Unterstützung der Material- und Produktauswahl in der Architektur durch Plausibilität der Entscheidung

Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur an der Fakultät Architektur der Bauhaus-Universität Weimar

vorgelegt von Dipl.-Ing. Christoph Spiekermann geb. 08.11.1968 Weimar, März 2008
Unterstützung der Material- und Produktauswahl
in der Architektur
durch Plausibilität der Entscheidung

Dissertation
zur Erlangung des akademischen Grades
Doktor-Ingenieur
an der Fakultät Architektur
der
Bauhaus-Universität Weimar

vorgelegt von
Dipl.-Ing. Christoph Spiekermann
geb. 08.11.1968
Weimar, März 2008

Gutachter:
Prof. Dr.-Ing. Dirk Donath
Prof. Dr.-Ing. Claus Dießenbacher

Tag der Disputation:
22. 09. 2008
»Es ist wichtig, das Material zu verstehen, das man verwendet.«
(Louis I. Kahn)
Inhaltsverzeichnis

0. Abstract .. 1

1 Motivation und Einführung ... 2
 1.1 Material und Architektur ... 4
 1.1.1 Die Oberfläche als Medium der Architektur ... 5
 1.1.2 Das Verhältnis von Form und Material ... 7
 1.1.3 Der Einsatz neuer Materialien in der Architektur ... 9
 1.1.4 Der Trend zur emotionalen Seite des Materials .. 11
 1.2 Das Problem der Materialwahl ... 13
 1.2.1 Unzureichende Such- und Informationsmöglichkeiten 13
 1.2.2 Fehlende Bewertungsmöglichkeiten ... 14
 1.2.3 Die Unterstützung der Entscheidung ... 15
 1.3 Aufbau der Arbeit .. 16
 1.3.1 Zielsetzung .. 16
 1.3.2 Definition des Begriffs „Material“ .. 18
 1.3.3 Struktur der Arbeit .. 19

 I Die Materialwahl

2 Der Prozess der Materialwahl ... 22
 2.1 Der Zeitpunkt der Materialfestlegung .. 22
 2.2 Die Basis des Materialwissens ... 24
 2.2.1 Inspirations- und Informationsquellen ... 25
 2.2.2 Zugriffsmöglichkeiten auf die Wissensbasis ... 26
 2.3 Strategien bei der Auswahl ... 28
 2.4 Unterstützung der Materialwahl .. 31

3 Digitale Techniken bei der Materialwahl ... 33
 3.1 Digitale Darstellung von Material ... 34
 3.1.1 Alphanumerische Beschreibung von Material .. 34
 3.1.2 Grafische Darstellung von Material .. 35
 3.1.3 Visualisierung von Material .. 38
 3.1.4 Übernahme von Materialdaten in die CAD-Umgebung 41
 3.1.5 Darstellung von Produkten in „virtual showrooms“ ... 44
 3.1.6 Augmentierte Darstellungen von Material ... 46
 3.1.7 Darstellung haptischer Materialeigenschaften ... 48
 3.2 Digital gestützte Materialsuche ... 51
 3.2.1 Suche nach harmonischen Farbkonzepten ... 51
 3.2.2 Suche in Werkstoff-Datenbanken ... 54
 3.2.3 Unterstützung der Produktsuche ... 55
 3.2.4 Studien zu einer umfassenderen Materialwahl .. 58
 3.3 Digitale Individualisierung von Material .. 59
 3.4 Der integrierte Gesamtprozess .. 61
 3.4.1 Zusammenfassung der Problemstellung ... 61
 3.4.2 Vision eines zukünftig möglichen Gesamtprozesses 62
II Die Entscheidungskriterien

4 Unterteilung der Entscheidungskriterien .. 66
 4.1 Beteiligte an der Auswahl ... 66
 4.2 Unterteilung der Kriterien nach Relevanz ... 68
 4.2.1 Absolut wichtige KO-Kriterien ... 68
 4.2.2 Relativ wichtige Kriterien .. 68
 4.3 Material-Klassifikation .. 69
 4.3.1 Traditionelle Klassifikationssysteme ... 69
 4.3.2 Eine Alternative zu starren Klassifikationssystemen ... 71

5 Kriterien bei der Materialwahl ... 73
 5.1 Festlegung der Kriterien .. 73
 5.1.1 Sinnliche Kriterien ... 74
 5.1.2 Technische Kriterien ... 77
 5.1.3 Ökonomische Kriterien ... 80
 5.1.4 Ökologische Kriterien .. 82
 5.1.5 Subjektive Kriterien .. 82
 5.2 Hierarchische Struktur ... 83
 5.3 Definition des ausschlaggebenden Kriteriums .. 85

III Das Verfahren

6 Ranking aller Materialien ... 88
 6.1 Daten vorliegender Materialeigenschaften ... 88
 6.1.1 Das Spektrum möglicher Daten .. 89
 6.1.2 Mögliche Wege der Datenerzeugung ... 91
 6.1.3 Skalenniveau der Entscheidungskriterien ... 95
 6.2 Festlegung des Zielwerts .. 101
 6.2.1 Übernahme vorhandener Werte .. 101
 6.2.2 Manuelle Werteingabe ... 102
 6.2.3 Interfacegestaltung ... 104
 6.3 Festlegung der Gewichtung .. 106
 6.3.1 Unterscheidung nach Kriterien ... 106
 6.3.2 Direkte Eingabe für jedes einzelne Kriterium ... 107
 6.3.3 Hierarchisch aufgebaute Paarvergleiche ... 108
 6.3.4 Vereinfachte Eingabe in hierarchischer Struktur ... 109
 6.4 Berechnung der Einzelunähnlichkeit ... 111
 6.4.1 Angabe der Unähnlichkeiten .. 111
 6.4.2 Prinzipielle Berechnung von Unähnlichkeiten .. 112
 6.4.3 Individuelle Modifikationen ... 114
 6.5 Berechnung der Gesamtunähnlichkeit .. 116
 6.5.1 Ermittlung der Gesamtdistanz .. 116
 6.5.2 Umgang mit nicht vorliegenden Daten ... 117
 6.5.3 Umgang mit KO-Kriterien .. 118
 6.6 Diskussion des Rankings .. 119

7 Zusätzliche Analyse des Ergebnisses .. 122
 7.1 Multidimensional Scaling ... 122
 7.1.1 Unterschiedliche Arten von MDS ... 123
 7.1.2 Berechnungsziel Stressminimierung ... 124
 7.1.3 Berechnungsverfahren ... 125
 7.1.4 Dimensionalität des Ergebnisraums ... 127
7.2 Statische Untersuchung .. 128
 7.2.1 Analyse der Ergebnisqualität .. 129
 7.2.2 Interpretation des Ergebnisses .. 131
7.3 Dynamische Untersuchung .. 133
 7.3.1 Manipulation der Auswahl der Elemente ... 134
 7.3.2 „What-If“-Strategie .. 136
 7.3.3 Browse .. 137
 7.3.4 Protokollierung des Verlaufs ... 137
 7.3.5 Probleme dynamischer Verfahren bei MDS.. 138
7.4 Diskussion des Multidimensional Scaling .. 139

8 Prototyp ... 141
 8.1 Verwendete Software .. 141
 8.2 Materialdaten ... 142
 8.3 Eingabe ... 143
 8.4 Berechnung .. 145
 8.5 Ausgabe .. 147
 8.6 Beispiel .. 149

9 Schlussbetrachtung .. 156
 9.1 Zusammenfassung .. 156
 9.2 Diskussion besonderer Kritikpunkte ... 158
 9.3 Fazit ... 161
 9.4 Ausblick ... 162

Anhang A .. 165
 A.1 Glossar .. 166
 A.2 Abbildungsverzeichnis .. 169
 A.3 Formelverzeichnis .. 175
 A.4 Quellenverzeichnis .. 176
 A.5 Im Prototyp verwendete Software ... 188
 A.6 Weiterführende Quellen .. 189
 Inspirations- und Informationsquellen .. 189
 Materialdatenbanken im Web .. 190
 Virtual showrooms .. 192
 Produktkonfiguratoren ... 192
 Interaktive MDS-Anwendungen .. 192

Anhang B .. 193
 B.1 Berechnung Farb reduktion und -unähnlichkeit .. 194
 B.2 Screenshots zum Berechnungsbeispiel im Prototyp ... 196

Thesen ... A
Curriculum Vitae .. D
 Tabellarischer Lebenslauf .. D
 Veröffentlichungen .. D
Ehrenwörtliche Erklärung ... E
Danksagung ... F
Abstract

Architektur wird vorwiegend über die den Raum begrenzenden Oberflächen wahrgenommen. Das Oberflächenmaterial kann daher mit seinen sinnlichen Eigenschaften die Entwurfsintention unterstützen, zugleich muss es aber auch zahlreiche technische, ökonomische und ökologische Anforderungen erfüllen. Materialwahl in der Architektur bedeutet somit das Abwägen einer Vielzahl von Parametern, die sich sowohl inhaltlich als auch hinsichtlich ihrer Relevanz stark unterscheiden.

Problemstellung

Lösungsvorschlag
Die vorliegende Arbeit formuliert daher eine Gesamtstrategie zur besseren Unterstützung der Entscheidung für ein Oberflächenmaterial.
Im Wesentlichen wird dabei eine Methode vorgestellt, wie die inhaltlich höchst unterschiedlichen Kriterien, welche Einfluss auf die Materialwahl ausüben, mit ihrer jeweiligen Relevanz gegeneinander in Ansatz gebracht werden können, um eine umfassende Bewertung der Materialalternativen zu ermöglichen. In einem zweiten Schritt wird mit Multidimensional Scaling eine Technik der Informationssvisualisierung benutzt, die eine zusätzliche Unterstützung durch weitere Analysemöglichkeiten und andere Suchwege eröffnet. Das vorgeschlagene Verfahren ist in einem Software-Prototyp umgesetzt.

Ziel
Die Arbeit soll damit einen Beitrag leisten, die Auswahl eines geeigneten Materials in der Architektur zu erleichtern, diese Entscheidung plausibel begründen zu können und den Weg der Entscheidungsfindung nachvollziehbar werden zu lassen.
Wie kommt man dazu, sich als Architekt wissenschaftlich mit Such- und Bewertungsstrategien bei der Suche von Oberflächenmaterialien in der Architektur zu beschäftigen?

Die Antwort ist – wie das Thema selbst - vielschichtig und vielleicht nur in der Summe aller Teile zu verstehen:

Freude am Material

Diese hier nur knapp angerissenen Punkte zum Thema Material und Architektur werden in Kapitel 1.1 als wesentlicher Teil der Einführung in das Thema weiter ausgebretet.

Digitale Materialien

Ein zweiter, nicht zu verleugnender Teil der Antwort liegt in der jahrelangen Beschäftigung mit Techniken der Architekturvisualisierung und der Erstellung zahlreicher Visualisierungen im Rahmen der eigenen Berufsausübung als Architekt:

Einige der heutzutage nutzbaren Visualisierungstechniken werden - unter dem Blickwinkel einer möglichen Entscheidungsunterstützung - in Kapitel 3 näher beschrieben.

Probleme der Baupraxis

 Weniger von Faszination als von einer gewissen Hilflosigkeit geprägt sind dagegen die Probleme, mit denen ich mich selbst als planender Architekt und im Austausch mit zahlreichen Kollegen in der Praxis allzu oft konfrontiert sah:
Häufig stellt sich nämlich die Frage, mit welchen Bauprodukten eine Entwurfsidee am besten umgesetzt werden kann. Wie trifft ein Architekt diese Entscheidung für eine bestimmte Oberflächenausführung?

Die Suche nach Bauproduktinformationen führt dabei – auch oder vielleicht gerade im Zeitalter des Internets – zu oftmals nicht untereinander vergleichbaren und somit wenig tragfähigen Aussagen. Die notwendige Entscheidung für eine bestimmte Ausführung erfolgt letztlich dann oft doch wieder nur „aus dem Bauch heraus“. Eine „Begründung“ - gegenüber dem Bauherrn, aber auch für sich selbst - wird notfalls „zurechtgebogen“. Ein für mich sehr unbefriedigendes Vorgehen, was die immer wiederkehrende Frage aufwirft, ob das zwangsläufig so sein muss. Diese Problematik der Materialsuche und -auswahl wird in Kapitel 1.2 näher ausgeführt.

Suche nach Lösungen

Vorgehensweise

Auch die vorliegende Arbeit soll einen kleinen Beitrag liefern, einen vielleicht recht speziellen, aber dennoch nicht unwichtigen Ausschnitt der gesamten Architekturplanung mittels digitaler Techniken zu verbessern:

Es wird ein Weg skizziert, wie die Materialwahl in der Architektur, also die Entscheidung für eine bestimmte Materialausführung, sinnvoll unterstützt werden kann. Als wesentliches - wenn auch nicht als einziges - Element einer möglichen Unterstützung wird dabei versucht, den eigentlichen Entscheidungsprozess möglichst plausibel, nachvollziehbar und begründet abzubilden.

Die Basis dieser gewählten Vorgehensweise sowie der konkrete Aufbau der Arbeit werden in Kapitel 1.3 dargelegt.

1.1 Material und Architektur

»Now the subject of Material is clearly the foundation of architecture, and perhaps one would not go very far wrong if one defined architecture as the art of building suitably with suitable material.«

[Morris 1891]

» [...] design intention and the material world coexist as an animated assertion of possibilities made physical. Designers understand that a fundamental step in design involves the translation of intention into material form.«

[Fernandez 2006, S.10]

Unzählige neue Materialien und Materialkombinationen, aber auch die »genüssliche Inszenierung traditioneller Baustoffe« [Schüttich 2006, S.586] und Verarbeitungstechniken eröffnen dabei heutzutage nahezu unbegrenzte Entfaltungsmöglichkeiten, „anything goes.“ Der gestalterische Ausdruck ergibt sich nicht mehr zwangsläufig aus der Form, sondern kann und muss eigenständig geplant und entworfen werden [Doveil 1994, S.67]. Diese Freiheit des Mate-
Motivation und Einführung

5

rialeinsatzes kann beim Betrachter - manchmal bewusst eingesetzte - Irritationen hervorrufen. Sie führt aber verstärkt auch beim Planer zu Unsicherheiten bei der Wahl des „richtigen“ Materials.

1.1.1 Die Oberfläche als Medium der Architektur

Ästhetische Qualität eines Materials

Dieses Empfinden beruht letztlich auf subjektiven oder kulturellen Bedeutungszuweisungen. Das Wahrgenommene wird also mit vorherigen Erfahrungen abgeglichen und übersteigt somit den Bereich des objektiv Messbaren. Menschen verschiedener individueller oder kultureller Hintergründe können also auf die objektiv gleiche Oberfläche unterschiedlich reagieren.

Zunehmende Wertschätzung der Oberfläche

Das Material - oder genauer: die Wertschätzung, die ein Bauwerk vorwiegend aufgrund des Materialeinsatzes erfährt - spielte in der Architekturgeschichte bis in die jüngste Vergangenheit eine untergeordnete Rolle und wurde kaum thematisiert. Dies lässt sich einfach begründen mit einer eingeschränkten Auswahl bzw. Beschaff-
Die Motivation und Einführung

»The broad proliferation of curtain wall systems allowed the disconnection of the façade material from the building's structure and infrastructure, freeing the material choice from utilitarian functions so that the façade could become a purely formal element.«
[Addington 2005, S.3]

»Mit seiner ganzen Vielfalt an Möglichkeiten ist das Thema Oberfläche heute so spannend wie selten zuvor. Eine ungemeine Freude am Experiment ist allerorts zu sehen, Grenzen werden ausgelotet, überlieferte Sehgewohnheiten in Frage gestellt, neue Materialien und Konzepte erprobt.«
[Schittich 2005, S.13]

»Ein Großteil der gesamtgesellschaftlichen Arbeit ist ästhetische Arbeit oder Inszenierungsarbeit.«
[Böhme 1994, S.93]

»Um unter der Flut von Eindrücken Aufmerksamkeit zu erzielen, sind inszenierte Stimmungen von Material und Oberflächen gefragt.«
[Schittich 2006, S.587]

»The material qualities of contemporary surfaces that are the most intriguing are precisely those that are the most unstable, that put into question the singularity of material properties and the absoluteness of material definitions.«
[Kennedy 2001]

»In einer Zeit, in der kaum noch ein Tabu zu brechen ist, besteht für Architekten und Designer ein besonderer Anreiz darin, durch die ungewohnte Anwendung von Materialien mit den herkömmlichen Sehweisen zu spielen und diese aufzulösen.«
[Heilmeyer 2006]

barkeit an möglichen Baustoffen (Naturstein, Ziegel, Holz), denen zudem nur eine dienende Rolle zugewiesen wurde [Schittich 2006, S.586].

Dieser eher beiläufige Blick auf das Oberflächenmaterial ändert sich erst durch eine Reihe von technischen Entwicklungen: Ausgehend von der konstruktiven Trennung von Tragelementen und bekleidender Haut, die eine freiere und individuellere Gestaltung der Oberflächen ermöglichte, geht der Weg über die Entwicklung unzähliger neuartiger Bauelemente und Verarbeitungstechniken bis hin zu heute verbreitet Anwendung findenden Individualmustern, die - z.B. durch Digitaldruck oder Rapid Prototyping-Technologien - industriell und kostengünstig herstellbar sind.

Gefahr der Oberflächlichkeit

Auch das Bauen ist diesem Rhythmus unterworfen. Die heute mög­liche Freiheit in der Gestaltung der Haut eines Bauwerks birgt also leider die Gefahr, »dass die Oberfläche mehr und mehr oberflächlich wird, also zum ‚Hingucker‘, zum bloßen Gag verkomm« [Sauer 2005].

Eine parallele Entwicklung ist aber auch in Bezug auf die Reprasen­tation von Architekturbüros zu beobachten: Bauwerke werden heutzutage vorwiegend durch Architekturfotografie in Hochglanz­zeitschriften oder via Internet einem breiteren Publikum vermittelt. Architekten können daher durch spektakuläre Bilder, durch gezielte Tabubrüche oder durch ungewöhnliche und verblüffende Materi-
Motivation und Einführung

»The representation of 'materiality', the perception of qualities attributed to materials, and our multiple understandings of what it means to be material, are all integral parts of media culture. Mediated representations of tangible or haptic material qualities may, in fact, be less literally 'real', but the reality of their pervasive presence in our culture is undeniable.«

[Kennedy 2001]

Zusammenfassung

1.1.2 Das Verhältnis von Form und Material

Die beschriebene Konzentration auf die Oberfläche erfordert zwangsläufig auch neue Antworten auf die Frage nach der häufig geforderten „konstruktiven Ehrlichkeit“ im Umgang mit Material, der „Materialgerechtigkeit“.

Weiterentwicklung der Verarbeitungstechniken
Tradierte Formen waren ursprünglich einem handwerklichen Umgang mit nur wenigen Materialien geschuldet. Die unkritische Weiterverwendung solcher Formen bei gleichzeitig industrieller Herstellungsweise mit neuen Baustoffen wurde daher durch die Moderne zu recht in Frage gestellt. Folgerichtig begann daraufhin die Suche nach einer Formensprache, die den neuentwickelten Techniken angemessen war.
Heute, in Zeiten mehrschichtiger Aufbauten, lassen sich fast alle Baukörper in unterschiedlichen Materialien konstruieren. Neueste Fertigungs- und Rechenmethoden verhelfen dabei der Form, sich von den Vorgaben des Materials zu lösen. Die Beziehung zwischen Form und Baustoff wird zunehmend unklar.«

[Schittich 2006, S.587]

»Heute, in Zeiten mehrschichtiger Aufbauten, lassen sich fast alle Baukörper in unterschiedlichen Materialien konstruieren. Neueste Fertigungs- und Rechenmethoden verhelfen dabei der Form, sich von den Vorgaben des Materials zu lösen. Die Beziehung zwischen Form und Baustoff wird zunehmend unklar.«

[Schittich 2006, S.587]

Weiterentwicklung der Materialien

Denken in Bauteilen

Fazit
Vielleicht ist es als Architekt mittlerweile notwendig, sich vom traditionierten Denkmuster zu lösen, die Form im direkten Zusammenhang mit dem Material sehen und entwerfen zu müssen. Auch wenn bestimmte Formen immer noch gefühlsmäßig eher bestimmten Materialien verbunden zu sein scheinen (z.B. Entwürfe von Zaha Hadid, ...
void, it is difficult to differentiate between material products, and harder still to locate an inherent architectural logic for material use. Yet this void can also be a ‘play space’ offering new freedoms.«
[Kennedy 2001, S.18]

»Working with materials becomes more like cooking. It is the recipe and the mix, the choice and the relative proportions of ingredients that determine the characteristic properties of materials. [...] The challenge to the architect is to see these changing successions not as losses to the discipline, but as gains.«
[Kennedy 2001, S.16]

1.1.3 Der Einsatz neuer Materialien in der Architektur

»While it is difficult to project real numbers, it has become a widely held belief that more new products have been developed in the last twenty years than in the prior history of materials science.«
[Brownell 2006, S.6]

»We’re definitely seeing a very new, emergent trend of architects getting involved in developing materials. It seems as if some are eschewing theory for pragmatics, or else applying theory in a pragmatic way. In many cases, this trend exists because architects are simply interested in creating things.«
[Jana 2006]

»The development in our time of new materials, finishes, and processes applicable to the built environment is based upon sophisticated technology, a by-product of pure research. [...] In general, archi-
die selbst in Beton nur schwierig zu realisieren sind), löst sich die „architektonische Logik“ der richtigen Materialverwendung mehr und mehr auf.

Translokation bekannter Materialien
Nur wenige dieser Materialien werden dabei speziell für das Bauwesen entwickelt: Die Zahl der Unternehmen aus der Baubranche, die gezielt Forschung im Bereich Material betreiben, ist sogar mit 24% um die Hälfte niedriger als in vergleichbaren Industriezweigen [Funhoff 2005, S.28]. Auch wenn immer mehr Architekten Einfluss nehmen auf die Entwicklung neuer Materialien, stellt der oben genannte Prada-Schaum, der speziell für diesen einen Laden-Entwurf entwickelt wurde, eine absolute Ausnahme dar.

Stattdessen wurden viele „neue Materialien“ ursprünglich eher für sehr spezielle Anwendungen wie z.B. die Raumfahrt entwickelt. Erst anschließend werden diese auf der Suche nach zusätzlichen Einsatzgebieten und Absatzmärkten für andere Gebrauchsgüter übernommen (NASA-Effekt). Oft werden auch bestimmte Produkte aus bekannten Materialien zunächst in einem branchenfremden
tects and designers are dependent upon materials manufacturers for creating products they can use and for disseminating information about those products.«

[Osborne 1990, S.8]

»Im Neuland stehen keine Wegwei­ser. Materialexperimente werden also immer wieder notwendig sein - und sie werden auch nie ihren Reiz verlieren, nicht für den Ingenieur, nicht für den Konstrukteur, nicht für den Gestalter und erst recht nicht für den Architekten, der diese unterschiedlichen Ansätze verbinden, zumindest aber koordinieren muss.«

[Hullmann 2002, S. 29]

Einschränkungen im Bauwesen

Innovative und aufsehen erregende Materialexperimente können allerdings auch in der Hochbau-Architektur relativ einfach in weniger sensiblen Bereichen stattfinden, also z.B. an nichttragenden Bauteilen wie an bekleidenden Oberflächen oder wiederum bei...

Zusammenfassung

1.1.4 Der Trend zur emotionalen Seite des Materials

Der Architekt kann bei seiner Materialwahl nicht nur auf neu hinzukommende High-Tech-Produkte zurückgreifen. Auch tradierte Materialien und Verarbeitungsweisen bleiben - mit durchaus wiederaufnehmender Bedeutung - bestehen bzw. werden wieder neu entdeckt.

Skepsis vor technologischen Neuerungen

Auch wenn neue Materialien praktischen Nutzen und ungeahnte Chancen versprechen (z.B. die leichter zu reinigende Sanitäroberfläche), werden Fragen nach möglichen negativen Begleiterscheinungen für die Gesundheit (z.B. die Auswirkung von Nanopartikeln), nach Umweltauswirkungen durch Produktion oder Einsatz, oder nach vorhandenen Marktmechanismen und wirtschaftlichen Abhängigkeiten (z.B. von Rohöl) gestellt. Für die breite Akzeptanz eines neuen Produkts muss diese Aufrechnung schon einen deutlichen Mehrwert für den Nutzer ausweisen.
Motivation und Einführung

Wunsch nach hoher Erlebnisqualität

Bei einer reinen Konzentration auf die technische Ebene, also die Leistungsfähigkeit eines Materials, droht die geistige, sinnliche und ästhetische Dimension verloren zu gehen. Die mittlerweile gewachsene Erkenntnis, dass heutige Technik Teile der Natur nachahmen oder gar überbieten kann, führt dann fast zwangsläufig dazu, dies durch eine Gegenbewegung, also z.B. »high-touch« statt »high-tech«, ausgleichen zu wollen [Beylerian 1990].

Reales Erleben als Gegenpol zur virtuellen Welt

Fazit

Auch für den Architekten ist es wichtig, bei der Materialwahl nicht nur die „harten“, technischen Anforderungen an ein Material zu berücksichtigen, sondern vor allem auf dessen „weiche“, sinnliche Eigenschaften Wert zu legen. Entwickelt der Entwerfende zudem noch ein Verständnis für die mit diesen Qualitäten verbundene zusätzliche Bedeutungsebene eines Materials, wird er - indem er insbesondere die gewünschten „weichen“ Eigenschaften gezielt formulieren kann - vielleicht eher ein geeignetes Material finden, das seine Entwurfsintentionen umfassend untermauert.

»Materialien „neigen heute dazu, als Träger von ästhetischen, kulturellen Werten und unabhängig von der Gestalt, die der Gegenstand annehmen wird, eine eigene Sprache zu sprechen. Materialien zu verarbeiten erfordert heute vollständig neue Fähigkeiten und Entwurfsabsichten im Vergleich zur Vergangenheit“

[Doveil 1994, S.64]
1.2 Das Problem der Materialwahl

»Designing is deciding. Amongst the many decisions taken during the design process, the choice of materials to be used is as crucial as any. […] However long and for whatever reason it may be delayed, sooner or later a decision has to be made if the design is to become part of the physical world there is simply no escaping this imperative.«

[Vollard 2004, S.9]

Im Rahmen der Ausführungsplanung, allerspätestens aber bei der Vergabe von Bauleistungen, also bei der Umsetzung der Planungen in gebaute Realität, muss der Planer sich nun für die genaue Materialausführung jedes Bauteils entscheiden. Dabei stellen sich ihm jedoch eine ganze Reihe von Fragen:

»Erst durch den Abgleich der vom Architekten gewünschten Wirkung mit den geforderten Leistungsmerkmalen entsteht eine wirklich nachhaltige Materialität, die zu einem Wohlbefinden führt, das Architektur lebenswert macht.«

[Hegger 2006, S.655]

Die Festlegung eines bestimmten Produkts ist also in zweierlei Hinsicht problematisch: Es mangelt nicht nur an durchgängigen und einheitlichen Informationsmöglichkeiten über Materialien, sondern - und dies ist viel entscheidender - es fehlt eine nachvollziehbare Strategie, wie prinzipiell denkbare Materialien in Bezug auf den Erfüllungsgrad der gewünschten oder geforderten Eigenschaften bewertet werden können.

1.2.1 Unzureichende Such- und Informationsmöglichkeiten

Aufgrund der immer größeren Anzahl prinzipiell vorhandener und – im Zeitalter globaler Warenströme – auch leicht erhältlicher Produkte wird es zunehmend schwieriger, gezielt nach diesen zu suchen und sich über deren Eigenschaften zu informieren.

Suche nach Materialien

Die Nutzung allgemeiner Suchmaschinen im Internet führt meistens zu wenig sinnvollen Ergebnissen. Die Suche kann hier nur über Schlagworte erfolgen und nicht etwa über gewünschte Materialieegenschaften, so dass der Nutzer eigentlich schon vorher wissen muss, was er genau sucht. Entsprechend beruht die Reihenfolge der angezeigten Ergebnisse dann auch nicht auf einer inhaltlichen Be-

Informationspolitik der Hersteller
Trotz aller genannten Einschränkungen ist das Ergebnis einer derartig durchgeführten Materialsuche üblicherweise eine ganze Reihe von Produkten, die auf den ersten Blick die Erfordernisse des Planers allesamt mehr oder weniger erfüllen. Will man sich jedoch detaillierter über die Eigenschaften der angebotenen Alternativen informieren, steht man vor höchst uneinheitlichen, unvollständigen oder gar vor fehlenden Produktdatenblättern. Die meisten Hersteller verstehen ihre Webseiten offensichtlich vorwiegend als Werbe- und nicht als Informationsplattform.

Fazit

1.2.2 Fehlende Bewertungsmöglichkeiten

Problem einer einseitigen Sichtweise

»The recent growth of Internet product information sites has not improved the situation at all, because the only method of search is by keyword, which seldom provides enough information to make an intelligent selection within a reasonable time frame.« [IAI 2001]

»The material selection and procurement/purchasing processes are currently not very well standardized. The thousands of product manufacturers each produce their own product data publications, usually deliberately unique so as to distinguish themselves from their competition.« [IAI 2001]

»The selection and use of materials too often becomes an exercise in two-dimensional composition, based on a generally uninformed set of notions about the unique attributes of those materials.« [Fernandez 2006, S.9]
Motivation und Einführung

»In the general character of the word is the fact that a significant swath of contemporary designers are not able to discuss a material in terms that extend beyond the general and immediately sensory-oriented. The haptic and visual aspects of materials clearly dominate discussions of materiality and while these discussions may be rich, useful and inspirational, they are limited in the coverage of the topic in light of its potential.«
[Fernandez 2006, S.11]

»Tools and techniques are available for selecting materials by functional requirements, but for satisfying aesthetic requirements, tools are far less well developed.«
[Bezooyen 2002; S. 2]

1.2.3

Die Unterstützung der Entscheidung

Ansatz der Entscheidungstheorie

In der Entscheidungstheorie, die oft als betriebswirtschaftliches Instrument benutzt wird [Wikipedia 2006a], wird davon ausgegangen, dass Entscheidungen im Prinzip durch Entscheidungsunterstützende Systeme (decision support systems DSS) abgestützt werden können. Die Entscheidung selbst wird dem Nutzer durch ein solches System also nicht abgenommen, es liefert aber eine begründete und nachvollziehbare Datenbasis, auf der die jeweilige Entscheidung erfolgen kann.

Fazit

Es fehlt letztendlich ein Bewertungssystem, in dem es gelingen kann, zum einen die „weichen“ Kriterien der Materialauswahl in nachvollziehbarere Größen zu fassen, zum anderen diese anschließend aber auch in Relation zu setzen mit den eher „harten“ Faktoren. Eine solche Bewertungsstrategie könnte helfen, die Auswahl eines bestimmten Produkts unter Berücksichtigung aller Kriterien plausibel zu begründen.
Viele der in der Entscheidungstheorie entwickelten Methoden und Verfahren sind dabei für eine andere Grundkonstellation als bei der hier beschriebenen Materialwahl ausgelegt: In der Betriebswirtschaft geht es eher um Entscheidungen mit größeren ökonomischen Folgen wie z.B. Standortentscheidungen bei einer üblicherweise geringeren Zahl an Alternativen. Die Anwendung auch komplexerer Techniken kann sich also trotz eines größeren Aufwands relativ schnell auszahlen.

Entscheidungsunterstützende Systeme bei der Materialwahl

Im Gegensatz dazu soll im architektonischen Planungsprozess wiederholt und in begrenzter Zeit aus einer nahezu unüberschaubaren Produktpalette das „optimale“ Material ermittelt werden. Unter einer solchen Konstellation kehrt sich das Verhältnis von Aufwand zu Nutzen schnell um.

Dennoch ist anzunehmen, dass einige der Verfahren oder zumindest Teile davon auch auf die Materialwahl anwendbar oder übertragbar sind. Die Grundannahme bleibt, dass - wenn es gelingt, die einzelnen Materialalternativen mit begründeten und nachvollziehbaren Daten zu unterfüttern - die Entscheidung für ein Material unterstützt werden kann.

1.3 Aufbau der Arbeit

»Die deskriptive Entscheidungstheorie untersucht […] empirisch die Frage, wie Entscheidungen in der Realität tatsächlich getroffen werden. Die normative Entscheidungstheorie sucht nach Kriterien rationalen Entscheidens […]. Die präskriptive Entscheidungstheorie beschäftigt sich mit der Bereitstellung von Verfahren zur Fällung rationaler und praktikabler Entscheidungen.«

[Wikipedia 2006a]

1.3.1 Zielsetzung

Die vorliegende Arbeit soll einen Weg aufzeigen, wie die Wahl eines Materials in der Architektur unterstützt werden kann, indem die Entscheidung für das Material auf einer plausibleren Basis als zuvor vollzogen werden kann.
Plausibilität

Einschränkungen

Es wird zudem vorausgesetzt, dass Entscheidungsunterstützende Systeme dem Nutzer nur bei der Entscheidungsfindung helfen können, indem sie ihm Argumente für seine Wahl in die Hand geben. Sie werden ihm aber die letztendliche Entscheidung nicht vollständig abnehmen können. Das Ziel aller Betrachtungen kann und soll also explizit nicht die automatische Ermittlung des „absolut besten“ Materials sein.

Davon ausgehend, dass Digitaltechniken und Online-Instrumente zukünftig auch bei der Materialwahl noch weiter an Wichtigkeit zunehmen werden, sollen mit der vorgestellten Strategie vor allem die Möglichkeiten der digitalen Auswahlwerkzeuge verbessert werden. Grenzen, die sich in der sinnlichen Erfahrbarkeit eines Ma-
Motivation und Einführung

Die vorgestellte Weg soll vor allem in den frühen Planungsphasen eine schnelle Eingrenzung prinzipieller Alternativen und eine prinzipielle Einordnung der Ergebnisse ermöglichen. Der weitere Kontakt zu Herstellern, das Einholen zusätzlicher detaillierter Produktinformationen oder das Überprüfen der Wirkung an Materialmustern oder Musterflächen wird dagegen - zumindest zunächst - nicht ausbleiben können.

Als Vision dient letztlich das von der International Alliance for Interoperability IAI skizzierte „software tool“, das in der Lage ist, auf Grundlage von Produktdaten den Auswahlprozess zu verbessern und die für die Suche notwendige Zeit bei erhöhter Treffgenauigkeit zu verkürzen [IAI 2001]. Dieses Werkzeug im Sinne dieser Arbeit soll die Materialwahl vor allem auf eine plausible, also nachvollziehbare Grundlage stellen helfen.

1.3.2 Definition des Begriffs „Material“

In den bisherigen Kapiteln wurden die Begriffe „Material“, „Baustoff“, „Produkt“ und teilweise sogar „Oberfläche“ nahezu gleichbedeutend nebeneinander verwendet. Der unterschiedliche Gebrauch der Begriffe - auch in den zitierten Quellen - hängt dabei selbstverständlich immer von der jeweiligen Perspektive und Intention der Autoren ab. Für die Zwecke dieser Arbeit ist es daher wichtig, einige Eingrenzungen vorzunehmen:

Es wurde anfangs besonders auf das ästhetische Potenzial durch den Einsatz von entsprechend gewählten Materialien hingewiesen. Dies bedeutet zum einen natürlich eine gewisse Bevorzugung der direkt erfahrbar Oberfläche eines Materials, zum anderen eine Konzentration auf Bauwerk- gegenüber den Rohbaumaterialien.

Im weiteren Verlauf der Arbeit sollen also - auch wenn aus Gründen besserer Lesbarkeit teilweise wechselnde Begriffe benutzt werden - unter „Material“ primär bereits vorverarbeitete, zugelassene oder zumindest prinzipiell zulassungsfähige und speziell im Ausbau einsetzbare Materialien und Produkte mit all ihren durch einen Bearbeitungsprozess erhaltenen Eigenschaften gemeint sein.
1.3.3 Struktur der Arbeit

Die folgende Arbeit teilt sich hauptsächlich in drei inhaltlich gleichberechtigte und aufeinander aufbauende Teile. Im Anschluss daran folgt eine kurze Beschreibung des erarbeiteten Softwareprototyps sowie eine abschließende Betrachtung der vorgestellten Strategie:

I - Die Materialwahl
In Kapitel 2 wird zunächst der übliche Weg bei der Materialwahl unter dem Einsatz vorhandener Hilfsmittel beschrieben. Ein besonderer Schwerpunkt wird anschließend in Kapitel 3 auf die Betrachtung heutiger digitaler Systeme zur Unterstützung des gesamten Auswahlprozesses gelegt.

II - Die Entscheidungskriterien
Im Kapitel 4 werden die Entscheidungskriterien bei der Materialwahl formal nach ihrer Art und Auswirkung allgemein unterteilt sowie bestehende Material-Klassifikationssysteme untersucht. Darauf aufbauend werden im Kapitel 5 die im Rahmen dieser Arbeit konkret in die Materialwahl in der Architektur einfließenden Kriterien aufgeführt, detaillierter beschrieben und in einer Struktur zusammenfassend dargestellt.

Am Ende wird aus der Einzelbetrachtung der Kriterien heraus ein zusammenfassendes Gesamtkriterium für die Materialwahl formuliert, nach dem sich das weitere Vorgehen ausrichtet.

III - Das Verfahren
Abschließend wird ein zweistufiges Verfahren vorgeschlagen, wie das Ziel der Arbeit - nämlich die Entscheidung für ein bestimmtes Material nachvollziehbar begründen zu können - erreicht werden kann.

Prototyp und Abschlussbetrachtung

In Kapitel 9 wird die Arbeit in ihrer Argumentationslinie noch einmal kurz zusammengefasst, die vorgestellte Strategie im Vergleich zur beschriebenen bisherigen Arbeitsweise abschließend diskutiert sowie ein Ausblick auf weitere notwendige Arbeiten im Hinblick auf eine mögliche Umsetzung gegeben.
I Die Materialwahl
Die Materialwahl

Der Prozess der Materialwahl

»Life is full of difficult choices. Everyone has their own way of dealing with these, some effective, some not. Studies of problem-solving distinguish two distinct reasoning processes […] deduction and inductive reasoning.«

[Ashby 2002, S.124]

Der Weg von der ersten Formulierung eines Materialwunschs bis hin zur Entscheidung für ein konkretes Produkt kann grundsätzlich zu unterschiedlichen Zeitpunkten im Planungs- und Bauablauf gegangen werden. Diese werden kurz hinsichtlich der daraus folgenden Auswirkungen auf die Materialwahl in Kapitel 2.1 beschrieben. Verschiedene Medien können dabei als Inspirations-, aber auch als Informationsquelle dienen und stellen Materialwissen in verschiedener Qualität und Detaillierung bereit. Diese werden in Kapitel 2.2 beleuchtet.

Auf der Basis dieses Materialwissens kann letztlich ein geeignetes Material für den jeweiligen Anwendungsfall gewählt werden. Hierbei lassen sich verschiedene Strategien verfolgen, die in Kapitel 2.3 diskutiert werden.

2.1 Der Zeitpunkt der Materialfestlegung

»HOAI §15 Leistungsbild Objektplanung für Gebäude
[...] LP 3 Entwurfsplanung (System- und Integrationsplanung)
[...] Durcharbeiten des Planungskonzepts [...] Zeichnerische Darstellung des Gesamtentwurfs [...] insbesondere mit Einzelheiten der Wandabwicklungen, Farb-, Licht- und Materialgestaltung
[...] LP 5 Ausführungsplanung
[...] Durcharbeiten der Ergebnisse der Leistungsphasen 3 und 4 [...] Detaillierte Darstellung der Räume und Raumfolgen [...] Materialbestimmung«

[BGBl 2001]

Auch wenn aus der Honorarordnung für Architekten und Ingenieure (HOAI) nicht direkt die Beschreibungen von Planungsleistungen
Der Prozess der Materialwahl

I Die Materialwahl

Man kann jedoch davon ausgehen, dass die einzelnen Leistungsphasen der HOAI in den seltensten Fällen linear hintereinander und separat abgearbeitet werden. Auch für den Zeitpunkt und die inhaltliche Bedeutung der Materialwahl ergeben sich daher letztlich drei prinzipielle Möglichkeiten, die - in Abhängigkeit von Projekt und Planer - unterschiedlich und kaum jemals in Reinform zur Anwendung kommen können:

Materialwahl als Grundlage des Entwurfs
Eine große Vielfalt an Materialien ist heute in der Lage, die im Normalfall an ein Bauteil gestellten Anforderungen zu erfüllen. Die Wahl eines Materials, insbesondere natürlich eines Ausbaumaterials, ergibt sich also nicht mehr unbedingt zwangsläufig erst im Laufe des Entwurfes, sondern kann durchaus bereits zu Beginn der Entwurfstätigkeit stehen. Es ist daher durchaus denkbar, sich als Architekt zunächst allein der geplanten Atmosphäre und der Materialität eines Entwurfs zuzuwenden.

Material und Form sind nicht mehr unbedingt voneinander abhängig (vgl. Kapitel 1.1.2). Im Umkehrschluss kann man sagen, dass das anfangs gewählte Material nicht zwangsläufig einen Einfluss auf die Gestalt ausübt (wie dies z.B. noch bei einem Bugholzstuhl von Thonet der Fall war, dessen Form sich speziell aus dem Material Holz in Kombination mit einem neuen Herstellungsverfahren ableitete). Wenn also heute ein gesamter Entwurf allein aus dem Material heraus begründet wird, sind zumindest Zweifel angesagt.

Materialwahl am Ende des Bauprozesses
Das andere Extrem ist dagegen, die Materialwahl erst am Schluss des Bauprozesses zu treffen. Gerade die endgültige Festlegung des Fußbodenbelags oder der Wandbekleidung kann in vielen Fällen bis kurz vor die Fertigstellung des Bauwerks verschoben werden. Ein solches Abwarten erlaubt, die Entscheidung für ein Material unter Wahrnehmung der Raumwirkung an Musterflächen zu treffen. Bestimmte Effekte, z.B. dass Farben auf kleinen Flächen anders wirken als auf großen oder gar auf einem ausgedruckten Plan, können so zumindest minimiert werden.

Da heute zunehmend Bauwerke erstellt werden, ohne dass der zukünftige Nutzer vorher feststeht, hat dies zudem den entscheidenden Vorteil, dass dieser so die Möglichkeit hat, seine eigenen Vorstellungen – im Rahmen des konstruktiv Möglichen - mit einzubringen.
Parallel zum Entwurfsprozess

Fazit

Materialfestlegungen können in unterschiedlichen Phasen der Ent- wurfsplanung getroffen werden, wobei die übliche Vorgehenswei- se sicherlich die den Entwurf begleitende ist.

Sollen diese Entscheidungen unterstützt werden, muss der Zugriff auf Informationen über geplante Materialien sowohl zu allen Zeit- punkten als auch in unterschiedlicher Informationstiefe möglich sein. Auch die Bewertung der Alternativen sollte mehr oder weni- ger detailliert vorgenommen werden können.

2.2 Die Basis des Materialwissens

[Sauer 2005, S.14]

Der gezielte Zugriff auf dieses Wissen allerdings ist mit einigen Schwierigkeiten behaftet und hängt von der notwendigen Informa- tionstiefe ab. Sollen jederzeit aktuelle und detaillierte Informatio- nen abgerufen werden können, muss einige Energie in die Pflege dieses Wissensvorrats investiert oder aber auf externe Dienstleister zurückgegriffen werden.
2.2.1 Inspirations- und Informationsquellen

Fachzeitschriften

Fachbücher und -webseiten

Vor allem aber zeigt die Zunahme solcher Bücher das gestiegene Interesse an Neuartigem und an Inspiration im Bereich Material.

Fachmessen
Gezielte Besuche materialspezifischer Fachmessen (siehe Anhang A.6) ermöglichen, sich spartenübergreifend über Neuigkeiten bei Produkten und Verarbeitungstechniken zu informieren. Solche Besuche haben gegenüber den bisher genannten Quellen den Vorteil, Materialien direkt an Mustern erleben zu können, also die Erfahrbarkeit nicht auf ein Abbild oder eine Beschreibung zu reduzieren. Zudem sind persönliche Gespräche mit Herstellern oder Ver-
Materialwahl
Der Prozess der Materialwahl

Materialagenturen

Materialspezifische Webseiten
Mehrere dieser Agenturen präsentieren ihre Materialsammlungen nicht nur in Realität, sondern auch als Datenbank im Internet. Je nach Ausrichtung des Betreibers können diese Webseiten eher informativen oder eher inspirierenden Charakter haben. Diese Webseiten werden im Rahmen der digitalen Hilfsmittel (siehe Kapitel 3.2.3) näher beschrieben und bewertet.

Newsletter
Viele Betreiber von Materialagenturen bieten interessierten Nutzern auch an, einen regelmäßig erscheinenden E-Mail-Newsletter (siehe Anhang A.6) zu abonnieren, in dem sie über Neuigkeiten und über Vergessenes, aber Altbewährtes informieren. Der Unterschied solcher Newsletter im Vergleich zu allen anderen Quellen ist, dass der Planer nicht selber aktiv werden muss, um Materialinformationen zu bekommen. So wird er immer wieder animiert, sich mit dem Thema Material zu beschäftigen.

2.2.2 Zugriffsmöglichkeiten auf die Wissensbasis

Alle Informationen und Ideen aus den oben genannten Quellen können jedoch nur dann sinnvoll eingesetzt werden, wenn sie im Anwendungsfall wieder gezielt abgerufen werden können. Ohne einen solchen direkten Zugang wären die vermittelten Informationen nahezu wertlos.

Im Umgang mit Materialwissen gibt es prinzipiell folgende unterschiedliche Herangehensweisen:

Aufbau einer eigenen Materialsammlung
Egal ob nur im Gedächtnis, in Form von Produktkatalogen und Materialmustern im Regal oder als Link-Liste im Browser, die Pflege einer eigenen Materialsammlung bedeutet immer einen großen Aufwand. Fragen nach einer sinnvollen Kategorisierung, nach möglichen Suchwegen durch Querverweise und nach der regelmäßigen...

Eigene Suche im Anwendungsfall

Ein solches Vorgehen erfordert dennoch grundsätzliche Kenntnisse über Materialien und einen vorhandenen Grundstock an Alternativen, also zumindest das Abrufen von Quellen oder Erfahrungen aus dem Kopf, die dann am Ausgangspunkt einer Suche stehen können. Anschließend kann der Planer die Richtung der Suche einengen, indem er näher definiert, welche Kriterien das gesuchte Material erfüllen soll. Derart präpariert lassen sich z.B. über eine Schlagwortsuche in Internetsuchmaschinen, Herstellersuche in speziellen Bau- datenbanken oder die Eingabe der gewünschten Eigenschaften in Materialdatenbanken notwendige nähere Informationen zu möglichen Materialien erst zum Zeitpunkt der Anwendung herausfinden.

Beauftragung eines Materialscouts

Die Materialwahl

Der Prozess der Materialwahl

2.3 Strategien bei der Auswahl

»For a given product, there is no longer a single material that presents itself as the obvious choice, almost as the only real candidate. Now there are different materials that compete one against another. Only an indepth and wide-ranging analysis of the entire manufacturing process and - in some cases - of the successive life of the product itself, can lead to the selection of the most satisfactory solution.«

[Manzini 1989, S.37]

»In selecting materials by their function-based value, they need to be objectively regarded by their inner properties. These inner properties can be represented by technical data. The process is characterized by starting with a clear goal and having an analytical attitude in making decisions.

In selecting materials by their aesthetic value, materials are subjectively regarded by their outer form, which requires the involvement of the designer with the material itself. The process of selection is done by exploration.

