
Bauhaus University Weimar
Faculty of Civil Engineering
Faculty of Media
Chair of Intelligent Technical Design
Study Program Digital Engineering

Master Thesis on

Automated Approach for Building Information Modelling of Crack
Damages via Image Segmentation and Image-based 3D Recon-
struction

Submitted by
Mohamed Said Helmy Alabassy
Born on 23.09.1992 in Rosetta, Beheira Governorate, Egypt
Immatriculation Number 119530
mohamed.said.helmy.alabassy@uni-weimar.de

Examiners
Chair of Intelligent Technical Design
Prof. Dr.-Ing. Christian Koch
c.koch@uni-weimar.de

MSc. Mathias Artus
mathias.artus@uni-weimar.de

Weimar, December 18, 2020

Acknowledgement

Many thanks to Mr. Mathias Artus from the Chair of Intelligent Technical Design for
guidance and critical comments, Ms. Mariya Kaisheva from the Chair of Computer Vision
for helpful references recommendations. Last but not least, my deepest gratitude goes
to my family for their ceaseless support and encouragement.

3

Statutory Declaration

I hereby affirm that the master’s thesis at hand is my own written work and that I have used
no other sources and aids other than those indicated. All passages, which are quoted from
publications or paraphrased from these sources, are indicated as such, i.e. mentioned,
cited and attributed. This thesis was not submitted in the same or in a substantially similar
version, not even partially, to another examination board and was not published elsewhere.

Place, Date Mohamed Said Helmy Alabassy

Weimar, December 18, 2020

5

6

Abstract

As machine vision-based inspection methods in the field of Structural Health Monitoring
(SHM) continue to advance, the need for integrating resulting inspection and mainte-
nance data into a centralised building information model for structures notably grows.
Consequently, the modelling of found damages based on those images in a streamlined
automated manner becomes increasingly important, not just for saving time and money
spent on updating the model to include the latest information gathered through each
inspection, but also to easily visualise them, provide all stakeholders involved with a
comprehensive digital representation containing all the necessary information to fully
understand the structure’s current condition, keep track of any progressing deterioration,
estimate the reduced load bearing capacity of the damaged element in the model or
simulate the propagation of cracks to make well-informed decisions interactively and fa-
cilitate maintenance actions that optimally extend the service life of the structure. Though
significant progress has been recently made in information modelling of damages, the
current devised methods for the geometrical modelling approach are cumbersome and
time consuming to implement in a full-scale model. For crack damages, an approach for
a feasible automated image-based modelling is proposed utilising neural networks, classi-
cal computer vision and computational geometry techniques with the aim of creating valid
shapes to be introduced into the information model, including related semantic properties
and attributes from inspection data (e.g., width, depth, length, date, etc.). The creation
of such models opens the door for further possible uses ranging from more accurate
structural analysis possibilities to simulation of damage propagation in model elements,
estimating deterioration rates and allows for better documentation, data sharing, and
realistic visualisation of damages in a 3D model.

7

Contents

1 Introduction 19
1.1 Problem Statement . 19
1.2 Motivations . 20
1.3 Research objectives and target . 21
1.4 Methodology . 21
1.5 Roadmap . 22

2 Background 23
2.1 Projective Geometry . 23
2.2 Transfer Learning for TernausNet16 . 26
2.3 Global Registration using ICP . 27

3 Related Work 29
3.1 Cracks Detection, Segmentation and Properties Retrieval 29
3.2 Spalls Detection, Segmentation and Properties Retrieval 31
3.3 Vectorization and Retrieval of Crack Properties 32
3.4 Conversion from Camera’s Pixel Units to a Metric World Coordinate

System and Alignment to a 3D Model . 34
3.5 Crack Shapes Construction . 37

4 Methods for Modelling Cracks’ Geometries and Application on Use Case 39
4.1 Camera Calibration and Distortion Correction 40
4.2 Point Cloud Reconstruction via SFM . 41
4.3 Pixelwise Segmentation . 43
4.4 Vectorisation . 46
4.5 Conversion from Pixel Units to 3D World Coordinates 58
4.6 Cracks Shapes 3D Reconstruction . 66
4.7 Adding Shapes into Model . 67

5 Evaluation of Results 73
5.1 Camera Calibration . 73
5.2 3D Reconstruction via OpenSfM . 73
5.3 The Retrained TernausNet16 Model . 74
5.4 Validating Estimated Width Measurements 75
5.5 Quality of Meshing . 75
5.6 Point Cloud Registration via GoICP . 76
5.7 IfcVoidingFeature vs. Blender’s Boolean Difference Modifier 79

6 Summary and Concluding Remarks 81
6.1 Summary . 81

9

6.2 Technical Challenges and Observed Shortcomings 82
6.3 Suggestions for Further Improvements and Future Work 83
6.4 Conclusion . 84

Bibliography 87

A Appendix 99
A.1 Diagrams explaining the developed Python Projects for the Workflow . . 99
A.2 Additional Online Material . 100

10

List of Figures

2.1 Various coordinate systems in camera perspective model. 25
2.2 Architecture of the TernausNet16. Picture taken from the original paper [86]. 27
2.3 Meaning of Intersection over Union (i.e., Jaccard index) commonly used

as a similarity measure. 28

4.1 General workflow for modelling volumetric geometry of damages. 39
4.2 Detailed workflow for modelling volumetric geometry of cracks. 40
4.3 Detected corners of the checkerboard pattern used for calibration shown in

the upper image for distortion parameters estimation in MATLAB, the same
calibration image is undistorted based on 2 radial distortion parameters
calibration model in the lower left image, and on 3 radial and 2 tangential
distortion parameters in the lower right image respectively. 41

4.4 Folder structure for an OpenSfM project on the left and a screenshot from
the JavaScript viewer for a 3D reconstructed point cloud of the cracks
modelling use case on the right. 43

4.5 Exemplary image from the datasets used for training DeepCrack CNN [113]
(i.e., dataset: CRKWH100, image: 1080.png) on the left, its segmentation
mask on the upper right, the mask shown in red overlaid on top of the
image in the lower left image, and a zoom in crop of the overlaid image at
the lower right. 44

4.6 A plot showing the Jaccard index and validation loss values over all training
epochs for the 5 folds used. 46

4.7 An example result from the retrained TernausNet model for pixel-wise
segmentation. The original RGB image on the left, the prediction greyscale
map in the middle, and an overlay of both images together on the right
displayed respectively. 46

4.8 Thresholding the cracks foreground in the prediction mask to pixels only
above the intensity value of 127 results in a binary segmentation map used. 47

4.9 Skeletonisation algorithm of Guo-Hall on thresholded crack segmentation
mask in Figure 4.7. 48

4.10 Skeletonisation algorithm of Lee on thresholded crack segmentation mask
in Figure 4.7. 49

4.11 Skeletonisation algorithm of Zhang-Suen on thresholded crack segmenta-
tion mask in Figure 4.7. 49

4.12 Various kernels used to detect endpoints using Hit-and-Miss algorithm. . . 50
4.13 Extracted endpoints of skeletonised crack patterns using a Hit-and-Miss

algorithm. 50

11

4.14 Example of an intersection problem at the junction [12,5544], where
�r12,5544s P (�0 is a nominal intersection point. However, setting the inten-
sity value of the pixel at this index to zero doesn’t split the crack pattern into
separate segments, as the pixel at index [11,5544], where �r11,5544s P (�1,
is considered another junction point that does split the cracking pattern
when set to zero value. 52

4.15 Sets of kernels 1 and 2 respectively used to detect junctions using
Hit-and-Miss algorithm. 52

4.16 Extracted junctions of skeletonised crack patterns using a Hit-and-Miss
algorithm. 53

4.17 Explanation of algorithm to split cracks’ networks at a junction in (�2. . . . 54
4.18 Labelled segments of a skeletonised segmentation map for cracks as-

signed a random colour per label. 55
4.19 Example of typical artefacts at edges on the left and sudden higher cur-

vature regions resulting from skeletonisation algorithms on the right. . . . 55
4.20 Resulting lines simplification from Ramer–Douglas–Peucker algorithm

with n=7 pixels. 56
4.21 Resulting lines’ simplification from Visvalingam-Wyatt Algorithm with n=12

pixels. 56
4.22 A greyscale image of the output map from the EDT operator 57
4.23 Based on euclidean distances, the first end points of the width measure-

ments could be determined and plotted in yellow. 57
4.24 Based on the euclidean distance transform map and position of first end

points of the width measurements, the second end points could be deter-
mined by extrapolation and plotted in cyan. 59

4.25 The undistorted raw depth map in greyscale for the candidate cracks image 61
4.26 The vertices of the simplified polylines representing the cracks’ skeletons

back-projected into 3D world coordinate units with randomly assigned
colour for each segment. 61

4.27 The backwards projected points of the simplified polylines correctly align
with the parent point cloud when overlaid together from the front and back
side. 62

4.28 Screenshots showing the normals of the vertices in the point cloud correctly
re-estimated from the frontside and backside of the mesh respectively. . . 63

4.29 Measurements taken on site and from the point cloud to estimate the
scaling factor. 63

4.30 Inconsistency in initial estimation of normals to the point cloud that has to
be corrected before taking further steps into the modelling workflow. . . . 63

4.31 Modelling the pavement to actual measurements in mm in Autodesk Revit. 64
4.32 Meshing the shapes of the IFC model in Blender required for registration

through ICP. 64
4.33 Resulting alignment of the source point cloud from the GoICP registration

is shown in green, the original decimated source point cloud in real colours
of the mesh and the point cloud of the 3D model in red. 65

4.34 The process of modelling a crack shape by extruding a triangular profile
along an exemplary 3-vertices spline passing through the centres of mass
of each profile calculated at each vertex. 68

12

4.35 Location of the selected use case to be modelled in the simplified lines
map created from Section 4.4.7. 69

4.36 A screenshot showing the location of the polylines’ vertices of the use
case overlaid onto the point cloud. 69

4.37 Constructing the shape of a cracking pattern at a junction with a profile
extruded along a spline passing through the centres of mass of all profiles
calculated at each vertex. 70

4.38 Constructing the shape of a cracking pattern at a junction with forced ruled
surfaces through each two profiles. 70

4.39 Final results of the automated modelling workflow for crack damages
displayed in usBIM IFC viewer. 71

4.40 Excerpt of the IFC model showing the attributes used to model the cracks
damage. 72

4.41 IfcVoidingFeature used to model the cracks damage geometrically and its
relationship assignment based on the published use case by Artus and
Koch [7]. 72

5.1 Resulting segmentation map by inference from the retrained TernausNet
overlaid on test images. 74

5.2 Measuring the misalignment of the modelled cracks’ shapes between the
highest protruded point in red and the pavement surface in grey that results
in a slight protrusion from the surface of the pavement. 76

5.3 Taking measurements for cracks’ widths on site and similarly from the
modelled crack shapes. 77

5.4 Gamma, SIGE, and SICN quality metrics of the meshed models retrieved
from Gmsh are shown lying within their valid intervals respectively. 78

5.5 A window marking the location of the use case modelled in the candidate
image of the pavement in the upper image, and the crack voids modelled
in the imported IFC model with Blender using a boolean difference modifier. 79

6.1 Displayed overlapping regions of the crack shapes at junctions bordered
in red, which were left on purpose in the shapes construction algorithm
and handled only with a boolean union before exporting the whole pattern,
till a proper way of modelling that satisfies fracture mechanics conditions
is identified. 83

A.1 A class UML diagram for vectorisation. 99
A.2 A class UML diagram for the backwards projection project. 100
A.3 A class UML diagram for estimating correct normals project. 100
A.4 A class UML diagram for the ICP project. 100
A.5 A class UML diagram for shape construction project. 100
A.6 A sequence diagram showing the interaction between different classes in

Python. 101

13

List of Tables

5.1 Estimated errors for the camera calibration of a perspective model with 2
radial distortion coefficients. 73

5.2 Execution time taken for all commands of the OpenSfM 3D reconstruction. 74
5.3 The IoU (i.e., Jaccard index) and F1 score (i.e., Dice coefficient) values of

the CNNs evaluated on the CRKWH100 and CrackLS315 datasets from
Zou et al. [113]. 75

5.4 Estimated relative error in average width measurements from the modelled
crack shapes to the actual width values on site. 75

15

Acronyms

ANN Artificial Neural Network. 29

API Application Programming Interface. 66

BIM Building Information Modeling. 19

BnB Branch-and-Bound. 28

CAD Computer Aided Design. 66

CNN Convolutional Neural Network. 21

CSG Constructive Solid Geometry. 20

DIC Digital Image Correlation. 29

DoG Difference-of-Gaussians. 34

DTM Distance Transform Method. 31

EDT Euclidean Distance Transform. 56

FDCT Fast Discrete Curvelet Transform. 29

FFT Fast Fourier Transform. 30

FHT Fast Haar Transform. 30

FLANN Fast Approximate Nearest Neighbour. 34

FoV Field of View. 82

GCPs Ground Control Points. 39

GLCM Grey Level Co-occurrence Matrix. 29

GNSS Global Navigation Satellite System. 66

GPR Ground Penetrating Radar. 33

GPS Global Positioning System. 39

GUI Graphical User Interface. 35

HMS Hit-and-Miss. 48

ICP Iterative Closest Point. 27

IFC Industry Foundation Classes. 19

IoU Intersection Over Union. 27

17

Acronyms

LoG Laplacian of Gaussian. 30

MAPE Mean Absolute Percent Error. 34

NDT Non Destructive Testing. 33

PL-SGDLR Piecewise Linear Stochastic Gradient Descent Logistic Regression. 32

RANSAC Random Sample Consensus. 34

RBM Restricted Boltzmann Machine. 30

RDP Ramer–Douglas–Peucker. 55

RPN Region Proposal Network. 31

RTK Real-Time Keinematics. 66

SFM Structure from Motion. 34

SHM Structural Health Monitoring. 7

SICN Signed Inverse Condition Number. 76

SIFT Scale-Invariant Feature Transform. 34

SIGE Signed Inverse Gradient Error. 76

SURF Speeded-Up Robust Features. 34

TuFF Tubularity Flow Field. 31

UAVs Unmanned Aerial Vehichles. 20

VO Visual Odometry. 34

VR Virtual Reality. 21

VSLAM Visual Simultaneous Localisation and Mapping. 34

XFEM Extended Finite Element Method. 82

18

1 Introduction

This chapter sets forth some introductory insight into the topic of the thesis, stating the
problem that the conducted research is trying to solve, whilst reasoning the motivation
behind carrying it out and formulates the objectives to be reached and its potential
contribution for future work.

