .38 .50 .89 .08 .34 .61

.98 .93 .93 .93 .92 .92 .82 .84 .96 .50 .97 .36 .58 .60 .93 .29 .36 .74

.98 .93 .93 .93 .92 .91 .82 .85 .97 .53 .97 .39 .58 .59 .93 .43 .39 .76

.98 .94 .95 .95 .85 .92 .74 .92 .93 .82 .96 .46 .66 .65 .89 .28 .50 .83

.97 .93 .93 .94 .90 .91 .82 .86 .96 .55 .97 .32 .52 .62 .92 .25 .47 .77

.94 .90 .83 .89 .85 .83 .73 .75 .96 .46 .92 .16 .32 .41 .91 .13 .26 .45

.96 .88 .85 .91 .84 .84 .74 .88 .95 .86 .85 .21 .36 .53 .93 .14 .32 .69

.95 .93 .89 .92 .87 .88 .78 .80 .96 .85 .96 .26 .48 .58 .94 .18 .38 .74

.96 .94 .90 .93 .90 .92 .81 .79 .97 .87 .97 .27 .53 .60 .93 .19 .37 .62

.95 .87 .87 .90 .09 .05 .73 .01 .07 .13 .30 .13 .30 .03 .61 .19 .02 .14

.70 .42 .36 .78 .41 .27 .13 .36 .22 .62 .35 .05 .30 .19 .39 .01 .04 .06

.95 .92 .87 .92 .86 .85 .77 .80 .94 .86 .95 .21 .49 .59 .92 .15 .36 .76

.96 .91 .89 .92 .88 .88 .76 .83 .96 .45 .95 .23 .46 .52 .91 .18 .36 .61

.59 .13 .15 .15 .08 .03 .00 .00 .03 .09 .07 .01 .06 .03 .02 .00 .00 .01

.83 .39 .37 .55 .43 .40 .24 .49 .54 .42 .43 .06 .21 .25 .58 .03 .03 .18

.88 .56 .59 .63 .55 .48 .66 .53 .87 .58 .88 .18 .34 .41 .90 .16 .39 .66

kas zou muh gro obe rod per pal sob got mic cos naw gup van sua alz ift
Entire Corpus

Detection
Task

Plagiarism
per

Document

Obfuscation

Topic
Match

Case
Length

short
medium
long

intra
inter

none
low
high
transl.
amt

Document
Length

short
medium
long

hardly
medium
much
entire

intrinsic
external

artificial

simulated

Plagdet
kas zou muh gro obe rod per pal sob got mic cos naw gup van sua alz ift
.80 .71 .69 .62 .61 .59 .52 .51 .44 .26 .22 .21 .21 .20 .14 .06 .02 .00
.00 .00 .21 .12 .01 .00 .01 .00 .00 .00 .00 .02 .01 .00 .00 .04 .00 .00
.90 .80 .77 .70 .70 .68 .60 .60 .51 .29 .26 .28 .24 .24 .16 .05 .02 .00
.60 .56 .59 .52 .49 .45 .27 .38 .28 .19 .17 .10 .23 .19 .11 .03 .01 .00
.72 .65 .64 .57 .54 .51 .44 .44 .37 .20 .20 .17 .22 .19 .12 .05 .02 .00
.94 .82 .79 .72 .73 .71 .68 .62 .56 .30 .27 .38 .20 .23 .17 .06 .03 .00
.93 .81 .79 .70 .69 .69 .69 .61 .54 .33 .27 .40 .18 .23 .16 .06 .02 .00
.64 .60 .63 .53 .46 .43 .25 .36 .25 .17 .28 .26 .42 .29 .15 .11 .03 .00
.80 .72 .73 .64 .63 .62 .52 .55 .45 .26 .25 .30 .23 .25 .14 .07 .02 .00
.85 .74 .72 .63 .64 .61 .61 .53 .49 .27 .19 .21 .11 .13 .14 .05 .01 .00
.97 .89 .90 .79 .79 .77 .61 .74 .61 .55 .51 .28 .26 .34 .19 .05 .04 .00
.94 .77 .85 .77 .76 .74 .63 .64 .58 .50 .28 .33 .25 .28 .17 .05 .03 .00
.84 .83 .81 .73 .72 .72 .60 .59 .55 .45 .22 .32 .19 .21 .16 .05 .01 .00
.81 .61 .40 .15 .01 .00 .54 .00 .00 .07 .00 .04 .21 .00 .06 .07 .00 .00
.29 .30 .31 .38 .34 .23 .14 .16 .08 .05 .20 .08 .27 .08 .12 .02 .01 .00
.91 .82 .84 .73 .70 .68 .61 .59 .50 .56 .31 .28 .25 .35 .17 .05 .03 .00
.90 .80 .76 .69 .69 .67 .60 .59 .51 .25 .25 .28 .25 .21 .16 .05 .02 .00
.44 .17 .22 .15 .11 .04 .00 .00 .02 .07 .05 .01 .07 .03 .03 .01 .00 .00
.78 .50 .48 .56 .48 .47 .24 .49 .30 .22 .22 .09 .20 .18 .27 .03 .01 .00
.89 .61 .59 .61 .58 .53 .74 .53 .68 .37 .30 .25 .18 .25 .15 .04 .04 .00

Entire Corpus
Detection

Task

Plagiarism
per

Document

Obfuscation

Topic
Match

Case
Length

short
medium
long

intra
inter

none
low
high
transl.
amt

Document
Length

short
medium
long

hardly
medium
much
entire

intrinsic
external

artificial

simulated

Corpus
Parameter

alz Alzahrani and Salim [4] kas Kasprzak and Brandejs [104] per Pereira et al. [155]
cos Costa-jussá et al. [52] mic Micol et al. [136] rod Rodríguez Torrejón et al. [188]
got Gottron [72] muh Muhr et al. [141] sob Sobha L. et al. [203]
gro Grozea and Popescu [74] naw Nawab et al. [142] sua Suárez et al. [218]
gup Gupta and Rao [79] obe Oberreuter et al. [145] van Vania and Adriani [224]
ift Iftene [93] pal Palkovskii et al. [149] zou Zou et al. [244]

Figure 4.3: Plagiarism detection performances at PAN 2010. Grid columns
show the performances of a plagiarism detector in terms of plagdet and pre-
cision, grid rows show performances dependent on corpus parameters. The
columns are ordered by plagdet scores. Cell shading serves as visualization,
where black indicates maximum and white minimum performance.

Granularity

1.00 1.07 1.15 1.02 1.01 1.00 1.00 1.02 1.01 1.87 2.23 1.07 1.21 1.15 6.78 2.2417.31 8.68
1.14 1.19 1.01 1.11 1.19 1.54 1.21 3.52 1.09 2.93 1.05 1.82 1.33 2.93 1.69 1.57 4.46 1.18
1.00 1.07 1.16 1.01 1.01 1.00 1.00 1.01 1.01 1.87 2.24 1.01 1.21 1.13 6.81 2.3317.57 9.26
1.00 1.03 1.05 1.02 1.00 1.01 1.01 1.03 1.01 1.41 1.85 1.17 1.08 1.14 4.79 1.5513.72 6.68
1.00 1.04 1.16 1.02 1.01 1.01 1.01 1.04 1.01 2.04 2.06 1.16 1.13 1.18 6.14 1.8115.07 9.27
1.00 1.08 1.18 1.02 1.01 1.00 1.00 1.02 1.01 1.98 2.37 1.02 1.36 1.15 7.23 2.3518.42 9.67
1.00 1.09 1.19 1.02 1.01 1.00 1.00 1.01 1.01 1.87 2.39 1.02 1.33 1.15 7.74 2.7419.24 8.98
1.00 1.01 1.02 1.01 1.00 1.00 1.00 1.01 1.01 1.26 1.34 1.00 1.02 1.10 2.49 1.26 5.95 3.83
1.00 1.06 1.14 1.02 1.01 1.00 1.00 1.02 1.01 1.85 2.18 1.06 1.25 1.16 6.33 2.1919.38 9.64
1.00 1.09 1.19 1.02 1.01 1.01 1.00 1.02 1.01 1.96 2.62 1.08 1.36 1.17 7.92 2.4718.48 10.16
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.05 1.00 1.00 1.00 1.02 8.25 2.2411.57 10.66
1.00 1.22 1.10 1.01 1.01 1.00 1.00 1.00 1.02 1.16 2.37 1.00 1.17 1.09 7.32 2.4119.00 9.83
1.00 1.02 1.08 1.02 1.02 1.01 1.00 1.04 1.00 1.18 3.54 1.01 1.61 1.34 4.80 2.4224.86 8.13
1.00 1.00 2.10 1.12 1.15 1.76 1.01 1.33 1.00 5.78 1.19 1.26 1.14 2.14 4.94 2.36 2.79 1.63
1.00 1.00 1.00 1.03 1.00 1.00 1.00 1.01 1.00 1.26 1.03 1.00 1.06 1.21 1.18 1.09 1.57 1.80
1.00 1.08 1.05 1.01 1.02 1.00 1.00 1.01 1.01 1.09 2.21 1.00 1.40 1.13 6.71 2.2818.95 11.12
1.00 1.06 1.19 1.02 1.01 1.00 1.00 1.02 1.01 2.14 2.25 1.02 1.14 1.14 6.73 2.3516.97 7.97
1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.04 1.10 1.33
1.00 1.00 1.02 1.01 1.00 1.00 1.00 1.01 1.00 1.25 1.35 1.01 1.04 1.10 1.77 1.37 3.32 3.13
1.00 1.15 1.31 1.03 1.02 1.01 1.00 1.02 1.01 2.12 2.76 1.10 1.48 1.2010.58 2.9421.25 12.90

kas zou muh gro obe rod per pal sob got mic cos naw gup van sua alz ift

Recall

.69 .63 .71 .48 .48 .45 .41 .39 .29 .32 .24 .30 .17 .14 .26 .07 .05 .00

.00 .00 .16 .07 .01 .00 .01 .00 .00 .00 .00 .02 .01 .00 .00 .12 .00 .00

.85 .77 .83 .58 .59 .55 .50 .47 .35 .39 .29 .37 .20 .18 .32 .06 .06 .00

.46 .44 .54 .38 .37 .33 .18 .27 .17 .15 .15 .19 .19 .14 .17 .08 .03 .00

.59 .53 .62 .43 .41 .38 .32 .32 .23 .25 .20 .23 .18 .14 .22 .07 .04 .00

.90 .81 .86 .59 .61 .58 .58 .50 .40 .45 .31 .41 .16 .16 .35 .07 .07 .00

.89 .80 .87 .58 .57 .55 .60 .49 .38 .47 .31 .41 .14 .16 .35 .07 .06 .00

.48 .45 .49 .37 .32 .28 .15 .23 .14 .12 .21 .19 .31 .21 .16 .09 .05 .00

.68 .62 .70 .50 .49 .47 .38 .41 .29 .31 .26 .30 .18 .18 .27 .07 .06 .00

.78 .71 .79 .50 .52 .49 .53 .42 .33 .40 .21 .35 .09 .08 .29 .07 .04 .00

.99 .90 .95 .71 .75 .71 .53 .64 .45 .43 .36 .42 .21 .25 .46 .06 .09 .00

.92 .85 .92 .66 .67 .64 .53 .54 .42 .42 .32 .44 .19 .20 .37 .06 .07 .00

.75 .76 .81 .61 .62 .59 .48 .50 .39 .36 .32 .41 .18 .17 .25 .06 .04 .00

.70 .47 .52 .09 .00 .00 .43 .00 .00 .37 .00 .03 .18 .00 .09 .08 .00 .00

.19 .23 .28 .26 .28 .19 .14 .10 .05 .03 .14 .23 .27 .07 .08 .07 .01 .00

.87 .81 .87 .61 .61 .57 .51 .48 .34 .45 .35 .41 .23 .29 .33 .06 .07 .00

.84 .76 .82 .57 .58 .55 .49 .47 .36 .37 .27 .35 .19 .15 .32 .06 .05 .00

.35 .28 .40 .15 .16 .06 .02 .00 .01 .05 .04 .06 .09 .03 .03 .10 .00 .00

.73 .68 .72 .58 .55 .57 .25 .51 .21 .18 .20 .22 .20 .16 .31 .07 .02 .00

.90 .84 .91 .61 .63 .60 .85 .54 .57 .66 .42 .56 .18 .22 .38 .05 .10 .00

kas zou muh gro obe rod per pal sob got mic cos naw gup van sua alz ift
Entire Corpus

Detection
Task

Plagiarism
per

Document

Obfuscation

Topic
Match

Case
Length

short
medium
long

intra
inter

none
low
high
transl.
amt

Document
Length

short
medium
long

hardly
medium
much
entire

intrinsic
external

artificial

simulated

Corpus
Parameter

alz Alzahrani and Salim [4] kas Kasprzak and Brandejs [104] per Pereira et al. [155]
cos Costa-jussá et al. [52] mic Micol et al. [136] rod Rodríguez Torrejón et al. [188]
got Gottron [72] muh Muhr et al. [141] sob Sobha L. et al. [203]
gro Grozea and Popescu [74] naw Nawab et al. [142] sua Suárez et al. [218]
gup Gupta and Rao [79] obe Oberreuter et al. [145] van Vania and Adriani [224]
ift Iftene [93] pal Palkovskii et al. [149] zou Zou et al. [244]

Figure 4.4: Plagiarism detection performances at PAN 2010. Grid columns
show the performances of a plagiarism detector in terms of recall and granu-
larity, grid rows show performances dependent on corpus parameters. The
columns are ordered by plagdet scores. Cell shading serves as visualization,
where black indicates maximum and white minimum performance.

Plagdet Precision
grm gro obe coo rod rao pal naw gho
.56 .42 .35 .25 .23 .20 .19 .08 .00
.57 .47 .40 .19 .24 .19 .19 .08 .00
.63 .43 .35 .29 .28 .19 .21 .07 .00
.52 .38 .33 .25 .23 .21 .18 .09 .00
.54 .38 .32 .28 .22 .22 .17 .08 .00
.63 .56 .40 .22 .21 .33 .27 .15 .00
.55 .40 .34 .26 .24 .21 .19 .09 .00
.53 .35 .32 .25 .24 .13 .16 .05 .00
.97 .85 .91 .81 .81 .60 .66 .40 .01
.71 .60 .55 .25 .32 .35 .29 .15 .00
.15 .13 .05 .04 .01 .03 .00 .00 .00
.94 .29 .00 .62 .38 .09 .13 .00 .00
.49 .50 .47 .17 .32 .05 .29 .02 .00
.57 .18 .00 .21 .04 .05 .04 .00 .00
.53 .40 .29 .08 .04 .14 .15 .06 .00
.63 .51 .52 .27 .37 .24 .21 .09 .00
.33 .17 .08 .23 .16 .07 .05 .02 .00

Plagdet
obe sta kes aki rao
.33 .19 .17 .08 .07
.37 .19 .29 .16 .08
.35 .25 .17 .08 .07
.38 .21 .20 .10 .06
.40 .28 .28 .13 .10
.28 .18 .17 .04 .12
.31 .19 .24 .14 .07
.14 .08 .01 .02 .02
.03 .01 .01 .02 .01
.26 .13 .08 .04 .05
.36 .14 .19 .11 .08

Recall Granularity

.94 .81 .91 .71 .85 .45 .44 .28 .01

.89 .75 .89 .73 .78 .31 .30 .14 .00

.94 .75 .89 .73 .84 .39 .42 .23 .00

.95 .85 .94 .71 .88 .60 .55 .44 .01

.96 .88 .94 .71 .90 .59 .65 .51 .01

.99 .86 .94 .71 .91 .65 .76 .71 .03

.97 .86 .94 .78 .91 .56 .61 .45 .01

.92 .81 .93 .70 .85 .43 .38 .21 .00

.97 .84 .94 .75 .82 .53 .58 .32 .08

.95 .90 .93 .74 .92 .62 .57 .45 .01

.77 .64 .67 .48 .39 .18 .04 .01 .00

.96 .41 .23 .67 .69 .15 .16 .00 .00

.99 .96 .98 .86 .93 .38 .80 .43 .01

.75 .24 .00 .22 .11 .05 .03 .00 .00

.70 .47 .54 .09 .03 .12 .14 .04 .00

.82 .63 .81 .45 .66 .27 .30 .22 .00

.70 .60 .64 .35 .55 .34 .13 .13 .01

grm gro obe coo rod rao pal naw gho

.40 .34 .23 .15 .16 .16 .14 .09 .00

.42 .40 .27 .11 .16 .16 .16 .10 .00

.48 .36 .23 .18 .19 .15 .15 .08 .00

.36 .31 .21 .15 .16 .16 .13 .09 .00

.38 .31 .20 .18 .16 .17 .12 .09 .00

.46 .44 .26 .13 .13 .23 .18 .13 .00

.39 .33 .22 .16 .17 .16 .13 .09 .00

.37 .28 .21 .15 .18 .11 .12 .06 .00

.97 .90 .88 .87 .79 .70 .81 .72 .01

.56 .58 .42 .15 .25 .32 .23 .18 .00

.08 .08 .03 .02 .01 .02 .00 .00 .00

.92 .24 .00 .58 .26 .09 .13 .00 .00

.33 .36 .31 .09 .20 .03 .18 .02 .00

.46 .14 .00 .20 .03 .05 .10 .00 .00

.43 .35 .20 .07 .03 .16 .17 .11 .00

.51 .47 .38 .47 .28 .24 .19 .12 .00

.22 .16 .05 .17 .14 .07 .04 .03 .00

grm gro obe coo rod rao pal naw gho
1.00 1.22 1.06 1.01 1.23 1.29 1.17 2.18 2.00
1.00 1.14 1.03 1.00 1.13 1.16 1.10 1.90 1.95
1.00 1.17 1.06 1.01 1.16 1.27 1.14 2.14 1.78
1.00 1.26 1.07 1.01 1.29 1.35 1.20 2.26 2.39
1.00 1.29 1.08 1.01 1.29 1.35 1.24 2.35 1.72
1.00 1.05 1.02 1.00 1.06 1.06 1.09 1.82 1.37
1.00 1.27 1.06 1.01 1.22 1.32 1.19 2.25 2.17
1.00 1.28 1.10 1.01 1.32 1.49 1.22 2.46 2.41
1.00 1.02 1.01 1.00 1.00 1.00 1.02 1.14 4.64
1.00 1.27 1.08 1.01 1.34 1.33 1.22 2.29 1.32
1.00 1.19 1.02 1.01 1.16 1.12 1.01 1.21 1.31
1.00 1.07 1.10 1.01 1.00 1.44 1.18 1.00 1.00
1.01 1.06 1.01 1.00 1.03 1.05 1.01 2.71 1.31
1.00 1.01 1.00 1.00 1.00 1.03 1.04 1.00 1.00
1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.04 1.06
1.00 1.06 1.01 1.00 1.04 1.05 1.18 2.42 1.33
1.00 1.89 1.32 1.02 1.62 2.00 1.51 3.11 3.46

grm gro obe coo rod rao pal naw gho

Precision

.31 .14 .11 .07 .08

.45 .14 .23 .16 .16

.33 .32 .11 .07 .08

.37 .34 .13 .07 .08

.44 .23 .21 .07 .17

.32 .13 .13 .11 .16

.34 .19 .17 .12 .10

.10 .05 .02 .02 .02

.02 .01 .00 .01 .00

.19 .08 .05 .02 .03

.26 .12 .12 .08 .11

obe sta kes aki rao
Recall

.34 .41 .43 .13 .11

.32 .45 .44 .18 .09

.36 .35 .43 .12 .11

.38 .16 .55 .18 .11

.37 .48 .47 .16 .11

.25 .53 .24 .03 .10

.29 .30 .46 .17 .09

.22 .20 .26 .05 .08

.16 .19 .25 .09 .05

.45 .57 .51 .12 .13

.57 .63 .74 .25 .21

obe sta kes aki rao
Granularity

1.00 1.21 1.03 1.05 1.48
1.00 1.15 1.08 1.06 1.69
1.00 1.49 1.02 1.06 1.52
1.00 1.00 1.06 1.05 1.81
1.00 1.17 1.03 1.06 1.43
1.00 1.33 1.00 1.00 1.07
1.00 1.37 1.07 1.08 1.50
1.00 1.00 1.00 1.00 1.06
1.00 1.00 1.00 1.00 1.01
1.00 1.01 1.00 1.01 1.05
1.00 1.77 1.12 1.15 2.16

obe sta kes aki rao

Entire Corpus

Plagiarism
per

Document

Obfuscation

Case
Length

short
medium
long

none
low
high
transl.
amt

Document
Length

short
medium
long

hardly
medium
much
entire

artificial

simulated

Corpus
Parameter

transl.

Entire Corpus

Plagiarism
per

Document

Obfuscation

Case
Length

short
medium
long

none
low
high
transl.
amt

Document
Length

short
medium
long

hardly
medium
much
entire

artificial

simulated
transl.

Entire Corpus
Plagiarism

per
Document

Obfuscation

Case
Length

short
medium
long

transl.

Document
Length

short
medium
long

hardly
medium

transl.
artificial

simulated

Corpus
Parameter

External Plagiarism Detection

Intrinsic Plagiarism Detection

aki Akiva [1] gro Grozea and Popescu [75] pal Palkovskii et al. [150]
coo Cooke et al. [51] kes Kestemont et al. [106] rao Rao et al. [179]
gho Ghosh et al. [70] naw Nawab et al. [143] rod Rodríguez Torrejón et al. [189]
grm Grman and Ravas [73] obe Oberreuter et al. [146] sta Stamatatos [205]

Figure 4.5: Plagiarism detection performances at PAN 2011. The columns
show the plagdet, precision, recall, and granularity performances of plagia-
rism detectors, the rows show performances dependent on corpus parame-
ters. The columns are ordered by plagdet scores. The cell shading visualizes
the range from maximum (black) to minimum (white) performance.

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 101

Simulated plagiarism, however, appears to be much more dif-
ficult to detect regarding both precision and recall. Interestingly,
the best performing detectors on simulated plagiarism in 2010 are
not the overall best performing detectors: Muhr et al. [141], Grozea
and Popescu [74], and Oberreuter et al. [145] achieved rank 3, 4,
and 5, respectively. Also the detector of Nawab et al. [142] must
be mentioned in this connection, which also achieves high recall
performance, but suffers from medium precision. It can hence be
hypothesized that the approaches implemented by the participants
possess different capabilities in detecting the different kinds of ob-
fuscated plagiarism. Conversely, it might also be the case that some
participants overfitted their detector to a certain kind of plagiarism,
which may have had negative effects on detecting other kinds of pla-
giarism. In light of this fact, the introduction of simulated plagiarism
into the 2010 test corpus helps preventing such developments. In-
deed, the overall best performing detectors in 2011 are also the ones
which best detect simulated plagiarism. Furthermore, simulated
translations have been introduced in 2011, which were detected well
only by the winning detector of Grman and Ravas [73], achieving
perfect granularity, and good precision at medium recall.

Finally, the only kinds of obfuscation that formed part of the
2011 test corpus for intrinsic plagiarism detection have been arti-
ficial and simulated translations. It can be seen that the machine
translations have been with a low recall at very low precision, and
that simulated translations are detected much worse.

Detection Task and Topic Match Two corpus parameters are unique
to the 2010 test corpus: detection task and topic match. Since ex-
ternal and intrinsic plagiarism detection were treated as a single
task, the respective plagiarism cases had to be detected at the same
time. The two rows entitled “Detection Task” of Figures 4.3 and 4.4
show the detectors’ performances at detecting external and intrinsic
plagiarism: since most of the participants focused on external pla-

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 102

giarism detection, the trends that appear on the entire corpus can be
observed here as well. The only difference is that the recall values
are between 20% and 30% higher than on the entire corpus, which is
due to the fact that about 30% of all plagiarism cases in the corpus
are intrinsic plagiarism cases. Only Muhr et al. [141] and Suárez
et al. [218] made serious attempts to detect intrinsic plagiarism; their
recall is well above 0, yet only Muhr et al.’s precision is reasonable as
well. Combining intrinsic and external detection pays off overall for
Muhr et al., and the intrinsic-only detection of Suárez et al. even de-
tects some of the external plagiarism cases. Grozea and Popescu [74]
tried to exploit knowledge about the corpus construction process
to detect intrinsic plagiarism, which is of course impractical and
renders their performance negligible.

The two rows entitled “Topic Match” of the figures show the
detection performances with regard to whether or not the topic
of a plagiarized document matches that of its source documents.
It can be observed that this appears to make no difference at all,
other than a slightly smaller precision and recall for inter-topic cases
compared to intra-topic cases. However, since many participants
did not implement a retrieval process similar to that of web search
engines, some doubts remain whether these results hold in practice.

Plagiarism per Document, Document Length, and Case Length All of
the Figures 4.3, 4.4, and 4.5 also show detection performances with
regard to the length of a plagiarism case, the length of a plagiarized
document, and the percentage of plagiarism per plagiarized docu-
ment. Regarding 2010, the general rule was the longer a case and the
longer a document, the easier it is to detect plagiarism. This can be
explained by the fact that long plagiarism cases in the 2010 test cor-
pus are less obfuscated than short ones, assuming that a plagiarist
does not spend much time on long cases, and since long documents
contain more of the long cases on average than short ones. Also, the
more plagiarism per plagiarized document the better the detection,

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 103

since a plagiarism detector may be more confident with its detec-
tions if much plagiarism is found in a document. Regarding 2011,
the picture changes as a result of our changes of the corpus construc-
tion. Long cases have been obfuscated more so that consequently,
the correlations between these parameters observed in 2010 were not
reproduced. Altogether, however, the plagiarism detectors within
each year behave similarly with regard to these corpus parameters.

4.3.5 Conclusions and Future Work

Until recently, the evaluation methodologies in the field of plagia-
rism detection had conceptual shortcomings, allowing only for lim-
ited comparability. Our research over the past three years has con-
tributed right here: we have introduced tailored performance mea-
sures for plagiarism detection and the large-scale PAN plagiarism
corpus for the controlled evaluation of detection algorithms. The
corpus features various kinds of plagiarism, including obfuscated
cases generated automatically and manually. The corpus design has
been successfully validated in relation to previous corpora.

Until now, 32 plagiarism detectors have been compared using our
evaluation framework, many of them repeatedly. This high number
of systems has been achieved based on three evaluation workshops
in which the framework was employed and developed, namely
PAN 2009 [169], PAN 2010 [170], and PAN 2010 [175]. A number
of lessons learned can be derived from the evaluation workshops:
research and development on external plagiarism detection focuses
too much on retrieval from local document collections instead of
web retrieval, while the more challenging intrinsic plagiarism detec-
tion gets less attention. Besides web retrieval, another challenge in
external plagiarism detection is obfuscation: while artificial obfusca-
tion appears to be detectable relatively easy if a plagiarism case is
long, short plagiarism cases as well as simulated obfuscation is not.
Regarding translated plagiarism, again, automatically generated

CHAPTER 4. EVALUATING PLAGIARISM DETECTORS 104

cases pose no big challenge in a local document collection, while
simulated cross-language plagiarism does. Future competitions will
have to address these shortcomings.

The evaluation results show that the detection task and obfus-
cation strategies are key parameters of the corpus that determine
detection difficulty: the most difficult cases to be detected are those
without source, and those comprising simulated obfuscation. The
difficulty to detect simulated plagiarism in general is of particular
interest, as it shows that plagiarists have the opportunity to hide
their plagiarism effectively from automatic detection. We hope that
our framework will be beneficial as a challenging and yet realis-
tic test bed for researchers in order to pinpoint the room for the
development of better plagiarism detection systems.

Part II

Language Reuse

105

Chapter 5

Web Comments for Multimedia Retrieval

Numerous websites invite visitors to comment on their content. To
this end, comment boards are provided at the bottom of webpages
where submitted comments are shown in chronological order. Com-
ments are one of the first kinds of user-generated web content, and
virtually all types of items are being commented on, be them texts,
images, songs, videos, products, ideas or personal profiles. Com-
ment boards have not changed much since their début in web-based
guest books. Their very purpose is to collect user feedback, but
they provide practical value to visitors as well. Hence, we consider
comment boards a form of social software which create a commu-
nity centered around the commented item. Comment boards serve
as a paradigm to exploit the wisdom of the crowds since, ideally,
commenters share their opinion, their criticism or extraneous in-
formation. Unlike tagging, blogging and “wiki-ing,” commenting
may not be considered work. In practice, however, comment boards
appear less useful to the naked eye: popular webpages get flooded
with up to thousands of comments, an amount impossible to be
browsed by an individual user. Moreover, many comments are ut-
terly irrelevant, spam or replications, which is why comments are
often neglected as a source of useful information. It is all of these
observations that formed the starting point of our research.

106

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 107

This chapter presents a comprehensive study of the “com-
mentsphere,”1 giving an in-depth overview of our respective publi-
cations [162, 164, 172, 35, 182]. In Section 5.1, we begin with a survey
of existing comment retrieval research: we identify filtering, ranking,
and summarization as important comment retrieval tasks, which in
turn can be classified as comment-targeting or comment-exploiting.
Section 5.2 reports on three experimental case studies of comment-
targeting retrieval tasks, and Section 5.3 reports on two case studies
of comment-exploiting retrieval. The latter demonstrate language
reuse of comments in order to compare web items across media.