Exploration does not start with a clear goal, but the process itself is forming the goal, by cycles of idea-regarding alternatives.«

[Bezooyen 2002, S.2]

Das Suchen und Finden von Materialien ist nur der erste Schritt auf dem Weg zur Festlegung eines Materials. Im eigentlichen Auswahlprozess, der auch parallel zur Suche stattfinden kann, muss der Planer aus allen zur Kenntnis genommenen und somit ihm für die Auswahl zur Verfügung stehenden Materialien letztlich jene herausfiltern, die aufgrund ihrer technischen Eigenschaften zum Einsatz kommen könnten, zudem aber auch seine sinnlich-ästhetischen Ansprüche erfüllen. Und auch diesen Kreis der möglichen Materialien wird er versuchen immer weiter einzugrenzen, um sich letztendlich auf ein einziges, ihm für den Einsatzzweck am besten geeignet erscheinendes, festlegen zu können.

Auch wenn Ashby diese Methoden auf ein Vorgehen im Produktdesign bezieht und dafür immer auch das Zusammenspiel mit Herstellungsprozessen benennt, sind sie doch genereller Natur. Sie lassen sich als Grundprinzipien auch auf den Materialwahlprozess in der Architektur übertragen.
Die Materialwahl

Der Prozess der Materialwahl

Analyse

Wenn die obigen Voraussetzungen erfüllbar sind, kann mit der Methode der Analyse ein Material sofort und plausibel begründbar als für den Einsatzzweck „möglich“ (die Eigenschaften des Materials erfüllen die gestellten Anforderungen) oder als „nicht möglich“ eingeordnet werden. Auch eine Beurteilung, wie gut diese erfüllt worden ist, kann so erfolgen, d.h. mehrere Materialien können auf diese Weise miteinander verglichen werden. Im Prinzip lässt sich so das „objektiv beste“ Material ermitteln.

Der Nachteil der rein analytischen Herangehensweise ist allerdings, dass sie keinerlei Hilfestellung gibt, in welche Richtung die weitere Suche gehen könnte, wenn nicht alle Kriterien definiert werden konnten. Sie ermöglicht eben nur den schematischen Abgleich von geforderten mit vorhandenen Eigenschaften.

Synthese

Diese Suche nach Analogien dient dabei weniger einer rationalen Bewertung von Materialien, sondern eher dazu, zunächst überhaupt erst die Ziele der eigenen Suche näher zu definieren und daraus gezielte Einstiege in eine weitere Suche zu generieren. Sie ist daher auch nicht so zielgerichtet durch technische Systeme zu unterstützen wie etwa die reine Analysetätigkeit.

Ähnlichkeit

Inspiration

In einer Zeit, wo die Neuigkeit an sich schon einen Wert darstellt, kann ein nicht-analytisches und nicht-planbares Vorgehen durchaus ein positives - da unerwartetes - Ergebnis hervorbringen. Inspiration sollte daher als eine ernstzunehmende und auch im Weiteren als...
unterstützenswerte Methode betrachtet werden, auch wenn nicht näher zu definieren ist, wie Inspiration genau vor sich geht.

Fazit

2.4 **Unterstützung der Materialwahl**

»When we think, we identify objects or ideas and also relations among them. When we identify anything, we decompose the complexity which we encounter. When we discover relations, we synthesize. This is the fundamental process underlying perception: decomposition and synthesis.«

[Saaty 1990, S.3]

Zusammenfassend lässt sich die Materialwahl als eine äußerst komplexe Handlung verstehen: Sie steht zu einem nicht genau fixierten Zeitpunkt im Rahmen der sonstigen Entwurfsentscheidungen an und basiert auf unterschiedlichsten Quellen von Informationen, die zudem aufgrund von Neu- und Weiterentwicklungen am Markt einer steten Aktualisierung bedürfen. Zur Eingrenzung des letztendlich gewählten Materials können mehrere unterschiedliche Strategien verfolgt werden.

Will man den als problembehaftet erkannten Auswahlprozess (vgl. Kapitel 1.2) als Ganzes verbessern, hat man die Möglichkeit, an vielen verschiedenen Punkten und auf unterschiedlichen Ebenen anzugehen. In dieser Arbeit soll schwerpunktmäßig die Entscheidungsfundung für ein bestimmtes Material unterstützt werden (vgl. Kapitel 1.3.1). Aus den obigen Betrachtungen lassen sich daher die folgenden Anforderungen an ein die Entscheidung unterstützenden Werkzeug ableiten:

Anforderungen

Da der Zeitpunkt der Materialwahl und somit die vorhandene und notwendige Informationstiefe wechseln kann, sollte der Zugang und die Auswertung von Materialinformationen zeitlich unabhängig und inhaltlich auf verschiedenen Detailstufen erfolgen können.
Da die Materialwahl auf jeweils aktuellem Materialwissen aufbauen können soll, liegt ein System nahe, das zum Zeitpunkt der Materialwahl automatisch die jeweils aktuellsten Produktdaten von Herstellern auslesen und interpretieren kann.

Ein die Entscheidung unterstützendes Werkzeug soll nicht automatisch eine einzige Lösung als Ergebnis vorgeben, sondern ermöglichen, die Entscheidung auf einer nachvollziehbaren und sinnfälligen Grundlage fallen zu können. Es soll daher vor allem den Prozess der Auswahl unterstützen, indem die komplexe Materialentscheidung in kleinen, einzelnen und überschaubaren Schritten vorgenommen werden kann.

Damit dieser schrittweise Auswahlprozess nicht nur auf eine einzige mögliche Strategie verkürzt wird, sollten alle genannten Strategien - und zwar in beliebig wechselnder Reihenfolge - verfolgt werden können. Das Werkzeug soll also ermöglichen, rein analytisch vorgehen zu können und Materialien aufgrund der Erfüllung geforderter Eigenschaften zu bewerten. Es soll den Rückgriff auf ein mehr oder weniger detailliert beschriebenes Material erlauben, um analoge oder ähnliche Materialien zu suchen. Und es soll - in Anlehnung an die eigentliche Suche - durchaus auch unerwartete Vorschläge für Materialien unterbreiten können.
3 Digitale Techniken bei der Materialwahl

»In addition, there are few software tools that attempt to provide assistance in material selection, [...] new software tools that utilize standardized product information would improve the overall process, lessen the time required, and improve accuracy.«

[IAI 2001]

Bereits heute werden diverse digitale Techniken im Rahmen der Material- und Produktauswahl in der Architektur eingesetzt. Selbstverständlich unterstützen sie alle auf ihre eigene Art und Weise den Materialwahlprozess. Diese Unterstützung verläuft dabei in unterschiedliche Richtungen:

Es gibt zahlreiche Techniken, die darauf zielen, ein Material mit seinen Eigenschaften digital darzustellen (Kapitel 3.1). Bei ihnen geht es im Prinzip um das „Ersetzen“ eines nicht real vorliegenden Materials durch eine digitale Repräsentation. Je besser die Darstellung hinsichtlich Aussagekraft und Qualität ausfällt, umso weniger relevant ist das Fehlen des realen Materials.

Die eigentliche Unterstützung besteht also darin, bei der Auswahl genauso agieren zu können, wie man es mit realen Materialien auch tun würde. Dies bedeutet aber im Umkehrschluss, dass durch diese Techniken erst einmal keine weitere fachliche Hilfestellung für die Auswahl zu erwarten ist.

Zunehmend werden Digitaltechniken auch dazu eingesetzt, Oberflächen zunächst individuell zu beschreiben und erst anschließend nutzerspezifisch herzustellen. Diese Techniken haben mit der Materialwahl, wie sie hier verstanden werden soll, eher am Rande zu tun. Einige Beispiele hierzu werden jedoch der Vollständigkeit halber in Kapitel 3.3 aufgeführt.

Die bewusst sehr stark reduzierten Beschreibungen der einzelnen Themenfelder sollen zunächst das breite Spektrum der im Zusammenhang mit der Materialwahl genutzten Techniken zeigen sowie aktuelle Tendenzen erkennbar werden lassen. Sie erheben als Querschnittsbetrachtung keinen Anspruch auf Vollständigkeit, sondern dienen im Anschluss vor allem als Basis und Verweismöglichkeit für die im Kapitel 3.4 formulierte Vision einer durchgehenden digitalen Unterstützung des Materialwahlprozesses.
3.1 Digitale Darstellung von Material

»"Solange man Äpfel nicht per E-Mail verschicken kann, müssen Materialien bemustert werden", so lautet das Motto von raumPROBE.«

[Birk 2006b]

Da nicht zu jedem Zeitpunkt und an jeder Stelle der Materialwahl auf alle Produkte real zurückgegriffen werden kann und soll, ist das Ziel der digitalen Materialdarstellung, eine für den jeweiligen Zweck ausreichende Information über diese nicht real vorliegenden Materialien zu vermitteln. Da der Zweck der Repräsentation je nach Zeitpunkt im Entwurfsprozess und je nach inhaltlicher Zielstellung jedoch stark variieren kann, lassen sich höchst unterschiedliche Ansätze und Techniken der Darstellung ausmachen.

Allen vorgestellten Ansätzen ist gemein, dass der Planer ein Material letztlich nur auf Grundlage eigener Erfahrung einschätzen und bewerten kann. Er bekommt darüber hinaus noch keine weitere Unterstützung bei der eigentlichen Materialwahl.

3.1.1 Alphanumerische Beschreibung von Material

Die einfachste Art Materialien zu kennzeichnen ist ihre textliche oder numerische Beschreibung. In architekturspezifischen CAAD-Systemen lassen sich sowohl Raumoberflächen als auch konstruktiven Bauteilen Materialien zuordnen. Beide Möglichkeiten haben jedoch ursprünglich weniger die Unterstützung gestalterischer Aspekte zum Ziel, als vielmehr die Absicht, schnell und strukturiert die Mengen und Massen für die Ausschreibung der Bauleistungen ermitteln zu können.

Angaben im Raumstempel

Wie bei ursprünglich manuell gezeichneten Plänen lassen sich auch in CAAD-Plänen Raumstempel eintragen, die für jeden Raum - neben der Festlegung der Funktion und einer eventuellen Durchnummerierung - den Fußbodenbelag und die automatisch ermittelte Grundfläche und Länge der umlaufenden Kanten aufführen. In einigen Systemen wird der Raum darüber hinaus als eigenständiges 3D-Objekt verwaltet, bei dem dann auch die Wand- und Deckflächen hinsichtlich ihrer Materialität beschrieben sein können.

Diese Daten können genutzt werden, eine Flächenermittlung oder ein umfassendes Raumbuch zu erstellen.

Definition von CAAD-Bauteilen

Auch den konstruktiven Bauteilen lassen sich Materialien zuordnen. Hierbei kann - je nach System - auf Kataloge zurückgegriffen werden, die bereits detailliert die geplante Ausführungsart beschreiben.
Neben einer dadurch ermöglichten automatischen Darstellung der Bauteile (z.B. Diagonalschraffur für Mauerwerk) dient dies vor allem dazu, Bauteillisten für die Vorbereitung der Ausschreibung auch gegliedert nach verschiedenen Baustoffen und Ausführungen (z.B. Ziegelart, Rohdichte, Mörtelgruppe des Mauerwerks) erstellen zu können.

Darüber hinaus lassen sich diese Angaben jedoch zunächst noch nicht weiter nutzen.

Komplexere Informationen im Gebäudeinformationsmodell

Erst der Gedanke eines umfassenden Gebäudeinformationsmodells (Building Information Model BIM) geht über eine reine Mengen- und Massenermittlung hinaus, indem die einmal im Datenmodell vorhandenen Informationen auch für weitere Zwecke genutzt werden können. So findet z.B. die Angabe der äußersten Bauteilschicht zugleich Verwendung in der Oberflächenvisualisierung, die Angaben zum Gesamtbauteil dafür in statischen oder energetischen Berechnungen.

Das offensichtliche Ziel dieser angehängten Zusatzinformationen ist, das digitale Gebäudemodell über die Beschreibung der Geometrie hinaus vor allem für unterschiedliche Simulationsrechnungen und einer damit verbundenen Optimierung der Planung einsetzen zu können.

Zusammenfassung

3.1.2 Grafische Darstellung von Material

Die Materialwahl

Digitale Techniken bei der Materialwahl

Die Darstellung in Bauzeichnungen

Diese Begrenzung der vorgenommenen Definitionen auf Schnitt- darstellungen bezieht sich offensichtlich auf die verwendeten Konstruktionsmaterialien und weniger auf die sichtbare letzte Schicht der Oberfläche (vgl. Kapitel 1.3.2).

In welcher Form die Art des Oberflächenmaterials in Ansichtszeichnungen dargestellt werden soll, ist dagegen nicht definiert und bleibt daher dem Zeichner überlassen (z.B. als Fliesenspiegel, ange- deutete Fugenbilder etc.).

Schraffuren und Muster in CAD-Systemen

Bereits einfache CAD-Systeme bieten Schraffur- und Musterfüllungen von zweidimensional umrandeten Flächen an, also von Schnittflächen oder auch von Oberflächen. Diese Schraffuren werden prozedural ausgeführt, die Darstellung mit einzelnen Strichen unterschiedlicher Länge, Dicke, Richtung, Farbe oder Strichart beruht also auf einer parametrisierten Erzeugungsvorschrift und kann daher leicht einem individuellen Bürostandard angepasst werden.

Normgerechte Schraffuren sind aber - auch in architekturnspezifi- schen CAAD-Systemen – nur wenig zu finden. Die vergebenen Namen sind oft verwirrend und bezeichnen manchmal eher die Art der Erzeugung (z.B. „Diagonal 135° - 5mm“) als den damit darzustellenden Baustoff.

Weiterhin gibt es im Internet Drittanbieter und Foren, die zusätz- lich zu den in der Software vorhandenen Füllmustern zusätzliche Muster als Ergänzungen bereitstellen (z.B. [Hatchpatterns]). Aber selbst hier lassen sich kaum die von der Bauzeichnungsnorm vorge- schriebenen Darstellungsstile finden.

Farbflächen und Texturen in CAD-Systemen

Eine andere Art der Flächenfüllung bei 2D-Grafiken ist das Anlegen mit Farben, Farbverläufen oder auch mit Bitmaptexturen. Da mittlerweile die aus reinen Grafikprogrammen bekannten Bildbearbei- tungsfunktionen (Verändern von Helligkeit und Kontrast, Drehen und Spiegeln, Transparenzen, Filter etc.) in CAD-Systeme integriert sind, kann ein geübter Bearbeiter auf Grundlage von einfachen 2D- Grafiken Präsentationszeichnungen erstellen, die durchaus ein- drucksvoll die gewünschte Materialität und Farbigkeit eines Ent- wurfs vermitteln.

Eine interessante Hilfestellung zur Erstellung solcher 2D- Präsentationen bietet die Software Piranesi: Ausgangspunkt ist eine

Solche letztendlich collageartigen Darstellungen können immer nur rein atmosphärischer Natur sein. Sie geben also eher Aufschluss über die gewünschte Wirkung einer Oberfläche als über konkrete Materialien in der Gesamtheit ihrer Eigenschaften.

Präzise Farben in CAD-Systemen

Die ausgewählten Farben werden intern für die MonitorDarstellung in RGB- oder für den Druck in CMYK-Farben umgerechnet und bieten so dem Entwerfenden - bei entsprechender Farbkalibrierung des Gesamtsystems - eine genaue Aussagequalität hinsichtlich der Farbigkeit einer Oberfläche (auf die Problematik und Lösungsansätze der Kalibrierung, auf den Einfluss des Papiers, auf die Farbqualität sowie auf den bekannten Effekt, dass Farben auf kleinen Flächen anders wirken als auf großen, soll hier nicht weiter eingegangen werden).

Der Vorteil des Gebrauchs solcher konkreten Farbsysteme liegt nicht nur in der verbesserten visuellen Darstellung der Farben, sondern vor allem - durch die Codierung der Farben als genormte Angabe - in der vom Farbausdruck unabhängigen Kommunikation der Information, z.B. mit der ausführenden Firma.

Zusammenfassung

Übliche Architekturzeichnungen benutzen eine symbolische, teilweise genormte Plangrafik in Verbindung mit textlichen Anmerkungen, um eine gewünschte Materialität in Entwurf und Planung zu kommunizieren. Je nach Ziel der Darstellung kann dies entweder mittels exakter (Farb-) Angaben oder eher durch die Vermittlung der gewünschten Atmosphäre erfolgen. Die Grenzen zwischen
CAAD-Grafiken und aufwendigen Präsentationsdarstellungen in Bildbearbeitungs- und Layoutprogrammen verschwimmen dabei immer weiter.

3.1.3 Visualisierung von Material

Einfache Materialdefinitionen

Um ein Material für eine solche Visualisierung einzustellen, werden seine grundlegenden optischen Qualitäten in einzelnen Kanälen (Farbe, Transparenz, Spiegelung etc.) beschrieben. Dies kann rein numerisch, aber auch texturbasiert oder in einer Kombination aus beidem erfolgen. Die Arbeit mit Texturen ermöglicht, grundsätzlich für die ganze Fläche eingestellte Materialeigenschaften im Detail noch über die Farbwerte einzelner Pixel zu steuern und so auch feine Strukturen oder Muster darzustellen.

Da die Flächen eines 3D-Körpers eine definierte Lage im Raum aufweisen, kann das Oberflächenmaterial im Rendervorgang realitätsnah ein in Bezug zu Betrachter und Lichtquelle winkelabhängiges Aussehen erlangen. Obwohl üblicherweise mit reinen Oberflächenmodellierern gearbeitet wird, welche die Körper mathematisch nur durch die Hüllflächen beschreiben, können auch einfache volumenabhängige Effekte (z.B. das Brechungsverhalten transparenter Materialien) berücksichtigt werden. Der Charakter eines Materials kann in Visualisierungen somit auch im Zusammenhang mit der Form eines Körpers sehr gut wiedergegeben werden.

Physikalisch-basierte Renderer

Texture Mapping

Ein zusätzlicher Nachteil beim Einsatz von Bitmaps als Texturen liegt in der maßstabs- oder auflösungsabhängigen Darstellung des Bilds. Für die Berechnung des Ausgabebilds wird immer eine Texturinterpolation notwendig sein, da die Bildpunkte der Textur (Texel) nicht mit den Bildpunkten des Ausgabebilds übereinstimmen. Verschiedene technische Ansätze (Einsatz von Mipmaps, Fouriersynthe-
Die Materialwahl

Digitale Techniken bei der Materialwahl

fernt ist (im Extremfall ist das Objekt dann nur noch genau 1 Pixel groß).«

[Wikipedia 2007a]

se) können die Darstellungsqualität bei der Minifikation erhöhen [Wikipedia 2007a]. Bei einer durch nahes Heranzoomen notwendig werdenden Maxifikation aber wird das Bild prinzipbedingt ab einem gewissen Grenzwert immer pixelig aussehen.

Prozedurale Materialien

Zur Umgehung der oben genannten Probleme werden die Darstellungseigenschaften von Materialien in hochwertigeren Visualisierungsprogrammen heute zunehmend prozedural definiert. Hierbei werden einzelne Materialkanäle über mathematische Prozeduren gesteuert, es werden also parametrische Erzeugungsvorschriften formuliert und im Renderprozess durchgeführt. Es ist dabei auch möglich Hierarchien aufzubauen, also auf bereits prozedural berechnete Werte weitere Prozeduren anzuwenden. Nicht nur regelmäßige Oberflächen, sondern auch die Charakteristika von natürlichen Oberflächen lassen sich durch die Benutzung von Zufallsgeneratoren und Rauschmustern prozedural sehr gut darstellen.

Je nach verwendeter Software werden unterschiedliche Materialkanäle verwendet, auf die zur Beschreibung eines Materials zugreifen werden kann. Materialdefinitionen lassen sich daher kaum softwareübergreifend verwenden. Es gibt aber mittlerweile Anbieter, die zwar auch eigene Datenformate verwenden, diese dann aber über Plug-Ins für verschiedene Plattformen verfügbar machen (z.B. [Darksim]).

Ein anderer Weg ist, einem externen Renderprogramm nur die Geometriedaten aus CAAD- oder Modellierprogrammen zur Verfügung zu stellen, die Einstellungen für Licht und Material aber erst in diesem Programm vorzunehmen. Auch hierfür werden mittlerweile spezielle Export-Plug-Ins (z.B. für [Maxwellrender]) angeboten.

Hardware-Shader

Fast alle visuellen Materialeffekte können heute statt der langsamen Berechnung auf der CPU (Central Processor Unit) unter Rückgriff auf Hardwarebeschleunigung durch OpenGL oder DirectX auch direkt und nahezu in Echtzeit auf der Grafikkarte gerendert werden. Solche „Realtime-Shader“ werden vielfach in Computerspielen eingesetzt, wo die Optimierung der Darstellung in Echtzeit gefordert ist. Auch in der Architekturvisualisierung ist die sofortige Überprüfbarkeit des Aussehens eines eingestellten Materials natürlich von Vorteil.

Neben reinen Pixel-Shadern, die nur die Pixelfarbe berechnen können, stehen heute auch Vertex-Shader und Geometry-Shader zur Verfügung, die auch die Oberflächengeometrie von Objekten gezielt verändern oder sogar ergänzen können. Somit sind auch dreidimensionale Materialstruktur effekte auf Oberflächen darstellbar, ohne im Modell die Grundgeometrie ändern zu müssen.

Zusammenfassung

Es ist davon auszugehen, dass die visuelle Darstellungsqualität auch komplexer Materialeigenschaften zukünftig noch weiter perfektioniert wird und das Ausgabebild in Echtzeit gerendert werden kann. Der Nutzer sollte sich allerdings im Klaren sein, dass der Computer für die Darstellung nicht mit realen Materialeigenschaften arbeitet, sondern eine davon losgelöste und unabhängige mathematische Beschreibung der durchzuführenden Berechnungen benötigt. Die Eingabe solcher Daten wird allerdings zunehmend komfortabler und auch dem Laien zugänglicher.

3.1.4 Übernahme von Materialdaten in die CAD-Umgebung

Für die Definition komplexer Materialien sind jedoch zusätzlich umfangreiche und nur mit Erfahrung gelingende Einstellungen zu treffen. Dabei ist es durchaus gängige Praxis, dass solche aufwendigeren Materialien von fortgeschrittenen Softwarespezialisten – ob aus reiner Freude an der Machbarkeit oder zum Zwecke der Eigen-
Die Materialwahl
Digitale Techniken bei der Materialwahl

werbung - erstellt und anschließend oftmals sogar kostenlos im Internet zur Verfügung gestellt werden.
Viele Materialeffekte sind maßstabsabhängig, daher wird üblicherweise ein Probekörper als Datei vorgegeben, der eine einheitliche Bewertung der Materialien ermöglicht (z.B. [Maxwellrender; C4D-Textures]). Die Uploader von Materialdaten sind aufgefordert, ihre Materialien zu kategorisieren bzw. stichwortartig zu indizieren, um dem Anwender eine gezielte Suche zu ermöglichen.

Hat ein Nutzer im Internet ein geeignetes Material gefunden, kann er es mit verschiedenen Techniken in seine eigene Visualisierungs-umgebung übernehmen:

Download

Die i-drop-Technik

Ein sehr gutes Beispiel für solch einen sinnvollen Einsatz der i-drop-Technologie ist die Bereitstellung von umfangreichen Leuchtdaten der Firma ERCO. Jede angebotene Leuchte wird mit ihrer Geometrie, ihrer eventuellen Kinematik, ihrem Material und ihrer photometrischen Beschreibung zur direkten Übernahme bereitgestellt [ERCO].

Im Zusammenhang mit Materialdaten wurde kein Beispiel für eine Verwendung der i-drop-Technologie gefunden.
Feeds

Der Nutzer braucht dadurch selbst zur Information aus mehreren Quellen nicht mehr verschiedene Webseiten separat aufrufen, sondern kann über eine einzelne Oberfläche (Aggregatprogramm oder Feedreader) die für ihn wichtigen Informationen filtern und abrufen [Wikipedia 2007b].

Die für den Maxwellrender veröffentlichten Materialdefinitionen werden mittlerweile als RSS-Feed angeboten, so dass Abonnenten immer die aktuell veröffentlichten Dateien zugespielt bekommen, ohne wiederholt aktiv danach suchen zu müssen [Maxwellrender].

Bereitstellung realer Materialien

Die bisher genannten Materialdaten beruhen allesamt nicht auf konkreten Bauprodukten spezieller Hersteller, sondern sind eher allgemein gehaltene Definitionen bestimmter Materialoberflächen. Die Sicherheit, dass es zu solchen digital definierten Materialien letztlich auch reale Produktentsprechungen gibt, ist daher nicht gegeben.

Diese Lücke versucht ein Ansatz von LightWorks zu schließen, in dem in Partnerschaft und Zusammenarbeit mit Herstellern so genannte „real-world materials“ zum Download bereitgestellt werden [LightWorks].

Im Sinne einer einfachen Übernahme von herstellerspezifischen Produkt- und Materialdaten in die CAD-Umgebung scheint dieser Ansatz sehr umfassend zu sein. Die bisher angebotenen Inhalte (Stand 04-2007) sind allerdings noch auf sehr wenige Hersteller beschränkt. Eine offensive Erweiterungsstrategie ist zudem leider nicht erkennbar.

Zusammenfassung

3.1.5 Darstellung von Produkten in „virtual showrooms“

Wesentlich verbreiteter bei Baustoffherstellern ist dagegen die Präsentation von realen Produkten auf interaktiv zu benutzenden, webbasierten „virtual showrooms“. Solche zumeist auf Fotos basierenden Darstellungen erlauben, die in einem angegliederten Menü ausgewählten Oberflächen auch im Raumzusammenhang ansehen und visuell bewerten zu können.

Vorgegebene Raumsituationen

Eigene Raumsituationen
Eine von einigen Herstellern verfolgte Variante ist daher, ein eigenes Foto in die Applikation laden zu können und anschließend die zu belegenden Flächen manuell mit Polygonzügen zu umranden. Zusätzlich muss dann aber auch noch die Materialtextur über ein geeignetes Perspektivwerkzeug von Hand gedreht und verzerrt werden. Diese manuelle Beeinflussung stellt eine potentielle Fehlerquelle dar.
Die visuellen Darstellungen in solchen eigenen Raumsituationen sind zudem qualitativ schlechter als bei aufwendiger aufbereiteten Fotos, da Schatten und Reflexionen auf den Oberflächen nicht berücksichtigt werden können.

Professioneller Fotoservice

Showrooms auf Basis von 3D-Daten

Die Bereitstellung von Zusatzinformationen

Zusammenfassung
Offensichtlich suchen Hersteller von Oberflächenmaterialien nach neuen Präsentationsmöglichkeiten, die über simple 2D-Fotos in einem Katalog oder auf einer Webseite hinausgehen. Die Darstellung von Produkten im Raumzusammenhang, aber auch die mögliche Anbindung weiterer Informationen wird dabei als Marketinginstrument genutzt.
Zu hinterfragen ist sicher die derzeitige Qualität der Darstellung und der notwendige Aufwand zur Pflege solcher Instrumente (Erstellung von Materialkatalogen, Bearbeiten von Fotos etc.). Einige der im Jahr 2006 besuchten „virtual showrooms“ waren in 2007
Die Materialwahl Digitale Techniken bei der Materialwahl

... schon nicht mehr online verfügbar. Andersherum zeigt aber gerade das Beispiel aus der Bodenbelagsbranche, dass ein sinnvoll zu betreibender Komplettservice auf solch einer Grundlage aufgebaut werden kann.

3.1.6 Augmentierte Darstellungen von Material

Alle bisher beschriebenen visuellen Darstellungen von Oberflächenmaterialien sind nicht zwangsläufig an die – in Größe und räumlicher Wahrnehmung beschränkte - Darstellung am Monitor gebunden. Digitale 3D-Modelle inklusive Materialzuweisung können auch über zusätzliche Ausgabemedien wie Stereobrillen oder Cave vermittelt werden. Allein über die räumlich wirksame und großformatige Anzeige können so weitere Aspekte der Materialien wahrgenommen und beurteilt werden.

Über solche rein virtuellen Modelle hinaus können augmentierte Darstellungen hilfreich sein, um die Materialität einer Oberfläche vor allem im Zusammenhang mit der Form beurteilen zu können. Hierbei wird im Prinzip das gewünschte Aussehen einer Oberfläche berechnet und je nach Einsatzzweck und verwendeter Technik mehr oder weniger genau auf eine reale (Modell-) Geometrie - entweder Körper oder Raumfläche - projiziert.

Augmentierte Bemusterung

Speziell für die Oberflächenbemusterung von Innenräumen kann das Verfahren einer augmentierten Bemusterung [Tonn 2007] im Vergleich zur reinen Monitorausgabe zusätzliche Bewertungsmöglichkeiten ermöglichen.

Projekt Shader Lamps

Für die Lösung der dabei auftretenden Probleme (Farbkalibrierung, Überlappungen bei Ungenauigkeiten etc.) werden verschiedene Ansätze vorgestellt. Blickwinkelabhängige Effekte wie z.B. Glanzlichter lassen sich durch Tracking des Betrachters berechnen. Durch zusätzliches Tracking des Modells kann dieses sogar im Raum bewegt werden, ohne dass die Textur vom Modell auswandert.

Selbstverständlich wird für eine korrekte Berechnung dazu eine digitale Entsprechung des physikalischen 3D-Modells benötigt. Die Augmentierung des physikalischen Modells ist in diesem Beispiel sehr umfangreich gelöst, für die Interaktion mit dem Modell dagegen sind nur vage Ideen angedeutet.

Projekt Dynamic Texturing

Das zu projizierende Material wird mit einem realen, getrackten Pinsel aus einem ebenfalls aufprojizierten Menü ausgewählt und quasi auf das Modell „aufgemalt“. Geometrische Manipulationen wie Drehen oder Skalieren der Texturen werden unterstützt.

Matković verspricht sich allein durch die reale Interaktion mit einem physikalischen Modell einen Mehrwert für den Entwurf, allerdings hat die Technik des Aufmalens mit einer realen Bemusterung wenig gemein.

Projekt Material Light

Der Schwerpunkt dieser Arbeit liegt in dem intuitiven, spielerischen und manuellen Ausprobieren prinzipieller Materialalternativen. Die Auswahl der Materialien erfolgt bewusst nicht am Monitor oder

Projekt SARSamplingKit

Zusammenfassung

3.1.7 Darstellung haptischer Materialeigenschaften

»Haptics can be subdivided into three areas
1. human haptics - the study of human sensing and manipulation through touch,
2. machine haptics – the design, construction, and use of machines to replace or augment human touch.
3. computer haptics -algorithms and software associated with generating and rendering the touch and feel of virtual objects (analogous to computer graphics).«

[Srinivasan 2005, S.1]

Alle bisher beschriebenen digitalen Ansätze beziehen sich nur auf eine rein visuelle Vermittlung von Informationen über Material. Obwohl der größte Anteil der sensitiven Wahrnehmung über den Sehsinn geschieht, sind aber auch die weiteren Sinne (Tasten, Hören, Riechen, Schmecken) für die Gesamtwahrnehmung eines Materials wichtig.

Im Weiteren wird daher - zur Entkräftung oder zumindest zur Relativeierung dieser Argumentationskette - beispielhaft auf einige Forschungsansätze aus dem Gebiet der „computer haptics“ verwiesen.

Haptik

Im Rahmen dieser Arbeit werden vom Grundsatz her zwei Haltungen unterschieden, wie haptische Qualitäten eines Materials mittels digitaler Techniken in ausreichender Qualität vermittelt werden können:

Force- und Touch-Feedback Interfaces

Solche Geräte unterstützen vor allem die grobe, kinästhetische Wahrnehmungsebene, also das aktive Betasten eines Objekts, die Erzeugung von Druck und die Wahrnehmung von Gegendruck.
>"It may never be possible to simulate the tactile impression of a fabric entirely, but it may be possible, by concentrating on the more important elements, to convey an adequately accurate impression, at least for professionals and those who are familiar with fabric technology."

[Dillon 2000, S.67]

Mittels solcher Interfaces wird beispielsweise in der Textilindustrie bereits versucht, unterschiedliche Qualitäten von textilen Stoffen virtuell bewertbar zu machen [Haptex]. Das definierte Ziel ist wiederum nicht die vollständige Simulation des Materials.

Virtuelle Haptik

Ausgehend von der Überlegung, dass haptisches Erleben oftmals synästhetischer Natur ist, also dass der Tastsinn durch visuelle oder akustische Reize unterstützt oder sogar getäuscht werden kann, liegt der Versuch nahe, die dem Standard-PC zur Verfügung stehenden Mittel (Bild und Ton) auszunutzen, um haptische Qualitäten auf indirekte Weise zu transportieren.

Ein Beispiel für die - oft sicherlich unbewusst genutzte - Umsetzung dieser Idee ist vielleicht die leicht übertriebene Stärke von Relief- oder Bumpmaps in Visualisierungen: Wird die Stärke eines Reliefs „richtig“ eingestellt, wirkt das gerenderte Bild schnell flach und langweilig, durch die Übertreibung der Reliefhöhe hingegen kann die Rauigkeit einer Oberfläche - und somit in Teilen auch die zu erwartende haptische Qualität - rein visuell vermittelt werden.

Zusammenfassung

Eine digitale Repräsentation kann niemals die eigene Erfahrung des realen Materials ersetzen. Es gibt aber verschiedene digitale Techniken, die Bewertung eines Materials auch ohne das Vorliegen von Materialproben zu ermöglichen, insbesondere auf Grundlage dessen, dass auf den Erfahrungsschatz des Nutzers zurückgegriffen werden kann. Das Ziel digitaler Materialdarstellungen sollte daher sein, eine derartige Qualität der Darstellung zu erreichen, dass diese Bewertung auf sicherer Grundlage erfolgen kann.

3.2 Digital gestützte Materialsuche

»Suchen ist die Tätigkeit oder der Versuch, ein Ding nach bestimmten Kriterien zu finden. Finden ist, neben dem erfolgreichen Ergebnis einer Suche, auch entdecken, also der Zugang zu etwas, das man nicht kannt und folglich nicht gesucht hat.«

[Wiki 2007e]

Im Weiteren werden beispielhaft verschiedene Systeme oder Ansätze angeführt, die den Nutzer durch Abbildung von Fachwissen zu einer „geeigneten“ Oberfläche bzw. einem Material hinführen, ihm dabei zusätzliche Informationen über Materialeigenschaften geben können und ihm so auch eine fachliche Bewertung gewählter Oberflächen ermöglichen.

3.2.1 Suche nach harmonischen Farbkonzepten

Um zu einem farbharmonischen Miteinander zu kommen, müssen als Voraussetzung unterschiedliche Farbsysteme aus verschiedenen Produktzweigen möglichst exakt aufeinander abgebildet werden können. Erst dann kann eine weitergehende fachliche Hilfestellung zu harmonischen Farbkonzepten angeboten werden. Einige existierende Werkzeuge im Umgang mit beiden Problemen werden im Folgenden vorgestellt:

Umrechnung verschiedener Farbsysteme

Farben für Monitor und Drucker werden als RGB- bzw. CMYK-Wert angegeben. Diese können dabei aus technischen Gründen nicht alle vom Menschen wahrnehmbaren Farben umfassen und sind daher auf das jeweilige Medium beschränkt.

Anerkannte Farbharmonien
Zwei oder mehr Farben auf einer Oberfläche treten immer in Beziehung zueinander. Farben können dabei mehr oder weniger harmonisch miteinander wirken bzw. kontrastieren. Anerkannte Harmonien entstehen beispielsweise, wenn Farben sich nur in Farbton, Sättigung oder Helligkeit unterscheiden, während die jeweils anderen Werte gleich bleiben.

Berücksichtigung der wirksamen Flächengröße

Farbige Materialien und Produkte

Die Lösung dieses Dilemmas kann prinzipiell in zwei Richtungen erfolgen: entweder der Planer greift zur Formulierung eines harmonischen Farbkonzepts nur auf die angebotenen - und hinsichtlich ihrer Wirkung speziell zusammengestellten - Kollektionen der Hersteller zurück, oder aber er muss versuchen, ein seinen Planungen farblich möglichst nahe kommendes Produkt zu finden.

Rückgriff auf Produkt-Kollektionen
Viele Hersteller bieten ihre - in technischer Hinsicht ansonsten identischen Produkte - in mehreren harmonisch aufeinander abgestimmten Farben an. Unabhängig davon, was man von solchen - teilweise eigenwillig interpretierten - „Trendlinien“ halten mag, können Kombinationen mehrerer solcher Artikel einer Kollektion prinzipiell zu einem harmonischen Eindruck beitragen (z.B. Muster aus verschiedenfarbigen Fliesen).

Eine Umsetzung auch materialübergreifender Farbkonzepte allerdings ist so nicht möglich, da exakte und somit vergleichbare Farbwerte zumeist nicht angegeben werden. Der Einsatz beschränkt sich somit vorwiegend auf begrenzte und materialhomogene Flächen.
Suche nach passend farbigen Produkten
Auch der zweite denkbare Weg, nämlich die einem zunächst unabhängig aufgestellten Farbkonzept nachfolgende Suche nach passenden Produkten, wird oft durch die unzureichende Angabe von genauen Farbwerten behindert. Einige Hersteller bieten zwar als Funktion auf ihren Webseiten eine Produktsuche speziell nach Farben an, die angebotenen Untergliederungen sind jedoch oftmals recht grob (z.B. „rötlich“, „gelblich“ etc.). Die Zuordnung der Artikel zu den einzelnen Kategorien ist zudem nicht immer nachvollziehbar, da gerade unregelmäßig gemusterte Oberflächen nicht immer objektiv bewertet und einsortiert sind.

Zusammenfassung

3.2.2 Suche in Werkstoff-Datenbanken

Üblicherweise ermöglichen solche Datenbanken einen Zugriff auf einzelne Materialien über eine hinterlegte Klassifikationshierarchie oder aber über eine Stichwortsuche. Die Anzeige der gewünschten Daten in Tabellenform erlaubt anschließend einen exakten Zugriff auf die entsprechenden Eigenschaften der Materialien.
Die Materialwahl

Digitale Techniken bei der Materialwahl

Abb. 3.37: Granta Design Edu Pack

Zusammenfassung

Die hier gemeinten Datenbanken halten vorwiegend technische Informationen über noch unverarbeitete Werkstoffe bereit. Sie wenden sich dadurch eher an Hersteller zukünftiger Produkte oder an Produkt-Designer, für die der Herstellungs- oder Verarbeitungsprozess eine größere Rolle im Design spielt. Für die in der Architektur eher anwendungsorientierte Auswahl von Materialien und Bauprodukten sind sie aufgrund der in dieser Richtung begrenzten Inhalte und Zugangsmöglichkeiten dagegen weniger gut nutzbar.

3.2.3 Unterstützung der Produktsuche

Eine solche vorwiegend an Architekturanwendungen orientierte Suche nach geeigneten Materialien oder Produkten kann eher durch Systeme, die produkt- oder herstellerorientiert ausgerichtet sind, unterstützt werden. Als für einen bestimmten Einsatzzweck „geeignet“ gelten alle Materialien, die an sie gestellte Anforderungen erfüllen. Die an dieser Stelle aufgeführten Werkzeuge, die diese Suche unterstützen sollen, müssen also jeweils die Möglichkeit aufweisen, fachlich fundierte Kriterien oder Beschränkungen irgendwie vorab zu formulieren. Die einfache Eingabe eines Suchbegriffs (z.B. „Fliese“) bei einer allgemeinen Internet-Suchmaschine soll hier dagegen nicht betrachtet werden, auch wenn dies selbstverständlich ein möglicher Einstieg in eine weitere Suche nach Bauprodukten sein kann.

Suche nach prinzipiellen Materialalternativen

Mehrere – teilweise kostenpflichtige - Datenbanken im Internet (siehe Anhang A.6), deren Betreiber meist die beschriebenen Werkstoff- oder Materialagenturen (vgl. Kapitel 2.2.1) sind, ermöglichen eine Suche nach prinzipiellen Materialalternativen. Sie können also vorwiegend als Quelle der Inspiration verstanden werden.

Ihnen liegen thematisch und stofflich außerst breit angelegte, inhomogene und nicht nur aufs Bauwesen beschränkte Materialsammlungen zugrunde. Die Kategorisierung der einzelnen Produkte und Indizierung für die Suche wird vom Betreiber manuell / redaktionell auf Grundlage seiner eigenen Bewertungsmaßstäbe oder seiner Einschätzung durchgeführt. Je nach Betreiber und Ausrichtung der

Das Suchergebnis beinhaltet - neben Kurzbeschreibungen der Produkte (inkl. Abbildung) - dann meistens einen Verweis auf die Webseite der Hersteller, wo der Nutzer dieser Datenbanken anschließend weitere detailliertere Informationen einholen kann. Die Datenbank selbst informiert den Nutzer also nur auf einem grundständlichen Niveau über mögliche Alternativen.

Materialgruppenspezifische Suche

Bei ähnlichen Datenbanken, die sich jedoch im Unterschied dazu nur auf eine bestimmte Materialkategorie (z.B. „Hölzer“) beschränken, lassen sich naturgemäß die Suchanfragen wesentlich detaillierter formulieren, da auch materialspezifische Eigenschaften (z.B. „Maserungsart“) berücksichtigt werden können.

Suche nach Herstellern

Eine vom Ansatz her andere Möglichkeit, die Suche nach geeigneten Produkten fachlich einzugrenzen, besteht darin, in entsprechenden Datenbanken direkt bauteilbezogen nach Herstellern von Bauprodukten oder verarbeitenden Betrieben zu suchen.

Üblicherweise erfolgt hier die Suche nach hierarchisch gegliederten Produktgruppen (z.B. angelehnt an das Standardleistungsbuch Bau STLB) oder über eine einfache Schlagwortsuche nach Produktgruppen, Produkt- oder Firmennamen. Durch die teilweise vorhandene Option einer regionalen Eingrenzung der Suche kann eine solche Webseite dann sogar als eine Art „Branchenbuch“ agieren.

Das Suchergebnis ist ebenfalls entweder ein Verweis auf die entsprechende Webseite des Herstellers (oder auch mehrerer Hersteller) oder aber bereits direkt die gewünschte Produktinformation, die zudem durch zugehörige Ausschreibungstexte oder CAD-Dateien ergänzt sein kann.

Solche Webseiten, die eine Herstellersuche ermöglichen (siehe Anhang A.6), verstehen sich offensichtlich vor allem als Marketing-
Die Materialwahl

Digitale Techniken bei der Materialwahl

Suche auf Herstellerwebseiten

Die endgültige Information über Materialien und Bauprodukte findet sich zumeist erst auf den Webseiten der jeweiligen Hersteller. Die dort angebotenen Daten unterscheiden sich extrem hinsichtlich Qualität und Umfang, aber auch in Bezug auf die Unterstützung einer zielgerichteten Suche.

Da hier konkrete Produkte offered werden, können die mitgelieferten Informationen sehr detailliert sein. Technische Daten, Ausschreibungstexte, aber auch Verlege- oder Pflegehinweise werden oft zusätzlich als Textdokument zum Download bereitgestellt. Manche Hersteller bieten zudem interaktive Mengen- oder Preisberechnungen, Kontaktformulare zur Angebotserstellung oder Musterbestellmöglichkeiten an.

Zusammenfassung

Es gibt - bezogen auf Inhalt, Umfang und Qualität der Information - verschiedene Ansätze, die Suche und die Auswahl von Materialien...
zum Einsatz in der Architektur durch entsprechende Datenbanken zu unterstützen. Der Nutzer muss sich allerdings im Vorfeld seiner Suche im Klaren sein, ob er eher durch innovative Materialien inspiriert werden will oder die Sicherheit zugelassener Bauprodukte benötigt, ob er eher technische Details abfragen will oder doch der sinnlich-ästhetische Aspekt im Vordergrund stehen soll.

3.2.4 Studien zu einer umfassenderen Materialwahl

»Material selection is not only about material information. In selecting, there is a constant interchanging consideration of product, material and technology information required.«

[Bezooyen 2002, S.2]

Einen vom Prinzip her deutlich umfassenderen Ansatz zur Suche geeigneter Materialien als existierende Materialdatenbanken beschreibt die Studie zum Material Explorer [Bezooyen 2002].

Da der Materialwahlprozess, also die schrittweise Eingrenzung des Kreises der möglichen Materialien, bestenfalls nach verschiedenen, sich gegenseitig ergänzenden Strategien abläuft (vgl. Kapitel 2.3), sollte eine Software zur Unterstützung des Auswahlprozesses auch alle diese Ebenen bereitstellen. Eine alleinige Bereitstellung von technischen oder sinnlichen Informationen über Materialien – und seien diese noch so umfangreich - ermöglicht eben doch zunächst nur ein analytisches und somit auf einen Aspekt eingeschränktes Vorgehen.

Gleichzeitig zum eigentlich betrachteten Produkt werden auch weitere Materialien mit ähnlichen Eigenschaften in frei auswählbaren Kriterien angezeigt. Dem Nutzer wird so ermöglicht, zu jedem Zeitpunkt die Betrachtungsebene und den Fokus seiner Suche zu wechseln.

Als weitere Unterstützungstechnik wird zudem ein „clipboard“ angeboten, auf dem der Nutzer interessante oder in die nähere Auswahl genommene Materialien temporär ablegen kann und so im Blick behält. Eine Zeitleiste, die nachträglich Auskunft gibt über den zurückgelegten Weg und den jeweiligen Schwerpunkt der Suche, kann ein aufschlussreiches Feedback über die eigene Vorgehensweise geben.

Fazit
Obwohl v. Bezooyen als Produkt-Designer in seiner Studie relativ großen Wert auf technologische Verarbeitungsprozesse legt, lassen sich Parallelen auch für die Materialwahl in der Architektur ableiten:

Abb. 3.47: nichtzielerichtete Suche

3.3 Digitale Individualisierung von Material

»Die bisherige Möglichkeit, aus einer Vielzahl an Produktvarianten auszuwählen, ist heute alleine nicht mehr ausreichend. Der Kunde möchte über das Standardangebot an Varianten hinaus maßgeschneidert Produkte und Systemlösungen bestellen.«

[Wikipedia 2007f]

In die entgegengesetzte Richtung als die oben beschriebene Suche nach geeigneten Materialien oder Produkten geht die – innerhalb eines vorgegebenen Rahmens - nach Kundenwünschen individuell herstellbare oder modifizierbare Oberfläche. Gerade der Bereich der individualisierten Massenanfertigung (mass customization) wird durch digitale Techniken stark vereinfacht.

Besonders verbreitet und einfach zu realisieren ist eine solche Individualisierung bei Oberflächen, die aus vielen kleinen vorgegebenen Bestandteilen zusammengesetzt werden. Die individuelle Beschreibung solcher Bauteile lässt sich durch entsprechende Konfi-
Die Materialwahl

Digitale Techniken bei der Materialwahl

...unterstützen. Einige einfache Anwendungen zur Unterstützung kundenspezifischer Beschreibungen von Oberflächen sollen hier als Beispiele für diesen Trend genannt werden.

Produktkonfiguratoren

Gerade Oberflächen, die aus einer Vielzahl kleiner Elemente zusammengesetzt werden (Mauerwerk, Terrazzo, Teppich, Keramikmosaik), erlauben trotz Rückgriffs auf eine nur begrenzte Anzahl an Ausgangselementen (Mauersteine, Zuschlagstoffe) eine nahezu unendliche Variationsmöglichkeit.

Ein Beispiel für eine solche Weiternutzung der Daten speziell im Bereich Material ist eine Software, die ermöglicht, Autolacke zunächst am Rechner nach visuellen Kriterien einzustellen. Die Zusammensetzung des Lacks wird dann aus dem gewünschten Erscheinungsbild auf Basis der Simulation abgeleitet [Formula II].