1.1 Problem Statement

Looking at the latest progress of information modelling of damages, there exist two
approaches for modelling. The first of which is largely based on damage images textured
on top of the model, as what has been successfully carried out in Industry Foundation
Classes (IFC) data model [39]. While the authors undoubtedly demonstrated the capability
of IFC models to handle images, most IFC viewers currently available are not yet capable
of viewing them properly. The textures still serve an important purpose of documenting
semantic attributes collected through the inspection process and visualising the damage
textures within a centralized model, yet cannot provide detailed information about the
actual damage geometry. The latter approach relies on modelling damage shapes’
geometries manually and inserting them into the IFC model, as demonstrated by [7].

This second approach is most suited for damage types such as cracks and spalls, where
the shapes could be subtracted from the original building element containing them in
the model. Some early methods already exist for automated geometric construction of
crack shapes in literature. However, they are neither applied within a Building Information
Modeling (BIM) context [21, 65] nor reliable to produce valid shapes at high curvatures.
For spalling shapes, the aforementioned proposal [42] requires almost entirely a high
level of human interference through the whole modelling process and the alignment of
the shapes to the model is vaguely described.

The prototype implementation based on images in the exemplary use cases of spalling
and cracks published by [7, 8] proved the feasibility of such approach, albeit the way
of implementation is extremely time consuming, relied entirely on human experience
and interaction in every single step throughout the shapes reconstruction, and was not
always guaranteed to produce valid shapes for the damages in the end, which rendered it
inefficiently applicable in a full-scale central BIM project. It showed however mixed results
when viewed in IFC viewers. That discrepancy could either be attributed to problems
from geometric kernels of IFC viewers in modelling such free form voided shapes of
damages or the validity of the shapes per se to be modelled appropriately as both of
which are still open to further investigation.

19

1 Introduction

A similar, yet more advanced, approach was proposed by Isailović et al. [42] for modelling
spallings based on point clouds generated from LASER scanning to 3D reconstruct the
constitutive part of the damaged building element in the information model. However, that
proposal still falls short of the automation level proposed in this thesis, as it required a high
level of human expertise intervening throughout the whole process for closing openings in
the meshed point cloud, alignment of the meshed point cloud from the LASER scanning
to the as is mesh, and solidifying the relevant damaged regions of interest from the
scanned point cloud necessary to perform a Constructive Solid Geometry (CSG) boolean
difference operation. The process of conversion from a meshed surface to a closed
surface by scaling cannot possibly result in a solid shape, without an intermediary step,
like thickening or extrusion, to make it possible; something that was never mentioned
in said article. Moreover, the scaling up of shapes by 2-5% approach as described, is
flawed, as it changes the dimensions of the constructed geometries, rendering them,
apart from the visual enrichment of the model, useless for other more practical purposes
(e.g., to calculate volumes and surface areas or compare them to previous states), since
the scaled up shapes no longer match the real world dimensions of the structure.

1.2 Motivations

While cost-time analyses between traditional and Unmanned Aerial Vehichles (UAVs)
assisted inspection or other methods vary in results depending on the individual structure
inspected, its size, location, the level of operations’ interruption, and required permits for
drones operation, the general trend from several case studies [15, 96] suggests roughly
cost savings of 40-60% and 40% on average respectively. For smaller structures that
don’t require traffic control or access equipment, the cost of non-traditional inspection
methods may be slightly higher but with improved inspection deliverables. Though time-
savings on site in the data acquisition phase of the presented inspections were achieved,
the post-processing of acquired images and data still required a significant amount of
time, lowering the overall total time-savings that could be achieved throughout the whole
inspection process. With the increasing loads of imagery data acquired, there is a need
for further development in automated methods for processing, analysis and visualisation
of inspection data that could help reduce both time and cost. This study tries to find a
balanced approach to reduce human intervention in time consuming modelling processes
prone to human errors, saving time and costs of repetitive remodelling and manually
documenting and updating ever changing inspection information to be included in a
centralised as-built model on a regular basis by automating the redundant repetitive tasks
of modelling damage shapes, yet it still maintains a Human-in-the-loop engagement
necessary for operating the workflow optimally, setting and modifying parameters, and
monitoring the results of each step to ensure reliable end-results.

1.2.1 Potential Benefits and Uses for Damages’ Geometries

Among the most important reasons driving the interest towards geometric modelling of
damages are:

20

1.3 Research objectives and target

• Acquiring the geometric representation of such damages should enrich the cen-
tralised information models for buildings with detailed semantics and related in-
spection information

• It could provide a reliable documentation format digitally accessible at any time, if
needed, from the 3D models in proprietary formats, as well as in the IFC neutral
data format as published in [12].

• Collecting the geometric data of damages and updating them regularly after each
inspection in a centralised BIM could be used to compare the current state of
structures to that of previously recorded inspections easily, that would be useful to
probabilistically estimate deterioration rates and predict the future state of structures.

• It offers better enhanced visualisation possibilities of damaged building elements
in 3D models and in a Virtual Reality (VR) environment.

• With the availability of realistic damage shapes modelled based on the building’s
actual condition and their location within the information model, they could be used
to digitally simulate the currents state of structure to assess the structural safety like
propagation analysis for cracks, or estimate reductions in load bearing capacities.

• It has the potential to facilitate further automation steps in condition assessment of
the relevant damaged elements and the whole structure.

1.3 Research objectives and target

The 3D image-based reconstruction of valid shapes of damages (e.g., without non-
manifold edges, self-intersecting, non-manifold and unreferenced vertices, etc.) is a
primary goal for the topic of this thesis. A successful implementation should allow better
interactive visualisation with the 3D model, easier access to the semantic information
of modelled damages for retrieval, comparison, analysis and manipulation if need be,
and open the door for further advancement in automating the process of determining
the structural safety by providing full information about their geometric shapes and their
location in the 3D model for simulating propagation and monitoring deterioration from
previous state and better assess the condition of damaged structures.

1.4 Methodology

In order to facilitate the geometrical modelling of damages with minimal human involve-
ment as possible, both well-established methods can be utilised along with the latest
available models of Convolutional Neural Network (CNN) to construct damage shapes
with a main focus on compatibility with the open and neutral data format IFC for BIM.
Pixel-based crack detection and segmentation from images has been reliably predicted
in the last few years using neural networks [23, 54, 56, 59, 113], like the available trained
DeepCrack Models [59, 113] or the model architecture used for CrackNausNet [10]. Vec-
torising the resulting feature maps can be achieved by utilising classical image analysis

21

1 Introduction

algorithms to get the centre-poly-line of the crack and photgrammetric computer vision
algorithms to retrieve the relevant depth, location and orientation information. The shapes
can be created given the known depth and profile shape to construct its geometry and
realign it correctly to the 3D model. Using the XbimToolkit, an IfcBuildingElementProxy
can be created utilising the shape representation of the constructed damage shape, then
placed correctly in its specified location in the model then subtracted to generate voided
shapes in the IFC model using the IfcVoidingFeature. Further enrichment of the model
with inspection data and derived attributes from the modelled shapes of damages could
be added as implemented in [7, 8, 12, 39, 42]

1.5 Roadmap

The thesis’ structure is ordered according to the sequence of steps taken in the imple-
mentation of use cases and is organised as follows:
Chapter 2 lays out the required background on the topic of this research explaining the
concepts of techniques and tools utilised, and elaborates on some necessary details
needed, to give a clearer picture of the methodological approach towards the implemen-
tation.
Chapter 3 covers the latest related research published so far relevant to the topic of the
thesis.
Chapter 4 offers a detailed view of the implementation on the use case for modelling
crack damages.
Chapter 5 reviews the results of the proposed modelling approach for the purpose of
this thesis objectively as a proof of concept and goes through the steps taken to verify
and validate them.
Chapter 6 provides a summary of the whole research implemented for the purpose of this
study, offers concluding remarks and delivers some remarks on difficulties encountered
during the implementation of the use cases, suggests further steps that could be taken
to improve on the used approach, as well as the potential work of relevant interest to be
pursued in the future.

22

2 Background

In this chapter background information are introduced on topics implemented in this
research explaining the concepts of techniques and tools utilised, and elaborates on
some necessary mathematical details needed, to give a clearer picture throughout the
rest of the thesis.

2.1 Projective Geometry

This term is mainly used to define the mathematical relationship between 2D images
and their 3D scene. In contrast to classical euclidean geometry, it introduces an extra
dimension for free scaling, often denoted as _>AF in literature. Thus a 3D point in
euclidean space r-,., /s) would be defined by an extra parameter as r-1, -2, -3, -4s)

such that - “ -1{-4, . “ -2{-4, / “ -3{-4, where -4 ‰ 0. This homogeneous
scaling factor solves the limitations faced in euclidean space with cases such as defining
vanishing points at infinity or projecting 3D points onto image planes.

2.1.1 Calibration

It is the process of estimating the intrinsic parameters of a camera essential for 3D
reconstruction by using a checkerboard pattern. Those parameters are:

• c: principal distance 2 is the perpendicular distance from the projection centre to
the image plane. This term is sometimes confused with the focal length; which is
the principal distance of the camera when focused at infinity.

•
`

2G , 2H
˘

: the position of principal point in pixels.

• s is the skew factor

• k, p: radial and tangential distortion parameters respectively.

It is essential not to underestimate the effect of distortion on the quality of 3D reconstructed
point clouds especial for the pixels closer to the borders of the image where the distortion
effect is at greatest. Knowing the estimated distortion parameters from calibration, the
images could be corrected using the undistortion formulae defined as in Equations (2.1)
and (2.2) from radial and tangential distortions [93].

(2.1)
GD “ G3`pG3´G2qp:1A

2`:2A
4`...q`p?1pA2`2pG3 ´ G2q2q`2?2pG3´G2qpH3´H2qqp1`?3A

2`?4A
4q

23

2 Background

(2.2)
HD “ H3`pH3´H2qp:1A

2`:2A
4`...q`p2?1pG3´G2qpH3´H2q`?2pA2`2pH3 ´ H2q2qqp1`?3A

2`?4A
4q

where:

• pG3 , H3q is the undistorted image point as projected in image plane.

• pGD , HDq is the undistorted image point as projected by an ideal pinhole camera.

• pG2 , H2q is the distortion centre (i.e., usually the principal point).

• := is the =Cℎ radial distortion coefficient.

• ?= is the =Cℎ tangential distortion coefficient.

• A “
a

pG3 ´ G2q2 ` pH3 ´ H2q2

And the formulae in Equations (2.3) and (2.4) are used for correcting radial distortion
only [26].

(2.3) GD “ G2 `
G3 ´ G2

1 ` :1A2 ` :2A4 ` ...

(2.4) HD “ H2 `
H3 ´ H2

1 ` :1A2 ` :2A4 ` ...

2.1.2 Perspective Transformation

In order to establish the relationship between a pixel point in an image to its position in
3D world coordinates, a perspective transformation between all coordinate systems is
required. In a perspective camera model, there exist four coordinate systems involved
as shown in Figure 2.1, where:

• D, E are the pixel coordinates in an image.

• G, H, I are the coordinates in image plane.

• 3G, 3H are the translation components in x and y directions from the upper left
corner to the the origin in imag

• -, . , / are the 3D point coordinates in camera coordinate system.

• *, + , , are the coordinates of a 3D point in the world coordinates.

• 5G , 5H are the components of focal length in x and y directions respectively in pixel
units.

• B is the skew coefficient

• ' is the 3G3 rotation matrix.

• C is the translation vector.

24

2.1 Projective Geometry

• 2G, 2H is the principal point.

• 3G, 3H are the size of pixels.

• _ is the scaling factor.

Figure 2.1: Various coordinate systems in camera perspective model.

1. The pixel coordinate system of the image where pixel intensity values are stored
with the origin at the upper left corner.

2. The coordinate system of the image plane with the origin located at the intersection
point between the image plane and the optical axis of the camera (i.e., principal
point). The conversion equation between pixel coordinates and image plane co-
ordinates is shown in Equation (2.6). where p2G , 2Hq is the origin of image plane
defined in pixel coordinate system (i.e., principal point).

(2.5)
#

D “ G
3G

` 2G

E “ H

3H
` 2H

ñ

»

—

–

D

E

1

fi

ffi

fl
“

»

—

–

1{3G 0 2G

0 1{3H 2H

0 0 1

fi

ffi

fl

»

—

–

G

H

1

fi

ffi

fl
“

»

—

–

5G B 2G

0 5H 2H

0 0 1

fi

ffi

fl

3. The camera coordinate system where the optical centre is the origin the Z-axis
pointing towards the image plane, and is related to the world coordinate system
through a pose comprising of rotation and translation. The conversion between
camera coordinates system and image plane coordinates is defined in Equation (2.6)

(2.6)
#

G “ 5
-2

/2

H “ 5
.2
/2

ñ /2

»

—

–

G

H

1

fi

ffi

fl
“

»

—

–

5G 0 2G 0

0 5H 2H 0

0 0 1 0

fi

ffi

fl

»

—

—

—

–

-

.