Our contributions are the following: a unifying survey of
comment-related research, a comment filtering model based on
writing style features, a comment ranking model based on novelty
detection by similarity reduction, a comment summarization model
based on a sentiment word cloud visualization, and a retrieval model
for measuring cross-media similarity using comments.

5.1 A Survey of Comment-related Research

This section presents a survey of research related to retrieval tasks in
the commentsphere. Based on an analysis of 59 relevant papers, we
identify three main retrieval tasks where comments are successfully
utilized: filtering, ranking and summarization. Other tasks that have
attracted less attention include comment discourse extraction and
popularity prediction of web items. We distinguish the mentioned
tasks with respect to their retrieval targets, which are either the com-
ments themselves or the commented items. We term the underlying
paradigms as comment-targeting and comment-exploiting.

1The term “commentsphere” is derived from the term “blogosphere”, i.e., the
commentsphere is made up of all user-generated comments on web items. The term
was coined in a comment on a blog post asking how blogs may be improved, in
which one commenter suggested “permalinks in the commentsphere” [157]. To the best
of our knowledge, the first scientific paper mentioning the term is [138]; a variant is
the term “commentosphere” [198].

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 108

5.1.1 Comment-targeting Retrieval

Rationale of Comment-targeting Retrieval Let dq be a webpage or an
item (e.g., a text, an image, a video) about a particular topic and let
D bet the set of comments on dq. In terms of regular information
retrieval, comment-targeting retrieval is organized as follows:

• Information Need. A user’s interest in dq is understood as an
information need q that targets comments on dq and dq’s topic.
It is not assumed that dq covers a topic exhaustively.

• Query. Formulating a keyword query that targets comments
(in the sense of “Retrieve all comments that contain more informa-
tion on dq’s topic.”) is hardly possible. However, a good charac-
terization of dq’s topic—and hence the information need—is dq
itself, which hence should be used as query document.

• Relevance. A relevant comment on dq is a comment that com-
plements the information of dq in some respect. It is an infor-
mation retrieval challenge to develop retrieval models that
capture this kind of relevance.

Why is it unreasonable to formulate keyword queries against
comment sets, just as we do against the web? The answer is not
straightforward: a well-known principle of information retrieval
states that nothing can be retrieved about an interesting topic with-
out having a-priori knowledge about it [18]. Within web search
tasks, users formulate queries based on their incomplete knowledge
about the topic for which they seek documents. The same holds
true for retrieving comments, but at a much finer granularity. Since
comments are short, the amount of knowledge in a comment is
limited to a few facts. For example, to retrieve a comment, the user
requires at least partial knowledge of the facts within. There is a
(fuzzy) bound for the amount of a-priori knowledge about a fact x
to be exceeded before users will start to search for x, and comments

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 109

may be considered well below this bound. Another practical aspect
prevents users from searching comments manually: why bother to
search for a fact in a small, arbitrary set of comments when a web
search engine is only one click away?

A good description of what users actually want to find in a set
of comments D on dq is some kind of “surprise.” This can be com-
plementary information but also jokes. Either way the invariant is
that the comments to be retrieved are on the same topic as dq. Clas-
sical retrieval models (e.g., algebraic models like the vector space
model, latent semantic indexing, explicit semantic analysis, or prob-
abilistic models like binary independence, the unigram language
model, or latent Dirichlet allocation) are not well-suited to measure
such connections: when computing the relevance between dq and
some comment d, term overlap or concept overlap is measured in
first place, which is obviously inappropriate for our purpose. In
its extreme form, the classical models consider a comment as most
relevant which duplicates dq, although it contributes nothing.

Survey Research which targets comments is organized in the Ta-
bles 5.1 and 5.2. Special emphasis is placed on the underlying re-
trieval models. Two-thirds of the surveyed papers address only
one specific comment type, namely reviews of products or movies.
Reviews play an important role in decision-making when buying
something online, which renders this comment type particularly
interesting. Also, reviews are rated by other users, which means
that they can be used for evaluation purposes. Research on reviews
is known as opinion mining, and it relies on technologies developed
for sentiment analysis. We emphasize the following distinction:
while the very purpose of sentiment analysis is the identification of
subjectivity and polarity, opinion mining employs sentiment as a
single feature among many for the analysis of reviews.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 110

All comment retrieval models rely on a feature-based vector
representation, where a feature is a possibly elaborate function that
quantifies a certain aspect of a comment. Table 5.1 organizes the vari-
ety of the found features according to nine research fields. Table 5.2
overviews the analyzed papers, whereas the comment retrieval
model (multi-)column illustrates the feature usage by referring to
the nine research fields of Table 5.1: the •-symbol indicates the most
important feature group of a model, which is sometimes extended
by features from other feature groups (indicated by the ◦-symbol).
We also analyzed the related work with respect to the different
approaches for relevance quantification:

1. In comment filtering, the quality of a comment is quantified,
where “good quality” refers to good writing style, and the
absence of vandalism and extreme sentiments. Also, the repu-
tation of a commenter is taken into account, presuming that
good commenters will not write low-quality comments.

2. In comment ranking, the relevance of a comment is put on a
level commensurate with its helpfulness as perceived by other
users. The existing retrieval models try to capture the concept
of helpfulness from the human-labeled product reviews in
order to predict the degree of helpfulness of a new review.
This approach is related to the learning-to-rank paradigm.

3. In comment summarization, the prevalent approach is the ex-
traction of sentences that express an opinion. The relevance of
a full comment is not considered, but the importance of sen-
tences in describing the content of a comment or all comments.

It can be observed that the commenters on comment boards
begin to discuss or even argue about the commented item dq. Most
comment boards, however, do not support discussion threading or
record the reply-to structure. In this regard, Mishne and Glance [138]
tried to predict whether a dispute is happening on a comment board.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 111

Table 5.1: Overview of features used within comment retrieval models.

Group Features
IR (Information Retrieval)

– [sum of] word [n-gram] weights (Boolean, tf , tf ·idf)
– character n-grams (n ∈ [1, 5])
– comment-article similarity
– word entropy
– unigram language model

NLP (Natural Language Processing)
– number of dependent tokens
– part-of-speech tokens (percentage of verbs, nouns, etc.)
– number of verb / noun phrases

Style (Writing Style)
– word length (avg. number of syllables)
– sentence length (avg. number of words)
– paragraph length (avg. number of words)
– comment length (number of words, sentences, or paragraphs)
– highlightings (e.g. bold, italic)
– punctuation (questions, exclamations)
– reader’s grade level or readability measures (e.g., Flesch Kincaid Grade)

Vand (Vandalism Detection)
– non-words, or gobbledygook
– letter repetition
– upper case words or spelling

Sent (Sentiment Analysis)
– word polarity (positive, neutral, negative)
– sentence polarity (percentage of positive / negative words)
– document polarity (percentage of positive / negative sentences)
– word subjectivity (percentage of subjective / objective relations)
– sentence subjectivity (percentage of subjective / objective words)

Com (Comment-specific Analysis)
– time of posting (absolute, relative)
– user rating of the commented object
– common debate phrases
– user-feedbacks on helpfulness, comment quality (absolute, relative)
– appearance of product-/movie-properties (in the comment, in sentences)
– product information (price, sales rank, rating)
– appearance of brand/product names (in the comment [title, body])

User (User Modeling)
– serial sharing commenter quotients (quickness, amount)
– behaviors (percentages in rating others good or bad)
– popularity (percentages of being rated good or bad, other’s clicks/replies)
– user identification (nickname, join date, role)
– user relationships (friends, foes)
– user expertise (activities on the same topic)
– user success (top-rated contributions)

Other
– blog title string
– use of genre core vocabulary (measured as mutual information)

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 112

Table 5.2: Overview of comment-targeting IR research.

Comment retrieval model Evaluation corpus Classifier Reference

IR N
LP

St
yl

e
V

an
d

Se
nt

C
om

U
se

r
O

th
er Relevance

basis
Type Source(s)

Retrieval task: comment filtering

◦ • ◦ quality generic Slashdot Naïve Bayes Section 5.2.1
◦ • quality,

reputation
generic Slashdot association rule

learning
[225]

• ◦ ◦ misuse, spam generic Rediff.com Naïve Bayes,
perceptron, logistic
regression, SVM

[200, 199]

• spam generic – KL-divergence
threshold

[139]

◦ ◦ ◦ ◦ • ◦ quality,
reputation

reviews Amazon logistic regression [100, 101]

◦ • ◦ quality reviews Amazon SVM [121]

Retrieval task: comment ranking

• ◦ novelty generic Slashdot – Section 5.2.2
◦ ◦ ◦ ◦ ◦ • user

preference
generic Digg.com support vector

regression
[87, 107]

• ◦ ◦ helpfulness reviews Amazon, CNET radial basis function [122]
• ◦ ◦ helpfulness reviews Amazon multiple regression [69]

◦ ◦ • ◦ ◦ helpfulness reviews Amazon SVM [108]
◦ ◦ • helpfulness reviews Amazon linear regression, SVM [240]

• increasing
positivity

reviews Ebert’s Movies,
ConsumerReports.org

custom [114]

• ◦ – reviews – – [160]
• – reviews eBay stochastic simulation [92]

Retrieval task: comment summarization

• word
frequency

generic YouTube – Section 5.2.3

◦ • ◦ sentence
importance

reviews Rotten Tomatoes,
Amazon, CNET,
IMDB

– [16, 90, 120, 242]

• ◦ sentence
importance

reviews CNET, Epinions,
PriceGrabber

– [116, 115]

◦ • ◦ sentence
importance

reviews Env. Prot. Agency SVM [112, 113]

◦ • sentence
importance

reviews NHK BS debate,
ewoman.co.jp

– [65]

◦ • ◦ property
frequency

reviews eBay – [124]

• ◦ property
frequency

reviews eOpinion.com – [232]

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 113

They represent its comments D as a feature vector using features
from almost all groups mentioned in Table 5.1, train a decision tree
classifier based on 500 annotated comment boards and achieve a
classification accuracy of 0.88. The authors of [61, 198] go one step
further and attempt to extract the discussion hierarchy from D.

Remarks The wide range of features employed in comment retrieval
models reveals the different views that can be taken on the data
which makes comment retrieval an interdisciplinary research field.
Regarding comment filtering, many models employ user-centered
features and domain knowledge about reviews. These features can
not be applied on other comment types since comments are often
posted anonymously and do not necessarily review something.

Most of the comment ranking models use a comment’s helpful-
ness as relevance measure, which appears to be a reasonable choice.
It must be noted, though, that helpfulness is hardly ever defined but
derived from the ground truth of the evaluation corpora. If, for ex-
ample, a model is trained on Amazon reviews it is an open question
whether a “domain transfer” to other comment types works. More-
over, it stands to reason that the initiating (query) document dq for a
set of comments D introduces a bias in the relevance assessments,
which may not be crucial for reviews but for comments in general.
The existing models measure the relevance of comments based on a
static, predefined information need, since they do not consider dq.

Comment summarization is done by extracting the “important”
sentences from comments. Again, this can only be done reliably for
reviews but not for comments in general: unlike reviews, comments
tend to be short and messy, rendering sentence extraction and the
quantification of their importance difficult. Altogether we observe
that, while being an active research field, comment-targeting re-
trieval currently focuses too much on reviews. I.e., most likely the
proposed models are not adequate for the wider commentsphere.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 114

5.1.2 Comment-exploiting Retrieval

When retrieving web items for which a sufficient number of com-
ments are available, the comments can be used to raise the retrieval
recall. This was first observed by Mishne and Glance [138], who per-
formed a large-scale analysis on the importance of comments within
the blogosphere. They found that comments account for up to 30%
of its size and that the use of comments improves the recall of blog
search by 5%-15%, indicating that comments are a vital part of the
blogosphere. This work is also the first to assess the intrinsic value
of comments. In blog retrieval, in order for a blog post to be relevant
to a query, it suffices if one of its comments is relevant to the query,
which was also the modus operandi of the TREC blog track [148].
Recently, the same idea has been applied to video retrieval, in which
comments provide a rich text resource as well—significantly larger
than user-supplied tags or video titles [55, 231, 236]. There is no
doubt that this idea can be applied to image retrieval, music retrieval
or other types of web items as well. In Section 5.3, we show that
comments can be used to compare web items across media.

Comments are also exploited for the summarization of web
items [58, 88, 89, 152]: given an item dq and comments D on that
item, the task is to generate a summary of dq. The comments on
dq are evaluated to find the often referred to parts of dq. These
parts are then used for the summary, circumventing the problem of
identifying them solely based on dq.

Similarly, filtering by comment exploitation is a viable moni-
toring and maintenance technology. Given a web item dq about
which commenters are outraged, which may be detected using the
aforementioned dispute classification approach of [138], the web
item could be automatically selected for reexamination by a site
administrator. Though we have not found research addressing this,
it is very likely that such measures are already being taken on sites
such as YouTube, for example.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 115

Another important task in this regard is the prediction of the
popularity of a web item based on its comments [99, 103, 138, 219,
221, 234]. Here, the comments are treated like time series data, using
features, such as the increase of comments per time frame, to predict
whether the commented item will become popular.

Remarks Research on comment-exploiting retrieval is more diverse
compared to the research targeting comments. This is in the nature of
things as the ways in which comments can be exploited for different
purposes cannot be enumerated. Approaches to comment-exploiting
retrieval cannot be compared across different retrieval tasks. Within
each comment-exploiting task, however, the literature is few and far
between, which indicates that comments have not yet been adopted
as a source of valuable information about the commented item. By
highlighting comment-exploiting retrieval as a paradigm, we hope
to foster research in this direction.

5.1.3 Evaluation Corpora

The fifth column in Table 5.2 shows places where comments can be
found for evaluation purposes. Since most of the research is about
reviews, Amazon is used most often as a corpus. However, there
are plenty of other websites which may be useful in this respect
(e.g. YouTube, Flickr, Last.fm, Digg, Picasa or news paper sites).
Although there is no lack of comments in general, comments with
human annotations are rare; exceptions include Amazon, Digg and
Slashdot. For our studies, we have compiled two evaluation corpora
based on comments from Slashdot and YouTube; both are available
to other researchers upon request.

Slashdot Corpus Slashdot is a website for publishing and comment-
ing technology-related news. The publishing process is based on
a moderation system in which users can submit an article dq, and

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 116

Table 5.3: Characterization of comment categories on Slashdot.

Category Description of a comment d Frequency Avg. score

Negative Categories
offtopic d does not discuss dq’s topic 4% -0.6
flamebait d is meant to pick a fight 3% -0.5
troll d is a prank to waste other people’s time

and effort in responding
5% -0.6

redundant d repeats what has been said before 2% -0.3

Positive Categories
insightful d makes dq more accessible with new

understandings, analogies, or examples
32% 3.1

informative d adds new information or a new angle 14% 3.1
interesting d does not fit in any other category 24% 2.9
funny d is humorous respecting dq’s topic 16% 3.2

Slashdot’s editors decide whether or not dq will be published. For
each published article a comment board D is available, many of
whose comments are categorized by Slashdot’s comment modera-
tors. Eight predefined comment categories are used: four of which
are considered “positive” and four “negative” (see Table 5.3 for a
short characterization). Based on the categories assigned by differ-
ent moderators, an integer score is computed for each comment.
The accounting of all assessments is mapped onto a range from -1
(negative) to +5 (maximum positive). Unfortunately, the scores do
not reflect how many moderators are involved in an assessment.

We have downloaded all Slashdot articles from January 2006 to
June 2008, including all comments. In total, 17 948 articles were pub-
lished during this period, and about 3.8 million comments were
posted. Comments are organized as discussion threads, which
means that a large fraction of the comments are not direct responses
to an article, but responses to other comments. Only a small frac-
tion of all comments has been categorized by moderators. Our
experiments are based on the 311 167 categorized, direct responses.
Together, the second and third quartile of the articles get between 16

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 117

to 41 direct comments, while the second and third quartile of the
comment lengths range from 1 to 45 words. With respect to the
distribution of the comments on the categories, there seem to be
only very few low-quality comments on Slashdot (see Table 5.3).
However, one should be careful to consider this result as an accurate
picture considering most comments are not categorized and Slash-
dot policies encourage moderators to categorize positive rather than
negative (i.e. moderators may spend time finding good comments
instead of wasting time reading bad ones).

YouTube Corpus YouTube is a video sharing website for homemade
videos. The comments on videos are typically very short, and quite
often thousands of comments per single video can be found. Since
only a single video is associated per YouTube page, and since most
comments are very short, we assume that most of them are some
kind of opinion expression regarding the respective video. Explana-
tions or discussions are less frequently observed than on Slashdot,
for example. This makes YouTube comments especially interesting
for opinion summarization. We downloaded 9.8 million comments
from YouTube which were posted on 64 830 videos that appeared
on several YouTube feeds at the end of 2008. Due to limitations of
the YouTube API, only up to 1 000 comments per video could be
retrieved, and it was not possible to adjust the time frame in which
a comment or a video has been posted.

5.2 Filtering, Ranking, and Summarizing Comments

In this section, we present three exploratory studies which relate to
the comment-targeting retrieval tasks discussed above: the filtering
of low-quality comments on Slashdot (Section 5.2.1), the ranking
of comments on Slashdot (Section 5.2.2), and the summarization of
mass opinion in YouTube comments (Section 5.2.3).

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 118

5.2.1 Case Study: Comment Filtering

Given a set of comments D, the task is to filter all comments of
extremely low quality, particularly comments from spammers and
vandals. The case study investigates whether comment filtering on
Slashdot can be done on the basis of a writing style analysis. This
analysis is interesting since existing retrieval models for this task
depend primarily on user modeling [225].

Retrieval Model We assess a comment’s quality by its readability
which, in turn, depends to some extent on its writing style. User-
generated content on the web often lacks in this respect since users
tend to use common speech, do not revise their writing for gram-
matical and spelling errors and often neglect punctuation and capi-
talization. By contrast, many users seem to prefer good writing over
bad writing, since comments with better style achieve consistently
higher ratings on Slashdot. For this reason, as well as to ensure gen-
eralizability, our feature selection comprises features from linguistic
stylometry and vandalism detection. The latter is an especially
important feature class targeting low-quality and ill-intentioned
comments and was proposed for use in the detection of vandalism
on Wikipedia [167]. We use the following features (see Table 5.1):

• NLP. The frequency of prepositions and interjections indicates
common speech.

• Style1. The comment length indicates whether a commenter
makes an effort. This feature achieves a remarkable perfor-
mance in discriminating high-quality Wikipedia articles [25].

• Style2. Readability formulas, such as the DC Formula [56, 39],
the FK Grade [64, 109] and the GF Index [77] indicate the

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 119

sophistication of language use:

DC = 0.1579 · PDW + 0.0496 ·ASL + 3.6365,
FK = 0.39 ·ASL + 11.8 ·ASW− 15.59,
GF = (ASL + 100 · R3SW) · 0.4,

where PDW = ratio of d’s words a 4th-grader understands
(based on a dictionary),

ASL = d’s average sentence length,
ASW = d’s average number of syllables per word,

R3SW = ratio of d’s words with at least 3 syllables.

• Vand1. The compression rate of a comment’s text.

• Vand2. The deviation of a comment’s letter frequency distribu-
tion from the expectation. This as well as the first vandalism
feature indicate bad writing or non-writing (e.g. when a com-
menter hits the keyboard randomly).

• Vand3. The frequency of vulgar words in a comment.

Experiments Based on a set D of categorized comments from the
Slashdot corpus, a dichotomous classifier c : D→ {0, 1} is trained
on the feature representations D of D. Naïve Bayes is used as the
classification technology. We have also experimented with SVM
classifiers but despite their otherwise good performance, Naïve
Bayes could not be outperformed. The performance is measured as
precision and recall with respect to each class ∈ {0, 1}, indicating
the negative and the positive comment category on Slashdot. The
results shown in Table 5.4 (Experiment 1) are obtained from a ten-
fold cross-validation. At the bottom of the table, a baseline is given
in which all comments are classified as positive.

Two issues render our classification approach particularly diffi-
cult: the class imbalance and the short length of the comments. Keep-
ing these problems in mind, the results of the first experiment are
promising but not overwhelming: only a small portion of negative

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 120

Table 5.4: Filtering performance of the comment quality model.

Feature(s) Class (Categories) Precision Recall F-Measure

Experiment 1

All positive 0.86 0.90 0.88
negative 0.43 0.33 0.37

Experiment 2: Swapping “funny”

All positive exclusive funny 0.74 0.88 0.80
negative inclusive funny 0.74 0.51 0.60

Experiment 3: Dropping “funny”

All positive exclusive funny 0.85 0.91 0.88
negative 0.61 0.45 0.52

Experiment 4: Third class “funny”

All
positive exclusive funny 0.76 0.87 0.81
funny 0.41 0.46 0.43
negative 0.52 0.17 0.26

Experiment 5: Individual features

NLP positive 0.82 0.98 0.89
negative 0.35 0.06 0.10

Style1 positive 0.81 1.00 0.90
negative 0.00 0.00 0.00

Style2 positive 0.84 0.94 0.89
negative 0.43 0.19 0.26

Vand1 positive 0.82 1.00 0.90
negative 0.00 0.00 0.00

Vand2 positive 0.84 0.96 0.90
negative 0.50 0.18 0.26

Vand3 positive 0.83 0.97 0.90
negative 0.50 0.12 0.19

Baseline: All comments positive

– positive 0.81 1.00 0.90
negative 0.00 0.00 0.00

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 121

comments are classified as such. Another issue which needs to be
addressed in this regard is the category “funny.” Funny comments
are a vital part of Slashdot but presumably neither our features nor
any of those surveyed are capable of capturing funniness. One of
the few publications targeting humor retrieval is [137], wherein the
authors try to distinguish humorous texts from other texts. But
the particular case where a humorous text is a response to another
not necessarily humorous text has not been studied. The Slashdot
corpus appears as a valuable resource for humor retrieval.

We have conducted three additional experiments in which the
“funny” category was either swapped from positive to negative,
dropped or considered as a third class altogether. The results are
also shown in Table 5.4. As is evident, when considering funny
comments as negative the classification performance is significantly
improved, which may be an indication that funny comments look
similar to negative comments. Note that dropping funny comments
results in a better performance as well. Considering funny com-
ments as a third class does not work since they cannot be signifi-
cantly separated from negative comments using our retrieval model.
In [182] we investigate this issue further.

Compared to the results of Veloso et al. who study the same
classification task, we achieve a similar classification accuracy. Note
however, that we employ an entirely different feature set: the re-
trieval model of Veloso et al. is specific to Slashdot since it is based
primarily on a user model, whereas our model can be considered
as domain-independent, more robust and applicable to anonymous
comments. Finally, Experiment 5 measures the classification per-
formance of single features. In contrast to the findings of [25], the
comment length feature Style1 does not improve over the baseline,
which is also the case for the vandalism feature Vand1.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 122

5.2.2 Case Study: Comment Ranking

Given a document dq and a set of comments D, the task is to rank the
comments according to their novelty with respect to dq. Ordinary
novelty detection identifies sentences in a document stream which
complement facts already known to the user [204]. Analogously,
dq encodes a user’s a-priori knowledge before exploring D. The case
study investigates the applicability of novelty to comment ranking.
This analysis is interesting since none of the existing approaches
include dq in their retrieval models, which may be acceptable for
review ranking but not for general comment ranking.

Retrieval Model We analyze whether the well-known maximal
marginal relevance (MMR) model works for Slashdot comments.
Moreover, we propose a new model, called ESA∆, and compare it
to MRR. Both MMR and ESA∆ are meta-models, since they build
upon a generic retrieval model in order to boost their performance.
Here, the generic retrieval model is a tf -weighted vector space
model, which hence is also a good baseline for comparison.

Under the MMR model, the most relevant comment which com-
plements a given dq is computed iteratively from the comments D
on dq, based on a subset S ⊂ D that the user already knows [36]. In
the i-th step, the comment di at rank i is computed as follows:

di = argmax
dx∈D\S

[λ · ϕ(dx, dq)− (1− λ) ·max
dy∈S

[ϕ(dx, dy)]],

where S = {dq, d1, . . . , di−1} are the a-priori known comments, ϕ is
the cosine similarity, and λ adjusts the trade-off between di’s simi-
larity to dq and the novelty of di in D. Initially, S contains only dq.
Note that the relevance of di to dq is quantified as the value that
maximizes the right-hand side of the equation. In accordance with
the literature, we chose λ = 0.8.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 123

ESA∆ is based on the explicit semantic analysis paradigm [66,
67, 68]. The original ESA model represents a document d as a vec-
tor d|DI

that comprises the similarities of d to documents from a
collection DI , referred to as index collection. The similarities of d
to DI are computed using the vector space model. Each document
from DI is considered as the description of a particular concept,
and documents from Wikipedia have been successfully applied in
this respect. The supposed rationale of ESA is to represent d in a
concept space that is defined by the index collection. Within ESA,
two documents dq and d are compared by computing the cosine
similarity between the concept vectors dq|DI

and d|DI
.

The ESA model’s index collection DI introduces a level of indirec-
tion to the similarity computation. This way, connections between dq
and d may become apparent which are not obvious when looking at
vocabulary overlap only. In ESA∆ we intend to extract exactly this
portion of similarity by first reducing the overlap between dq and d:
all terms from d that appear in dq are removed. What remains in
the reduced comment d∆ = d \ dq is considered as the comment’s
“visible novelty.” To quantify the relatedness of dq with regard to d∆,
the ESA vectors dq|DI

and d∆|DI
are compared.

Experiments Two experiments were conducted on the Slashdot
corpus: a comparison of comment rankings obtained with the two
aforementioned models with (1) the reference ranking induced by
the Slashdot’s comment scores, and (2) the less fine-grained ranking
induces by Slashdot’s comment categories.

The comment scores on Slashdot define a ranking that can be
used to evaluate a retrieval model with respect to its ability to cap-
ture relevance. For the comments D of each article dq, the average rel-
evance value of all comments Di ⊂ D with score i ∈ {−1, 0, . . . , 5}
to dq was computed. The left plot in Figure 5.1 shows the results.
The standard deviations for the models are as follows: σVSM = 0.13,
σESA∆ = 0.16, and σMMR = 0.08. The vector space model and the

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 124

VSM ESA∆

-1012345

0.5

0.4

0.3

0.2

0.1

0.0

Av
g.

 S
im

ila
rit

y

VSM ESA∆

0.5

0.4

0.3

0.2

0.1

0.0

Insightful
Interesting

Informative
Funny

Flamebait
Troll

Redundant
Offtopic

Experiment 1: Score Ranking Experiment 2: Category Ranking

MMRMMR

Av
g.

 S
im

ila
rit

y

Figure 5.1: Evaluation results for the ranking study: the plots show the
average similarity of a comment d to dq per comment score (left) and per
comment category (right). VSM, ESA∆, and MMR denote the vector space
model, the new similarity-reduced explicit semantic analysis, and maximal
marginal relevance.

ESA model show a comparable similarity distribution in which
medium scores are ranked highest on average, while MMR places
the comments in a natural order. However, the ESA∆ model achieves
significantly higher similarity values than the vector space model,
while the relevance values computed with MMR appear to be rather
small. The latter is not a problem as long as the desired ordering of
the comments is achieved. To determine whether this is indeed the
case, we have also computed the graded relevance scores NDCG,
ERR, and Kendall’s τ, both on the entire rankings produced by the
three models and restricted to the respective top 10 comments only.
In addition, these scores have also been computed for a random
ranking as a second baseline. Table 5.5 shows the results. As can be
seen for the complete rankings, neither of the models clearly outper-
forms the other, and what is more, neither of the models outperforms
the random baseline. On the top 10 comments, at least the latter is
achieved, while the three models remain almost indistinguishable.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 125

Table 5.5: Ranking performance of the comment retrieval models. The
values in brackets denote standard deviation.

Measure Retrieval Models Baseline
VSM ESA∆ MMR Random

NDCG 0.71 (0.08) 0.71 (0.08) 0.70 (0.08) 0.70 (0.08)
ERR 0.54 (0.24) 0.54 (0.24) 0.55 (0.26) 0.53 (0.25)
Kendall’s τ 0.09 (0.13) 0.08 (0.12) 0.06 (0.13) 0.01 (0.11)

NDCG@10 0.72 (0.13) 0.73 (0.13) 0.73 (0.13) 0.70 (0.12)
ERR@10 0.58 (0.24) 0.58 (0.24) 0.58 (0.26) 0.55 (0.25)
Kendall’s τ@10 0.09 (0.12) 0.08 (0.12) 0.06 (0.13) 0.01 (0.11)

Following the design of the former experiment, we also compute
the average relevance value of a comment to dq per category. Hence,
based only on positive and negative judgements, a less fine-grained
ranking is demonstrated (e.g. if a user wants negative comments to
be presented after the positive comment). The right plot in Figure 5.1
shows the results. Observe the difference in the distributions of the
vector space model and MMR to the ESA∆ model: the latter achieves
significantly higher similarities for the positive categories (except
for “funny”) than for the negative categories, whereas the vector
space model and MMR show almost no discriminative behavior.