Individualmuster

Viele Materialoberflächen lassen sich auch durch den Einsatz digitaler Drucktechniken auf verschiedenen Trägermaterialien oder durch eine computergestützte Ansteuerung von Fräs-, Web- oder Knüpfmaschinen auf Grundlage eigener Muster und Fotos einfach und relativ preisgünstig individualisieren. Dabei müssen die durch den Kunden bereitgestellten CAD- oder Bilddateien nur noch vom Hersteller in einem Zwischenschritt aufbereitet werden, so dass die jeweiligen Maschinen mittels spezieller Software angesteuert werden können.

Nicht nur das Aussehen einer Oberfläche kann durch solche Verfahren individualisiert werden, sondern auch die akustischen oder haptischen Qualitäten, z.B. durch Aufbringen einer entsprechenden Struktur (z.B. [Texxus]). Die Grenze zu einer kompletten rechnergestützten Herstellung ganzer Bauteile ist dann eigentlich nur noch eine Frage des Maßstabs.
Zusammenfassung

Auch im Bauwesen greift das Konzept der individuellen Massenfertigung durch den Einsatz von Digitaltechniken langsam um sich. Das heutige Spektrum reicht von einfachen Konfiguratoren, die das Aussehen einer Oberfläche vorsehen, bis hin zu rechnergesteuerten Maschinen, die eine solche individuelle Oberfläche dann auch herstellen können. Eine weitere Zunahme solcher Techniken - wie aus anderen Branchen bekannt - ist aufgrund sinkender Preise anzunehmen.

3.4 Der integrierte Gesamtprozess

»Eine durchgehende und zugleich sinnvolle digital gestützte Planungstätigkeit existiert noch nicht. Viele arbeiten daran. Wir auch.«

[InfAR 2007]

3.4.1 Zusammenfassung der Problemstellung

Üblicherweise gibt es keinen definierten Zeitpunkt, an dem die Materialwahl getroffen wird, vielmehr entwickelt sich diese Entscheidung schrittweise und nicht immer geradlinig. Entsprechend sollte der Zugriff auf Materialdaten in unterschiedlichen Detailierungsgraden möglich sein.

Die Aktualität und notwendige Breite der Information über mögliche Materialien und Produkte ist dabei nur durch einen großen Pflegeaufwand einer eigenen analogen und digitalen Sammlung zu gewährleisten. Andernfalls ist der Nutzer im Anwendungsfall auf eine zeitaufwändige und zudem nicht immer zielführende manuelle Suche in sehr uneinheitlich aufgegebenen Webseiten angewiesen.

Um zu einer optimalen Materialauswahl zu gelangen, sollten unterschiedliche und ständig wechselnde Strategien verfolgt werden können. Die meisten der vorgestellten digitalen Ansätze oder Webseiten unterstützen jedoch einseitig jeweils nur eine einzelne Methode, so dass der Nutzer zwischen den Anwendungen oder Seiten springen muss.

3.4.2 Vision eines zukünftig möglichen Gesamtprozesses

Ausgangspunkt

Zur Vermeidung von Brüchen und Inkonsequenzen wird propagiert, alle vorhandenen Daten über ein Bauwerk in einem einzigen Gebäudeinformationsmodell (BIM) zusammenzuführen. Die im Modell enthaltenen Informationen können so theoretisch durch verschiedene angegliederte Werkzeuge genutzt und das Modell anschließend durch die Ergebnisse dieser Werkzeuge wiederum erweitert werden.

Bezogen auf die Materialwahl könnte der Ablauf dann folgendermaßen aussehen:

Auslesen vorhandener Informationen

Alle Bauteile sind im Gebäudeinformationsmodell zunächst hinsichtlich Geometrie und Lage festgeschrieben, zudem können aber auch bereits Raumfunktionen, erste Farbvorstellungen oder Materialangaben fixiert sein.

Je nach Zeitpunkt der Materialwahl sind viele gewünschte sowie geforderte Eigenschaften der betrachteten Oberflächen also bereits relativ umfangreich beschrieben. Diese Informationen könnten als Input direkt für ein Materialauswahl-Werkzeug übernommen, dort aber selbstverständlich auch noch manuell ergänzt oder verändert werden.

Auslesen von Produktdaten

Ein automatischer Abgleich der oben formulierten Anforderungen an die Oberflächen mit den Eigenschaften aller durch entsprechende Suchmaschinen gefunden oder zugesandten Materialien wäre so prinzipiell möglich.

Materialbewertung- und -auswahl

Um die gefundenen Materialien hinsichtlich der an die Oberfläche gestellten Anforderungen auch bewerten zu können, müssen vorher allerdings die anzuwendenden Bewertungskriterien aufgestellt und beziffert werden. Wie eine solche Bewertungsmethode im Detail aussehen kann und wie ein entsprechendes Werkzeug sinnvoll ausgestaltet werden sollte, ist der eigentliche Schwerpunkt dieser Arbeit und wird in den folgenden Kapiteln näher beschrieben.

Das Ergebnis eines solchen Werkzeugs sollte letztlich die Festlegung eines oder aber die nähere Betrachtung mehrerer denkbarer Materialien sein.

Überprüfung des Materials im Entwurf

Die Informationen über das gewählte Material könnten anschließend aber auch wieder in das Gebäudemodell zurückgeschrieben werden, so dass das Material im eigenen Entwurf visuell, aber selbstverständlich auch in allen anderen angegliederten Simulationstools in seinen Auswirkungen überprüft werden kann.

Die Materialwahl
Digitale Techniken bei der Materialwahl

Entwurfsfeldern auch – irgendwann zur endgültigen Materialentscheidung.

Nutzung weiterer Daten
Gerade durch die Verbindung mit allen Informationen aus dem Gebäudemodell (z.B. durch eine Mengen- und Massenermittlung) könnten sich durch das Bereitstellen von Ausschreibungstexten oder Kennwerten zur Kostenkalkulation - nicht nur für den Planer, sondern auch für die Hersteller viele weitere positive Effekte ergeben. Eine auf den Bauort bezogene regionalspezifische Hersteller- und Händlersuche oder ein Angebot zur Online-Materialbestellung könnte so z.B. völlig neue Vertriebswege und Geschäftsfelder erschließen helfen.

Fazit
Das oben skizzierte Szenario beschreibt zunächst einmal nur einen theoretischen Weg, wie der Prozess der Materialwahl in einen - wünschenswerten - durchgehenden digitalen Entwurfsprozess integriert werden kann. Computer mit immer größerer Rechenleistung, die zunehmende Verbreitung schneller Internetverbindungen sowie Fortschritte in der plattformübergreifenden Formulierung und der immer perfekteren Echtzeit-Darstellung von Materialien lassen den Weg aber zumindest technisch schon heute realisierbar erscheinen.

II Die Entscheidungskriterien
4 Underteilung der Entscheidungskriterien

»Der Entscheid wird durch den oder die Entscheidungsträger nach objekti-
tiven und subjektiven Entscheidungskriterien gefällt.«

[Wikipedia 2006d]

Der zweite Hauptteil der Arbeit geht in den Kapiteln 4 und 5 der
Frage nach, welche Kriterien die Entscheidung für oder auch gegen
ein bestimmtes Material beeinflussen. Um den Umgang mit diesen
Kriterien zu erleichtern, sollen diese zudem in eine inhaltlich sinn-
volle und logische Struktur gebracht werden.

Zunächst wird dargelegt, wer die Kriterien aus welcher Motivation
heraus festlegt (Kapitel 4.1). Daraus ergibt sich eine unterschiedliche
Relevanz der Kriterien, so dass sich diese in zwei in Folge unter-
schiedlich zu behandelnde Gruppen unterteilen lassen (Kapitel 4.2).
Anschließend werden bestehende Materialklassifikationssysteme
mit ihren jeweiligen Einschränkungen beschrieben, um die Not-
wendigkeit der Formulierung einer – für die Zwecke dieser Arbeit -
eigenen Ordnung von Kriterien zu zeigen (Kapitel 4.3).

Darauf aufbauend werden die Kriterien, die in den Entscheidungs-
prozess hineinfließen können, im Detail beschrieben (Kapitel 5).

4.1 Beteiligte an der Auswahl

»Berufsaufgabe der Architekten ist die gestaltende, technische, wirtschaft-
liche, ökologische und soziale Planung von baulichen Anlagen.
Zu den Berufsaufgaben der Architekten aller Fachrichtungen gehören
acht die Beratung, Betreuung und Vertretung des Auftraggebers einsicht-
lcher der mit der Planung und Realisierung eines Vorhabens zusammehän-
genden Angelegenheiten sowie die Koordinierung und Überwachung der
Ausführung.«

[AKThü 2005, §3]

Die Planung eines Bauwerks erfolgt üblicherweise auf Grundlage
ines Vertrags zwischen einem Planer und dessen Auftraggeber.
Die finalen Ziele jeder Planung sind die Genehmigungsfähigkeit und
die Errichtung des geplanten Bauwerks.

Somit lassen sich prinzipiell drei an der Planung beteiligte Gruppen
ausmachen, die Einfluss auf die Materialwahl nehmen können:

Planer

Der Architekt wird in der Öffentlichkeit oft - sehr verkürzt - aus-
schließlich als „Gestalter“ gesehen, der nur für den eigentlichen „Entwurf“ verantwortlich ist, also vorwiegend gestalterische Aspekte
verfolgt. Allerdings muss er gleichberechtigt auch funktionale, tech-
nisch und wirtschaftliche Anforderungen an das Gebäude erfüllen.
Die Entscheidungskriterien

Unterteilung der Entscheidungskriterien

» Bauprodukte dürfen nur verwendet werden, wenn bei ihrer Verwendung die baulichen Anlagen [...] gebrauchstauglich sind.«
[BMBl 2004, §3 (2)]

» Die Oberflächen der Fußboden, Wände und Decken müssen so beschaffen sein, dass sie den Erfordernissen des Betriebens entsprechen und leicht zu reinigen sind.«
[BMBl 2004, 1.5 (1)]

» In Arbeitsräumen und -bereichen mit Rutschgefahr müssen rutschhemmende Bodenbeläge eingesetzt werden. Je nach Anforderung können dies feinraue, raue oder profilierte Bodenbeläge erfüllen, z.B. [...]«
[BGZ 2003, 3.1]

Je nach Komplexität des Bauwerks ist er bei der Planung dann auch auf die Integration der Beiträge weiterer Fachplaner wie Tragwerksplaner, Bauphysiker, Lichttechniker, Energieberater etc. angewiesen. Jeder dieser Beteiligten wird – je nach Disziplin – weitere, dann zumeist technische, Anforderungen an bestimmte Oberflächen stellen, die in der Planung beachtet werden müssen.

Zudem sollte der Architekt vertragsgemäß die Interessen seines Auftraggebers vertreten, sich also auch die von diesem formulierten Planungswünsche zu Eigen machen.

Auftraggeber

Unabhängig davon, ob der Auftraggeber als klassischer Bauherr oder eher als anonymer Investor auftritt, wird er üblicherweise die Wahl einer bestimmten Oberfläche durch Wünsche (z.B. durch Gestaltungsrichtlinien im Rahmen einer Corporate Architecture) und Anforderungen (z.B. technische Vorgaben aufgrund der späten Nutzung) beeinflussen.

Die Interessen des Auftraggebers müssen sich dabei nicht unbedingt mit denen des Planers decken (z.B. kann er der Einhaltung einer maximalen Preisvorgabe deutlich höhere Priorität einräumen). Als Beauftragender der Baufirmen hat der Auftraggeber die letztendliche Entscheidungssohre.

Baubehörden

Das Ziel der Planung ist die Umsetzung derselben, daher muss sie selbstverständlich genehmigungsfähig sein. Neben der Bauordnung müssen dafür auch technische Baubestimmungen, Arbeitsstättenverordnung und -richtlinie sowie berufsgenossenschaftliche Regeln für Sicherheit und Gesundheit eingehalten werden.

Eine Vielzahl von Normen regelt darüber hinaus für einzelne Bauteile detailliert technische Anforderungen, die durch die Produkte eingehalten werden müssen, damit diese überhaupt angewendet werden dürfen.

Als Gesamtverantwortlicher für die Planung und Umsetzung und als Koordinator der Einzelbelange ist letztendlich der Architekt für die Formulierung und Einhaltung aller die Materialwahl betreffenden Wünsche und Anforderungen zuständig.
4.2 Unterteilung der Kriterien nach Relevanz

»Die Bedeutsamkeit (Relevanz, Wichtigkeit) ist ein Maß dafür, wie stark eine Sache die Realität beeinflusst [...]. Die Bedeutsamkeit hängt stets stark vom Kontext ihrer Interpretation ab. Sie steht für das Gewicht des Objektes gegenüber anderen Objekten in einem definierten Kontext: je höher das Gewicht, desto mehr muss man diesem Objekt Beachtung schenken, und desto größer wären die Auswirkungen, wenn man dieses Objekt verändert. Was in einem Kontext relevant ist, kann in einem anderen also unwichtig sein.« [Wikipedia 2007h]

Für den weiteren Umgang mit den Kriterien müssen zwei logische Gruppen betrachtet werden:

4.2.1 Absolut wichtige KO-Kriterien

Im Falle der Materialwahl handelt es sich immer um die Entscheidung für den sofortigen Ausschluss eines Materials aus der Gruppe der möglichen und weiter untersuchten Materialien - und zwar unabhängig davon, wie sich das Material in allen anderen Kriterien darstellt. Dabei ist es nur eine Frage der Formulierung, ob es sich um Anforderungen handelt, die auf jeden Fall erfüllt werden müssen (z.B. die in der Bauordnung geforderte „Gebrauchstauglichkeit“) oder um Eigenschaften, die auf gar keinen Fall vorhanden sein dürfen (z.B. „Brennbarkeit“). Zudem ist es für den weiteren Umgang mit solchen Kriterien gleich, ob die Anforderung durch ein Gesetz formuliert wird oder ob der Planer bestimmte Eigenschaften individuell für sich (z.B. „Es soll auf jeden Fall Holz verwendet werden.“) als KO-Kriterium festlegt.

Für KO-Kriterien muss nur ein einziger Wert definiert werden, der bei Nichteinhaltung zum Ausschluss des Materials aus der weiteren Betrachtung führt. Die Relevanz von KO-Kriterien ist also absolut.

4.2.2 Relativ wichtige Kriterien

Ganz im Gegensatz dazu impliziert die nur relative Relevanz aller anderen Kriterien geradezu, dass - auch wenn diese nicht oder nicht vollständig erfüllt sind - ein Material dennoch gewählt werden kann, z.B. wenn es alle anderen Kriterien optimal erfüllt.
Die Entscheidungskriterien

Wiederum macht es von der Logik her keinen Unterschied, ob es sich bei der Formulierung eines solchen Kriteriums inhaltlich um eine Soll-Vorschrift aus einer technischen Baubestimmung oder nur um einen vom Bauherrn geäußerten Wunsch handelt. Der Unterschied liegt hier nur in der Stärke der individuellen Gewichtung, die diesem Kriterium zugeschrieben wird. Es kann sich zudem um Kriterien handeln, die nicht eindeutig definiert sind (z.B. „Das Material sollte preisgünstig sein.“) oder ob sie Eigenschaften mit fließenden Grenzen aufweisen (z.B. ein bestimmter Farbton).

Für die weitere Bewertung aller hier betrachteten Kriterien sind also immer zwei Werte notwendig: die Benennung der gewünschten Eigenschaft und zusätzlich eine Aussage darüber, wie wichtig die Einhaltung dieses Kriteriums sein soll, bzw. unter welcher Voraussetzung auch davon abgewichen werden kann. Die Relevanz der Kriterien, die nicht als KO-Kriterium gelten, ist also immer nur relativ.

4.3 Material-Klassifikation

»Classification has a key role in design. Design involves choice, and choice from enormous range of ideas and data among them, the choice of materials and processes. Classification is closely linked to indexing, a central activity for both information retrieval and selection. But to be efficient, the classification and indexing must be adapted to the nature of the population of objects that are to be classified and the purpose of the search.«
[Ashby 2002, S.117]

4.3.1 Traditionelle Klassifikationssysteme

Das Aufstellen einer Klassifizierung beruht auf einer Festlegung der für den jeweiligen Zweck für wichtig erachteten und dabei signifikant in Erscheinung tretenden Eigenschaften. Die folgenden Syste-
Die Entscheidungskriterien

Unterteilung der Entscheidungskriterien

»The material science approach to classification goes directly to the core understanding of the basic internal structure of materials.«

[Addington 2005, S.22]

»Materials in the engineering realm are chosen based on what they can do, how they behave and what they can withstand.«

[Addington 2005, S.23]

»In many design fields the material is chosen long before performance criteria are defined and as such the process tends to be artefact-driven.«

[Addington 2005, S.27]

me sind daher - obwohl es immer um die Ordnung von Materialien geht - grundsätzlich unterschiedlich aufgebaut.

Materialwissenschaften

Das von der Materialwissenschaft verfolgte Ziel ist, im Kern zu stehen, warum sich bestimmte Materialien entsprechend verhalten. Das Ziel ist vor allem, anschließend gezielt Materialien verändern oder herstellen zu können. Der Blick konzentriert sich daher mittlerweile auf den subatomaren Bereich. Eine spätere Anwendung in der Architektur spielt für diese Klassifizierungssysteme keine Rolle.

Ingenieurwesen

Weniger grundlagenbasiert als vielmehr anwendungsorientiert ist dagegen die Sicht eines Ingenieurs. Dieser kann sich bei seinem üblichen Materialwahlprozess auf viele branchenspezifische Klassifikationssysteme berufen, die es ihm durch Berücksichtigung vorwiegend physikalisch-chemischer Kriterien erleichtern, den Fokus auf nur wenige geeignete Materialien einzuengen und anschließend aus diesen zu wählen.

Produkt-Designer

Im Produkt-Design werden zumeist industriell herstellbare Massenprodukte entworfen. Dadurch rücken bei der Auswahl geeigneter Materialien die Produktionsprozesse mit ihren Anforderungen und Beschränkungen stärker in den Vordergrund. Auch verschiedene Herstellungsverfahren können daher für die Auswahl eines Materials geeignete Kategorien bilden.

Im Bauwesen werden im Gegensatz dazu jedoch vorwiegend Unikate entwickelt. Auch eine Ordnung von Materialien nach ihren Verarbeitungsprozessen erscheint daher für die Auswahl im Sinne dieser Arbeit nur wenig Hilfestellung zu geben.

Architekten

Recht pragmatisch kann im Prinzip der Architekt agieren, der - und sei es aus Haftungsgründen - rein bauteilbezogen nur aus für den jeweiligen Einsatzbereich zugelassenen Bauprodukten auswählt. Einige der in Kapitel 3.2.3 vorgestellten Datenbanken unterstützen z.B. den Zugang zu Materialien allein über die Eingabe der Anwendung kommenden Bauteils. Ist die prinzipielle technische Einsatzmöglichkeit bereits über die Zulassung sichergestellt, kann sich der Planer auf die ihm vertraute gestalterische Eigenschaftsebene der Produkte konzentrieren.

Eine Klassifikation von Materialien nach ihrer möglichen bauteilbezogenen Nutzung wird im Ergebnis allerdings zu funktionierenden, jedoch nicht gerade zu innovativen Standardlösungen führen.
Zusammenfassung
Die hier genannten bestehenden Klassifikationsmodelle sind in der Praxis anwendbar und haben daher in ihren individuellen Bereichen durchaus ihre Berechtigung. Allerdings beruhen sie allesamt auf einem jeweils sehr spezifischen und somit oft stark eingeengten Blickwinkel. Für einen multikriteriellen und multimodalnen Ansatz, wie er in dieser Arbeit verfolgt werden soll, erscheinen sie daher weniger geeignet.

4.3.2 Eine Alternative zu starren Klassifikationssystemen

Da ein unhöflich genommener und umfassender Zugang bei der Materialsuche ermöglicht werden soll, können die traditionellen Systeme mit ihrer Konzentration auf wenige fachspezifische Aspekte nicht eingesetzt werden. Anstelle starrer Klassifikationssysteme sind eher flexible Ansätze gefragt.

Suchmasken in freien Materialdatenbanken

Fazit
In letzter Konsequenz führt dieser Ansatz eher zum genauengegenteil von Materialklassen, nämlich zu unabhängig nebeneinander stehenden Material- oder Produkt-Individuen, die sich allein über ein gleichzeitiges Einhalten gewünschter Kriterien als eine lose Gruppe möglicher Materialien qualifizieren. Dieser Ansatz, mögliche Produkte weder bauteil- noch materialgruppenspezifisch, son-
dern allein über eine individuelle Definition einer Vielzahl mehr oder weniger zu erfüllender Eigenschaften aus der Menge aller Materialien herauszufiltern, bildet dabei die Erkenntnis ab, dass die traditionellen Grenzen zwischen Materialien durch neue Herstellungsverfahren und Produkte immer weiter verschwimmen (vgl. Kapitel 1.1.3). Relevant ist nicht mehr die Frage nach dem Material an sich, sondern danach, wie es sich verhält und wie es wahrgenommen wird.

Unter dieser Voraussetzung wird eine Materialsuche sicherlich zu teilweise unerwarteten Ergebnissen führen, da vielleicht Materialien in Gruppen zusammengefasst werden, die auf den ersten Blick eher wenige Gemeinsamkeiten zu haben scheinen. Allerdings kann gerade das Erkennen auch vorher nicht gesehenen Zusammenhänge zu innovativen Lösungen inspirieren, welche in der Architektur ausdrücklich auch gewünscht sind.

Für das weitere Vorgehen wird dieser wenig traditionelle Weg verfolgt, bei dem alle Kriterien prinzipiell gleichberechtigt und unabhängig in die Materialwahl einfließen können.
5 Kriterien bei der Materialwahl

»Ein Kriterium ist ein Merkmal, das bei einer Auswahl zwischen Personen oder Objekten (Gegenständen, Eigenschaften, Themen, usw.) relevant für die Entscheidung ist.«

[Wikipedia 2006f]

Im Folgenden wird eine Vielzahl von denkbaren und notwendigen Kriterien aufgeführt, die zu einer Beschreibung von Materialien und Oberflächen allgemein verwendet werden (Kapitel 5.1). Diese Zusammenstellung der Kriterien beruht auf einer nicht im Einzelnen referenzierbaren Querschnittsbetrachtung von verbreiteten Materialbeschreibungen in Büchern, Fachzeitschriften und auf Webseiten, von notwendigen Parametern zur Materialdefinition in verschiedenen Computerprogrammen, von wahrnehmungspsychologischen Untersuchungen sowie von Produktdatenblättern aus mehreren Materialkategorien.

Eine hierarchische Strukturierung der Kriterien und die anschließende Darstellung in einem Baumdiagramm (Kapitel 5.2) sollen helfen, sich über die relative Wertigkeit der Kriterien und ihrer Beziehungen zueinander klar zu werden. Durch das Gruppieren aller Kriterien in kleinere und überschaubare Einheiten kann die Komplexität der Materialentscheidung etwas verringert werden.

Aus der Gesamtsicht auf alle genannten Einzelkriterien wird abschließend das letztlich ausschlaggebende Gesamtkriterium definiert (Kapitel 5.3).

5.1 Festlegung der Kriterien

»In practice there is no set procedure for generating the objectives, criteria, and activities to be included in a hierarchy or even a more general system. It is a matter of what objectives we choose to decompose the complexity of that system.«

[Saaty 1990, S.14]

Es gibt keine „objektive“ oder unabhängige Quelle, die vorgibt, welche Kriterien bei der Materialwahl in der Architektur angewen-

Im Vorgriff auf das im dritten Hauptteil dieser Arbeit vorgeschlagene Bewertungsverfahren werden die im Folgenden angeführten Kriterien bereits inhaltlich gegliedert. Vorgeschlagen werden vier deutlich unterschiedbare Hauptkategorien (sinnlich, technisch, ökonomisch und ökologisch) und weitere darunter liegende Gruppen. Einige Materialeigenschaften können dabei auch gleichzeitig unter verschiedenen Gesichtspunkten, die sich gegenseitig beeinflussen, wichtig sein (z.B. der sinnliche Aspekt „Farbe“ und der technische Aspekt „Lichtreflexionsgrad“). Dennoch können sie unabhängig voneinander betrachtet werden, der Zugang sollte über beide Wege möglich sein.

5.1.1 Sinnliche Kriterien

Durch eine bewusste Gestaltung der Oberflächen kann der Planer die Intention seiner Architektur unterstützen (vgl. Kapitel 1.1). Die Materialien wirken dabei auf alle Sinne und schaffen so die gewünschte Atmosphäre. Viele Qualitäten eines Materials werden synästhetisch als Gesamtheit empfunden (z.B. ein „warmes Material“), dabei beruhen sie zumeist auf konkreten Materialeigenschaften, die auch unter rein technischen Gesichtspunkten gesehen werden könnten (z.B. „Wärmeableitungswiderstand“). Um sicherzustellen, dass einerseits zwar mit der Sprache eines Gestalters gesprochen werden kann, andererseits aber auch der notwendige Grad an Objektivierbarkeit eingehalten werden kann, wird eine nach den aufnehmenden Sinnen wahrnehmbarer Einzelaspekte getrennte Auflistung der sinnlichen Kriterien vorgeschlagen:

Optik

Der Sehsinn ist - gerade weil er als Fernsinn funktioniert - für die Architekturwahrnehmung der wichtigste Kanal. Darunter spielt wiederum die Farbigkeit einer (Raum-) Oberfläche eine besonders große Rolle, da sie - über eine Veränderung der Farbtemperatur des von ihr reflektierten Lichts - großen Einfluss ausübt auf die gesamte Lichtstimmung und die dadurch erzeugte Atmosphäre (Farbpsychologen nutzen so z.B. im Krankenhausbau den Einsatz von Farben zur gezielten Unterstützung von Heilungsprozessen). Eine zusätzliche getrennt mögliche Betrachtung von Farbton, Helligkeit und Sättigung erleichtert dabei die exakte Beschreibung von Farbwerten und die Anwendung anerkannter Harmoniregeln.

»One must prioritize very carefully the highest levels of the hierarchy because it is there that concensus is most needed since these priorities drive the rest of the hierarchy. In each level one must ensure that the criteria represented are independent or at least are sufficiently different, and that these differences can be captured as independent properties in the level.«
[Saaty 1990, S. 30]

Transparenz/Transluzenz als Eigenschaft, durch ein Material hindurchzusehen bzw. Licht hindurchzuleiten, ist - insbesondere durch die Möglichkeit einer auch metaphorischen Verwendung - in moderner Architektur ein nicht wegzudenkendes Kriterium: Transparenz/Materialien können einen Raumabschluss schaffen und dennoch eine (Blick-)Beziehung durch die Grenze hindurch ermöglichen. Der Transparenzgrad eines Materials kann allerdings je nach Blickwinkel auf die Oberfläche zum Teil erheblich variieren, z.B. durch den Fresnel-Effekt aufgrund verschiedener Dichten bei Glas oder durch die räumliche Struktur bei Geweben. Eine Berücksichtigung auch dieses Effekts erscheint recht komplex.

Vor allem natürliche Materialien, aber auch viele künstliche Oberflächen weisen durch einen Wechsel in ihrer Farbigkeit eine deutliche Textur (oder auch Musterung, Maserung, Sprenkelung) auf. Dadurch erhalten sie als gern eingesetzte Qualität zumeist eine größere Lebendigkeit als homogene Flächen.

Akustik
Bei der Betrachtung der akustischen Eigenschaften eines Materials muss unterschieden werden zwischen der Wirkung des Gesamtbau- teils auf die Raumakustik (z.B. Reduzierung der Schallreflexion durch inneren Schichtaufbau einer Akustikdecke) und dem eigenen Klang eines Materials, wenn es angeschlagen wird. Während ersteres ein technisch zu betrachtendes Kriterium darstellt (und entsprechend dort aufgeführt wird), interessiert der Klang eher als gestal-
Die Entscheidungskriterien

Kriterien bei der Materialwahl

terisches Merkmal. Dieser Klang von Materialien lässt sich beschreiben durch die beiden Parameter Tonhöhe (Frequenz) und Klarheit (Dämpfung) [Ashby 2002, S. 72].

Haptik

Als gestalterisch relevant sind hier vor allem diejenigen Materialeigenschaften zu nennen, die durch taktile Wahrnehmungen (über die Hautoberfläche) erlebt werden können. Oberflächen in der Architektur erfordern dabei wegen ihrer eigenen Leblosigkeit ein „aktives Erforschen“ durch den Wahrnehmenden. Als objektivierbare Kriterien, die zudem durch technische Eigenschaften hinterlegt sind, lassen sich so zumindest die Härte, das Wärmeableitungsvermögen und die Rauheit einer Oberfläche angeben.

Olfaktorik / Gustatorik / Vestibularsystem

Auch der Gleichgewichtssinn lässt sich nicht allein durch die Materialität einer Oberfläche ansprechen. Er liefert daher ebenfalls kein im Sinne dieser Arbeit brauchbares Kriterium.

Materialart

Die hier genannte Eigenschaft „Materialart“ ist also nur bedingt ein objektives Kriterium, für eine gestalterisch begründete Suche kann es aber dennoch wichtig sein. Problematisch in der Umsetzung wird allerdings das zunehmende Verschwinden klarer Grenzen zwischen einzelnen Materialkategorien sein.

»Der Charakter eines Materials wird nach der Atmosphäre bezeichnet, die von ihm ausgeht, und diese kann beim gleichen Charakter von Qualitäten herrühren, die ganz verschiedenen Sinnesbereichen angehören. Deshalb spricht man von synästhetischen Charakteren. Von synästhetischen Charakteren sind die gesellschaftlichen Charaktere der Materialien zu unterscheiden. [...] Wichtig ist, daß diese Charaktere kulturellem Wandel und sogar der Mode unterliegen.« [Böhme 1994, S.84-85]
Zusammenfassung
Bei den oben genannten sinnlichen Kriterien ist es im Prinzip möglich, gestalterische Qualitäten von Materialien, die zur Unterstützung einer Entwurfsintention bewusst eingesetzt werden können, mit konkreten Werten zu beschreiben.

5.1.2 Technische Kriterien

Die technischen Anforderungen an eine Oberfläche, die ja auf gesetzlichen Grundlagen und Normungen beruhen, erscheinen auf den ersten Blick im Vergleich zu den sinnlichen Eigenschaften objektiver und vor allem eindeutiger anzuwenden. Für eine produktübergreifende Vergleichbarkeit stellt es allerdings ein großes Problem dar, dass viele Begriffe und Verfahren jeweils für nur eine Produktgruppe (z.B. „Reibechtheit“ bei Teppichen) oder unterschiedlich je nach Anwendung (z.B. Bestimmung des Brandverhaltens je nach Einbautlage des Bauteils) geregelt sind.

Für jede Gruppe werden zur Verdeutlichung der gewählten Unterteilung beispielhaft einige Einzelkriterien genannt. Diese Auswahl ist selbstverständlich erweiterbar.

Konstruktion

Unter dieser Kategorie können vorwiegend physikalische und mechanische Eigenschaften aufgeführt werden, die eine ordnungsmaße Erstellung eines Bauwerks ermöglichen.

Speziell für Fußbodenaufbauten, aber auch in anderen konstruktiven Zusammenhängen kann die (minimale) Aufbauhöhe des Produkts ein entscheidendes Kriterium sein. Darin eingeschlossen werden kann die übliche und notwendige Unterkonstruktion (z.B. Mörtelbett unter Fliesen), weitere nicht im unmittelbaren Zusammenhang mit der Oberfläche stehende Schichten (z.B. Trittschalldämmung) hingegen nicht.

Für statische oder schalltechnische Belange kann das Flächengewicht oder bei nicht flächig verbauten Materialien auch die Rohdichte ein wichtiges Kriterium sein. Andere konstruktive Eigenheiten wie z.B. Verlegeart (Platten, Bahnen, Fliesen) oder Verlegetechniken (Kleben, Mörtelbett) können zwar ebenfalls den Ausschlag für oder gegen einen bestimmten Fußboden geben, sie sind aber sehr speziell und nicht in dem Sinne zu bewerten, dass eines davon besser geeignet ist als ein anderes. Sie werden hier daher nicht weiter berücksichtigt.

Je nach Beanspruchungsart und -richtung von Bauteilen können weiterhin eine hohe Reißfestigkeit und ein großes Dehnungsvermögen relevant werden. Andere Eigenschaften wie Härte oder Druckfestigkeit dagegen sind eher für die eigentlichen Konstruktionsbaustoffe und weniger für die bekleidenden Schichten interessant.

Bauphysik

Für die bauphysikalisch korrekte Ausführung einer Konstruktion sind zusätzlich weitere Materialeigenschaften gefragt, die auch die Oberflächenmaterialien betreffen:

Für den Schutz gegen Durchfeuchtung interessiert entweder der Wasserdampfdiffusionswiderstand oder die Wasserundurchlässigkeit. Beide Werte beziehen sich dabei direkt auf die Schichtdicke des Produkts in der Anwendung.

Der Wärmedurchgang wird durch den Wärmedurchlasswiderstand (oder als Kehrwert der Wärmedurchlasskoeffizient) eines Produkts bestimmt und hängt ebenfalls von der Schichtdicke ab. Das manchmal aufgeführte Kriterium „Fußwärme“ eines Bodenbelags zur Beschreibung der damit verbundenen Behaglichkeit hängt von diesen Werten ab, es müssen allenfalls entsprechende Grenzwerte zur Einordnung definiert werden.

Nutzung

Durch die Art einer späteren Raumnutzung werden weitere konkrete Anforderungen an Raumoberflächen, insbesondere an Fußböden, gestellt. Für einen möglichen Einsatz eines Produkts ist dabei einzig relevant, ob es diese Kriterien erfüllt oder nicht. Üblicherweise werden daher für viele Produkte die Einsatzmöglichkeiten oder -bereiche einfach angegeben.

In normalen Funktionsbereichen kann bereits z.B. eine Eignung für Fußbodenheizung, Stuhlrollen oder Treppen erforderlich sein. Spezial-Funktionsbereiche (Küchen, Labore) können darüber hinaus aber auch bestimmte rutschhemmende, ableitfähige oder fungistatische bzw. bakteriostatische Oberflächen verlangen.

Die genannten Eigenschaften stehen inhaltlich unabhängig auf der gleichen Hierarchiestufe nebeneinander, sie erfordern auch keine weitere Untergliederung.

Beständigkeit

Zusammenfassung

Damit einzelne Materialien in der Architektur eingesetzt werden können, müssen sie - je nach Ort der Anwendung - vielfältigen technischen Kriterien genügen. Diese können durch gesetzliche Vorgaben, fachplanerische Erfordernisse oder auch durch die spätere Nutzung formuliert sein.

Eine Beschreibung der Produkteigenschaften kann dabei entweder über genaue Kennwerte oder aber über die Eingruppierung in typische oder zugelassene Anwendungsbereiche erfolgen. Anforderungen, die nicht exakt definiert sind (z.B. „Pflegeleichtigkeit“) oder sich nur auf einzelne Produktsarten beziehen (z.B. „Glasurabbrrieb“ bei Fliesen), entziehen sich zunächst einer vergleichenden Wertung.

5.1.3 Ökonomische Kriterien

Einzelne Materialalternativen ökonomisch und ökologisch zu bewerten ist nicht einfach. Einerseits müssen zukünftige Entwicklungen, also sehr viele auf Schätzwerten oder Annahmen beruhende und daher nicht immer exakt zu beziffernde Einzelfaktoren in die Betrachtung einbezogen werden. Andererseits beziehen sich bekannte Verfahren und Programme zur Lebenszyklusanalyse üblicherweise auf ein komplettes Bauelement statt nur auf die im Rahmen dieser Arbeit betrachtete letzte Oberflächenschicht. Eine Zuordnung zu einem einzelnen Material wird dadurch erschwert.

Für die Beurteilung von Stoffströmen und Umweltauswirkungen gibt es in verschiedenen Branchen unterschiedliche Ansätze. Die folgende grundsätzliche Aufstellung von ökonomischen und ökologischen Einzelkriterien, welche insgesamt Einfluss auf eine Gesamtbewertung haben, ist angelehnt an die Software LEGEP (Lebenszyklus Gebäude Planung), da diese speziell für Bauwerke eine Bewertung von Kosten und Umweltauswirkungen nach der Bauelementmethode erlaubt [LEGEP].

Erstellung

Die Kosten für die Erstellung eines Bauwerks können im Rahmen der Kostenplanung bereits bauelementbezogen ermittelt werden. Die hier nutzbaren Werte (z.B. [Sirados]) beruhen auf bereits abgerechneten Bauleistungen und müssen zur Aktualisierung laufend fortgeschrieben werden. Bei den benutzten Feinelementen werden zwar ermittelte Kosten für einzelne Schichten angesetzt, allerdings kann die Änderung einer Oberfläche auch Auswirkungen auf die Gesamtkonstruktion mit sich ziehen. Die Zuordnung der Kosten zum betrachteten Oberflächenmaterial ist also nicht ganz eindeutig.

Eine weitere Schwierigkeit liegt darin, dass prinzipbedingt so nur Daten zu bekannten und üblicherweise eingesetzten Materialien erhältlich sind. Kosten zu innovativen Produkten können daher nur
individuell über Materialpreis und angebotene Verarbeitungskosten angesetzt werden.

Nutzung
Einen entscheidenden Einfluss auf die Gesamtkosten kann - da anfallende und sich wiederholende Posten über die gesamte Nutzungsdauer summiert werden - je nach Nutzungsdauer auch der Betrieb eines Bauwerks haben.

Der manchmal in Produktdatenblättern verwendete Parameter „Beanspruchungsklasse“ erlaubt dem Planer zwar auch eine prinzipielle Einordnung hinsichtlich zu erwartender Folgekosten, die getrennte Betrachtung - wie oben beschrieben - erlaubt jedoch eine genauere Bewertung durch die Möglichkeit einer nutzungsspezifischen Anpassung der Einzelfaktoren.

Entsorgung

Zusammenfassung
Die Betrachtung des gesamten Lebenszyklus eines Bauwerks ist derzeit Gegenstand vieler Forschungstätigkeiten. Eine solche Betrachtung ermöglicht - im Vergleich zum alleinigen Blick auf die Materialpreise - die Suche nach der auch langfristig günstigsten Alternative.

Im Prinzip werden die genannten Kriterien für eine ökonomische Betrachtung von Materialalternativen relevant. Durch große Unterschiede in dem Umfang der verwendeten Daten, der Schwerpunktsetzung und der verwendeten Methoden fehlt es bisher allerdings noch oft an vergleichbaren Werten, insbesondere für neue Produkte.
5.1.4 Ökologische Kriterien

»Der Grundsatz der Nachhaltigkeit bedeutet im Bauwesen, dass in allen Phasen des Lebenszyklus von Gebäuden - von der Planung und Herstellung über die Nutzung und Erneuerung bis zum Rückbau - eine Minimierung des Verbrauchs von Energie und Ressourcen [...] angestrebt wird.«

[Rudolphi 2005, S.22]

5.1.5 Subjektive Kriterien

»Die normative Entscheidungstheorie sucht nach Kriterien rationalen Entscheidens und will Hilfestellungen für die Frage geben, wie man in einer gegebenen Situation vernünftigerweise entscheiden soll. Dazu muss sie einige vereinfachende Modellannahmen treffen, so muss sie beispielsweise vom Axiom der Rationalität des Entscheiders ausgehen.«

[Wikipedia 2006d]

Alle bisher aufgeführten Kriterien ermöglichen es im Prinzip, ein Material „objektiv“ zu beschreiben. Es wurde somit ein umfassender, hierarchisch strukturierter Kriterienkatalog (siehe Kapitel 5.2) zusammengetragen, der es - durch Nutzung eines Werkzeugs zur Materialbewertung - innerhalb eines integrierten Gesamtprozesses (vgl. Kapitel 3.4.2) ermöglichen soll, das für die jeweilige Entwurfsintention am besten geeignete Material herausfinden zu können.

Dieser Gedanke setzt selbstverständlich voraus, dass der individuelle Nutzer rational vorgeht. Er sollte also nicht nur seine Wünsche und Anforderungen der Situation entsprechend vernünftig formulieren, sondern sich auch unvoreingenommen den (Zwischen-) Ergebnissen der Suche öffnen und diese als denkbare Alternative akzeptieren.

Es ist jedoch bekannt, dass über ein solches rationales Vorgehen hinaus immer auch zahlreiche irrationale oder zumindest sehr subjektive Kriterien die Entscheidung für ein bestimmtes Material beeinflussen: Der Planer kann z.B. bereits für ein bestimmtes Material voreingenommen sein, weil er es in einer Fachveröffentlichung gesehen hat, weil ein berühmter Kollege dies irgendwo gewinnebringend eingesetzt hat oder weil er schlichtweg Lust hat, einmal etwas mit diesem speziellen Baustoff auszuprobieren zu wollen. Er kann
auch bereits gute Erfahrungen mit einem Material gemacht haben, sich auf eine bestimmte Architektursprache spezialisiert haben oder einfach nur freundschaftliche bzw. enge geschäftliche Kontakte zu Herstellern, Baustoffhändlern oder verarbeitenden Firmen pflegen. Es kann also durchaus sein, dass selbst ein „objektiv“ besser geeignetes Material am Ende doch nicht gefragt ist.

5.2 Hierarchische Struktur

»A hierarchy […] is a more or less faithful model of a real-life situation.«

[Saaty 1990, S.17]

Der in dieser Arbeit verfolgte Ansatz, Materialien detailliert auf Basis sehr vieler Einzelkriterien zu charakterisieren, mag für den oft zu generalistischen Betrachtungen neigenden Architekten vielleicht ungewohnt sein. Stattdessen muss er die eigenen Wünsche und Anforderung nach klar abgegrenzten Eigenschaften abfragen, also sehr analytisch vorgehen.

Diese Arbeit kann allerdings etwas erleichtert werden, indem die einzelnen Bewertungskriterien einmal in ihrer Beziehung zueinander im Rahmen einer Gesamtübersicht dargestellt werden. Wie bereits angemerkt, bewegen sich die vielen einzeln zu betrachtenden Kriterien unter fachlich begründeten Gesichtspunkten nicht alle auf der gleichen hierarchischen Ebene. Die inhaltlichen Zusammenhänge, die dem vorgeschlagenen Bewertungsmodell - auch auf verschiedenen Betrachtungsebenen - innenwohnen, lassen sich somit gut in einer Baumstruktur abbilden:
Die Entscheidungskriterien

Kriterien bei der Materialwahl

optimales Material

sinnlich
- Optik
 - Farbigkeit
 - Glanz
 - Transparenz
 - Textur
- Akustik
 - Tonhohe
 - Klarheit
- Haptik
 - Harte
 - Temperatur
 - Rauheit
- Materialart
 - Aufbauhöhe
 - Flächengewicht
 - Rohdichte
 - Reißfestigkeit
 - Dehnungsvermögen

technisch
- Konstruktion
 - Wasser dampfdiff.
 - Wasserdurchlässig
 - Wärmedurchlass
 - Schallreflexion
 - Schalldämmmaß
 - Brennbarkeitskl.
 - Reflexionsgrad
- Bauphysik
 - Fußbodenheizung
 - Stuhlkellen
 - Treppen
 - Rutschhemmung
 - Ableitung
 - Fungustatik / Bakt.
- Nutzung
 - Beanspruch-Klasse
 - Beständigkeit
 - Reinigung
 - Wartung
 - Instandsetzung
 - Rückbau
 - Deponie

ökonomisch
- Erstellung
 - Lebenszyklus
 - Recyclingbarkeit
 - Herkunft
- Nutzung
- Entsorgung

ökologisch
- Chemikalien
 - Flecken
 - Frost
 - Hitze
 - Licht
 - Mineralöl
 - Temp.-wechsel
 - Zigarettenkipper

Abb. 5.1: Kriterienbaum
Neben dem schnellen Überblick, welche Parameter mit welchen anderen wie in Beziehung stehen, erleichtert eine solche Struktur im Weiteren die leichtere und dennoch genauere individuelle Gewichtung der Einzelkriterien (siehe Kapitel 6.3), da im direkten Vergleich innerhalb eines Knotens immer nur wenige Eigenschaften parallel betrachtet werden müssen. Das Ergebnis der eigenen Einschätzung kann somit genauer ausfallen. Werden Eigenschaften, die in mehrere Kategorien einfließen, in all diesen als wichtig erachtet, erhöht sich deren relative Wichtigkeit entsprechend (siehe Kapitel 6.5). Die Hierarchisierung erlaubt zudem, zusammengehörende Gruppen von Eigenschaften (z.B. alle gestalterischen Aspekte) gegenüber anderen durch einen einzigen Vorgang anders zu gewichten, was insbesondere im Rahmen der dynamischen Untersuchung des Ergebnisses (siehe Kapitel 7.3) einen großen Vorteil darstellt.

5.3 Definition des ausschlaggebenden Kriteriums

»The key to the application of multi-objective optimization to architectural scenarios is the simple fact that, in most situations, we know what the object needs to do, we generally know what the geometry needs to be but we do not yet know which material best satisfies the set of requirements. In these cases, multi-objective optimization becomes a powerful way to select materials.«

[Fernandez 2006, S. 270]

Bisher ist durch die oben aufgeführten Kriterien nur gezeigt worden, welche Inhalte (es gibt selbstverständlich je nach Anwendungsfall noch weitere) die Entscheidungsfindung des Architekten irgendwie beeinflussen können und wie diese strukturell zusammenhängen.

Wie aber können die einzelnen Eigenschaften in die planerische Bewertung und Entscheidung konkret Eingang finden? Wie können so unterschiedliche Punkte wie gestalterische, technische, ökonomische und ökologische Kriterien gegeneinander aufgerechnet werden? Was wird letztlich den endgültigen Ausschlag geben für die Wahl eines bestimmten Materials?

„Der Planer wird sich für das Material entscheiden, welches möglicherweise genau dem entspricht, was er sucht." Dieser zunächst fast banal erscheinende Satz beschreibt - gerade in seiner Verkürzung und Verdichtung - sehr gut, wie der Architekt sich auf ein bestimmtes Material festlegt:

Die übliche Vorgehensweise des Architekten

Zunächst einmal wird der Planer definieren müssen, was er zur Lösung seines „Entwurfproblems“ eigentlich sucht. Das bedeutet, er wird irgendwie - unter Berücksichtigung seiner Wünsche, Erfahrungen und externen Anforderungen - sich ein „virtuelles“ Idealmaterial mit für diesen Einsatzzweck optimalen Eigenschaften formulieren.
Da aber nicht unbedingt davon ausgegangen werden kann, dass er ein Material findet, welches exakt alle die von ihm gesuchten Eigenschaften aufweist, wird er anschließend sinnvollerweise dasjenige Produkt auswählen, welches ihm in einer zusammenfassenden Gesamtsicht optimal erscheint. Er wird also das Material wählen, welches - unter Berücksichtigung der von ihm als mehr oder weniger wichtig erachteten Punkte - dem ursprünglich formulierten Idealmaterial am nächsten kommt, diesem also in der Summe am ähnlichsten ist.

Minimierung der Unähnlichkeit

Mathematisch ausgedrückt wird er sich in seiner Auswahlstrategie also das Ziel setzen, diese Gesamtahnlichkeit des gewählten Materials zu seinem Idealmaterial zu maximieren. Andersherum formuliert (und im Weiteren aus mathematischen Gründen auch nur noch so verwendet) ist sein Ziel, die Unähnlichkeit zum gesuchten Material zu minimieren.

Um alle Materialien in eine Rangfolge bringen zu können, muss er zur Bewertung also nicht mehr im Detail den gesamten Hierarchiebaum, sondern nur noch einen einzigen daraus abgeleiteten Wert „Unähnlichkeit“ heranziehen.