/

1

fi

ffi

ffi

ffi

fl

25

2 Background

4. The world coordinate system (i.e., metric system in our case) that defines the
position of objects in our real life 3D metric system, where its relationship to the
camera coordinate system is defined by Equation (2.7).

(2.7)

»

—

—

—

–

-

-

/

1

fi

ffi

ffi

ffi

fl

“

«

' C)

0 1

ff

»

—

—

—

–

*

+

,

1

fi

ffi

ffi

ffi

fl

Hence, the transformation from world coordinates to pixel coordinates and vice versa
requires a conversion between the aforementioned four coordinate systems that can be
calculated as shown in Equation (2.8) when simplified.

(2.8) _ ¨ /

»

—

–

D

E

1

fi

ffi

fl
“

»

—

–

5G B 2G

0 5H 2H

0 0 1

fi

ffi

fl

«

) C)

0 1

ff

»

—

—

—

–

*

+

,

1

fi

ffi

ffi

ffi

fl

Equation (2.8) constitutes the formula for projecting a 3D point into a pixel coordinate
system of an image (i.e., forward-projection). However, to retrieve the 3D position of
a pixel ? using the inverse of the formula (i.e., backward-projection) only results in
calculating the ray from the camera centre to the pixel along which ? was projected
formulated in Equation (2.9) because Z remains unknown[99]. Several methods exist
to solve the problem of finding depth in images, either by using stereo photogrammetry
or by taking multiple images with sufficient overlap to to retrieve the missing depth by
triangulation. For the conducted research the latter approach was utilised to retrieve the
missing depth and back-project specific points of interest for damages into 3D space.

(2.9)

»

—

–

*

+

,

fi

ffi

fl
“ � ` _'´1 ´1?

2.2 Transfer Learning for TernausNet16

Image segmentation is a type of classification that predicts a class to each pixel in
the image. With several CNN architectures for image segmentation available, includ-
ing VGG, AlexNet, UNet, and GoogleNet for instance, the best segmentation metrics
published so far are that of TernausNet, albeit the segmentation task was for medical
robotic instruments. However the segmentation metrics published by Benz et al.[10] for
segmenting cracks and planking patterns successfuly by retraining the CNN by applying
transfer learning proves its viability for other segmentation tasks. The architecture of
the TernausNet shown in Figure 2.2 is mainly based on UNet modified with the first 16
layers of VGG network as its encoder. The pre-trained encoder speeds up convergence
even on datasets with different semantic features than that used for training it [40], as it
doesn’t need to be trained from scratch but rather through transfer learning. However,
the decoder that upsamples the intermediate feature map does require full training.

26

2.3 Global Registration using ICP

Figure 2.2: Architecture of the TernausNet16. Picture taken from the original paper [86].

In their implementation, the Jaccard index (i.e., Intersection Over Union (IoU)) was used
as the evaluation metric. Equation (2.10) defines the calculation formula for two sets
� and �, while Figure 2.3 provides a visual representation of its meaning on a Venn
Diagram.

(2.10) �p�, �q “
|� X �|

|� Y �|
“

|� X �|

|�| ` |�| ´ |� X �|

The aforementioned expression could be formulated for diecrete objects (i.e., pixels) as
shown in Equation (2.11), where H8 andĤ8 are the binary labels and prediction probability
of any pixel 8.

(2.11) � “
1

=

=
ÿ

8“1

ˆ

H8 Ĥ8

H8 ` Ĥ8 ´ H8 Ĥ8

˙

Additionally, as in Equation (2.12), the binary cross entropy � was defined as the common
pixel classification loss function.

(2.12) ! “ � ´ log 9

2.3 Global Registration using ICP

While most of the available Iterative Closest Point (ICP) algorithms rely on a good initial
guess to to converge to a solution, the outcome is highly dependable on the initial
alignment. Libraries like Open3D rely on a rough alignment for the initial guess and

27

2 Background

Figure 2.3: Meaning of Intersection over Union (i.e., Jaccard index) commonly used as
a similarity measure.

then initialises a second step to refine the coarse initial alignment. Yet still it does not
guarantee the algorithm will converge to a global minimum and often stop when getting
stuck at local minima.

After reviewing the available algorithms, GoICP [101] was chosen for its robustness
at global registration. The algorithm implements the conventional ICP algorithm as a
second step within a Branch-and-Bound (BnB) method to search for a global optimum
iteratively. When a better solution is found, the ICP is initialised to reduce the objective
function defined in Equation (2.13), then the algorithm use the updated upper bound
from the ICP to continue with the BnB till convergence [100]. However, GoICP does not
include preprocessing methods to normalise, and downsample the source and target
point clouds into voxel grids. Other external packages in python such as Open3D and
Pyntcloud could be utilised for the downsample voxelisation.

(2.13)
#
ÿ

8“1

48p', Cq
2 “

#
ÿ

8“1

›

›'G8 ` C ´ H 9˚

›

›

2
, Fℎ4A4 9˚ “ arg min

9Pt1,..,"u

›

›'G8 ` C ´ H 9˚

›

›

such that:

• R is the rotation

• t is the translation

• X, Y are the source and target point coordinates respectively, where - “ tG8u, 8 “
1, ..., # and . “ tH 9u, 9 “ 1, ..., ", @G8 , H 9 P '3

28

3 Related Work

3.1 Cracks Detection, Segmentation and Properties Retrieval

The traditional approach that predates the latest methods currently used for crack de-
tection and segmentation relied heavily on image processing techniques of which the
review conducted by Zakeri et al. for image-based techniques for crack detection, classi-
fication and quantification in asphalt pavements [104], while Mohan et al. [67] compiled
a collective review concisely explaining those various image processing techniques used
in engineering structures mainly of concrete and to a lesser extent of steel.

3.1.1 Image Processing Methods

Nazaryan et al. relied on the centre of gravity (i.e., centroid) of the images’ area to
calculate the width and depth of cracks [70]. Meanwhile, anisotropic diffusion filtering
at the pixel level was implemented in [6, 37] to smooth out noise and artefacts in the
background whilst preserving the crack defect contours; thus, improving the segmentation
of cracks from a system of images. The load differential method developed by Chen et
al. [17] resorted to comparing ultrasonic guided wave signals under the same damage
state independent of past recorded damage free data to avoid baseline subtraction under
mismatched conditions. The Digital Image Correlation (DIC) method utilised in [3, 14,
35, 41] identified each pixel in a subsequent set of images by examining its neighbouring
pixels to measure the full-field strains and displacement of loaded three dimensional
objects in addition to visualising the resulting defects. Gunkel et al. [30] developed
a package written in R that allowed cracks detection and statistical analysis of their
quantities using a shortest path algorithm, where crack clusters were predicted from
connected components of pixels given a minimum threshold value, then the cracks’ paths
were determined by Dijkstra’s algorithm. Image based multi-directional crack detection
approach utilising Gabor filter was proposed by Glud et al. [29] requiring 5 user-inputs
that are dependent on human visual apprehension. The Fast Discrete Curvelet Transform
(FDCT) was first utilised in low contrast and dark coloured images along with texture
analysis using the Grey Level Co-occurrence Matrix (GLCM) [57] to automatically detect
cracks. GLCM was also implemented in [45] in combination with an Artificial Neural
Network (ANN) classifier to estimate the cracks’ length and width.
Pereira et al. [75] have proposed using two image processing algorithms for crack
detection from images captured by UAVs. Their first used edge detection algorithm
was based on the discrete differentiation Sobel operator [87], where the corresponding
gradient vector or the norm of this vector was calculated for each image pixel. Their
second algorithm was a non-parametric filter based on Bayes algorithm, the Particulate

29

3 Related Work

Filter [90] that seeks to relate the probability of an image segment to be characterised by a
crack or not, based on pixel intensity and the number of pixels in its neighbourhood. Last
but not least, Abdel-Qader et al. [1] compared the effectiveness of four edge detection
algorithms on crack images of a bridge surface by using Fast Fourier Transform (FFT),
Sobel filter, Fast Haar Transform (FHT) and Canny filter. The FHT is relatively new but it
was shown to be significantly more reliable than the other three edge-detection techniques
in identifying cracks. FHT transform decomposes the image into low-frequency and
high-frequency components. This process is followed by isolating those high-frequency
coefficients from which the edge features of an image are identified.

3.1.2 Machine Learning Methods

On the other hand, the rapidly advancing approach for crack detection using machine
learning methods has gained more popularity in the last few years, where its outstand-
ing results compared to some of the aforementioned methods [71] encourages the
replacement of the preceding traditional methods [53]. Dorafshan et al. evaluated the
performance of six edge detectors (i.e., Roberts, Prewitts, Sobel, Laplacian of Gaussian
(LoG) in spatial domain, and both Butterworth and Gaussian filters in frequency domain)
and compared them to the performance of a fully trained AlexNet CNN concluding su-
perior results to the latter and further proposed a hybrid detector in which sub-images
were first labelled by a trained CNN then LoG edge detector was only applied on the
sub-images identified as � class to reduce the noise ratio [22].

Zhang et al. [105] proposed a CNN model for binary classification of image patches
containing cracks leveraging deep learning based detectors that was successfully applied
to images with complex background captured using a smartphone. Xu et al. [98] proposed
another CNN structure based on a Restricted Boltzmann Machine (RBM) encoder for
crack identification and extraction of comprising image windows containing cracks with a
complex background. Fan et al. proposed another CNN structure for classifying crack
images in addition to an adaptive thresholding method by searching for a threshold along
the principal diagonal of the 2D histogram that stores the intensity of each pixel and the
mean intensity of its neigbourhood using k-mean clustering [24].

The DeepCrack implementation by Zou et al. returned results for multiple scales of the
input, which were eventually fused in a 1 x 1 convolutional layer, where both an encoder
and a decoder contributed to scales corresponding to the pooling or deconvolutional
stage respectively and the cross-entropy loss was adapted to incorporate losses on
individual scale levels [113]. Comparably, the CNN model proposed by Liu et al. [59] for
a CNN named DeepCrack computed the cross-entropy loss on the side-outputs of each
scaled level then applied conditional random fields and guided filtering to reach a fused
ground truth with no explicit decoder learned.

Benz et al. [10] presented an expanded approach by applying transfer learning for crack
segmentation on the model of TernausNet that is per se based on the architecture of the
UNet. The implemented CNN named CrackNausNet could learn separate representations
of crack and planking by introducing a third class for planking patterns.

30

3.2 Spalls Detection, Segmentation and Properties Retrieval

Kang et al. [46] proposed a crack detection, localisation and quantification method utilising
a three step algorithm. First, a faster proposal region convolutional neural network (Faster
R-CNN) was used to detect crack regions. The network contained two different networks:
a Region Proposal Network (RPN) and a fast region-based convolutional network (Fast
R-CNN) [28]. The RPN provided possible object locations using various bounding
box sizes, and as a classifier, the Fast R-CNN proposed the probability of the object.
Then, the determined windows were inputted into the modified Tubularity Flow Field
(TuFF) [69] algorithm for crack segmentation at the pixel level. Finally, the segmented
cracks were processed by the modified Distance Transform Method (DTM) to measure
their thicknesses and lengths.

3.2 Spalls Detection, Segmentation and Properties Retrieval

Paal et al. [73] proposed a method to automatically detect spalled regions on the surface
of reinforced concrete columns and measure their properties from image data. The region
of spalling was first isolated using a local entropy-based thresholding algorithm, then
the exposure of longitudinal reinforcement (i.e., depth of spalling into the column) and
length of spalling along the column were measured using a global adaptive thresholding
algorithm in conjunction with image processing methods for template matching and
morphological operations. Their method was tested on a a set of images for damaged
RC columns, indicating its validity against manual measurements.

They later improved on their work [73] by adapting the aforementioned algorithms for
spalling detection and property retrieval to sufficiently detect the absence of spalled
regions on concrete surfaces and detect transverse reinforcement and distinguish it
from longitudinal reinforcement. Those enhancements enabled a better classification
based on contextual information from depth retrieval pertaining to the amount and type
of reinforcement, which is exposed into one of five respective categories: no spalling,
spalling of concrete cover, no exposure of reinforcement, spalling which exposes trans-
verse reinforcement, spalling which exposes longitudinal reinforcement, and spalling of
concrete which exposes both transverse and longitudinal reinforcement.

Dawood et al. [20] developed an integrated model based on image processing techniques
and machine learning to automate consistent spalling detection and numerical represen-
tation of distress in subway networks. It consisted of a hybrid algorithm, an interactive
3D presentation, and supported by regression analysis to predict spalling depth. Images
were first preprocessed to denoise the image and enhance the crucial clues associated
with spalling, then a spalling processor was used to detect distress attributes, providing
3D visualisation model of the defect. The depth and severity of spalling distress were later
measured by means of regression analysis model in conjunction with image processing
techniques in intensity curve projection. Their implementation was validated through 75
images in which the regression model was able to satisfactory quantify the spalling depth
with an average validity of 93%.

31

3 Related Work

Wu et al. [97] proposed spalling detection method by analysing surface roughness
reconstructed from point clouds acquired by laser scanning. In the proposed method,
After filtering out the the points on ancillary facilities via circular scan-line fitting and large
residual error filtering. A roughness descriptor defined as the ratio of surface area to
the projected area for a unit, was used to identify high rough patches, then high rough
areas on the tunnel surface, such as bolt holes, and segment seams were filtered out as
well after classifying them using Hough transformation and similarity analysis to verify its
classification. The remaining patches were presumed to be concrete spalling.