This above results should be taken with a grain of salt: sensible
rankings are induced only in terms of averages while the models’
graded relevance scores are inconclusive. Undesired rankings occur
with a non-negligible probability. We conclude that the task of
ranking comments remains unsolved and needs further research.

5.2.3 Case Study: Comment Summarization

Given a set of comments D, the task is to generate a short text or a
visualization that overviews the contents or the opinions of D: users
will quickly get an idea about the comments without having to read
everything. The case study investigates the use of word clouds for

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 126

opinion summarization of comments on YouTube. This analysis
is interesting since existing comment summarization approaches
rely on sentence extraction and are prevalently applied to distill cus-
tomer product reviews. The respective technology cannot directly be
applied to comments, which are significantly shorter than reviews—
most of the comments found on media sharing sites do not even
contain one sentence. It is unlikely that relevant information can
be found in such comments except the opinion of the commenters.
Short comments in particular are tedious to read which is why a
suitable summarization for them is desired. While a single opinion
may not be very useful (especially if no argument is provided), the
fact that popular items inspire thousands of people to share their
opinions allows us to generate a representative opinion summary.

Retrieval Model The summarization of a comment set D divides
into an offline step and an online step. Suppose that two dictio-
naries V+ and V− are given, comprising human-annotated terms
that are commonly used to express positive and negative opinions
respectively [217]. In the offline step, the well-known sentiment
analysis approach described by [222] is used to extend V+ and V−

to the application domain. The extension is necessary in order to
learn terms that are not covered by the dictionaries, and it is not
feasible to do this manually. The semantic orientation SO of an
unknown word w is measured by the degree of its association with
known words from V+ and V−:

SO(w) = ∑
w+∈V+

assoc(w, w+)− ∑
w−∈V−

assoc(w, w−),

where assoc(w, w′) maps two words to a real number indicating
their association strength. If SO(w) is greater than a threshold ε
(less than −ε), w is added to V+ (V−); otherwise w is considered
neutral. The point-wise mutual information statistic is applied as an

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 127

Figure 5.2: Opinion summaries which contrast positive and negative words
(left) and all kinds of words (right).

association measure:

assoc(w, w′) = PMI(w, w′) = log2
p(w ∧ w′)

p(w) · p(w′) ,

where p(w ∧ w′) denotes the probability of observing w together
with w′, and p(w) is the probability of observing w. In the online
step, when a comment set D is observed, two summary term vec-
tors s+D and s−D are constructed each counting the absolute frequen-
cies of positive and negative terms in D, using the dictionaries V+

and V−. Words not occurring in one of them are considered neutral.

Visualization We visualize s+D and s−D as word clouds. Figure 5.2
shows examples where s+D and s−D are contrasted. Word clouds are
arrangements of words in 2 or 3 dimensions in which important
words are highlighted [202]. Here, the words are colored according
to their sentiment polarity, and they are scaled according to their
term frequency. The font size of a word is computed as follows:

size(w) = max_size · tf (w)

maxw∗∈V (tf (w∗))
,

where max_size is a predefined maximum font size and tf (w) is the
term frequency of w as counted in s+D or s−D, and V = V+ ∪V−.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 128

A few more issues need to be addressed in practice: emoticons
and exclamations (such as “:-)” or “lol”) require an additional set of
detection rules since commenters often vary their spelling, spelling
errors (which are abundant in comments) need to be corrected on
the fly, and negations in front of opinion words need to be detected
as a heuristic to determine the orientation of a word in context.

An important part of the visualization is the percentages of pos-
itive and negative words found on top of the word cloud (see Fig-
ure 5.2). For a quick overview these numbers are sufficient; however,
when a user wants to know more about what other commenters
thought, a click on any word in the cloud produces a list of com-
ments containing it. As mentioned above, we have implemented
a browser add-on that summarizes YouTube comments and Flickr
comments on-the-fly. A lot of user feedback was obtained this way;
from which it became clear that users find the summary interesting
and useful, yet they criticize that sometimes words from comments
are considered negative (positive) although they have been used in
a positive (negative) way. For future developments, it is planned to
incorporate sentiment classification of whole comments.

Finally, it is noteworthy that the word cloud shown right in
Figure 5.2 inspired us to investigate cross-media retrieval (see the
next section). In this particular case, the top 3 neutral words perfectly
explain what the video is all about: a cat playing the piano.

5.3 Measuring Cross-Media Item Similarity

Our final two case studies investigate whether a set of comments
D can be used for retrieval purposes (i.e., whether the combined
text of D tells us something about the commented item dq), thus
allowing for the comparison of items across media. To the best of our
knowledge, we are the first to analyze this possibility. Cross-media
retrieval is a sub-problem of multimedia retrieval, which again di-
vides into various sub-tasks. Here, we consider the following: given

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 129

a set of items of different media types, the task is to pair those items
which are similar with respect to their topic, regardless of their me-
dia type. A primary goal of cross-media retrieval is the construction
of retrieval models that bridge the gap between different media
types by means of identifying correlations between low-level fea-
tures and semantic annotations. We approach this problem from
a different perspective through the use of comments in lieu of the
commented item. This way, model construction is not an issue since
well-known text retrieval models can be directly applied. Although
the text surrounding a non-textual item has always been used to
extract annotations in multimedia information retrieval [60, 98, 118],
comments in particular have not been considered in this respect.

5.3.1 Case Study: Comment Descriptiveness

A premise of our approach is that comments describe the com-
mented item to some extent, which is analyzed first off. Under
the assumption that the activity of commenting on text is not funda-
mentally different from that of commenting on non-textual items,
we restrict our experiments to the text domain for now. If the as-
sumption holds and if comments on texts prove to be descriptive, it
follows that comments on non-textual items are descriptive as well.

Retrieval Models Two basic retrieval models are employed in our
experiments: the well-known vector space model (VSM) and the
explicit semantic analysis model (ESA). In short, ESA is a collection-
relative generalized VSM [208, 68]. It represents a document d as
vector d|DI

of d’s similarities to the documents of an index collec-
tion DI . Our index collection contains |DI | =10 000 randomly se-
lected Wikipedia documents, and the similarity of d to every index
document is computed in turn using the VSM. Both models use the
cosine similarity to compute the similarity of two document repre-
sentations. Note that we choose basic retrieval models to ascertain
whether comment descriptiveness can be measured reliably.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 130

Experiments We have conducted three experiments on the Slashdot
evaluation corpus. In Experiment 1, we determine the descriptive-
ness of a set of comments: a given document dq is compared with
the combined text of its comments D. As a baseline, dq is compared
once with the comments of another, randomly selected document.
The obtained similarity values are depicted in Figure 5.3 as similarity
distributions (i.e., the ratio of all similarities per similarity interval
of 0.1 resolution). In Experiment 2, we determine if the combined
text of a set of comments D can replace the commented item dq in
a ranking task, by ranking the remaining corpus documents twice:
(1) wrt. their similarity to dq, and (2) wrt. their similarity to D as
a whole. The top 100 ranks of these two rankings are compared
using the rank correlation coefficient Spearman’s ρ, which measures
their (dis-)agreement as a value from [−1, 1]. The experiment has
been repeated with randomly selected documents dq from the cor-
pus until the averaged correlation value converged (cf. Figure 5.3).
In Experiment 3, we determine whether or not the observed sim-
ilarities between dq and D as a whole depend only on text which
has been copied from dq into one of D’s comments: we apply our
aforementioned similarity reduction technique by first removing
all terms from D which also occur in dq, and then by exploiting the
fact that ESA, unlike the VSM, has the capability to measure more
than just the overlap similarity between dq and D. Figure 5.3 shows
the obtained similarity distributions. It is our goal to determine
the amount of comments on a document dq necessary to reach a
certain degree of descriptiveness. Hence, we use 5 subsets of the
evaluation corpus which comprise only documents which got at
least |D| ≥ i ∈ {1, 10, 100, 500, 1000} comments. The experiments
were repeated for each subset (= table rows), and, each experiment
was repeated for every dq in a given subset. If a dq got |D| > i
comments a random subset Di ⊂ D, |Di| = i, was chosen for the
respective experiment.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 131

VSM 0.74

ESA 0.84

1 000

(31)

VSM 0.61

ESA 0.70

500

(951)

VSM 0.45

ESA 0.42

100

(13 621)

VSM 0.35

ESA 0.34

10

(17 748)

VSM 0.10

ESA 0.17

1

(17 770)

0 0.2 0.4 0.6 0.8 1
Similarity Interval

Experiment 1 Experiment 2 Experiment 3 Comments |Di|
(Corpus subset)

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4
R

at
io

 o
f S

im
ila

rit
ie

s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s

 0

 0.2

 0.4

R
at

io
 o

f S
im

ila
rit

ie
s Cross-media

rank correlation

0 0.2 0.4 0.6 0.8 1
Similarity Interval

ESA

Random
D and dq

VSM

ESA

Random
D and dq

Figure 5.3: Comment descriptiveness experiments dependent on the num-
ber of comments.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 132

Experiment 1 reveals that 10 comments on a document are suffi-
cient to reach a considerable similarity between them compared to
the baseline, Experiment 2 reveals that 100 to 500 comments are suffi-
cient to reach a moderate rank correlation, and Experiment 3 reveals
that 100-500 comments comprise a measurable commenter contri-
bution not contained in the original document. Experiment 3 also
demonstrates ESA’s capability to measure more than just overlap
similarity and shows that the similarities measured in Experiment 1
cannot be attributed solely to duplicated text. Further, Experiment 3
may be interpreted as an indicator of the amount of comments neces-
sary to capture the topics of non-textual objects. In all experiments,
the retrieval quality increases with the number of comments per
document |Di|. Hence, comments on text documents can be called
descriptive and it remains to be investigated whether our hypothesis
holds that commenting is not entirely media-dependent.

5.3.2 Case Study: Cross-media Retrieval

Having established that a sufficiently high number of comments on
a text describe it well, we proceed in this case study toward reusing
comments for the comparison of web items of different media types.

Retrieval Model A standard vector space model with tf ·idf term
weighting is used as our retrieval model. Given a web item dq and its
associated set of comments D, dq is represented as a term vector dq
based on the index terms found in D, while applying stop word
reduction and stemming. In the case that dq is a text document, as in
the Slashdot corpus, the index terms found in dq are also included
in dq. The representations of two items, dq and d′q, are compared
using the cosine similarity. Though nearly every retrieval model
can be employed for this task, we resort to a simple vector space
model in order to determine how robust a cross-media similarity
assessment can be accomplished.

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 133

10-7

10-4

10-2

1

0 0.2 0.4 0.6 0.8 1

R
at

io
 o

f S
im

ila
rit

ie
s

Similarity Interval

"high" cross-media similarity

0.20

100

80

60

40

20

0

In
su

ffi
ci

en
t D

at
a

0.4 0.6 0.8 1
Similarity Interval

%
 o

f i
ns

pe
ct

ed
 p

ai
rs

of
 a

rti
cl

es
 a

nd
 v

id
eo

s

(b) Cross-media Topic Match(a) Cross-media Similarity Distribution

unrelated

related

equal

Figure 5.4: (a) Distribution of cross-media similarities between YouTube
videos and Slashdot articles per similarity interval of resolution 0.01. (b) Per-
centage of pairs of articles and videos with unrelated topics, related topics,
and equals topics per similarity interval of resolution 0.1, based on a strati-
fied sample of 150 manually inspected item pairs.

Experiments Given the evaluation corpora described above, 6 000
videos from the YouTube corpus were sampled and compared to
each of the 17 948 Slashdot articles. This resulted in about 107.7 mil-
lion similarities. Slashdot and YouTube are similar in that both are
community-driven websites, so that at least some topical overlaps
can be expected. However, since both corpora have been compiled
independently, we were not aware of existing overlaps. Figure 5.4a
shows the obtained similarity distribution as a percentage of simi-
larities over similarity intervals with an interval resolution of 0.01.

From all pairs of articles and videos compared, we have sampled
a total of 150 for manual inspection by means of stratified sampling
from similarity intervals of resolution 0.1. The sampled pairs were
then classified into categories of topical match, namely pairs with
equal topic, related topics, and unrelated topics. Figure 5.4b shows
the obtained results. Topic overlaps start appearing at similarities
above 0.3, which may already be considered a “high” cross-media
similarity for its considerable positive deviation from the expecta-

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 134

Table 5.6: Overview of the top 100 inspected cross-media similarities.

Topic
Share

Similarity Avg. # Comments Title
Match min avg. max stdev Slashdot YouTube Match

equal 36% 0.71 0.78 0.91 0.06 53 927 72%
related 55% 0.71 0.76 0.91 0.04 81 683 62%
unrelated 9% 0.72 0.78 0.87 0.05 104 872 –

Σ 100% 0.71 0.77 0.91 0.05 74 790 60%

Table 5.7: Selection of matching web items found with comment-based
cross-media retrieval.

Similarity Comments URLs
Slashdot YouTube

0.91 83 950 http://slashdot.org/story/07/03/15/2056210
http://www.youtube.com/watch?v=RuWVMB7OxbM

0.82 69 950 http://slashdot.org/story/08/02/05/1511225
http://www.youtube.com/watch?v=Z_gKOCb4QBA

0.81 102 950 http://slashdot.org/story/08/01/02/1611240
http://www.youtube.com/watch?v=tLlHibrFATg

0.76 41 950 http://slashdot.org/story/07/10/16/1526257
http://www.youtube.com/watch?v=TluRVBhmf8w

0.74 40 950 http://slashdot.org/story/07/07/11/1246250
http://www.youtube.com/watch?v=DLxq90xmYUs

0.74 79 766 http://slashdot.org/story/07/08/13/1347253
http://www.youtube.com/watch?v=BWQ5ZMnz25I

0.74 66 78 http://slashdot.org/story/06/02/02/0024235
http://www.youtube.com/watch?v=F0uq21xjMCw

0.73 75 950 http://slashdot.org/story/08/06/04/1159207
http://www.youtube.com/watch?v=adc3MSS5Ydc

http://slashdot.org/story/07/03/15/2056210
http://www.youtube.com/watch?v=RuWVMB7OxbM
http://slashdot.org/story/08/02/05/1511225
http://www.youtube.com/watch?v=Z_gKOCb4QBA
http://slashdot.org/story/08/01/02/1611240
http://www.youtube.com/watch?v=tLlHibrFATg
http://slashdot.org/story/07/10/16/1526257
http://www.youtube.com/watch?v=TluRVBhmf8w
http://slashdot.org/story/07/07/11/1246250
http://www.youtube.com/watch?v=DLxq90xmYUs
http://slashdot.org/story/07/08/13/1347253
http://www.youtube.com/watch?v=BWQ5ZMnz25I
http://slashdot.org/story/06/02/02/0024235
http://www.youtube.com/watch?v=F0uq21xjMCw
http://slashdot.org/story/08/06/04/1159207
http://www.youtube.com/watch?v=adc3MSS5Ydc

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 135

tion. As the comment-based cross-media similarity increases, more
and more items with related or equal topics can be observed. Within
high similarity ranges, pairs of articles and videos with equal topic
appear most often. In addition to this manual inspection, the top 100
most similar pairs were evaluated with respect to their topical match.
Table 5.6 gives a detailed overview of these item pairs, and Table 5.7
shows a selection of matching item pairs: 91% of the top item pairs
have equal or related topics. The similarity values in the table give
an idea about the measured similarities and their standard deviation
(stdev). Few false positives achieve high similarities, but are based
on a lot more comments on the side of Slashdot. Observe that the
number of comments appears to correlate with the similarity, and
that more comments possibly result in a “topic drift.” Often, the
title of a YouTube video is descriptive, and hence the percentage of
pairs where the video title overlaps with the Slashdot article was
determined. This is the case in 60% of the examined item pairs,
which in turn means that, in this experiment, 40% of the top 100
item pairs would not have been identified based on their titles.

5.3.3 Conclusion and Future Work

In this chapter, we study the commentsphere from an information
retrieval perspective. We present a comprehensive survey of related
work and, based on this survey, identify the most relevant retrieval
tasks with respect to research effort and user impact: the filtering,
the ranking and the summarization of comments as well as their
exploitation for the same tasks on web items. In addition, there
are a number of secondary retrieval tasks that are no less exciting,
including the prediction of a web item’s popularity based on com-
ments. We conducted a case study for four of the tasks mentioned
above. For this purpose, we compiled adequate corpora which are
available to other researchers in order to foster the research activities
in this field. Within the case studies, special attention was paid to

CHAPTER 5. WEB COMMENTS FOR MULTIMEDIA RETRIEVAL 136

the used retrieval models: our objective was to point out differences
to existing retrieval models and to provide a better understanding of
the challenges for retrieval tasks in the commentsphere. Moreover,
we developed new retrieval model variants to address some of these
challenges. Our contributions from a retrieval model perspective:

• Feature Overview. We compile an overview of features used
to represent comments.

• Retrieval Models for Filtering and Ranking. We propose a
domain-independent model to filter low-quality comments
which competes with other models. With ESA∆ we present a
new retrieval model to measure novelty for comment ranking.

• Cross-media Retrieval. We introduce a new paradigm to mea-
sure cross-media item similarity.

From a research perspective, we consider the following directions
as promising:

• Retrieval Models. Current research focuses on product and
movie reviews, but web comments in general are much more
diverse and require new tailored retrieval models.

• Humor Retrieval. If surprises are what people expect from
comments, they may be funny at the same time: humor re-
trieval has not recognized comments as a research subject.

• Multimedia Annotation. If comments capture a commented
item’s topic well, it should be possible to extract tags and
annotations for the commented item from its comments.

• Ranking and Summarization. Comment boards show com-
ments in chronological order, but with increasing comment
number the overview gets lost. Hence, ranking comments by
their relevance and novelty, as well as summarizing comments
will continue to be an important direction for research.

Chapter 6

Web N-Grams for Keyword Retrieval

The interfaces of today’s web search engines are mainly keyword-
based: users submit queries by typing several keywords into a
search box. It is not uncommon that queries comprise phrases and
compound concepts; take times square as an example. A search
engine that is informed about such phrases and concepts by means
of proper quotation may consider them as indivisible units and use
them to improve retrieval precision (e.g., by excluding documents
that do not contain words in the exact same order of the phrases).
Other server-side algorithms that benefit from quotation include
query reformulation, which could be done on the level of phrases
instead of keywords, and query disambiguation, which has to cope
with tricky queries like times square dance. Without quotes, it is
difficult to know whether the user intends to find newspaper arti-
cles on square dance in the London times or rather dance events
at times square, New York (locating the user might also help, of
course). Skilled web searchers surround phrases with quotes, but ex-
perience shows that most searchers are not even aware of this option.
Hence, search engines apply pre-retrieval algorithms that automat-
ically divide queries into segments in order to second-guess the
user’s intended phrases and to improve the overall user satisfaction.

137

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 138

This chapter studies query segmentation algorithms, giving an
in-depth overview of our respective publications [81, 82]. Section 6.1
surveys existing approaches to query segmentation. Section 6.2
presents the basic notation of our query segmentation framework
and introduces two query segmentation algorithms. An empiri-
cal evaluation in Section 6.3 shows the segmentation accuracy of
our method on the current gold standard, compared to existing
approaches. Furthermore, this section introduces our new corpus,
outlines its construction with the aid of crowdsourcing, and com-
pares the segmentations obtained this way to expert segmentations.

Our contributions are the following: a new and robust approach
to the task of query segmentation which relies on reusing the web
in the form of n-grams and their frequencies. The performance our
approach achieves is competitive with state-of-the-art algorithms on
a widely used evaluation corpus of 500 queries. As part of our evalu-
ation, we compare our algorithm with seven others proposed in the
literature. Our second contribution relates to evaluation and verifia-
bility: a new query segmentation corpus comprising 50 000 queries.
Our corpus subsumes the current standard corpus and, unlike that,
meets the requirements of representative large-scale evaluations,
which was one of the main points raised at the SIGIR 2010 workshop
on “Query Representation and Understanding” [54].

6.1 A Survey of Query Segmentation

Recent research suggests a variety of approaches to query segmen-
tation. For instance, Guo et al. [78], Yu and Shi [237], and Kiseleva
et al. [110] use methods based on conditional random fields (CRF).
Guo et al. evaluate their method on a proprietary query corpus and
tackle the broader problem of query refinement that simultaneously
involves spelling correction, stemming, etc. Hence, their approach
is not entirely comparable to ours, since we assume that spelling cor-
rection is done prior to query segmentation—an assumption shared

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 139

by most other query segmentation studies. The other CRF-based
methods by Yu and Shi and Kiseleva et al. also address query seg-
mentation in settings different from ours. Yu and Shi focus on query
segmentation in the context of text stored in relational databases
and use database-specific features not available in web search. Kise-
leva et al. focus on product queries and aim to improve the user
experience in web shops.

One of the earliest approaches to web query segmentation is by
Risvik et al. [185]. They segment queries by computing so-called
connexity scores that measure mutual information within a segment
and the segment’s frequency in a query log. Jones et al. [102] also use
a mutual information-based scoring that finds segments in which
adjacent terms have high mutual information. However, neither
Risvik et al. nor Jones et al. evaluate the segmentation accuracy of
their approaches. In a very recent paper, Huang et al. [91] also use
segment-based pointwise mutual information scores obtained from
web-scale language models. For a given query, they derive a tree of
concepts. The tree is then used to obtain a final query segmentation.
However, Huang et al. evaluate their method only on a proprietary
query corpus without comparing it to other approaches. Note that
in many query segmentation studies, mutual information-based
segmentation is used as a baseline, often performing worse than the
more involved methods.

One of the earliest methods that does not rely only on mutual
information is the supervised learning approach by Bergsma and
Wang [23]. Bergsma and Wang incorporate many features: statisti-
cal ones like phrase frequencies on the web and in query logs, as
well as dependency features that focus on noun phrases. They also
established the first gold standard corpus of 500 queries, each seg-
mented by three human annotators. Subsequent work has adopted
this gold standard [29, 81, 220, 239]; as do we in our evaluations
in order to ensure comparability. However, Bergsma and Wang’s
evaluation corpus is rather small, so that we decided to introduce a

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 140

larger and more representative corpus. As for the query segmenta-
tion, Bergsma and Wang’s supervised learning method is trained on
queries segmented by a single annotator who also segmented the
gold standard. This leaves some doubts with regard to the generaliz-
ability of the results. Nevertheless, Bendersky et al. [21] successfully
use a version of Bergsma and Wang’s method as a sub-procedure in
their two-stage query segmentation approach.

Instead of the supervised approach that requires training data,
Tan and Peng [220] and Zhang et al. [239] suggest unsupervised
methods. Zhang et al. compute segment scores from the eigenvalues
of a correlation matrix corresponding to a given query. Tan and
Peng’s method, like ours, uses only n-gram frequencies from a large
web corpus as well as Wikipedia. However, Tan and Peng state that
raw n-gram frequencies by themselves cannot be used for query
segmentation. Hence, they build a language model from the n-gram
frequencies via expectation maximization. In a second step, Tan
and Peng boost a segment’s score derived from the language model
if it is used prominently in Wikipedia. Our new method uses the
same features as Tan and Peng’s but with superior segmentation
accuracy (cf. Section 6.3). Moreover, in contrast to Tan and Peng’s
assumption, our naïve query segmentation method [81] shows how
raw n-gram frequencies can be exploited for query segmentation
using an appropriate normalization scheme (cf. Section 6.2).

The snippet-based method by Brenes et al. [29] is quite simple
compared to the aforementioned approaches: it segments a query
based on search result snippets for the unquoted query. Brenes et
al. evaluate different techniques of deriving a query’s segmentation
from snippets. Obviously, the main concern with this approach is
runtime efficiency. Most queries have to pass the retrieval pipeline
twice before results are returned: once unquoted to obtain the snip-
pets used for segmentation, and once more with quoted segments.

Bendersky et al. [20] also suggest a method that involves time
consuming double-retrieval for most queries. Their method intro-

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 141

duces a segment break between two words whenever a likelihood
ratio is below some threshold. The likelihood ratios are obtained
by combining web n-gram probabilities and pseudo-relevance feed-
back (PRF) from the top-ranked documents for the original, un-
quoted query. The PRF-based method achieves a promising experi-
mental segmentation accuracy. However, Bendersky et al.’s evalua-
tion corpus is rather small (250 queries) and it has been segmented
by only one annotator, which suggests a bias in the segmentations.
Furthermore, the PRF-based segmentation method is not compared
with state-of-the-art approaches.

Our first naïve query segmentation method [81] scores all seg-
mentations for a given query by the weighted sum of the frequencies
of contained n-grams, obtained from a large web corpus. Besides
raw n-gram frequencies, no other features are involved, making
this approach easy to explain and straightforward to implement.
The weighting scheme of naïve query segmentation aims at “nor-
malizing” the n-gram frequencies, so that a longer segment like
“toronto blue jays” has a chance to achieve a higher score than
shorter sub-segments like “blue jays”. With respect to segmen-
tation accuracy, the naïve approach performs comparable to the
other approaches that use, supposedly, more sophisticated features.
Furthermore, storing the n-gram frequencies in a large hash table
ensures very competitive runtime on machines with sufficient main
memory. However, until now, no explanation was given why the
exponential normalization scheme of naïve query segmentation
performs so well. We close this gap with an in-depth analysis in
Section 6.2. Our new segmentation method, which is inspired by
naïve query segmentation, is introduced in [82].

Finally, the very recent approach of Mishra et al. [140] compares
with our method in terms of feature complexity. But instead of web
n-gram frequencies, Mishra et al. exploit n-gram frequencies from a
large query log. Their experiments on a proprietary query corpus
indicate an improvement over a mutual information baseline.

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 142

6.2 Two Query Segmentation Algorithms

We regard a keyword query q as a sequence (w1, w2, . . . , wk) of k
keywords. A valid segmentation S for q is a sequence of disjunct seg-
ments s, each a contiguous subsequence of q, whose concatenation
equals q. There are 2k−1 valid segmentations for q, and (k2 − k)/2
potential segments that contain at least two keywords from q.

The basic and major assumption of both our approaches is that
phrases contained in queries must exist on the web—otherwise they
cannot increase retrieval performance. The idea then is to use the
web as a corpus of potential query phrases. The largest collection
of web phrases obtainable, besides the web itself, is the Google
n-gram corpus [26]. It contains n-grams of length 1 to 5 from the
2006 Google index along with their occurrence frequencies. For
n-grams up to n = 5, the frequencies can be directly retrieved from
the corpus; for longer n-grams up to n = 9, estimations can be made
similar to the set-based method described in [220]. For example,
the frequency of a 6-gram ABCDEF can be lower-bounded by the
sum of the Google n-gram frequencies of the 5-grams ABCDE and
BCDEF decreased by the frequency of their 4-gram intersection
BCDE. In practice, however, despite being set-theoretically sound,
these lower bound estimations often evaluate to 0 (i.e., the intersec-
tion’s frequency is too large to be compensated by the frequencies of
the two longer n-grams). That said, there are still situations where
non-zero lower bound estimations appear and do some good.

Using the web occurrence frequencies from the Google n-gram
corpus and the set-based estimations, both our approaches score and
rank all possible segmentations of a query. They apply normaliza-
tion schemes to the raw n-gram frequencies and allow long segments
to achieve scores comparable to their shorter sub-segments. For ex-
ample, blue jays will always have a larger raw n-gram frequency
than toronto blue jays, but the latter should be the preferred seg-
mentation in queries concerning the baseball team. In the following

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 143

section, we detail two normalization approaches: a naïve normaliza-
tion scheme as well as a normalization scheme which incorporate
knowledge from Wikipedia.

6.2.1 Naïve Normalization

Naïve query segmentation computes a score for each valid segmen-
tation S of a query q as follows. The n-gram frequencies freq(s) of
all potential segments s with at least two words are retrieved. The
frequencies at hand, all valid segmentations are enumerated, and
each segmentation S is scored according to the following function:

score(S) =


∑

s∈S,|s|≥2
|s||s| · freq(s) if freq(s) > 0 for

all s ∈ S, |s| ≥ 2

−1 else.

The weight factor |s||s| is a means of normalizing freq(s) to compen-
sate the power law distribution of web n-gram frequencies. This
way, a long segment s has a chance of being selected compared to
its shorter sub-segments. For a query q, the valid segmentations
are ranked according to their scores and naïve query segmentation
selects the one that maximizes score(S).

For example, toronto blue jays has an n-gram frequency of
0.8 million, which is smaller than the 1.4 million of blue jays;
simply using the length |s| of s as weight factor does not help to
prefer the three-word segment (score of 2.4 million vs. 2.8 million).
However, using the exponential weight factor |s||s|, the segmentation
“toronto” “blue jays” with a score of 5.2 million is discarded in
favor of “toronto blue jays” with a score of 21.6 million.

In the above scoring function, the n-gram frequencies of single
word segments are implicitly set to 0, so that the “null”-segmentation
that consists of only single word segments—the unquoted query—
gets a score of 0 (the else-case does not match and the summation is

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 144

empty). A segmentation gets a negative score of -1 if it contains a
segment (with at least two words) that does not exist in the web n-
gram corpus. Such a segmentation cannot help to improve retrieval
performance since the non-existent segment is not found on the
web at all, that is, in our n-gram representation of the web. Scoring
such segmentations with a negative score ensures that the unquoted
query will be chosen as a fallback solution in case all other valid
segmentations contain non-existent phrases.