Dabei kann es vorkommen, dass mehrere durchaus unterschiedliche Materialien im Verhältnis zum „virtuellen“ Material dennoch als gleich unähnlich berechnet werden: Ein Material, was in einem bestimmten Kriterium vielleicht weniger geeignet ist, kann ja in den anderen umso besser passen und so rechnerisch einen Ausgleich schaffen. Inhaltlich bedeutet dies, dass in der Gesamtsicht gleich bewertete Materialien letztlich auch gleich gut geeignet sind, auch wenn sie vielleicht andere Eigenschaften aufweisen.

Dies kann dann dazu führen, dass der Planer noch einmal seine Suche überdenkt, also z.B. die Gewichtung der einzelnen Kriterien nachjustiert. Oder aber er wählt - vielleicht aus subjektiven und nicht abgebildeten Gründen - einfach eines der gleich bewerteten Materialien aus, im Wissen, dass dieses genauso gut geeignet ist wie die anderen.

Zusammenfassung

Eine Möglichkeit, wie dieses Ziel - speziell im Hinblick auf die in diesem Kapitel vorgeschlagenen Kriterien - mathematisch umgesetzt werden kann, wird im nun folgenden dritten Hauptteil der Arbeit beschrieben.
III Das Verfahren
6 Ranking aller Materialien

„Eine Rangordnung (auch Rangfolge, Rangliste, Ranking) ist das Ergebnis einer Sortierung von mehreren vergleichbaren Objekten, die mit einer vergleichenden Bewertung einhergeht. Rangordnungen ermöglichen es beispielsweise, komplexe Informationsangebote nach bestimmten Kriterien zu bewerten und eine Auswahl zu treffen.«

[Wikipedia 2007]

Modelle sind durch einen Abstraktionsprozeß gewonnene Abbildungen komplexer Systeme.«

Damit die Unählichkeiten nach dem obigen Modell berechnet werden können, müssen allerdings einige Voraussetzungen erfüllt sein:
Systemseitig müssen die Materialeigenschaften in „objektiven“ Zahlwerten vorliegen oder in solche Werte umgewandelt werden können (Kapitel 6.1).
Nutzerseitig muss ebenfalls in Zahlwerten definiert werden können, was genau gesucht wird, und zwar hinsichtlich des Zielwerts im jeweiligen Kriterium (Kapitel 6.2) als auch bezogen auf die Kriterien gewichtung (Kapitel 6.3).

Sind die ersten beiden Voraussetzungen erfüllt, lässt sich bereits die Unähnlichkeit zunächst für jedes Einzelkriterium berechnen (Kapitel 6.4). Unter Berücksichtigung der individuellen Gewichtung können diese anschließend in einem einzigen Gesamtwert zusammengefasst werden (Kapitel 6.5). Dieser wird zur Erstellung der Rangfolge herangezogen.

Das beschriebene Vorgehen wird abschließend hinsichtlich der Methode und der zu erwartenden Ergebnisse diskutiert (Kapitel 6.6).

6.1 Daten vorliegender Materialeigenschaften

„In weit aufgefaßtem Sinne bezeichnen Daten Gruppen nicht zufälliger Symbole, die Vorgänge oder Zustände darstellen.«
[Weber 1993, S.8]

Diejenigen Einzelkriterien, die überhaupt Einfluss nehmen auf die Entscheidung für ein bestimmtes Material, wurden bisher nur mit Worten benannt (vgl. Kapitel 5.1). Um diese aber auch hinsichtlich ihrer Auswirkung zahlenmäßig bewerten zu können, müssen sich die
möglichen Ausprägungen dieser Kriterien auch anhand konkreter Daten beziffern lassen.

Für jedes Kriterium muss dabei individuell festgelegt werden, in welcher Form dieses in entsprechenden Daten dargestellt werden soll.

6.1.1 Das Spektrum möglicher Daten

In Realität wahrgenommene (Material-) Eigenschaften lassen sich durch abstraktere Daten abbilden. Je nach inhaltlicher Ausprägung des jeweiligen Kriteriums können dabei verschiedene Arten von Daten zur Anwendung kommen, die dadurch unterschiedlich detaillierte Aussagen in der Bewertung erlauben und bei der nachfolgenden Berechnung der Unähnlichkeit auch unterschiedlich behandelt werden müssen:

Unterscheidung zwischen qualitativen und quantitativen Daten

Qualitative Daten erlauben allein Aussagen über die Art, nicht jedoch über die genaue Höhe der Ausprägung eines Kriteriums. Sie beruhen auf nichtmetrischen Skalen. Demgegenüber sind für eine genaue Bezifferung der Ausprägung eines Attributes quantitative Daten und metrische Skalen notwendig.

Je nach Niveau, das letztlich abgebildet werden kann, können bei Daten folgende Messskalen zur Anwendung kommen [Basalaj 2001]:

Nominale / Binäre Daten

Nominalskalen bieten die schwächste Form einer qualitativen Aussage über Attribute, da hier nur festgelegt werden kann, ob ein Element zu einer bestimmten vorher definierten - und eindeutig von anderen abgegrenzten - Kategorie gehört oder eben nicht. Eine darüber hinausgehende Bewertungsmöglichkeit oder eine Vergleichbarkeit ist nicht gegeben.

Das Kriterium Materialart beruht z.B. auf einer nominalen Datenstruktur: Es lassen sich mehrere Materialkategorien definieren (Holz, Glas, Metall, Stein etc.), in welche dann die vorliegenden Materialien im Prinzip eingeteilt werden können (Hybride Produkte aus mehreren Grundmaterialien können gleichzeitig auch mehreren Kategorien angehören).

Binäre Skalen als Sonderform der Nominalskalen reduzieren die Anzahl möglicher Kategorien auf nur zwei.

Ein Beispiel hierfür ist die Stuhllrolleneignung eines Fußbodens: Entweder das Material ist für die geforderte Anwendung geeignet oder eben nicht.

Ordinale Daten

Eine bereits weitergehende qualitative Bewertung erlaubt die Verwendung von Ordinalskalen, die eine (nicht zwangsläufig linear

Ein Beispiel einer solchen Skala ist die Unterteilung von Materialien in Brennbarkeitsklassen aufgrund genormter Prüfverfahren: Die genauen Ergebnisse der Prüfungen sind für die Frage eines Einsatzes letztlich für den Anwender nicht weiter relevant, so lange die mindestens geforderte Brennbarkeitsklasse eingehalten wird. Es können also z.B. auch nichtbrennbare Materialien verbaut werden, wenn mindestens Schwerentflammbarkeit gefordert ist.

Quantitative Daten
Eine exakte Bezifferung vorliegender Eigenschaften und die entsprechende Berechnung der Unähnlichkeit zwischen zwei Elementen sind erst innerhalb quantitativer Skalen möglich. Verwendet werden können dabei Intervallskalen, die nur exakte Abstände oder Relationen zwischen zwei Werten messen, oder aber Rationskalen, die auch absolute Werte bezogen auf einen definierten Nullpunkt liefern.

Viele Materialeigenschaften lassen sich in solchen quantitativen Daten angeben, wobei es keinen Unterschied macht, ob der Wertebereich insgesamt begrenzt ist (z.B. Transparenz von 0-100%) oder ob er unbegrenzt ist (z.B. Kosten prinzipiell nach oben offen).

Heterogene Daten
Bestehen Eigenschaften aus mehreren voneinander unabhängigen Einzelkomponenten, muss man mit heterogenen Daten arbeiten. Die Abbildung solcher Eigenschaften in heterogenen Daten bedarf dabei immer einer individuellen und fachlich begründeten Betrachtung des Einzelfalls.

Fazit

Zur Erlangung nutzbarer Daten muss also zum einen geklärt werden, auf welchem Weg diese erzeugt werden können, zum anderen muss definiert werden, in welcher Skala die Materialeigenschaften abgebildet werden sollen.

6.1.2 Mögliche Wege der Datenerzeugung

Zudem ist das erklärte Ziel dieser Arbeit, vor allem die Möglichkeiten der digitalen Materialauswahlwerkzeuge zu verbessern (vgl. Kapitel 1.3.1). Grundlage für die Materialbewertungen und -entscheidungen können und sollen daher zunächst nur die Informationen sein, die auch heute schon prinzipiell auf Webseiten der Hersteller zur Verfügung stehen.

Zur Nutzung dieser Informationen als Daten zu vergleichenden Bewertungskriterien stehen dann mehrere Wege offen:

Direkte Übernahme bereits vorhandener Daten
Am einfachsten ist es, wenn Materialeigenschaften bereits in der gleichen Form existieren, wie sie später benötigt werden - und zwar hinsichtlich der Skala als auch der Metrik. Dieses trifft vor allem auf die technischen Kriterien zu (vgl. Kapitel 5.1.2), die vom Hersteller in Produktdatenblättern veröffentlicht werden.

Die einzige Hürde bildet bei solchen Kennwerten eigentlich nur noch das automatische Auslesen der Daten, da diese zumeist nur als uneinheitlich strukturierten Fließtext im pdf-Format oder als reiner html-Text publiziert werden. Eine Bereitstellung der vorhandenen Werte in XML (Extensible Markup Language) dagegen würde er-
lauben, diese zusätzlich mit frei deklarierbaren XML-Tags auszuzeichnen, so dass die Daten durch entsprechende Software automatisch interpretiert werden könnten [W3C 2002]. Die notwendige Technik hierzu soll an dieser Stelle nicht weiter vertieft werden, könnte aber auch bei den folgenden Erzeugungswegen entsprechend zur Anwendung kommen.

Umwandlung bereits vorhandener Daten in Klassen

Einige Kennwerte können anstelle einer exakten quantitativen Einteilung besser in ordinalen Skalen erfasst werden. Dies bedeutet zwar einen gewissen Verlust an Detailinformation über das jeweilige Kriterium, ermöglicht aber andererseits vielleicht überhaupt erst einen sinnvollen Zugang zu bestimmten Daten. Die detaillierteren Daten können zusätzlich für eine spätere tiefer gehende Information mitgeführt werden.

Vorliegende exakte Daten können dabei durch ihre Relation zu festgelegten Wertegrenzen bestimmten Klassen zugeordnet werden. Diese Grenzen sollten in ihrer Definition selbstverständlich typische Wertebereiche oder signifikante Verteilungen abbilden. Eine solche Umwandlung quantitativer Daten in Ordinalskalen kann vor allem dann hilfreich sein, wenn vorhandene Methoden zur Messung von Werten uneinheitlich, ungenau, oder unverhältnismäßig aufwendig sind oder aber eine exakte Angabe keinen deutlichen Mehrwert darstellt.

Manche Materialeigenschaften lassen sich nur materialspezifisch messen und sind somit nicht direkt mit entsprechenden Werten anderer Materialkategorien vergleichbar:

Der Transparenzgrad von Glas z.B. lässt sich exakt eigentlich nur in einer Funktion in Abhängigkeit vom Betrachtungswinkel beschreiben (Fresnel-Effekt). Die Zuordnung eines einzigen Werts „Transparenz“ bedeutet daher zunächst einen Verlust an Detailinformation. Allerdings erlauben aber auch Drahtgewebe und Lochbleche eine gewisse Durchsicht, die jedoch vielleicht eher über den prozentualen Lochanteil beschrieben wird. Eine Vergleichbarkeit des Transparenzgrads auch über Materialgruppen hinweg kann dann dennoch ermöglicht werden, wenn diese unterschiedlichen Werte in Klassen abgebildet werden. In diesem Fall könnte z.B. eine relativ grobe Klassifizierung (z.B. Transparenz in drei Klassen 0%, 0-50%, 50-100%) zum Tragen kommen, auch wenn dies zu Lasten genauerer Werte (z.B. für einen Detailvergleich verschiedener Glasarten) geht.

Manchmal können genaue Werte den Nutzer sogar hinsichtlich seiner eigenen Bewertungsmöglichkeit überfordern: Verbreitet ist z.B. die Unterteilung des Glanzverhaltens eines Materials in „matt“, „seidenmatt“ und „glänzend“. Eine nur nach aufwendiger Messung mögliche exakte Angabe von z.B. 57% Glanz wäre hingegen ein Wert, der - trotz seiner scheinbaren Detailgenauigkeit - für den Nutzer keine einfach zu interpretierende Aussage darstellt, da er diese Zahl in keinen ihm bekannten Zusammenhang
III Das Verfahren

Ranking aller Materialien

stellen kann. Liegt der genaue Wert von 57% aus Messungen für andere Zwecke allerdings bereits vor, kann dieser für die Klassifikation des Materials in „seidenmatt“ verwendet werden und so dem Nutzer eine hinreichende und ihm verständliche Einschätzung des Materialverhaltens ermöglichen.

Ableitung von Daten aus Pixelbildern

Üblicherweise versuchen Materialhersteller, mittels Fotos auch einen optischen Eindruck ihrer Produkte zu vermitteln. Dieses kann perspektivisch verzerrt im Raumzusammenhang erfolgen (vgl. Kapitel 3.1.5) oder aber durch orthogonale Bilder eines repräsentativen Ausschnitts der Materialoberfläche. Letzteres wurde bereits in Hinblick auf eine mögliche Verwendung als Textur in Visualisierungen favorisiert.

Unverzerrte und gleichmäßig ausgeleuchtete, also neutrale Fotos von Materialien können aber auch eine Quelle für die Erzeugung von Daten zu Farbe und Textur der Oberfläche darstellen. Das zahlenmäßige Auswerten der Pixelbilder stellt dabei nicht nur diese Daten überhaupt erst für die Berechnung zur Verfügung, sondern kann in der weiteren Datenhaltung eine enorme Reduktion im Vergleich zur Arbeit mit den originalen Bilddaten bedeuten:

Für in der Architektur eingesetzte Produkte erscheint z.B. eine abgebildete Fläche von einem Quadratmeter ausreichend: Dieser würde in den meisten Fällen bereits zahlreiche Merkmale und Eigenheiten natürlicher Oberflächen sowie die Art der Verlegung bzw. das Fugenbild handelsüblicher Element-Formate erfassen.

Diese Problematik ist aber nicht der hier beschriebenen automatischen Datenerzeugung zuzuschreiben. Auch die bisher übliche Vorgehensweise - nämlich der rein visuelle Vergleich verschiedener Oberflächen nur anhand der Pixelbilder - beruht allein auf den vom Hersteller veröffentlichten digitalen Daten.

Rückgriff auf zusätzliche Informationsquellen

Eine weitere Quelle für Daten kann durch die Verbindung mit externen Anbietern von Informationen erschlossen werden. Gerade zu ökonomischen und ökologischen Eigenschaften von Materialien gibt es zahlreiche unabhängige und auf diese Kriterien spezialisierte Datenbanken, die produkttübergreifend Informationen über Materialien und Bauweisen vorhalten.

Rudimentär vorliegende Herstellerdaten wie z.B. die Angabe der Holzart eines Parketts können so mit zusätzlichen Daten wie üblichen Kosten für Erstellung, Nutzung und Entsorgung oder auch Lebenszyklusbetrachtungen erweitert werden.

Auch wenn diese Kennwerte bei unterschiedlichen Produkten gleicher Materialart dann natürlich identisch sind, erlaubt diese Vorgehensweise zumindest das Einbeziehen dieser Kriterien in die Gesamtabwertung prinzipiell möglicher Materialalternativen. Liegen
für einzelne Materialien individuelle und produktepezisfreiche Angaben vor, können diese auf diese Weise mit den angesetzten Durchschnittswerten der jeweiligen Materialkategorie in Beziehung gesetzt werden.

Nicht ermittelbare Daten
Insbesondere bei der ja intendierten Berücksichtigung innovativer, vielleicht noch gar nicht für das Bauwesen zugelassenen Materialien, aber teilweise auch bei bereits bekannten Produkten, ist davon auszugehen, dass nicht alle zur Bewertung notwendigen Daten vorliegen oder aus anderen Quellen abgeleitet werden können. Eine manuelle und individuelle Dateneingabe ist in einem solchen Fall auszuschließen, da aufgrund der großen Zahl der Materialien der hier verfolgte Weg die automatische Datenerzeugung aus vorliegenden Informationen ist. Das Fehlen von Daten muss dann letztlich akzeptiert werden.

Zusammenfassung
Im Rückgriff auf bereits vorhandene Hersteller-Informationen über Produkte wurden je nach Art dieser Daten und ihrer Verfügbarkeit verschiedene technische Wege vorgestellt, wie diese in für die Rechnung der Unähnlichkeit nutzbaren Daten hergeleitet und abgebildet werden können. Das Spektrum reicht von einer direkten Übernahme bestehender Werte über statistische Auswerteverfahren bis hin zu einem Rückgriff auf externe Datenquellen.

6.1.3 Skalenniveau der Entscheidungskriterien

Zusätzlich muss jedoch für jedes Kriterium individuell festgelegt werden, auf welchem Skalenniveau (nominal, ordinal, quantitativ) die Daten sinnvollerweise erzeugt werden sollen. Da auch diese Unterteilungen als Teil des Modells nicht „objektiv“ oder „materialimmanent“ sind, bedarf es wiederum für jedes Kriterium einer fachlichen und inhaltlichen Begründung.

Generell ermöglicht eine quantitative Skala eine genauere Bewertung als eine ordinale und diese wiederum eine höhere als eine nominale oder binäre. Es erscheint daher auf den ersten Blick naheliegend, jeweils die bestmögliche Skala anzustreben. Andererseits muss aber bei der Festlegung der zum Tragen kommenden Skalen...
DAS VERFAHREN

Ranking aller Materialien

neben der Verfügbarkeit auch die Notwendigkeit und die Aussagekraft exakter Daten berücksichtigt werden. Viele Materialeigenschaften lassen sich z.B. noch relativ einfach in sehr groben Klassen abbilden, erfordern aber einen - für die Zwecke einer schnellen und frühzeitigen Alternativenermittlung - unverhältnismäßig hohen Aufwand bei der Datenerzeugung, wenn genauere Werte verwendet werden sollen. Auch in Anlehnung an bestehende Datenbanken von Materialagenturen (vgl. Kapitel 3.2.3) werden in diesen Fällen die grüberen Unterteilungen bevorzugt.

Im Einzelnen werden für die genannten Kriterien folgende Skalen vorgeschlagen:

Sinnliche Kriterien

Anders verhält es sich mit den anderen optischen Eigenschaften, da der menschliche Wahrnehmungsapparat weniger gut differenzieren kann bzw. die Ermittlung oder Beschreibung exakter Werte unverhältnismäßig aufwendig erscheint.

Genaue Werte für „Glanz“ lassen sich nur mit viel Aufwand ermitteln. In Anlehnung an die übliche Begrifflichkeit werden daher folgende ordinalen Abstufungen vorgeschlagen:

„matt“ - „seidenmatt“ - „glänzend“

Das reale Verhalten im Kriterium „Transparenz“ lässt sich wegen der Abhängigkeit des Transparenzgrads vom Betrachtungswinkel bzw. aufgrund der verschiedenen Arten von Angaben nicht als einfache Zahl beschreiben. Wegen der Vergleichbarkeit auch über Materialgrenzen hinweg bieten sich diese Werte an:

0% „opak“ - 0-50% „transluzent“ - 50-100% „transparent“

Abb. 6.2: üblicher Farbwähler

Abb. 6.3: Glanz

Abb. 6.4: Transparenz

Für die Zwecke dieser Arbeit werden - unter Verwendung der Beschreibungen von [Miene 1997, S. 7-8] - bei den Textureigenschaften die folgenden, zumeist dreiteiligen Abstufungen vorgeschlagen:

Texturen können sich anhand der Form der Primitiva unterscheiden. Weisen sie vorwiegend Linien oder Striche - unabhängig von Länge, Orientierung oder Gradlinigkeit - auf, so gelten sie als „linienhaft“. Sind die Primitiva dagegen eher kürzer und unregelmäßig geformt, so gilt die Textur als „fleckig“ bzw. „gesprenkelt“. Sind die Flecken sogar so groß, dass einzelne homogene Flächen erkennbar werden, so ist die Textur „mehrfächig“. Vollständig homogene Oberflächen, bei denen einzelne Primitiva ganz fehlen, sind „einflächig“.

Lassen sich deutlich eine oder auch mehrere Richtungen bei einer Textur ausmachen, so kann diese als „gerichtet“ beschrieben werden (im Prototyp wird allerdings bereits bei zwei gleichwertigen Richtungen, z.B. bei Quadratfliesen, der neutrale Mittelwert zugewiesen). Im Gegensatz dazu weisen „ungerichtete“ Texturen keine erkennbare Orientierung auf.

Insbesondere die Grobheit einer Textur muss immer in Bezug auf ihre Gesamtgröße gesehen werden. „Fein“ ist eine Textur, wenn die Primitiva relativ klein sind und entsprechend nahe beieinander liegen, „grob“ dagegen, wenn eher große und weiter voneinander entfernte Primitiva zum Tragen kommen.

Das letzte, statistisch gut zu untersuchende Kriterium zum Beschreibung einer Textur ist ihre Regelmäßigkeit: Lässt sich in der Textur ein wiederkehrendes Muster erkennen, so gilt sie als „regelmäßig“, entsprechend ungeordnete und in ihrer Größe stark varierende Primitiva erzeugen ein „unregelmäßiges“ Aussehen.

Die akustischen und ebenso die genannten haptischen Eigenschaften eines Materials hängen direkt von messbaren oder exakt angebaren physikalischen Kennwerten ab. Die genaue Angabe in qualitativen Skalen erscheint somit zunächst einfach. Allerdings sind diese konkreten Werte nicht unmittelbar an Erfahrungswerte des Menschen gekoppelt, so dass die Einschätzung eines Werts ohne Vergleichszahlen schwierig ist. Daher kann es wiederum sinnvoller
Dass Verfahren Ranking aller Materialien

... mit Klassen zu arbeiten, in die die Materialien dann anhand ihrer konkreten Kennwerte eingeordnet werden.

\[P = \sqrt{\frac{E}{\rho}} \]

Formel 6.1: Wahrgenommene Tonhöhe

Die wahrgenommene Tonhöhe (Pitch \(P \)) beim Anschlagen einer Oberfläche hängt vom Verhältnis von Elastizitäts-Modul \(E \) zur Rohdichte \(\rho \) eines Materials ab [Ashby 2002, S.86]. Je kleiner der Wert für \(P \), desto tiefer klingt ein Material. Eher weiche und dabei dichte Materialien klingen also „tief / dunkel“, härtere oder weniger dichte dagegen eher „hoch / hell“. Zwischen diesen Extremen (deren Grenzen für die Zwecke dieser Arbeit anhand des ganzen Spektrums aller denkbaren Bauprodukte noch definiert werden müssten) liegen mittlere Werte.

\[L = \frac{1}{\eta} \]

Formel 6.2: Klarheit des Klangs

Die Klarheit (Luminanz \(L \)) des Klangs beim Anschlagen der Oberfläche hängt direkt umgekehrt proportional vom Dämpfungsbeiwert \(\eta \) des Materials ab [Ashby 2002, S.86]. Ist der Wert klein, so klingt es eher „dumpf / gedämpft“, ist er groß, dann klingt es „klar / brillant“. Wiederum müsste sich die Definition der Grenzwerte an der Betrachtung aller Bauprodukte orientieren.

\[S = EH \]

Formel 6.3: Gefühlte Weichheit

\[Q = \sqrt{\rho \lambda C_P} \cdot \sqrt{t} \]

Formel 6.4: Gefühlte Wärme

Ob sich ein Material „warm“ oder „kalt“ anfühlt, hängt von der Größe des Wärmestroms \(Q \) durch die Hautoberfläche ab. Dieser hängt materialspezifisch ab von der Rohdichte \(\rho \), der Wärmeleitfähigkeit \(\lambda \) sowie von der spezifischen Wärme \(C_P \) und der Dauer \(t \) im jeweiligen Versuchsaufbau [Ashby 2002, S. 85].

Ausgehend von dem Normalzustand, dass Raumoberflächen eine Temperatur haben, die niedriger ist als die Körpertemperatur des Menschen, bedeutet dies, dass sich Materialien mit hoher Wärmeleitfähigkeit und hoher Dichte „kalt“, die mit geringer Leitfähigkeit und Dichte jedoch „warm“ anfühlen [Wikipedia 2006g]. Auch wenn die „Wärmeleitfähigkeit“ als physikalischer Kennwert genau ermittelt werden kann, ist die vom Menschen empfundene

Die folgenden vorgeschlagenen Kategorien beruhen auf einer Querschnittsbetrachtung über die Angaben der Materialart in verschiedenen Büchern und auf Webseiten, die als Inspirationsquelle genutzt werden können (siehe Anhang A.6):

Technische Kriterien

Die folgenden, technischen Kriterien existieren bereits in einer objektiven Form. Weil dadurch weniger Interpretations- und Definitionsarbeit notwendig ist, können sie zusammenfassend und weniger im Detail beschrieben werden.

Die konstruktiven und bauphysikalischen Werte liegen dabei größtenteils in quantitativer Form vor. Sie werden aber auch in Berechnungen oder Nachweisen in dieser Genauigkeit benötigt (Ausnahme: Brennbarkeitsklassen). Sie sollten daher in dieser exakten Form übernommen werden, damit sie so in die Bewertung eines Materials einfließen können.

Die Angaben zur Eignung für bestimmte Nutzungen oder zur Beständigkeit eines Materials hingegen werden üblicherweise in binä-
ren Skalen gemacht (Ausnahmen: Rutschhemmung und Beanspruchungs-
klasse in Ordinalskala). Hier geht es nur darum, ob das Krite-
rium erfüllt wird oder nicht. Auch hier kann diese Datenart mit ihren
Werten “trifft zu” oder „trifft nicht zu“ direkt übernommen werden.

Ökonomische Kriterien
Der Architekt ist gewohnt, mit Erstellungskosten umzugehen, die
auf die jeweilige Abrechnungseinheit eines Bauteils bezogen sind.
Im gleichen Bezugssrahmen wird er auch in der Lage sein, Nutzung-
und Entsorgungskosten beurteilen zu können.
Konkrete Werte zu den Einzelposten werden üblicherweise als „Von-Bis-Angaben“ oder als Durchschnittswerte über eine große
Anzahl berücksichtigter bzw. abgerechneter Projekte - je nach
Quelle auf den Cent genau - berechnet und anschließend in der
Kostenplanung mit diesen exakten Werten eingesetzt. Die Nutzung
soleher exakten quantitativen Daten auch in der Bewertung der
ökonomischen Kriterien ist daher einfach umsetzbar und nahelie-
gend.

Ökologische Kriterien
Wie bereits dargestellt, hat der Architekt - im Gegensatz zu öko-
nomischen Dingen - üblicherweise nicht nur weniger Detailkenntnis
in ökologischen Bewertungsfragen, sondern auch wesentlich gerin-
gere Einflussmöglichkeit auf diese Kriterien (vgl. Kapitel 5.1.4). Es
wurden daher bereits statt detaillierter Unterpunkte die überge-
ordneten Kriterien „Lebenszyklus“ und „Recyclebarkeit“ als Ent-
scheidungskriterien formuliert. Diese können dementsprechend
natürlich auch nicht mit exakten Werten angegeben werden, son-
dern nur in zusammenfassenden und groben Kategorien. Auf dieser
Grundlage ist dann lediglich eine tendenzielle Bewertung möglicl

Die Herkunft eines Produkts lässt sich nicht in eine Rangfolge brin-
gen, da ja nicht zu klären ist, welches Herkunftsland nun ökologisch
„besser“ ist als ein anderes. Es handelt sich also um eine Nominalska-
la, deren Inhalte zunächst wertfrei nebeneinander stehen. Denkbar
sind hier - im Gegensatz zur Theorie, dass sich die Kategorien nicht
überschneiden dürfen - neben Elementen wie z.B. „Deutschland“
or „Italien“ auch umfassende Gruppen wie z.B. „Europa“, die eine
weniger detaillierte Einordnung erlauben.

Zusammenfassung
Real vorliegende Materialeigenschaften können in verschiedenen
Arten von Daten abgebildet werden. Diese Abbildung kann - not-
falls im Rückgriff auf zusätzliche externe Quellen - für alle genann-
ten Kriterien (vgl. Kapitel 5) automatisch auf Grundlage der von den
Herstellern zur Verfügung gestellten Produktdaten erfolgen. Vor-
her muss auf Basis der vorliegenden Daten und des später erforder-
lichen Umgangs allerdings definiert werden, welches Skalenniveau
jeweils zum Tragen kommen soll. Hierzu wurden - insbesondere für
die sinnlichen Kriterien - fachlich und inhaltlich begründete Vor-
schläge gemacht.

6.2 Festlegung des Zielwerts

»Der Begriff Ziel (griechisch τέλος [telos], lateinisch finis, englisch objective, goal) bezeichnet einen […] angestrebten Zustand (Zielvorgabe).«

[Wikipedia 2007k]

Die zweite, diesmal jedoch auf Seite des Nutzers zu erfüllende Voraussetzung für die Berechnung der Unähnlichkeit ist, dass die gewünschte oder geforderte Ausprägung der Materialeigenschaften, also der genaue Wert, durch den Nutzer definiert werden kann. Um eine Vergleichbarkeit zwischen dem Idealmaterial und den vorliegenden Materialien zu gewährleisten, ist es notwendig, dass die gesuchten Werte letztlich in der gleichen Skala und Metrik liegen wie die Daten der vorhandenen Materialien.

An dieser Stelle soll nicht weiter diskutiert werden, wie der Planer darin unterstützt werden kann, diese Werte zu finden (etwa durch Programme zur Unterstützung der Farbwahl oder durch Simulationssoftware). In diesem Abschnitt wird vielmehr der Frage nachgegangen, auf welchen Wegen und in welcher Form diese vom Planer formulierten Eigenschaften des gesuchten Idealmaterials dem System mitgeteilt bzw. wie diese Eingabe durch eine entsprechende Interfacegestaltung sinnvoll unterstützt werden kann.

6.2.1 Übernahme vorhandener Werte

Vorhandene Daten im CAAD-Modell

Idealerweise sollte das Werkzeug zur Unterstützung der Materialwahl in eine Gesamtstrategie eingebunden sein (vgl. Kapitel 3.4.2). In diesem Fall können viele Angaben über Materialoberflächen, die im digitalen Gebäudemodell bereits vorhanden sind, genutzt werden. Selbst einfache CAAD-Systeme verwalten zu Visualisierungszwecken bereits Daten über das gewünschte Aussehen von Oberflächen, also z.B. Definitionen von Farben und Texturen. Unabhängig

Vorhandene Werte im Bezug auf andere Materialien

Auch die Strategie Inspiration, die durch freies Browsen (siehe Kapitel 7.3.3) durch die Welt der Materialien verfolgt werden kann, beruht letztlich darauf, immer das zuletzt betrachtete Material als Referenz und Ausgangspunkt für die weitere Suche zu verwenden, also dessen Werte für die weitere Suche zu übernehmen.

6.2.2 Manuelle Werteingabe

Direkte Werteingabe
Am einfachsten ist es natürlich, wenn dem Planer die gewünschten Werte bekannt sind und direkt in der anschließend benötigten Form eingegeben werden können. Bei den quantitativ einzugebenden Daten sollten daher Wertesysteme und Einheiten verwendet werden, die dem üblichen Gebrauch (z.B. „Euro pro Quadratmeter“) entsprechen, so dass diese ohne weitere Umrechnung übernommen werden können.

In vielen Programmen ist es zudem mittlerweile üblich, dass die zahlenmäßige Eingabe eines Werts mit einer Angabe der Einheit ergänzt wird. Wird durch den Nutzer eine abweichende Einheit eingegeben, werden diese Werte anschließend intern in die vom Programm benötigte Form umgerechnet (z.B. von Millimetern in Meter).

Eingabe von Farbwerten

Eine Eingabe des Farbtons (Hue) im Bereich 0-360° bildet den bekannten Farbkreis ab, Sättigung (Saturation) und Helligkeit (Value bzw. Brightness) können dagegen einfacher auf einer Skala von 0-100% angegeben werden.

6.2.3 Interfacegestaltung

Neben der grundsätzlichen Frage, in welcher Einheit oder in welchem Wertesystem Eingaben getroffen werden, kann eine geeignete Gestaltung der Eingabemaske die Intuitivität und Richtigkeit der Eingabe unterstützen:

Eingabefelder

Quantitative Daten können zumeist sehr viele fein abgestufte Werte annehmen. Sie müssen daher manuell eingetragen werden können, eine Auswahl aus vorgegebenen Werten wäre dagegen nicht sehr übersichtlich. Als Hilfestellung kann dabei angegeben werden, in welcher Einheit die Eingabe erwartet wird und in welchem Wertebereich diese liegen kann (z.B. „0 bis 100 Prozent“).

Auswahlfelder

Im Gegensatz dazu können die zur Verfügung stehenden Ausprägungen bei Ordinal- oder Nominalskalen als Werte in einem Auswahlfeld bereits vorgegeben werden, da die meisten der oben vorgeschlagenen Kriterien nur wenige verschiedene Zustände annehmen können. So sieht der Nutzer direkt, welche Auswahlmöglichkeiten er hat (z.B. bei „Materialart“).

Schieberegler

Visuelles Feedback
Alle eingegebenen Werte können das gewünschte Idealmaterial immer nur abstrakt beschreiben. Zumindest die optischen Eigenschaften eines Materials lassen sich aber gut an einem vorgegebenen Grundkörper - wie z.B. aus Visualisierungssoftware bekannt - darstellen.
Das damit verbundene direkte visuelle Feedback gibt eine sehr gute Kontrolle der eigenen Eingaben.

Zusammenfassung
Festlegung der Gewichtung

»Die Bemessung der Wichtigkeit eines Objektes erfolgt durch ein Subjekt und kann je nach Kontext auf einer objektiven oder einer subjektiven Methode beruhen: Eine objektive Methode liegt immer dann vor, wenn die zu bewertenden Parameter, deren Wertebereiche und Grenzwerte sich vollständig und eindeutig beschreiben lassen. Ist dies nicht möglich, so wird die Bewertung mehr oder weniger intuitiv, bzw. basierend auf Weltwissen, Lebenserfahrung und persönlichen Beziehungen und Neigungen durchgeführt, was eine subjektive Methode der Bemessung ist.«

[Wikipedia 2007h]

Wie wichtig dabei jedes Kriterium genommen wird, muss jeweils von Fall zu Fall individuell entschieden werden. Es kann z.B. vorkommen, dass eine bestimmte Farbe genau eingehalten werden soll, der Preis jedoch eine untergeordnete Rolle spielt. Andersherum kann aber auch eine feste Kostenobergrenze bestimmte Gestaltungsideen zu Fall bringen.

Um Materialien aufgrund der „Gesamtunähnlichkeit zum Idealmaterial“ bewerten zu können, muss das Gewicht, das den jeweiligen Entscheidungskriterien beigemessen wird, möglichst genau bezeichnet werden.

Unterscheidung nach Kriterien

Wie bereits dargelegt, lassen sich die Kriterien - unabhängig vom Inhalt - hinsichtlich ihrer Relevanz in die zwei Gruppen „absolut wichtig“ und „relativ wichtig“ unterteilen (vgl. Kapitel 4.2). Diese müssen auch bei der Festlegung der Gewichtung unterschiedlich behandelt werden:

Absolut wichtige KO-Kriterien

Damit ein Material überhaupt als denkbare Alternative in Betracht gezogen werden kann, ist die Einhaltung derjenigen Kriterien, die vorab als KO-Kriterien definiert wurden, absolut erforderlich. Das Gewicht dieser Kriterien ist also offensichtlich so groß, dass das Nichterfüllen der hier geforderten Eigenschaften zum sofortigen Ausschluss des Materials aus der weiteren Bewertung führt. Diese KO-Kriterien müssen unabhängig von allen anderen Kriterien berücksichtigt werden und beeinflussen deren Gewichtung auch nicht.
Relativ wichtige Kriterien
Im Gegensatz dazu sind alle anderen Gewichtungen immer nur relativ zueinander zu verstehen. Würden z.B. insgesamt nur zwei Kriterien berücksichtigt, wäre es völlig egal, ob beide als „sehr wichtig“ oder beide als „eher unwichtig“ beschrieben würden. Sie müssten in jedem Fall zu gleichen Teilen in der Entscheidung berücksichtigt werden.

Eine übliche Methode, diese Wichtigkeit auch mathematisch zu beschreiben, ist die Einführung eines Gewichtungsfaktors, der den prozentualen Anteil des Einzelkriteriums an der Gesamtentscheidung darstellt. Die Summe aller Gewichtungsfaktoren ist also per Definition 100% und bedeutet die Gesamtheit der Entscheidung. Um zu einer Bezifferung der Gewichtungsfaktoren zu kommen, die den gefühlten und verbal formulierten Wichtigkeiten der Kriterien entsprechen, lassen sich verschiedene Wege einschlagen. Im Folgenden werden davon beispielhaft zunächst zwei Extrempositionen diskutiert, die letztlich zu einem für die Zwecke dieser Arbeit ausreichend genauen und zugleich praktikablen Kompromiss zusammengeführt werden.

6.3.2 Direkte Eingabe für jedes einzelne Kriterium

Die einfachste Möglichkeit für die Ermittlung relativer Gewichte ist, jedem Einzelkriterium zunächst auf Grundlage der eigenen Einschätzung ein individuelles Gewicht direkt zuzuweisen, z.B. auf einer Skala von 0% („absolut unwichtig“) bis 100% („absolut wichtig“).

Diese manuell vergebenen Gewichte ergeben in ihrer Summe nicht zwangsläufig 100%. Sie können aber anschließend normalisiert werden, indem jedes Einzelgewicht durch die Summe aller verteilten Gewichte dividiert wird. Die auf diese Weise ermittelten relativen Werte stellen dann wieder den Anteil jedes Einzelkriteriums an der Gesamtentscheidung dar und summieren sich auf 100%.

Vor- und Nachteile

Die erzielten Ergebnisse der Suche sind also mit einer großen Unsicherheit behaftet und zu hinterfragen. Sie können aber eventuell rückwirkend zu einer Neujustierung der Gewichte beitragen, wenn die in der Berechnung ermittelten Materialien nicht den Erwartungen entsprechen.
6.3.3 Hierarchisch aufgebaute Paarvergleiche

Eine deutlich zuverlässigere Art, zu einer „subjektiven“ Gewichtung zu gelangen, besteht darin, eine Reihe einfacher Paarvergleiche sukzessiv durchzuführen. In einem hierarchisch aufgebauten Kriterienmodell müssen dabei immer nur die Elemente auf derselben Hierarchiestufe miteinander verglichen werden.

Analytischer Hierarchieprozess (AHP)

Im hierarchisch aufgebauten Modell erfolgen die Paarvergleiche immer nur innerhalb einer Hierarchiestufe, die relativen Gewichte addieren sich so zunächst auf jeder Stufe zu 100%. In der Betrachtung des Gesamtmodells lassen sich anschließend die letztlich anzu-setzenden individuellen Gewichtungsfaktoren der Einzelkriterien durch Multiplikation der Gewichte aller einzelnen Stufen ermitteln [Weber 1993, S.98].

Vor- und Nachteile

AHP stellt - gerade bei schlecht quantifizierbaren Problemen wie der vorliegenden Kriteriengewichtung - einen Weg dar, überhaupt erst einmal zu plausiblen und auch reproduzierbaren Ergebnissen zu kommen. In der Literatur wird allerdings besonders die Skalen- einteilung von 1-9 hinsichtlich ihrer Zuordnung zu den gewählten...

Ein viel größeres Problem für die Anwendung von AHP im Rahmen der Materialwahl stellt allerdings die bei zunehmender Zahl einfließender Kriterien schnell wachsende Anzahl notwendiger Paarvergleiche dar, welche notwendig werden, um zu einem durchgängigen Ergebnis zu kommen:
Um allein die vorgeschlagenen Kriterien der Materialentscheidung innerhalb der aufgestellten Hierarchiestrukturen (vgl. Kapitel 5.2) zu berücksichtigen, müssten insgesamt 129 Paarvergleiche vorgenommen werden. Selbst wenn man nur auf höheren Hierarchiestufen verbleibt und z.B. alle bauphysikalischen Eigenschaften im Vorhinein als „gleich wichtig“ ansetzt, erscheint diese Vorgehensweise daher im Rahmen einer intuitiven Unterstützung auch der frühen Planungsphasen wenig praktikabel.

6.3.4 Vereinfachte Eingabe in hierarchischer Struktur

In einer Zusammenführung beider bisher vorgestellten Methoden kann als Kompromiss eine Vorgehensweise gewählt werden, die auf den einzelnen Hierarchieebenen immer nur wenige Elemente gleichzeitig betrachtet, diese jedoch nicht im Paarvergleich, sondern in direkter Bewertung. Allein die im Vergleich zu einer direkten Bewertung aller Kriterien stark reduzierte Anzahl an simultan zu berücksichtigenden Elementen kann schon zu einer Verbesserung der subjektiven Bewertung führen.

Eine weitere deutliche Verringerung der Komplexität kann zudem durch die Verwendung einer Punktewertskala herbeigeführt werden, diese jedoch im Gegensatz zum Paarvergleich zur direkten Bewertung einzelner Kriterien. Anders als die aus Fragebögen bekannten Likert-Skalen [Wikipedia 2007m] werden hier allerdings nicht Werte rund um einen neutralen Mittelwert benötigt („trifft nicht zu“ - „neutral“ - „trifft zu“), sondern Zahlen im Bereich von 0-100%. Eine Unterteilung könnte also z.B. folgendermaßen aussehen:

„absolut unwichtig“ = 0% - „etwas wichtig“ = 25% - „wichtig“ = 50% - „sehr wichtig“ = 75% - „absolut wichtig“ = 100%

Die so verbal beschriebenen, aber mit Zahlen hinterlegten Stufen gewichte der betrachteten Kriterien können wieder auf jeder Hierarchiestufe normalisiert werden (vgl. Kapitel 6.3.2). Die letztendlich resultierenden Gewichte der Einzelkriterien lassen sich anschließend wie im AHP-Verfahren durch Multiplikation der Werte aller Hierarchiestufen berechnen.
Hierbei muss allerdings darauf geachtet werden, dass die Eingaben sich nicht logisch widersprechen. Bekommt z.B. ein Oberkriterium eine gewisse Wichtigkeit zugeschrieben, können nicht gleichzeitig alle Unterkriterien „absolut unwichtig“ sein. Die resultierenden Gewichte würden sich in solch einem Fall nicht zu 100% summieren. Dieses Problem kann jedoch einfach durch eine entsprechende Kontrolle der Eingabe oder durch eine erneute Normalisierung (Division der ermittelten Gewichte durch die Summe aller Einzelgewichte) gelöst werden.

Vor- und Nachteile

Der hier vorgeschlagene Ansatz versucht, die Vorteile beider zuvor beschriebenen Verfahren zu vereinen. Vorteilhaft wirkt sich die Reduzierung der Komplexität durch Ausnutzung der hierarchischen Struktur aus, so dass die Einstellungen relativ gut vorgenommen werden können. Allerdings ist keine Konsistenzprüfung wie beim AHP-Verfahren möglich, so dass diese Kontrollmöglichkeit über die eigene Bewertung wegfällt. Die Nutzung einer nur fünfteligen Skala zur Bewertung der Kriterien ergibt zwar - mathematisch gesehen - einen Verlust an Detailgenauigkeit in der Bewertung, inhaltlich allerdings wird eine über diese Stufen hinausgehende exaktere Bezifferung des subjektiven Empfindens dem Nutzer sowieso kaum möglich sein.

Zusammenfassung

Es wurden verschiedene Wege dargelegt, um zu einer individuellen Gewichtung der Einzelkriterien zu gelangen. Abhängig von der gewählten Methode, die letztlich verfolgt wird, und dem Aufwand, den man bereit ist, dafür in Kauf zu nehmen, wird das Ergebnis mehr oder weniger genau die subjektiv wahrgenommenen Wichtigkeiten abbilden können.

6.4 Berechnung der Einzelunähnlichkeit

»Äpfel mit Birnen vergleichen (dt.)- to compare apples and oranges (en.)«
Redewendung - idiom

Die Materialwahl in der Architektur wurde eingangs als eine mehrkriterielle und multiattributive Entscheidungsfindung bezeichnet, bei der inhaltlich höchst unterschiedliche Kriterien berücksichtigt und gegeneinander abgewogen werden müssen (vgl. Kapitel 1.2.3).

Die im Rahmen dieser Arbeit verfolgte Strategie zur Unterstützung dieser Entscheidung ist die Berechnung und Minimierung der Unähnlichkeit vorliegender Materialien zu einem individuell formulierten Idealmaterial (vgl. Kapitel 5.3). Hierzu werden die Unähnlichkeiten in den Einzelkriterien zunächst unabhängig voneinander betrachtet und erst anschließend zu einem Gesamtwert zusammengezogen.

Im Hinblick auf die Berechnung eines Gesamtwerts wird zunächst definiert, in welcher Form die Unähnlichkeit in einem Einzelkriterium angegeben werden soll. Anschließend wird - in Abhängigkeit von der vorliegenden Datenart - die prinzipielle weitere Vorgehensweise bei der Berechnung vorgestellt. Dieser prinzipielle Weg kann aber auch - wie bei der Erzeugung der Daten selbst - für jedes Kriterium individuell definiert oder modifiziert werden, je nach dem, wie die Unähnlichkeit inhaltlich verstanden werden soll.

6.4.1 Angabe der Unähnlichkeiten

Vergleichbare Werte liefert dagegen die Angabe als Unähnlichkeitskoeffizient auf einer Skala von 0% = „überhaupt nicht unähnlich“ oder „identisch“ bis 100% = „maximal unähnlich“.

Alle berechneten absoluten Unähnlichkeiten können in diesen Wertebereich zwischen 0 und 1 normalisiert werden, indem der Betrag der ermittelten absoluten Abstände durch den maximal möglichen Abstand dividiert werden. Dies impliziert allerdings, dass eine Angabe bei Kriterien, deren Wertebereich nicht begrenzt ist (z.B. Preis prinziell nach oben offen) nur relativ zum jeweils größ-
ten vorliegenden Abstand zu verstehen ist. Eine Interpretation der Unähnlichkeit ist bei solchen Kriterien ohne Kenntnis über den Maximalwert kaum möglich.

6.4.2 Prinzipielle Berechnung von Unähnlichkeiten

Die Unähnlichkeit δ_{ija} zwischen zwei Elementen i und j im Kriterium a lassen sich, wenn diese die Werte u annehmen, in den verschiedenen Datenarten prinzipiell wie folgt berechnen [Basalaj 2001, S.2-3]:

Binäre / Nominale Daten

Zwei Elemente gelten als identisch, wenn beide der gleichen Kategorie angehören. Sind sie nicht in der gleichen Gruppe, so gelten sie als maximal unähnlich. Die Unähnlichkeit kann also nur die zwei Maximalwerte 0 oder 1 annehmen.

Ordinale Daten

Bei Eigenschaften, die als ordinale Daten in einer Rangfolge abgebildet werden können, hängt der Grad der Unähnlichkeit sowohl von dem jeweiligen Rang $r(u)$ beider Elemente, als auch von der Anzahl insgesamt möglicher Ränge k, ab. Sind z.B. drei Ränge möglich, kann die Unähnlichkeit 0 (wiederum „identisch“), $0,5 = 50\%$ oder 1 = 100% („maximal verschieden“) betragen.