Hoang et al [38] proposed another approach to identify image texture for feature extraction
and a Piecewise Linear Stochastic Gradient Descent Logistic Regression (PL-SGDLR) for
pattern recognition. Image texture obtained from statistical properties of colour channels,
GLCM, and grey-level run lengths were used as features to characterize surface condition
of a concrete wall. Based on these extracted features, PL-SGDLR was utilised to classify
the features into spalling and nonspalling classes.

3.3 Vectorization and Retrieval of Crack Properties

3.3.1 Crack Width, Length and Orientation

Dare et al. [19] proposed 2 algorithms named Route Finder and Fly Fisher to vectorize a
crack given the 2 endpoints are manually selected. Assuming the crack is a dark feature
in the image, the first algorithm advances step by step on a baseline connecting the two
selected points at predefined intervals searching for another point with the lowest intensity
value along a profile perpendicular to that line taking into account bilinear interpolation to
determine the intensity values off the regular pixel grid if any of the points is not at integer
pixel coordinates. The second algorithm (i.e., Fly Fisher) is an adaptation of the former
that starts instead from one of the selected points and steadily advances towards the
other by casting 100 radial profiles extended radially from -90˝ to +90˝ from the baseline.
Each profile consists of the sum of 9 intensity values spaced at one pixel intervals along
the profile, and the profile with the lowest sum is chosen as the best route.
The width measurement algorithm starts with the polyline representation of the afore-
mentioned delineation algorithms and casts a 21 pixels wide profile perpendicular to the
polyline and subsampled 10 times to generate an array of 210 discrete pixel values. A
threshold is then calculated to obtain the coordinates for the left and right edges of the
crack at subpixel resolution.

Yu et al. [102] proposed a method to calculate the length, thickness, and orientation of
concrete cracks through a graph search, given the 2 endpoints are manually selected.
Zhu et al. [111] proposed measuring the crack length as the equivalent to the crack
skeleton segment length, which is approximated by the height of a bounding box that
circumscribes crack skeleton segment points. The crack orientation is the crack skeleton
segment orientation, which is indicated by the direction of the bounding box. A distance
field that determines the nearest distance for each crack pixel in the map to its boundaries
is calculated using an Euclidean distance transform [13]. The average of the distance

32

3.3 Vectorization and Retrieval of Crack Properties

values of all skeleton points is calculated, and the doubled result denotes the average
crack width. Similarly, the double of the largest distance value that exists at skeleton
points represents the crack’s maximum width.

3.3.2 Crack Depth Estimation

Almost all Non Destructive Testing (NDT) methods utilised to detect surface cracks
in concrete structures depend on one or more of the following physical phenomena
(i.e., reflection, scatter, diffraction or wave conversion), where the crack depth might be
evaluated from either the directional characteristics of probe position, echo pulse (shape,
spectrum) or the time of flight [62].

The NDT methods could be further split into contact and non-contact types. Contact
type methods like impact echo [58, 80, 81] and ultrasonic pulse echo [83] can estimate
depths with relatively high accuracy. However, they are time consuming because of
their static operability limitations and requirement for accurate wave speed values in
the medium, which cannot be defined as an absolute constant for nonhomogeneous
anisotropic materials like concrete.

Non-contact methods such as Ground Penetrating Radar (GPR) provide high-speed field
inspection but with some limitations to the accuracy of location estimations to obtain
detailed information and cost due to the weight and complexity of the system configuration
to be operated dynamically while performing on-site and real-time data interpretations [34,
52, 79, 95, 103]. Meanwhile, laser systems are limited to the analysis of visible parts
due to the laser short wavelength properties, but descriptive results of laser sensors are
clearer than the implicit outputs of the GPR [16, 74, 94].

Zhang et al. [107] used the fast dense depth sampling of its target’s surface provided by
the Kinect V1 infrared depth sensor in addition to fusion technique to completely cover
the cracking surface due to the small region coverage of each Kinect frame. However, the
raw data contained significant amounts of high-frequency noises and missing captures
(e.g., holes on the surface). Yet the implementation proves that even commercial depth
sensors not primarily purposed for that goal could be relatively effective to detect the
cracking regions of interest in comparison with the results of LiDAR scans regardless of
the quality and resolution of both meshes at a fraction of the cost.

Even though image based techniques for crack detection has matured enough, till now it
is nearly impossible to directly quantify cracks’ depths through colour brightness changes
in photos. However, some indirect methods have been proposed.

• The report published by Lu et al. [62] is one of the earliest attempts to prove the
feasibility using an ANN to estimate the depth of cracks in pavements. The project
developed a prototype automatic system to estimate pavement crack depth. Using
high-accuracy laser sensors to measure the crack geometry including crack width,
edge slopes and depth. The obtained data was used along with further related
pavement information (e.g., type, age, material, function and traffic) to train the

33

3 Related Work

ANN to estimate the depth of cracks by inference. Based on the evaluation results,
the developed system was found to detect pavement crack depths with statistically
reliable accuracy and practical applicability.

• Adhikari et al. [2] proposed a supervised learning CNN model that predicted the
depth of cracks given the average width with acceptable performance of 1.66%
for the Mean Absolute Percent Error (MAPE). A drawback to such a model is the
presumption of specific width and predicted depth for an entire crack segment
which might not match the actual measurements of the cracks.

• Shehata et al. [84] utilised the Make3D toolbox developed by Saxena et al. [82] to
estimate cracks’ depths based on single still images taken with a KEYENCE (VK-
X100) laser scanning microscope of the tested steel specimens. Though the idea
itself is worthy of consideration, the use of the Make3D CNN model for inference of
crack images on a totally different scale and purpose than the original dataset used
for training it, might be a main contributing factor that should be taken into account
and further investigated for the inaccuracy and imprecision of their resulting depth
estimations to be validated.

3.4 Conversion from Camera’s Pixel Units to a Metric World
Coordinate System and Alignment to a 3D Model

3.4.1 Features Detection and Matching

Several approaches exist for estimating camera motion based on image-to-image regis-
tration of a scene including Structure from Motion (SFM), Visual Odometry (VO), and
Visual Simultaneous Localisation and Mapping (VSLAM). However, only the SFM ap-
proach will be the covered in this review as it would be solely adopted for the purpose of
this research. This technique is used to infer 3D structures and motion of objects from
2D transformations of their projective images without foreknown information of depth
and was formulated by Shimon Ullman [91, 92]. To find matching points between image
sequences, features such as corner points and edges are tracked between them. Several
feature detectors are available for that purpose such as the Speeded-Up Robust Features
(SURF) [9], where a Hessian matrix-based blob detector is used to calculate the sums of
gradient components and the sums of their absolute values are used. Another algorithm
is the Scale-Invariant Feature Transform (SIFT), which utilises the maxima of a pyramid
of Difference-of-Gaussians (DoG) as features to calculate a dominant gradient, then the
descriptor is rotated to match that orientation making it rotation-invariant [61]. It has a
slower performance for detecting features than the SURF, albeit with higher accuracy in
feature positions. [47]

The features detected from all the images could then be matched by any of the match-
ing algorithms that track features from one image to another such as the Kanade–Lu-
cas–Tomasi tracker [63] or the Fast Approximate Nearest Neighbour (FLANN) feature
matching based on the implementation published by Muja et al. [68]. To remove outliers
of incorrectly matched features, the Random Sample Consensus (RANSAC) algorithm is

34

3.4 Conversion from Camera’s Pixel Units to a Metric World Coordinate System and Alignment to
a 3D Model

commonly used, which is a probabilistic optimisation algorithm that randomly chooses
7 matches (i.e., consensus set), fits a fundamental matrix � using the conditions of
epipolar geometry and evaluates it on the rest. The algorithm terminates either after
a predefined number of iterations or if the model explains a predetermined number of
matches well [66].

3.4.2 Linear Triangulation

It is used to calculate the relative 3D positions of points from image pairs, knowing the
detected features enables the determination of the relative orientation of each pair of
images with the fundamental matrix �. Through the definition of corresponding normal
and skewed projection matrices by means of the known � matrix, a function for the
linear triangulation of projective object points to remove different scaling factors of both
projections could be realized to fit the epipolar geometry. A spatial 3D Homography matrix
� could then be determined to transform projective object points in the first projective
reconstruction to the corresponding Euclidean object points in the 3D Model. Such
transformation applies as well to all object points of the projective reconstruction [36].

3.4.3 Bundle Adjustment

It is considered almost always the last step of every feature-based 3D reconstruction by
refining a visual reconstruction to produce a common optimal 3D structure and viewing
parameters (i.e., intrinsic and extrinsic camera parameters). The approach of which varies
slightly according to the software, computer vision library or package used to implement
it. It aims generally at minimising the reprojection error between the image locations
of observed and predicted image points using nonlinear least squares algorithms like
Levenberg–Marquardt. Below are some of the most commonly used free software for
SFM reconstruction:

• 123D Catch: an SFM tool from Autodesk, offered as a web service. This means
that the computationally expensive pre-orientation and 3D point calculation are
carried out on the server using optimised algorithms. The user receives a finished,
meshed 3D model.

• ARC3D: another web service for 3D point calculation like 123D Catch.

• PhotoSynth: a web service from Microsoft to create panoramic images using a
stitching algorithm, the relative orientation of the images and the 3D points of the
matching points are also calculated, so that a 3D point cloud of the recorded object
could also be obtained.

• Visual SFM: an offline SFM tool from Changchang Wu, which provides graphics-
optimised algorithms, where the computing time is minimised by a significant factor.
In addition, the various steps of the 3D point calculation are well documented and
visualised with a very user-friendly Graphical User Interface (GUI) and 3D viewer.

35

3 Related Work

• Meshroom: a free software from Alicevision and is a good alternative to the widely
used commercial Agisoft Metashape.

• CMPMVS: a web service from CTU Prague with the option of downloading the
precompiled binaries and using the SFM tool offline.

• Bundler + PMVS2: the first SFM tool implementing the complete process chain
in one software. The console-based, open-source program, in conjunction with
PMVS2, offers a flexible tool with many settings for optimized results.

• OSM bundler: uses precompiled binaries from Bundler, SIFT and PMVS2 in a
Phyton script for reconstruction.

• Agisoft Metashape (formerly Photoscan): an SFM tool with a full GUI and 3D viewer.
It enables the calculation of the pre-orientation and 3D point reconstruction with
different parameters with some capabilities of optimising the result as required by
the user.

• SF3M: a tool for the calculation of 3D meshes from images, where the resulting
point clouds can be geo-referenced and filtered.

• RealityCapture: constructs textured meshes and virtual reality scenes based on
multiple images and/or laser scans, UAVs or synchronised camera rigs.

• OpenSfM: a well-maintained SFM library from Mapillary, written in Python with
bindings to C++ dependencies. It consists of basic modules for feature detection,
feature matching, and bundle adjustment, with focus on building robust and scal-
able reconstruction pipeline. It also provides a JavaScript viewer to preview the
reconstructed models.

3.4.4 Point Cloud Registration

Though several variants of the ICP algorithm exist, the main differences often lie in the
definition of their objective function, that optimises the estimation of the transformation
matrix. With an input of two point clouds and an initial transformation guess, the algorithm
then finds correspondences from the target point cloud and a transformed source point
cloud by iteratively refining the initial transformation through optimising an objective
function defined over the correspondence set to a minimum, to determine an optimal
transformation that best aligns the two point clouds.

Among several widely used implementations are the multi-resolution ICP algorithm [11,
49], the point-to-plane ICP [18] with a faster convergence speed than the first, and
the extended ICP [33] as demonstrated by the implementation of Zhang et al. [107] to
estimate a relative rotation and translation of relevant parts of the reconstruction to align
them correctly to the 3D model.

36

3.5 Crack Shapes Construction

3.5 Crack Shapes Construction

Martinet et al. followed later by Desbenoit et al. demonstrated in detail the shape
construction of cracks based on crack pattern “%” to be swept along a set of profile curves
“�” utilizing boolean operations for unions and intersections of individual segments [21,
65], yet not in a BIM context and with no detailed mention of the surface marching
algorithm implemented to map the curves onto the triangulated surface nor the modelling
and viewing software tool used to illustrate it. A drawback stated in their proposed
marching algorithm is the generation of self-intersecting skeletal elements when large
crack patterns are swept on regions of high curvature; however, the same approach is
well suited for the purpose of modelling crack geometries to be inserted into building
models.

The approach could be further improved by allowing blended sweeping for a set of
varying patterns % to account for varying depths of cracks given the availability of those
measurements, which is technically feasible using the Blender module for Python for
instance to execute a script in the background from the command line and visualise
the shapes construction if necessary before insertion into a BIM model and mitigate
the possibility of creating self-intersecting faces by checking for their existence and
remeshing the shape to eliminate them, need be. To that end, the trained CNN model
could be used to infer the ground truth of crack images as binary images. The crack
pixels will have to be skeletonized then vectorized to extract the critical points comprising
the crack center-polyline then reoriented to fit their actual positions in the 3D model and
joined to create the polyline required for sweeping.

3.5.1 Meshing of Damage Shapes

While the IFC schema is capable of creating swept area solids along a Directrix using a
geometric representation IfcFixedReferenceSweptAreaSolid, there is no defined repre-
sentation for blended sweeping that allows a a change in profile of the extrusion, which
makes the construction of the crack shapes using external Python libraries more prefer-
able. It’s not clear however how nodes for tetrahedra within the modelled meshes could
be represented in IFC without invalidating it, as the standard IfcTriangulatedFaceSet
used for meshes and tessellated items is limited only to modelling the exterior of the
shapes, nor any reference, to our knowledge, could be found proposing an adaptation of
any of the IFC entities available within the latest IFC standard (i.e., IFC 4.0 - Addendum
2 - Technical Corrigendum 1) to model FEM compatible shapes.