Compared to other methods, naïve query segmentation is the
most basic approach as it uses only raw n-gram frequencies instead
of many different features. Also, the scoring can be explained (and
implemented) within a few lines (of code). What remains to be
illustrated is why the exponential scoring performs well in practice,
and not only for the toronto blue jays.

Empirical Justification In what follows, we provide empirical evi-
dence that the exponential scoring scheme of naïve query segmen-
tation reproduces human preferences of segmenting queries. This
sheds light on why the method achieves its convincing segmenta-
tion accuracy reported in [81] and in Section 6.3. To this end, we
take a closer look at the underlying data used in the naïve scoring
scheme and its evaluation: the Google n-gram frequencies and the
500 human-annotated queries from the Bergsma-Wang-Corpus.

The Google n-grams contain occurrence frequencies for all 1- to 5-
grams that appeared more than 40 times within Google’s web index
as of 2006. Some overview figures are given in Table 6.1, including
the average and the median frequencies for all 2- to 5-grams in the
original corpus (rows “all”) as well as for a cleaned version of the
corpus (rows “cleaned”) from which all n-grams were removed
that contain non-alphanumeric characters. We assume that n-grams
occurring in real web queries are better represented by the cleaned
corpus. Note that the resulting average and median frequencies are
quite low and thus illustrate the presumed long tail distribution of
n-gram frequencies (most n-grams have very low frequencies).

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 145

Table 6.1: Overview of the Google n-gram corpus.

Corpus Subset Entries
Frequency

Average Median

2-grams
all 314 843 401 2 893 110
clean 215 114 473 2 065 108

3-grams
all 977 069 902 756 91
clean 492 457 391 608 89

4-grams
all 1 313 818 354 387 80
clean 556 957 524 330 79

5-grams
all 1 176 470 663 300 75
clean 421 372 587 258 73

To experimentally justify naïve scoring, we address the situation
of a query in which a long n-gram should be favored over its shorter
prefixes in a segmentation. The long n-gram then has to obtain a
better score than any of its shorter prefixes. To simulate this scenario,
we sampled 10 million 5-grams from the cleaned 5-gram corpus. The
sampling probability is chosen proportional to a 5-gram’s frequency,
so that frequent 5-grams are favored. We speculate that favoring
frequent 5-grams for our sample makes it more representative of the
most frequent segments observed in web queries. From all of the
sampled 5-grams, we computed all prefixes of length 2 to 4 words.

Table 6.2 gives an overview of the 5-gram sample and their pre-
fixes. Observe that the median frequencies of the sample show an
exponential decrease. In order to further compare this decrease to

Table 6.2: Overview of the sample of 10 million 5-grams.

|s|-grams Unique Entries Median Freq. 2-gram Freq.
|s|-gram Freq. |s||s|

2-grams 2 409 063 3 461 030 1 4
3-grams 5 431 544 78 733 44 27
4-grams 8 073 863 7 356 470 256
5-grams 10 000 000 1 129 3 065 3 125

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 146

Table 6.3: Expected score in the 5-gram sampling experiment.

|s|-grams Median Freq. |s||s|-scoring "Hard-Wired"

2-grams 3 461 030 13 844 120 3 461 030
3-grams 78 733 2 125 791 3 464 252
4-grams 7 356 1 883 136 3 457 320
5-grams 1 129 3 528 125 3 460 385

the |s||s|-scoring, we also provide the ratio of the median 2-gram
frequency to the median s-gram frequency. Note that the last two
columns of Table 6.2 show that the |s||s|-compensation for the ex-
ponential frequency decrease is always in the correct order of mag-
nitude. In this connection, one may wonder why not to choose
the observed ratios instead of |s||s|-scoring (i.e., multiplying freq(s)
of a 3-gram s with 44 instead of 33, etc.). To test this possibility,
we performed a pilot study where the ratios from Table 6.2 were
used as “hard-wired” weight factors instead of |s||s|: the achieved
segmentation accuracy dropped significantly.

An explanation for this behavior can be found when compar-
ing the expected median score-values of our sample with the query
corpus used in our evaluation. As can be seen in Table 6.3, the hard-
wired scoring achieves a very good normalization of the expected
score-values for the 5-gram sample in the sense that all median score-
values have the same order of magnitude. Then again, |s||s|-scoring
clearly favors 2-grams, whereas the longer n-grams are somehow

Table 6.4: Segment length distribution of human segmentations.

Annotator
Segment Length

1 2 3 4 5 6

A 451 699 74 14 2
B 351 541 113 77 9 2
C 426 588 100 51 5 1
Agree 151 318 31 9

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 147

“on par.” To compare this with human segments, Table 6.4 compiles
the segment length distribution of the 3 human annotators of the
widely used Bergsma-Wang-Corpus. The last row of Table 6.4 con-
tains only queries that all three annotators segmented the same way.
Observe that human annotators also favor 2-grams instead of longer
segments, especially in queries they all agree upon. The |s||s|-scoring
of naïve query segmentation reproduces this behavior on our 5-gram
sample, which explains, to some extent, why it performs so well.

6.2.2 Wikipedia-Based Normalization

In pilot experiments, the aforementioned approach which normal-
izes each segment’s frequency with hard-wired average frequencies
shows an inferior segmentation accuracy compared to the naïve ap-
proach that involves a similar, but less even normalization scheme.
Nevertheless, normalizing segment frequencies with average fre-
quencies also bears the idea of normalizing in a segment-specific
way, which is exactly what we propose for our Wikipedia-based
normalization scheme. As the name suggests, the new scheme in-
volves another feature besides the raw n-gram frequencies, namely
a Wikipedia title dictionary obtained from a dump of the English
Wikipedia. Note that Tan and Peng [220] also use this feature in their
segmentation approach. Our dictionary contains all Wikipedia titles
and their respective disambiguations, but no words from within
articles. Otherwise, the new normalization scheme is just as simple
as naïve query segmentation.

Again, the n-gram frequencies freq(s) of all potential segments s
with at least two words are retrieved. For each segment s, we check
whether it is present in the Wikipedia title dictionary. If a segment s
appears in the dictionary, we replace its frequency freq(s) with the
maximal Google n-gram frequency found among the sub-2-grams

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 148

s′ v s, given by the following count:

count(s) =


|s|+ max

s′vs
|s′ |=2

freq(s′) if s is a title
in Wikipedia

freq(s) else.

This way, the normalization of a segment’s frequency is segment-
specific in that every potential segment’s freq-value is treated sepa-
rately rather than normalizing it with some average frequency. Note
that |s| is added to the maximal sub-2-gram frequency for conve-
nience reasons, as it allows us to prove that queries that consist of
a single Wikipedia title will not be split into sub-segments (shown
in the next subsection). Otherwise, adding |s| had no measurable
effect in our experiments so that a query segmentation system “in
the field” could safely omit it. Based on the Wikipedia-normalized
count-values, a valid segmentation S of q is scored as follows:

score(S) =


∑

s∈S,|s|≥2
|s| · count(s) if count(s) > 0 for

all s ∈ S, |s| ≥ 2

−1 else.

Again, for a query q we choose from all valid segmentations the one
that maximizes score(S).

Remarks The Wikipedia-based normalization can run into the spe-
cial case of encountering a “new” concept s that is present in the
Wikipedia titles but not in the n-gram corpus (e.g., some new prod-
uct or brand that did not exist back in 2006). If all the sub-2-grams of
s exist in the n-gram corpus, this is not an issue since the Wikipedia-
based normalization still works. Otherwise, count(s) would be set
to |s|, although s is prominently placed in Wikipedia, which is not
satisfactory. We tackle this problem by a simple additional rule for

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 149

the more general case that only some sub-2-grams of s are not yet
present in the n-gram corpus. In that case, we set the missing 2-gram
frequencies to the median 2-gram frequency 3 461 030 from Table 6.2.
As before, count(s) is set to the maximal frequency found among the
sub-2-grams of s (which now also could be the median frequency).

Another straightforward method of circumventing the situation
of Wikipedia titles being out of sync with the n-gram corpus exists
at search engine site: to update the n-gram corpus in real-time. But
we expect that n-gram updates will still be done less frequently
compared to updating the Wikipedia title dictionary. And since
Wikipedia typically contains pages on new, important “concepts”
very quickly, setting the corresponding frequencies to the median
2-gram frequency is a reasonable heuristic. As a side note, in our
experiments we did not find any “new” Wikipedia concepts since
the Bergsma-Wang-Corpus and our newly developed corpus both
stem from the AOL query log of 2006 and thus fit the 2006 Google
n-gram corpus very well.

Theoretical Justification The idea of Wikipedia-based normalization
is similar to that of the naïve normalization approach, namely giv-
ing longer segments a chance to be preferred over their shorter
sub-segments. But now this goal is achieved by using Wikipedia
for segment re-weighting instead of some “magic,” yet powerful
exponential factor. Wikipedia serves as a database of named entities
that helps to identify widely known concepts like names, places, etc.
These concepts should not be split up when segmenting a query. In
case a concept forms an entire query, it can be proven that the above
scoring function will prefer the complete concept as one segment.

Lemma 1. Let s be a sequence of words found in the Wikipedia title
dictionary. Whenever a query q = s shall be segmented, the Wikipedia-
based scoring function will choose the segmentation “s” without any
intermediate quotes.

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 150

Proof. Let ` be the largest freq-value of any sub-2-gram of s. As s is
found in the Wikipedia title dictionary, the segmentation “s” gets
score(“s”) = |s| · (`+ |s|).

Now consider any other valid segmentation S of s that splits
s into sub-segments and gets a positive score by the Wikipedia-
based normalization scoring function. The worst possible case is
that all sub-segments of s also are Wikipedia concepts and that all
sub-2-grams of s have ` as their freq-value. Note that this worst case
scenario is independent of whether all sub-2-grams of s are in the
n-gram corpus or not: it does not matter whether ` is the median
2-gram frequency from Table 6.2 or not.

As S divides s into non-overlapping sub-segments (otherwise S is
not valid), the sum of the length-weight-factors of the sub-segments
cannot be larger than |s|. Furthermore, the Wikipedia-normalized
count-value of each of these sub-segments cannot be larger than
`+ |s| − 1 as the largest sub-segments of s have size |s| − 1. Basic
calculus yields score(S) ≤ |s| · (`+ |s| − 1) < score(“s”) so that the
segmentation “s” will be chosen.

As an example, consider the query new york yankees—to stay
within the baseball domain. The relevant Google n-gram frequencies
for this query are 165.4 million for new york and 1.8 million for
new york yankees. Note that naïve query segmentation would
segment the concept as “new york” “yankees” since this achieves
a naïve scoring of 661.6 million compared to 28.8 million for “new
york yankees”. However, with Wikipedia-based normalization,
new york yankees gets as count the 165.4 million frequency of new
york. Hence, “new york yankees” achieves a 496.2 million score
compared to 330.8 million for “new york” “yankees”.

The only way that a Wikipedia title s is split up during segmen-
tation is when a word in front of or after s co-occurs very often with
a prefix or a suffix of s, respectively. This is especially the case when
two Wikipedia titles are interleaved within a query. However, s is

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 151

only split up if the score-value of some segmentation containing a
sub-segmented s is superior to all the segmentations containing s
as a complete segment. This is in line with the rationale that larger
score-values represent better segmentations.

An example where a Wikipedia concept is split, is the query
times square dance from the introduction. The relevant segments
that appear in the Wikipedia title dictionary are times square and
square dance. Based on the Google n-gram corpus, times square

gets a 1.3 million count and square dance achieves 0.2 million. Our
new segmentation scoring function then assigns “times square”

dance the highest score of 2.6 million while times “square dance”

achieves 0.4 million—either way, a Wikipedia concept is split.
It is of course debatable whether the segmentation “times

square” dance is a good choice, since we have pointed out the
ambiguity of this query. This situation can only be resolved by in-
corporating information about the user’s context. For instance, if
the user stems from London, reads “The Times” and is a passionate
folk-dancer, this might make the alternative segmentation times

“square dance” preferable. If no such context information is at
hand, there is still another option: the search engine may present
the results of the best scoring segmentation to the user and offer the
second best segmentation in a “Did you mean” manner.

Besides the theoretical justification for Wikipedia-based normal-
ization, our new method also shows very promising experimental
performance with respect to segmentation accuracy against human-
segmented queries, as the next section shows.

6.3 Evaluating Query Segmentation Algorithms

In this section we report on an evaluation that compares our ap-
proach to 7 others proposed in the literature. We employ the perfor-
mance measures proposed in [23, 220], use a mutual information-
based method as baseline, and evaluate against three corpora: the

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 152

Bergsma-Wang-Corpus 2007 [23], an enriched version of that corpus,
and a new, significantly larger corpus, called Webis Query Segmen-
tation Corpus 2010. The latter two have been compiled with the aid
of Amazon’s Mechanical Turk. In this connection, we also compare
segmentations from experts with those of laymen.

6.3.1 Performance Measures

Performance evaluation of query segmentation algorithms is two-
fold. On the one hand, runtime is crucial since query segmentation
must be done on-the-fly during retrieval. Runtime is typically given
as throughput (i.e., the number of queries segmentable per sec-
ond). On the other hand, the computed segmentations should be
as accurate as possible. There are three levels on which to measure
segmentation accuracy in a supervised manner:

Query Level. As a whole, a computed segmentation of a query is
correct iff it contains exactly the same segments as a human
reference segmentation. Hence, the query accuracy is the ratio
of correctly segmented queries for a given corpus.

Segment Level. Let S denote the set of segments of a human seg-
mentation of a query q. A computed segmentation S′ can be
evaluated using the well-known measures precision and recall.
Segment precision and the segment recall are defined as follows:

seg prec =
|S ∩ S′|
|S′| and seg rec =

|S ∩ S′|
|S| .

Both values can be combined into a single score by computing
their harmonic mean, called segment F-Measure :

seg F =
2 · seg prec · seg rec
seg prec + seg rec

.

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 153

Break Level. Note that query segmentation can also be considered a
classification task in which, between each pair of consecutive
words in a query, a decision has to be made whether or not to
insert a segment break. This allows for k− 1 potential break
positions in a query with k keywords. For every break position,
the computed segmentation may either decide correctly or
not, according to a reference segmentation. The break accuracy
measures the ratio of correct decisions.

As an illustration, consider the query san jose yellow pages

with the reference segmentation “san jose” “yellow pages”. A
computed segmentation “san jose” yellow pages is not correct
on query level, resulting in a query accuracy of 0. However, on
segment-level, “san jose” yellow pages at least contains one of
the two reference segments, yielding a segment recall of 0.5. But
since the other two single word segments are not part of the refer-
ence segmentation, precision is 0.333, yielding a segment F-Measure
of 0.4. The break accuracy is 0.666, since “san jose” yellow

pages decides incorrectly only for one of the three break positions.

6.3.2 Baseline: Mutual Information

As a baseline for query segmentation we adopt the mutual informa-
tion method (MI) used throughout the literature. A segmentation S
for a query q is obtained by first computing the pointwise mutual
information score for each pair of consecutive words (wi, wi+1) in q,
with i ∈ {1, . . . , k− 1} and k = |q|:

PMI(wi, wi+1) = log
p(wi, wi+1)

p(wi) · p(wi+1)
,

where p(wi, wi+1) is the joint probability of occurrence of the 2-
gram (wi, wi+1), and p(wi) and p(wi+1) are the individual occur-
rence probabilities of the two words wi and wi+1 in a large text

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 154

corpus. Second, segment breaks are introduced into q whenever the
pointwise-mutual information score of two consecutive words is
below a pre-specified threshold τ (i.e., when PMI(wi, wi+1) < τ).

Within our evaluation, the probabilities for all words and 2-
grams have been computed using the Microsoft Web N-Gram Ser-
vices [91].1 More specifically, the language model of webpage bodies
from April 2010 has been used. We recorded all probabilities for all
our corpora in order to ensure replicability. For our experiments,
we chose τ = 0.894775, which maximizes the MI method’s break
accuracy on the Bergsma-Wang-Corpus.

6.3.3 The Bergsma-Wang-Corpus 2007

The Bergsma-Wang-Corpus 2007 (BWC07) consists of 500 queries
which have been sampled from the AOL query log dataset [153].
The sample was chosen at random from the subset of queries that
satisfy all of the following constraints:

• A query consists of only determiners, adjectives, and nouns.

• A query is of length 4 words or greater.

• A query has been successful (i.e., the searcher clicked on one
of the search result URLs returned by the search engine).

The query sample was then segmented independently by 3 anno-
tators, who were instructed to first guess the user intent based on
the query in question and the URL the user clicked on, and then
segment the query so that it describes the user intent more clearly.
In 44% of the queries, all three annotators agree on the segmentation,
and in about 60% of the cases, at least two annotators agree.

1http://web-ngram.research.microsoft.com

http://web-ngram.research.microsoft.com

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 155

Remarks The BWC07 has a number of shortcomings that render
evaluations based on this corpus less insightful: the query sample of
the corpus is not representative, partly because of the small number
of queries and partly because of the sampling constraints. The first
constraint particularly raises concerns since its motivation was to ac-
commodate design limitations of the proposed query segmentation
algorithm; the authors stated that “as our approach was designed partic-
ularly for noun phrase queries, we selected for our final experiments those
AOL queries containing only determiners, adjectives, and nouns” [23].
The other two constraints are less of a problem, though one might
argue that queries of length 3 should also be subject to segmentation,
and that, unless query quality predictors are employed, a search
engine cannot know in advance whether a query will be successful.
Moreover, the number of annotators per query appears to be too
small, since in 40% of the queries no agreement was achieved. This,
in turn, tells something about the difficulties involved in manually
segmenting queries. On a minor point, there are also a few duplicate
queries, spelling errors, and character encoding errors. The former
have a measurable effect on segmentation performance, given the
small size of the corpus, while the latter two should not be part of
a query segmentation corpus. Query segmentation does not neces-
sarily involve spell checking and encoding normalization, as those
may be treated as separate problems. However, none of the above
should be held to the disadvantage of the corpus’ authors, since
their intentions were first and foremost to evaluate their approach
on a new retrieval problem, and not to construct a reference corpus,
which it became nonetheless.

Experiments Several previous studies evaluate their query segmen-
tation algorithms against the BWC07 [23, 29, 81, 220, 239]. We follow
suit, to ensure comparability to the existing evaluations. However,
prior to that we chose to correct the aforementioned minor errors and
remove duplicate queries; the cleaned corpus consists of 496 queries.

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 156

Since the existing studies do not mention any problems with the
BWC07, we have asked the respective authors for their segmenta-
tions of the BWC07 queries. Our rationale for this is to avoid an
error-prone reimplementation of the existing algorithms, since their
output for the BWC07 suffices to recalculate the accuracy measures.
The authors of [23, 29, 81, 239] kindly provided their segmentations.
Based on this data, we have been able to verify the performances
reported in the respective papers, and to reevaluate the algorithms
on the cleaned version of the BWC07.

Table 6.5 shows the results of our evaluation. Each column
presents the segmentation accuracies of one algorithm. The right-
most two columns show the results of our naïve query segmen-
tation [81] and those of Wikipedia-based normalization [82]. The
table should be read as follows: three annotators—A, B, and C—
independently segmented the 496 queries of the BWC07 and they
agreed on 218 of them, denoted in the rows “Agree.” The rows “Best
of A, B, C” evaluate simultaneously against the up to three refer-
ence segmentations of A, B, and C, choosing the one that maximizes
a computed segmentation’s break accuracy. Note that, compared
to the originally published results, the segmentation accuracies of
most systems slightly decrease in our evaluation. This is due to
the removed duplicate queries that are rather “easy” and correctly
segmented by most systems. An exception is the remarkable per-
formance of our mutual information baseline with a significant
improvement over previously reported values. One reason for this
is that the language model underlying the Microsoft Web N-Gram
Services presumably gives more accurate probabilities than those
used in previous evaluations. However, more importantly, note that
the baseline’s threshold τ was derived on the BWC07 queries with
the explicit aim of maximizing the resulting break accuracy. Hence,
it represents the best case MI approach for the BWC07 queries and
yields a challenging baseline.

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 157

Table 6.5: Segmentation performance on the Bergsma-Wang-Corpus.

Annotator
Performance Algorithm

Measure MI [23] [220] [239] [29] [140] [81] [82]

query 0.407 0.609 0.526 0.518 0.540 0.256 0.597 0.573
seg prec 0.553 0.748 0.657 0.673 0.686 0.476 0.724 0.706

A seg rec 0.550 0.761 0.657 0.650 0.672 0.566 0.711 0.679
seg F 0.552 0.754 0.657 0.662 0.679 0.517 0.717 0.692
break 0.761 0.859 0.810 0.810 0.797 0.681 0.826 0.826

query 0.413 0.435 0.494 0.504 0.383 0.185 0.438 0.508
seg prec 0.539 0.582 0.623 0.637 0.527 0.369 0.577 0.635

B seg rec 0.548 0.608 0.640 0.632 0.533 0.450 0.583 0.627
seg F 0.544 0.595 0.631 0.634 0.530 0.405 0.580 0.631
break 0.765 0.783 0.802 0.811 0.741 0.598 0.777 0.803

query 0.417 0.472 0.494 0.484 0.440 0.224 0.480 0.508
seg prec 0.553 0.623 0.634 0.627 0.580 0.424 0.618 0.647

C seg rec 0.557 0.643 0.642 0.613 0.575 0.515 0.613 0.632
seg F 0.555 0.633 0.638 0.620 0.578 0.465 0.615 0.640
break 0.764 0.795 0.796 0.789 0.755 0.639 0.777 0.795

query 0.555 0.688 0.671 0.670 0.615 0.294 0.693 0.720
seg prec 0.659 0.792 0.767 0.787 0.731 0.491 0.789 0.810

Agree seg rec 0.665 0.809 0.782 0.770 0.724 0.575 0.782 0.792
seg F 0.662 0.800 0.774 0.779 0.727 0.529 0.785 0.801
break 0.828 0.889 0.871 0.883 0.834 0.699 0.868 0.885

Best of
A, B, C

query 0.583 0.702 0.692 0.694 0.629 0.333 0.700 0.726
seg prec 0.693 0.812 0.797 0.811 0.749 0.558 0.800 0.820
seg rec 0.697 0.831 0.807 0.801 0.746 0.649 0.796 0.807
seg F 0.695 0.821 0.801 0.806 0.747 0.600 0.798 0.814
break 0.849 0.899 0.891 0.897 0.857 0.736 0.889 0.900

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 158

Since we did not get the query segmentations of Tan and
Peng [220], we include the values they published in their paper
(in gray). However, the removal of duplicate queries would most
likely decrease their performances as well. Since some previous
studies did not report all measures for their algorithms, Table 6.5
contrasts for the first time all performance values for all algorithms
that have been evaluated against the BWC07.

The results show that the approach of Bergsma and Wang [23]
performs very well on annotator A as well as on the queries all
annotators agree upon. However, this is not surprising as their
approach is based on a supervised learning algorithm that was ex-
plicitly trained on queries segmented by annotator A (the agreement
queries also match A’s segmentation). This leaves doubts with re-
gard to generalizability, underpinned by the inferior performance of
their approach on the two other annotators B and C. As for the other
systems, note that our naïve query segmentation algorithm with
n-gram frequency normalization achieves a performance compara-
ble to the best approaches of Brenes et al. [29], Tan and Peng [220],
and Zhang et al. [239]. Furthermore, note that our Wikipedia-based
frequency normalization method outperforms all other methods
with respect to query accuracy and segment precision, while being
on par with the best performing system at break accuracy.

An Excursus on Retrieval Performance Besides measuring segmenta-
tion accuracy against a gold standard, one might as well evaluate
whether a segmentation actually yields an improvement in retrieval
performance (i.e., retrieving results that are more relevant). To this
end, we have conducted the following small-scale experiment to
compare the two best performing approaches: Bergsma and Wang’s
supervised learning approach and our Wikipedia-based normaliza-
tion scheme. For each of the 218 BWC07 queries on which all three
annotators agree, we submit 4 queries to the Bing web search engine,
each time storing the top-50 results: the BWC07 segmentation, the

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 159

computed segmentation of Bergsma and Wang, the computed seg-
mentation of our method, and the unquoted query. We consider the
top-50 results obtained by the BWC07 segmentation as “relevant,”
which allows us to measure the recall of the other three queries. Av-
eraged over all 218 trials, the supervised learning approach achieves
a recall of 0.844, our Wikipedia-based normalization achieves 0.836,
whereas unquoted queries achieve a recall of 0.553.

Presuming the user intent is well captured in the segmented
queries of the BWC07 (three annotators agreed upon these segmen-
tations), the results might be interpreted as indication that segment-
ing queries improves recall over unquoted queries. Comparing the
average recall of Bergsma and Wang’s segmentations and ours also
suggests that their worse query accuracy is compensated by their
better segment recall so that the overall retrieval recall is comparable.
It is important to note that this small experiment is not meant to re-
place a large-scale TREC-style evaluation, since the results have not
been judged manually as relevant or not. Instead, this experiment
is meant as a first step toward not just comparing segmentation
accuracy. After all, the ultimate goal of query segmentation is to
improve retrieval performance.

6.3.4 The Enriched Bergsma-Wang-Corpus

One point of criticism about the BWC07 is the non-agreement of its
annotators in 40% of the queries. We attribute this problem to the fact
that not all queries are the same, and that some are more ambiguous
than others. A search engine user who poses an ambiguous query
would know of course, if being asked, how exactly to segment it,
whereas an annotator has a hard time figuring this out afterwards.
One way to overcome this problem is to collect more opinions from
different annotators and then make a majority decision. Recently,
paid crowdsourcing has become an important tool in this respect,
enabling researchers to significantly scale up corpus construction.2

2See [3], and our previous works [163, 171].

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 160

Table 6.6: Segmentation performance of Amazon’s Mechanical Turk (AMT)
workers on the Bergsma-Wang-Corpus.

Annotator Performance “Algorithm”
Measure AMT

Best of
A, B, C

query 0.821
seg prec 0.892
seg rec 0.883
seg F 0.887
break 0.941

Amazon’s Mechanical Turk (AMT) is a well-known platform for
paid crowdsourcing. In short, it acts as a broker between workers
and so-called requesters, who offer tasks and payment for their
successful completion. Since real money is involved and since work-
ers remain anonymous, the platform attracts scammers who try
to get paid without actually working. Hence, requesters get the
opportunity to check submitted results and reject those that are un-
satisfactory. Besides saving money, rigorous result checking is of
course a necessity to ensure quality.

In an effort to enrich the BWC07, we have offered a query seg-
mentation task on AMT in which we asked to segment the queries
of this corpus. At least 10 valid segmentations per query were
collected, while manually checking and rejecting invalid ones. To
measure the success of our initiative and to learn about how much
laymen agree with experts, we compute all of the aforementioned
performance measures, treating the segmentations obtained from
AMT as if they were segmentations returned by an algorithm. For
each query, the segmentation that was submitted most often by the
workers was used. The results of this comparison are shown in Ta-
ble 6.6. Again, “Best of A, B, C” means that from the three reference
segmentations of A, B, and C the one is chosen for comparison that
maximizes the AMT workers’ break accuracy. Note that the workers
of AMT outperform the algorithmic query segmentation approaches

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 161

Table 6.7: Segmentation performance on the enriched Bergsma-Wang-Corpus.

Annotator
Performance Algorithm

Measure MI [23] [220] [239] [29] [140] [81] [82]

Best of
AMT

query 0.738 0.812 n/a 0.831 0.794 0.546 0.859 0.857
seg prec 0.802 0.890 n/a 0.891 0.869 0.758 0.909 0.908
seg rec 0.806 0.904 n/a 0.889 0.868 0.830 0.909 0.908
seg F 0.804 0.897 n/a 0.890 0.868 0.792 0.909 0.908
break 0.916 0.944 n/a 0.945 0.924 0.850 0.950 0.952

Best of
A, B, C
and AMT

query 0.754 0.825 n/a 0.849 0.802 0.546 0.873 0.867
seg prec 0.809 0.897 n/a 0.910 0.876 0.753 0.921 0.917
seg rec 0.813 0.910 n/a 0.910 0.874 0.825 0.921 0.914
seg F 0.811 0.903 n/a 0.910 0.875 0.787 0.921 0.916
break 0.920 0.947 n/a 0.954 0.928 0.847 0.957 0.956

(cf. Table 6.5) on all accounts. However, the AMT workers cannot
achieve perfect segmentation accuracy when compared to the expert
segmentations of BWC07, since even experts make errors.

Having established that the segmentations obtained via AMT
are indeed valid, we reevaluated all of the segmentation algorithms
against the AMT segmentations as well as against the combination
of the BWC07 segmentations and the AMT segmentations. The
results of this evaluation are shown in Table 6.7. As can be observed,
our naïve query segmentation algorithm [81] performs best on the
enriched BWC07. Our Wikipedia-based normalization comes in
second. A speculative explanation for the remarkable performance
of the naïve |s||s|-scoring might be that web n-gram frequencies are
correlated with the n-grams an average AMT worker knows.

6.3.5 The Webis Query Segmentation Corpus

Given the encouraging results achieved with enriching the Bergsma-
Wang-Corpus by means of crowdsourcing, the logical next step is
to build a larger corpus, thus addressing the remaining points of
criticism about the BWC07, namely its small size and the sampling

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 162

Table 6.8: Segmentation performance on the Webis Query Segmentation Corpus.