Quantitative Daten

Bei Daten, die eine direkte quantitative Bezifferung einer Eigenschaft abbilden, lässt sich die absolute Unähnlichkeit einfach über den Betrag der Differenz beider Werte u ermitteln. Durch Division durch den maximalen Wertebereich R wird dieser Abstand auf den Zielbereich zwischen 0 und 1 normalisiert. Der maximale Wertebereich kann der theoretisch mögliche Bereich sein (bei nicht genau begrenzten Wertebereichen wie z.B. Preisen allerdings nicht vorher festlegbar) oder der maximal vorhandene Wertebereich innerhalb der berücksichtigten Daten. Letzteres kommt z.B. zum Tragen, wenn nur wenige Materialien einer zusätzlichen Analyse unterzogen werden (siehe Kapitel 7)

Farbigkeit

Der Vergleich zweier gleichmäßiger Farben bzw. die Berechnung des wahrgenommenen Farbabstands findet normgerecht im CIE-L*a*b*-Farbraum statt. Die numerischen Werte des Lab-Modells beschreiben geräteunabhängig und ohne Einschränkungen alle Farben, die von einer Person mit normalem Sehvermögen wahrgenommen werden können. Für die Vergleichbarkeit der Werte ist nur der konsistente Bezug auf die gleiche Normlichtart (z.B. D65) und den angesetzten Normalbeobachter (üblicherweise 10°) erforderlich. Durch die angenäherte Gleichabständigkeit des CIE-L*a*b*-Farbraums kann die Berechnung aller Werte auf einfache Weise und unabhängig von der Position im Farbraum folgendermaßen erfolgen [DIN 2006]:

\[
\delta_{ija} = \begin{cases}
0 : & u_{ia} = u_{ja} \\
1 : & u_{ia} \neq u_{ja}
\end{cases}
\]

Formel 6.5: Unähnlichkeit bei nominalen Daten

\[
\delta_{ija} = \frac{|r(u_{ia}) - r(u_{ja})|}{k - 1} \\
k_a = \max_i r(u_a)
\]

Formel 6.6: Unähnlichkeit bei ordinalen Daten

\[
\delta_{ija} = \frac{|u_{ia} - u_{ja}|}{R_a} \\
R_a = \frac{\max_i u_{ia} - \min_i u_{ia}}{R}
\]

Formel 6.7: Unähnlichkeit bei quantitativen Daten
Die visuelle Empfindung der Helligkeit entspricht bereits direkt dem quantitativen Wert L*, welcher im Bereich von 0% bis 100% liegt. Die Unähnlichkeit im Kriterium Helligkeit entspricht der Differenz beider Luminanzwerte.

$$C_{ab}^* = \sqrt{a^*^2 + b^*^2}$$

Formel 6.8: Buntheit

Die Buntheit einer Farbe lässt sich als angenäherte Größe aus den L*a*b*-Werten als euklidische Distanz von der Unbuntachse (a*=0 und b*=0) berechnen. Farben gleicher Buntheit liegen also auf einer Kreislinie innerhalb der durch a* und b* aufgespannten Ebene im L*a*b*-Farbraum. Die absolute Unähnlichkeit zweier Farben hinsichtlich ihrer Buntheit entspricht der Differenz der beiden Kreisradien (unabhängig vom Farbton).

$$h_{ab} = \arctan \frac{b^*}{a^*};$$

Formel 6.9: Bunttonwinkel

Der Bunttonwinkel einer Farbe ist der Winkel zwischen der positiven a*-Achse und der gedachten Linie durch den die Farbe repräsentierenden Punkt im Farbraum und der Unbuntachse. Er lässt sich daher als Arcustangens des Verhältnisses von b* zu a* (unter Berücksichtigung des Quadranten) berechnen. Die absolute Unähnlichkeit im Bunttonwinkel ist die Differenz der Werte beider Elemente, d.h. der Wert Δh wird durch Addition oder Subtraktion von 360° in den Bereich von -180° bis 180° korrigiert.

$$\Delta E_y^* = \sqrt{\Delta L^*^2 + \Delta a^*^2 + \Delta b^*^2}$$

Formel 6.10: Farbabstand

Auch der absolute Farbabstand zwischen zwei Farbreizen kann - da die Koordinatenachsen L*, a* und b* rechtwinklig aufeinander stehen - als euklidische Distanz der beiden die Farben repräsentierenden Punkte im Farbraum berechnet werden.

Für die kriterienübergreifende Vergleichbarkeit müssen alle Werte ebenfalls noch in den Wertebereich von 0-1 normalisiert werden. Dies erfolgt üblicherweise wie beschrieben durch Division des Betrags durch den jeweils möglichen maximalen Wertebereich. Eindeutig festgelegt ist dieser Maximalwert allerdings nur bei der Helligkeit (max ΔL = 100) und beim Bunttonwinkel (max Δh = 180°). Für die Koordinaten a* und b* gibt es dagegen - auch wenn am Monitor nur ein begrenzter Bereich dargestellt wird - keine begrenzte Zahlendarstellung. Der L*a*b*-Farbraum ist stattdessen ungleichmäßig aufgebaut, die jeweils maximalen a*- oder b*-Werte hängen vom Wert L* ab. Die Farbe grün liegt dabei insgesamt am weitesten von der Unbuntachse entfernt [Wikipedia 2007n].

In dieser Arbeit wird davon ausgegangen, dass die zu berücksichtigenden Farbwerte aus RGB-Pixelbildern ermittelt werden (vgl. Kapitel 6.1.2). Die genaue Umrechnung der RGB- in L*a*b*-Werte ist zwar abhängig vom zugrunde gelegten RGB-Arbeitsfarbraum und dem Referenzweiß (der Standardbeleuchtung) [Lindbloom 2001], diese werden aber für alle Materialien konsistent angesetzt. Unter dieser Voraussetzung lassen sich - innerhalb dieses Bezugsrahmens - wiederum Maximalwerte ermitteln:

\[\text{max } \Delta C^* = \sqrt{a^2_{\text{grün}} + b^2_{\text{grün}}} \]
Formel 6.11: max. L*a*b*-Wert

\[\text{max } \Delta E^* = \sqrt{L^2_{\text{grün}} + a^2_{\text{grün}} + b^2_{\text{grün}}} \]
Formel 6.12: max. mögl. Farbabstand

Der Abstand zwischen „schwarz“ (RGB 0-0-0, entsprechend L*a*b* 0-0-0) und „grün“ (RGB 0-255-0, L*a*b*-Wert je nach Bezugsrahmen) liefert so die Maximalwerte für Buntheit und Farbe, durch die die absolut ermittelten Buntheits- bzw. Farbabstände bei der Normalisierung noch dividiert werden müssen.

Mehrfarbige Oberflächen

In der Betrachtung von Oberflächen, die mehrere unterschiedliche Farbanteile (z.B. Maserungen oder Muster) aufweisen, muss die Berechnung der Unähnlichkeiten (hinsichtlich Farbe, Farbton, Buntheit und Helligkeit) für alle einzelnen Anteile durchgeführt werden, um die Gesamtunähnlichkeit im Kriterium Farbe zu ermitteln. Ein mögliches Vorgehen hierzu beschreibt [Mojsilović 2002]:

Für den Farbvergleich können die Farbwerte aus einem Pixelbild ohne relevanten Informationsverlust auf wenige dominante Farbwerte reduziert werden (vgl. Kapitel 6.1.2). Diese Reduktion kann zusätzlich so durchgeführt werden, dass die einzelnen Farbkomponenten jeweils gleich große Flächenanteile des Bildes beschreiben. Dadurch können sie im Weiteren als gleichwertig betrachtet werden (siehe Anhang B.1).

Die wahrgenommene, geringste Farbdistanz lässt sich dann ermitteln, indem jede Komponente des einen Bildes mit genau einer Komponente des anderen derart in Beziehung gesetzt wird, dass die Summe aller Distanzen minimiert wird. Lösungsalgorithmen finden sich in der Graphentheorie (z.B. „Rothberg Gabow Algorithmus“). Der Rechenaufwand für dieses Minimierungsproblem lässt sich durch die Verringerung der Anzahl der betrachteten Komponenten stark reduzieren.

6.4.3 Individuelle Modifikationen

Die vorgestellten Berechnungsverfahren beruhen auf der mathematischen Annahme, dass die betrachteten Kriterien genau nur einen Wert annehmen können und dass die Unähnlichkeit zwischen zwei Werten symmetrisch ist. Bei einigen der betrachteten Materialeigenschaften muss allerdings aus inhaltlichen oder anwendungsspezifischen Gründen von dieser Annahme abgewichen werden. Sie bedingen daher einige Modifikationen in der Definition der Verfahren.

Mehrfachauswahlen

Bei der Suche nach einem geeignetem Material kann es manchmal sinnvoll sein, mehrere Wünsche zu formulieren (z.B. bei der Festlegung der gewünschten Materialart). Entsprechend muss dann die Berechnung für jeden dieser Werte separat durchgeführt werden. Die jeweils geringste Unähnlichkeit findet anschließend Berücksichtigung.
Von-Bis-Werte
Ganz ähnlich verhält es sich, wenn für einzelne Kriterien die Lage in einem bestimmten Wertebereich gewünscht wird: Liegt der Wert eines untersuchten Materials innerhalb des Bereichs, ist die Unähnlichkeit 0%. Andernfalls bezieht sie sich die Berechnung der Distanz auf den jeweils am nächsten liegenden Grenzwert des gewünschten Wertebereichs.

Minimal- / Maximalwerte
Bei einigen Kriterien ist es sinnvoll, statt fester Zielwerte eher Minimal- oder Maximalwerte eingegeben zu können. Dadurch ist die Berechnung der Unähnlichkeit nicht mehr symmetrisch. Legt man z.B. maximale Kosten fest, erscheint es wenig sinnvoll, bei einem billigeren Material den Abstand zur Kostengrenze als Unähnlichkeit zu berechnen. Vielmehr könnte man diese in einem solchen Fall als 0% definieren, um das Material in die nähere Auswahl zu nehmen. Ist das Material hingegen teurer als gewünscht, muss die Distanz zur Kostenobergrenze selbstverständlich als Unähnlichkeit beziffert werden.

Zwischenwerte bei Ordinalskalen

Zusammenfassung

Die in jedem Einzelkriterium vorgenommene Normierung der Werte in den Bereich zwischen 0% = "identisch" und 100% = "maximal unähnlich" ermöglicht in der folgenden Gesamtbetrachtung aller Kriterien die Aufrechnung auch inhaltlich höchst verschiedener Aspekte.
Berechnung der Gesamtunähnlichkeit

»A collection of entity descriptions may be conveniently represented by a set of tuples or a set of objects with appropriate attributes. […] In general, the attributes cannot be expected to be homogeneous, and thus a dissimilarity coefficient for data tables has to combine attributes measured on arbitrary scales, to give an overall dissimilarity between pairs of object […] a crucial ability if any possible real world data is to be considered.«

[Basalaj 2001, S.4]

Der hier verfolgte Weg, die vielen Einzelwerte in einen Gesamtwert zu überführen, besteht darin, die einzelnen Kriterien als räumliche Dimensionen zu interpretieren. Jedes Material kann dann in allen seinen Eigenschaften als Punkt in diesem Raum abgebildet werden. Die multikriterielle Entscheidung der Materialwahl (vgl. Kapitel 1.2.3) wird also in einem multidimensionalen Raum abgebildet. Die Unähnlichkeiten in den Einzelkriterien entsprechen dann den räumlichen Distanzen in der jeweiligen Koordinatenrichtung, die Gesamtunähnlichkeit ergibt sich aus der räumlichen Gesamtdistanz.

Für den Umgang mit unvollständig vorliegenden Daten und KO-Kriterien müssen besondere Lösungen gefunden werden.

6.5.1 Ermittlung der Gesamtdistanz

»Eine Metrik ist eine mathematische Funktion, die je zwei Elementen eines Raums einen nicht negativen skalaren Wert zuordnet, der als Abstand der beiden Elemente voneinander aufgefasst werden kann. Ein Raum ist eine Menge, deren Elemente in geometrischer Interpretation als Punkte aufgefasst werden. Ein metrischer Raum ist ein Raum, auf dem eine Metrik definiert ist.«

[Wikipedia 2007o]

Zwei Punkte in einem beliebigen Raum haben einen Abstand zueinander. In welcher Form dieser Abstand zweier Punkte begriffen und berechnet werden soll, wird durch die Metrik als mathematische Beschreibung eines Raums festgelegt. Sind die Punkte identisch, so ist der Abstand = 0.

Im Rahmen dieser Arbeit wird dem räumlichen Modell die euklidische Metrik zugrunde gelegt, da diese der menschlichen Wahrnehmung eines Raums entspricht und zudem aus üblichen Diagrammdarstellungen bekannt ist.
Die Gesamtdistanz zweier Elemente \(i\) und \(j\) entspricht dann der Quadratwurzel aus der Summe der Quadrate aller Einzeldistanzen [Wikipedia 2007p].

\[
\delta_{\text{ges},ij} = \left(\sum_{a=1}^{q} \delta_{a,ij}^2 \right)^{\frac{1}{2}}
\]

Formel 6.13: Gesamtdistanz

Berücksichtigung der individuellen Gewichtung

Dadurch, dass alle Einzelwerte bereits auf einen identischen Bereich zwischen 0 und 1 normalisiert wurden, werden sie bereits gleichberechtigt zueinander bewertet. Damit die Einzeldistanzen aber auch entsprechend ihres prozentualen Anteils an der Gesamtentcheidung berücksichtigt werden, müssen ihre quadrierten Werte noch mit ihrem individuellen Gewichtungsfaktor multipliziert werden [Cox 1994, S.10].

Die Summe aller Gewichtungsfaktoren soll definitionsgemäß 100% sein (vgl. Kapitel 6.3.2).

Im Ergebnis liegt die Gesamtunähnlichkeit wiederum im Bereich zwischen 0 und 1. Inhaltlich bedeutet dies, dass zwei Materialien unter Berücksichtigung aller relevanten Eigenschaften als identisch betrachtet werden müssen, auch wenn sie in als „absolut unwichtig“ gekennzeichneten Eigenschaften unähnlich sind. Andersherum aber gelten sie auch bereits als „maximal unähnlich“, wenn sie in allen Kriterien, denen eine Wichtigkeit größer als 0 zugewiesen wurde, ebenfalls maximal unähnlich waren, obwohl sie in unwichtigen Kriterien vielleicht identische Werte aufweisen.

Der Wert zwischen 0% und 100% erlaubt also nur auf Basis der individuellen Gewichtung eine Einschätzung über das Verhältnis zweier Materialien zueinander. Der Grad der Unähnlichkeit ist also subjektiv bestimmt.

6.5.2 Umgang mit nicht vorliegenden Daten

Aus verschiedenen Gründen kann es sein, dass einzelne Daten bei einigen Materialien nicht vorliegen (vgl. Kapitel 6.1.2). In diesem Fall können im jeweiligen Kriterium keine Einzelunähnlichkeiten in der oben beschriebenen Form berechnet werden. Bei der Berechnung des Gesamtwerts kann darauf in unterschiedlicher Weise reagiert werden:

Wertung des Fehlens als Ausschlusskriterium

Eine prinzipielle Möglichkeit wäre, in der Bewertung nur solche Materialien zu berücksichtigen, deren Daten vollständig vorliegen. Hierbei sind wiederum nur die Kriterien zu berücksichtigen, denen zumindest eine geringe Wichtigkeit (\(w>0\)) zugemessen wurde. Bei Kriterien, die als „absolut unwichtig“ eingestuft wurden, ist es dagegen an dieser Stelle irrelevant, wenn keine Daten vorliegen.

Dieses Vorgehen erscheint allerdings sehr nachteilig, da in der Praxis sicherlich zu vielen, insbesondere zu den innovativeren Materialien, erst lückenhafte Daten vorliegen. Diese würden allesamt aus
dem Blickfeld verschwinden, die gewünschte Innovation und Inspiration (vgl. Kapitel 2.3) würde so nicht unterstützt.

Geschätzte Werte

Ein Vorteil dieses Wegs ist sicher, dass Materialalternativen mit lückenhafter Datenlage nicht im Vorhinein ausgeschlossen werden. Allerdings verfälschen solche Schätzwerte natürlich das Ergebnis - ein Material könnte z.B. gerade in diesem Kriterium eigentlich Extremwerte aufweisen, die bloß nicht im Datensatz erfasst sind.

Einführung eines binären Faktors

Eine weitere Lösungsmöglichkeit ist, die gewichteten Einzelkriterien mit einem weiteren Faktor zu multiplizieren, welcher den Wert 0 annimmt, wenn die Daten nicht vollständig vorliegen, andernfalls den Wert 1 [Basalaj 2001, S.4]. Da sich so die Gesamtgewichte nicht mehr zu 100% summieren, erfordert das Ergebnis für eine Vergleichbarkeit noch eine zusätzliche Normalisierung durch Division durch die Summe aller berücksichtigten Gewichte.

Einzelne Kriterien fallen somit einfach aus der Bewertung heraus, die Unähnlichkeit bezieht sich nur noch auf die vorliegenden Daten. Auch hier besteht die Gefahr, dass möglicherweise nicht dokumentierte Extremwerte vernachlässigt werden.

Direkte Angabe der Einzelunähnlichkeit

In Bezug auf die Materialwahl ist aus inhaltlichen Gründen letztlich auch vorstellbar, bei unvollständigen Datensätzen statt der dann nicht ermittelbaren Werte für die Einzelunähnlichkeiten einen individuellen Wert zwischen 0 und 1 direkt für diese Einzelunähnlichkeit vorgeben zu können. Der Wert würde dann - genauso wie die berechneten Distanzen - einfach mit dem entsprechenden Gewicht im Quadrat zum Ansatz gebracht.

Der Vorteil dieser Vorgehensweise wäre, dass der Nutzer so die Güte seiner Ergebnisse individuell steuern könnte: Ein Wert um 0 wird diejenigen Materialien relativ besser bewerten, deren Daten unvollständig vorliegen, also vielleicht eher die innovativen Produkte. Diese würden so ins Blickfeld gelangen. Ein Wert nahe der 1 würde diese schlecht dokumentierten Materialien dagegen deutlich ungünstiger bewerten und so den Blick eher auf bekannte Produkte lenken.

6.5.3 Umgang mit KO-Kriterien

Die Kriterien, welche individuell als KO-Kriterium festgelegt wurden (vgl. Kapitel 4.2.1), müssen einfach nur erfüllt werden, damit ein Material überhaupt berücksichtigt werden kann. Sind jedoch alle
KO-Kriterien eingehalten, wirkt sich dies nicht auf die weitere Bewertung des Materials aus.

Überprüfung
Das Nichterfüllen eines KO-Kriteriums bedeutet, dass der geforderte Wert bzw. Wertebereich (vgl. Kapitel 6.4.3) nicht eingehalten wird. Dies drückt sich dadurch aus, dass die Einzelunähnlichkeit in diesem Kriterium einen Wert ungleich 0 annimmt. Ist der Wert dagegen 0, entspricht das Material in diesem Kriterium den Anforderungen.

Umsetzung
Die Abbildung von KO-Kriterien in der Berechnung der Gesamtunähnlichkeit kann beispielsweise dadurch erfolgen, dass bei Nichterfüllen auch nur eines einzigen KO-Kriteriums die Gesamtunähnlichkeit auf 100% festgesetzt wird. Da der Fokus des Nutzers nur auf den am besten bewerteten Materialien liegt, fallen die „maximal unähnlichen“ natürlich aus der weiteren Betrachtung heraus.

Sind alle absolut geforderten Eigenschaften hingegen erfüllt, erfolgt die Bewertung wie oben beschrieben nur auf Grundlage der sonstigen, individuell gewichteten Eigenschaften.

6.6 Diskussion des Rankings

»Our sensory perception operates in specialized ways to serve our survival needs. Therefore, however we try to be objective in interpreting experience, our understanding is perceived and abstracted in a very subjective way, normally to serve our needs! Our survival seems to be a meaningful basis for devising purposes. Shared subjectivity in interpretation is actually what we mean by objectivity. Thus the hierarchies we form are objective by our own definition because they relate to our collective experience.«

[Saaty 1990, S.15]

Der ursprüngliche Ausgangspunkt der vorangegangenen Überlegungen war, dem Planer ein Instrument an die Hand zu geben, welches ihm ermöglicht, vorliegende Materialien in Bezug auf ein von ihm beschriebenes Idealmaterial zu beurteilen. Als Maßstab für die Bewertung wurde definiert, wie nahe ein Material diesem Idealmaterial „unter dem Strich“ kommt, wie unähnlich es diesem also unter Berücksichtigung einer individuellen Gewichtung aller Kriterien ist.

Anschließend wurden mehrere Verfahren aufgezeigt, wie notwendige Daten zu den Materialien aus heute bereits vorliegenden Quellen generiert werden können, wie der Planer darin unterstützt werden kann, sein Idealmaterial zu beschreiben sowie die individuelle Gewichtung der Kriterien zu finden und wie aus diesen Ausgangsdaten der gesuchte Wert „Gesamtunähnlichkeit zum Idealmaterial“ berechnet werden kann.
Das Material mit der kleinsten Gesamtunähnlichkeit entspricht seinem Idealmaterial am weitesten. In dieser Logik wäre also jenes Material das optimale und somit das vom Planer auszuwählende Material. Wie belastbar sind aber die Ergebnisse der Berechnung? Kann das objektiv beste Material auf die beschriebene Weise gefunden werden?

Belastbarkeit des Modells

Die äußerst komplexe Materialwahl in der Architektur (vgl. Kapitel 1.2) wurde als ein Entscheidungsprozess beschrieben, der in einem formalisierten Modell abgebildet werden kann. Wie jedes andere Modell auch kann dieses die Realität selbstverständlich nur verkürzt auf die vom Modellschaffer als relevant erachteten Attribute abbilden.

Schließlich wurde als mathematischer Rahmen der Unähnlichkeitsberechnung eine Metrik festgelegt (vgl. Kapitel 6.5.1), die ebenfalls Einfluss nimmt auf die konkrete Form des Ergebnisses.

Alle diese - notwendigen - Annahmen sind aber in ihrer Auswahl und in ihrer gewählten Form fachlich begründet und in sich konsistent. Daher ist davon auszugehen, dass das Modell ein nachvollziehbares, plausibles - und somit nützliches - Ergebnis liefern wird. Würden die Annahmen - mit gleicher fachlicher Berechtigung - anders getroffen, dürfte dies das Ergebnis nicht grundsätzlich verändern, sondern letztlich nur graduell verschieben.

Instabilität der Rangfolge

Ein viel entscheidenderer Kritikpunkt am Ranking liegt systembedingt in der - durchaus gewollten - Gesamtsicht über alle Kriterien, also in der Reduktion des Auswahlkriteriums auf letztendlich nur einen einzigen Wert. Eine eindeutige Aussage, welches Material gewählt werden sollte, ist auf dieser Basis nämlich nicht möglich:

Vorstellbar sind z.B. zwei Materialien, die grundsätzlich verschiedene Eigenschaften aufweisen, im Ranking jedoch trotzdem als gleich geeignet bewertet werden. Dies kann z.B. dann vorkommen, wenn...
das eine Material im Kriterium A gut, im Kriterium B hingegen schlecht abschneidet, das andere Material hingegen entsprechend andersherum. Durch das gegenseitige Aufrechnen vieler Einzelwerte muss also davon ausgegangen werden, dass bei allen betrachteten Materialien eine Vielzahl nahezu als gleich gut bewertet werden.

Fazit

Innerhalb des vorgestellten Modells ist es nicht eindeutig möglich, für einen bestimmten Einsatzzweck das „optimale Material“ zu berechnen. Dies verwundert allerdings auch nicht sonderlich, da diese Problematik entsprechend auch bei manueller Auswahl existiert: Es gibt halt nicht nur das eine Material (oder sogar: Produkt), was sinnvollerweise eingesetzt werden sollte. Stattdessen wird jedes seine Vor- und Nachteile aufweisen.

Dennoch kann die vorgestellte Vorgehensweise - nicht nur wegen der Notwendigkeit einer konkreten und somit nachvollziehbaren Formulierung der Wünsche und Anforderungen an die Oberfläche - bereits in der bisher beschriebenen Form entscheidungsunterstützend wirken: Durch das vorgestellte Verfahren wurde nämlich eine automatische Negativselektion der eher ungeeigneten Materialien vorgenommen, die somit nicht mehr weiter berücksichtigt werden müssen. An der Spitze der Rangliste steht dagegen eine Vielzahl von Materialien, die allesamt relativ gut geeignet sein dürften. Im weiteren Verlauf des Auswahlprozesses braucht sich der Planer also nur noch auf diese zu konzentrieren.

Die zwangsläufig irgendwann folgende, abschließende Entscheidung für ein Material kann dem Planer nicht abgenommen, über die Berechnung hinaus aber noch durch eine geeignete Ergebnisdarstellung und damit verbundene Analyse- und Interpretationsmöglichkeiten erleichtert werden. Mögliche Schritte und Verfahren dazu werden im folgenden Kapitel vorgestellt.
Das in vorangegangenem Kapitel beschriebene Vorgehen lieferte eine Rangliste an möglichen Materialien sowie an deren Spitze eine Vielzahl von favorisierten Materialien, aus denen dann letztendlich gewählt werden kann.

Es wurde bereits erläutert, warum das Ranking hinsichtlich der Herausarbeitung eines einzigen optimalen Materials nicht absolut erfolgreich sein kann. Dies heißt aber auch, dass die gängige Präsentation des Ergebnisses, also eine feststehende und lineare Auflistung der in Frage kommenden Materialien - wie etwa bei bestehenden Material-Datenbanken üblich - nicht unbedingt sinnvoll ist, da dadurch eine feste Rangfolge suggeriert wird, darüber hinaus aber keine weitere Information über Zusammenhänge gegeben wird.

Eine den Sachverhalt der Ungenauigkeit angemessener repräsentierende Darstellung kann hingegen durch eine zusätzliche Aufbereitung der vorliegenden Daten mittels Multidimensional Scaling (MDS) erreicht werden (Kapitel 7.1). Die durch diesen Schritt gewonnene räumliche Präsentation möglicher Materialien erlaubt zudem ein besseres Verstehen der inhaltlichen Zusammenhänge (Kapitel 7.2), insbesondere, wenn die Darstellung nicht statisch bleibt, sondern noch durch interaktive Elemente dynamisch ergänzt und genutzt wird (Kapitel 7.3).

Das vorgestellte Verfahren wird abschließend hinsichtlich seiner Einsatzfähigkeit und Nützlichkeit im Rahmen der Materialsuche diskutiert (Kapitel 7.4).

7.1 Multidimensional Scaling

»Multidimensional Scaling refers to a class of techniques. These techniques use proximities among any kind of objects as input. [...] The chief output is a spatial representation, consisting of a geometric configuration of points, as on a map. [...] This configuration reflects the „hidden structure“ in the data, and often makes the data much easier to comprehend.«

[Kruskal 1978, S.7]

Mit Multidimensional Scaling steht eine in vielen Wissenschaftsgebieten einsetzbare Datenanalysetechnik zur Verfügung, die es ermöglicht, paarweise miteinander vergleichene Elemente derart in
einer räumlichen Darstellung abzbilden, dass jeweils ähnliche Elemente nahe beieinander liegen, unähnliche dagegen weit entfernt [Young 1985].

Im Ergebnis können sich auf diese Weise Gruppen („cluster”, „neighbourhoods”) von ähnlichen Elementen bilden, die sich von anderen Gruppen wiederum untereinander ähnlicher Elemente deutlich abheben. Durch eine Interpretation dieser Struktur lassen sich - in den Rohdaten ansonsten verborgene - Zusammenhänge erkennen und somit weitere Erkenntnisse über die Elemente gewinnen.

Gerade diese nicht zwingend notwendige Objektivität der Unähnlichkeiten ermöglicht aber auch den sinnvollen Einsatz von MDS zur weiteren Unterstützung der Materialwahl: Es wurde beschrieben, wie sich die Unähnlichkeit zwischen zwei beliebigen Materialien als Gesamtkoeffizient berechnen lässt (vgl. Kapitel 6.5). Das Ergebnis dieser Berechnung beruht auf Definitionen und Festlegungen, es ist daher mit gewissen Unsicherheiten und Ungenauigkeiten behaftet, also zwangsläufig nicht vollkommen objektiv.

Indem die Ermittlung der Unähnlichkeiten aber nachvollziehbar und fachlich begründet wurde, erscheint es nahe liegend, dass auch die räumliche Darstellung dieser Beziehungen mittels MDS eine Struktur ergibt, welche die Realität plausibel abbildet. Es wird daher erwartet, dass aus einer solchen Darstellung weitere Erkenntnisse über die berücksichtigten Materialien, aber auch über die vom Planer angesetzten Kriterien in ihrer jeweiligen Gewichtung gewonnen werden können.

7.1.1 Unterschiedliche Arten von MDS

Multidimensional Scaling interpretiert Unähnlichkeiten - egal wie diese ursprünglich ermittelt wurden - als räumliche Distanzen.

Alle Elemente werden dabei paarweise verglichen. Das Ergebnis lässt sich - wenn gewünscht zunächst für jedes Kriterium getrennt - in einer Unähnlichkeitsmatrix erfassen. Anschließend wird versucht, jedes untersuchte Element derart durch einen Punkt in einem niedrigdimensionalen Raum zu repräsentieren, dass die räumlichen Ab-
ständen aller Punkte untereinander „bestmöglich“ den Unähnlichkeiten entsprechen.

Alle diese Unterscheidungen beziehen sich jedoch allein auf die Art, wie „reale“ Eigenschaften der Elemente in Form von Unähnlichkeiten ausgedrückt und berechnet werden. Der im Rahmen dieser Arbeit zum Vergleich zweier Materialien herangezogene Gesamtunähnlichkeitskoeffizient (vgl. Kapitel 6.5) berücksichtigt dagegen bereits die verschiedenen Skalen und Gewichtungen. Die ermittelten Gesamtunähnlichkeiten können also direkt als räumliche Distanzen interpretiert werden.

7.1.2 Berechnungsziel Stressminimierung

Definition von Stress

Es gibt mehrere verschiedene Varianten, wie der Stress konkret berechnet werden kann. Diese unterscheiden sich z.B. darin, in welcher Form Abweichungen einfließen bzw. zu welchen Werten die Abweichungen in Beziehung gesetzt werden. Einzelne Werte können auch durch einen Gewichtungsfaktor w_{ij} in ihrem Einfluss begrenzt werden, z.B. wenn diese nur mit einer großen Unsicherheit zu ermitteln waren.

Eine übliche, oft verwendete Berechnungsvariante ist der „Standardisierte Stress“. Hier wird die Differenz D_{ij} zwischen ursprünglich vorliegender Unähnlichkeit und abgebildeter Distanz d_{ij} ins Verhältnis gesetzt zur ursprünglichen Unähnlichkeit und für alle betrachteten Elemente i und j aufsummiert [XLSTAT 2006].

\[
\sigma_n = \frac{\sum_{i<j} w_{ij} (D_{ij} - d_{ij})^2}{\sum_{i<j} w_{ij} D_{ij}^2}
\]

Formel 7.1: Standardisierter Stress
»The choice of the badness measure is not always important. There are numerous comments in the literature that this aspect can be ignored with the expectation that the map will be unchanged. [...] The better the fit the more the choice of the badness measure is immaterial.«

[Heady 2004, S.33]

Je nach benutzer Definition von Stress kann sich eine leicht veränderte, wenn auch nicht grundsätzlich andere Lage der Elemente im Raum ergeben. Die Art der gewählten Stressberechnung wird sich dabei umso stärker auf das Ergebnis auswirken, umso schlechter die Abbildung insgesamt passt. Bei einer insgesamt guten Abbildbarkeit der Unähnlichkeiten wirkt sich die Form der Stressberechnung kaum noch aus.

Nichtlinearer Einfluss von Abbildungsfehlern auf den Stress

Der Frage nach der sinnvollsten Definition von Stress soll in dieser Arbeit nicht weiter nachgegangen werden, da hier eine exakte Analysierbarkeit des Ergebnisses nicht unbedingt notwendig ist. MDS soll stattdessen nur als ein prinzipielles räumliches Abbildungsverfahren benutzt werden. Der Prototyp (siehe Kapitel 8) arbeitet mit standardisiertem Stress und ohne Abbildungsgewichte.

7.1.3 Berechnungsverfahren

Die Berechnung selbst erfolgt in einem iterativen Verfahren, bei dem Elemente, die im Raum im Verhältnis zum Ausgangswert noch zu weit auseinander liegen, schrittweise aufeinander zu, die noch zu nahe bieinander liegenden dagegen voneinander weg bewegt werden. Diese Berechnung kann begrenzt werden durch eine fixe Anzahl an Durchläufen oder durch einen Schwellwert für die Veränderung des Stresses pro Schritt.

Für die eigentliche Berechnung sind mehrere Algorithmen veröffentlicht. Die im Prototypen (siehe Kapitel 8) verwendete Statistiksoftware XLSTAT verwendet den als schnell geltenden SMACOF-Algorithmus („Scaling by Majorizing a Convex Function“) [Cox 1994, S.156].
Die beschriebene Art der iterativen Berechnung bringt jedoch auch einige Schwierigkeiten mit sich:

Lokale Minima
Zu Beginn des Lösungsprozesses nehmen die Elemente eine Ausgangsposition ein, die entweder zufällig verteilt oder aber auch geometrisch vorgegeben werden kann. Die Berechnung der „bestmöglichen“ Lösung erfolgt dann derart, dass die Elemente Schritt für Schritt so verschoben werden, dass der Stress verkleinert wird. Es kann jedoch passieren, dass auf diesem Weg nicht die absolut beste Lösung erzielt werden kann, sondern nur ein lokales Minimum, bei dem jeder weitere Iterationsschritt nur wieder den Stress vergrößern würde. An dieser Stelle würde der Algorithmus die Berechnung abbrechen.

Ein Wiederholen der Berechnung auf Basis einer veränderten Ausgangsposition kann helfen, dieses lokale Minimum zu umgehen und so zu einer Lösung mit deutlich kleinerem Stress führen. Die MDS-Software Permap bietet dafür z.B. als Hilfe an, aus einer großen Zahl von automatisch wiederholten Durchläufen die jeweils beste abzuspeichern [Permap].

Relative Lage der Elemente zueinander
Jede berechnete Lösung positioniert die Elemente nur relativ zueinander, es kann also bei Wiederholung der Berechnung auf Basis einer anderen Zufallsverteilung absolut gleichwertige, jedoch zueinander verdrehte oder auch gespiegelte Lösungen geben. Solange das Ergebnis nur statisch betrachtet und interpretiert werden soll (siehe Kapitel 7.2), wirft dies keine Probleme auf. Aus Gründen der besseren Lesbarkeit oder Vergleichbarkeit zu anderen Lösungen kann es jedoch sinnvoll sein, das gesamte Feld zu drehen oder zu spiegeln, was wiederum in den beim Prototyp verwendeten MDS-Programmen unterstützt wird.

Bei interaktiven Strategien (siehe Kapitel 7.3) mit einer Vielzahl von Neuberechnungen nach minimalen Änderungen der Eingabe spielt dagegen die relative Lageänderung einzelner Elemente für die Interpretation hingegen eine große Rolle. Die globale Ausrichtung des Gesamtfelds sollte daher möglichst erhalten bleiben. Dies kann dann durch die sogenannte Prokrustes-Analyse erreicht werden, bei der zwei Lösungen durch Dehnung bzw. Stauchung, Drehung sowie durch Spiegelung des gesamten Feldes derart aufeinander abgebildet werden, dass die Gesamtheit der Lageänderungen aller Elemente minimiert wird [Cox 1994, S.92].

Der Prototyp (siehe Kapitel 8) verschiebt allerdings aus Gründen der besseren Lesbarkeit das gesamte Feld derart, dass die Lage des als Referenzpunkt mit abgebildeten Idealmaterials immer konstant bleibt. Dieser Eingriff führt dazu, dass eine Prokrustes-Analyse nur die angebotenen Materialien, nicht aber das Idealmaterial berücksichtigen muss.
Berechnungsaufwand

Im Gegensatz dazu ist es beim Multidimensional Scaling notwendig, jedes berücksichtigte Material paarweise mit jedem anderen zu vergleichen. Allein die Zahl der notwendigen Berechnungen zur Aufstellung der Unähnlichkeitsmatrix wächst dabei - mit der Fakultät der Anzahl aller berücksichtigten Materialien - stark an. Anschließend müssen alle betrachteten Elemente noch in dem iterativen Verfahren mit einer Vielzahl von Durchläufen im Raum platziert werden, was eine Vielzahl weiterer Berechnungen erfordert.

Es kann daher aus Gründen der Performance notwendig sein, die Zahl der mit MDS betrachteten Materialien - insbesondere innerhalb eines interaktiven Systems mit schnell wechselnden Ausgangskonstellationen (siehe Kapitel 7.3) - zu begrenzen. Allerdings sollen im Rahmen dieser Arbeit sowieso nur die am besten bewerteten Materialien mittels MDS näher untersucht und abgebildet werden, daher sollte dieser Einschränkung nicht allzu viel Gewicht beigemessen werden. Außerdem macht eine Limitierung auch aus einem anderen Grund Sinn: Das Ergebnis muss leicht erkennbar am Bildschirm dargestellt werden können, die Aufnahmecapazität des Menschen ist begrenzt. Zu viele gleichzeitig angezeigte Elemente könnten sich im Auswahlprozess vielleicht sogar negativ auswirken.

Der Prototyp (siehe Kapitel 8) berücksichtigt die 30 bestplatzierten Materialien sowie das Idealmaterial als Referenz.

7.1.4 Dimensionalität des Ergebnisraums

»The decision about the dimensionality to use for a given set of data is as much a substantive as a statistical question. Even if a good statistical method did exist for determining the “correct” or “true” dimensionality, this would not in itself suffice for assessing what dimensionality to use. Since MDS is almost always used as a descriptive model for representing and understanding the data, other considerations enter into decisions about the appropriate dimensionality, e.g., interpretability, ease of use, and stability.«

[Kruskal 1978, S.48]

Die Frage nach der sinnvollen oder richtigen Zahl an Dimensionen des Abbildungsraums darf daher nicht nur statistische Aspekte berücksichtigen, sondern sollte - insbesondere im Rahmen dieser Arbeit - die Handhabbarkeit des Ergebnisses und vor allem die Interpretierbarkeit in den Vordergrund stellen.
Handhabbarkeit

Interpretierbarkeit
Die Frage, ob ein derart reduziertes Abbild dann jedoch inhaltlich noch „stimmig“ ist, lässt sich pauschal nicht beantworten, sie hängt im Einzelfall von der Ausprägung der konkreten Daten ab. Kruskal weist in der Diskussion der Dimensionalität darauf hin, dass Kriterien, in denen die betrachteten Elemente sich nur unwesentlich unterscheiden, kaum eine eigene Dimension ausbilden [Kruskal 1978, S.60], diese das Endergebnis also nur gering beeinflussen. Gehören also z.B. alle dargestellten Materialien der Materialart „Holz“ an, so wirkt sich das - egal wie stark dieses Einzelkriterium in der ursprünglichen Bewertung gewichtet wurde - auf die Anordnung der Materialien im MDS-Ergebnis nicht aus. Das bedeutet im Umkehrschluss, dass sich im Ergebnis ausbildende Dimensionen eher die Kriterien repräsentieren, in denen die Werte deutlich voneinander abweichen. Das Gesamtergebnis zeigt dem Nutzer auf diese Weise also vorzugsweise die Breite des Spektrums unterschiedlicher Lösungen innerhalb grundsätzlich jedoch ähnlicher Alternativen.
Welche Schlüsse darüber hinaus aus dem Ergebnis gezogen werden können, zeigt der folgende Abschnitt.

7.2 Statische Untersuchung

»When multidimensional scaling yields useful insights, these generally result from examining the configuration. One of the most important methods of examination is simply to look at the arrangement of points, where each point has been labeled to indicate which object it represents. There are systematic methods, however, which are sometimes used to supplement this direct examination.«

[Kruskal 1978, S.9]

7.2.1 Analyse der Ergebnisqualität

»How well do we know what we know? [...] it is still true that MDS maps can be misinterpreted and artifacts can be mistaken for relationships. It is important to qualify a map before undertaking the painstaking effort of defining and interpreting groups and assigning dimensions. Several map evaluation tests are given [...] All of these tests have to do with the validity of the two-dimensional representation of multi dimensional data. They do not address the interpretation of the map.«

[Heady 2004, S.52]

Bevor das Ergebnis interpretiert wird, kann die Güte der Abbildung, also die Korrelation zwischen dem niedrigdimensionalen Ergebnis und der multidimensionalen Realität, durch entsprechende Analyseverfahren untersucht werden, damit eventuelle Missinterpretationen des Ergebnisses aufgrund ungünstiger Ausgangskonstellationen, lokaler Minima, ungünstiger Ausgaberäume etc. verhindert werden können.

Einige Verfahren, die von den im Rahmen des Prototyps (siehe Kapitel 8) eingesetzten MDS-Programmen (Permap bzw. XLSTAT) unterstützt werden, sollen hier kurz vorgestellt werden. Diese Untersuchungen beziehen sich dabei allesamt ausdrücklich nur auf die Qualität der Abbildung. Sie erlauben noch keine Aussage über inhaltliche Aspekte im Rahmen der Materialwahl.

Abbildung Stress versus Dimensionalität

Sinkt das Stressniveau bei einer weiteren Erhöhung der Dimensionen des Ergebnisraums nicht mehr signifikant, macht diese Erhöhung kaum noch Sinn - die Dimension des Ergebnisraums wäre rein mathematisch gesehen ausreichend.

Gedehnte bzw. gestauchte Distanzen

Die Umsetzung aller paarweise ermittelten Unähnlichkeiten als Distanzen in einem niedrigdimensionalen Raum führt nahezu zwangsläufig dazu, dass einige Abstände zu groß, andere hingegen zu klein abgebildet werden. Die „bestmögliche“ Lösung minimiert immer nur die Summe aller Abweichungen. Es kann also sein, dass einige Distanzen besonders stark gedehnt oder gestaucht werden müssen, um letztlich ein gutes Gesamtergebnis zu erhalten.

Eine Visualisierung solcher extrem ungünstig abgebildeten Unähnlichkeiten (bezogen auf einen individuellen Grenzwert) z.B. durch Verbindungslinien in der Ergebnisdarstellung kann Fehlinterpretationen vermeiden helfen. Beide Fehlervarianten (Dehnung und Stauchung) können in der Ergebnisdarstellung getrennt abgelesen werden.

Shepard-Diagramm

Zur Überprüfung der Abbildungsqualität nicht nur einzelner Distanzen, sondern der des Gesamtergebnisses eignet sich ein separa-
Das Verfahren: Zusätzliche Analyse des Ergebnisses

Abb. 7.4: Shepard-Diagramm

In diesem Diagramm, bei dem in einer 2D-Darstellung die räumlichen Distanzen in Bezug auf die Unähnlichkeiten abgetragen werden, sollten die Punkte nahe einer Winkelhalbierenden liegen und die Standardabweichung klein sein. Liegen einzelne Punkte hingegen stark entfernt von der Diagonale, so zeigt dies, dass diese Unähnlichkeiten nicht gut abgebildet werden konnten, das dargestellte Ergebnis also bei diesem Element Abbildungsschwächen aufweist.

„Out-Of-Plane“-Tendenz

Wenn sich bei einem einzelnen Element mehrere solcher nur ungünstig abbildbaren Unähnlichkeiten häufen, so ist dieses Element von einem hohen Stress geprägt, d.h. es ist im vorliegenden Abbildungsraum offenbar nicht sinnvoll abbildbar.

Die Lage des Elements im Raum entspricht demnach nicht den ihm innewohnenden Eigenschaften. Damit es nicht zu Fehlinterpretationen kommt, können solche Elemente daher gekennzeichnet werden.

Pareto-Plot

Wie aus anderen statistischen Verfahren bekannt, wird auch das Multidimensional Scaling-Ergebnis nicht durch alle Elemente gleichmäßig beeinflusst. Wenige Extremwerte können die Abbildung stärker beeinflussen als eine Vielzahl durchschnittlicher Werte (Pareto-Prinzip: 20% der Elemente erzeugen 80% des Ergebnisses).

Aussagekraft der Analyseverfahren

Die oben genannten Tests zeigen einige Wege auf, die Abbildungssqualität eines Multidimensional Scaling-Ergebnisses prinzipiell zu überprüfen und darzustellen.

Viel entscheidender als die mathematische „Richtigkeit“ einer Abbildung, also der Exaktheit der Abbildung von unterliegenden Daten in einer räumlichen Struktur, sollte die Angemessenheit und Sinnhaftigkeit des Ergebnisses sein. Lassen sich aus der räumlichen...
All results should pass the “adequacy, interpretability, stability, meaningfulness, reasonability, and generalizability” hurdles, and if they do then they should be accepted.

[Heady 2004, S.63]

7.2.2 Interpretation des Ergebnisses

Multidimensional Scaling platziert die untersuchten Elemente in einem räumlichen, und somit - aufgrund der ursprünglichen Interpretation von Unähnlichkeiten als Distanzen - auch in einem inhaltlichen Zusammenhang. Aus der räumlichen Darstellung lassen sich also Rückschlüsse über die den Elementen innewohnenden Eigenschaften ziehen. Die Interpretation des Ergebnisses wird dabei bereits deutlich erleichtert, wenn eine Darstellungsform gefunden wird, welche die Lesbarkeit der innewohnenden Struktur erhöht.

Ergebnisdarstellung

Während ein 2D-Ergebnis direkt am Monitor dargestellt werden kann, erfordert ein 3D-Ergebnis noch eine Reduktion um eine Dimension durch Projektion auf die Monitorebene. Dennoch kann eine räumliche Information vermittelt werden. Dazu bieten sich z.B. perspektivische Darstellungen mit dadurch bedingten Größenänderungen der Abbildungen an sowie zusätzliche Hilfsmittel wie Unschärfe der im Hintergrund liegenden Elemente oder das Einblenden von Clipping- oder Referenzebenen.

Fokus und Kontext

Kruskal weist darauf hin, dass MDS globale Strukturen besser abbilden kann als lokale [Kruskal 1978, S.46]. In der Betrachtung und Interpretation des Ergebnisses sollten daher weniger die Eigenschaften einzelner Elemente als vielmehr genau solche eher übergeordneten Strukturen im Gesamtergebnis im Vordergrund stehen.

Dennoch sollte natürlich jederzeit auch der Fokus auf einzelne Bereiche der räumlichen Darstellung oder auch auf ein einzelnes Element gelenkt werden können, also z.B. durch die Anzeige von Detailinformationen zu Eigenschaften eines einzelnen Materials. Ein solches Wechseln der Betrachtungsebene erleichtert die Inter-
pretation des Ergebnisses, da die Einzelelemente immer in einem Gesamtkontext integriert werden können.

Unähnlichkeit zum Idealmaterial

Auch wenn die Rankingliste als nicht absolut stabil bezeichnet wurde (vgl. Kapitel 6.6) kann es für die Interpretation des MDS-Ergebnisses hilfreich sein, die vorher ermittelten Gesamtunähnlichkeiten zum Idealmaterial anzugeben. Eine Visualisierung dieser relativen Werte, z.B. durch verschiedenfarbige Verbindungslinien zum Idealmaterial, ermöglicht eine Einschätzung der Alternativen auf den ersten Blick.

Hauptachsen / Dimensionen

Diese Hauptachsen entsprechen dabei nicht zwangsläufig den Dimensionen des Abbildungsraums, sie stehen auch nicht unbedingt senkrecht aufeinander. Sie lassen sich aber inhaltlich als die eigentlichen Dimensionen der unterliegenden Daten interpretieren. Betrachtet man die Eigenschaften der Elemente in ihrer Entwicklung entlang einer solchen Achse, lassen sich diese möglicherweise auch konkret mit übergeordneten inhaltlichen Begriffen bezeichnen. Die Achsen geben so also Aufschluss über das mögliche Spektrum der betrachteten Elemente.