37

4 Methods for Modelling Cracks’ Geometries
and Application on Use Case

This chapter explains the main idea of the thesis and delves into the concepts and
methods used to realise it. To achieve that goal a workflow for an implementation pipeline
was devised. A Chevron Process diagram in Figure 4.1 explains the general workflow for
modelling volumetric geometries of damages in 8 main steps. The chapter is dedicated
to modelling cracks geometrically. To further clarify the interconnected workflow, the
main 8 steps are expanded in detail in Figure 4.2, following the same colour blocks of
the general Chevron Process diagram.

It is worth mentioning that for unavoidable technical limitations of compressing single-pixel
lines in large photos for the print version, a zoom-in red bordered window is added in
some figures to try to provide the reader with better viewing. However, it is only possible
to check the full details of the photos in the electronic version.

Figure 4.1: General workflow for modelling volumetric geometry of damages.

Regarding data acquisition, the workflow was designed based on the presumption
of available quality images or video footage from carried out inspections that could
be used to extract image frames. Geolocation data was not included in the workflow
because of technical limitations of the camera used to capture the images for testing and
implementing the use cases. An exemplary image with asphalt cracks of a bike road
taken with a Sony Xperia XZ smartphone camera using a an IMX300 sensor was used
to illustrate the methods used and capture the images needed for the use cases. For the
extremely inaccurate geolocation positioning data of the camera shown in test samples,
the possibility to include Global Positioning System (GPS) data was not considered as
it seriously affected the quality of the point clouds generated through SFM. However,
including geo-positioning data is possible to integrate within the proposed framework,
whether by including GPS data included in the the EXIF metadata of images or by
providing lists of Ground Control Points (GCPs) and their 2D positions in images, which
should in principle improve the quality of reconstructed point cloud. A sequence diagram
of the developed code to materialise the proposed workflow, as well as the methods
of various classes in Python for vectorisation, backwards projection, estimating correct
normals and shape construction are provided in the appendix.

39

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Figure 4.2: Detailed workflow for modelling volumetric geometry of cracks.

4.1 Camera Calibration and Distortion Correction

The calibration of the camera(s) used for shooting the images is essential to determine
the intrinsic parameters needed for the 3D reconstruction through SFM as well as
for undistorting the segmented masks generated through inference from a retrained
TernausNet model. Both MATLAB and OpenCV module for python were utilised as
the former produced lower reprojection errors for estimating a Brown-Conrady camera
model with 3 radial distortion, and 2 tangential distortion coefficients. However, the
parameters estimation of a perspective model with just 2 radial distortion coefficients
using the latter (i.e, OpenCV) was found more accurate with lower reprojection errors
than that of MATLAB on the same checkerboard pattern photos used for calibrating the

40

4.2 Point Cloud Reconstruction via SFM

camera used in the use cases. A set of 30 photos was used for a typical 25 mm 10x7
checkerboard pattern. Figure 4.3 demonstrates the input and output results of this step
on a calibration image.

Figure 4.3: Detected corners of the checkerboard pattern used for calibration shown in
the upper image for distortion parameters estimation in MATLAB, the same
calibration image is undistorted based on 2 radial distortion parameters
calibration model in the lower left image, and on 3 radial and 2 tangential
distortion parameters in the lower right image respectively.

4.2 Point Cloud Reconstruction via SFM

In order to reconstruct a dense point cloud from the acquired images, several libraries
and packages were considered. The OpenSfM library was chosen for the advantages
it offers mainly for the superior quality of its resulting point clouds in comparison with
other methods, such as: VisualSfM, ORB-SLAM2, the pipeline using Bundler, CMVS,
and PMVS2. It requires the installation of other dependencies OpenCV, OpenGV, Ceres

41

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Solver, Networkx, and PyYAML among others listed in the requirements file for the Pip
environment. It is written in Python with bindings for C++ through pybind11, that exposes
C++ types in Python and vice versa.

This makes it easier to run the commands for 3D reconstruction seamlessly in the
background by parsing the necessary commands to the console without the need for
manual interaction with a GUI and it offers more flexibility for using its default methods
for backwards projection and debug files to retrieve the estimated pose of the camera
for each image. It also provides the possibility to control the parameters of the 3D
reconstruction, run on multiple threads for faster processing, determine specific values
for intrinsic camera parameters, choose from several camera models (e.g., perspective,
Brown-Conrady, and Fish-eye models). Furthermore, the availability of several feature
detectors to choose from depending on the scene and images acquired and the fact that
it integrates external sensor information (e.g., GPS, or accelerometer) for geographical
alignment and includes a JavaScript viewer to preview the models and debug the pipeline
on a web browser as shown in in Figure 4.4.

After installing all the dependencies required and building the OpenSfM library, the
3D reconstruction was automated by parsing the intrinsic parameters estimated from
the calibration to a .json file that overrides default camera settings as well as another
configuration file for the parameters controlling the feature detection, matching, bundle
adjustment and the required resolution for the depth maps. The images acquired from
an inspection could simply be copied to the library’s data folder by requiring the user to
locate the path to the images directory, then run a shell script that parses the following
commands to be passed to a background process in Python.

• extract_metadata: it extracts metadata from images’ EXIF tag including location,
sensor model, nominal focal length, date and time, embedded geolocation.

• detect_features: it computes features for all images depending on the type specified
in the configuration file.

• match_features: it matches features between image pairs.

• create_tracks: it links matches pair-wise into tracks.

• reconstruct: it computes the reconstruction.

• mesh: it adds delaunay meshes to the reconstruction.

• undistort: it saves the radially undistorted images.

• compute_depthmaps: it computes depthmaps as per the specified resolution in
the configuration file.

• export_ply: it exports the reconstruction to a .ply file.

42

4.3 Pixelwise Segmentation

Figure 4.4: Folder structure for an OpenSfM project on the left and a screenshot from the
JavaScript viewer for a 3D reconstructed point cloud of the cracks modelling
use case on the right.

4.3 Pixelwise Segmentation

As the proposed workflow relies mainly on accurate pixelwise segmentation of cracks for
modelling geometries, four published CNNs from Benz et al. [10], H. K. Ha [32], Zou et
al.[113], and Liu et al. [59] were taken into consideration for potential use. For the first,
only the training datasets were available online, not the retrained model. The second
from H. K. Ha based on Unet architecture with a VGG16 encoder similar to that used for
the CrackNausNet from Benz et al., albeit trained only for binary classification of cracks,
rather than classifying planking patterns additionally, had average evaluation metrics,
as the glsIoU (i.e., Jaccard Index) and the mean F1 score (i.e., Dice Coefficient) were
estimated at 0.4687 and 0.6033 respectively, even though the model was trained on a
very large dataset of 20,000 images.

Both the DeepCrcak models from Zou et al. and Liu et al. were available online with
very good evaluation metrics published. However, the model from Zou et al. was found
to be producing very thin prediction maps when tested on a never seen collection of
images as it was trained exclusively on datasets with single pixels’ masks for the cracks’
ground truths that often did not fit the actual widths of the cracking patterns exactly when
overlaid together as shown in Figure 4.5. This major limitation deemed it unsuitable
for the purpose of this research that required a good accuracy for segmentation of the
whole crack width. The last model from Liu et al. was observed to perform very poorly,
contrary to the evaluation published in [10], when tested on a part of the challenging
datasets from Zou et al. that was never included in its training set (i.e., CRKWH100 and
CrackLS315). The entirety of tests including the prediction maps inferred from both the
crack segmentation CNN of H. K. Ha and the generated fused prediction maps and the
refined result with guided filtering from Liu et al. are provided in Appendix A.2.

43

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Figure 4.5: Exemplary image from the datasets used for training DeepCrack CNN [113]
(i.e., dataset: CRKWH100, image: 1080.png) on the left, its segmentation
mask on the upper right, the mask shown in red overlaid on top of the image
in the lower left image, and a zoom in crop of the overlaid image at the lower
right.

With the lack of suitable models to use, an attempt to retrain a more general and robust
model to cracks’ thickness was taken to try to avoid the limitations observed in the
aforementioned networks. A TernausNet with VGG16 encoder architecture similar to
that from Benz et al. was selected to retrain by applying transfer learning on a dataset of
28,800 images and binary masks compiled from the most suitable images of all currently
available datasets listed below:

• AEL [4]

• CFD [85]

44

4.3 Pixelwise Segmentation

• CRACK500 [105]

• cracktree200 [112]

• DeepCrack [59]

• GAPS384 [25, 64]

• METU [72]

• noncrack [32]

4.3.1 Dataset Augmentation

Solt package in Python was used to crop the original crack images and masks to 448x448
pixels and augment the datasets to significantly increase their size and further diversify
the cracking patterns by applying geometric transformations like random rotation, scaling,
horizontal and vertical flipping 15 times for each image in addition to the inclusion of the
non cracks dataset from [32] that was already augmented.

4.3.2 Training

Following a similar transfer learning approach for TernausNet16 as that published in [86],
a 5-Fold cross validation was utilised, instead of a classical train-test split by holding
each fold once for validation against the other folds and using it the remaining K-1 times
for training [43]. The Scikit Learn package was used for splitting the dataset into folds
after shuffling and the IoU was used as the evaluation metric. The training parameters
used for training on Google Colab Pro were as follows:

• Folds Number: 5

• Learning Rate: 0.0001

• Classification Type: binary

• Jaccard Weight: starting from 1 and incrementally reduced

• Epochs: 10/fold

• Workers: 12

• Batch Size = 6

• Crop Size = 448x448

Whereas Figure 4.6 shows the learning curve by plotting the Jaccard score and the
validation loss estimated at all epochs.

45

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Figure 4.6: A plot showing the Jaccard index and validation loss values over all training
epochs for the 5 folds used.

Figure 4.7: An example result from the retrained TernausNet model for pixel-wise seg-
mentation. The original RGB image on the left, the prediction greyscale map
in the middle, and an overlay of both images together on the right displayed
respectively.

4.4 Vectorisation

In this section, the goal of the steps undertaken was to extract the critical points that
comprise the centre-polylines forming the cracks from the segmented probability map
delivered from the TernausNet, their widths and the endpoints of the width measurements
at each critical point, and the lengths in pixel units.

46

4.4 Vectorisation

4.4.1 Thresholding and Post-Processing

By getting the segmented probability maps for cracks images through inference from
the retrained TernausNet model as shown in Figure 4.7, the images will need to be
thresholded by specifying a limit below which pixel probability values are classified as no
crack pixels. Some further post-processing steps like morphological operations on the
resulting segmented maps (i.e., opening and closing) might be taken into consideration,
depending on the quality of the taken images fed into the trained model, which varies
depending on the scene pictured, lighting condition and the used camera sensor, to
remove isolated salt and pepper noise that might hinder the consequent modelling
process.

Figure 4.8: Thresholding the cracks foreground in the prediction mask to pixels only
above the intensity value of 127 results in a binary segmentation map used.

4.4.2 Skeletonisation

To estimate an average centreline of the cracks in the segmented images, a thinning
algorithm is used to reduce the thickness of the crack segments to a single pixel that
acts as a centreline for the crack’s contour. Several algorithms already exist with varying
results for the same input according to the shapes to be skeletonised. For the cracks
thinning to a skeleton task, three of the most widely used algorithms (i.e., Guo-Hall [31],
Lee [55], and Zhang-Suen [106] respectively) were tested on a sample of 30 images and
the resulting skeletonised patterns were visually evaluated for a suitable candidate. While
skeletonisation using a Hit-and-Miss algorithm proposed in Section 4.4.3 is possible, it
was disqualified from further consideration for its poor initial results on the sample in
comparison with the other candidate algorithms. For most images, Guo-Hall algorithm

47

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

produced the best results in terms of shape preservation and lines connectivity followed
by Lee. However, a common observation among the skeletons produced from all three
algorithms, yet to a lesser extent in Guo-Hall, is the occurrence of some artefact shaped
ticks at regions of sudden thickness changes or higher curvature, and along the borders
of the image, if the cracks are continuing till its very edge. The former could be mitigated
by removing these artefacts from the skeletonised image by setting a minimum value for
the number of pixels in each skeleton segment to roughly half the average widths in pixel
unit, after splitting the skeletonised network of cracks as in Section 4.4.4. To determine
that value, the total surface area of the cracks’ contours was calculated and divided by
the length of the skeletons. The latter was eliminated by padding the segmentation map
with a 10-pixels thick border before applying the skeletonisation, and then cropping the
skeletonised image back to its original size.

Figure 4.9: Skeletonisation algorithm of Guo-Hall on thresholded crack segmentation
mask in Figure 4.7.

4.4.3 Extracting Critical Points

A general case for cracks in which a network pattern of branching and merging crack
elements exists was the driving reason to opt for the following solution as the published
proposals in literature mainly consider a single line crack or branching pattern but hardly
any proposals could be found covering such a general case with interconnected patterns
with merging branches as well. To avoid overcomplicating the solution for the task at
hand, a simple approach utilising the Hit-and-Miss Hit-and-Miss (HMS) algorithm was
adopted. It’s a high-level morphological operation that identifies specific patterns in
images by comparing each pixel along with its surrounding pixel neighbours as a patch

48

4.4 Vectorisation

Figure 4.10: Skeletonisation algorithm of Lee on thresholded crack segmentation mask
in Figure 4.7.

Figure 4.11: Skeletonisation algorithm of Zhang-Suen on thresholded crack segmenta-
tion mask in Figure 4.7.

of equal size to specifically configured structuring elements (i.e., kernels) for matches.
For each pattern of interest in the image (e.g., intersection and ending points), a set of
kernels could be applied to pinpoint only those pixels that match the patterns.