Annotator
Performance Algorithm

Measure MI [81] Our

Best of
AMT

query 0.598 0.599 0.616
seg prec 0.727 0.736 0.744
seg rec 0.738 0.733 0.739
seg F 0.732 0.734 0.742
break 0.844 0.842 0.850

constraints. Following a new sampling strategy (detailed below), we
have sampled 50 000 queries from the AOL query log. These queries
were checked for correctness of spelling and encoding, and then
segmented by workers recruited on Amazon’s Mechanical Turk. We
followed the same strategy as before, however, this time using the
enriched BWC07 as check queries to identify workers who perform
poorly. As a result, we present the new Webis Query Segmenta-
tion Corpus 2010 (Webis-QSeC-10).3 Finally, we have evaluated our
query segmentation algorithms as well as the baseline algorithm
against this corpus, the results of which are shown in Table 6.8. Un-
surprisingly, the absolute performance values are far below those on
the BWC07, since our new corpus contains the whole spectrum of
queries and not only noun phrase queries. While the mutual infor-
mation baseline allows for some comparability to the earlier results,
a complete comparison of all algorithms against our new corpus
is still missing. So far, our Wikipedia-based normalization scheme
performs best on this corpus, but once again, mutual information
serves as a reasonable and challenging baseline.

Corpus Construction The 50 000 queries for our corpus were chosen
in three steps from the AOL query log: first, the raw query log
was filtered in order to remove ill-formed queries; second, from the

3http://www.webis.de/research/corpora

http://www.webis.de/research/corpora

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 163

remainder, queries were sampled at random; and third, the sampled
queries were corrected. In the filtering step, queries were discarded
according to the following exclusion criteria:

• Queries comprising remnants of URLs (navigational queries)
or URL character encodings.

• Queries from searchers having more than 10 000 queries.

• Queries from searchers whose average time between consecu-
tive queries is less than 1 second.

• Queries from searchers whose median number of letters per
query is greater than 100.

• Queries that contain non-alphanumeric characters except for
dashes and apostrophes in-between characters.

• Queries that are shorter than 3 words or longer than 10.

• Queries from searchers that duplicate preceding queries of
themselves (result page interaction).

Of the 36 389 567 queries in the raw AOL query log, 6 027 600 queries
remained after filtering. The majority of the filtered queries (22.8 mil-
lion) were removed by the criteria pertaining to special characters
and query length (e.g., queries shorter than 3 words).

In the sampling step, 50 000 queries were chosen at random from
the filtered query log, while maintaining the original distributions
of query frequency and query length. To accomplish this, the log
was divided into query length classes, where the i-th class contains
all queries of length i ∈ {3, . . . , 10}, keeping duplicate queries from
different searchers. Then, the query length distribution was com-
puted and the amount of queries to be expected for each length class
in a 50 000 query sample was determined (see Table 6.9). Based on
these expectations, for each length class, queries were sampled with-
out replacement until the expected amount of distinct queries was
reached. Hence, our sample represents the query length distribution

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 164

Table 6.9: Overview of the Webis-QSeC-10 query sample.

Length AOL Queries Distribution Sample

3 2 750 697 45.64% 22 820
4 1 620 818 26.89% 13 445
5 846 449 14.04% 7 020
6 418 621 6.95% 3 475
7 202 275 3.36% 1 680
8 102 792 1.70% 850
9 55 525 0.92% 460

10 30 423 0.50% 250

Σ 6 027 600 100.00% 50 000

of the filtered AOL log. And since each length class in the filtered
log contained duplicate queries according to their frequency, our
sample also represents the log’s query frequency distribution.

In the final step, we attempted to correct spelling errors present in
the sampled queries by means of semi-automatic spell checking. We
collected a 1 million word dictionary of words by combining various
dictionaries and other sources for often-checked words available
online, such as aspell, WordNet, Wiktionary, and Wikipedia titles,
to name only a few. Using this dictionary as well as their Google
n-gram counts, we applied the statistical spell checker proposed by
Peter Norvig4 to the query sample. However, we did not follow the
spell checker blindly, but reviewed each replacement manually. This
way, about 14% of the queries in our sample have been corrected. It
must be mentioned, though, that not all errors can be identified this
way, and that correcting the queries will remain an ongoing task.

Corpus Anonymization The AOL query log has been released with-
out proper anonymization, other than replacing the searchers’ IP
addresses with numerical IDs. This raised a lot of concerns among
researchers as well as in the media, since some AOL users could be

4http://norvig.com/spell-correct.html

http://norvig.com/spell-correct.html

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 165

personally identified by analyzing their queries. We address this
problem in our corpus by removing the searcher IDs entirely. This
way, only queries from our sample that are unique in the raw log
may be mapped back onto their original searcher IDs, if someone
would choose to do so.

6.3.6 Runtime

As mentioned at the outset, it is important to achieve a low run-
time per query in order for a query segmentation algorithm to be
practical. Since our method heavily relies on looking up potential
segments in the Google n-gram corpus, an efficient implementation
of an external hash table is required. We have used the approach
described in [27], which employs a minimal perfect hash function,
to implement a hash table that maps n-grams to their frequencies.
This hash table fits in 13 GB of main memory. The implementation
of our query segmentation method is capable of segmenting about
3 000 queries per second on a standard PC. Unfortunately, for lack
of implementations of the other query segmentation algorithms, we
cannot yet report their runtime performances. However, given the
sometimes high number of features proposed in the literature and
their complexities, we doubt that any of these approaches can beat
ours in a fair comparison.

6.3.7 Conclusion and Future Work

We introduced new approaches to query segmentation that are com-
petitive with state-of-the-art algorithms in terms of segmentation
accuracy, while simultaneously being more robust and less com-
plicated. These approaches can be understood as normalization
schemes for n-gram frequencies, one of which is based on Wiki-
pedia background knowledge. All relevant feature values are pre-
processed and stored in a hash table, rendering the approach very

CHAPTER 6. WEB N-GRAMS FOR KEYWORD RETRIEVAL 166

fast and efficient. We provided theoretical and empirical arguments
to better understand the rationale of our approach. For this purpose,
a much larger evaluation corpus became necessary. We developed a
new query segmentation corpus with 50 000 queries, which is two
orders of magnitude larger than the reference corpus used in earlier
publications. We introduced this new corpus and its construction via
Amazon’s Mechanical Turk. We are planning to release the corpus
in the course of an open query segmentation competition.

Furthermore, we pointed out several directions for future re-
search. The current evaluation of query segmentation algorithms
relies solely on comparing segmentation accuracy against corpora
of human-segmented queries, which is fine in itself, but which can-
not tell whether query segmentation is actually useful in practice.
Hence, future evaluations should also focus on the question whether
query segmentation leads to a significant improvement of retrieval
performance. In this paper, first steps in this direction were taken.

Another promising future research task is to analyze more elab-
orate performance measures for query segmentation algorithms.
Since many queries are ambiguous, measures that quantify rankings
of alternative segmentations for a given query should be investi-
gated. In practice, it is an interesting option for a search engine to
deal with ambiguous segmentations by presenting the results of
the top-ranked segmentation, but offering also the second-ranked
segmentation in a “Did you mean” manner. During our experi-
ments, we observed that whenever our approaches did not match
the BWC07 segmentation for the queries on which all three annota-
tors agreed, the systems’ second-ranked segmentation often did.

Chapter 7

Web N-Grams for Writing Assistance

Writers who are in doubt about a certain expression often ask them-
selves: “What would others write?” This question can be answered
statistically when given a huge corpus of written text from which
examples can be retrieved. In this chapter, we study how the whole
web in the form of n-grams can be reused as a collection of exam-
ples of language use, giving an overview of our respective publica-
tions [173, 183, 214]. We introduce NETSPEAK, a new kind of search
engine for commonly used language.1

Our contributions are the following: first, we identify two
paradigms by which text production may be supported, namely
by increasing text correctness and text commonness. The latter
forms the basis for NETSPEAK as a tool to support choosing com-
monly used words. Then, we present NETSPEAK’s retrieval engine
which is capable of processing wildcard queries on a large corpus
of n-grams in a split second. Last, we discuss two user interfaces
for this retrieval engine; a textual web interface and the interactive
NETSPEAK word graph visualization.

1NETSPEAK is available at http://www.netspeak.org.

167

http://www.netspeak.org

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 168

7.1 Text Correctness Versus Text Commonness

Computer-aided writing has a long history dating back to the very
beginning of personal computing. Error checking with respect to
spelling and grammar, choosing words, style checking, discourse
organization, and text structuring are the central research topics
in this domain. Today, numerous word processors are available,
ranging from simple editors to full-fledged office environments.
However, spell checkers, thesauri and, to a certain extent, grammar
checkers are currently the only technologies mature enough in order
to be included in such commercial products.

An important observation to be made about most of the available
tools and research contributions is that they are solely concerned
with the question of whether or not a piece of text is correct. The
correctness of a text is of course important for it to be understood
by its audience, however, there is another factor which affects the
understandability of a text, namely its commonness. There are numer-
ous ways to correctly write something, but the goal of (non-fictional)
writing usually is to maximize understanding in the target audi-
ence. This can be accomplished by choosing a wording which is
commonly understood by most of these people.

7.1.1 NETSPEAK—A Search Engine for Common Language

There are certainly many different approaches one might think of to
support writers with identifying uncommon language and choosing
common language instead. We make a first step in this direction
by implementing a search engine for common language called NET-
SPEAK. Our search engine indexes all n-grams found on the web,
and it allows its users to pose wildcard queries of literal words and
wildcard operators, wherein the literal words must occur in the ex-
pression sought after, while the wildcard operators allow to specify
uncertainties. For example, a user who is looking for the most com-

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 169

mon alternative to be written between the words “rotate” and
“axis” can enter these words with a wildcard in between them,
and the search engine then retrieves all n-grams that match this
pattern (see Figure 7.1). The retrieved matching n-grams are ranked
by their commonness, that is by their occurrence frequency on the
web. This way, the user can find confidence in choosing a particular
phrase by judging both its absolute and relative frequencies. For
example, a phrase may have a low relative frequency but a high
absolute frequency, or vice versa, which in both cases indicates that
the phrase is not the worst of all choices. Furthermore, example sen-
tences for each phrase are offered, which are retrieved on demand
when clicking on the plus sign next to a phrase. This allows users
who are still in doubt to get an idea of the larger context of a phrase.

NETSPEAK’s intended audience is people who often have doubts
about how certain phrases are commonly formed. In particular,
language learners and second-language speakers face difficulties in
this respect, since their vocabulary as well as their feeling for usage
is often not sufficiently developed. They often ask themselves how
others would have written what they intend to write; a piece of in-
formation that is generally hard to come by. NETSPEAK implements
a statistical solution to answer such information needs. Choosing
more common phrases over uncommon ones may hold an addi-
tional value to this group of people by improving the readability
and writing style of a text and by reducing the risk of making errors.
Obviously, this is debatable and does not apply to well-versed na-
tive writers, but as non-native speakers we found this information
immensely helpful in all our daily writing tasks.

Related Work Writing assistance is one of the primary research
subjects of computer linguistics. A lot of papers about each of the
error detection topics mentioned above have been published, but
from a practical point of view, only basic tools such as spell checkers
and thesauri are widely used, with the exception of the grammar
checker implemented in Microsoft Word.

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 170

Figure 7.1: NETSPEAK’s web interface. Shown are the results for the wild-
card query “rotate ? * axis”, where the ?-wildcard matches exactly
one word and the *-wildcard any number of words.

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 171

Linguists use search engines comparable to ours (called concor-
dancers) in order to study word semantics and usage. Some are
publicly available, for instance WEBCORP, WEBASCORPUS, PHRAS-
ESINENGLISH, and LSE.2 However, since their target audience are
linguists and not the average writer, they are not well-suited for
our purposes. Moreover, we found in informal comparisons that
NETSPEAK outperforms these tools in terms of both retrieval speed
and the extent of the indexed language resources.

Corpora of n-grams are frequently used in natural language
processing and information retrieval for training purposes [127] (e.g.,
for natural language generation, language modeling, and automatic
translation). In particular, there is research on automatic translation
within a language in order to correct writing errors [31]. We want
to point out that our research is not directed at a complete writing
automation since we expect a semi-automatic, interactive writing
aid to be more promising in the foreseeable future.

7.2 N-Gram Retrieval with Wildcard Queries

The main building blocks of NETSPEAK are (1) an index of frequent
n-grams on the web, (2) a query language to formulate n-gram
patterns, and (3) a wildcard query processor which finds n-grams
that match a given query and which allows to trade recall for time.

7.2.1 Web Language Index

To provide relevant suggestions in as many contexts as possible,
a wide cross-section of written text on the web—if not the entire
web—is required as a source of language. This is why we resort to
the Google n-gram corpus which is currently the largest corpus of its

2See http://www.webcorp.org.uk, http://webascorpus.org,
http://phrasesinenglish.org, and [181].

http://www.webcorp.org.uk
http://webascorpus.org
http://phrasesinenglish.org

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 172

Table 7.1: The Google n-grams before and after post-processing.

Corpus Original Corpus Case Vocabulary
Subset # n-grams Size Reduction Filtering

1-gram 13 588 391 177.0 MB 81.34 % 3.75 %
2-gram 314 843 401 5.0 GB 75.12 % 43.26 %
3-gram 977 069 902 19.0 GB 83.24 % 48.65 %
4-gram 1 313 818 354 30.5 GB 90.27 % 49.54 %
5-gram 1 176 470 663 32.1 GB 94.13 % 47.16 %

Σ 3 354 253 200 77.9 GB 88.37 % 54.20 %

kind [26]; it has been compiled from approximately 1 trillion words
extracted from the English portion of the web as of 2006 and consists
of over 3 billion n-grams along with their occurrence frequencies.
Columns 2 and 3 of Table 7.1 give a detailed overview of the corpus.
When taking the doubling time of the web into account, which is
estimated to be in the order of months while still accelerating, this
corpus may already be called “old.” But since language evolves in
time frames of decades rather than months, the only deficiency of us-
ing this corpus is that newly appearing words and company names
which become popular are missing. We applied two post-processing
steps to the corpus at our site: case reduction and vocabulary filter-
ing. For the latter, a white list vocabulary V was compiled and only
these n-grams whose words appear in V were retained. V consists
of the words found in the Wiktionary and various other dictionaries,
as well as of the words from the 1-gram portion of the Google corpus
whose occurrence frequency is above 11 000. See Columns 4 and 5
of Table 7.1 for the size reductions after each post-processing step
compared to the original corpus. After post-processing, the corpus
was checked for consistency (i.e., whether, for a given n-gram d,
all n− 1-grams are part of the corpus and whether the occurrence
frequency of d is greater than or equal to the sum of the frequencies
of all n + 1-grams beginning with d).

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 173

Table 7.2: EBNF grammar of NETSPEAK’s query language.

Production Rule

query = { word | wildcard }5
1

word = ([“’”] (letter { alpha })) | “,”
letter = “a” | ... | “z” | “A” | ... | “Z”
alpha = letter | “0” | ... | “9”
wildcard = “?” | “*” | synonyms |multiset | optionset
synonyms = “∼” word
multiset = “{” word { word } “}”
optionset = “[” word { word } “]”

In NETSPEAK the n-gram corpus is implemented as an inverted
index µ, which maps each word w ∈ V onto a postlist πw. πw is a list
of tuples 〈d ,̂ f (d)〉, where dˆrefers to an n-gram d on hard disk that
contains w, and where f (d) is the occurrence frequency of d reported
in the n-gram corpus. A tuple also stores information about w’s posi-
tion as well as other information omitted here for brevity. Note that,
since none of the available open source implementations of inverted
indexes were capable to index the n-grams in a reasonable amount
of time and space, we have implemented a new inverted index. For
this purpose, we employ a minimal perfect hash function based on
the CHD algorithm which makes our index is space optimal [17].

7.2.2 Query Language

The query language of NETSPEAK is defined by the grammar shown
in Table 7.2. A query is a sequence of literal words and wildcard op-
erators, where the literal words must occur in the expression sought
after, while the wildcard operators allow to specify uncertainties.
Currently, five operators are supported: the question mark, which
matches exactly one word; the asterisk, which matches any sequence
of words; the tilde sign in front of a word, which matches any of

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 174

the word’s synonyms; the multiset operator, which matches any or-
dering of the enumerated words; and the optionset operator, which
matches one of the contained words or the empty word. Of course
other sensible operators are conceivable, such as constraints on par-
ticular parts of speech, person names, places, dates, and times. A
less obvious but very interesting enhancement is to constrain words
with respect to the expressed positive or negative opinion. Overall
objective is to make the query language more powerful yet keeping
it simple. The latter is important since the target audience of the
service are non-professional writers.

7.2.3 Wildcard Query Processing

Given the n-gram index µ and a wildcard query q, the task is to re-
trieve all n-grams Dq from µ that match q according to the semantics
defined above. This is achieved within two steps: (1) computation
of the intersection postlist πq =

⋂
w∈q πw, and (2) filtering of πq

with a pattern matcher that is compiled at run-time from the regular
expression defined by q. Reaching perfect precision and recall is no
algorithmic challenge unless retrieval time is considered. Note in
this respect that the length of a postlist often amounts up to millions
of entries, which is for instance the case for stop words. If a query
contains only stop words, the retrieval time for Dq may take tens
of seconds up to a minute, depending on the size of the indexed
corpus. From a user perspective this is clearly unacceptable. In cases
where a query also contains a rare word w′, it is often more effec-
tive to apply the pattern matcher directly to πw′ , which is possible
since πq ⊆ πw holds for all w ∈ q. But altogether this and similar
strategies don’t solve the problem as the frequency distribution of
the words used in queries will resemble that of written text, simply
because of the NETSPEAK use case. Note that web search engines
typically get queries with (comparatively infrequent) topic words.

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 175

To allow for an adjustable retrieval time at the cost of recall we
have devised a query processor, which incorporates rank-awareness
within the postlists. Our strategy hence is a special kind of a top-
k query processing technique [13, 94]. The strategy requires an
offline pre-processing of µ, so that (1) each postlist is sorted in or-
der of decreasing occurrence frequencies, and (2) each postlist is
enriched by quantile entries κ, which divide the word-specific fre-
quency distribution into portions of equal magnitude. Based on a
pre-processed µ, the retrieval algorithm described above is adapted
to analyze postlists only up to a predefined quantile. As a conse-
quence, the portion of a postlist whose frequencies belong to the
long tail of the distribution is pruned from the search. Note that the
retrieval precision remains unaffected by this.

An important property of our search strategy is what we call
rank monotonicity: given a pre-processed index µ and a query q, the
search strategy will always retrieve n-grams in decreasing order of
relevance, independently of κ. This follows directly from the postlist
sorting and the intersection operation. An n-gram that is relevant
for a query q is not considered if it is beyond the κ-quantile in some
πw, w ∈ q. The probability for this depends, among other things, on
the co-occurrence probability between q’s words. This fact opens up
new possibilities for further research in order to raise the recall (e.g.,
by adjusting κ in a query-specific manner). Such options, however,
have not yet been explored.

7.2.4 Evaluation

To evaluate the retrieval quality of our query processing strategy, we
report here on an experiment in which the average recall is measured
for a set of queries Q, |Q| = 55 702, with respect to different pruning
quantiles. The queries originate from the query logs of NETSPEAK;
the service is in public use since 2008. We distinguish between

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 176

macro-averaged recall and micro-averaged recall:

rec
macro

(µ, q) =
|Dq ∩ D∗q |
|D∗q |

rec
micro

(µ, q) =
∑〈d ,̂ f (d)〉∈(πq∩π∗q) f (d)

∑〈d ,̂ f (d)〉∈π∗q f (d)

As described above, Dq and πq are the results retrieved from µ for
query q under a top-k strategy, whereas D∗q and π∗q are the results
obtained when evaluating µ’s postlists completely. While recmacro
considers only result list lengths, recmicro allots more weight to n-
grams with high occurrence frequencies, since they are more relevant
to the user. Figure 7.2 shows the results for different query sizes.

The macro-averaged recall differs significantly from the micro-
averaged recall, which indicates that most of the relevant n-grams
are retrieved with our strategy. The current NETSPEAK quantile of
κ = 0.5 marks the best trade-off between recall and retrieval time.
At quantile 0.5 only 1.47% of a postlist is evaluated on average,
which translates into a retrieval speedup of factor 68. The average
retrieval time at this quantile seems to leave much room in terms
of user patience to evaluate more of a postlist, however, it does not
include the time to generate and ship the result page. Short queries
are more difficult to answer because the size of the expected result
set is much larger on average than that of a long query. From an
evaluation standpoint the micro-averaged view appears to be more
expressive. Altogether, our retrieval strategy makes NETSPEAK a
fast and reliable writing assistant.

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 177

0

 0.2

 0.4

 0.6

 0.8

1

m
ic

ro
-a

ve
ra

ge
d

re
ca

ll

0 0.2 0.4 0.6 0.8 1
quantile

 0.1 0.3 0.5 0.7 0.9

0 0.0044 0.021 0.16 0.36 0.83 1.86 4.25 10.03
retrieval time (seconds)

0 0.01 0.06 0.21 0.59 1.47 3.36 7.37 15.94 34.88 100
percentage of a postlist evaluated

0

 0.2

 0.4

 0.6

 0.8

1

m
ac

ro
-a

ve
ra

ge
d

re
ca

ll

3-word-queries
4-word-queries

average

Netspeak quantile

2-word-queries

1-word-queries

1-word-queries

2-word-queries
Netspeak quantile

3-word-queries

4-word-queries

average

Figure 7.2: Macro-averaged recall (left) and micro-averaged recall (right)
over quantiles. The additional axes indicate how much of a postlist is
evaluated and the required processing time.

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 178

7.3 Visualizing Wildcard Search Results

NETSPEAK can be accessed via a classic web interface which presents
search results as a list of n-grams ordered by their occurrence fre-
quencies. Although straightforward and simple, for certain queries,
this interface has its limitations with respect to showing the true pic-
ture of which choice of words is most common. These shortcomings
can be addressed by means of a graph visualization of the search
results: the NETSPEAK WORDGRAPH.3 It turns out, however, that
neither the web interface nor the graph visualization is perfect. In
what follows, the problems associated with both the textual web
interface and the WORDGRAPH are detailed.

7.3.1 The Problem of Interdependent Wildcards

The query language of NETSPEAK is powerful in that it allows to
specify rather complex patterns of n-grams to be retrieved. But the
results of a query with more than one wildcard cannot be easily
interpreted since the words which are commonly used in place of
a given wildcard depend on the words used in place of all other
wildcards in the query. This interdependence of wildcards in a query
can lead a user to misjudge which phrase is truly common and which
isn’t. Users who insert more than one wildcard into a query are less
confident about how to write a certain phrase and seek to generalize
the query in order to cover more of the possible alternatives. This,
in turn, yields a longer result lists, which aggravates the difficulty
to overviewing them. Figure 7.1 shows an example, where about
appears in 5 of the n-grams, which indicates that this word should
most likely follow rotate. The web interface, however, obscures
this fact and the user is forced to scan the entire result list several
times to grasp the true relationships.

3The WORDGRAPH is joint research with our colleagues from the Virtual Reality
Systems Group at Bauhaus-Universität Weimar. We have published a joint paper
about NETSPEAK and the WORDGRAPH visualization which was awarded the Best
Paper Award at the 4th IEEE Pacific Visualization Symposium (PacificVis) [183].

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 179

rotate about

around

once

on

the

y

the z

on its

the

its
an

a vertical

its own

axis

<empty>

Figure 7.3: The NETSPEAK WORDGRAPH visualization. Visualized are the
results for the wildcard query “rotate ? * axis” [183].

The NETSPEAK WORDGRAPH helps to overcome this problem.
Figure 7.3 shows an example graph. The graph layers follow the
structure of a query, showing one layer for every literal word and
wildcard, which are filled dynamically with the results obtained
from NETSPEAK’s retrieval engine. A graph node corresponds to
a word found in the result n-grams, and an edge represents the
connection between two subsequent words of an n-gram. Conse-
quently, each n-gram of a result set is represented as a path through
the graph. The layers of the graph are arranged in vertical columns
to facilitate reading, while multiple occurrences of the same word in
a column are merged into a single node, and shared path segments
of an n-gram are merged into a single edge.

The layout of the graph encodes the occurrence frequencies of
the result n-grams. The vertical arrangement of nodes is done using
a center spread ordering, which places words in a column, starting
from the center with the most frequently appearing word and al-
ternating the placement between above and below. The decrease
of font size hints the decrease of occurrence frequency, where the

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 180

occurrence frequency of a word in a column is the sum of the occur-
rence frequencies of all n-grams in which it occurs. Edges between
words are drawn as Bézier curves, while the ports for connecting
edges with a word node are placed at either end of the word’s
baseline. The word itself is underlined, so that an incoming edge
seemingly passes below the word to the other port and further on
into outgoing edges. Connecting incoming and outgoing edges by
underlining words significantly contributes to the readability of
phrase fragments compared to interrupting the edges.4

Coming back to the problem outlined above, merging multiple
occurrences of the same word within a column into a single node,
effectively solves the problem of overviewing the results of queries
with more than one wildcard. The WORDGRAPH shows the most
likely alternatives for every wildcard at a glance.

7.3.2 The Result Capacity Problem

Merging duplicate words as well as merging shared path segments
of n-grams bring about a new problem. If more than one literal word
and more than one wildcard are interleaved in a query, the paths
that can be seen in the above graph visualization may not always
correspond to an n-gram from the result set. In this case, the graph
has an increased result capacity which may lead the onlooker to false
conclusions about what to write. However, since merging duplicate
words and shared paths in the graph have been found superior in
terms of legibility to all other alternative layouts, several interaction
techniques were developed to counter this problem.

Figure 7.4 illustrates the result capacity problem. The graph
on top visualizes the result set of the query “? waiting *
∼answer”. Note that the the n-gram “without waiting for
a response” was not part of the result set although a path corre-

4In [183], several layout variants are compared of which the one described here
turned out to be the most legible.

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 181

waitingstill
without

are

is
while

answer
response

reply

for a
for an

to

for

waitingstill answerfor an

waitingstill
answer

response

replyfor a
for an

for

Figure 7.4: The top WORDGRAPH visualizes the results for the query
“? waiting * ∼answer”. To counter the result capacity problem, the
user may apply filter operations by hovering over a word, and by (repeat-
edly) selecting a word [183].

sponding to that n-gram can be visually traversed. In fact, paths for
all combinations of the words found immediately left and right of
waiting can be visually traversed. To check whether an n-gram is
actually part of the result set, the user may hover with the mouse
pointer over of word in order to highlight all paths passing through
the word’s node for which n-grams exist in the result set. By select-
ing a word, all other paths fade out. This filtering operation can be
applied repeatedly. Deselecting a word word undoes the filter. The
filter operations help to solve the result capacity problem, but this
solution comes at the price of speed since the user always has to

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 182

answer ?
*

still
without

are

is
while

response

reply

for a
for an

to

for

waiting

from
your
any

to
all

?

answerstill
without

are

is
while

response

reply

for a
for an

to

for

waiting

Figure 7.5: Query expansion: by clicking on the wildcard icon next to the
word answer, a set of queries is generated for all n-grams whose paths pass
through this word’s node, complemented by the respective wildcard. The
n-grams retrieved with these queries are integrated into the graph which
results in a new column [183].

check the existence of an n-gram first. Also, this necessity may be
difficult to be communicated to the user, since the graph gives no
clue that it may show more alternatives than are actually there.

7.3.3 Query Expansion

An analysis of NETSPEAK’s query logs shows that many of its users
pose not one but many queries in a session in order to refine their
search. The WORDGRAPH supports this explorative user behavior
by allowing for the visualization of the result sets of multiple queries
at the same time. By clicking on the expansion icons shown next
to a word while hovering over it, new queries are constructed for

CHAPTER 7. WEB N-GRAMS FOR WRITING ASSISTANCE 183

all n-grams whose paths go through the word’s node, using up to
four preceding words and appending the respective wildcard ? or *.
The union of the result sets of all these queries is then integrated
into the existing graph structure, adding new columns as needed.
The n-grams formed in this way, where n > 5, may be incorrect
or meaningless since the n-gram collection indexed by NETSPEAK

consist of only n-grams up to a length of 5 words; yet, sensible
results have been observed in many cases.

7.3.4 Conclusion and Future Work

NETSPEAK answers complex word sequence queries that are formu-
lated in an expressive query language. The system is designed for
efficiency and allows for real-time querying of a 42 GB text data base.
The result set is explored via a textual web interface or the graphical
WORDGRAPH interface. Our analysis shows that neither interface
provides for a perfect result visualization, yet. Further research in
this direction will be required.

We see NETSPEAK as an educational tool for improving the
knowledge of a second language. Additional operators for the
query language such as wildcards for parts of speech or semantic
constraints (e.g., person names, places, dates and times) and sup-
port for further languages besides English would broaden the scope
of NETSPEAK. Also, an extension toward specific genres might be
worthwhile in order to help inexperienced writers become familiar
with the terminology and writing style in a specific field.