Clusterbildung

Während die Hauptachsen eher globale Zusammenhänge abbilden, beruhen Clusterbildungen auf lokalen Strukturen. Dadurch, dass ähnliche Elemente in räumlicher Nähe platziert werden, ergeben sich inhaltlich zusammenhängende Cluster („neighbourhoods“). Die Neigung zur Clusterbildung kann im Ergebnis gut visualisiert werden, indem die Elemente mit den jeweils kürzesten Distanzen zueinander mit Linien verbunden werden („Waern-Links“). Durch
Verschieben des Grenzwerts, bis zu dem die Linien noch angezeigt werden, zeichnen sich erst kleinräumige, dann immer größere Gruppen deutlich ab.

Insbesondere bei der Betrachtung von Clustern sollte aufgrund der ungünstigeren Abbildungsqualität bei lokalen Strukturen wiederum weniger die genaue Lage eines Elements innerhalb einer solchen Gruppe, sondern vielmehr die Gruppe als Muster innerhalb eines Gesamtzusammenhangs interpretiert werden. Cluster können aufgrund ihrer jeweiligen Gemeinsamkeiten charakterisiert werden und stellen in ihrer Gesamtheit in Bezug auf andere Gruppen je-weils grundsätzlich verschiedene Wahlalternativen dar.

Zusammenfassung
Der zusätzlich zur ursprünglichen Bewertung vorgenommene Vergleich einzelner Materialien untereinander und vor allem die räumliche Darstellung dieser Beziehungen mittels MDS liefert - im Vergleich zur linearen Liste eines Rankings - weitere Informationen über ansonsten vielleicht verborgene strukturelle Zusammenhänge innerhalb der betrachteten Materialien. Eine geeignete Darstellung dieser Strukturinformationen erleichtert die inhaltliche Interpretation des MDS-Ergebnisses durch den Nutzer.

7.3 Dynamische Untersuchung

»Perhaps the most significant recent acknowledgement of the fact that a user formulates a problem concurrently with solving it was the concept of dynamic queries […]«

[Spence 2001, S.72]

Die Grundlage jeder dynamischen Untersuchung ist eine vom Nutzer ausgehende Veränderung der Berechnungsgrundlage sowie das Beobachten der damit verbundenen Ergebnisänderung. Der Nutzer kann z.B. die Gruppe der Materialien, welche in die Analyse einbezogen werden sollen, durch Hinzufügen oder Wegnehmen einzelner Elemente manipulieren, oder aber er verändert punktuell seine formulierten Suchkriterien oder deren Gewichtung innerhalb einer „What-If-Strategie“. Als weitere Möglichkeit kann der Nutzer sich auch ganz von dem ursprünglich beschriebenen Idealmaterial lösen und durch Browsen seinen Fokus auf ein beliebiges anderes Material lenken.
Direkt nach jeder nutzerseitigen Modifikation wird die Berechnung erneut durchgeführt. Der Informationsgewinn liegt neben dem erneuten statischen Betrachten des dann modifizierten Ergebnisses vor allem in der Interpretation der dynamischen Veränderung an sich.

Welchen Erkenntnisgewinn dynamische Strategien mit sich bringen können und inwieweit solche Verfahren im Rahmen dieser Arbeit möglich sind, soll im Folgenden dargestellt werden.

7.3.1 Manipulation der Auswahl der Elemente

Aus Gründen des Berechnungsaufwands sowie der Übersichtlichkeit wurde die MDS-Analyse ursprünglich nicht auf alle vorliegenden Materialien, sondern nur auf eine begrenzte Gruppe von Elementen angewendet (vgl. Kapitel 7.1.3). Dies waren die am besten bewerteten Materialien, damit speziell diese näher untersucht werden konnten. Diese Gruppe der analysierten Materialien kann durch Wegnahme oder Hinzufügen weiterer Elemente manipuliert werden:

Elemente herausnehmen
Eine mögliche Modifikation ist das manuelle Herausnehmen einzelner Elemente aus der MDS-Analyse, vorzugsweise jener mit hohen Stresswerten (vgl. Kapitel 7.2.1). Indem solche nur ungünstig abbildbaren Elemente nicht weiter in der Berechnung berücksichtigt werden müssen, kann sich die Abbildungsqualität aller übrigen Elemente verbessern. Somit kann sich ein klareres und dadurch einfacher zu lesendes Ergebnis einstellen. Selbstverständlich bedeutet dies, dass das herausgenommene Element nun nicht mehr in Bezug zu den anderen gesehen werden kann.

Elemente hinzunehmen
In die andere Richtung geht das Einbeziehen zusätzlicher Materialien in die MDS-Analyse, vor allem solcher, die ursprünglich eher nicht so gut bewertet wurden. Dies muss im Umkehrschluss nicht unbedingt zu Lasten der Abbildungsqualität gehen, da diese dem Idealmaterial unähnlichen Materialien zwar in einem relativ großen Abstand zu diesem und zu den anderen positioniert würden, dieser jedoch auch ihrer Unähnlichkeit genau entspricht.

Durch das Einbinden solcher Referenzmaterialien lässt sich ein großräumigerer Bezugsrahmen erzeugen, so dass z.B. die relative Lage von Clustern in einem größeren Kontext deutlich werden kann. Auch wenn der Nutzer sich durch Browsen (siehe Kapitel 7.3.3) weit vom eigentlichen Idealmaterial entfernt hat, kann die Darstellung der relativen Lage des Idealmaterials als Orientierung sinnvoll sein.
Vollständig manuelle Auswahl der Elemente

Führt man diesen Gedanken weiter, so kann sogar die ursprüngliche Auswahl der bestbewerteten Materialien vollständig ignoriert und die Gruppe der mittels MDS untersuchten Materialien rein manuell festgelegt werden. Stappers und Pasman nutzen diese Herangehensweise z.B. als Technik, um zunächst eine Auswahl bestehender Produkte (Präzedenzfälle) in einem inhaltlichen Zusammenhang darzustellen, um anschließend aus der Konstellation der Elemente Rückschlüsse für die Entwicklung eines neuen Produkts ziehen zu können [Stappers 2000, Pasman 2003].

Generierung von passenden Elementen

»The user can form the landscape by picking the most expressive samples while retaining the overview.« [Stappers 2000]

Zusammenfassung

Die Manipulation der ursprünglich automatisch vorgenommenen Auswahl der berücksichtigten Elemente verändert das räumliche Ergebnis der MDS-Analyse und kann dadurch beim Nutzer neue Erkenntnisse hervorbringen. Der Eingriff kann entweder die Abbildungskualität und somit die Interpretierbarkeit des Gesamtergebnisses verbessern helfen oder aber zusätzliche Informationen in Form eines veränderten Bezugsrahmens generieren. Im Extremfall kann sogar die ursprüngliche Auswahl ganz fallen gelassen und die Gruppe der durch MDS abgebildeten Elemente frei festgelegt werden. Ein solches Vorgehen - also das Anordnen einer frei vorgegebenen Gruppe von vorliegenden Materialien mittels MDS - könnte auch im Rahmen der Materialwahl durch das Darstellen von inhaltlichen Zusammenhängen hilfreiche Informationen liefern. Allerdings handelt es sich dann nicht mehr um eine nähere Untersuchung des ursprünglichen Ergebnisses.

Die Manipulation der Auswahl der Elemente ist ein Verfahren, bei dem eher das anschließende, statische Ergebnis als die dynamische Veränderung an sich im Vordergrund steht.
7.3.2 „What-If“-Strategie

Eine andere Untersuchungsmethode, die deutlich auf der Veränderung als solcher aufbaut, ist die Modifikation der Anfrage, also die Umformulierung des Idealmaterials, sowie die Beobachtung, wie die räumliche Konfiguration darauf reagiert. Die Reaktion sollte bei solchen dynamischen Untersuchungen möglichst in direktem zeitlichem Zusammenhang mit der Aktion erfolgen [Ware 2004, S.72].

Das Ziel dieser Strategie ist weniger eine vollkommen unabhängige zweite Suche nach Materialien, auch wenn diese aufgrund etwaiger Unsicherheiten bei der ursprünglichen Anfrage auch sinnvoll sein kann, sondern vor allem das gezielte Durchspielen von „Was-wäre-wenn“-Szenarien („What-If“-Strategie). Wird dabei jeweils nur ein einzelnes Kriterium - entweder im gesuchten Wert oder aber in der ihm zugewiesenen Gewichtung - modifiziert, kann insbesondere der Einfluss dieses einen Kriteriums auf die Bewertung und Anordnung der Materialien untersucht werden.

Eine solche „What-If“-Strategie kann im Prinzip in zwei Richtungen verfolgt werden - beide haben ihre Berechtigung:

Beibehaltung der Gruppe der Elemente

Die Modifikation der Anfrage kann allein auf die ursprünglich untersuchten Elemente bezogen werden. Im Ergebnis ergibt sich dann nur eine andere räumliche Anordnung: einzelne Elemente wandern aufeinander zu, andere voneinander weg. Diese Bewegung lässt sich wiederum als Veränderung der Elemente auf inhaltlicher Ebene lesen. Elemente, die sich sehr stark bewegen, reagieren offenbar sehr sensibel auf das modifizierte Kriterium, werden also in ihrer Bewertung stark durch dieses beeinflusst.

Berücksichtigung aller Elemente

Andererseits können auf Grundlage einer modifizierten Anfrage auch alle anderen Materialien von Neuem bewertet werden. Dann wird es selbstverständlich vorkommen dass Materialien vollständig aus dem Kreis der berücksichtigten Elemente heraus fallen, andere dagegen neu hinzukommen.

Ein solches Vorgehen macht es möglich, sich vorübergehend von vielleicht zu sehr einschränkenden Kriterien zu befreien. Tauchen im Ergebnis besonders interessante, vorher jedoch verborgene Materialien auf, wird der Nutzer vielleicht die ursprünglich gemachten Vorgaben des Idealmaterials in diesem Kriterium noch einmal überdenken. „What-If“-Untersuchungen können somit - neben weiteren Erkenntnissen über die betrachteten Materialien - durchaus ein Feedback über die eigene Suche liefern.

Zusammenfassung

Das dynamische Durchspielen von „Was-wäre-wenn“-Szenarien ermöglicht ein gezieltes Untersuchen der inhaltlichen Beziehungen von Materialien untereinander sowie des Einflusses einzelner Krite-

7.3.3 Browsen

Lenkt der Planer seine Aufmerksamkeit bewusst auf ein bestimmtes Material bzw. eine Materialgruppe, die sich vorher als Cluster herauskristallisiert hat, kann das Browsen eher als eine vertiefende Untersuchungstechnik verstanden werden: Indem der Nutzer das fokussierte Material oder die Materialgruppe in einen neuen Zusammenhang stellt, kann er dieses unter einem anderen inhaltlichen Vorzeichen untersuchen.

Wiederholt er diesen Schritt jedoch mehrmals, kann dies letztlich dazu führen, dass er sich mehr und mehr vom eigentlich gesuchten Idealmaterial entfernt. Das Browsen wird dann weniger zielgerichtet, weniger analytisch angewendet.

7.3.4 Protokollierung des Verlaufs

Im Verlauf des Materialwahlprozesses durchläuft ein Nutzer eine Vielzahl von Teilergebnissen, welche als Ausgangspunkt für eine neue Suche, als Zwischenschritt bei der weiteren Verfeinerung der Suche oder bereits als eine von mehreren möglichen Alternativen gelten können. Nachdem weitere Schritte vollzogen worden sind, sollte zu diesen Teilergebnissen zurückgekehrt werden können, um die Suche von dort aus in eine andere Richtung lenken bzw. um ein als möglich erkanntes Material in einem anderen Zusammenhängen näher untersuchen zu können.

7.3.5 Probleme dynamischer Verfahren bei MDS

Da die mit Multidimensional Scaling abgebildeten Daten jedoch bei der Materialwahl zunächst in einem komplexen Bewertungssystem ermittelt werden und zudem die Abbildung in einer nichtlinearen Form geschieht, bringt die Anwendung dynamischer Verfahren einige Probleme mit sich:

Berechnungszeit
Jede Veränderung der Anfrage bedingt eine Neuberechnung der gesamten MDS-Konstellation. Beschränkt sich die dynamische Untersuchung dabei nur auf die ursprünglich gewählten Materialien, wird dies noch nicht zu einer nennenswerten Einschränkung in der Handhabbarkeit führen. Müssen jedoch jeweils alle Materialien auf einer veränderten Ausgangsbasis neu bewertet werden, kann sich die dafür notwendige Berechnungszeit auf eine flüssige Interaktion negativ auswirken. Ein direkter zeitlicher Zusammenhang zur Aktion des Nutzers ist dann nicht mehr unbedingt gegeben.

Keine harmonischen Bewegungen
Im Rahmen der „What-If“-Strategie interessiert insbesondere die relative Lageänderung, also der Weg, den einzelne Elemente nach einer Modifikation der Berechnungsbasis nehmen. Es erscheint daher naheliegend, die ursprüngliche Lage aller Elemente als Ausgangsposition für die iterative Neuberechnung der räumlichen Anordnung zu nehmen (vgl. Kapitel 7.1.3). Allerdings können die Elemente im neuen Ergebnis plötzlich eine deutlich andere Position als zuvor einnehmen, wenn dadurch der Stress der Gesamtlösung minimiert wird. Der Weg von der Ursprungsposition im Raum zur neuen Lage lässt sich also nicht unbedingt einfach durch eine Linie oder eine Kurve beschreiben, vielmehr kann es zu abrupten Sprünge in der Bewegungsbahn kommen.
Um die Stärke und Richtung der Bewegung dennoch einschätzen zu können, lassen sich in der Darstellung die Start- und Endposition (und evtl. eine Zwischenposition), die aus einer mittleren Veränderung der Parameter errechnet wurde, mit einer Linie verbinden. Länge und Richtung dieser Linie zeigen dann - ungeachtet der Tatsache, dass dies nicht der „real“ zurückgelegte Weg des Elements war - die relative Lageänderung der Elemente an. Dieses grafische Hilfsmittel erleichtert so die Interpretation der inhaltlichen Veränderung.

Ein- und Auswandern von Elementen

Zusammenfassung

7.4 Diskussion des Multidimensional Scaling

»Die wichtigste Regel zum Fällen von Entscheidungen ist, dass die Entscheidung um so leichter fällt, je kleiner die Unsicherheit ist - jede Entscheidung fällt leichter, wenn mehr Informationen zum Entscheidungsbedarf vorliegen.«

[Wikipedia 2006d]

Der ursprünglich verfolgte Ansatz, Materialien allein in Bezug zu einem vorab formulierten Idealmaterial zu bewerten und so das „optimale“ Material berechnen zu können, hatte zu einem nicht stabilen oder eindeutigen Ergebnis geführt (vgl. Kapitel 6.6). Die Art der ursprünglich vorliegenden Daten, die maximal mögliche Genau-
igkei in den Nutzereingaben und die Reduzierung vieler Einzelkri-
terien auf einen einzigen Gesamtwert reichen offenbar noch nicht
für eine eindeutige Entscheidung aus.

Da aber davon ausgegangen wird, dass der Nutzer sich umso siche-
rer für ein Material entscheiden kann, je breiter er über dieses, aber
auch über mögliche Alternativen informiert ist, wurde durch Ver-
wendung von Multidimensional Scaling eine weitere Informations-
möglichkeit auf einer dem Einzelmaterial übergeordneten Ebene
angeboten. Die damit einhergehende - sinnfällig begründete -
räumliche Anordnung der am besten bewerteten Materialien dient
dazu, inhaltliche Zusammenhänge zwischen den als denkbar eingestuften Materialien herausarbeiten zu können sowie ein Feedback
über die eigene Suche zu erlangen.

Um dieses zusätzliche Informationsangebot analysieren und inter-
pretieren zu können, lassen sich unterschiedliche statische oder
dynamische Verfahren anwenden. Die von Shneiderman formulier-
ten Techniken des Zugangs zu Informationen [Shneiderman 1998,
S.524] sind dabei in der Gesamtheit der beschriebenen Verfahren
enthalten:
Die räumliche Darstellung als solche gibt nicht nur einen Überblick
über den Datenbestand, sondern zeigt bereits Beziehungen zwi-
schen einzelnen Elementen auf. Einzelne Elemente können aus der
Betrachtung herausgenommen oder aber hinzugefügt werden. Zu
einem Material können Detailinformationen abgerufen werden,
zudem besteht die Möglichkeit, durch Browsen einen Wechsel des
Fokus hin zu anderen Materialien oder Materialgruppen vorzuneh-
men. Eine vom Nutzer frei zusammengestellte Auswahl von Materia-
lien kann in beliebigen Kriterien unter Berücksichtigung einer indi-
viduellen Gewichtung untersucht werden.

Wird Multidimensional Scaling zusammen mit den darauf aufbau-
denden Untersuchungstechniken wie beschrieben eingesetzt, er-
laubt dies mit dem wechselseitigen Verfolgen der vier prinzipiell
möglichen Auswahlstrategien Analyse, Synthese, Ähnlichkeit und
Inspiration (vgl. Kapitel 2.3) eine große Methodenvielfalt bei der
Suche nach einem Material.

Prinzipbedingt gibt es bei Multidimensional Scaling niemals eine
„eindeutige“ oder „richtige“ Darstellung der abzubildenden Reali-
tät, daher muss jedes mittels MDS generierte Ergebnis individuell
betrachtet und interpretiert werden. Versteht ein Nutzer jedoch,
die richtigen Fragen zu stellen und das Ergebnis richtig zu deuten,
kann Multidimensional Scaling viele zusätzliche Informationen über
die betrachteten Materialien, über ihre Gemeinsamkeiten und Un-
terschiede, sowie über sein eigenes Suchverhalten preisgeben.
Zur Demonstration der Umsetzbarkeit der vorgeschlagenen Bewertungsstrategie, zur Untersuchung der Aussagekraft der Ergebnisse sowie zur regelmäßigen eigenen Überprüfung der zunächst theoretisch formulierten Unterpunkte im Laufe der Erarbeitung der Lösungsstrategie wurde das in dieser Arbeit vorgestellte Verfahren mit reduziertem Umfang in einem einfachen Softwareprototyp umgesetzt.

Dieser mit relativ einfachen Programmiertechniken erstellte Prototyp (Kapitel 8.1) beschränkt sich dabei auf eine rein manuelle Eingabe allein der gewünschten sinnlichen Kriterien und ihrer individuellen Gewichtung. Er greift auf einen vorgegebenen Datensatz von mehr als 100 Materialien zu, deren Eigenschaften vorab manuell ermittelt oder nach Erfahrungswerten festgelegt wurden (Kapitel 8.2). Nach der Eingabe der gewünschten Werte für das gewünschte Idealmaterial (Kapitel 8.3) werden die zur Verfügung stehenden Materialien in Bezug auf die Gesamtunähnlichkeit zu diesem Idealmaterial bewertet und so in eine Reihenfolge gebracht (Kapitel 8.4). Die 30 bestbewerteten Materialien können anschließend per Multidimensional Scaling räumlich dargestellt und näher untersucht werden (Kapitel 8.5).

In einem abschließenden Beispielszenario werden die in der Arbeit vorgestellten Methoden anhand des Prototyps durchgespielt und in ihren Auswirkungen interpretiert (Kapitel 8.6).

8.1 Verwendete Software

Die Umsetzung und Programmierung des Prototyps erfolgte - vor allem mangels tieferer Kenntnisse in anderen Programmiersprachen, aber auch wegen der Möglichkeit des ständigen Überblicks über alle relevanten Zwischenergebnisse - primär innerhalb eines Tabellenkalkulationsprogramms [Excel]. Dieses wurde für die notwendigen Farbraumumrechnungen durch ein Add-In zur vereinfachten Berechnung von Matrix-Funktionen erweitert [Matrix].

Die Handhabung des durch diese Plattform nicht sehr eleganten Prototyps wird allerdings etwas vereinfacht durch ein automatisches Abarbeiten mehrerer aufeinanderfolgender Schritte beim Auslösen der Berechnung sowie durch die Erzeugung eines hilfreichen visuellen Feedbacks bei der Eingabe. Hierzu wurden mehrere kleine Makros in Scriptsprache geschrieben [Visual Basic].

Die Ergebnismatrix des paarweisen Vergleichs der 30 bestbewerteten Materialien lässt sich anschließend zum einen in die freie MDS-Software Permap exportieren und dort per Multidimensional Scaling in einer einfachen zweidimensionalen Darstellung untersuchen.
[Permap], zum anderen werden die zwei- und dreidimensionalen Koordinaten für die Abbildung der Materialien zunächst innerhalb der Tabellenkalkulation per MDS durch den Statistikaufsatz XLSTAT berechnet [XLSTAT] und erst in einem weiteren Schritt durch ein deutlich umfangreicheres Programm zur Datenvisualisierung XLSTAT-3DPlot in verschiedenen Arten dargestellt [3DPlot].

8.2 Materialdaten

Bei der Zusammentragung der Materialdaten für die Nutzung im Prototyp wurden allein Produkte aus dem Anwendungsbereich Fußboden berücksichtigt. Dabei wurde auf ein breites Spektrum an Materialarten, aber auch auf eine gewisse Bandbreite an Individuen innerhalb einer Materialart Wert gelegt. Konkret finden folgende Materialarten in angegebener Anzahl bei den Mustern Verwendung: 20 x Holz, 10 x Keramische Fliesen, 9 x Kunststoff, 18 x Linoleum, 4 x Metall, 7 x Stein, 20 x Teppich, 20 x Terrazzo.

Bei der Sammlung wurde zwar auf Produktdatenblätter verschiedener Herstellerwebseiten zurückgegriffen, allerdings nur, um mit realistischen Bildern verschiedener Oberflächen arbeiten zu können. Ein konkreter Verweis auf das entsprechende Produkt oder ein sonstiger Rückgriff auf die Produktdaten war - auch aus Gründen der Unvollständigkeit oder Uneinheitlichkeit der angebotenen Daten - nicht vorgesehen. Es handelt sich daher letztendlich um fiktive Produkte.

Ermittlung der Farbwerte

Von jedem Material liegt ein Pixelbild in der Größe von 512 x 512 Pixeln vor. Die Bilder decken einen repräsentativen Bereich der Oberfläche, allerdings nicht eine jeweils gleich große Fläche ab. Da die Bilder jedoch an dieser Stelle nicht automatisch ausgewertet werden sollten (vgl. Kapitel 6.1.2) und zudem eine Weiterverwendung im CAD-System nicht vorgesehen ist, wirkt sich dies nicht weiter im Ergebnis aus.

Die RGB-Bilder wurden ohne weitere Farbkorrekturen auf die vier als dominant wahrgenommenen Farben reduziert. Diese wurden zusammen mit ihren prozentualen Anteilen am Gesamtbild ausgelesen und manuell nach einem einheitlichen Algorithmus in vier gleichwertige Farbpakete im L*a*b*-Farbraum umgerechnet (siehe Anhang B.1). Für jede der vier Farben wird zudem der Buntonwinkel ermittelt (vgl. Kapitel 6.4.2).

Festlegung der weiteren Kennwerte

Alle anderen Materialeigenschaften wurden - auf der vordefinierten Skala für das jeweilige Kriterium - nach Augenschein und nach Erfahrungswerten festgelegt. Einige Werte, die nicht ganz offensichtlich und „objektiv“ bestimmbar waren, wurden bewusst als
„nicht vorhanden“ offengehalten. Da dies auch bei einem automatischen Auslesen vorkommen kann, bietet der Prototyp die Möglichkeit, auf solche nicht vorhandenen Daten zielgerichtet zu reagieren (vgl. Kapitel 6.5.2).

Für eine leichtere Lesbarkeit des Ergebnisses wurde abschließend jedes Element mit einem Kurznamen codiert, der aus zwei Buchstaben für die Materialart und einer zweistelligen Zahl zur Durchnumerierung besteht.

8.3 Eingabe

Die verschiedenen Kriterien, die bei der Materialwahl berücksichtigt werden sollen, wurden bereits in einer hierarchisch aufgebauten Baumstruktur angeordnet (vgl. Kapitel 5.2). Die Eingabemaske des Prototyps bildet diese Struktur entsprechend ab, so dass die Ebene der jeweiligen Eingabe im Zusammenhang zu allen anderen Kriterien gesehen werden kann. Für jedes Kriterium lassen sich der gewünschte Wert und das Gewicht eingeben. Sowohl der ermittelte Gewichtungsfaktor der Hierarchiestufe als auch der Faktor innerhalb der Gesamt betrachtung werden angezeigt. Weiterhin lässt sich eingeben, welcher Wert für die Unähnlichkeit angesetzt werden soll, wenn in einem Kriterium die vorliegenden Materialdaten lückenhaft sind (vgl. Kapitel 6.5.2).

Eingabe der gewünschten Materialeigenschaften

Abb. 8.4: Farbeingabe

Die Eingabe der gewünschten Farbwerte dagegen ist deutlich aufwendiger gestaltet: Es ist möglich, bis zu vier verschiedene Farben im Wahrnehmung und dem Sprachgebrauch nahekommenden HSV-Farbsystem einzugeben (vgl. Kapitel 6.2.2). Dabei können den Farbwerten auch unterschiedliche Anteile (also auch ein Anteil von 0 bei gewünschter Einfarbigkeit) zugewiesen werden. Auf diese Weise ist es möglich, bei Bedarf auch nach mehrfarbigen oder gestuftern Materialien zu suchen und dennoch z.B. eine vorwiegende Farbe festzulegen.

Um dem Nutzer ein visuelles Feedback zu geben, werden über ein einfaches Script die eingegebenen Farbwerte in ihren Mengenanteilen als gestapeltes Balkendiagramm dargestellt. Dies geschieht um auch eine Einzelbetrachtung der Kriterien zu ermöglichen - getrennt als resultierende Farbe und als reiner Bunton (100% Sättigung und 100% Helligkeit) sowie in neutralen Graustufen als Helligkeitswert und als Buntheitswert.

Für die weitere Berechnung werden die vier Farben nach dem gleichen Algorithmus wie die Werte der zur Auswahl stehenden Materialdaten in vier gleichwertige Farbpakete im L*a*b*-Farbraum umgerechnet (siehe Anhang B.1) und als Resultierende zur Überprüfung angezeigt.

Eingabe der Gewichtung

Die Eingabe der Kriteriengewichtung erfolgt über eine fünfteilige Skala („absolut unwichtig“ = 0% - „etwas wichtig“ = 25% - „wichtig“ = 50% - „sehr wichtig“ = 75% - „absolut wichtig“ = 100%). Für die Ermittlung der relativen Stufengewichte (also innerhalb der gleichen Kriterienstufe) werden diese mittels Division durch die Summe aller eingegebenen Einzelgewichtungen normalisiert, so dass ihre Gesamtsumme 1 ergibt. Eine Ausnahme besteht, wenn alle Kriterien „absolut unwichtig“ sind, dann ist die Summe 0. Der bei der Berechnung der Gesamtnählichkeit angesetzte Gewichtungsfaktor der Einzelkriterien ergibt sich anschließend durch Multiplikation dieser relativen Stufengewichte mit den relativen Stufengewichten aller höheren Ebenen (vgl. Kapitel 6.3.4).

Die Eingabe der Gewichtungen wird auf inhaltliche Unstimmigkeiten untersucht. So kann es z.B. sein, dass ein Oberkriterium als „absolut unwichtig“, ein dazugehöriges Unterkriterium hingegen als „wichtig“ eingestellt wurde. Es ist ja durchaus gewollt, dass es möglich ist, mit nur einem Schritt beim Oberkriterium die Gewichtung mehrerer Unterkriterien zu verändern. Durch Multiplikation mit der Wichtigkeit 0 werden dann auch alle Unterkriterien „absolut unwichtig“.

Andersherum kann der Nutzer aber auch versuchen, einem Oberkriterium eine gewisse Wichtigkeit zu geben, selbst wenn alle Unterkriterien „absolut unwichtig“ sein sollen. Obwohl auch dieser Fall mathematisch durch erneute Normalisierung aller ermittelten Ein-
zelgewichte (diese summieren sich zu einem Wert kleiner als 1) zu lösen ist, macht eine solche Eingabe inhaltlich wenig Sinn. Wenn ein Oberkriterium eine gewisse Wichtigkeit erlangen soll, dann sollte auch spezifiziert werden können, welche der Unterkriterien gemeint sind.

Inhaltliche Unstimmigkeiten in beiden Richtungen werden daher - auch wenn sie mathematisch gelöst werden - als Hinweis in der Eingabemaske farblich hervorgehoben.

Bei den Kriterien, die keine weiteren Unterkriterien aufweisen und somit sinnvoll als KO-Kriterium gelten können (außer den Farbwer-
ten, da hier die möglichen Werte in zu feinen Abstufungen vorlie-
gen), ist die Auswahlskala um diesen Punkt erweitert. Wird nun eines der Kriterien als absolutes KO-Kriterium festgesetzt, dann wird dies gesondert festgehalten und das relative Gewicht auf 0 gesetzt, um die Summenbildung der anderen Kriterien nicht zu beeinflussen (vgl. Kapitel 6.3.1).

Für jedes Kriterium werden zur Kontrolle das Stufengewicht und das durch Multiplikation der Werte aller Hierarchiestufen ermittelte Gesamtgewicht angezeigt. Bei Kriterien auf der untersten Stufe wird zudem das (bei inhaltlich unstimmen Eingaben vom multiplizierten Gewicht abweichende) normalisierte Gesamtgewicht angegeben, welches dann auch in die weiteren Berechnungen einfließt.

8.4 Berechnung

Die Berechnung der Unähnlichkeiten der Materialien in Bezug auf das Idealmaterial laufen im Rahmen der normalen Tabellenkalkulation simultan zu jeder Änderung in der Eingabe. Der Zeitaufwand für die Durchführung der Berechnungen ist noch relativ hoch, da eine Vielzahl von Zwischenwerten ermittelt werden muss und die Algorithmen nicht auf Laufzeitverkürzung optimiert wurden.

Der Ablauf der Berechnung bei den Einzelwerten

In einem ersten Schritt werden alle Materialien in Bezug auf das Ideal- bzw. das gewählte Referenzmaterial bewertet. Dazu findet die Berechnung der Unähnlichkeit zunächst in jedem Einzelkriterium statt (vgl. Kapitel 6.4). Sie gestaltet sich, da vorwie-

Berücksichtigung der KO-Kriterien
Alle derart ermittelten Einzelwerte werden quadriert und mit dem Gewichtungsfaktor des jeweiligen Kriteriums multipliziert, um sie anschließend zur Gesamtunähnlichkeit aufsummieren zu können (vgl. Kapitel 6.5). Zugleich wird aber auch überprüft, ob eine der betrachteten Eigenschaften als KO-Kriterium festgesetzt wurde. Wenn ja, wird bei Nichterfüllung eines geforderten Kriteriums der Wert der Gesamtunähnlichkeit stattdessen direkt auf 1 (also „maximal unähnlich“) gesetzt. Das Material fällt dann aufgrund der schlechtesten möglichen Bewertungszahl aus der weiteren Betrachtung der am besten bewerteten Materialien heraus.

Paarweiser Vergleich von Materialien

Die Berechnungen der Unähnlichkeiten untereinander beziehen sich allerdings nicht mehr auf den insgesamt möglichen Wertebereich innerhalb des Kriteriums, sondern nur noch auf den durch diese 30 Materialien abgedeckten Bereich. Es kann also sein, dass alle Materialien in einem Einzelkriterium identisch sind (z.B. „opak“), die Unähnlichkeit aller zueinander also 0 ist. Diese Eigenschaft wirkt sich dann nicht weiter auf die Ermittlung der Gesamtunähnlichkeiten aus, das Unterscheidungskriterium wird für die räumliche Anordnung irrelevant (vgl. Kapitel 7.1.4). Andersherum können kleine
Unterschiede innerhalb eines Kriteriums aber auch eine deutlich höhere relative Relevanz als bei der ursprünglichen Bewertung aller Materialien erlangen. Insbesondere bei dem Einfluss der Farbwerte ist dies zu betrachten, da das theoretisch mögliche Farbspektrum durch kaum ein Material ausgeschöpft werden dürfte.

Multidimensional Scaling

Die resultierenden Werte der paarweise ermittelten Gesamtunähnlichkeiten werden abschließend in einer Unähnlichkeitsmatrix zusammengestellt, die die eigentliche Grundlage bietet für die weitere Berechnung der räumlichen Anordnung im Rahmen des Multidimensional Scalings.

Diese Ergebnismatrix wird einerseits - mit einigen für die weitere Verarbeitung notwendigen Schlüsselwörtern versehen - als reines Textfile aus der Tabelle exportiert und dann als Input in Permap genutzt. Die eigentliche MDS-Berechnung läuft anschließend extern in Permap, sie kann dort modifiziert oder ausgehend von einer anderen Startkonstellation wiederholt durchgeführt werden.

8.5 Ausgabe

Die beiden zur Ausgabe benutzten Programme Permap und XLSTAT-3DPlot unterscheiden sich vor allem in der Art und Qualität der Darstellung, aber auch in den angebotenen Analysemöglichkeiten. Permap ist allein für die Durchführung von Multidimensional Scaling ausgelegt, d.h. die Berechnung der räumlichen Anordnung erfolgt direkt im Programm und die Analysewerkzeuge sind speziell auf MDS ausgerichtet. Allerdings ist die grafische Ausgabe sehr einfach gehalten. XLSTAT-3DPlot dagegen ist eine Software speziell zur Visualisierung von beliebigen Daten, die z.B. aus einer Tabelle eingelesen werden können. In welcher Form diese Daten letztlich dargestellt werden, lässt sich sehr individuell festlegen. Dafür sind die Analysemöglichkeiten eher begrenzt.
Zur Überprüfung der vorgeschlagenen Vorgehensweise bei der Materialwahl lohnt es daher zumeist, beide Ausgabemöglichkeiten in die Betrachtung mit einzubeziehen.

Visualisierung in Permap

Neben einer Unterstützung der benannten statischen Analyseverfahren (vgl. Kapitel 7.2) bietet Permap durch die interne Berechnung die Möglichkeit, einzelne Materialien temporär aus der Berechnung herauszunehmen (vgl. Kapitel 7.3.1). Das Hinzufügen einzelner zusätzlicher Materialien hingegen müsste bereits innerhalb der Tabellenkalkulation geschehen, da ja dort die Unähnlichkeitsmatrix berechnet wird.

Visualisierung in XLSTAT-3DPlot

Der zweite im Rahmen des Prototyps vorgesehene Weg ist, dass die räumlichen Koordinaten der darzustellenden Materialien durch XLSTAT bereits in der Tabellenkalkulation ermittelt werden. Diese Angaben werden anschließend mit den Daten zu den sonstigen Materialeigenschaften ergänzt und zur Darstellung an XLSTAT-3DPlot übergeben.

In der 2D-Darstellung kann dann dort die Lage der Elemente zueinander nicht mehr geändert werden, nur ein Zoomen und Verschieben der Ansicht ist möglich. Die 3D-Ansicht bietet zudem die Möglichkeit, das gesamte Feld für eine bessere Lesbarkeit aus verschiedenen Perspektiven zu betrachten. Der Ursprung der Anordnung wird jeweils mit einem Koordinatenkreuz gekennzeichnet. Die einzelnen Materialien werden nicht nur mit ihrem Namen, sondern auch durch kleine Texturen repräsentiert. Eine farbliche codierte

8.6 Beispiel

Als Abschluss der Beschreibung des Prototyps wird die Suche nach einem Material in einem konkreten Beispiel durchgespielt. In mehreren aufeinander aufbauenden Szenen wird dabei zum einen das Vorgehen eines fiktiven Nutzers nachvollzogen, zum anderen werden innerhalb der Szenen noch einmal die in der Arbeit vorgestellten Methoden und Problemfelder am konkreten Beispiel in den jeweiligen Auswirkungen verdeutlicht. Je nachdem, welches Programm die jeweilige Aussage besser unterstreicht, wird für die Erläuterung die Ausgabe aus XLSTAT-3DPlot oder die aus Permap herangezogen. Ausgangspunkt ist die auf 0 zurückgesetzte Suchmaske (alle Kriterien „unwichtig“).

Szene 1: Suche allein nach gewünschter Farbe

In einem ersten Schritt will der Nutzer nur nach Materialien suchen, die einer von ihm gewünschten Farbe entsprechen. Den genauen Farbton hat er vielleicht bei der Ausarbeitung eines Farbkonzepts in einer anderen Software ermittelt.

Er trifft also für das Kriterium Farbe die Einstellung „absolut wichtig“. Dabei wird ihm angezeigt, dass er der Farbigkeit und den optischen Eigenschaften noch keine Wichtigkeit zugewiesen hat. Für die Farbigkeit wählt er daher ebenfalls „absolut wichtig“, für die Optik dagegen nur „sehr wichtig“, da er davon ausgeht, im weiteren Verlauf des Auswahlprozesses noch weitere, ebenfalls wichtige Kriterien ins Spiel zu bringen. Das ermittelte Gewicht für Farbe ist 100%. Zunächst sucht er nach mittelblauen Materialien und stellt als einzige Farbe HSV 240-40-50 ein.

Im Ergebnis bekommt er 30 verschiedene Materialien (inkl. seines Idealmaterials) angezeigt, die farblich ungefähr seiner Suche entsprechen. Das Spektrum reicht allerdings – da nicht so viele blaue Materialien in der Datenbank sind – von fast violett bis zu sehr dunkelblau. Direkt auf dem Idealmaterial werden zwei Metalloberflächen angeordnet, bei denen davon ausgegangen wird, dass sie in allen Farben lackiert werden können. Der Farbabstand ist daher 0.
Relative Lage
Führt der Nutzer bei gleicher Eingabekonstellation eine Neuberechnung durch, wird er üblicherweise ein anders aussehendes Ergebnis bekommen.

Fokus und Kontext

Szene 2: Veränderung der gewünschten Farbe
Da dem Nutzer die Materialien farblich immer noch zu kräftig erscheinen, sucht er in einem weiteren Anlauf Produkte in deutlich helleren, weniger gesättigten Farben. Er gibt ein eher wärmeres HSV 40-50-95 und ein fast schon gräulich ausfallendes HSV 50-30-90 in gleichen Teilen vor.
Neuanordnung versus Neuberechnung
An dieser Stelle entschließt sich der Nutzer, die vorgeschlagenen 30 Materialien zusätzlich danach zu analysieren, ob ihre Textur gerichtet ist oder nicht.
Er verändert daher die Kriteriengewichte von Gerichtetheit und von Textur auf „wichtig“. Dadurch wird die Gerichtetheit mit 33%, die Farbe nur noch mit 67% bei der Berechnung der Gesamtunähnlichkeiten angesetzt.
Nachdem er als Wert „gerichtet“ eingestellt hat, führt er eine Neuanordnung der bereits angezeigten Elemente durch. Diese sortieren sich dabei in deutlich gerichtete Materialien wie längs verlegte Holzdielen (grüne Linien), mittel gerichtete wie z.B. Quadratfliesen (gelbe Linien) und absolut ungerichtete Terrazzo- oder Linoleumböden (rote Linien).
Hätte der Nutzer bei gleichen Einstellungen stattdessen eine vollständige Neuberechnung aller Materialien durchgeführt, so wären die ungerichteten, aber farblich passenden Materialien ungünstiger bewertet worden als z.B. gerichtete Holzdielenböden, die jedoch farblich noch etwas stärker vom Idealmaterial abweichen als die ursprünglich angezeigten.

Szene 3: Einbeziehung der haptischen Eigenschaften
Der nächste Schritt des Nutzers besteht darin, statt der Gerichtetheit das haptische Empfinden der Oberflächentemperatur in der Auswahl mit zu berücksichtigen. Da ihm dies jedoch deutlich weniger wichtig ist als der gesuchte Farbton, stellt er bei Haptik nur „etwas wichtig“ ein. Da die drei Unterkriterien noch alle auf „absolut unwichtig“ stehen, wird dies angezeigt, so dass er nicht vergisst, auch der Temperatur eine gewisse Wichtigkeit zuzuweisen. Das ermittelte Kriteriengewicht liegt dann bei 25%, das der Farbe bei 75%.
Das Ergebnis zeigt diverse „kalte“ Materialien wie Stein, Terrazzo oder Keramikfliesen, so dass dieses Unterscheidungskriterium im paarweisen Vergleich keine Rolle mehr spielt. Stattdessen richtet sich die Anordnung allein nach der Farbe.

Anders sieht es aus, wenn bei gleicher Gewichtung nach eher warmen Materialien gesucht wird. Da in der Datenbank allein die 20 Teppichböden die Eigenschaft „warm“ erfüllen und diese Teppiche zudem auch noch farblich sehr weit auseinander liegen, bilden sich im Ergebnis zwei Gruppen von prinzipiell möglichen Materialien heraus: die warmen, aber farblich weniger gut passenden Teppichböden sowie die farblich gut passenden, allerdings nur als „mittel“-warm festgelegten Holz- oder Linoleumböden.
Wichtig ist auch hier, auf die in den Verbindungslinien farblich codierte Gesamtunähnlichkeit zum Idealmaterial zu achten: Einige Teppichbödenähneln - obwohl räumlich weiter entfernt - inhaltlich
dem Idealmaterial mehr als die Holzböden. MDS bildet eher den Gesamtzusammenhang als eine Einzelinformation ab (vgl. Kapitel 7.2.2)

Darstellung ohne MDS
Für die weitere Suche ist das Erkennen solcher Gesamtzusammenhänge aber durchaus wichtig. Durch sie werden z.B. deutlich zwei Stoßrichtungen für die weitere Suche aufgezeigt: entweder man konzentriert die Suche auf Teppichböden, dann sollte das Augenmerk auf der Farbigkeit liegen. Oder aber man schaut sich speziell in der Gruppe der Hölzer und Linoleumböden um, da diese offenbar hinsichtlich der gewünschten Farbe erfolgversprechendere Ergebnisse mit sich bringen.

Eine Darstellung des gleichen Rankingergebnisses ohne MDS (z.B. durch Visualisierung der jeweiligen Gesamtunähnlichkeit als Quaderhöhen in XLSTAT-3DPlot) gäbe dagegen keine Hinweise auf eine weitere Vorgehensweise.

Szene 4: Zusätzliche Einbeziehung der Materialart
Der Nutzer entscheidet sich, auch die Materialart als weiteres Kriterium in seiner Auswahl zu berücksichtigen. Zunächst konzentriert er sich auf die Teppichböden. Dazu weist er der Materialart „Teppich“ auch „etwas wichtig“ zu. Hierdurch reduziert sich das Gewicht der Farbe auf 60%, Temperatur und Materialart haben jeweils 20%.

In der Folge gliedern sich die vorgeschlagenen Materialien in drei Gruppen auf: Zum einen gibt es die große Gruppe der Teppichböden, die jedoch farblich recht unterschiedlich ausfallen (es gibt zu wenige gelblich-graue Teppiche in der Datenbank). Dennoch werden sie relativ gut bewertet (gelbe Linien), da sie zwei der drei Suchkriterien voll erfüllen.

Dann gruppieren sich sowohl die farblich passenden Hölzer als auch die gleichfarbigen Linoleumböden aufgrund ihrer jeweils gleichen Materialität zusammen.

Wird die Suche bei gleicher Gewichtung der Einzelkriterien auf Holz spezifiziert, ergibt sich im Prinzip ein ähnliches Ergebnis: Es bilden sich (weil es ebenfalls nur 20 Hölzer in der Datenbank gibt) wiederum drei Gruppen heraus: Zum einen die Teppiche, hier jedoch eher weniger, dafür die farblich stimmigeren, zum anderen die entsprechenden Linoleumböden, und als diesmal größte Gruppe die Hölzer, welche in sich erneut nach ihrer Farbigkeit sortiert sind. Auch hier gilt wieder, dass die Hölzer trotz ihrer räumlichen Entfernung zum Idealmaterial dessen Eigenschaften in der Gesamtsicht besser erfüllen.

Änderung der gewünschten Werte durch Feedback
Die genaue Untersuchung des Ergebnisses zeigt, dass in der Suche eigentlich noch ein Widerspruch steckt: Es wird gleichzeitig nach dem Material Holz gesucht, aber auch nach warmen Materialien.
Alle Hölzer sind jedoch mit „mittel“ gekennzeichnet. Diese Erkenntnis führt im Umkehrschluss beim Nutzer nun dazu, dass er - obwohl ihm die haptische Qualität Temperatur noch genauso wichtig ist wie zuvor - doch eher nach „mittel“-warmen Materialien weitersucht.

Im Ergebnis seiner Suche rücken die Holzoberflächen nun wesentlich deutlicher an sein Idealmaterial heran (grüne Verbindungslinien), die Ausdifferenzierung innerhalb der Gruppe der Hölzer wird klarer. Nebenher werden ihm aber weiterhin auch noch Materialalternativen dargestellt. Diese größere Streuung innerhalb der Materialgruppen kommt daher zustande, dass alle angezeigten Materialien nun zu den „mittel“-warmen gehören und sich somit nur noch die unterschiedliche Farbigkeit und die Materialart auswirken.

Darstellung der Clusterbildung

Da die Streuung der Elemente nun zugenommen hat, ist nicht mehr ganz eindeutig erkennbar, welche Materialien zu - inhaltlich zu interpretierenden - Gruppen zusammengefasst werden können. Die Tendenz zur Clusterbildung kann jedoch durch Waern-Links (vgl. Kapitel 7.2.2) visualisiert werden und gibt so einen Hinweis darauf, welche grundlegenden Alternativen bei der Lösung des Materialwahlprozesses denkbar sind. Durch eine schrittweise Anpassung der Grenze, bis zu der die Verbindungslinien gezeigt werden, lassen sich auch Untergruppen leicht identifizieren.

Szene 5: Zusätzliche Einbeziehung der Akustik

Im folgenden Schritt legt der Nutzer auch noch Wert darauf, dass das gewählte Material in der akustischen Wahrnehmung des Raums eher gedämpft wirkt. Er stellt dies daher unter Klarheit als Wert ein und gibt diesem Kriterium das Gewicht „etwas wichtig“, dem Oberkriterium ebenfalls. Dadurch reduziert sich die in die Berechnung einfließende relative Wichtigkeit der Farbe auf 50%, die der Materialart, der gefühlten Temperatur und der Klarheit machen jeweils 17% aus.

Die vorher gut bewerteten Materialien sind immer noch in der Nähe des Idealmaterials angeordnet, allerdings werden sie jetzt etwas schlechter bewertet. Zusätzlich kommen aber sowohl offensichtlich wenig dämpfende Materialien wie Terrazzoböden - in den gesuchten Farben - als auch gut dämpfende wie Teppichböden - diese allerdings in weniger passenden Farben - hinzu, beide jedoch nicht so gut bewertet in Bezug auf das Idealmaterial.

Der Einfluss des Vorgabewerts für nicht vorliegende Daten

Untersucht man die scheinbar widersprüchliche Konstellation genauer, kann man erkennen, dass keiner der Holzböden einen Wert für die Klarheit besitzt. Dadurch hat an dieser Stelle der vom Nutzer für solche Fälle eingestellte Wert, der mit dem individuellen Kriteriengewicht zum Ansatz gebracht wird, das Ergebnis entsprechend beeinflusst (vgl. Kapitel 6.5.2).
Durch den oben vorgegebenen Wert von 0,5 werden die Hölzer nun schlechter bewertet, so dass diejenigen Materialien, die in anderen Kriterien sehr gut bewertet sind (bei den Terrazzoböden z.B. in der Farbe), in der Gesamtsicht mit diesen konkurrieren können. Durch Änderung des Vorgabewerts auf 0,1 werden dagegen die Hölzer wieder insgesamt besser bewertet und so zusammen mit ebenfalls gedämpft klingenden Materialien wie Linoleum- oder Kunststoffböden angezeigt, diese liegen jedoch wegen der nicht erfüllten Materialart weiter entfernt.