49

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Line Endpoints

To extract the endpoints, the kernels in Figure 4.12 were used. Each 3x3 pixels pattern
has to be rotated at 90° three more times to cover all possible configurations (i.e., 20
kernels in total were used). For a pixel to be determined as an endpoint, the black and
white pixels in one of the kernels must match that in the skeletonised image when the
centre of the kernel is positioned at a white pixel in the skeletonised image. The grey
pixels could be either of black or white values.

Figure 4.12: Various kernels used to detect endpoints using Hit-and-Miss algorithm.

Figure 4.13: Extracted endpoints of skeletonised crack patterns using a Hit-and-Miss
algorithm.

Line Junctions

Similar to the endpoints, a different set of kernels 1 shown in Figure 4.15 were used
with the same Hit-and-Miss algorithm to retrieve the set of junction points (9 in the cracks
network. Each of the first four 3x3 pixels patterns has to be rotated at 90° three more
times to cover all possible configurations (i.e., 18 kernels in total). For a pixel to be
determined as a junction point, the white pixels in one of the kernels must match that in

50

4.4 Vectorisation

the skeletonised image when the centre of the kernel is positioned at a white pixel in the
skeletonised image. The grey pixels as shown in Figure 4.15 indicate it could be either
of black or white value.

It was observed, however, that such a general configuration of kernels might result
in neighbouring pixels being classified as junctions as shown in Figure 4.14, which
in return would further complicate the following step for labelling each crack segment
separately. Hence, another set of restrictive kernels 2 was used by converting the
zero values of kernels’ pixels as shown in Figure 4.15 to -1, in order to retrieve a subset
(�0, where (�0 Ă (� for all possible junctions that satisfies the condition of not having
any neighbouring junctions #� within a 1 pixel neighbourhood. This subset defines the
nominal position of intersection of all crack segments correctly, where each segment ends
once split, yet it is still not sufficient to consider all the cracking segments as separate
lines satisfying the condition for an end point as per the kernels in Figure 4.12, when
removed from the skelotonised map. A workaround would be to use another subset
(�1 : (�1 Ă (� ^ �18 R (�0 from the set of all possible junctions (� using the XOR
logical operand, such that:

(�1 “ (� ‘ (�0 @ t�8 P (� : ðñ �8 Y #�8 P 1 ^ Dp#�8< P (�0 , < “ r1, 8squ

By modifying the pixel intensity in a copy of the skeletonised map for the entire 3x3
patches of (�1 to the background value (i.e., zero) and retrieving the junction points with
either of 1 or 2, another junctions set (�2 could be retrieved that splits the rest of the
crack patterns, where no neighbouring junctions exist within a 3x3 pixels interval. Both
(�1 and (�2 effectively split all cracking patterns once set to the background value no
matter where it occurs in the skelotonised map or how many segments intersect in any
possible scenario.

4.4.4 Splitting Crack Networks

A first approach was pursued by using a 3x3 kernel starting from one end point to track the
neighbouring crack pixels and store them in an NdArray for each segment till it reaches
another or a junction. While this simple approach suffices to handle the vast majority
of cracking patterns successfully, it was found incapable of dealing with special cases,
where more than 4 segments meet at one junction or at the edges and corners of images.
In such a case, it’s possible to have neighbouring junctions; combined with the possibilty
of having such a special case at the border or a corner of the image, made it cumbersome
to configure properly. Thus, a second more generalised 3 steps approach was sought as
explained in Figure 4.17 by first converting the pixel intensity value at junctions �8, where
r�8 P (91 Y (�2s detected in Section 4.4.3 to zero. Once removed from the foreground, a
connected component algorithm can be used to label each element in the skeletonised
image separately. The last step would be to utilise the 3x3 kernels to reassign labels to
the junction pixels based on its neighbouring labels in a modified skeletonized map of
depth 8 (i.e, the grey scale skeletonised map at the first layer followed by 7 background
layers of equal shape), which covers all possible label assignments for all 8 neighbouring
pixels.

51

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Figure 4.14: Example of an intersection problem at the junction [12,5544], where
�r12,5544s P (�0 is a nominal intersection point. However, setting the intensity
value of the pixel at this index to zero doesn’t split the crack pattern into
separate segments, as the pixel at index [11,5544], where �r11,5544s P (�1,
is considered another junction point that does split the cracking pattern
when set to zero value.

Figure 4.15: Sets of kernels 1 and 2 respectively used to detect junctions using Hit-
and-Miss algorithm.

52

4.4 Vectorisation

Figure 4.16: Extracted junctions of skeletonised crack patterns using a Hit-and-Miss
algorithm.

4.4.5 Labelling of Pixels at Junctions

The conversion of pixel intensity values at the junctions to zero was necessary to split
any interconnected pattern to allow the connected component algorithm to successfully
label each crack segment separately, yet it resulted in a new problem of reassigning the
correct label to the junction pixels. The following criteria were used to reassign a label to
a junction pixel:

• No merging of crack segments is allowed, contrary to the approach adopted in [111],
to avoid overcomplicating the following line simplification process, as it could be
removed by the utilised algorithms, if no condition in place was put to handle them
differently, which might result in a different simplification pattern, that does not
match the reality insitu.

• Every junction �28 in (�2 is assigned the labels of its neighbouring labelled segments
in a 3x3 patch centred at �28.

• In a 3x3 patch centred at each junction �18 in the second junctions set (�1, all
neighbouring pixels #�18 with p#�18 : #�18< , < P r1, 8sq similarly labelled pixels
are checked not to match any of the aforementioned kernel patterns in set 2 in
Figure 4.15 when set to a 256 value to filter the branching segments out of the
labelling process.

53

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

It is worth noting that only four layers are actually sufficient to fill all possible labels at any
junction in (�1, however the presence of extra layers is needed for further work already
developed beyond the presented use-case in the thesis, to split junctions bordering other
damage types, like spalling for instance, in a more complicated mix´ed damage patterns
modelling scenario.

Figure 4.17: Explanation of algorithm to split cracks’ networks at a junction in (�2.

4.4.6 Removing Skeletonisation Artefacts

To remove the artefacts by providing a minimum length for the crack segments in pixels,
a rough estimation of the average width is calculated by dividing the surface area of the
cracks contour estimated by dividing the surface area of the contours calculated with
the Suzuki’s contour tracing algorithm [89] over the total length of the cracks’ skeletons,
following the approach developed by Zhu et al. [111].

54

4.4 Vectorisation

Figure 4.18: Labelled segments of a skeletonised segmentation map for cracks assigned
a random colour per label.

Figure 4.19: Example of typical artefacts at edges on the left and sudden higher curva-
ture regions resulting from skeletonisation algorithms on the right.

4.4.7 Lines Simplification

After splitting the crack networks into separate entities, the position of pixels for each
entity could be retrieved and stored by searching for the position of pixels per label. A
line simplification algorithm can be used such as Ramer–Douglas–Peucker (RDP) or
Visvalingam-Wyatt to decimate the lines to extract only the position of important pixels
that preserve the shape of the polyline and help avoid the existence of self intersecting
crack profiles along at such points. Both algorithms performed well at lower curvatures
in sample tests, albeit the latter slightly better, with more equally distributed points at
higher curvatures when a suitable threshold value (i.e., epsilon) is provided. For the RDP
and Visvalingam-Wyatt algorithms, n values in the intervals r,, 1.5,s and r,2, 1.5,2s
respectively, where , is the average width in pixels, were observed to produce optimum
results for short and medium length cracks.

55

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Figure 4.20: Resulting lines simplification from Ramer–Douglas–Peucker algorithm with
n=7 pixels.

Figure 4.21: Resulting lines’ simplification from Visvalingam-Wyatt Algorithm with n=12
pixels.

4.4.8 Determining Width and its Endpoints of Measurement

To calculate the width at the simplified points resulting from the previous step, the
Euclidean Distance Transform (EDT) was utilised following the implementation of Zhu et
al. [111] for its efficiency. It estimates the euclidean distance between each pixel and

56

4.4 Vectorisation

its closest background value (i.e., 0) in a map with distance values gradually increasing
till the maximum at the centre-polylines of the cracks, as shown in Figure 4.22. For
background pixels, the distance would be of value zero and for points along the skeleton
the distance would be to the nearest contour point %21.

Figure 4.22: A greyscale image of the output map from the EDT operator

Figure 4.23: Based on euclidean distances, the first end points of the width measure-
ments could be determined and plotted in yellow.

57

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

The second endpoints of the width measurement %22 were possible to estimate correctly
by determining the direction of a vector from the first endpoints to the centre-points of
the crack (i.e, +%218 ,%B8), then extrapolating along the unit direction vector to the last
non-zero pixel the vector intersects. Another alternative to determine the vector direction,
is to utilise the Sobel operator to calculate the gradients of the EDT greyscale map
that performs the task similarly as the implemented method, with a special attention to
capping the values in both methods to the range of image shape and forcibly correcting
the indices to the closest edge value when found to be out of borders.

However, it was observed that the assumption of width to be double the value of the
euclidean distance underestimates the value of the actual width in pixel units at any point
on the skeletonised cracks, except for the endpoints, where the cracking patterns generally
tend to taper. As the skeletonised segmentation map is merely a rough estimation of
where the centrelines should be, exacerbated by the limitation of calculating only at pixel
level not subpixels.

Correcting the underestimation of widths problem by extracting the correct values through
extrapolation resulted in the creation of self intersecting profiles, when the vector along
the simplified point %B on the crack skeleton and its estimated closest contour point %2
retrieved from the EDT are not perpendicular to the simplified polylines (i.e., +%B8 ,%218

M
+%B8 ,%B8`1

), producing warped cracking profiles that self intersect when the simplified
points are not spaced out evenly at higher curvatures, making this approach ill suited
for the purpose of modelling valid crack shapes reliably. A more practical alternative
considered is classical vector algebra calculations to estimate the distance based on the
direction vector perpendicular to the simplfied skeleton polylines.

Another limitation encountered when utilising the EDT is its inherent property to calculate
distances based on the closest proximity to the background, which does not necessarily
meet the criterion of having an orthogonal width distance to the direction of the polyline
required for modelling, resulted in retrieving points that are on either side of the simplified
polyline depending on how close the contour is to the the vertices of the simplified polyline
even within each crack segment. That irregularity was defined as the main reason for
crashing the algorithm for modelling cracking shapes through ruled extrusion in Gmsh,
due to its reliance on a sorted sequence of points for each profile. Trying to sort the
points r%21, %B, 0=3%22s in a clock-wise order based on 2 reference points in the image
(i.e., the upper left and lower left corners of the map to mitigate the collinearity possibility)
did not fully solve the problem, due to the warping effect in the estimated profiles, as
well as the varying directions calculated along any two consecutive simplified points (i.e.,
+%B8 ,%B8`1

) within each individual cracking segment.

4.5 Conversion from Pixel Units to 3D World Coordinates

Given the point cloud of the scene reconstructed through OpenSfM, and all the information
entailed from the process, it is possible to convert the cracks’ points of interest from pixel
units into 3D world coordinates in metric units up to scale given that no control point were
included in the 3D reconstructed point.

58

4.5 Conversion from Pixel Units to 3D World Coordinates

Figure 4.24: Based on the euclidean distance transform map and position of first end
points of the width measurements, the second end points could be deter-
mined by extrapolation and plotted in cyan.

4.5.1 Selection of the Best candidate Image in the Scene

The selection criteria may vary depending on the quality of the images acquired, the
purpose of the modelling, and the region of interest in the structure under inspection. The
criterion selected for this workflow was to pick the skeletonised image with the largest
number of white pixels as the best candidate for the ensuing modelling process. Other
criteria could be quite easily included, as needed, in real world scenarios.

4.5.2 Backwards Projection

With the development of the vectorisation pipeline proposed in Section 4.4, the following
sequence of steps could be easily performed:

1. Once the candidate image is identified, its thresholded prediction map from Sec-
tion 4.4.1 will have to be undistorted according to the distortion parameters esti-
mated from the calibration process.

2. After undistorting the said image, it has to be resized to its depth-map resolu-
tion specified from the configuration settings of the SFM process described in
Section 4.2.

3. Afterwards, the whole vectorisation process will be performed on the undistorted re-
sized image to extract the centreline points of cracking patterns from their simplified
skeletons and both endpoints of their width measurements.

59

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

4. With the knowledge of the camera matrix based on the estimated intrinsic parame-
ters determined through the calibration, the depth map, pose of the camera for the
candidate image, as well as the scaling factor from the step in Section 4.2, all the
unknown variables in the perspective transformation equation are now known to
allow the backwards projection of pixel points to their 3D world coordinates (i.e.,
their correct location in the constructed point cloud in this case, as the geolocation
data were purposefully disregarded). Equations (4.1) and (4.2) were used to per-
form the backwards projection of the specified points of interest, which follow the
main equations detailed in Section 2.1, albeit reformulated according to OpenSfM
backwards projection method as follows:

(4.1) &8 “ 38 .
´1.@1

8

(4.2) %8 “ r'1.&8 ´ C1s1

where:

• & is the 3D point in camera coordinates.

• 3 is the depth at any given pixel index.

• is the camera matrix.

• @ is the normalized weighted pixel position in the image.

• % is the 3D point in world coordinates.

• ' is the 3x3 rotation matrix.

• C is the translation vector.