Chapter 8

Conclusion

In this thesis we study technologies that deal with reusing texts and
language. Our contributions relate toward the automatic detection
of text reuse within large document collections as well as technolo-
gies that reuse language to support certain retrieval tasks. In what
follows, we summarize our contributions and give a brief outlook.

In Chapter 2 we study the application of fingerprinting as a tech-
nology for the detection of cases of reused text which are nearly
identical to their original sources. We present and evaluate two dif-
ferent types of fingerprint algorithms which specialize on this kind
of text reuse. Our findings are that fingerprint algorithms, despite
their remarkable runtime properties, are difficult to be employed
in practice. Choosing a set of parameters for which a reasonable
tradeoff between retrieval precision and retrieval recall is obtained
requires a lot of manual probing. Moreover, since hard disk storage
is comparably cheap these days, the use case of text fingerprinting
may be amiss: major search engines store copies of the whole web
and might simply apply the brute force strategy of indexing all
n-grams of all texts for a small value of n, which is necessary for
the purpose of web search, anyway. Besides these problems, an-
other important insight from our studies is that the low-dimensional

184

CHAPTER 8. CONCLUSION 185

representations built during fingerprint construction are of use by
themselves. We found that representations with as little as 50 dimen-
sions achieve a high correlation to the standard vector space model.
These low-dimensional representations can be built in linear time in
the number of documents.

In Chapter 3 we introduce a new retrieval model for the quantifi-
cation of the topical similarity of texts across languages, which can
be applied for the detection of cross-language text reuse. The most
salient property of our model is that it relies on comparable corpora
instead of parallel corpora or translation dictionaries. The latter two
are difficult to be obtained in practice at the necessary scale, while
the former are readily available for a large number of language pairs
in the form of Wikipedia. Another important insight from our eval-
uation is that our baseline model which measures cross-language
similarity based on shared character 3-grams between documents is
competitive to our model on pairs of languages which have syntacti-
cal similarities. Our model, however, also works well on languages
without syntactical overlap.

In Chapter 4 we introduce new performance measures for text
reuse and plagiarism detectors that balance three different aspects
of detection quality, namely precision, recall, and granularity. More-
over, we introduce a new evaluation corpus consisting of automat-
ically generated and manually written plagiarism cases. In this
connection, we are the first to study crowdsourcing as means to
scale up corpus construction. Both the measures and the corpus
have been successfully employed in the course of three evaluation
competitions in which 32 plagiarism detectors have been compared.

In Chapter 5 we introduce a new retrieval model for the quan-
tification of the topical similarity of web items across media. Our
model reuses web comments as a description of the commented
item’s topic, thus allowing for the use of standard text retrieval
models instead of resorting to low-level feature representations of
multimedia items. By analogy, what Wikipedia is to our aforemen-

CHAPTER 8. CONCLUSION 186

tioned cross-language text similarity model, web comments are to
our cross-media item similarity model. Both form a connection
between different document spaces which are otherwise hard to
be compared. Another important insight from this chapter is that
web comments in general are a neglected source of information in
research, with the exception of product reviews. We hence introduce
the rationale of comment retrieval, important retrieval tasks therein,
and their connections to existing information retrieval research.

In Chapter 6 we demonstrate how the whole web can be reused
to solve a retrieval task. We study the problem of segmenting un-
quoted keyword queries into segments which could reasonably be
surrounded with quotes, and we introduce two new algorithms to
do so. The hypothesis underlying both algorithms is that quoted
segments within a query should exist on the web; otherwise search-
ing for them does not yield any results. To choose among the many
alternative quotations for a given keyword query, our algorithms
exploit the web in the form of n-grams along with their respective oc-
currence frequencies, favoring quotations that consist of frequent n-
grams. It turns out that our comparably simple algorithms compete
well with all state-of-the-art algorithms from the literature. In this
connection, we contribute further by constructing a new, large-scale
evaluation corpus of manually quoted queries via crowdsourcing.

In Chapter 7 we demonstrate another way of reusing the whole
web, this time in order to assist writers. We hypothesize that aside
from a text’s correctness also its commonness is an important prop-
erty. Choosing commonly written words to say something over
more uncommon alternatives has the advantage of maximizing the
number of people within a text’s target audience who understand
its message. While tools that help with correcting a text are being
researched and developed, tools that help with increasing a text’s
commonness are not. We go a first step in this direction by imple-
menting NETSPEAK, a search engine for commonly used language.
NETSPEAK indexes the whole web in the form of n-grams along with

CHAPTER 8. CONCLUSION 187

their occurrence frequencies, and it allows for wildcard queries. This
way, a user may query short phrases of text while inserting wild-
cards at positions where he or she is uncertain about what words
are most commonly used. Besides maximizing the retrieval speed
of NETSPEAK’s query processor, there are still open challenges for
development: the wildcard query language is rather difficult to un-
derstand for laymen users, so that most use only a small subset of
the available operators. A more sophisticated user interface should
be developed which helps users with learning the query language.
Moreover, visualizing the search results of a query turns out to be
problematic for some queries with regard to showing a user the true
picture about what words are more commonly used than others.

Research on text reuse and language reuse has many facets.
While the detection of text reuse is certainly among the more preva-
lent problems studied, technologies that reuse language offer excit-
ing new challenges and a lot of room for creative solutions.

Outlook

Imagine a tool that reveals all cases of text reuse on the web. What
would be the consequences? Plagiarism, the evil twin of text reuse,
would become futile. But besides this immediate consequence, such
a tool would induce a new kind of network among web documents,
different from the hyperlink network, which links a text and its
descendants. Such a network could be used, for example, as an addi-
tional feature in web search, but also as a means to pass reputation
and reward back to the original source of a text. While the latter
may not be easily accomplished on the whole web, certain genres of
writing could be organized this way, for example, scientific writing.

Bibliography

[1] Navot Akiva. Using Clustering to Identify Outlier Chunks of
Text: Notebook for PAN at CLEF 2011. In Petras and Clough
[156]. ISBN 978-88-904810-1-7. 91, 92, 95, 100

[2] James Allen. Submission to the 1st International Competition
on Plagiarism Detection.
http://www.webis.de/research/events/pan-09, 2009. ISSN
1613-0073. URL http://ceur-ws.org/Vol-502. From
the Southern Methodist University in Dallas, USA. 95

[3] Omar Alonso and Stefano Mizzaro. Can we get Rid of TREC
Assessors? Using Mechanical Turk for Relevance Assessment.
In Shlomo Geva, Jaap Kamps, Carol Peters, Tetsuya Sakai,
Andrew Trotman, and Ellen Voorhees, editors, Proceedings of
the First SIGIR Workshop on the Future of IR Evaluation, pages
15–16, Boston, Massachusetts, July 2009. IR Publications. 76,
159

[4] Salha Alzahrani and Naomie Salim. Fuzzy Semantic-Based
String Similarity for Extrinsic Plagiarism Detection: Lab
Report for PAN at CLEF 2010. In Braschler and Harman [28].
ISBN 978-88-904810-0-0. 95, 98, 99

[5] Vamshi Ambati, Stephan Vogel, and Jaime Carbonell. Active
Learning and Crowd-Sourcing for Machine Translation. In

188

http://ceur-ws.org/Vol-502

BIBLIOGRAPHY 189

Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel
Tapias, editors, Proceedings of the Seventh Conference on
International Language Resources and Evaluation (LREC’10),
pages 2169–2174, Valletta, Malta, May 2010. European
Language Resources Association. 76

[6] Maik Anderka, Benno Stein, and Martin Potthast.
Cross-language High Similarity Search: Why no Sub-linear
Time Bound can be Expected. In Cathal Gurrin, Yulan He,
Gabriella Kazai, Udo Kruschwitz, Suzanne Little, Thomas
Roelleke, Stefan M. Rüger, and Keith van Rijsbergen, editors,
Advances in Information Retrieval. 32nd European Conference on
Information Retrieval (ECIR 10), volume 5993 of Lecture Notes in
Computer Science, pages 640–644, Berlin Heidelberg New York,
2010. Springer. ISBN 978-3-642-12274-3.
doi:10.1007/978-3-642-12275-0_66. 13, 43, 64

[7] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern
Information Retrieval. Addison Wesley, 1999. ISBN
0-201-39829-X. 15

[8] Lisa Ann Ballesteros. Resolving Ambiguity for Cross-Language
Information Retrieval: A Dictionary Approach. PhD thesis,
University of Massachusetts Amherst, USA, 2001. Bruce
Croft. 49

[9] Jeff Barr and Luis Felipe Cabrera. AI gets a Brain. Queue, 4(4):
24–29, May 2006. 76

[10] Alberto Barrón-Cedeño, Paolo Rosso, David Pinto, and
Alfons Juan. On Cross-Lingual Plagiarism Analysis Using a
Statistical Model. In Benno Stein, Efstathios Stamatatos, and
Moshe Koppel, editors, ECAI 2008 Workshop on Uncovering
Plagiarism, Authorship, and Social Software Misuse (PAN 08),

http://dx.doi.org/10.1007/978-3-642-12275-0_66

BIBLIOGRAPHY 190

pages 9–13, Patras (Greece), July 2008. ISBN
978-960-6843-08-2. 43, 44, 48, 51

[11] Regina Barzilay and Lillian Lee. Learning to Paraphrase: An
Unsupervised Approach Using Multiple-Sequence
Alignment. In Eduard Hovy, Marti Hearst, and Mari
Ostendorf, editors, Proceedings of the Third Conference of the
North American Chapter of the Association for Computational
Linguistics on Human Language Technology, pages 16–23,
Edmonton, Canada, May 2003. Association for
Computational Linguistics. 80

[12] Chiara Basile, Dario Benedetto, Emanuele Caglioti,
Giampaolo Cristadoro, and Mirko Degli Esposti. A
Plagiarism Detection Procedure in Three Steps: Selection,
Matches and “Squares”. In Stein et al. [213], pages 19–23.
URL http://ceur-ws.org/Vol-502. 95

[13] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin
Theobald, and Gerhard Weikum. IO-Top-k: Index-Access
Optimized Top-k Query Processing. In VLDB’06: Proceedings
of the 32nd international conference on Very large data bases,
pages 475–486. VLDB Endowment, 2006. 175

[14] Leonard E. Baum. An Inequality and Associated
Maximization Technique in Statistical Estimation of
Probabilistic Functions of a Markov Process. Inequalities, 3:
1–8, 1972. 52

[15] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. LSH
Forest: Self-Tuning Indexes for Similarity Search. In WWW
’05: Proceedings of the 14th international conference on World Wide
Web, pages 651–660, New York, NY, USA, 2005. ACM Press.
ISBN 1-59593-046-9. 35

http://ceur-ws.org/Vol-502

BIBLIOGRAPHY 191

[16] Philip Beineke, Trevor Hastie, Christopher Manning, and
Shivakumar Vaithyanathan. An Exploration of Sentiment
Summarization. In Proceedings of AAAI 2003, pages 12–15,
2003. 112

[17] D. Belazzougui, F.C. Botelho, and M. Dietzfelbinger. Hash,
Displace, and Compress. In ESA’09: Proceedings of the 17th
European Symposium on Algorithms, pages 682–693, Springer
Berlin / Heidelberg, 2009. Springer. ISBN 978-3-642-04127-3.
doi:10.1007/978-3-642-04128-0. 173

[18] N. J. Belkin, R. N. Oddy, and H. M. Brooks. ASK for
Information Retrieval. Journal of Documentation, 33(2):61–71,
1982. 108

[19] Michael Bendersky and W. Bruce Croft. Finding Text Reuse
on the Web. In Ricardo A. Baeza-Yates, Paolo Boldi,
Berthier A. Ribeiro-Neto, and Berkant Barla Cambazoglu,
editors, Proceedings of the Second International Conference on
Web Search and Web Data Mining, WSDM 2009, Barcelona,
Spain, February 9-11, 2009, pages 262–271. ACM, 2009. ISBN
978-1-60558-390-7. doi:10.1145/1498759.1498835. 5

[20] Michael Bendersky, W. Bruce Croft, and David A. Smith.
Structural Annotation of Search Queries Using
Pseudo-Relevance Feedback. In Jimmy Huang, Nick Koudas,
Gareth J. F. Jones, Xindong Wu, Kevyn Collins-Thompson,
and Aijun An, editors, Proceedings of the 19th ACM Conference
on Information and Knowledge Management, CIKM 2010, Toronto,
Ontario, Canada, October 26-30, 2010, pages 1537–1540. ACM,
2010. ISBN 978-1-4503-0099-5. 140

[21] Micheal Bendersky, W. Bruce Croft, and David Smith.
Two-Stage Query Segmentation for Information Retrieval. In
James Allan, Javed A. Aslam, Mark Sanderson, ChengXiang

http://dx.doi.org/10.1007/978-3-642-04128-0
http://dx.doi.org/10.1145/1498759.1498835

BIBLIOGRAPHY 192

Zhai, and Justin Zobel, editors, Proceedings of the 32nd Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2009, Boston, USA,
July 20-24, 2009, pages 810–811. ACM, 2009. ISBN
978-1-60558-483-6. 140

[22] Adam Berger and John Lafferty. Information Retrieval as
Statistical Translation. In SIGIR’99: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 222–229, Berkeley,
California, United States, 1999. ACM. 52

[23] Shane Bergsma and Qin Iris Wang. Learning Noun Phrase
Query Segmentation. In Proceedings of Conference on Empirical
Methods in Natural Language Processing and Conference on
Computational Natural Language Learning, EMNLP-CoNLL 2007,
June 28-30, 2007, Prague, Czech Republic, pages 819–826.
Association for Computational Linguistics, 2007. 139, 151,
152, 155, 156, 157, 158, 161

[24] Y. Bernstein and J. Zobel. A Scalable System for Identifying
Co-derivative Documents. In A. Apostolico and M. Melucci,
editors, Proceedings of the String Processing and Information
Retrieval Symposium (SPIRE), pages 55–67, Padova, Italy,
September 2004. Springer. Published as LNCS 3246. 32

[25] Joshua E. Blumenstock. Size Matters: Word Count as a
Measure of Quality on Wikipedia. In WWW’08: Proceeding of
the 17th international conference on World Wide Web, pages
1095–1096. ACM, 2008. 118, 121

[26] Thorsten Brants and Alex Franz. Web 1T 5-gram Version 1.
Linguistic Data Consortium LDC2006T13, Philadelphia, 2006.
8, 142, 172

BIBLIOGRAPHY 193

[27] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and
Jeffrey Dean. Large Language Models in Machine Translation.
In Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 858–867, Prague,
Czech Republic, June 2007. Association for Computational
Linguistics. 165

[28] Martin Braschler and Donna Harman, editors. Notebook
Papers of CLEF 2010 Labs and Workshops, 22-23 September,
Padua, Italy, 2010. ISBN 978-88-904810-0-0. URL
http://www.webis.de/research/events/pan-10.
188, 196, 200, 201, 205, 210, 211, 212, 213, 220, 222, 225, 229

[29] David J. Brenes, Daniel Gayo-Avello, and Rodrigo Garcia. On
the Fly Query Entity Decomposition Using Snippets. In 1st
Spanish Conference on Information Retrieval (CERI 2010),
Proceedings, June 15-16, 2010, Madrid, Spain, 2010. 139, 140, 155,
156, 157, 158, 161

[30] Sergey Brin, James Davis, and Hector Garcia-Molina. Copy
Detection Mechanisms for Digital Documents. In
SIGMOD’95, pages 398–409, New York, NY, USA, 1995. ACM
Press. ISBN 0-89791-731-6. 32

[31] Chris Brockett, William B. Dolan, and Michael Gamon.
Correcting ESL Errors Using Phrasal SMT Techniques. In
ACL’06: Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pages 249–256,
Morristown, NJ, USA, 2006. Association for Computational
Linguistics. doi:10.3115/1220175.1220207. 171

[32] Andrei Z. Broder. Identifying and Filtering Near-Duplicate
Documents. In COM’00: Proceedings of the 11th Annual

http://www.webis.de/research/events/pan-10
http://dx.doi.org/10.3115/1220175.1220207

BIBLIOGRAPHY 194

Symposium on Combinatorial Pattern Matching, pages 1–10,
London, UK, 2000. Springer-Verlag. ISBN 3-540-67633-3. 30,
32, 85, 90

[33] Andrei Z. Broder, Nadav Eiron, Marcus Fontoura, Michael
Herscovici, Ronny Lempel, John McPherson, Runping Qi, and
Eugene J. Shekita. Indexing Shared Content in Information
Retrieval Systems. In EDBT ’06, pages 313–330, 2006. 25

[34] Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. The Mathematics of Statistical
Machine Translation: Parameter Estimation. Computational
Linguistics, 19(2):263–311, 1993. 52

[35] Steven Burrows, Martin Potthast, and Benno Stein.
Paraphrase Acquisition via Crowdsourcing and Machine
Learning. Transactions on Intelligent Systems and Technology
(ACM TIST) (to appear), 2012. doi:http://dx.doi.org/. 13, 107

[36] Jaime Carbonell and Jade Goldstein. The Use of MMR,
Diversity-based Reranking for Reordering Documents and
Producing Summaries. In SIGIR’98: Proceedings of the 21st
annual international ACM SIGIR conference on research and
development in information retrieval, pages 335–336, New York,
NY, USA, 1998. ACM. ISBN 1-58113-015-5.
doi:10.1145/290941.291025. 122

[37] Manuel Cebrian, Manuel Alfonseca, and Alfonso Ortega.
Towards the Validation of Plagiarism Detection Tools by
Means of Grammar Evolution. IEEE Transactions on
Evolutionary Computation, 13(3):477–485, June 2009. ISSN
1089-778X. 76

[38] Zdenek Ceska, Michal Toman, and Karel Jezek. Multilingual
Plagiarism Detection. In AIMSA’08: Proceedings of the 13th

http://dx.doi.org/http://dx.doi.org/
http://dx.doi.org/10.1145/290941.291025

BIBLIOGRAPHY 195

international conference on Artificial Intelligence, pages 83–92,
Berlin, Heidelberg, 2008. Springer-Verlag. ISBN
978-3-540-85775-4. doi:10.1007/978-3-540-85776-1_8. 43

[39] J.S. Chall and E. Dale. Readability Revisited: The new Dale-Chall
Readability Formula. Brookline Books, 1995. 118

[40] Moses S. Charikar. Similarity Estimation Techniques from
Rounding Algorithms. In STOC ’02: Proceedings of the
thirty-fourth annual ACM symposium on Theory of computing,
pages 380–388, New York, NY, USA, 2002. ACM Press. ISBN
1-58113-495-9. 35

[41] Abdur Chowdhury, Ophir Frieder, David Grossman, and
Mary Catherine McCabe. Collection Statistics for Fast
Duplicate Document Detection. ACM Trans. Inf. Syst., 20(2):
171–191, 2002. ISSN 1046-8188. 32

[42] Paul Clough. Plagiarism in Natural and Programming
Languages: An Overview of Current Tools and Technologies.
Internal Report CS-00-05, University of Sheffield, 2000. 70

[43] Paul Clough. Measuring Text Reuse. PhD thesis, University of
Sheffield, 2003. 5

[44] Paul Clough. Old and New Challenges in Automatic
Plagiarism Detection. National UK Plagiarism Advisory
Service, http://ir.shef.ac.uk/cloughie/papers/
pas_plagiarism.pdf, 2003. 70

[45] Paul Clough and Mark Stevenson. Creating a Corpus of
Plagiarised Academic Texts. In Proceedings of Corpus
Linguistics Conference, CL’09 (to appear), 2009. 71

[46] Paul Clough and Mark Stevenson. Developing a Corpus of
Plagiarised Short Answers. Lang. Resour. Eval., 45:5–24, March
2011. ISSN 1574-020X. doi:10.1007/s10579-009-9112-1. 71

http://dx.doi.org/10.1007/978-3-540-85776-1_8
http://ir.shef.ac.uk/cloughie/papers/pas_plagiarism.pdf
http://ir.shef.ac.uk/cloughie/papers/pas_plagiarism.pdf
http://dx.doi.org/10.1007/s10579-009-9112-1

BIBLIOGRAPHY 196

[47] Paul Clough, Robert Gaizauskas, and S. L. Piao. Building and
Annotating a Corpus for the Study of Journalistic Text Reuse.
In Proceedings of the 3rd International Conference on Language
Resources and Evaluation (LREC-02), pages 1678–1691, 2002. 71,
76

[48] Paul Clough, Robert Gaizauskas, Scott S. L. Piao, and Yorick
Wilks. METER: MEasuring TExt Reuse. In Proceedings of the
40th Annual Meeting on Association for Computational
Linguistics, ACL ’02, pages 152–159, Stroudsburg, PA, USA,
2002. Association for Computational Linguistics.
doi:10.3115/1073083.1073110. 5

[49] Jack G. Conrad and Cindy P. Schriber. Constructing a Text
Corpus for Inexact Duplicate Detection. In SIGIR’04:
Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval,
pages 582–583, New York, NY, USA, 2004. ACM Press. ISBN
1-58113-881-4. 37

[50] Jack G. Conrad, Xi S. Guo, and Cindy P. Schriber. Online
Duplicate Document Detection: Signature Reliability in a
Dynamic Retrieval Environment. In Proceedings of the 2003
ACM CIKM International Conference on Information and
Knowledge Management (CIKM), pages 443–452. ACM, 2003. 32

[51] Neil Cooke, Lee Gillam, Henry Cooke Peter Wrobel, and
Fahad Al-Obaidli. A High-performance Plagiarism Detection
System: Notebook for PAN at CLEF 2011. In Petras and
Clough [156]. ISBN 978-88-904810-1-7. 95, 100

[52] Marta R. Costa-jussá, Rafael Banchs, Jens Grivolla, and Joan
Codina. Plagiarism Detection Using Information Retrieval
and Similarity Measures based on Image Processing
techniques: Lab Report for PAN at CLEF 2010. In Braschler
and Harman [28]. ISBN 978-88-904810-0-0. 95, 98, 99

http://dx.doi.org/10.3115/1073083.1073110

BIBLIOGRAPHY 197

[53] Bruce Croft, Donald Metzler, and Trevor Strohman. Search
Engines: Information Retrieval in Practice. Addison-Wesley,
USA, 2009. 15

[54] W. Bruce Croft, Michael Bendersky, Hang Li, and Gu Xu.
Query Representation and Understanding Workshop. SIGIR
Forum, 44(2):48–53, 2010. 138

[55] Sally Jo Cunningham and David M. Nichols. How People
Find Videos. In JCDL’08: Proceedings of the 8th ACM/IEEE-CS
joint conference on Digital libraries, pages 201–210, New York,
NY, USA, 2008. ACM. ISBN 978-1-59593-998-2.
doi:10.1145/1378889.1378924. 114

[56] E. Dale and J.S. Chall. A Formula for Predicting Readability.
Educational Research Bulletin, 27, 1948. 118

[57] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S.
Mirrokni. Locality-Sensitive Hashing Scheme Based on
p-Stable Distributions. In SCG ’04: Proceedings of the twentieth
annual symposium on Computational geometry, pages 253–262,
New York, NY, USA, 2004. ACM Press. ISBN 1-58113-885-7.
35

[58] Jean-Yves Delort. Identifying Commented Passages of
Documents Using Implicit Hyperlinks. In HYPERTEXT’06:
Proceedings of the seventeenth conference on Hypertext and
hypermedia, pages 89–98, New York, NY, USA, 2006. ACM.
ISBN 1-59593-417-0. doi:10.1145/1149941.1149960. 114

[59] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin.
Maximum Likelihood from Incomplete Data via the EM
Algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977. 52

http://dx.doi.org/10.1145/1378889.1378924
http://dx.doi.org/10.1145/1149941.1149960

BIBLIOGRAPHY 198

[60] Koen Deschacht and Marie-Francine Moens. Finding the Best
Picture: Cross-Media Retrieval of Content. In Craig
Macdonald, Iadh Ounis, Vassilis Plachouras, Ian Ruthven,
and Ryen W. White, editors, 30th European Conference on IR
Research, ECIR 2008, Glasgow, volume 4956 LNCS of Lecture
Notes in Computer Science, pages 539–546, Berlin Heidelberg
New York, 2008. Springer. ISBN 978-3-540-78645-0. URL
10.1007/978-3-540-78646-7_51. 129

[61] B. Dit, D. Poshyvanyk, and A. Marcus. Measuring the
Semantic Similarity of Comments in Bug Reports. In
Proceedings of 1st International ICPC2008 Workshop on Semantic
Technologies in System Maintenance (STSM2008), 2008. 113

[62] Susan T. Dumais, Todd A. Letsche, Michael L. Littman, and
Thomas K. Landauer. Automatic Cross-Language Retrieval
Using Latent Semantic Indexing. In D. Hull and D. Oard,
editors, AAAI’97 Spring Symposium Series: Cross-Language Text
and Speech Retrieval, pages 18–24, Stanford University, March
1997. American Association for Artificial Intelligence. 48

[63] Dennis Fetterly, Mark Manasse, and Marc Najork. On the
Evolution of Clusters of Near-Duplicate Web Pages. In
Proceedings of the 1st Latin American Web Congress, LA-WEB
2003. IEEE, 2003. ISBN 0-7695-2058-8/03. 25, 32

[64] R. Flesch. A New Readability Yardstick. Journal of Applied
Psychology, 32:221–233, 1948. 118

[65] Atsushi Fujii and Tetsuya Ishikawa. A System for
Summarizing and Visualizing Arguments in Subjective
Documents: Toward Supporting Decision Making. In
Proceedings of the Workshop on Sentiment and Subjectivity in Text,
pages 15–22, Sydney, Australia, July 2006. Association for
Computational Linguistics. URL http:
//www.aclweb.org/anthology/W/W06/W06-0303. 112

10.1007/978-3-540-78646-7_51
http://www.aclweb.org/anthology/W/W06/W06-0303
http://www.aclweb.org/anthology/W/W06/W06-0303

BIBLIOGRAPHY 199

[66] E. Gabrilovich. Feature Generation for Textual Information
Retrieval Using World Knowledge. Phd thesis, Israel Institute of
Technology, 2006. 123

[67] Evgeniy Gabrilovich and Shaul Markovitch. Computing
Semantic Relatedness of Words and Texts in
Wikipedia-derived Semantic Space. Technical report
cis-2006-04, Computer Science Department, Technion, Haifa,
Israel, 2006. 123

[68] Evgeniy Gabrilovich and Shaul Markovitch. Computing
Semantic Relatedness Using Wikipedia-based Explicit
Semantic Analysis. In Manuela M. Veloso, editor, IJCAI 2007,
Proceedings of the 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007, pages
1606–1611, 2007. 50, 123, 129

[69] Anindya Ghose and Panagiotis G. Ipeirotis. Designing
Ranking Systems for Consumer Reviews: The Impact of
Review Subjectivity on Product Sales and Review Quality. In
Proceedings of the 2007 9th International Conference on Decision
Support Systems (ICDSS 2007), Kolkata, India, January 2007.
112

[70] Aniruddha Ghosh, Pinaki Bhaskar, Santanu Pal, and Sivaji
Bandyopadhyay. Rule Based Plagiarism Detection using
Information Retrieval: Notebook for PAN at CLEF 2011. In
Petras and Clough [156]. ISBN 978-88-904810-1-7. 95, 100

[71] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity
Search in High Dimensions via Hashing. In Proceedings of the
25th VLDB Conference Edinburgh, Scotland, pages 518–529,
1999. 36

[72] Thomas Gottron. External Plagiarism Detection Based on
Standard IR Technology: Lab Report for PAN at CLEF 2010.