Ausbildung von Hauptdimensionen
Wechselt man bei gleicher Konstellation zur 3D-MDS-Abbildung und dreht die gesamte räumliche Anordnung in geeigneter Weise, erkennt man deutlich die sich herausgebildeten Hauptdimensionen: Die Materialien ordnen sich hier in zwei Ebenen an, die sich - wenn man die Einzelelemente betrachtet - als „Holz“ und „Nicht-Holz“ interpretieren lassen. Offensichtlich ist dies also unter den eingestellten Gegebenheiten das relevanteste Entscheidungsmerkmal, die Unterschiede in den anderen, ebenfalls betrachteten Kriterien fallen dagegen nicht so sehr ins Gewicht.

Szene 6: Inspiration durch freies Browsen
An dieser Stelle beschließt der Nutzer, seine bisherige Suche vielleicht noch einmal grundsätzlich zu hinterfragen. Hierzu löst er sich bewusst von seinem Idealmaterial und browst schrittweise durch die angezeigten Materialien.

Entfernung von der ursprünglichen Suche
Durch einen weiteren Sprung ist nun mit HO11 ein deutlich rötlicheres Holz als Referenzmaterial ausgewählt worden. Das ursprüngliche Idealmaterial liegt bereits ganz am Rand des angezeigten Feldes. Zwischen diesem und dem Referenzmaterial finden sich die Materialien wieder, die sich bereits zuvor zwischen diesen befanden. Allerdings werden auf der anderen Seite mit mehreren rötlichen Linoleum- oder Kunststoffböden nun schon Materialien angezeigt, die zuvor nicht zur Auswahl gehörten.
Besonders deutlich wird die Abkehr von der ursprünglichen Suche, wenn der Nutzer im letzten Schritt zu LI02 springt und somit die Materialart des Referenzmaterials ändert. Im Ergebnis wird zwar immer noch das Material angezeigt, von dem aus der Sprung erfolgt ist (HO11), viel deutlicher drängen sich aber nun mehrere Linoleumböden in verschiedenen Farben in die Wahrnehmung. Das ursprünglich formulierter Idealmaterial wird gar nicht mehr angezeigt, die Unähnlichkeit zum jetzt anvisierten Referenzmaterial ist mittlerweile zu groß geworden.

Ein Material kann jedoch im Rahmen einer dynamischen Untersuchung manuell - trotz vielleicht schlechter Bewertung in Bezug auf das Referenzmaterial - in die MDS-Berechnung einbezogen werden (vgl. Kapitel 7.3.1) und so relative Bezüge zum Gesamtfeld aufzeigen. Der Prototyp sieht allerdings nur vor, das von den 30 Materialien am schlechtesten bewertete durch das Idealmaterial zu ersetzen. Alle anderen Materialien werden anschließend zwar immer noch in Bezug auf das Referenzmaterial bewertet, lassen sich jedoch zusätzlich auch in ihrer Lage zum Idealmaterial interpretieren.

Plausible Entscheidung für ein Material

Am Ende des gesamten Auswahlverfahrens steht die Entscheidung des Nutzers an. Da er durch das Browsen zu keiner völlig neuen Materialidee gekommen ist, kehrt der Nutzer zurück zur ursprünglichen Suche (eine History-Auswertung sieht der Prototyp zwar nicht vor, allerdings sind die letzten Einstellungen zum Idealmaterial noch vorhanden). Durch ein mehrstufiges Verfahren hatte er im letzten Schritt 30 Materialien herausfiltert, die vor allem einen hellbraun-gräulichen Farbton haben sollten, zusätzlich aber auch möglichst der Materialart „Holz“ angehören, sich „mittel“-warm anfühlen und gedämpft klingen.

Der Nutzer entscheidet sich letztlich für das Material HO05, da dieses von seinen Vorgaben und Wünschen in der Gesamtsicht nur um 3,5% abweicht. Er ist sich dessen bewusst, dass zu den akustischen Eigenschaften dieses Materials keine näheren Angaben vorliegen, doch selbst bei einem Wert von 0,5 für solche unbestimmte Kriterien zählte HO05 zu den sehr günstig bewerteten Alternativen. Er ist sich daher sicher, eine gute und vor allem plausible Wahl getroffen zu haben.
Schlussbetrachtung

»Auch die längste Reise beginnt mit dem ersten Schritt.«

Sprichwort

Der Titel dieser Arbeit lautet „Unterstützung der Materialwahl in der Architektur durch Plausibilität der Entscheidung“. Wie weit das in dieser Formulierung angestrebte Ziel durch das in der Arbeit vorgestellte Verfahren erfüllt werden kann, soll nun abschließend diskutiert werden.

Hierzu wird der Inhalt der Arbeit zunächst noch einmal kurz zusammengefasst, um sich die Ausgangsproblematik, die Argumentationslinie und den genauen Ablauf des Verfahrens erneut vor Augen zu führen (Kapitel 9.1). Im Laufe der Erarbeitung der hier vorgestellten Lösung ergaben sich einige Fragen und Probleme, auf die sich auch die zahlreichen Diskussionen mit fachlich mit der Problematik vertrauten Kollegen wiederholt verengten. Da diese Punkte aber zentral sind für das Verständnis und vor allem die Akzeptanz des vorgeschlagenen Weges, wird auf sie noch einmal gesondert eingegangen (Kapitel 9.2). In Kenntnis der Beantwortung dieser „Kritikpunkte“ erfolgt anschließend die Beurteilung der Strategie hinsichtlich des vorgegebenen Ziels (Kapitel 9.3).

9.1 Zusammenfassung

Der Ausgangspunkt der Arbeit war die Feststellung, dass die sinnliche Wahrnehmung unserer gebauten Umwelt in besonderem Maße durch die Materialität ihrer Oberflächen bestimmt wird. Unzählige neue Produkte und die losgelöste Betrachtung der Oberfläche eröffnen ein nahezu unüberschaubares Angebot an Materialien. Diese müssen neben ihren sinnlichen Qualitäten aber auch vielfältige technische Aufgaben übernehmen und sollten zudem zahlreichen weiteren Anforderungen entsprechen. Die Entscheidung für ein Material wird somit zu einem sehr komplexen, durch eine Vielzahl von Kriterien beeinflussten Vorgang innerhalb der Planung eines Bauwerks.
Grundlage dieser Arbeit war die Annahme, dass solche mehrkriteriellen Entscheidungen prinzipiell durch Entscheidungsunterstützende Systeme abgestützt werden können.

Die Materialwahl
Im ersten Hauptteil wurde dann zunächst der Auswahlprozess im Hinblick auf den Zeitpunkt, die Wissensgrundlagen und auf mögliche Strategien beschrieben. Daraus leitete sich die Forderung an ein gewünschtes Unterstützungssystem ab, dieses solle ermöglichen, zu jedem Zeitpunkt und in unterschiedlicher Detailtiefe auf immer aktueller Wissensbasis nach verschiedenen Strategien bei der Entscheidungsfindung vorgehen zu können.

Anschließend wurden diverse digitale Systeme vorgestellt, die bereits heute im Zusammenhang mit der Materialwahl zum Einsatz kommen. Dies diente nicht nur zur Abgrenzung der Arbeit zu bereits vorhandenen Techniken, sondern vor allem als Referenz für die technische Machbarkeit eines am Ende ausgemalten integrierten Gesamtprozesses der Materialwahl. Es wurde herausgestellt, dass es innerhalb dieses denkbaren Prozesses vor allem an einer nachvollziehbaren Strategie zur Bewertung der Alternativen fehlt.

Die Entscheidungskriterien
Der zweite Hauptteil der Arbeit widmete sich den Kriterien, die in die Entscheidung für oder gegen ein Material einfließen. Diese wurden zunächst strukturell unterschieden nach ihrer Art und Relevanz. Dabei wurde herausgestellt, dass darüber hinaus eine weitere Kategorisierung der Materialien für die Zwecke dieser Arbeit nicht sinnvoll ist. Die Kriterien sollten stattdessen unabhängig voneinander betrachtet werden können.

Im Weiteren wurden die üblicherweise in eine Materialwahl einfließenden Kriterien konkret genannt. Da sich diese hierarchisch nicht auf einer Ebene befinden, wurden sie in einer Baumstruktur dargestellt. Am Ende stand die Definition des letztlich ausschlaggeben- den Kriteriums, nämlich dass das ausgewählte Material einem vom Planer formulierten Idealmaterial unter Berücksichtigung einer individuellen Kriteriengewichtung in der Gesamtsicht am wenigsten unähnlich sein soll.

Das Verfahren
Im dritten Hauptteil wurde ein Verfahren vorgestellt, wie Materialien in Bezug auf das Idealmaterial bewertet werden können. Hierzu wurde gezeigt, wie die Eigenschaften von Produkten in Daten abgebildet werden können und wie der Nutzer darin unterstützt werden kann, sein Idealmaterial und seine individuelle Kriteriengewichtung zu formulieren. Aus den vorliegenden Daten konnte so die Unähnlichkeit in jedem Einzelkriterium und in der Gesamtsicht errechnet werden.
Da diese Bewertung allein allerdings kein stabiles und eindeutiges Ergebnis hervorbrachte (es gibt nicht „das optimale Material“), wurde für eine weitergehende statische und dynamische Untersuchung der bestbewerteten Materialien mit Multidimensional Scaling ein bekanntes Verfahren der Informationsvisualisierung angewendet. Die vorgestellte Bewertungsstrategie erlaubte in ihrer Zweistufigkeit das Verfolgen der vier möglichen Auswahlstrategien Analyse, Synthese, Ähnlichkeit und Inspiration.

Prototyp

9.2 Diskussion besonderer Kritikpunkte

An dieser Stelle sollen diese Fragen daher noch einmal explizit beantwortet und Gründe, die für die vorgestellte Strategie sprechen, herausgestellt werden.

Würde ein Architekt mit einem solchen System auswählen?
Ein häufig von Diskussionspartnern vorgebrachter Kritikpunkt war, dass sich sicher kein Architekt auf ein solches Verfahren einlassen würde, stattdessen doch eigentlich schon im Vorhinein genau wissen, welches Material er einsetzen wolle.

Selbstverständlich gibt es viele gute Architekten, die eine so große Erfahrung und ein breites Know-how auf dem Gebiet der Materialien haben, dass sie auch bisher zu überzeugenden Lösungen gekommen sind. Um auf dem Laufenden zu bleiben, müssen sie allerdings viel Energie für die Pflege ihres Wissens aufbringen. Stehen sie vor der Aufgabe, ihre Ideen und Planungen konkret umzusetzen, müssen auch sie in irgendeiner Form nach geeigneten Produkten aus der Baustoffindustrie suchen. Vertrauen sie dabei nur auf Altbewahrtes, so verschließen sie sich einer Reihe von vielleicht ganz anderen, innovativen Lösungen. Ein solchermaßen voreingenom-
mener Nutzer wird daher durch seine eingeschränkte Sicht nicht immer unbedingt die „bestmögliche“ Materialwahl treffen.

Auch ein bereits auf ein Material festgelegter Architekt könnte zudem mit dem vorgeschlagenen Werkzeug nach geeigneten Produkten bzw. ähnlichen Alternativprodukten suchen, die weiteren Vorteile einer integrierten Planung (z.B. Datenübergabe für Visualisierungen oder Simulationen) nutzen und seine bereits getroffene Entscheidung mit plausiblen Argumenten unterfüttern.

Komplexität und Aufwand

In eine ähnliche Richtung geht die Befürchtung, dass der Aufwand für die Eingabe aller Parameter zu groß sei, das System insgesamt zu komplex und dadurch vielleicht auch zu ungenau oder fehleranfällig. Dies würde die praktische Nutzung behindern.

Es ist klar, dass die Eingabe im Vergleich zum Prototyp durch ein geeignetes Interface design (z.B. Ausblenden nicht benötigter Hierarchieebenen) übersichtlicher gestaltet sowie durch die Möglichkeit von Voreinstellungen (z.B. für nutzerspezifische Gewichtungskonstellationen) in der Handhabung vereinfacht werden kann. Im Rahmen eines integrierten Gesamtprozesses könnten viele Angaben auch direkt aus der CAAD-Planung übernommen werden. Der Prototyp in seiner beschriebenen Form dient also zunächst nur als prinzipieller Nachweis der Machbarkeit.

Das vorgestellte Verfahren bildet zudem in seiner Komplexität im Grunde nur das auch sonst vom Architekten zu bewältigende Auswahlverfahren ab: Auch bei einer manuellen Auswahl muss sich dieser darüber klar werden, welche Eigenschaften ein ideales Material mitbringen soll und wie wichtig ihm bestimmte Kriterien sind. Der Unterschied ist allerdings, dass dies im Kopf des Nutzers sicherlich schneller abläuft, dafür aber auch unschärfer und für Dritte weniger nachvollziehbar.

Objektivität der Kriterienfestlegung und -unterteilung

Weiter stellt sich immer wieder die Frage, ob die in der Arbeit vorgeschlagenen Kriterien denn „wirklich“ die sind, die bei der Materialwahl entscheidend sind, und ob darüber hinaus die gewählten Unterteilungen bei den jeweiligen Kriterien ausreichend sind. Diese Frage lässt sich allerdings kaum „objektiv“ beantworten oder gar beweisen.

Wie bereits bemerkt, beruht die Zusammenstellung der Einzelkriterien in dieser Arbeit auf einer nicht näher ausgeführten Querschnittsbetrachtung von Quellen zum Thema Material in der Architektur (Bücher, Zeitschriften, Webseiten sowie eine vor Beginn der Bearbeitung durchgeführte Umfrage bei Architekten und Materialagenturen). Die Kriterien bilden somit ein in Fachkreisen üblicherweise benutztes und somit schon - im Sinne von geteilter Subjektivität - relativ objektives Spektrum ab. Ergänzungen im Detail sind
durchaus denkbar, sie würden das weitere Vorgehen und die Strategie als Ganzes jedoch nur wenig verändern.

Etwas anders gelagert ist das Problem der Unterteilung der möglichen Wertebereiche: hier war ein Kompromiss zu finden zwischen der notwendigen Genauigkeit (die zudem auch vom Menschen verstanden werden muss) und der Breite der vorhandenen Daten. Auch hier wurde für die Festlegung teilweise wieder auf die Untergliederungen anderer Quellen zurückgegriffen. In den oftmals vielleicht verkürzt wirkenden Angaben zeigt sich dadurch auch ein wenig die Unschärfe, die einer manuellen oder auf bestehende Systeme zurückgreifende Auswahl ebenso innewohnt. Im frühen Planungsstadium interessieren exakte Werte noch nicht so sehr. Im Weiteren sind aber prinzipiell auch detailliertere Angaben denkbar und im Rahmen der Berechnung wie beschrieben verwendbar. Dies würde den Einsatzbereich des Werkzeugs deutlich nach hinten verlagern.

Datenbasis

Die Sammlung von Daten ist derzeit sowohl noch ein technisches Problem (kein automatisches Auslesen von Daten aufgrund uneinheitlicher Datenformate), als auch eine Frage der fehlenden neutralen und unabhängigen Beschreibung von Produkten. Es gibt zwar Bestrebungen, Standards für die Produktklassifikation in der Baubranche einzuführen, die Art der dort verwalteten Daten orientiert sich jedoch eher an den Erfordernissen des E-Business als an den hier beschriebenen gestalterisch notwendigen Kriterien [E-class]. Einfach strukturierte, aber umfassende Produktbeschreibungen sind auf kaum einer Herstellerwebseite zu finden gewesen, was auch bei der manuellen Materialwahl ein Problem darstellt.

Ergebnisqualität
Zusammenfassend stellt sich die Frage, ob durch das vorgestellte Vorgehen überhaupt ein qualitativ hochwertiges Ergebnis erzielt werden kann.

Die Kriterien und ihre Unterteilung wurden jedoch hinlänglich fachlich begründet. Aufgrund der Prämissen, dass zunächst einmal jedes Kriterium gleichberechtigt die Entscheidung beeinflussen kann, wurden alle ermittelten Einzelunähnlichkeiten in den gleichen Wertebereich zwischen 0 und 1 normalisiert. Unter der Berücksichtigung der individuellen Gewichtung ergab sich daraus die Möglichkeit, auch inhaltlich völlig unterschiedliche Kriterien miteinander in Beziehung zu setzen. Die Bewertung eines Materials in Bezug auf das Idealmaterial ist in dieser Weise nachvollziehbar und beruht auf fachlich getroffenen Festlegungen. Es kann also davon ausgegangen werden, dass das Ergebnis insgesamt sinnvoll und plausibel ausfällt.

Selbst wenn nicht der skizzierte Idealzustand eines integrierten Gesamtprozesses zugrunde gelegt wird, ist einer der Vorteile gegenüber der manuellen und insbesondere der bisherigen digital gestützten Arbeitsweise, dass in der Beurteilung der Alternativen erstmals eine Möglichkeit vorgesehen ist, inhaltlich sehr verschiedene Kriterien individuell gewichtet gegeneinander aufzurechnen und so zu einem umfassenden Gesamtergebnis zu kommen. Die anschließende räumliche Anordnung mehrerer nahezu gleich gut bewerteter Materialien kann darüber hinaus wichtige Hinweise über das eigene Suchverhalten geben. Die Suche selbst ist nicht nur auf eine Strategie festgelegt.

9.3 Fazit

Mit der vorgestellten Vorgehensweise ist ein prinzipieller Weg aufgezeigt worden, wie die Materialwahl in der Architektur erleichtert werden kann. Zunächst wurde dazu eine Gesamtstrategie zur Einbindung der Materialentscheidung in den sonstigen Planungsprozess skizziert, anschließend wurde schwerpunktmäßig vertieft, wie auf Grundlage einer solchen aus vielen Quellen zusammengetragenen Datenbasis die eigentliche Entscheidung für ein konkretes
Material durch eine plausible Bewertungsstrategie sowie durch eine geeignete Art der Informationsvisualisierung unterstützt werden kann.

9.4 Ausblick

Mit der Arbeit wurde ein genereller Weg, wie die derzeitige Planungspraxis - speziell hinsichtlich der Materialwahl - verbessert werden kann, beschrieben und in Form eines im Umfang und in der Handhabung reduzierten Softwareprototyps als Nachweis der Machbarkeit umgesetzt.

Nicht nur im Falle einer konkreten Umsetzung des Gesamtprozesses, sondern auch in Bezug auf eine mögliche Erweiterung und Verallgemeinerung der verwendeten Methoden sind allerdings noch viele Fragen unbeantwortet. Sie bieten Raum für vertiefende, ergänzende und ähnlich gelagerte Forschungsarbeiten.

Softwaretechnische Umsetzung

Der Prototyp zeigt nur im Prinzip die Umsetzbarkeit der beschriebenen Methoden anhand eines Teils der beschriebenen Kriterien und auf Basis von rund 100 Materialien. Für die Unterstützung der Entscheidungsfindung in Realität müssten sowohl die sonstigen Kriterien abgebildet werden als auch die Datenbasis durch den automatisierten Zugriff auf reale Produktdaten verbreitert werden.

Während ersteres nur eine Frage der praktischen Umsetzung ist (Programmierung eines webbasierten Werkzeugs, geeignete Interfacegestaltung für einen komfortablen Umgang mit einer Vielzahl von Kriterien, Optimierung der Berechnungsalgorithmen, Anbindung an CAAD etc.), ist die Zielvorstellung eines automatisierten Datenzugriffs vielleicht auch in nächster Zukunft kaum zu erreichen. Neben den technischen Voraussetzungen wäre es nötig, dass ein Standard zur Beschreibung von Produkten nicht nur technische Merkmale, sondern auch die sinnlich-ästhetischen Kriterien abzubilden vermag. Im Rahmen eines Gesamtprozesses sollten zudem angehängte Daten weitergenutzt werden (Simulationen, E-
Schlussbetrachtung

Commerce). Auch hierfür ist noch ein einheitlicher Standard zu definieren und einfach anzuwendende technische Lösungen zu entwickeln.

Erweiterung

Das Verfahren in der beschriebenen Form beruht noch auf einigen Einschränkungen, die aus Gründen der Verallgemeinerung und Objektivierbarkeit notwendig waren. Insbesondere betrifft dies die Detailliertheit der Daten und das Ausklammern wichtiger, jedoch subjektiver Einflusskriterien.

Für die einzelnen Kriterien wurden relativ grobe Unterteilungen vorgeschlagen, damit auch Materialien höchsten unterschiedlicher Art miteinander verglichen werden können. Durch die notwendige Reduzierung von vorher exakten Werten in grobe Klassen geht natürlich sehr viel Information verloren, die in einer Detailuntersuchung dann fehlt. Hier wäre ein zweistufiges Vorgehen denkbar, welches zunächst mit den größeren Daten arbeitet, um grundsätzliche Materialalternativen herauszuarbeiten, dann aber im Detailvergleich einzelner Produkte untereinander die exakt vorliegenden Werte berücksichtigt.

Verallgemeinerung der Methoden

Bei der Materialwahl handelt es sich um nur eine von vielen komplexen Entscheidungen innerhalb des gesamten Planungs- und Bauprozesses. In vielen anderen Bereichen der Planung (z.B. Grundrissorganisation) gibt es aufgrund der Komplexität des architektoni-
schen Entwerfens und der Vielzahl der darin einfließenden Krite-
rien ebenso wenig nur eine einzige, „optimale“ Lösung. Wenn auch
hier die Kriterien eindeutig formuliert und mit konkreten Werten
hinterlegt werden können, lassen sich die Verfahren der Bewertung
(Gewichtung, Berechnung im Einzelkriterium, Zusammenfassung zu
einem Gesamtwert) und die anschließende räumliche Darstellung
der Ergebnisse mittels Multidimensional Scaling auch auf solche
Planungsentcheidungen übertragen.

Resümee
Der Lehrstuhl Informatik in der Architektur an der Bauhaus-
Universität Weimar, an dem ich diese Arbeit schreiben konnte,
agiert wie bereits erwähnt unter dem Leitspruch »Eine durchge-
hende und zugleich sinnvolle digital gestützte Planungstätigkeit
existiert noch nicht. Viele arbeiten daran. Wir auch.«

Ich verstehe das Gesamtbild eines umfassenden Planens als ein aus
vielen kleinen Steinchen zusammengesetztes Mosaik. Bei Mosaiken
ist es üblich, mit wenigen Steinchen zunächst die Konturen des Bil-
des zu legen. Das Füllen dieser Konturen, das Auslegen aller Flä-
chen bis hin zum fertigen Bild hingegen benötigt sehr viel mehr
Steinchen.
Ich bin davon überzeugt, mit dieser Arbeit einen weiteren Mosaik-
stein zu den mittlerweile recht gut erkennbaren Konturen einer
durchgehenden und digital gestützten Planungstätigkeit hinzuge-
fügt zu haben. Das Ziel der vollständig gefüllten Fläche, die durch-
gehende digital gestützte Planung, hingegen ist noch lange nicht
erreicht.

Das Arbeiten in diesem Themenfeld ist und bleibt also spannend.
Es lohnt weiterhin, die gesamte Forschung auf diesem Gebiet in der
vollen Breite des Spektrums im Auge zu behalten.
<table>
<thead>
<tr>
<th>A.1</th>
<th>Glossar</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>Analytic Hierarchy Process; Verfahren zur Unterstützung von Entscheidungsprozessen, bei dem das Problem in eine hierarchische Struktur aufgelöst wird, so dass eine Bewertung der Alternativen in einem mehrstufigen Prozess mittels einfacher Paarvergleiche erfolgen kann</td>
</tr>
<tr>
<td>Atom-Feed</td>
<td>Atom Syndication Format; XML-Format zum plattformunabhängigen Austausch von Informationen</td>
</tr>
<tr>
<td>Augmentierung</td>
<td>Hier: das Anreichern von realen Körpem mit (Material-) Informationen durch aufprojizierte Texturen</td>
</tr>
<tr>
<td>Browsen</td>
<td>Hier: das Springen (Durchblättern) von Information zu Information</td>
</tr>
<tr>
<td>CAAD-System</td>
<td>Computer Aided Architectural Design; speziell auf Architekturfunktionalitäten ausgelegte rechnergestützte Planungssysteme</td>
</tr>
<tr>
<td>Cie-Lab*</td>
<td>Von der Internationalen Beleuchtungskommission CIE (Commission Internationale de l'Éclairage) eingeführter geräteunabhängiger und theoretisch unbegrenzter Farbraum, der alle vom Menschen wahrnehmbaren Farben durch die drei Kanäle Helligkeit (Luminanz), Rot- oder Grünanteil (a) und Blau- oder Gelbanteil (b) codiert. Durch die visuelle Gleichabständigkeit entspricht die geometrische Distanz zweier Farben nahezu dem wahrgenommenen Farbabstand</td>
</tr>
<tr>
<td>CMYK-Farbmodell</td>
<td>Subtraktives Farbmodell, bei dem alle wahrnehmbaren Farben durch die Kanäle Cyan, Magenta, Yellow und Schwarz („Key“) codiert werden</td>
</tr>
<tr>
<td>CNS</td>
<td>Colour Naming System; Modell zur verbalen Beschreibung einer Farbe</td>
</tr>
<tr>
<td>DirectX</td>
<td>Programmierschnittstelle für multimedia-intensive Anwendungen</td>
</tr>
<tr>
<td>Entscheidung</td>
<td>Eine Entscheidung ist eine bewusste oder unbewusste Wahl zwischen Alternativen oder zwischen mehreren unterschiedlichen Varianten</td>
</tr>
<tr>
<td>Entscheidungsunterstützendes System</td>
<td>Die Gesamtheit aus möglichen Verfahren zur Bereitstellung von Informationen zur Unterstützung einer Entscheidung und ihrer konkreten Umsetzung in einer entsprechenden Software</td>
</tr>
<tr>
<td>EPIX</td>
<td>Dateiformat für Pixelbilder, bei dem sowohl die räumliche Tiefe einer Oberfläche als auch das zugewiesene Material in je einem zusätzlichen Bildkanal codiert sind</td>
</tr>
<tr>
<td>Force-Feedback</td>
<td>Technik, die in einem Eingabegerät eine Rückstellkraft generieren kann und somit dem Nutzer ein gewisses haptisches Erfahren eines virtuellen Gegenstands ermöglicht</td>
</tr>
<tr>
<td>HOAI</td>
<td>Honorarordnung für Architekten und Ingenieure</td>
</tr>
<tr>
<td>HSV-Farbmodell</td>
<td>Farbmodell, welches der menschlichen Art Farben wahrzunehmen ähnelt, da die wahrnehmbaren Farben durch die drei Kanäle Farbton („Hue“), Sättigung („Saturation“) und Helligkeit („Brightness“ bzw. „Value“) codiert werden</td>
</tr>
<tr>
<td>Industry Foundation Classes IFC</td>
<td>Von der International Alliance for Interoperability IAI definiert Standard zur digitalen Beschreibung von Gebäudemodellen</td>
</tr>
<tr>
<td>International Alliance for Interoperability IAI</td>
<td>Internationale und nichtstaatliche Organisation von Baufirmen, Planern und Softwarehäusern mit dem Ziel der Förderung einer einheitlichen digitalen Beschreibung von Bauwerken</td>
</tr>
<tr>
<td>Likert-Skala</td>
<td>Skala zur Messung von persönlicher Zustimmung bzw. Ablehnung zu vorgegebenen Aussagen, bei der sich die Ergebnisse rund um einen neutralen Mittelwert bewegen</td>
</tr>
<tr>
<td>Lotuseffekt</td>
<td>Selbstreinigungseffekt der Lotuspflanze aufgrund geringer Benetzung ihrer Oberfläche, der durch Beschichtung von Oberflächen mit Nanopartikeln synthetisch nachgemacht werden kann</td>
</tr>
<tr>
<td>Mapping</td>
<td>Hier: das Aufbringen von Texturen auf 3D-Oberflächen</td>
</tr>
<tr>
<td>Mehrkriterielle Entscheidung</td>
<td>Von mehreren Kriterien beeinflusste oder abhängige Entscheidung</td>
</tr>
<tr>
<td>Mock-up</td>
<td>Hier: der Entwurf einer Benutzeroberfläche, jedoch noch ohne Funktionalität</td>
</tr>
<tr>
<td>Multiattributive Entscheidung</td>
<td>Eine Entscheidung, die nur ein einziges, jedoch von mehreren Kriterien abhängiges Globalziel verfolgt</td>
</tr>
<tr>
<td>Multidimensional Scaling MDS</td>
<td>Technik, bei der mehrdimensionale Daten derart in einem niedrigerdimensionalen Raum abgebildet werden, dass die Distanzen in der Abbildung möglichst genau den Unähnlichkeiten der Daten untereinander entsprechen</td>
</tr>
<tr>
<td>Nanopartikel</td>
<td>Teilchen aus wenigen bis zu einigen tausend Atomen bzw. Molekülen mit einer Größe von bis zu 100 Nanometern, die auf Oberflächen aufgebracht werden können, um deren Eigenschaften gezielt zu verändern, z.B. für den Lotuseffekt</td>
</tr>
<tr>
<td>NCS</td>
<td>National Color System; Farbsystem, welches die wahrnehmbaren Farben über die Anteile der vier Grundfarben Gelb, Grün, Rot und Blau sowie die Sättigung und den Schwarzanteil benennt</td>
</tr>
<tr>
<td>Nominalskala</td>
<td>Ermöglicht als niedrigstes Skalenniveau nur die Unterscheidung nach Gleichheit oder Ungleichheit zweier Elemente</td>
</tr>
<tr>
<td>Normalisierung</td>
<td>Hier: die Skalierung eines beliebigen Wertebereichs in den vorgegebenen Bereich zwischen 0 und 1</td>
</tr>
<tr>
<td>OpenGL</td>
<td>Open Graphics Library; Beschreibung einer plattform- und programmiersprachenunabhängigen Schnittstelle zur Entwicklung von 3D-Computergrafik</td>
</tr>
<tr>
<td>Ordinalskala</td>
<td>Ermöglicht das Aufstellen einer Rangfolge zwischen mehreren Elementen, jedoch noch keine exakten quantitativen Aussagen über deren Ausprägungen</td>
</tr>
<tr>
<td>Plausibilität</td>
<td>Stimmigkeit, Nachvollziehbarkeit</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Podcast</td>
<td>Serie von Mediendateien (Audio oder Video), die z.B. per RSS-Feed automatisch über das Internet bezogen werden kann</td>
</tr>
<tr>
<td>Primitiva</td>
<td>Hier: die noch wahrnehmbaren Grundelemente einer visuellen Textur</td>
</tr>
<tr>
<td>Rapid Prototyping</td>
<td>Oberbegriff verschiedener Verfahren zur Herstellung von Prototypen auf Basis von 3D-CAD-Daten</td>
</tr>
<tr>
<td>Rendering</td>
<td>Hier: die Berechnung eines Pixelbilds auf Basis eines 3D-CAD-Modells</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification; Technik zum berührungslosen Auslesen von Informationen aus einem sich auch entfernt befindenden Transponders</td>
</tr>
<tr>
<td>RGB-Farbmodell</td>
<td>Additives Farbmodell, bei dem alle wahrnehmbaren Farben durch die Kanäle Rot, Grün und Blau codiert werden</td>
</tr>
<tr>
<td>RSS-Feed</td>
<td>Technik zum Abonnement von Webseiten-Inhalten, mit der ein Nutzer automatisch aktuelle Datensätze abrufen kann</td>
</tr>
<tr>
<td>Shader</td>
<td>Hard- oder Softwaremodul zur Berechnung des Aussehens einer 3D-Oberfläche in der Computergrafik</td>
</tr>
<tr>
<td>Skalenniveau</td>
<td>Bestimmt in der Statistik die Art der Ausprägung von Eigenschaften eines Elements und damit die Informationstiefe, welche durch die zugehörigen Daten abgebildet werden kann</td>
</tr>
<tr>
<td>Stress</td>
<td>Hier: Maß der Güte einer Abbildung bei Multidimensional Scaling</td>
</tr>
<tr>
<td>Textur</td>
<td>Hier: ein Pixelbild, das auf eine 3D-Oberfläche aufgebracht wird, so dass über die Farbwerte der einzelnen Pixel das Erscheinungsbild der Oberfläche gezielt verändern kann</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged Image File Format; verlustfreies Dateiformat zur Speicherung von Bilddaten</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language; Auszeichnungssprache zur Darstellung hierarchisch strukturierter Daten in Form von Textdateien</td>
</tr>
<tr>
<td>XML-Tag</td>
<td>Festes oder auch frei zu vergebendes Schlüsselwort in XML, durch das der folgende Inhalt automatisch interpretiert werden kann</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Abb.</th>
<th>Abbildungstitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Raumstempel in CAAD Autodesk® Revit® Architecture 2008, Screenshot</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Bauteil-Materialzuweisung in CAAD Nemetschek Allplan 2005, Screenshot</td>
<td>35</td>
</tr>
<tr>
<td>3.3</td>
<td>IFC MaterialProperties [IAI 2006]</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>DIN 1356-1 Tabelle 8 [DIN 1995]</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Schraffurmenü in CAAD Autodesk® ADT 2007, Screenshot</td>
<td>36</td>
</tr>
<tr>
<td>3.6</td>
<td>Zusätzliche Schraffurmuster [Hatchpatterns]</td>
<td>36</td>
</tr>
<tr>
<td>3.7</td>
<td>Präsentationszeichnung in Piranesi Informatix Software International [http://www.informatix.co.uk/iraniesi/gallery.shtml] Stand: 04.03.2008</td>
<td>37</td>
</tr>
<tr>
<td>3.9</td>
<td>Materialmanager Cinema 4D MAXON Cinema 4D R9.6, Screenshot</td>
<td>38</td>
</tr>
<tr>
<td>3.11</td>
<td>Unnatürlich wirkende Kachelung Eigene Grafik</td>
<td>39</td>
</tr>
<tr>
<td>3.12</td>
<td>Prozeduraler Texturgenerator Alienskin eye candy 5 textures, Screenshot</td>
<td>40</td>
</tr>
<tr>
<td>3.13</td>
<td>Externe Materialdefinition in DarkTree [Darksim], Screenshot</td>
<td>40</td>
</tr>
<tr>
<td>3.14</td>
<td>Beschreibung von Realtime-Shadern [Rendermonkey]</td>
<td>41</td>
</tr>
<tr>
<td>3.15</td>
<td>Vorgegebener Probekörper [C4D-Textures]</td>
<td>41</td>
</tr>
<tr>
<td>3.16</td>
<td>LightWorks Authoring-Tool [LightWorks]</td>
<td>43</td>
</tr>
<tr>
<td>3.17</td>
<td>Übernahme einer LWA-Datei in CAAD [Lightworks]</td>
<td>43</td>
</tr>
</tbody>
</table>
Abb. 3.20 easyBo Fotoservice
[ESIGN] 45

Abb. 3.21 3D-Project Showroom
Autodesk® Project Showroom
http://labs.autodesk.com/technologies/showroom/
Stand: 04.03.2008 45

Abb. 3.22 Augmentierte Bemusterung
[Tonn 2007, S.173] 46

Abb. 3.23 Augmentierung eines 3D-Modells
[Raskar 2001, S.1] 47

Abb. 3.24 Augmentiertes Modell mit Menüleiste
[Matković 2004] 47

Abb. 3.25 Augmentiertes Schaummodell
[Saakes 2006, S.146] 47

Abb. 3.26 Materialmuster mit Marker
[Kuhlmann 2007, S.54] 48

Abb. 3.27 SensAble Interface
SensAble technologies, Inc.
http://www.sensable.com/haptic-phantom-omni.htm
Stand: 04.03.2008 49

Abb. 3.28 Zehn Dimensionen des Tastens

Abb. 3.29 Digitaler Farbatlas
[Digitaler Farbatlas] 52

Abb. 3.30 Bewertung des Farbabstands
[Digitaler Farbatlas] 52

Abb. 3.31 Farbpalette in CorelDraw
CorelDraw 9, Screenshot 52

Abb. 3.32 Farbwähler in colored architecture
Colored Architecture, Screenshot 53

Abb. 3.33 Unregelmäßiger Holzboden
Bauwerk Parkett
http://www.bauwerk-parkett.com
Stand: 04.03.2008 53

Abb. 3.34 Abgestimmte Produkt-Kollektion
Deutsche Steinzeug Agrob-Buchtal Architekturerkeramik
http://www.agrob-buchtal.de/chroma/grafik/systemuebersicht_system_chroma.pdf
Stand: 04.03.2008 53

Abb. 3.35 Farbauswahl auf Herstellerwebseite
Armstrong DLW AG
http://www.armstrong.com/commfreu/de-de/colour-selector.html
Stand: 04.03.2008 54

Abb. 3.36 Granta Design CES Selector
Granta - Material Intelligence
http://www.grantadesign.com/DE/products.htm
Stand: 04.03.2008 54

Abb. 3.37 Granta Design Edu Pack
Granta - Material Intelligence
http://www.grantadesign.com/DE/products.htm
Stand: 04.03.2008 55

Abb. 3.38 Materialexplorer
http://www.materialexplorer.com/
Stand: 17.11.2005 55
Abb. 3.39 raumProbe
http://www.raumprobe.de/
Stand: 17.11.2005

Abb. 3.40 Materialworks
http://materialworks.com
Stand: 24.04.2007

Abb. 3.41 Materialatlas
http://www.materialatlas.com
Stand: 24.04.2007

Abb. 3.42 Architekten Informations System
http://www.ais-online.de/
Stand: 17.11.2005

Abb. 3.43 AIS Ausschreibungmanager
http://www.ais-online.de/
Stand: 17.11.2005

Abb. 3.44 Produktsuche auf Herstellerwebseiten
Armstrong DLW AG
http://www.armstrong.de/commflreu/de-de/line.asp?productLineId=998
Stand: 04.03.2008

Abb. 3.45 Vorwerk Teppichboden-Assistent
Vorwerk & Co. Teppichwerke GmbH & Co. KG
http://www.vorwerk-teppich.de/sc/vorwerk/home_de.html
Stand: 05.06.2007

Abb. 3.46 Mock-up material explorer
[Bezooyen 2002, S.1]

Abb. 3.47 nichtzielgerichtete Suche
[Bezooyen 2002, S.16]

Abb. 3.48 Acme Online Masonry Designer
Acme Online Masonry Designer 6.0, Screenshot
http://www.brick.com/
Stand: 04.03.2008

Abb. 3.49 Virtual Terrazzo
Peter Ebensperger KG
http://www.terrazzo.it/de/virtual.asp
Stand: 04.03.2008

Abb. 3.50 Vectogramm®
p&p gmbh
http://www.vectogramm.de/
Stand: 07.06.2007

Abb. 3.51 Ablauf eines integrierten Gesamtprozesses
Eigene Grafik

Abb. 4.1 Suchmöglichkeit im materialexplorer
http://www.materialexplorer.com/
Stand: 17.11.2005

Abb. 5.1 Kriterienbaum
Eigene Grafik

Abb. 6.1 Produktdatenblatt
Armstrong DLW AG
http://www.armstrong.com/commflreu/de-de/datasheet.asp?productLineId=2381
Stand 06.02.2008

Abb. 6.2 üblicher Farbwähler
[Photoshop], Screenshot
Abb. 6.3 Glanz
Eigene Grafik

Abb. 6.4 Transparenz
Eigene Grafik

Abb. 6.5 Form der Primitiva
[Miene 1997, S.7]

Abb. 6.6 Kontrast einer Textur
[Miene 1997, S.9]

Abb. 6.7 Gerichtetheit einer Textur
[Miene 1997, S.8]

Abb. 6.8 Grobheit einer Textur
[Miene 1997, S.8]

Abb. 6.9 Regelmäßigkeit einer Textur
[Miene 1997, S.8]

Abb. 6.10 HSB-Farbwähler
Adobe Illustrator CS3, Screenshot

Abb. 6.11 Visuelles Feedback über Grundkörper
MAXON Cinema 4D R9.6, Screenshot

Abb. 6.12 Punkteskala für Paarvergleiche bei AHP
[Eickeimeier 2002, S.390]

Abb. 6.13 Ungleichmäßiger L*a*b*-Farbraum
[Wikipedia 2007n]

Abb. 6.14 Optimale Farbdistanz
Mojsilovic 2002, S.1244

Abb. 7.1 MDS im psychometrischen Test
[Picard 2003, S.177]

Abb. 7.2 Stress versus Dimension
[XLSTAT], Screenshot

Abb. 7.3 Gestauchte Distanzen
[Permap], Screenshot

Abb. 7.4 Shepard-Diagramm
[XLSTAT], Screenshot

Abb. 7.5 Out-of-Plane-Tendenz
[Permap], Screenshot

Abb. 7.6 Pareto-Plot
[Permap], Screenshot

Abb. 7.7 2D-Darstellung MDS
[3DPlot], Screenshot

Abb. 7.8 3D-Darstellung MDS
[3DPlot], Screenshot

Abb. 7.9 Detailinformationen
[3DPlot], Screenshot

Abb. 7.10 Anzeige der Gesamtunähnlichkeit
[3DPlot], Screenshot

Abb. 7.11 Ermittlung von Hauptdimensionen
[Kruskal 1978, S.42]

Abb. 7.12 Waern-Links
[Permap], Screenshot

Abb. 7.13 MDS-Interactive
[CHI], Screenshot
Abb. 7.14 *What-If-Strategie*
Eigene Grafik 136

Abb. 7.15 *Browsen*
Eigene Grafik 137

Abb. 7.16 *Bewegungspfade bei dynamischen Änderungen*
[Cox 1994, S.80] 138

Abb. 8.1 *Datenbasis über 100 Materialien*
ACDSee32, Screenshot 142

Abb. 8.2 *Eingabemaske*
[Excel], Screenshot 143

Abb. 8.3 *Auswahlfeld*
[Excel], Screenshot 143

Abb. 8.4 *Farbeingabe*
[Excel], Screenshot 144

Abb. 8.5 *Eingabe der Gewichtung*
[Excel], Screenshot 144

Abb. 8.6 *Anzeige aller Gewichte*
[Excel], Screenshot 145

Abb. 8.7 *Unähnlichkeitsmatrix*
[Excel], Screenshot 147

Abb. 8.8 *Visualisierung MDS in Permap*
[Permap], Screenshot 148

Abb. 8.9 *Visualisierung MDS in XLSTAT-3DPlot*
[3DPlot], Screenshot 148

Abb. 8.10 *Szene 01 - 01*
[3DPlot], Screenshot 149

Abb. 8.11 *Szene 01 - 02*
[3DPlot], Screenshot 150

Abb. 8.12 *Szene 01 - 03*
[3DPlot], Screenshot 150

Abb. 8.13 *Szene 02 - 01*
[3DPlot], Screenshot 150

Abb. 8.14 *Szene 02 - 02*
[3DPlot], Screenshot 150

Abb. 8.15 *Szene 02 - 03*
[3DPlot], Screenshot 151

Abb. 8.16 *Szene 02 - 04*
[3DPlot], Screenshot 151

Abb. 8.17 *Szene 03 - 01*
[3DPlot], Screenshot 151

Abb. 8.18 *Szene 03 - 02*
[3DPlot], Screenshot 151

Abb. 8.19 *Szene 03 - 03*
[3DPlot], Screenshot 152

Abb. 8.20 *Szene 04 - 01*
[3DPlot], Screenshot 152

Abb. 8.21 *Szene 04 - 02*
[3DPlot], Screenshot 152

Abb. 8.22 *Szene 04 - 03*
[3DPlot], Screenshot 153
Abb. 8.23 Szene 04 - 04
[Permap], Screenshot 153

Abb. 8.24 Szene 05 - 01
[3DPlot], Screenshot 153

Abb. 8.25 Szene 05 - 02
[3DPlot], Screenshot 154

Abb. 8.26 Szene 05 - 03
[3DPlot], Screenshot 154

Abb. 8.27 Szene 05 - 04
[3DPlot], Screenshot 154

Abb. 8.28 Szene 05 - 05
[3DPlot], Screenshot 154

Abb. 8.29 Szene 05 - 06
[3DPlot], Screenshot 155

Abb. 8.30 Szene 05 - 07
[3DPlot], Screenshot 155

Abb. 8.31 Szene 05 - 08
[3DPlot], Screenshot 155
Formelverzeichnis

Formel 6.5	Unähnlichkeit bei nominalen Daten [Basalaj 2001, S.3]	112
Formel 6.8	Buntheit [DIN2006, S.6]	113
Formel 6.9	Buntonwinkel [DIN2006, S.6]	113
Formel 6.10	Farbabstand [DIN2006, S.7]	113
Formel 7.1	Standardisierter Stress [XLSTAT 2006]	124
Quellenverzeichnis

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Titel</th>
<th>Autor/-innen</th>
<th>Verlag und Ort/Verlagsort</th>
<th>Jährliche Zuweisung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Smart Materials and Technologies for the architecture and design professions</td>
<td>D. Michelle Addington; Daniel L. Schodek</td>
<td>Oxford [u.a.]: Architectural Press, 2005</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Thüringer Architektengesetz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>und vom 22.03.2005 (GVBl. 2005, S. 113)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Architektenkammer Thüringen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Appiani - technical ceramics for architecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appiani</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anbieter von Architekturkeramik, 3D-Bibliothek zum Download</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Arroway textures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anbieter von hochauflösenden Multilayer-Texturen für Visualisierungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://www.arroway.de/de/index.html</td>
<td></td>
<td></td>
<td>Stand: 27.02.2008</td>
</tr>
<tr>
<td>2002</td>
<td>Materials and design : the art and science of material selection in product design</td>
<td>Michael F. Ashby; Kara Johnson</td>
<td>Oxford [u.a.]: Butterworth-Heinemann, 2002</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>The i-drop® Web Publishing Framework</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Virtuelle Haptik</td>
<td>Ralf Bähren</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vordiplom an der Fachhochschule Köln, März 2001</td>
<td></td>
<td></td>
<td>Stand: 19.07.2006</td>
</tr>
<tr>
<td>2001</td>
<td>Proximity Visualisation of Abstract Data</td>
<td>Wojciech Basalaj</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Januar 2001</td>
<td></td>
<td></td>
<td>Stand: 06.11.2006</td>
</tr>
<tr>
<td>2002</td>
<td>Material Explorer - “Material Selection Support Tool for Designers”</td>
<td>Arnold van Bezooyen</td>
<td>Masterthesis an der Technischen Universität Delft, Mai 2002</td>
<td></td>
</tr>
</tbody>
</table>
BGBl 2001 Verordnung über die Honorare für Leistungen der Architekten und der Ingenieure
in der Fassung der Bekanntmachung vom 4. März 1991
zuletzt geändert durch Art. 5 Neuntes Euro-EinführungsG vom 10.11.2001 (BGBl. I S. 2992)
Stand: 16.3.2007

BGBl 2004 Verordnung über Arbeitsstätten (Arbeitsstättenverordnung - ArbStättV)
1. Auflage 2004
Vom 12. August 2004 (BGBl. I S.2179)
Stand: 29.11.2004

BGZ 2003 BGR 181 Fußböden in Arbeitsräumen und Arbeitsbereichen mit Rutschgefahr
Berufsgenossenschaftliche Zentrale für Sicherheit und Gesundheit BGZ
Fachausschuss „Bauliche Einrichtungen“ der BGZ
Oktober 1993, aktualisierte Fassung Oktober 2003
http://www.arbeitssicherheit.de/servlet/PB/show/1224489/bgr181.pdf
Stand: 24.10.2007

Bhushan 1997 The Texture Lexicon: Understanding the Categorization of Visual Texture Terms and Their Relationship to Texture Images
Nalini Bhushan; A. Ravishankar Rao; Gerald L. Lohse
In: Cognitive Science Vol 21 (2) 1997, S.219-246
http://www.cogsci.rpi.edu/CSJarchive/1997v21/i02/p0219p0246/MAIN.PDF
Stand: 19.07.2006