5. The accurate estimation of normals is crucial to determining which direction the
depth of cracks’ profiles could be added in the following step (i.e., opposite direction
of the normal to the mesh). For the newly determined 3D points, it could be
retrieved from the planes estimation calculated during the step in Section 4.2,
but it was found through testing that it requires a large number of neighbouring
points to determine a general normal direction of the point to the meshed point
cloud, which significantly slowed the point cloud reconstruction down and yielded
unsatisfactory results. Hence, determining the normals for the back-projected
points was estimated by merging the 3D point to a decimated mesh of their parent
point cloud and re-estimating the normals to all points with a large number of
neighbours in Open3D [108]; thus ensuring a more accurate estimation of normal
direction at said points.

With the lack of accurate geolocaion data from images, or GNSS reciever to measure
the location of some control points for the geo-rectification step to provide for an accu-
rate estimation of scale and positioning during the point cloud reconstruction through
OpenSfM, it had to be estimated by comparing measurements from the point cloud to
that on site as shown in Figure 4.29.

60

4.5 Conversion from Pixel Units to 3D World Coordinates

Figure 4.25: The undistorted raw depth map in greyscale for the candidate cracks image

Figure 4.26: The vertices of the simplified polylines representing the cracks’ skeletons
back-projected into 3D world coordinate units with randomly assigned colour
for each segment.

It was observed that along the edges of the main point cloud, the Open3D algorithm for
normals estimation tends to flip their direction around the edges of the point cloud as
shown in Figure 4.30. The default solution from Open3D is to force a consistent orientation
of normals to the plane by propagating the normal orientation using a Riemannian graph,
which does result in consistent normals yet they might be all oriented to the backside of
the point cloud. This could lead to self intersecting faces in the meshing process in case

61

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Figure 4.27: The backwards projected points of the simplified polylines correctly align
with the parent point cloud when overlaid together from the front and back
side.

any of the back-projected points were affected by an inconsistent normal direction, or the
crack profiles that were created are not embedded in the model, but rather poking out of
the face of the building element of which the point cloud is reconstructed. Hence, it might
require human interference in cases of modelling flat regions as chosen for the shown
use case to flip the direction when observing the visualisation window in the Python
project.

62

4.5 Conversion from Pixel Units to 3D World Coordinates

Figure 4.28: Screenshots showing the normals of the vertices in the point cloud correctly
re-estimated from the frontside and backside of the mesh respectively.

Figure 4.29: Measurements taken on site and from the point cloud to estimate the scaling
factor.

Figure 4.30: Inconsistency in initial estimation of normals to the point cloud that has to
be corrected before taking further steps into the modelling workflow.

4.5.3 Alignement of 3D Reconstructed Point Cloud to 3D Model

Having the crack shapes modelled based on the backwards projected points from the
point cloud, there exist a misalignment if directly added to the model due to difference
in the world coordinate systems of both the reconstrcted point cloud and the model.
To solve the realignment problem, a Global ICP algorithm was utilised to estimate the
rotation and translation required to transform the pose of the point cloud (i.e., source)
to align with the coordinate system of the 3D model (i.e., target). For that purpose, a
simple model of the pavement and curb on the side in the use case were modelled in

63

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Autodesk Revit as shown in Figure 4.31 and exported to IFC. The IFC model was then
imported into Blender for fine triangulation of the shapes to extract a dense point cloud
of the generated meshes’ vertices as shown in Figure 4.32.

Figure 4.31: Modelling the pavement to actual measurements in mm in Autodesk Revit.

Figure 4.32: Meshing the shapes of the IFC model in Blender required for registration
through ICP.

The point-to-point and point-to-plane algorithms provided in Open3D Library were first
used to retrieve the transformation matrix. However, even with such a simple model
the results were often unreliable and highly dependable on the initial guess derived
from the initial RANSAC based global registration performed. Therefore, it was found
more suitable to use another alternative algorithm that would provide for a more reliable
alignment independent of the initial guess using GoICP [100, 101], that is more robust
against noise in the source point cloud resulting from registering a 3D reconstructed
point cloud of a rough-textured pavement to a very smooth-surfaced target. Figure 4.33

64

4.5 Conversion from Pixel Units to 3D World Coordinates

shows the result of the global registration of a point cloud generated from a decimated
mesh of the 3D reconstructed dense point cloud via OpenSfM to the point cloud of the
IFC model generated in Blender.

Figure 4.33: Resulting alignment of the source point cloud from the GoICP registration
is shown in green, the original decimated source point cloud in real colours
of the mesh and the point cloud of the 3D model in red.

GoICP requires the source and target point clouds to be normalised (i.e., all 3 components
of the vertices within a r´1, 1s values interval), which is not pre-included in the package
and has to be done prior to the registration process and right after voxel downsampling

65

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

according to Equations (4.3) and (4.4). The 3D coordinates transformation requires a
local translation for each point cloud and a common scaling to be applied on the source
and target. After retrieving the transformation matrix from global registration (i.e., �̃), it
has to be reverse conditioned following Equation (4.5) to use appropriately on the original
coordinates of the source (i.e., �).

(4.3))4G4 “ B . C “

»

—

—

—

–

1{B 0 0 0

0 1{B 0 0

0 0 1{B 0

0 0 0 1

fi

ffi

ffi

ffi

fl

»

—

—

—

–

1 0 0 ´C1
0 1 0 ´C2
0 0 1 ´C3
0 0 0 1

fi

ffi

ffi

ffi

fl

(4.4) G̃8 “) . G8

(4.5) � “)´1�̃)

With the relatively small size of the model for the use case, it was obvious which building
element the point cloud belonged to. However, the use of precise geolocation data (i.e.,
latitude, longitude within 1 cm accuracy, and altitude) for full scale models, which is
normally available at large-scale scanning operations with surveying grade equipment
using Real-Time Keinematics (RTK) capable Global Navigation Satellite System (GNSS)
receivers, it should be possible to get an accurate alignment of the 3D point cloud
reconstruction that could be relied on to roughly estimate to which building element the
damage shapes should be aligned, by locating the building element closest to the point
cloud in a correctly geolocated 3D model.

4.6 Cracks Shapes 3D Reconstruction

For the reconstruction of cracks’ geometries, Gmsh library’s Application Programming
Interface (API) for Python was used. It is an open source 3D finite element mesh
generator with a built-in CAD engine and post-processor. It also uses OpenCASCADE
for constructive geometry features, and interfaces the optional external mesh and mesh
adaptation librairies Netgen and Mmg3d respectively, in addition to a cross-platform GUI
based on FLTK and OpenGL [27].

To model the cracking shapes for the use case, a simple triangular profile for the cracks’
cross-section connecting both endpoints of the width measurements and a third point,
calculated by translating the centre-polyline point a distance of magnitude equal to the
depth in the opposite direction of its unit normal vector, was used to reduce the time
and complexity required for meshing, but it is technically possible with Gmsh using its
default Computer Aided Design (CAD) engine to create simple extrusions along smooth
curves or the more advanced option utilising OpenCascade CAD geometry engine to
create semi-elliptic profiles or any other closed profile shapes with lines, splines or higher
degree Bsplines, necessary for constructing volumes.

66

4.7 Adding Shapes into Model

As a proof of concept only one junction of the whole cracks network was modelled.
Two modelling approaches were experimented to test the feasibility of the proposed
workflow.

1. The first by considering a simple approach to extrude the triangular profile of the
crack through a spline connecting the centres of mass of the profiles drawn at
each back-projected vertex as shown in Figure 4.34. This profile is created based
on calculating the average width for the crack segment to be modelled, a depth
specified by the user and the inwards direction, retrieved by flipping the normal
orientation already known at each vertex of all crack segments. A downside to
this approach is the use of an average width at each profile instead of a varying
width at each vertex of the spline and converting the cracking pattern from a sharp
polyline-based shape to a smooth curve that doesn’t exactly resemble the actual
cracking pattern on site, which might be difficult to rely on as a reference to compare
with in subsequent inspections.

2. The second more sophisticated approach developed is to force the creation of
ruled surfaces between each two profiles, thus enabling the use of variant width
measurements in each crack segment and following the actual cracking pattern
as closely as possible to obtain shapes that could be used as a reliable reference.
Figure 4.38 shows the difference between the two approaches for the same junction
chosen to be modelled as a proof of concept.

4.7 Adding Shapes into Model

The last step in the workflow would be to add the shapes in the model that is achievable
within 2 sub-steps detailed below.

4.7.1 Voids Subtraction via Boolean Difference

Using the approach to model damages geometrically proposed in [7, 8], The cracks
shapes were exported from the Python project as .stl files, which were imported into
Blender and exported into a new IFC project using Blender BIM Add-On as an IfcElement
of class IfcBuildingElementProxy. A script written in C# using XBimToolkit [60] to add the
crack elements into the main IFC model as follows:

1. The cracks building element (i.e., IfcBuildingElementProxy) is copied into the BIM
project.

2. A new instance of IfcVoidingFeature is instantiated and assigned a name ’Void’,
a GUID and an object type labelled ’voiding feature’ and given a type of label
’CUTOUT’.

3. The shape representation of the cracks proxy is assigned to the newly created
voiding feature using IfcProductRepresentation.

67

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Figure 4.34: The process of modelling a crack shape by extruding a triangular profile
along an exemplary 3-vertices spline passing through the centres of mass
of each profile calculated at each vertex.

4. The voiding feature location is assigned based on that of the cracks IfcProduct
using IfcObjectPlacement.

5. A decomposition relationship of type IfcRelAggregates is created to relate the new
voiding feature to the IfcSlab of the pavement containing it.

68

4.7 Adding Shapes into Model

Figure 4.35: Location of the selected use case to be modelled in the simplified lines
map created from Section 4.4.7.

Figure 4.36: A screenshot showing the location of the polylines’ vertices of the use case
overlaid onto the point cloud.

6. The feature element subtraction is generated by creating another decomposition
relation linking the related opening element (i.e., the voiding feature) to the relating
building element (i.e., the pavement’s slab) using IfcRelVoidsElement.

7. The IfcBuildingElementProxy entity for the cracks blocking the view of the voiding
feature is deleted from the project.

69

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Figure 4.37: Constructing the shape of a cracking pattern at a junction with a profile
extruded along a spline passing through the centres of mass of all profiles
calculated at each vertex.

Figure 4.38: Constructing the shape of a cracking pattern at a junction with forced ruled
surfaces through each two profiles.

Figure 4.39 shows the final results of the damage elements in the IFC model displayed
using usBIM viewer where the cracks voiding features are placed properly in the model,
however it was not possible to view shapes as voids due to the limitation of the IFC
viewers in general to display complicated free-form geometries properly, not for invalidity

70

4.7 Adding Shapes into Model

of the shapes created as reported with testing on various IFC viewers for use cases
implementing IfcVoidingFeature published by [7]. Figures 4.40 and 4.41 show the the
implementation in the IFC model and the assignment of relationship between the damage
and the building element containing it (i.e., the slab).

The inspection related information and the calculated attributes from the workflow could
be easily added to the properties of the damage shapes as the date and time of inspection
of the damage from the EXIF metadata, geometry related attributes as the depth, width,
length and orientation, etc. utilsing the IFC entities implemented in [7, 8, 39] as instances
of IfcProprtySingleValue added to a attached to an IfcPropertySet related to the cracks
damage using IfcRelDefinesByProperties that could be easily reviewed in IFC viewers.

Figure 4.39: Final results of the automated modelling workflow for crack damages dis-
played in usBIM IFC viewer.

71

4 Methods for Modelling Cracks’ Geometries and Application on Use Case

Figure 4.40: Excerpt of the IFC model showing the attributes used to model the cracks
damage.

Figure 4.41: IfcVoidingFeature used to model the cracks damage geometrically and its
relationship assignment based on the published use case by Artus and
Koch [7].

72

5 Evaluation of Results

In this chapter, the steps taken to verify the output of the software, whenever possible,
are presented, the execution time of some methods is shown, as well as the measures
to validate the resulting model of the cracks’ shapes.

5.1 Camera Calibration

For the use case presented, the intrinsic parameters of the camera were retrieved. This
can be done either by a script or using the GUI of the camera calibrator app. The
resulting errors for the estimated intrinsic parameters and the mean projection error of
the calibration process are presented in Table 5.1.

5.2 3D Reconstruction via OpenSfM

Most of the default configuration settings provided in the package were used. However,
the option to match images by distance retrieved from geolocation metadata was disabled
for lack of accurate geolocation data that could cause the final reconstruction to split
into several parts. The depth map downsize resolution was set to 1080 pixels, and the
minimum number of views required to reconstruct a point for it to be valid was raised to 4.
The execution time relatively increased when threading was set to the maximum number
available (i.e., 8) for the computer used for running it as shown in Table 5.2. The JSON
reports on the execution of the reconstruction are provided in Appendix A.2.

Parameter Value
Mean Reprojection Error 1.8479
Focal Length Error [14.4241, 13.4194]
Principal Point Error [2.5008, 3.5934]
Radial Distortion Error [0.0053, 0.0197]

Table 5.1: Estimated errors for the camera calibration of a perspective model with 2
radial distortion coefficients.

73

5 Evaluation of Results

Command Execution Time (seconds)
extract_metadata 12.4892
detect_features 48.5597
match_features 247.3549
create_tracks 10.3639
reconstruct 343.2193
mesh 27.0066
undistort 53.3742
compute_depthmaps 901.5655
Total 1643.9337

Table 5.2: Execution time taken for all commands of the OpenSfM 3D reconstruction.

5.3 The Retrained TernausNet16 Model

Though the retrained CNN model was capable of segmenting the images taken for
the presented use case well, as well as on cracking patterns in soil that were never
added into its training sets when tested, it was observed that the CNN was not robust
enough in segmenting images with challenging high contrasting shadows as shown in
Figure 5.1, as there were only very few training samples of such patterns. Something
that is quite common to occur when taking images on site under normal circumstances.
Thus, retraining the network on more images in different lighting conditions included in
its training set should be considered for future work.