BIBLIOGRAPHY 200

In Braschler and Harman [28]. ISBN 978-88-904810-0-0. 95, 98,
99

[73] Ján Grman and Rudolf Ravas. Improved Implementation for
Finding Text Similarities in Large Collections of Data:
Notebook for PAN at CLEF 2011. In Petras and Clough [156].
ISBN 978-88-904810-1-7. 95, 96, 100, 101

[74] Cristian Grozea and Marius Popescu. Encoplot—Performance
in the Second International Plagiarism Detection Challenge:
Lab Report for PAN at CLEF 2010. In Braschler and Harman
[28]. ISBN 978-88-904810-0-0. 95, 96, 98, 99, 101, 102

[75] Cristian Grozea and Marius Popescu. The Encoplot Similarity
Measure for Automatic Detection of Plagiarism: Notebook for
PAN at CLEF 2011. In Petras and Clough [156]. ISBN
978-88-904810-1-7. 95, 96, 100

[76] Cristian Grozea, Christian Gehl, and Marius Popescu.
ENCOPLOT: Pairwise Sequence Matching in Linear Time
Applied to Plagiarism Detection. In Stein et al. [213], pages
10–18. URL http://ceur-ws.org/Vol-502. 94, 95

[77] Robert Gunning. The Fog Index After Twenty Years. Journal
of Business Communication, 6(2):3–13, 1969. 118

[78] Jiafeng Guo, Gu Xu, Hang Li, and Xueqi Cheng. A Unified
and Discriminative Model for Query Refinement. In
Sung-Hyon Myaeng, Douglas W. Oard, Fabrizio Sebastiani,
Tat-Seng Chua, and Mun-Kew Leong, editors, Proceedings of
the 31st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2008, Singapore,
July 20-24, 2008, pages 379–386. ACM, 2008. ISBN
978-1-60558-164-4. 138

http://ceur-ws.org/Vol-502

BIBLIOGRAPHY 201

[79] Parth Gupta and Sameer Rao. External Plagiarism Detection:
N-Gram Approach using Named Entity Recognizer: Lab
Report for PAN at CLEF 2010. In Braschler and Harman [28].
ISBN 978-88-904810-0-0. 95, 98, 99

[80] Barak Hagbi and Moshe Koppel. Submission to the 1st
International Competition on Plagiarism Detection.
http://www.webis.de/research/events/pan-09, 2009. ISSN
1613-0073. URL http://ceur-ws.org/Vol-502. From
the Bar Ilan University, Israel. 94, 95

[81] Matthias Hagen, Martin Potthast, Benno Stein, and Christof
Bräutigam. The Power of Naïve Query Segmentation. In
Fabio Crestani, Stéphane Marchand-Maillet, Hsin-Hsi Chen,
Efthimis N. Efthimiadis, and Jacques Savoy, editors, 33rd
International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR 10), pages 797–798.
ACM, July 2010. ISBN 978-1-4503-0153-4.
doi:10.1145/1835449.1835621. 13, 138, 139, 140, 141, 144, 155,
156, 157, 161, 162

[82] Matthias Hagen, Martin Potthast, Benno Stein, and Christof
Bräutigam. Query Segmentation Revisited. In Sadagopan
Srinivasan, Krithi Ramamritham, Arun Kumar, M. P.
Ravindra, Elisa Bertino, and Ravi Kumar, editors, 20th
International Conference on World Wide Web (WWW 11), pages
97–106. ACM, March 2011. doi:10.1145/1963405.1963423. 13,
138, 141, 156, 157, 161

[83] Nevin Heintze. Scalable Document Fingerprinting. In
Proceedings of the Second USENIX Electronic Commerce
Workshop, pages 191–200, 1996. 32

[84] Monika Henzinger. Finding Near-Duplicate Web Pages: A
Large-Scale Evaluation of Algorithms. In SIGIR’06:

http://ceur-ws.org/Vol-502
http://dx.doi.org/10.1145/1835449.1835621
http://dx.doi.org/10.1145/1963405.1963423

BIBLIOGRAPHY 202

Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval,
pages 284–291, New York, NY, USA, 2006. ACM Press. ISBN
1-59593-369-7. doi:10.1145/1148170.1148222. 37

[85] Timothy C. Hoad and Justin Zobel. Methods for Identifying
Versioned and Plagiarised Documents. American Society for
Information Science and Technology, 54(3):203–215, 2003. 37

[86] W. T. B. Hordijk, M. L. Ponisio, and R. J. Wieringa. Structured
Review of Code Clone Literature. Technical Report
TR-CTIT-08-33, Centre for Telematics and Information
Technology, University of Twente, Enschede, 2008. 70

[87] C.-F. Hsu, E. Khabiri, and J. Caverlee. Ranking Comments on
the Social Web. In IEEE International Conference on Social
Computing (SocialCom), 2009. 112

[88] Meishan Hu, Aixin Sun, and Ee-Peng Lim.
Comments-Oriented Blog Summarization by Sentence
Extraction. In CIKM’07: Proceedings of the sixteenth ACM
conference on Conference on information and knowledge
management, pages 901–904, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-803-9. doi:10.1145/1321440.1321571. 114

[89] Meishan Hu, Aixin Sun, and Ee-Peng Lim.
Comments-Oriented Document Summarization:
Understanding Documents with Readers’ Feedback. In
SIGIR’08: Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in information
retrieval, pages 291–298, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-164-4. doi:10.1145/1390334.1390385. 114

[90] Minqing Hu and Bing Liu. Mining and summarizing
customer reviews. In KDD’04: Proceedings of the tenth ACM

http://dx.doi.org/10.1145/1148170.1148222
http://dx.doi.org/10.1145/1321440.1321571
http://dx.doi.org/10.1145/1390334.1390385

BIBLIOGRAPHY 203

SIGKDD international conference on Knowledge discovery and
data mining, pages 168–177, New York, NY, USA, 2004. ACM.
ISBN 1-58113-888-1. doi:10.1145/1014052.1014073. 112

[91] Jian Huang, Jianfeng Gao, Jiangbo Miao, Xiaolong Li,
Kuansan Wang, and Fritz Behr. Exploring Web Scale
Language Models for Search Query Processing. In Rappa
et al. [180], pages 451–460. ISBN 978-1-60558-799-8. 139, 154

[92] Shen Huang, Dan Shen, Wei Feng, Yongzheng Zhang, and
Catherine Baudin. Discovering Clues for Review Quality
from Author’s Behaviors on E-Commerce sites. In ICEC’09:
Proceedings of the 11th International Conference on Electronic
Commerce, pages 133–141, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-586-4. doi:10.1145/1593254.1593274. 112

[93] Adrian Iftene. Submission to the 1st International
Competition on Wikipedia Vandalism Detection, 2010. URL
http://www.webis.de/research/events/pan-10.
From the Universtiy of Iasi, Romania. 95, 98, 99

[94] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A
Survey of Top-k Query Processing Techniques in Relational
Database Systems. ACM Comput. Surv., 40(4):1–58, 2008. ISSN
0360-0300. doi:10.1145/1391729.1391730. 175

[95] P. Indyk. Stable Distributions, Pseudorandom Generators,
Embeddings and data Stream Computation. In FOCS’00:
Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, page 189, Washington, DC, USA, 2000. IEEE
Computer Society. ISBN 0-7695-0850-2. 36

[96] Piotr Indyk and Rajeev Motwani. Approximate Nearest
Neighbor—Towards Removing the Curse of Dimensionality.
In Proceedings of the 30th Symposium on Theory of Computing,
pages 604–613, 1998. 32, 35

http://dx.doi.org/10.1145/1014052.1014073
http://dx.doi.org/10.1145/1593254.1593274
http://www.webis.de/research/events/pan-10
http://dx.doi.org/10.1145/1391729.1391730

BIBLIOGRAPHY 204

[97] Peter Ingwersen and Kalervo Järvelin. The Turn: Integration of
Information Seeking and Retrieval in Context (The Information
Retrieval Series). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005. 14

[98] Masashi Inoue. On the Need for Annotation-based Image
Retrieval. In Proceedings of the SIGIR’04 Workshop Information
Retrieval in Context, pages 44–46, 2004. 129

[99] Salman Jamali and Huzefa Rangwala. Digging Digg:
Comment Mining, Popularity Prediction, and Social Network
Analysis. Technical report gmu-cs-tr-2009-7, George Mason
University, USA, 2009. 115

[100] Nitin Jindal and Bing Liu. Analyzing and Detecting Review
Spam. In Proceedings of the 7th IEEE International Conference on
Data Mining (ICDM 2007), October 28-31, 2007, pages 547–552.
IEEE, 2007. doi:10.1109/ICDM.2007.68. 112

[101] Nitin Jindal and Bing Liu. Opinion spam and analysis. In
WSDM ’08: Proceedings of the international conference on Web
search and web data mining, pages 219–230, New York, NY,
USA, 2008. ACM. doi:10.1145/1341531.1341560. 112

[102] Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner.
Generating Query Substitutions. In Les Carr, David De Roure,
Arun Iyengar, Carole A. Goble, and Michael Dahlin, editors,
Proceedings of the 15th international conference on World Wide
Web, WWW 2006, Edinburgh, Scotland, UK, May 23-26, 2006,
pages 387–396. ACM, 2006. ISBN 1-59593-323-9. 139

[103] Andreas Kaltenbrunner, Vicenç Gómez, and Vicente López.
Description and Prediction of Slashdot Activity. In Latin
American Web Conference (LA-WEB 2007), pages 57–66, Los
Alamitos, CA, USA, 2007. IEEE Computer Society. ISBN
0-7695-3008-7. doi:10.1109/LA-Web.2007.21. 115

http://dx.doi.org/10.1109/ICDM.2007.68
http://dx.doi.org/10.1145/1341531.1341560
http://dx.doi.org/10.1109/LA-Web.2007.21

BIBLIOGRAPHY 205

[104] Jan Kasprzak and Michal Brandejs. Improving the Reliability
of the Plagiarism Detection System: Lab Report for PAN at
CLEF 2010. In Braschler and Harman [28]. ISBN
978-88-904810-0-0. 92, 94, 95, 96, 98, 99

[105] Jan Kasprzak, Michal Brandejs, and Miroslav Křipač. Finding
Plagiarism by Evaluating Document Similarities. In Stein
et al. [213], pages 24–28. URL
http://ceur-ws.org/Vol-502. 95

[106] Mike Kestemont, Kim Luyckx, and Walter Daelemans.
Intrinsic Plagiarism Detection Using Character Trigram
Distance Scores: Notebook for PAN at CLEF 2011. In Petras
and Clough [156]. ISBN 978-88-904810-1-7. 91, 92, 95, 96, 100

[107] Elham Khabiri, Chiao-Fang Hsu, and James Caverlee.
Analyzing and Predicting Community Preference of Socially
Generated Metadata: A Case Study on Comments in the Digg
Community. In International AAAI Conference on Weblogs and
Social Media, 2009. URL http://aaai.org/ocs/index.
php/ICWSM/09/paper/view/177/497. 112

[108] S.-M. Kim, P. Pantel, T. Chklovski, and M. Penneacchiotti.
Automatically Assessing Review Helpfulness. In Proceedings
of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 423–430, Sydney, Australia, July
2006. 112

[109] J. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S. Chissom.
Derivation of New Readability Formulas (Automated
Readability Index, Fog Count and Flesch Reading Ease
Formula) for Navy Enlisted Personnel. Research Branch
Report 8-75 Millington TN: Naval Technical Training US
Naval Air Station, 1975. 118

http://ceur-ws.org/Vol-502
http://aaai.org/ocs/index.php/ICWSM/09/paper/view/177/497
http://aaai.org/ocs/index.php/ICWSM/09/paper/view/177/497

BIBLIOGRAPHY 206

[110] Julia Kiseleva, Qi Guo, Eugene Agichtein, Daniel Billsus, and
Wei Chai. Unsupervised Query Segmentation Using Click
Data: Preliminary Results. In Rappa et al. [180], pages
1131–1132. ISBN 978-1-60558-799-8. 138

[111] Aleksander Kołcz, Abdur Chowdhury, and Joshua Alspector.
Improved Robustness of Signature-based Near-Replica
Detection via Lexicon Randomization. In KDD’04: Proceedings
of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 605–610, New York, NY, USA,
2004. ACM Press. ISBN 1-58113-888-1. 32

[112] Namhee Kwon, Stuart W. Shulman, and Eduard Hovy.
Multidimensional Text Analysis for eRulemaking. In dg.o’06:
Proceedings of the 2006 international conference on Digital
government research, pages 157–166, New York, NY, USA, 2006.
ACM. doi:http://doi.acm.org/10.1145/1146598.1146649. 112

[113] Namhee Kwon, Liang Zhou, Eduard Hovy, and Stuart W.
Shulman. Identifying and Classifying Subjective Claims. In
dg.o’07: Proceedings of the 8th annual international conference on
Digital government research, pages 76–81. Digital Government
Society of North America, 2007. ISBN 1-59593-599-1. 112

[114] Andrew Lacey. A Simple Probabilistic Approach to Ranking
Documents by Sentiment. In Proceedings of the Class of 2005
Senior Conference on Natural Language Processing, pages 1–7,
Swarthmore, Pennsylvania, USA, April 2005. Computer
Science Department, Swarthmore College. 112

[115] Kevin Lerman and Ryan McDonald. Contrastive
Summarization: An Experiment with Consumer Reviews. In
NAACL’09: Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, Companion Volume:

http://dx.doi.org/http://doi.acm.org/10.1145/1146598.1146649

BIBLIOGRAPHY 207

Short Papers, pages 113–116, Morristown, NJ, USA, 2009.
Association for Computational Linguistics. 112

[116] Kevin Lerman, Sasha Blair-Goldensohn, and Ryan McDonald.
Sentiment Summarization: Evaluating and Learning User
Preferences. In EACL’09: Proceedings of the 12th Conference of
the European Chapter of the Association for Computational
Linguistics, pages 514–522, Morristown, NJ, USA, 2009.
Association for Computational Linguistics. 112

[117] Gina-Anne Levow, Douglas W. Oard, and Philip Resnik.
Dictionary-based Techniques for Cross-Language Information
Retrieval. Inf. Process. Manage., 41(3):523–547, 2005. ISSN
0306-4573. doi:10.1016/j.ipm.2004.06.012. 48

[118] Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh
Jain. Content-based Multimedia Information Retrieval: State
of the Art and Challenges. ACM Trans. Multimedia Comput.
Commun. Appl., 2(1):1–19, February 2006. ISSN 1551-6857.
doi:10.1145/1126004.1126005. 129

[119] Michael Littman, Susan T. Dumais, and Thomas K. Landauer.
Automatic Cross-Language Information Retrieval using
Latent Semantic Indexing. In Cross-Language Information
Retrieval, chapter 5, pages 51–62. Kluwer Academic Publishers,
1998. 48

[120] Bing Liu, Minqing Hu, and Junsheng Cheng. Opinion
Observer: analyzing and Comparing Opinions on the Web. In
WWW’05: Proceedings of the 14th international conference on
World Wide Web, pages 342–351, New York, NY, USA, 2005.
ACM. ISBN 1-59593-046-9. doi:10.1145/1060745.1060797. 112

[121] Jingjing Liu, Yunbo Cao, Chin-Yew Lin, Yalou Huang, and
Ming Zhou. Low-Quality Product Review Detection in

http://dx.doi.org/10.1016/j.ipm.2004.06.012
http://dx.doi.org/10.1145/1126004.1126005
http://dx.doi.org/10.1145/1060745.1060797

BIBLIOGRAPHY 208

Opinion Summarization. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL),
pages 334–342, Prague, Czech Republic, June 2007.
Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/D/D07/D07-1035. 112

[122] Yang Liu, Xiangji Huang, Aijun An, and Xiaohui Yu. Reviews
Are Not Equally Important: Predicting the Helpfulness of
Online Reviews. Technical report cse-2008-05, York
University, 2008. 112

[123] Fabian Loose, Steffen Becker, Martin Potthast, and Benno
Stein. Retrieval-Technologien für die Plagiaterkennung in
Programmen. In Joachim Baumeister and Martin Atzmüller,
editors, Information Retrieval Workshop at LWA 08, Technical
Report 448, pages 5–12. University of Würzburg, Germany,
October 2008. 26

[124] Yue Lu, ChengXiang Zhai, and Neel Sundaresan. Rated
Aspect Summarization of Short Comments. In 18th
International World Wide Web Conference, pages 131–131, April
2009. URL http://www2009.eprints.org/14/. 112

[125] James A. Malcolm and Peter C. R. Lane. Tackling the PAN’09
External Plagiarism Detection Corpus with a Desktop
Plagiarism Detector. In Stein et al. [213], pages 29–33. URL
http://ceur-ws.org/Vol-502. 95

[126] U. Manber. Finding Similar Files in a Large File System. In
Proceedings of the USENIX Winter 1994 Technical Conference,
pages 1–10, San Fransisco, CA, USA, 1994. 32

[127] Christopher D. Manning and Hinrich Schütze. Foundations of
Statistical Natural Language Processing. The MIT Press,
Cambridge, Massachusetts, 1999. 171

http://www.aclweb.org/anthology/D/D07/D07-1035
http://www.aclweb.org/anthology/D/D07/D07-1035
http://www2009.eprints.org/14/
http://ceur-ws.org/Vol-502

BIBLIOGRAPHY 209

[128] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schtüze. Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008. ISBN
0521865719, 9780521865715. 15

[129] Winter Mason and Duncan J. Watts. Financial Incentives and
the “Performance of Crowds”. In Paul Bennett, Raman
Chandrasekar, Max Chickering, Panos Ipeirotis, Edith Law,
Anton Mityagin, Foster Provost, and Luis von Ahn, editors,
Proceedings of the First ACM SIGKDD Workshop on Human
Computation, pages 77–85, Paris, France, June 2009. ACM. 78

[130] Hermann Maurer, Frank Kappe, and Bilal Zaka. Plagiarism –
A Survey. Journal of Universal Computer Science, 12(8):
1050–1084, August 2006. 70

[131] Anthony M. McEnery and Richard Z. Xiao. Parallel and
Comparable Corpora: What are they up to? In Gunilla M.
Anderman and Margaret Rogers, editors, Translating Europe.
Incorporating Corpora: The Linguist and the Translator, pages
18–31. Multilingual Matters, Clevedon, UK, 2007. ISBN
978-1-85359-986-6. 48

[132] Paul Mcnamee and James Mayfield. Character N-Gram
Tokenization for European Language Text Retrieval. Inf. Retr.,
7(1-2):73–97, 2004. ISSN 1386-4564.
doi:10.1023/B:INRT.0000009441.78971.be. 44, 48, 49

[133] Olena Medelyan, David Milne, Catherine Legg, and Ian H.
Witten. Mining Meaning from Wikipedia. Int. J. Hum.-Comput.
Stud., 67:716–754, September 2009. ISSN 1071-5819.
doi:10.1016/j.ijhcs.2009.05.004. 7

[134] Sven Meyer zu Eißen and Benno Stein. Intrinsic Plagiarism
Detection. In Mounia Lalmas, Andy MacFarlane, Stefan

http://dx.doi.org/10.1023/B:INRT.0000009441.78971.be
http://dx.doi.org/10.1016/j.ijhcs.2009.05.004

BIBLIOGRAPHY 210

Rüger, Anastasios Tombros, Theodora Tsikrika, and Alexei
Yavlinsky, editors, Advances in Information Retrieval. 28th
European Conference on IR Research (ECIR 06), volume 3936
LNCS of Lecture Notes in Computer Science, pages 565–569,
Berlin Heidelberg New York, 2006. Springer. ISBN
3-540-33347-9. doi:10.1007/11735106_66. 91, 92

[135] Jean-Baptiste Michel, Yuan K. Shen, Aviva P. Aiden, Adrian
Veres, Matthew K. Gray, The Google Books Team, Joseph P.
Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant,
Steven Pinker, Martin A. Nowak, and Erez L. Aiden.
Quantitative Analysis of Culture Using Millions of Digitized
Books. Science, 331(6014):176–182, January 14 2011.
doi:10.1126/science.1199644. URL
http://www.isrl.uiuc.edu/~amag/langev/paper/
michel2011googleBooksSCIENCE.html. 7

[136] Daniel Micol, Óscar Ferrández, and Rafael Muñoz. A
Textual-Based Similarity Approach for Efficient and Scalable
External Plagiarism Analysis: Lab Report for PAN at CLEF
2010. In Braschler and Harman [28]. ISBN 978-88-904810-0-0.
95, 98, 99

[137] Rada Mihalcea and Stephen Pulman. Characterizing
Humour: An Exploration of Features in Humorous Texts. In
Proceedings of the Conference on Computational Linguistics and
Intelligent Text Processing (CICLing), Springer, Mexico City,
February 2007, 2007. (2nd) best paper award! 121

[138] G. Mishne and N. Glance. Leave a Reply: An Analysis of
Weblog Comments. In Third Annual Workshop on the
Weblogging Ecosystem: Aggregation, Analysis and Dynamics
(WWW’06), May 2006. 107, 110, 114, 115

[139] Gilad Mishne, David Carmel, and Ronny Lempel. Blocking

http://dx.doi.org/10.1007/11735106_66
http://dx.doi.org/10.1126/science.1199644
http://www.isrl.uiuc.edu/~amag/langev/paper/michel2011googleBooksSCIENCE.html
http://www.isrl.uiuc.edu/~amag/langev/paper/michel2011googleBooksSCIENCE.html

BIBLIOGRAPHY 211

Blog Spam with Language Model Disagreement. In AIRWeb,
pages 1–6, 2005. 112

[140] Nikita Mishra, Rishiraj Saha Roy, Niloy Ganguly, Srivatsan
Laxman, and Monojit Choudhury. Unsupervised Query
Segmentation Using Only Query Logs. In Proceedings of the
20th International Conference on World Wide Web, WWW 2011,
Hyderabad, India, March 28 to April 01, 2011, 2011. 141, 157, 161

[141] Markus Muhr, Roman Kern, Mario Zechner, and Michael
Granitzer. External and Intrinsic Plagiarism Detection using a
Cross-Lingual Retrieval and Segmentation System: Lab
Report for PAN at CLEF 2010. In Braschler and Harman [28].
ISBN 978-88-904810-0-0. 92, 94, 95, 96, 98, 99, 101, 102

[142] Rao Muhammad Adeel Nawab, Mark Stevenson, and Paul
Clough. University of Sheffield: Lab Report for PAN at CLEF
2010. In Braschler and Harman [28]. ISBN 978-88-904810-0-0.
95, 98, 99, 101

[143] Rao Muhammad Adeel Nawab, Mark Stevenson, and Paul
Clough. External Plagiarism Detection using Information
Retrieval and Sequence Alignment: Notebook for PAN at
CLEF 2011. In Petras and Clough [156]. ISBN
978-88-904810-1-7. 95, 100

[144] John P. Nolan. Stable Distributions—Models for Heavy Tailed
Data. http://academic2.american.edu/~jpnolan/
stable/stable.html, 2005. 36

[145] Gabriel Oberreuter, Gaston L’Huillier, Sebastian Rios, and
Juan D. Velásquez. FASTDOCODE: Finding Approximated
Segments of N-Grams for Document Copy Detection: Lab
Report for PAN at CLEF 2010. In Braschler and Harman [28].
ISBN 978-88-904810-0-0. 95, 98, 99, 101

http://academic2.american.edu/~jpnolan/stable/stable.html
http://academic2.american.edu/~jpnolan/stable/stable.html

BIBLIOGRAPHY 212

[146] Gabriel Oberreuter, Gaston L’Huillier, Sebastián A. Ríos, and
Juan D. Velásquez. Approaches for Intrinsic and External
Plagiarism Detection: Notebook for PAN at CLEF 2011. In
Petras and Clough [156]. ISBN 978-88-904810-1-7. 91, 92, 93,
95, 96, 100

[147] Franz J. Och and Hermann Ney. A Systematic Comparison of
Various Statistical Alignment Models. Computational
Linguistics, 29(1):19–51, 2003. 52

[148] I. Ounis, C. Macdonald, and I. Soboroff. On the TREC Blog
Track. In Proceedings of International Conference on Weblogs and
Social Media, 2008. 114

[149] Yurii Palkovskii, Alexei Belov, and Irina Muzika. Exploring
Fingerprinting as External Plagiarism Detection Method: Lab
Report for PAN at CLEF 2010. In Braschler and Harman [28].
ISBN 978-88-904810-0-0. 95, 96, 98, 99

[150] Yurii Palkovskii, Alexei Belov, and Iryna Muzyka. Using
WordNet-based Semantic Similarity Measurement in External
Plagiarism Detection: Notebook for PAN at CLEF 2011. In
Petras and Clough [156]. ISBN 978-88-904810-1-7. 95, 100

[151] Yurii Anatol’yevich Palkovskii, Alexei Vitalievich Belov, and
Irina Alexandrovna Muzika. Submission to the 1st
International Competition on Plagiarism Detection.
http://www.webis.de/research/events/pan-09, 2009. ISSN
1613-0073. URL http://ceur-ws.org/Vol-502. From
the Zhytomyr State University, Ukraine. 95

[152] Jaehui Park, Tomohiro Fukuhara, Ikki Ohmukai, Hideaki
Takeda, and Sang-goo Lee. Web Content Summarization
Using Social Bookmarks: A New Approach for Social
Summarization. In WIDM’08: Proceeding of the 10th ACM

http://ceur-ws.org/Vol-502

BIBLIOGRAPHY 213

workshop on Web information and data management, pages
103–110, New York, NY, USA, 2008. ACM. ISBN
978-1-60558-260-3. doi:10.1145/1458502.1458519. 114

[153] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A
Picture of Search. In Xiaohua Jia, editor, Proceedings of the 1st
International Conference on Scalable Information Systems,
Infoscale 2006, Hong Kong, May 30-June 1, 2006, volume 152 of
ACM International Conference Proceeding Series, page 1. ACM,
2006. ISBN 1-59593-428-6. 154

[154] Rafael C. Pereira, V. P. Moreira, and R. Galante. Submission to
the 1st International Competition on Plagiarism Detection.
http://www.webis.de/research/events/pan-09, 2009. ISSN
1613-0073. URL http://ceur-ws.org/Vol-502. From
the Universidade Federal do Rio Grande do Sul, Brazil. 95

[155] Rafael C. Pereira, Viviane P. Moreira, and Renata Galante.
UFRGSPAN2010: Detecting External Plagiarism: Lab Report
for Pan at CLEF 2010. In Braschler and Harman [28]. ISBN
978-88-904810-0-0. 95, 96, 98, 99

[156] Vivien Petras and Paul Clough, editors. Notebook Papers of
CLEF 2011 Labs and Workshops, 19-22 September, Amsterdam,
The Netherlands, 2011. ISBN 978-88-904810-1-7. URL
http://www.webis.de/research/events/pan-11.
188, 196, 199, 200, 205, 211, 212, 218, 220

[157] Phil Wolff. Comment on the blog post “A vision for the next
generation of blogging tools?” by David Winer. http:
//web.archive.org/web/20040312054524/http://
blogs.law.harvard.edu/bloggerCon/2004/02/24,
2004. A copy of Wolff’s comment was preserved in another
blog post that summarizes these comments (found at
http://www.cadence90.com/wp/?p=2515); the

http://dx.doi.org/10.1145/1458502.1458519
http://ceur-ws.org/Vol-502
http://www.webis.de/research/events/pan-11
http://web.archive.org/web/20040312054524/http://blogs.law.harvard.edu/bloggerCon/2004/02/24
http://web.archive.org/web/20040312054524/http://blogs.law.harvard.edu/bloggerCon/2004/02/24
http://web.archive.org/web/20040312054524/http://blogs.law.harvard.edu/bloggerCon/2004/02/24
http://www.cadence90.com/wp/?p=2515

BIBLIOGRAPHY 214

comment says: Permalinks in the commentsphere. Cross-posting
of comments I post to my side-blog, preserving my blog as the
central place to read what I write throughout the web. Notify me
when someone comments in my blog. Be specific, better yet: Notify
via my choice of email and IM. 107

[158] David Pinto, Alfons Juan, and Paolo Rosso. Using
Query-Relevant Documents Pairs for Cross-Lingual
Information Retrieval. In V. Matousek and P. Mautner,
editors, Proceedings of the TSD-2006: Text, Speech and Dialogue,
volume 4629 of Lecture Notes in Artificial Intelligence, pages
630–637, Pilsen, Czech Republic, 2007. 52

[159] David Pinto, Jorge Civera, Alberto Barrón-Cedeño, Alfons
Juan, and Paolo Rosso. A Statistical Approach to Crosslingual
Natural Language Tasks. J. Algorithms, 64(1):51–60, 2009.
ISSN 0196-6774. doi:10.1016/j.jalgor.2009.02.005. 43, 52

[160] Ana-Maria Popescu and Oren Etzioni. Extracting Product
Features and Opinions from Reviews. In HLT’05: Proceedings
of the conference on Human Language Technology and Empirical
Methods in Natural Language Processing, pages 339–346,
Morristown, NJ, USA, 2005. Association for Computational
Linguistics. doi:10.3115/1220575.1220618. 112

[161] Martin Potthast. Wikipedia in the Pocket - Indexing
Technology for Near-duplicate Detection and High Similarity
Search. In Charles Clarke, Norbert Fuhr, Noriko Kando,
Wessel Kraaij, and Arjen de Vries, editors, 30th Annual
International ACM SIGIR Conference, pages 909–909. ACM,
July 2007. ISBN 978-1-59593-597-7. 26

[162] Martin Potthast. Measuring the Descriptiveness of Web
Comments. In Mark Sanderson, ChengXiang Zhai, Justin
Zobel, James Allan, and Javed A. Aslam, editors, 32th Annual

http://dx.doi.org/10.1016/j.jalgor.2009.02.005
http://dx.doi.org/10.3115/1220575.1220618

BIBLIOGRAPHY 215

International ACM SIGIR Conference, pages 724–725. ACM,
July 2009. ISBN 978-1-60558-483-6.
doi:10.1145/1571941.1572097. 13, 107

[163] Martin Potthast. Crowdsourcing a Wikipedia Vandalism
Corpus. In Hsin-Hsi Chen, Efthimis N. Efthimiadis, Jaques
Savoy, Fabio Crestani, and Stéphane Marchand-Maillet,
editors, 33rd Annual International ACM SIGIR Conference,
pages 789–790. ACM, July 2010. ISBN 978-1-4503-0153-4.
doi:10.1145/1835449.1835617. 159

[164] Martin Potthast and Steffen Becker. Opinion Summarization
of Web Comments. In C. Gurrin et al., editor, Advances in
Information Retrieval, Proceedings of the 32nd European
Conference on Information Retrieval, ECIR 2010, volume 5993 of
Lecture Notes in Computer Science, pages 668–669, Heidelberg,
2010. Springer. ISBN 978-3-642-12274-3.
doi:10.1007/978-3-642-12275-0_73. 107