Birk 2006 Das Material macht den Unterschied
Stephan Birk
In: arcguide, Der Internetführer für Architektur, 21. Ausgabe, 2006
http://www.arcguide.de/jung/html/artikel1-00.html
Stand: 30.05.2007

Birk 2006 b raumPROBE
Interview mit Hannes Bäuerle und Joachim Stumpp, raumPROBE
Stephan Birk; Liza Heilmeyer
In: arcguide, Der Internetführer für Architektur, 21. Ausgabe, 2006
http://www.arcguide.de/jung/html/artikel2-00.html
Stand: 30.05.2007

BMVBS 2001 Leitfaden nachhaltiges Bauen
Bundesamt für Bauwesen und Raumordnung
im Auftrag des Bundesministeriums für Verkehr, Bau- und Wohnungswesen
Stand: Januar 2001, 2. Nachdruck (mit redaktionellen Änderungen)
Stand: 24.10.2007

Böhme 1994 Der Glanz des Materials - zur Kritik der ästhetischen Ökonomie
Gernot Böhme
In: Der Stoff der Dinge: Material und Design
Arnica-Verena Langenmaier [Hrsg.]
München : Design-Zentrum, 1994

Brownell 2006 Transmaterial: a catalog of materials that redefine our physical environment
Blaine Brownell
New York : Princeton Architectural Press, 2006

C4D-Textures CAD Textures - Texturize the Real World
Webseite zum Up- und Download von Materialien für Visualisierungen
http://www.c4dtextures.com/modules/rdmp/
Stand: 25.10.2007
<table>
<thead>
<tr>
<th>Autor/Institut</th>
<th>Titel</th>
<th>Verlagausgabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colored Architecture</td>
<td>Colored Architecture</td>
<td>Christian Tonn, Bauhaus-Universität Weimar</td>
</tr>
<tr>
<td>Cox 1994</td>
<td>Multidimensional scaling</td>
<td>Trevor F. Cox, Michael A. A. Cox, London [u.a.]: Chapman & Hall, 1994</td>
</tr>
<tr>
<td>Darksim</td>
<td>Advanced Shader & Procedural Effects Authoring</td>
<td>Darkling Simulations</td>
</tr>
<tr>
<td>Dialux</td>
<td>DIALux V. 4.4.0.5</td>
<td>DIAL GmbH</td>
</tr>
<tr>
<td>Digitaler Farbatlas</td>
<td>Digitaler Farbatlas V.3.0</td>
<td>dtp studio oldenburg</td>
</tr>
<tr>
<td>Dillon 2000</td>
<td>Sensing The Fabric - To simulate sensation through sensory evaluation and in response to standard acceptable properties of specific materials when viewed as a digital image</td>
<td>University of Glasgow, Scotland</td>
</tr>
<tr>
<td>DIN 1995</td>
<td>DIN 1356-1 Bauzeichnungen</td>
<td>Deutsches Institut für Normung e.V. Perinorm Norm CD, Beuth-Verlag Stand: März 2006</td>
</tr>
</tbody>
</table>
DIN 2006
DIN 6174 Farbmetrische Bestimmung von Farbmaßzahlen und Farbabständen im angenähert gleichförmigen CIELAB-Farbenraum
Entwurf, vorgesehen als Ersatz für DIN 6174:1979-01
Deutsches Institut für Normung e.V.
Perinorm Norm CD, Beuth-Verlag
Stand: März 2006

DIN 2007
DIN 18960 Nutzungskosten im Hochbau
Entwurf, vorgesehen als Ersatz für DIN 18960:1999-08
Deutsches Institut für Normung e.V.
Perinorm Norm CD, Beuth-Verlag
Stand: März 2007

Doveil 1994
Material spricht - Wirkung, Wert, Ästhetik
Frida Doveil
Aus dem Italienischen von Birgit Harnack und Arnica-Verena Langenmaier
In: Der Stoff der Dinge: Material und Design
Arnica-Verena Langenmaier [Hrsg.]
München : Design-Zentrum, 1994

DWDS 2008
Das Digitale Wörterbuch der deutschen Sprache des 20. Jh.
Berlin-Brandenburgische Akademie der Wissenschaften
http://www.dwds.de/
Stand: 27.02.2008

E-class
e-Cl@ss - Classification and Product Description
Internationaler Standard zur Klassifizierung und Beschreibung von Produkten und Dienstleistungen
eCl@ss e.V.
http://www.eclass.de
Stand: 28.02.2008

Eickemeier 2002
Bestimmung der Gewichte bei Mehrzielentscheidungen. Eine vergleichende Analyse ausgewählter Verfahren
Susanne Eickemeier
Berlin [u.a.] : Springer, 2002
Stand: 06.11.2006

ERCO
ERCO Leuchten
Anbieter von Leuchten, Download von Leuchtendaten
ERCO Leuchten GmbH
http://www.erco.com
Stand: 02.04.2007

ESIGN
easyBo Fotoservice
Anbieter von Fotobearbeitungen für virtual showrooms
ESIGN Software GmbH
http://www.easybo.de/cms/
Stand: 18.04.2007

Esslinger 2005
Gefühlte Optik – Material und Haptik im Gestaltungsprozess
Marc Esslinger
In: Baustoff Atlas, S.32-35
Manfred Hegger [Hrsg.]
Basel [u.a.] : Birkhäuser ; München : Ed. Detail, 2005

Everitt 1993
Cluster analysis
Brian S. Everitt
London [u.a.] : Arnold, 1993

Fernandez 2006
Material architecture: emergent materials for innovative buildings and ecological construction
John Fernandez
Amsterdam [u.a.] : Elsevier-Architectural Press, 2006
Finalrender
Finalrender
Software für physikalisch korrekte Visualisierungen
CEBAS Visual Technology
Stand: 28.02.2008

Formula II
Formula II
Software zum Entwurf und Herstellung von mehrschichtigen Autolacken
Integra Inc.
Stand: 28.02.2008

Fryrender
Fryrender
Software für physikalisch korrekte Visualisierungen
Feversoft® Virtual Reality Technology
Stand: 28.02.2008

Funhoff 2005
Die Entwicklung innovativer Materialien
Dirk Funhoff
In: *Baustoff Atlas*, S.28-31
Manfred Hegger [Hrsg.]
Basel [u.a.]: Birkhäuser ; München : Ed. Detail, 2005

FX Composer
FXComposer
Software zum Beschreiben von Shadern für Realtime-Visualisierungen
NVIDIA® Corporation
Stand: 28.02.2008

Hansen 2005
Die Emanzipation der Oberfläche
Birgit Hansen
In: *DBZ* 12/2005, S.66-68

Haptex
HAPTEX - HAPTic sensing of virtual TEstiles
Visio-haptisches VR-System zur Interaktion mit virtuellen Textilien
MIRALab, Universität Genf
Stand: 28.02.2008

Hatchpatterns
Hatchpatterns
Anbieter von Schraffuren zum Download
Charles Sweeney
http://hatchpatterns.com
Stand: 25.10.2007

Heady 2004
PERMAP 11.3 - Operation Manual
Ronald B. Heady; Jennifer L. Lucas
März 2004
Stand: 06.11.2006

Hegger 2005
Baustoff Atlas
Manfred Hegger [Hrsg.]
Basel [u.a.]: Birkhäuser ; München : Ed. Detail, 2005

Hegger 2006
Materialgerecht bauen – Kriterien für die Baustoffwahl
Manfred Hegger

Heilmeyer 2006
Klassiker remixed
Liza Heilmeyer
http://www.arcguide.de/jung/html/artikel3-00.html
Stand: 30.05.2007
Hollins 1993
Perceptual dimensions of tactile surface texture: A multidimensional scaling analysis
Mark Hollins; Richard Faldowski; Suman Rao; Forrest Young
In: Perception & Psychophysics, 1993, 54 (6), S.697-705
http://www.psychonomic.org/search/index.cgi
Stand 09.08.2006

Hullmann 2002
Materialexperimente – Innovationen bei Konstruktion und Gestaltung
Heinz Hullmann

IAI 2001
Material Selection, Specification and Procurement
International Alliance for Interoperability
IFC Completed Project, PM-3
http://ce.vtt.fi/iaiIFCprojects/ShowProjectInfo.jsp?project_id=47&status_id=3
Stand: 27.06.2006

IAI 2006
Industry Foundation Classes IFC2x Edition 3 - IfcMaterialProperties
International Alliance for Interoperability
http://www.iai-international.org/Model/R2x3_final/index.htm
Stand: 25.10.2007

ImageSynth
imageSynth
Software zur Erstellung nahtlos kachelbarer Texturen für Visualisierungen
Luxology LLC.
Stand: 25.10.2007

InfAR 2007
Forschungsgrundsätze InfAR
Informatik in der Architektur, Bauhaus-Universität Weimar
http://infar.architektur.uni-weimar.de/infar/index.html
Stand: 07.03.2007

Jana 2006
The Revolution in Building Materials
Reena Jana
Interview mit Blaine Brownell in: Business Week online 28.02.2006
http://www.businessweek.com/print/innovate/content/feb2006/id20060228_541223.htm
Stand: 02.03.2006

Joppien 2002
Neue Materialien in Kunsthandwerk und Design
Joppien, Rüdiger
In: Material in Kunst und Alltag
Monika Wagner; Dietmar Rübel [Hrsg.]
Berlin : Akad.-Verl, 2002

Kennedy 2001
KVA: Material misuse
Sheila Kennedy; Christoph Grunenberg

Kruskal 1978
Multidimensional scaling
Joseph B. Kruskal; Myron Wish

Kuhlmann 2007
SARSamplingKit - Simulation von Farbe, Material und Licht in einer Spatial-Augmented-Reality Umgebung zur Planungsunterstützung
Thomas Kuhlmann
Diplomarbeit an der Bauhaus-Universität Weimar, 2007

LECEP
LECEP®
Software zur lebenszyklusbezogenen Planung und ökologisch-ökonomischer Bewertung von Gebäuden
LECEP Software GmbH
http://www.lecep.de
Stand: 28.02.2008
LightWorks
LightWorks
Software zur plattform- / softwareunabhängigen Beschreibung von Material,
Download von „Real-World“-Materialien und -Produkten
LightWork Design Ltd.
http://www.lightworks-user.com/
Stand: 03.04.2007

Lindbloom 2001
RGB Working Space Matrices
Bruce Justin Lindbloom
http://www.brucelindbloom.com
Stand: 07.07.2006

Lusti 2002
Data warehousing und data mining: eine Einführung in entscheidungsunterstützende Systeme
Markus Lusti
2. überarbeitete und erweiterte Auflage
Berlin [u.a.] : Springer, 2002

Manzini 1989
The material of invention
Ezio Manzini
1. Ausgabe

Matcović 2004
Dynamic Texturing of Real Objects in an Augmented Reality System
Krešimir Matkovic, Thomas Pisk, Ina Wagner, Denis Gračanin
Technical report, Zentrum für Virtual Reality und Visualisierung, 2004
Stand: 24.07.2006

Maxwellrender
Maxwellrender
Software für physikalisch korrekte Visualisierungen
Next Limit Technologies
http://www.maxwellrender.com/
Stand: 28.02.2008

Miene 1997
Analyse und Beschreibung von Texturen
Andrea Miene; Oliver Moehrke
Diplomarbeit an der Universität Bremen, 1997
Stand: 27.07.2006

Mojsilović 2000 a
Matching and retrieval based on the vocabulary and grammar of color patterns
Aleksandra Mojsilović; Jelena Kovačević; Jianying Hu; Robert J. Safranek; S. Kicha Ganapathy
IEEE Transactions on Image Processing, Volume 9, no. 1, Januar 2000, S.38-54
Stand: 19.07.2006

Mojsilović 2000 b
A Method for Color Content Matching of Images
Aleksandra Mojsilović
IBM Research
Stand: 19.07.2006

Mojsilović 2002
Extraction of perceptually important colors and similarity measurement for image matching retrieval and analysis
Aleksandra Mojsilović; Jianying Hu; Emina Soljanin
Stand: 19.07.2006
Morris 1891 The Influence Of Building Materials On Architecture
William Morris
The William Morris Internet Archive
http://www.marxists.org/archive/morris/works/1891/building.htm
Stand: 27.02.2008

Munsell 1969 A Grammar of Color
Albert H. Munsell
dt. Auszüge in: Gericke/Schmidt, Phänomen Farbe

Neutra 1966 Material – Menschlich angesehen
Richard Neutra
In: Material, Struktur, Ornament: Beispiele Architektur
Horst Peter Dollinger [Hrsg.]
München : Moos, 1966

Osborne 1990 Mondo Materials
Vorwort in: Mondo materials: materials and ideas for the future
George M Beylerian [Hrsg.]; Elliott Kaufman

Pasman 2003 Designing with Precedents
Gert Pasman
http://studiolab.io.tudelft.nl/dwp/
Stand: 28.02.2008

Photoshop Photoshop® CS3 Extended
Software zur Bildbearbeitung, Integration von 3D-Modellen
Adobe Systems GmbH
http://www.adobe.com/de/products/photoshop/photoshop/
Stand 28.02.2008

Picard 2003 Perceptual dimensions of tactile textures.
Delphine Picard; Catherine Dacremont; Dominique Valentin; Agnès Giboreau
In: Acta psychologica 114, S.165-184
Amsterdam : Elsevier

Piranesi Piranesi 5.0
Software zum Weiterbearbeiten und Präsentieren von 3D-Modellen
Informatix Software International Ltd
http://www.informatix.co.uk/piranesi/index.shtml
Stand: 28.02.2008

RAL digital RAL digital
Software zum Einbinden und Bewerten der RAL-Farbpaletten
dtp studio oldenburg
http://www.ral-digital.de/
Stand: 28.02.2008

Rao 1993 Towards a Texture Naming System: Identifying Relevant Dimensions of Texture
A. Ravishankar Rao, Gerald L. Lohse
Visualization ’93 : proceedings, 25.-29.10.1993, S.220-227

Raskar 2001 Shader Lamps
Ramesh Raskar; Greg Welch; Kok-lim Low; Deepak Bandyopadhyay
Stand: 11.04.2001

Rendermonkey RenderMonkey™ Toolsuite
Software zum Beschreiben von Shadern für Realtime-Visualisierungen
Advanced Micro Devices, Inc.
Stand: 28.02.2008
Richens 1997 *Beyond Photorealism*
In: The Architects Journal, 12.06.1997
http://www.informatix.co.uk/piranesi/product_information_ajart.shtml
Stand: 30.05.2007

Rudolphi 2005 *Kriterien für die Auswahl von Baustoffen*
Alexander Rudolphi
In: Baustoff Atlas, S.22-27
Manfred Hegger [Hrsg.]
Basel [u.a.] : Birkhäuser ; München : Ed. Detail, 2005

Saakes 2006 *Material light: exploring expressive materials*
Daniel Saakes
http://studiolab.io.tudelft.nl/saakes/publications
Stand: 24.07.2006

Saaty 1990 *Multicriteria decision making: the analytic hierarchy process; planning, priority setting, resource allocation*
Thomas L. Saaty

Sauer 2005 *Der Architekt als Baustoffscout*
Christiane Sauer
In: Baustoff Atlas, S.14-17
Manfred Hegger [Hrsg.]
Basel [u.a.] : Birkhäuser ; München : Ed. Detail, 2005

Sauer 2006 *Neue Materialentwicklungen*
Christiane Sauer
In: Detail 6/2006, S.590-594

Schittich 2001 *Materialästhetik und Ornament*
Christian Schittich
In: Im Detail: Gebäudehüllen : Konzepte, Schichten, Material
Christian Schittich [Hrsg.]
Basel [u.a.] : Birkhäuser, 2001

Schittich 2005 *Die Oberfläche in der zeitgenössischen Architektur*
Christian Schittich
In: Baustoff Atlas, S.10-13
Manfred Hegger [Hrsg.]
Basel [u.a.] : Birkhäuser ; München : Ed. Detail, 2005

Schittich 2006 *Die neue Sinnlichkeit des Materials*
Christian Schittich
In: DETAIL 6-2006, S.586-589

Shneiderman 1998 *Designing the user interface - strategies for effective human-computer interaction*
Ben Shneiderman
Reading, Mass. [u.a.] : Addison-Wesley, 1998

Sirados *SirAdos Baudaten*
Datenbank zu Baupreisen, Ausschreibung, Bauelementen
WEKA MEDIA GmbH & Co. KG
https://www.sirados.de
Stand: 28.02.2008

Spence 2001 *Information visualization*
Robert Spence
Harlow [u.a.] : Addison-Wesley [u.a.], 2001

Srinivasan 2005 *What is Haptics?*
Mandayam A Srinivasan
Stand: 30.05.2007
Stappers 2000
Exploring databases for taste or inspiration with interactive multidimensional scaling.
Pieter Jan Stappers; Gert Pasman; Patrick J.F. Groenen
http://studiolab.io.tudelft.nl/static/gems/publications/00StapIEAExpl.pdf
Stand: 06.11.2006

Texxux
Texxux
Anbieter von Rapid Prototyping-Bearbeitung von Baustoffen
Texxus Limited
http://www.texxus.com/
Stand: 06.11.2007

TMBV 2004
Thüringer Bauordnung ThürBO
Thüringer Ministerium für Bau und Verkehr
http://www.thueringen.de/imperia/md/content/tmbv/staedteundwohnungsbau/bauordnung.pdf
Stand: 25.10.2007

Tonn 2005
Computergestütztes dreidimensionales Farb-, Material- und Lichtentwurfswerkzeug für die Entwurfsplanung in der Architektur
Christian Tonn
Diplomarbeit an der Bauhaus-Universität Weimar, 2005
http://architektur-informatik.scix.net/data/works/att/724a.content.05358.pdf
Stand: 27.02.2008

Tonn 2007
Simulating the atmosphere of spaces – the AR-based support of 1:1 colour sampling in and within existing buildings
Christian Tonn, Dirk Donath, Frank Petzold
In: Predicting the Future - eCAADe, Frankfurt/Wiesbaden, S.169-176
J. Kieferle and K. Ehlers [Hrsg.], 2007

Vollard 2004
Skins for buildings: the architect’s materials samples book
Piet Vollard; Els Zijstra
Vorwort in: Skins for buildings: the architect’s materials samples book
Ine ter Borch; David Keuning; Caroline Kruit; Ed Melet; Dr. Kees Peterse; Piet Vollard; Tom de Vries; Els Zijstra [Hrsg.]
Amsterdam : BIS Publ., 2004

W3C 2002
Extensible Markup Language (XML) 1.0 (Zweite Auflage)
In der Deutschen Übersetzung von Stefan Mintert, 20.01.2002
World Wide Web Consortium
Stand: 12.07.2007

Ware 2004
Information visualization: perception for design
Colin Ware
2. ed. - San Francisco, Calif. : Morgan Kaufmann ; Amsterdam [u.a.] : Elsevier, 2004

Weber 1993
Mehrkriterielle Entscheidungen
Karl Weber
München [u.a.] : Oldenbourg, 1993

Wikipedia 2006a
Entscheidungstheorie
http://de.wikipedia.org/wiki/Entscheidungstheorie
Stand 10.10.2006, 14:52 Uhr

Wikipedia 2006b
Plausibilität
http://de.wikipedia.org/wiki/Plausibilit%C3%A4t
Stand 02.11.2006, 16:07 Uhr

Wikipedia 2006c
Haptische Wahrnehmung
http://de.wikipedia.org/wiki/Haptische_Wahrnehmung
Stand 29.07.2006, 23:16 Uhr
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Stand 29.09.2006, 13:55 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 12.08.2006, 17:46 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 06.10.2006, 15:55 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 19.10.2006, 13:35 Uhr</td>
</tr>
<tr>
<td>Wikipedia 2006g</td>
<td>Temperatur</td>
<td>http://de.wikipedia.org/wiki/Temperatur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 09.08.2006, 11:00 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 29.01.2007, 23:00 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 26.03.2007, 17:17 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 07.03.2007, 19:01 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 05.04.2007, 19:29 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 22.08.2007, 20:20 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 29.10.2007, 17:42 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 29.10.2007, 13:36 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 17.07.2007, 09:44 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 29.05.2007, 18:07 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 21.06.2007, 20:03 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 09.11.2007, 16:58 Uhr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 02.08.2007, 12:04 Uhr</td>
</tr>
<tr>
<td>Wikipedia 2007m</td>
<td>Likert-Skala</td>
<td>http://de.wikipedia.org/wiki/Likert-Skala</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stand 19.07.2007, 15:28 Uhr</td>
</tr>
</tbody>
</table>
Wikipedia 2007n CIE-Normvalenzsystem
http://de.wikipedia.org/wiki/CIE-Normvalenzsystem
Stand 03.08.2007, 11:20 Uhr

Wikipedia 2007o Metrischer Raum
http://de.wikipedia.org/wiki/Metrischer_Raum
Stand 14.08.2007, 14:48 Uhr

Wikipedia 2007p Euklidischer Raum
http://de.wikipedia.org/wiki/Euklidischer_Raum
Stand 05.07.2007, 14:52 Uhr

Wikipedia 2007q Modell (Begriff)
http://de.wikipedia.org/wiki/Modell_%28Begriff%29
Stand 20.08.2007, 06:51 Uhr

Wikipedia 2007r Prokrustes
http://de.wikipedia.org/wiki/Prokrustes
Stand 18.07.2007, 22:40 Uhr

Wikipedia 2008a Lab-Farbraum
http://de.wikipedia.org/wiki/Lab-Farbraum
Stand 20.02.2008 09:34 Uhr

Wikipedia 2008b RAL-Farbsystem
http://de.wikipedia.org/wiki/RAL-Farbsystem
Stand 15.02.2008, 22:30 Uhr

Wikipedia 2008c Natural Color System
http://de.wikipedia.org/wiki/Natural_Color_System
Stand 27.01.2008, 00:06 Uhr

Wikipedia 2008d Glanz
http://de.wikipedia.org/wiki/Glanz
Stand 11.02.2008, 01:52 Uhr

Wikipedia 2008e Delta E
http://de.wikipedia.org/wiki/Delta_E
Stand 14.02.2008, 08:03 Uhr

Wikipedia 2008f Härte
http://de.wikipedia.org/wiki/H%C3%A4rte
Stand 31.01.2008, 11:32 Uhr

Wikipedia 2008g Rauigkeit
http://de.wikipedia.org/wiki/Rauigkeit
Stand: 14.01.2008, 18:01 Uhr

Wikipedia 2008h Schleifpapier
http://de.wikipedia.org/wiki/Schleifpapier
Stand 17.02.2008, 15:30 Uhr

XLSTAT 2006 Online-Hilfe zu XLSTAT 2006
Addinsoft, 2006

Young 1985 Multidimensional Scaling
Forrest W. Young
Original: Kotz-Johnson (Ed.) Encyclopedia of Statistical Sciences, Volume 5, Copy-right (c) 1985 by John Wiley & Sons, Inc.
http://forrest.psych.unc.edu/teaching/p208a/mds/mds.html
Stand: 06.11.2006
<table>
<thead>
<tr>
<th>Software</th>
<th>Beschreibung</th>
<th>Hersteller</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>XLSTAT</td>
<td>XLSTAT 2007.1 Softwareaufsatz zur Datenanalyse in MS Excel</td>
<td>Addinsoft</td>
<td>http://www.xlstat.com</td>
</tr>
<tr>
<td>Excel</td>
<td>Microsoft® Office Excel 2003 Software zur Tabellenkalkulation</td>
<td>Microsoft Corporation</td>
<td>http://www.microsoft.com</td>
</tr>
<tr>
<td>Matrix</td>
<td>Matrix and Linear Algebra for Excel v.22 Add-In zur Erweiterung der Matrixfunktionalität in MS Excel</td>
<td>Foxes Team</td>
<td>http://digilander.libero.it/foxes/SoftwareDownload.htm</td>
</tr>
<tr>
<td>3DPlot</td>
<td>XLSTAT-3DPlot 6.1 Software zur 3D-Datenvisualisierung</td>
<td>Addinsoft</td>
<td>http://www.xlstat.com/de/products/xlstat-3dplot/</td>
</tr>
<tr>
<td>Visual Basic</td>
<td>Microsoft® Visual Basic 6.5 Entwicklungsumgebung für Makros in MS Office-Anwendungen</td>
<td>Microsoft Corporation</td>
<td>http://www.microsoft.com</td>
</tr>
</tbody>
</table>
A.6 Weiterführende Quellen

Die folgenden Quellen sollen dem interessierten Leser einen vertieften Einblick in einzelne Themenfelder der Arbeit ermöglichen. Sie wurden allesamt für die Arbeit ebenfalls untersucht und ausgewertet, sind im Text jedoch nicht vollständig referenziert.

Inspirations- und Informationsquellen

Fachzeitschriften mit Themenschwerpunkt Material

- **arcguide 21. Ausgabe**
 Materialien + Oberflächen
- **db** 1/06
 Oberflächen anders
- **DBZ 11/05**
 Materialexperimente
- **DBZ 12/05**
 Haptik
- **detail 10/0**
 Transluzente Materialien
- **detail 6/06**
 Material + Oberfläche

Bücher zur Materialinspiration

- **Beylerian, George**
 MaterialConneXion_1
- **Beylerian, George**
 MaterialConneXion_2
- **Brownell, Blaine**
 Transmaterial
- **Hegger, Manfred**
 Baustoff Atlas
- **Martin, Cat**
 The Surface Texture Book
- **Materió**
 Material World 2 - innovative materials for architecture and design
- **Onna, Edwin**
 Material World - innovative structures and finishes for interiors
- **Stattmann, Nicola**
 Handbuch Material Technologie
- **Zijlstra, Els**
 Material skills

Material-Rechercheservices

- **Formade architecture + materials**
 http://www.formade.com/srv_recherche.html
 Stand: 04.03.2008
- **Hansen Innenarchitektur**
 http://www.hansen-innenarchitektur.de
 Stand: 04.03.2008
- **Materialsgate**
 http://www.materialsgate.de/beratung.html
 Stand: 04.03.2008
- **Plan-und b**
 http://plan-und-b.de
 Stand: 04.03.2008

Fachmessen

- **100%materials**
 http://www.100percentdetail.co.uk
 Stand: 04.03.2008
- **contractworld materials**
 http://www.contractworld.com
 Stand: 04.03.2008
- **materialexperience**
 http://www.materialexperience.nl
 Stand: 04.03.2008
Materialica http://www.materialica.de
Stand: 04.03.2008

Materialvision http://material-vision.messefrankfurt.com
Stand: 04.03.2008

Material-Agenturen

Materia http://materia.nl
Stand: 04.03.2008

Materialconnexion http://www.materialconnexion.com
Stand: 04.03.2008

Materio http://www.materio.com
Stand: 04.03.2008

Modulor Musterkiste http://www.modulor.de
Stand: 04.03.2008

Musterkiste http://musterkiste.de
Stand: 04.03.2008

Raumprobe http://www.raumprobe.de
Stand: 04.03.2008

Material-Newsletter

Materialsmonthly http://www.papress.com/mm2/index.tpl
Stand: 04.03.2008

Materialworks http://www.materialworks.com
Stand: 04.03.2008

Materio http://www.materio.com
Stand: 04.03.2008

Transstudio http://transstudio.com/tm/
Stand: 04.03.2008

Material-Scouts

Formade http://www.formade.com/
Stand: 04.03.2008

Materialconnexion http://www.materialconnexion.com
Stand: 04.03.2008

Material-Scout http://material-scout.com/
Stand: 04.03.2008

Raumprobe http://www.raumprobe.de/
Stand: 04.03.2008

Materialdatenbanken im Web

Materialdatenbanken zur Inspiration

100%Materials http://www.100percentmaterials.co.uk/
Stand: 04.03.2008

Architonic http://www.architonic.com/
Stand: 04.03.2008

Innovatheque http://www.innovatheque.fr/
Stand: 04.03.2008

Materialconnexion http://www.materialconnexion
Stand: 04.03.2008
Materialdatenbanken

<table>
<thead>
<tr>
<th>Name</th>
<th>URL</th>
<th>Stand: 04.03.2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialexplorer</td>
<td>http://www.materialexplorer.com/</td>
<td></td>
</tr>
<tr>
<td>Materialworks</td>
<td>http://materialworks.com</td>
<td></td>
</tr>
<tr>
<td>Materio</td>
<td>http://www.materio.com/</td>
<td></td>
</tr>
<tr>
<td>RaumProbe</td>
<td>http://www.raumprobe.de/</td>
<td></td>
</tr>
</tbody>
</table>

Materialspezifische Datenbanken

<table>
<thead>
<tr>
<th>Name</th>
<th>URL</th>
<th>Stand: 04.03.2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialatlas</td>
<td>http://www.materialatlas.com</td>
<td></td>
</tr>
<tr>
<td>Musterkiste</td>
<td>http://musterkiste.de</td>
<td></td>
</tr>
</tbody>
</table>

Datenbanken zur Herstellersuche

<table>
<thead>
<tr>
<th>Name</th>
<th>URL</th>
<th>Stand: 04.03.2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArcGuide</td>
<td>http://www.arcdesk.de/arcguide/</td>
<td></td>
</tr>
<tr>
<td>Architekten Informations System</td>
<td>http://www.ais-online.de/</td>
<td></td>
</tr>
<tr>
<td>Baunetz Baukatalog</td>
<td>http://www.baunetz.de/arch/baukatalog/</td>
<td></td>
</tr>
<tr>
<td>Betterbuild</td>
<td>http://www.betterbuild.com</td>
<td></td>
</tr>
<tr>
<td>Detail Deutscher Baukatalog</td>
<td>http://www.detail.de/rw_2_Baukatalog_Inhalt.htm</td>
<td></td>
</tr>
<tr>
<td>HeinzeBauOffice</td>
<td>http://www.heinzebauoffice.de/hbo/</td>
<td></td>
</tr>
</tbody>
</table>

Fachspezifische Datenbanken

<table>
<thead>
<tr>
<th>Name</th>
<th>URL</th>
<th>Stand: 04.03.2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>GaBi</td>
<td>http://www.gabi-software.com</td>
<td></td>
</tr>
<tr>
<td>Granta Material Intelligence</td>
<td>http://www.grantadesign.com/DE/</td>
<td></td>
</tr>
<tr>
<td>Idemat</td>
<td>http://www.io.tudelft.nl/research/dfs/idemat/index.htm</td>
<td></td>
</tr>
<tr>
<td>Legep</td>
<td>http://www.legep.de</td>
<td></td>
</tr>
<tr>
<td>Mat24</td>
<td>http://www.mat24.de/</td>
<td></td>
</tr>
<tr>
<td>Matdata</td>
<td>http://matdata.net</td>
<td></td>
</tr>
<tr>
<td>Materialdatacenter</td>
<td>http://www.materialdatacenter.com</td>
<td></td>
</tr>
<tr>
<td>Materialsgate</td>
<td>http://materialsgate.de</td>
<td></td>
</tr>
<tr>
<td>MatWeb</td>
<td>http://www.matweb.com/index.aspx</td>
<td></td>
</tr>
<tr>
<td>The A to Z of Materials</td>
<td>http://azom.com</td>
<td></td>
</tr>
</tbody>
</table>
Virtual showrooms

<table>
<thead>
<tr>
<th>Name</th>
<th>URL</th>
<th>Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpina Colordesigner</td>
<td>http://www.alpina-farben.de/colordesigner/colordesigner.html</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Autodesk Project Showroom</td>
<td>http://showroom.labs.autodesk.com/</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Brillux Farbdesigner</td>
<td>http://www.farbdesigner.de/farbdesigner.html</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Granit90</td>
<td>http://www.granit90.de/showroom/showroom_content.html</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Krono Objektplaner</td>
<td>http://www.kronoflooring.com/kofigurator/start.html</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Parador Raum-Designer</td>
<td>http://www.parador.de/swf/raumdesigner/de.php</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Pergo Virtual Showroom</td>
<td>http://www.global.pergo.com/de-de/Lokale-Startseite/eShowroom/</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Vorwek Virtuelles Einrichten</td>
<td>http://www.vorwerk-teppich.de/virtuelles_einrichten.brw</td>
<td>04.03.2008</td>
</tr>
</tbody>
</table>

Produktkonfiguratoren

<table>
<thead>
<tr>
<th>Name</th>
<th>URL</th>
<th>Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme Online Masonry Designer</td>
<td>http://www.brick.com/</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Appiani Mix</td>
<td>http://www.appiani.it/prodotti/appiani-mix.asp?Lang=DE</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Meister Raum-Bodendesigner</td>
<td>http://meister.esignserver3.de/showGallery.do</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Tisca Handtuft Konfigurator</td>
<td>http://www.tisca.ch/tisca-tiara/handtuft/select/de/index.html</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Virtual terrazzo</td>
<td>http://www.terrazzo.it/de/virtual.asp</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Westbond FlexCreator</td>
<td>http://www.westbond.de/</td>
<td>04.03.2008</td>
</tr>
</tbody>
</table>

Interaktive MDS-Anwendungen

<table>
<thead>
<tr>
<th>Name</th>
<th>URL</th>
<th>Stand</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHI</td>
<td>MDS-interactive Skates</td>
<td>06.11.2006</td>
</tr>
<tr>
<td>Literaturlandkarte</td>
<td>Literaturlandkarte</td>
<td>04.03.2008</td>
</tr>
<tr>
<td>Queens Library</td>
<td>Queens Library</td>
<td>04.03.2008</td>
</tr>
</tbody>
</table>
B.1 Berechnung Farbreduktion und -unähnlichkeit

Für die Berechnung der Farbwerte von (auch nicht gleichmäßig farbigen) Materialien werden die zugehörigen RGB-Pixelbilder zunächst in Adobe Photoshop leicht weichgezeichnet, um einzelne, evtl. extreme Pixelwerte etwas zu glätten. Anschließend kann das Bild auf wenige Farben reduziert werden, indem die Funktion Bild>Modus>indizierte Farben mit der Einstellung „perzeptiv“ und frei wählbarer Farbanzahl angewendet wird. Das Ergebnis ist ein Pixelbild, welches mit wenigen unterschiedlichen Farben den wahrgenommenen Eindruck des Originalbilds wiederzugeben versucht.

Sinnvolle Anzahl an Farben

Das Beispiel des Teppichs zeigt, dass eine Reduzierung auf nur eine oder zwei Farben noch zu viel Detailinformation über das Aussehen des Teppichs verloren gehen lässt, eine Anzahl von mehr als vier Farben hingegen kaum einen Gewinn an Farbinformation mehr bringt. Da zudem der Aufwand der weiteren Berechnung mit der Fakultät der Anzahl berücksichtigt wird, wurde eine durchgängige Reduzierung auf vier dominante Farben als Kompromiss zwischen Abbildungsgenauigkeit und Aufwand gewählt.

Erzeugung gleichwertiger Farbpakete

Für die weitere Berechnung sind jeweils gleichgroße Farbpakete notwendig [Mojsilović 2002], daher werden in einem nächsten Schritt die Farbanteile, die größer sind als 25%, direkt einem Farbpaket zugewiesen. Die verbleibenden Reste werden gemäß ihres prozentualen Anteils zu einem neuen L*a*b*-Farbwert gemischt und auf die verbleibenden Farbpakete aufgeteilt. Im Ergebnis hat man vier gleichwertige Farbpakete, die in ihren Farbwerten das Originalbild ausreichend gut codieren.

<table>
<thead>
<tr>
<th>Anzahl Pixel</th>
<th>%</th>
<th>RGB</th>
<th>Lab*</th>
<th>Abzug %</th>
<th>Rest %</th>
</tr>
</thead>
<tbody>
<tr>
<td>20601</td>
<td>19,77</td>
<td>96-76-69</td>
<td>35-10-9</td>
<td>0</td>
<td>19,77</td>
</tr>
<tr>
<td>34393</td>
<td>33,00</td>
<td>129-109-102</td>
<td>49-9-9</td>
<td>25</td>
<td>8,00</td>
</tr>
<tr>
<td>28419</td>
<td>27,27</td>
<td>158-138-127</td>
<td>60-8-10</td>
<td>25</td>
<td>2,27</td>
</tr>
<tr>
<td>20812</td>
<td>19,97</td>
<td>194-175-161</td>
<td>74-6-11</td>
<td>0</td>
<td>19,97</td>
</tr>
<tr>
<td>104225</td>
<td>100,00</td>
<td></td>
<td></td>
<td>50</td>
<td>50,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paket</th>
<th>Lab*</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49-9-9</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>60-8-10</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>54-8-10</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>54-8-10</td>
<td>25</td>
</tr>
</tbody>
</table>

Berechnung der Farbunähnlichkeit zweier Materialien

<table>
<thead>
<tr>
<th>Teppich</th>
<th>49-9-9</th>
<th>60-8-10</th>
<th>54-8-10</th>
<th>54-8-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO16</td>
<td>54-29-55</td>
<td>50,41</td>
<td>50,02</td>
<td>49,66</td>
</tr>
<tr>
<td></td>
<td>60-24-57</td>
<td>50,55</td>
<td>48,70</td>
<td>49,07</td>
</tr>
<tr>
<td></td>
<td>57-26-55</td>
<td>48,43</td>
<td>47,27</td>
<td>47,27</td>
</tr>
<tr>
<td></td>
<td>57-26-55</td>
<td>48,43</td>
<td>47,27</td>
<td>47,27</td>
</tr>
</tbody>
</table>

Abs. MIN 48,41 (Durchschnitt der ausgegrauten Werte)
Norm. MIN 0,2617
B.2 Screenshots zum Berechnungsbeispiel im Prototyp

Szene 01 - 01

Szene 01 - 02

Szene 01 - 03
Szene 02 - 04

Szene 03 - 01

Szene 03 - 02
Szene 03 - 03

Szene 04 - 01

Szene 04 - 02
Die Material- und Produktauswahl in der Architektur wird unterstellt, wenn die Entscheidung für ein Material plausibel auf einer begründeten Basis getroffen werden kann.

Hintergrund

1 Architektur wird über die den Raum begrenzenden Oberflächen wahrgenommen, das Oberflächenmaterial bestimmt daher entscheidend die Wahrnehmung des Raums. Mit der Wahl eines geeigneten Materials kann ein Architekt seine Entwurfsintention unterstützen.

2 In der Architektur eingesetzte Materialien müssen über diese gestalterisch wirksamen, vorwiegend sinnlich wahrnehmbaren Eigenchaften hinaus noch viele weitere Anforderungen erfüllen. Diese können z.B. technischer, ökonomischer oder ökologischer Natur sein.

Probleme bei der Materialwahl

4 Die Zahl der im Bauwesen zur Verfügung stehenden Materialien und Produkte nimmt durch Neuentwicklungen und Neuzulassungen, aber auch durch die Möglichkeiten des weltweiten Handels sowie durch eine Rückbesinnung auf tradierte Verfahren immer weiter zu. Damit es zum Einsatz eines Produkts kommt, muss dieses zum einen überhaupt erst vom Planer entdeckt werden, zum anderen muss zugleich eine ausreichende und mit anderen Produkten vergleichbare Information über seine Eigenschaften möglich sein. Auch und gerade im Zeitalter des Internets ist diese Suche nach und die Information über Materialien derzeit jedoch noch umständlich, zeintensiv und nur wenig zielgerichtet durchführbar.

5 Die Materialwahl findet derzeit noch losgelöst von der sonstigen CAAD-Planung statt, es gibt keine Durchgängigkeit des digitalen Planungsprozesses. Brüche und doppelte Informationshaltung kosten jedoch Zeit in der Handhabung, als potentielle Fehlerquellen können sie zudem auch die Ergebnisqualität stark beeinträchtigen.

6 Im Rahmen der Materialwahl müssen viele inhaltlich höchst unterschiedliche Kriterien gleichzeitig berücksichtigt werden. Diese Komplexität ist vom Planer jedoch kaum zu bewältigen, daher trifft er seine Entscheidung für ein Material - selbst beim Vorliegen umfassender Informationen - eher „aus dem Bauch heraus“. Auf dieser Basis kann er jedoch nicht sicher sein, mit dem gewählten Material eine „optimale“ Lösung gefunden zu haben.
Einordnung der genannten Probleme

Für das Problem der gezielten Produktsuche und Informationsbeschaffung (These 4) existieren bereits technische Lösungen: Hersteller könnten die Eigenschaften ihrer Produkte in einem automatisch auslesbaren und interpretierbaren Datenformat auf ihren Webseiten zur Verfügung stellen. Notwendig ist allerdings die Definition eines einheitlichen, materialübergreifenden Produktbeschreibungsstandards, der zudem von der sehr kleinteilig strukturierten Baustoffindustrie angenommen werden muss.

Das Problem der Brüche im Gesamtprozess (These 5) kann ebenfalls technisch als gelöst angesehen werden. Es werden bereits heute viele unterschiedliche digitale Techniken und Herangehensweisen verwendet, welche jeweils einzelne Punkte innerhalb der gesamten Materialwahl unterstützen. Diese lassen sich im Prinzip zu einem durchgängigen digitalen Planungsprozess kombinieren.

Im Umgang mit den vielen unterschiedlichen Einflusskriterien bei der Materialwahl (These 6) ist in der Architekturpraxis derzeit noch kein allgemeingültiges Verfahren bekannt, wie die verschiedenen Einflusskriterien „objektiv“ gegeneinander in Ansatz gebracht werden können.

Dieses Fehlen eines objektiven Verfahrens zur Berücksichtigung aller Einflusskriterien bei der Material- und Produktauswahl in der Architektur ist das Problem, welches im Rahmen der Arbeit gelöst werden soll.

Lösungsansatz

Die Art und Weise, wie verschiedene Einflusskriterien im Rahmen der Materialwahl miteinander verrechnet werden können, liegt weder objektiv / real / materialimmanent noch irgendwie gesetzlich vorgeschrieben oder genormt vor. Daher muss zur Lösung dieses Problems ein eigenes Bewertungsverfahren definiert werden.

Lassen sich alle Einzelschritte und notwendige Definitionen innerhalb dieses Bewertungsverfahrens fachlich begründen, so wird die Durchführung des Bewertungsverfahrens auch ein inhaltlich sinnvolles Ergebnis hervorbringen.

Das Entscheidungsunterstützende System nimmt dem Nutzer nicht die Entscheidung ab, sondern liefert die begründeten Grundlagen für die Entscheidung. Je mehr Informationen über ein Material oder eine Materialgruppe, aber auch über Zusammenhänge zwischen Materialien und deren Eigenschaften dem Planer zur Verfügung stehen, desto sicherer kann er sich für ein Material entscheiden.
Umsetzung

14 Das Bewertungsverfahren kann durch mathematische / statistische Methoden abgebildet werden.

15 Die Einzelkriterien, die bei der Materialwahl berücksichtigt werden sollen, lassen sich fachlich begründet festlegen.

16 Eigenschaften von Materialien lassen sich hinsichtlich dieser Einzelkriterien beschreiben und „objektiv“ (zumindest per Definition) beziffern. Technisch ist es auch möglich, diese im Bewertungsverfahren notwendigen Daten automatisch aus den von den Herstellern bereitgestellten Produktdaten abzuleiten oder zu generieren.

17 Ebenfalls lässt sich (manuell oder aus der CAAD-Planung abgeleitet) beschreiben und beziffern, welche Anforderungen ein Material im jeweiligen Einsatz zu erfüllen hat.

19 Mit Hilfe dieser Verfahren lassen sich Materialien in Bezug auf den jeweiligen Einsatzzweck automatisch und „objektiv“ (per Definition) unter Berücksichtigung aller Einzelkriterien bewerten und in eine Rangfolge bringen. Der Planer kann auf Basis dieser Bewertung „gute“ von „weniger guten“ Materialien unterscheiden.

20 Da es für einen Einsatzzweck nicht immer nur ein einziges „optimales“ Material geben wird (These 3), reicht diese Art der Bewertung als alleinige Entscheidungsgrundlage nicht unbedingt aus.

21 Die geeignete Darstellung der Alternativen und charakteristischer Zusammenhänge und eine damit verbundene Analysemöglichkeit können jedoch einen weiteren Erkenntnisgewinn bringen, der die Entscheidung erleichtern kann.

Fazit

Curriculum Vitae

Name Christoph Spiekermann
Anschrift Thomas-Münzent-Straße 23
99084 Erfurt
Familienstand ledig, zwei Kinder
Eintrag Architektenliste Mitgliedsnummer 2098-03-1-A, AK Thüringen

Tabellarischer Lebenslauf

08.11.1968 geboren in Wimbern, NRW
1974 - 1978 Engelhardgrundschule, Wickede (Ruhr)
1978 - 1987 Franz-Stock-Gymnasium, Arnsberg / Neheim
Abschluss Abitur
1987 - 1989 Zivildienst Städtisches Krankenhaus, Wetter (Ruhr)
1989 - 1996 Studium der Architektur, Universität Dortmund
Abschluss Diplom
1996 - 1997 Architekt bei WLP Werner Lehmann + Partner, Bonn / Dortmund
seit 1997 Freie Berufsausübung im Bereich Architektur-Visualisierungen
1998 - 2000 Projektmitarbeit „Modulare Wissensvermittlung unter Nutzung moderner Informationstechniken“, FH-Münster / FH-Düsseldorf
2000 - 2001 Erziehungszeit
2001 - 2002 Architekt bei Virtual Future GmbH / Pohl Architekten, Erfurt
2002 Architekt bei Pohl Architekten GmbH & Co. KG, Erfurt
2003 Erziehungszeit
seit 2003 Wissenschaftlicher Mitarbeiter der Bauhaus-Universität, Weimar
Lehrstuhl Informatik in der Architektur
Betreuung von Diplomarbeiten, Semesterarbeiten und Projekten

Veröffentlichungen

2006 Digitale Unterstützung der Material- und Produktauswahl im architektonischen Entwurfs- und Planungsprozess.

2006 Digitale Unterstützung der Material- und Produktauswahl im architektonischen Entwurfs- und Planungsprozess.
Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle unmissverständlich gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Ich versichere ehrenwörtlich, dass ich nach bestem Wissen die reine Wahrheit gesagt und nichts verschwiegen habe.

Weimar, 31.03.2008
Danksagung

Ich danke Prof. Dirk Donath, der mich zum Wintersemester 2003 als wissenschaftlicher Mitarbeiter an dem von ihm geführten Lehrstuhl Informatik in der Architektur an der Bauhaus-Universität Weimar eingestellt hat und mir damit überhaupt erst das fachliche Umfeld, den Raum und auch die Zeit für die Beschäftigung mit den Themen der digitalen Unterstützung von Architekturplanung geboten hat. Er hat mein wissenschaftliches Arbeiten initiiert und mir dabei die Freiheit gewährt, dieses Thema zu verfolgen.

Ebenso erwähnt werden sollen an dieser Stelle auch die zahlreichen Kollegen anderer Lehrstühle, die Teilnehmer auf Konferenzen und Kolloquien sowie mehrere Studenten, die in anregender Weise mit mir über das Thema der Arbeit fachlich gestritten haben. Jeder hat mit seinen Anmerkungen und Ideen seinen Anteil an der Arbeit.

Allen Freunden, Bekannten und Verwandten, die mich in den letzten Monaten vielleicht als angespannt oder wenig flexibel im Umgang mit gemeinsamer Zeit erlebt haben, sei gedankt für ihr Verständnis sowie für viele aufmunternde Worte und Taten. Ohne einen solchen Halt wäre die Arbeit nicht fertig geworden.

Im gesamten Dokument wird „der Planer“, „der Nutzer“ oder „der Architekt“ allein aus Gründen der einfachen Lesbarkeit nur in der männlichen Form gebraucht. Selbstverständlich gelten die getroffenen Aussagen ebenso für Planerinnen, Nutzerinnen und Architekttinnen, welche nach einer Statistik der Bundesarchitektenkammer vom 01.01.2007 immerhin ein Viertel des Berufsstands ausmachen.