[165] Martin Potthast and Benno Stein. New Issues in
Near-duplicate Detection. In Christine Preisach, Hans
Burkhardt, Lars Schmidt-Thieme, and Reinhold Decker,
editors, Data Analysis, Machine Learning and Applications.
Selected papers from the 31th Annual Conference of the German
Classification Society (GfKl 07), Studies in Classification, Data
Analysis, and Knowledge Organization, pages 601–609,
Berlin Heidelberg New York, 2008. Springer. ISBN
978-3-540-78239-1. doi:10.1007/978-3-540-78246-9_71. 13, 26

[166] Martin Potthast, Benno Stein, and Maik Anderka. A
Wikipedia-Based Multilingual Retrieval Model. In Craig
Macdonald, Iadh Ounis, Vassilis Plachouras, Ian Ruthven,
and Ryen W. White, editors, Advances in Information Retrieval.
30th European Conference on IR Research (ECIR 08), volume
4956 of Lecture Notes in Computer Science, pages 522–530,

http://dx.doi.org/10.1145/1571941.1572097
http://dx.doi.org/10.1145/1835449.1835617
http://dx.doi.org/10.1007/978-3-642-12275-0_73
http://dx.doi.org/10.1007/978-3-540-78246-9_71

BIBLIOGRAPHY 216

Berlin Heidelberg New York, 2008. Springer. ISBN
978-3-540-78645-0. doi:10.1007/978-3-540-78646-7_51. 13, 43,
44, 48, 50, 54

[167] Martin Potthast, Benno Stein, and Robert Gerling. Automatic
Vandalism Detection in Wikipedia. In Craig Macdonald, Iadh
Ounis, Vassilis Plachouras, Ian Ruthven, and Ryen W. White,
editors, Advances in Information Retrieval. 30th European
Conference on IR Research (ECIR 08), volume 4956 of Lecture
Notes in Computer Science, pages 663–668, Berlin Heidelberg
New York, 2008. Springer. ISBN 978-3-540-78645-0.
doi:10.1007/978-3-540-78646-7_75. 118

[168] Martin Potthast, Andreas Eiselt, Benno Stein, Alberto
Barrón-Cedeño, and Paolo Rosso. PAN Plagiarism Corpus
PAN-PC-09. http://www.webis.de/research/corpora, 2009.
68

[169] Martin Potthast, Benno Stein, Andreas Eiselt, Alberto
Barrón-Cedeño, and Paolo Rosso. Overview of the 1st
International Competition on Plagiarism Detection. In Benno
Stein, Paolo Rosso, Efstathios Stamatatos, Moshe Koppel, and
Eneko Agirre, editors, SEPLN 09 Workshop on Uncovering
Plagiarism, Authorship, and Social Software Misuse (PAN 09),
pages 1–9. CEUR-WS.org, September 2009. URL
http://ceur-ws.org/Vol-502. 13, 68, 70, 76, 103

[170] Martin Potthast, Alberto Barrón-Cedeño, Andreas Eiselt,
Benno Stein, and Paolo Rosso. Overview of the 2nd
International Competition on Plagiarism Detection. In Martin
Braschler and Donna Harman, editors, Notebook Papers of
CLEF 10 Labs and Workshops, September 2010. ISBN
978-88-904810-0-0. 13, 68, 103

[171] Martin Potthast, Benno Stein, Alberto Barrón-Cedeño, and
Paolo Rosso. An Evaluation Framework for Plagiarism

http://dx.doi.org/10.1007/978-3-540-78646-7_51
http://dx.doi.org/10.1007/978-3-540-78646-7_75
http://ceur-ws.org/Vol-502

BIBLIOGRAPHY 217

Detection. In Chu-Ren Huang and Dan Jurafsky, editors, 23rd
International Conference on Computational Linguistics (COLING
10), pages 997–1005, Stroudsburg, PA, USA, August 2010.
Association for Computational Linguistics. 13, 68, 159

[172] Martin Potthast, Benno Stein, and Steffen Becker. Towards
Comment-based Cross-Media Retrieval. In Michael Rappa,
Paul Jones, Juliana Freire, and Soumen Chakrabarti, editors,
19th International Conference on World Wide Web (WWW 10),
pages 1169–1170. ACM, April 2010. ISBN 978-1-60558-799-8.
doi:10.1145/1772690.1772858. 13, 107

[173] Martin Potthast, Martin Trenkmann, and Benno Stein.
Netspeak: Assisting Writers in Choosing Words. In Cathal
Gurrin, Yulan He, Gabriella Kazai, Udo Kruschwitz, Suzanne
Little, Thomas Roelleke, Stefan M. Rüger, and Keith van
Rijsbergen, editors, Advances in Information Retrieval. 32nd
European Conference on Information Retrieval (ECIR 10), volume
5993 of Lecture Notes in Computer Science, page 672, Berlin
Heidelberg New York, 2010. Springer. ISBN
978-3-642-12274-3. doi:10.1007/978-3-642-12275-0_75. 167

[174] Martin Potthast, Alberto Barrón-Cedeño, Benno Stein, and
Paolo Rosso. Cross-Language Plagiarism Detection. Language
Resources and Evaluation (LRE), 45:45–62, 2011. ISSN
1574-020X. doi:10.1007/s10579-009-9114-z. 13, 43

[175] Martin Potthast, Andreas Eiselt, Alberto Barrón-Cedeño,
Benno Stein, and Paolo Rosso. Overview of the 3rd
International Competition on Plagiarism Detection. In Vivien
Petras and Paul Clough, editors, Notebook Papers of CLEF 11
Labs and Workshops, September 2011. ISBN 978-88-904810-1-7.
13, 68, 103

[176] Bruno Pouliquen, Ralf Steinberger, and Camelia Ignat.
Automatic Annotation of Multilingual Text Collections with a

http://dx.doi.org/10.1145/1772690.1772858
http://dx.doi.org/10.1007/978-3-642-12275-0_75
http://dx.doi.org/10.1007/s10579-009-9114-z

BIBLIOGRAPHY 218

Conceptual Thesaurus. In Proceedings of the Workshop
’Ontologies and Information Extraction’ at the Summer School ’The
Semantic Web and Language Technology - Its Potential and
Practicalities’ (EUROLAN’2003), pages 9–28, Bucharest,
Romania, August 2003. 48

[177] Bruno Pouliquen, Ralf Steinberger, and Camelia Ignat.
Automatic Identification of Document Translations in Large
Multilingual Document Collections. In Proceedings of the
International Conference Recent Advances in Natural Language
Processing (RANLP’2003), pages 401–408, Borovets, Bulgaria,
September 2003. 43, 53

[178] Dragomir R. Radev. Generating Natural Language Summaries
from Multiple On-Line Sources: Language Reuse and Regeneration.
PhD thesis, Columbia University, 1999. 7

[179] Sameer Rao, Parth Gupta, Khushboo Singhal, and Prasenjit
Majumder. External & Intrinsic Plagiarism Detection: VSM &
Discourse Markers based Approach: Notebook for PAN at
CLEF 2011. In Petras and Clough [156]. ISBN
978-88-904810-1-7. 91, 92, 95, 100

[180] Michael Rappa, Paul Jones, Juliana Freire, and Soumen
Chakrabarti, editors. Proceedings of the 19th International
Conference on World Wide Web, WWW 2010, Raleigh, North
Carolina, USA, April 26-30, 2010, 2010. ACM. ISBN
978-1-60558-799-8. 203, 206

[181] Philip Resnik and Aaron Elkiss. The Linguist’s Search Engine:
An Overview. In ACL’05: Proceedings of the ACL 2005 on
Interactive poster and demonstration sessions, pages 33–36,
Morristown, NJ, USA, 2005. Association for Computational
Linguistics. doi:10.3115/1225753.1225762. 171

http://dx.doi.org/10.3115/1225753.1225762

BIBLIOGRAPHY 219

[182] Antonio Reyes, Martin Potthast, Paolo Rosso, and Benno
Stein. Evaluating Humor Features on Web Comments. In
Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph
Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel
Tapias, editors, 7th Conference on International Language
Resources and Evaluation (LREC 10). European Language
Resources Association (ELRA), May 2010. ISBN
2-9517408-6-7. 107, 121

[183] Patrick Riehmann, Henning Gruendl, Bernd Froehlich,
Martin Potthast, Martin Trenkmann, and Benno Stein. The
Netspeak WordGraph: Visualizing Keywords in Context. In
Giuseppe Di Battista, Jean-Daniel Fekete, and Huamin Qu,
editors, 4th IEEE Pacific Visualization Symposium (PacificVis 11),
pages 123–130. IEEE, March 2011.
doi:10.1109/PACIFICVIS.2011.5742381. 13, 167, 178, 179, 180,
181, 182

[184] C. J. van Rijsbergen. Information Retrieval. Buttersworth,
London, 1979. 15

[185] Knut Magne Risvik, Tomasz Mikolajewski, and Peter Boros.
Query Segmentation for Web Search. In WWW (Posters), 2003.
139

[186] Stephen Robertson. Salton Award Lecture on Theoretical
Argument in Information Retrieval. SIGIR Forum, 34:1–10,
April 2000. ISSN 0163-5840. doi:10.1145/373593.373597. 22

[187] Stephen Robertson. On the History of Evaluation in IR.
Journal of Information Science, 34:439–456, August 2008. ISSN
0165-5515. doi:10.1177/0165551507086989. 18

[188] Diego Antonio Rodríguez Torrejón and José Manuel Martín
Ramos. CoReMo System (Contextual Reference Monotony) A

http://dx.doi.org/10.1109/PACIFICVIS.2011.5742381
http://dx.doi.org/10.1145/373593.373597
http://dx.doi.org/10.1177/0165551507086989

BIBLIOGRAPHY 220

Fast, Low Cost and High Performance Plagiarism Analyzer
System: Lab Report for PAN at CLEF 2010. In Braschler and
Harman [28]. ISBN 978-88-904810-0-0. 95, 98, 99

[189] Diego Antonio Rodríguez Torrejón and José Manuel Martín
Ramos. Crosslingual CoReMo System: Notebook for PAN at
CLEF 2011. In Petras and Clough [156]. ISBN
978-88-904810-1-7. 95, 100

[190] T. G. Rose, M. Stevenson, and M. Whitehead. The Reuters
Corpus Volume 1 - From Yesterday’s News to Tomorrow’s
Language Resources. In Proceedings of the Third International
Conference on Language Resources and Evaluation, 2002. 36

[191] Chanchal K. Roy and James R. Cordy. Scenario-Based
Comparison of Clone Detection Techniques. In ICPC ’08:
Proceedings of the 2008 The 16th IEEE International Conference on
Program Comprehension, pages 153–162, Washington, DC, USA,
2008. IEEE Computer Society. ISBN 978-0-7695-3176-2. 70

[192] Chanchal K. Roy and James R. Cordy. Towards a
Mutation-based Automatic Framework for Evaluating Code
Clone Detection Tools. In C3S2E ’08: Proceedings of the 2008
C3S2E conference, pages 137–140, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-101-9. 76

[193] Chanchal K. Roy, James R. Cordy, and Rainer Koschke.
Comparison and Evaluation of Code Clone Detection
Techniques and Tools: A Qualitative Approach. Sci. Comput.
Program., 74(7):470–495, 2009. ISSN 0167-6423. 70

[194] Chanchal Kumar Roy and James R. Cordy. A Survey on
Software Clone Detection Research. Technical Report
2007-541, School of Computing, Queen’s University at
Kingston, Ontario, Canada, 2007. 70

BIBLIOGRAPHY 221

[195] G. Salton and M. J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, New York, 1983. 15

[196] Vladislav Scherbinin and Sergey Butakov. Using Microsoft
SQL Server Platform for Plagiarism Detection. In Stein et al.
[213], pages 36–37. URL http://ceur-ws.org/Vol-502.
95

[197] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken.
Winnowing: Local Algorithms for Document Fingerprinting.
In SIGMOD’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 76–85,
New York, NY, USA, 2003. ACM Press. ISBN 1-58113-634-X.
32, 90

[198] Anne Schuth, Maarten Marx, and Maarten de Rijke.
Extracting the Discussion Structure in Comments on
News-Articles. In WIDM’07: Proceedings of the 9th annual ACM
international workshop on Web information and data management,
pages 97–104, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-829-9. doi:10.1145/1316902.1316919. 107, 113

[199] D. Sculley. On Free Speech and Civil Discourse: Filtering
Abuse in Blog Comments. In CEAS 2008 - The Fifth Conference
on Email and Anti-Spam, 21-22 August 2008, Mountain View,
California, USA, 2008. 112

[200] D. Sculley. Advances in Online Learning-based Spam Filtering.
PhD thesis, Tufts University, USA, 2008. Carla E. Brodley. 112

[201] Leanne Seaward and Stan Matwin. Intrinsic Plagiarism
Detection Using Complexity Analysis. In Stein et al. [213],
pages 56–61. URL http://ceur-ws.org/Vol-502. 95

[202] Christin Seifert, Barbara Kump, Wolfgang Kienreich, Gisela
Granitzer, and Michael Granitzer. On the Beauty and

http://ceur-ws.org/Vol-502
http://dx.doi.org/10.1145/1316902.1316919
http://ceur-ws.org/Vol-502

BIBLIOGRAPHY 222

Usability of Tag Clouds. IV, 0:17–25, 2008. ISSN 1550-6037.
doi:10.1109/IV.2008.89. 127

[203] Sobha L., Pattabhi R. K Rao, Vijay Sundar Ram, and
Akilandeswari A. External Plagiarism Detection: Lab Report
for PAN at CLEF 2010. In Braschler and Harman [28]. ISBN
978-88-904810-0-0. 95, 98, 99

[204] Ian Soboroff and Donna Harman. Novelty Detection: The
TREC Experience. In HLT’05: Proceedings of the conference on
Human Language Technology and Empirical Methods in Natural
Language Processing, pages 105–112, Morristown, NJ, USA,
2005. Association for Computational Linguistics.
doi:10.3115/1220575.1220589. 122

[205] Efstathios Stamatatos. Intrinsic Plagiarism Detection Using
Character n-gram Profiles. In Stein et al. [213], pages 38–46.
URL http://ceur-ws.org/Vol-502. 91, 93, 94, 95, 96,
100

[206] Benno Stein. Fuzzy-Fingerprints for Text-Based Information
Retrieval. In Klaus Tochtermann and Hermann Maurer,
editors, 5th International Conference on Knowledge Management
(I-KNOW 05), Journal of Universal Computer Science, pages
572–579, Graz, Austria, July 2005. Know-Center. 32, 34

[207] Benno Stein. Principles of Hash-based Text Retrieval. In
Charles Clarke, Norbert Fuhr, Noriko Kando, Wessel Kraaij,
and Arjen P. de Vries, editors, 30th Annual International ACM
SIGIR Conference (SIGIR 07), pages 527–534. ACM, July 2007.
ISBN 987-1-59593-597-7. 31

[208] Benno Stein and Maik Anderka. Collection-Relative
Representations: A Unifying View to Retrieval Models. In A
Min Tjoa and Roland Wagner, editors, 6th International

http://dx.doi.org/10.1109/IV.2008.89
http://dx.doi.org/10.3115/1220575.1220589
http://ceur-ws.org/Vol-502

BIBLIOGRAPHY 223

Workshop on Text-Based Information Retrieval (TIR 09) at DEXA,
pages 383–387. IEEE, September 2009. ISBN
978-0-7695-3763-4. doi:10.1109/DEXA.2009.50. 50, 129

[209] Benno Stein and Martin Potthast. Hashing-basierte
Indizierung: Anwendungsszenarien, Theorie und Methoden.
In Norbert Fuhr, Sebastian Goeser, and Thomas Mandl,
editors, Workshop Special Interest Group Information Retrieval
(FGIR 06), Hildesheimer Informatikberichte, pages 159–166.
University of Hildesheim, Germany, October 2006. URL
http:
//opus.bsz-bw.de/ubhi/volltexte/2011/67/. 26

[210] Benno Stein and Martin Potthast. Applying Hash-based
Indexing in Text-Based Information Retrieval. In
Marie-Francine Moens, Tinne Tuytelaars, and Arjen P. de
Vries, editors, 7th Dutch-Belgian Information Retrieval Workshop
(DIR 07), pages 29–35, Leuven, Belgium, March 2007. Faculty
of Engineering, Universiteit Leuven. ISBN 978-90-5682-771-7.
13, 26

[211] Benno Stein and Martin Potthast. Construction of Compact
Retrieval Models. In Sándor Dominich and Ferenc Kiss,
editors, Studies in Theory of Information Retrieval. 1st
International Conference on the Theory of Information Retrieval
(ICTIR 07), pages 85–93, Budapest, October 2007. Foundation
for Information Society. ISBN 978-963-06-3237-9. 13, 26

[212] Benno Stein, Sven Meyer zu Eißen, and Martin Potthast.
Strategies for Retrieving Plagiarized Documents. In Charles
Clarke, Norbert Fuhr, Noriko Kando, Wessel Kraaij, and
Arjen P. de Vries, editors, 30th Annual International ACM
SIGIR Conference (SIGIR 07), pages 825–826, New York, July
2007. ACM. ISBN 987-1-59593-597-7. 4

http://dx.doi.org/10.1109/DEXA.2009.50
http://opus.bsz-bw.de/ubhi/volltexte/2011/67/
http://opus.bsz-bw.de/ubhi/volltexte/2011/67/

BIBLIOGRAPHY 224

[213] Benno Stein, Paolo Rosso, Efstathios Stamatatos, Moshe
Koppel, and Eneko Agirre, editors. SEPLN 2009 Workshop on
Uncovering Plagiarism, Authorship, and Social Software Misuse
(PAN 09), 2009. Universidad Politécnica de Valencia and
CEUR-WS.org. URL http://ceur-ws.org/Vol-502.
190, 200, 205, 208, 221, 222, 225, 228

[214] Benno Stein, Martin Potthast, and Martin Trenkmann.
Retrieving Customary Web Language to Assist Writers. In
Cathal Gurrin, Yulan He, Gabriella Kazai, Udo Kruschwitz,
Suzanne Little, Thomas Roelleke, Stefan M. Rüger, and Keith
van Rijsbergen, editors, Advances in Information Retrieval. 32nd
European Conference on Information Retrieval (ECIR 10), volume
5993 of Lecture Notes in Computer Science, pages 631–635,
Berlin Heidelberg New York, 2010. Springer. ISBN
978-3-642-12274-3. doi:10.1007/978-3-642-12275-0_64. 13, 167

[215] Ralf Steinberger, Bruno Pouliquen, and Camelia Ignat.
Exploiting Multilingual Nomenclatures and
Language-Independent Text Features as an Interlingua for
Cross-Lingual Text Analysis Applications. In Proceedings of
the 4th Slovenian Language Technology Conference. Information
Society 2004 (IS’2004), 2004. ISBN 961-6303-64-3. 48, 49

[216] Ralf Steinberger, Bruno Pouliquen, Anna Widiger, Camelia
Ignat, Tomaz Erjavec, Dan Tufis, and Daniel Varga. The
JRC-Acquis: A multilingual aligned parallel corpus with 20+
languages. In Proceedings of the 5th International Conference on
Language Resources and Evaluation (LREC’2006), May 2006. 54

[217] Philip J. Stone. The General Inquirer: A Computer Approach to
Content Analysis. The MIT Press, 1966. 126

[218] Pablo Suárez, Jose Carlos González, and Julio Villena. A
Plagiarism Detector for Intrinsic, External and Internet

http://ceur-ws.org/Vol-502
http://dx.doi.org/10.1007/978-3-642-12275-0_64

BIBLIOGRAPHY 225

Plagiarism: Lab Report for PAN at CLEF 2010. In Braschler
and Harman [28]. ISBN 978-88-904810-0-0. 95, 98, 99, 102

[219] Gábor Szabó and Bernardo A. Huberman. Predicting the
Popularity of Online Content. CoRR, 2008. 115

[220] Bin Tan and Fuchun Peng. Unsupervised Query
Segmentation Using Generative Language Models and
Wikipedia. In Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon,
Yunhao Liu, Wei-Ying Ma, Andrew Tomkins, and Xiaodong
Zhang, editors, Proceedings of the 17th International Conference
on World Wide Web, WWW 2008, Beijing, China, April 21-25,
2008, pages 347–356. ACM, 2008. ISBN 978-1-60558-085-2.
139, 140, 142, 147, 151, 155, 157, 158, 161

[221] E. Tsagkias, M. de Rijke, and W Weerkamp. Predicting the
Volume of Comments on Online News Stories. In ACM 18th
Conference on Information and Knowledge Managment (CIKM
2009), Hong Kong, November 2009. ACM, ACM. 115

[222] Peter D. Turney and Michael L. Littman. Measuring Praise
and Criticism: Inference of Semantic Orientation from
Association. ACM Trans. Inf. Syst., 21(4):315–346, 2003. ISSN
1046-8188. doi:10.1145/944012.944013. 126

[223] Enrique Vallés Balaguer. Putting Ourselves in SME’s Shoes:
Automatic Detection of Plagiarism by the WCopyFind tool.
In Stein et al. [213], pages 34–35. URL
http://ceur-ws.org/Vol-502. 95

[224] Clara Vania and Mirna Adriani. External Plagiarism
Detection Using Passage Similarities: Lab Report for PAN at
CLEF 2010. In Braschler and Harman [28]. ISBN
978-88-904810-0-0. 95, 98, 99

http://dx.doi.org/10.1145/944012.944013
http://ceur-ws.org/Vol-502

BIBLIOGRAPHY 226

[225] Adriano Veloso, Wagner Meira, Tiago Macambira, Dorgival
Guedes, and Hélio Almeida. Automatic Moderation of
Comments in a Large Online Journalistic Environment. In
Proceedings of the 2007 International Conference on Weblogs and
Social Media (ICWSM 2007), Boulder, Colorado, U.S.A., March
2007. 112, 118, 121

[226] Alexei Vinokourov, John Shawe-Taylor, and Nello Cristianini.
Inferring a Semantic Representation of Text via
Cross-Language Correlation Analysis. In Suzanna Becker,
Sebastian Thrun, and Klaus Obermayer, editors, NIPS-02:
Advances in Neural Information Processing Systems, pages
1473–1480. MIT Press, 2003. ISBN 0-262-02550-7. 48

[227] Ellen M. Vorhees and Donna K. Harman. TREC—Experiment
and Evaluation in Information Retrieval. MIT Press, 2005. ISBN
978-0-262-22073-6. 18

[228] Roger Weber, Hans-J. Schek, and Stephen Blott. A
Quantitative Analysis and Performance Study for
Similarity-Search Methods in High-Dimensional Spaces. In
Proceedings of the 24th VLDB Conference New York, USA, pages
194–205, 1998. 27

[229] Geoffrey R. Whale. Identification of Program Similarity in
Large Populations. The Computer Journal, 33(2):140–146, 1990.
doi:10.1093/comjnl/33.2.140. 70

[230] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing
Gigabytes (2nd Ed.): Compressing and Indexing Documents and
Images. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1999. ISBN 1-55860-570-3. 15

[231] Daisuke Yamamoto, Tomoki Masuda, Shigeki Ohira, and
Katashi Nagao. Collaborative Video Scene Annotation Based

http://dx.doi.org/10.1093/comjnl/33.2.140

BIBLIOGRAPHY 227

on Tag Cloud. In PCM’08: Proceedings of the 9th Pacific Rim
Conference on Multimedia, pages 397–406, Berlin, Heidelberg,
2008. Springer-Verlag. ISBN 978-3-540-89795-8.
doi:10.1007/978-3-540-89796-5_41. 114

[232] Jung-Yeon Yang, Jaeseok Myung, and Sang-goo Lee. The
Method for a Summarization of Product Reviews Using the
User’s Opinion. International Conference on Information, Process,
and Knowledge Management, 0:84–89, 2009.
doi:10.1109/eKNOW.2009.15. 112

[233] Yiming Yang, Jaime G. Carbonell, Ralf D. Brown, and Robert
E. Frederking. Translingual Information Retrieval: Learning
from Bilingual Corpora. Artif. Intell., 103(1-2):323–345, 1998.
ISSN 0004-3702. doi:10.1016/S0004-3702(98)00063-0. 48, 50

[234] Tae Yano, William W. Cohen, and Noah A. Smith. Predicting
Response to Political Blog Posts with Topic Models. In
NAACL’09: Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the
Association for Computational Linguistics on Computational
Linguistics, pages 477–485, Morristown, NJ, USA, 2009.
Association for Computational Linguistics. ISBN
978-1-932432-41-1. 115

[235] Shaozhi Ye, Ji-Rong Wen, and Wei-Ying Ma. A Systematic
Study of Parameter Correlations in Large Scale Duplicate
Document Detection. In Proceedings of the 10th Pacific-Asia
Conferenc on Advances in Knowledge Discovery and Data Mining
(PAKDD), volume 3918 of Lecture Notes in Computer Science,
pages 275–284. Springer, 2006. ISBN 3-540-33206-5. 37

[236] Wai Gen Yee, Andrew Yates, Shizhu Liu, and Ophir Frieder.
Are Web User Comments Useful for Search? In Claudio
Lucchese, Gleb Skobeltsyn, and Wai Gen Yee, editors,

http://dx.doi.org/10.1007/978-3-540-89796-5_41
http://dx.doi.org/10.1109/eKNOW.2009.15
http://dx.doi.org/10.1016/S0004-3702(98)00063-0

BIBLIOGRAPHY 228

Proceedings of the 7th Workshop on Large-Scale Distributed
Systems for Information Retrieval, co-located with ACM SIGIR
2009, pages 61–68. CEUR-WS, July 2009. 114

[237] Xiaohui Yu and Huxia Shi. Query Segmentation Using
Conditional Random Fields. In M. Tamer Özsu, Yi Chen, and
Lei Chen 0002, editors, Proceedings of the First International
Workshop on Keyword Search on Structured Data, KEYS 2009,
Providence, Rhode Island, USA, June 28, 2009, pages 21–26.
ACM, 2009. ISBN 978-1-60558-570-3. 138

[238] Mario Zechner, Markus Muhr, Roman Kern, and Michael
Granitzer. External and Intrinsic Plagiarism Detection Using
Vector Space Models. In Stein et al. [213], pages 47–55. URL
http://ceur-ws.org/Vol-502. 95

[239] Chao Zhang, Nan Sun, Xia Hu, Tingzhu Huang, and Tat-Seng
Chua. Query Segmentation Based on Eigenspace Similarity.
In Proceedings of the Joint conference of the 47th Annual Meeting
of the Association for Computational Linguistics and the 4th
International Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing
(ACL-IJCNLP 2009). August, 2-7, 2009, Singapore. Short papers,
pages 185–188. Association for Computational Linguistics,
2009. URL http://www.aclweb.org/anthology/P/
P09/P09-2047.pdf. 139, 140, 155, 156, 157, 158, 161

[240] Zhu Zhang and Balaji Varadarajan. Utility Scoring of Product
Reviews. In CIKM’06: Proceedings of the 15th ACM
international conference on Information and knowledge
management, pages 51–57, New York, NY, USA, 2006. ACM.
ISBN 1-59593-433-2. doi:10.1145/1183614.1183626. 112

[241] Ying Zhao, George Karypis, and Usama Fayyad. Hierarchical
Clustering Algorithms for Document Datasets. Data Min.

http://ceur-ws.org/Vol-502
http://www.aclweb.org/anthology/P/P09/P09-2047.pdf
http://www.aclweb.org/anthology/P/P09/P09-2047.pdf
http://dx.doi.org/10.1145/1183614.1183626

BIBLIOGRAPHY 229

Knowl. Discov., 10(2):141–168, 2005. ISSN 1384-5810.
doi:10.1007/s10618-005-0361-3. 83

[242] Li Zhuang, Feng Jing, and Xiao-Yan Zhu. Movie Review
Mining and Summarization. In CIKM’06: Proceedings of the
15th ACM international conference on Information and knowledge
management, pages 43–50, New York, NY, USA, 2006. ACM.
ISBN 1-59593-433-2. doi:10.1145/1183614.1183625. 112

[243] Justing Zobel and Yaniv Bernstein. The Case of the Duplicate
Documents: Measurement, Search, and Science. In X. Zhao,
J. Li, H.T. Shen, M. Kitsuregawa, and Y. Zhang, editors,
Proceedings of the APWeb Asia Pacific Web Conference, pages
26–39, Harbin, China, January 2006. LNCS 3841. 25

[244] Du Zou, Wei-Jiang Long, and Ling Zhang. A Cluster-Based
Plagiarism Detection Method: Lab Report for PAN at CLEF
2010. In Braschler and Harman [28]. ISBN 978-88-904810-0-0.
95, 98, 99

http://dx.doi.org/10.1007/s10618-005-0361-3
http://dx.doi.org/10.1145/1183614.1183625

About the Author

Martin Potthast was born in Steinheim on the 24th of April 1981.
He completed his secondary education at Gymnasium St. Xaver in
Bad Driburg in 2000. After one year of civil service, he enrolled
in computer science at the University of Paderborn in 2001. He
received his Bachelor degree in early 2005, and finished his diploma
degree mid 2006. Since then, he has been doctoral student at the
Bauhaus-Universität Weimar.