Figure 5.1: Resulting segmentation map by inference from the retrained TernausNet
overlaid on test images.

The performance of the retrained TernausNet in comparison with the previously mentioned
models in Section 4.3 is illustrated in Table 5.3, where evaluation is conducted on
the challenging datasets CRKWH100 and CrackLS315 from Zou et al. [113]. The
generated prediction maps from all three models and the evaluation log files are provided
in Appendix A.2.

74

5.4 Validating Estimated Width Measurements

Model Metric Mean Std.

Alabassy (fold_4) Dice 0.4261 0.1640
Jaccard 0.2837 0.1285

H. K. Ha Dice 0.1430 0.0607
Jaccard 0.0782 0.0356

DeepCrack (Liu et al.) Dice 0.0410 0.0884
Jaccard 0.0242 0.074

Table 5.3: The IoU (i.e., Jaccard index) and F1 score (i.e., Dice coefficient) values of the
CNNs evaluated on the CRKWH100 and CrackLS315 datasets from Zou et
al. [113].

Measured
Widths 1 2 3 4 5 6 7 8 9 10

In Model 9.17 4.22 5.29 8.32 5.30 5.04 6.86 4.99 4.52 2.11
On Site 8.0 5.0 6.0 9.0 6.0 7.0 6.0 6.0 6.0 4.0

Rel. Error 11.43%

Table 5.4: Estimated relative error in average width measurements from the modelled
crack shapes to the actual width values on site.

5.4 Validating Estimated Width Measurements

In addition to the measurements taken for scaling the 3D reconstruction due to lack of
known homologous 3D points and their related pixel location in images, some measure-
ments along three different segments were taken to validate their real width values to the
estimation based on the 2 backwards projected endpoints of the width measurement from
the binary segmentation map. As shown in Figure 5.2, the accumulation of errors from
the reconstructed point cloud, the backwards projection, its decimation and the global
registration resulted in a slight protrusion from the surface of the pavement estimated
from the highest protruded point at around 5.803 mm (i.e., approximately 25.2% of the
average depth value used for the modelled cracks’ profiles). A total of 10 measurements
for the widths of this cracks’ region were taken on site roughly in similar positions to those
measured from the modelled shapes as shown in Figure 5.3 to estimate an average error
for the width as detailed in Table 5.4.

5.5 Quality of Meshing

Using the AnalyseMeshQuality plugin in Gmsh, some quality metrics of the meshed
model could be measured by calculating the following parameters:

• Gamma: is the elementary aspect ratio = inscribed radius / circumscribed radius.

75

5 Evaluation of Results

Figure 5.2: Measuring the misalignment of the modelled cracks’ shapes between the
highest protruded point in red and the pavement surface in grey that results
in a slight protrusion from the surface of the pavement.

• Signed Inverse Gradient Error (SIGE): is the signed inverse error on the gradient
of the finite element solution.

• Signed Inverse Condition Number (SICN): is related to the condition number of the
stiffness matrix explained in [44, 48].

Figure 5.4 shows the parameters in the statistics window on the upper right of each
sub-figure for each segment of the four segments modelled for the use case lying within
the default range for validity.

5.6 Point Cloud Registration via GoICP

Generally, it was found that for N points in source point clouds, a higher trimming factor
of around 0.003xN and a lower convergence threshold of 0.0001xN for the L2-error were
sufficient as explained in Equation (2.13). However, this comes at the cost of a longer
execution time to get a satisfactory transformation result. For 35,788 vertices in the

76

5.6 Point Cloud Registration via GoICP

Figure 5.3: Taking measurements for cracks’ widths on site and similarly from the mod-
elled crack shapes.

source point cloud of the decimated mesh generated from the OpenSfM 3D reconstruction,
and 360,452 vertices in the target point cloud (i.e., the model), the global registration
algorithm calculated an initial L2-error of 22090.7 and a final error of 2.53039 with a
total execution time of 813.0583 seconds (i.e., 14 minutes approximately). This time is
calculated excluding the execution time taken for the preprocessing steps of converting
the IFC finely meshed model into .obj (i.e., 54 minutes 46 seconds), voxelisation (i.e., 2
minutes approximately), and normalisation (i.e., 73.3549 seconds) respectively.

77

5 Evaluation of Results

Figure 5.4: Gamma, SIGE, and SICN quality metrics of the meshed models retrieved
from Gmsh are shown lying within their valid intervals respectively.

78

5.7 IfcVoidingFeature vs. Blender’s Boolean Difference Modifier

5.7 IfcVoidingFeature vs. Blender’s Boolean Difference Modifier

While the the modelling attempt in the IFC model using IfcVoidingFeature could not be
successfully viewed in any of the IFC viewers available, except for usBIM as presented
in Figure 4.39, where only the shape was visible but not displayed properly as a cutout
void in the IfcSlab. Another modelling attempt in Blender was made on the imported IFC
model to prove the validity of the modelled crack shapes for boolean difference operation,
which turned out to be successful as shown in Figure 5.5.

Figure 5.5: A window marking the location of the use case modelled in the candidate
image of the pavement in the upper image, and the crack voids modelled in
the imported IFC model with Blender using a boolean difference modifier.

79

6 Summary and Concluding Remarks

6.1 Summary

This thesis proposed a comprehensive approach to reliably model valid shapes for
cracking patterns automatically based on images, which are nowadays usually acquired
in standard inspection procedures, through a workflow comprising of 8 major steps starting
from data acquisition to visualisation at the end. Classical methods for camera calibration
are proven to be effective and are normally required once per each configuration of the
camera and could be improved in future work with an autocalibration approach. The
3D reconstruction of the point cloud based on the taken images helped in using it as
a reference to extract the position of only the main points of particular interest for the
cracks’ centre-polylines, which proved useful to model the crack shapes independent of
any segmentation process applied on the point cloud as a prerequisite.

Though OpenSfM was found very robust, not all options available within the library could
be successfully utilised. However, with the working functionalities it proved to be the
best suited SFM library for the task. The use of a retrained TernausNet with a VGG16
encoder allowed for a reliable identification of the crack pixels with good accuracy in
most conditions, which facilitated the application of several classical image analysis algo-
rithms including, skeletonisation, morphological operations, edge detection, connected
components labelling, line simplification and the euclidean distance transform to extract
the main points comprising the centre-polylines of each segment in any interconnected
network of cracking patterns that should work seamlessly on curved surfaces and on
angular edges. With the knowledge of those points of interest and all parameters of the
perspective projection model, the 2D pixels could be back-projected to the 3D space
and used to model the crack shapes after transforming their coordinates to align with the
parent building element containing the cracks (i.e., composition relation) via extrusion.

Such crack shapes could be then converted into various formats depending on the use
required, whether be it only for visualisation in IFC format, or performing more advanced
FEM based structural analysis procedures, as they preinclude the nodes for tetrahedrons,
wires defining all trimmed surfaces, as well as the standard vertices, edges, and faces of
a triangulated mesh, thanks to the use of Gmsh library. Both the quality metrics of the
modelled shapes provided in Gmsh and the proper creation of voids in Blender prove
the shapes are valid and the visualisation limitations in IFC viewers is mostly related to
the geometry kernel’s inability to properly model more complicated IFC products. The
use of XbimToolkit allows for embedding the crack shapes into the IFC model as voiding
features with the help of a simple C# script, and facilitates the inclusion of other related

81

6 Summary and Concluding Remarks

inspection information in a structured and organised manner within IFC. Thus, fulfilling
the main goal of the thesis to automate the repetitive slow procedure of recording and
archiving damage states for structures and storing them digitally for future use.

6.2 Technical Challenges and Observed Shortcomings

Among some identified points of difficulties in the conducted research at hand, the depth
estimation for open surface cracks was presumed as a constant of twice the width, yet it
remains a topic of great interest. To our knowledge, there’s no direct way to accurately
determine the depth based solely on images in any of the trained neural network models
published in literature or publicly available under any open source license, and even
those published and available can not be reliably considered without due investigation
as they lack thorough peer reviews.

Furthermore, there’s no image based method that exactly determines the profile shape
of the crack even though cracks caused by fatigue are presumed to be of elliptic or
semi-elliptic shape in numerical models [76]. The triangular profile was chosen merely
to simplify the complexity of meshing required when creating the shapes via Gmsh, but
various profiles would be included in future improvements to the code.

The sole reliance on images for the whole workflow makes it susceptible to disruption
and failure in inspections undertaken at bad lighting conditions, weather conditions, and
highly dependable on the quality of the camera sensors used. A mix of RGBD cameras
that often have a limited Field of View (FoV) and short range for depth detection and
cameras capable of taking only RGB images of wider FoV might be helpful for such
cases.

All trials to utilise a Brown-Conrady camera model in OpenSfM failed at the incremental
reconstruction step with no apparent reason as the perspective model with just two radial
distortion parameters performed well. The cause of the error could not be identified
during the course of the research conducted and the issue would be later investigated
and fixed if needed by debugging the OpenSfM package to improve the quality of the 3D
reconstruction in future related work.

The use of the EDT proved to cause more problems than actually solving them; hence
the switch to classical vector geometry calculations to determine the endpoints of width
measurement at any polyline vertex in order to generate valid ruled surfaces in Gmsh as
in the second modelled use case. Yet it remains an efficient option when only a rough
estimate of widths is required.

It was not clear how crack segments should be modelled at junctions as each segment
inevitably intersects with the neighbouring ones as shown in Figure 6.1, when extruded
to the same profile orientation at the junction. No reference in literature could be found
to rely on nor any guidance from numerical methods for simulating cracks’ propagation
to properly model this case, as such realistic models were so far not considered feasible
to produce valid surfaces, nodes and tetrahadrons for Extended Finite Element Method
(XFEM).

82

6.3 Suggestions for Further Improvements and Future Work

Figure 6.1: Displayed overlapping regions of the crack shapes at junctions bordered in
red, which were left on purpose in the shapes construction algorithm and
handled only with a boolean union before exporting the whole pattern, till
a proper way of modelling that satisfies fracture mechanics conditions is
identified.

The consistent direction of the normals was cumbersome to correctly determine, es-
pecially in cases of flat surfaces, which are still prone to failure in the implemented
code when the source point cloud is very noisy and need to be further refined to make
sure it always points in the direction of the camera capturing the scene in all modelling
scenarios.

The requirement of high processing power and relatively long computing time for the
whole workflow to execute from start to end are not missed from the author’s side, yet they
are definitely less demanding and faster than that required for a human to manually model
such free form damage patterns and place them accurately in a 3D model. However,
there is a considerable room for enhancing its efficiency and speed, as the main goal
during the workflow’s development was getting it to work successfully, with little regard
for shortening modelling time, optimising memory usage, and reducing graphics and
processing power requirements, which should be tackled in future work.

6.3 Suggestions for Further Improvements and Future Work

While the conducted research has proven it is possible to automate the process of
modelling damage shapes geometrically based only on images, it is far from being
reliable and faces some obvious technical limitations.

• The reconstruction of dense point clouds using OpenSfM library requires further
improvements to allow the use of the more sophisticated Brown-Conrady camera
model with 3 radial distortion parameters and 2 tangential distortion parameters,
instead of just a perspective camera, could help improve the quality of the con-
structed point cloud. Yet during the time spent on the implementation and testing on

83

6 Summary and Concluding Remarks

use cases, all trials to utilize it were unsuccessful probably due to some technical
problems with the library itself, not the implementation, as both the fish-eye and
perspective camera models were successfully operational.

• The integration of geolocated control points could be useful in providing a good
initial alignment for the point cloud that could be used as a reasonable initial guess
for the ICP to refine for a final transformation that optimally align with the building
elements in the 3D model.

• The failure observed with the retrained TernausNet model in segmenting images
with shadows would be mitigated in future work by including more images in the
training set with high contrast shadows.

• modelling of other damage types of a voulme loss or open surface volumetric
subtraction geometrically like spallings and potholes is a topic of great interest.
Furthermore the use of the IfcDiff the IfcOpenShell module in Python to compare
various states of such damages is of future consideration.

• The feature subtraction for cracks shapes was performed with the prior knowledge
of the sole existence of one building element containing the damage in the IFC
model. However, in real case scenarios with a full-size model, a possibility to detect
the closest building element by means of nearest neighbour algorithm is worth
considering and will be addressed in future improvements.

6.4 Conclusion

The goal of the thesis at hand is to automate the reconstruction of damage shapes based
on image sequences, with primary focus on open surface cracks and spalls. Based on
the results presented in the use cases for modelling cracks, it has proved it is feasible to
automate the process of BIM of damages geometrically, but with some technical limitations
that could be overcome with future improvements to the current workflow. Given the
review of the current state of research, the conducted research further contributes to
the previous work of modelling damages within IFC [7, 8, 39, 42], yet the vast majority
of implementations and proposals so far suffice only with triangulating a dense point
cloud for damaged elements in a Scan Vs. BIM or Scan to BIM approach. Recent
advancements in Large point clouds segmentation [77] accompanied by semantic as-
built modelling approaches on the segmentations might might provide a feasible solution
to the BIM of as-built models derived from Laser scans [88]. Some previously published
applications for instance are to superimpose a dense reconstruction on a 3D model to
check for construction progress [50] or errors [78], identify certain building elements such
as columns [109, 110] and create BIM models for heritage sites from laser scanning [5],
or perform a mesh analysis for damage detection [107]. A drawback of the latter is low
performance at regions of subtle surface roughness and global shape variation (e.g., on
wide and smoothly curved surfaces). Such applications went no further with constructing
the 3D shapes of damages automatically to be embedded into their original location in a

84

6.4 Conclusion

3D building information model, even though the same tools and techniques utilised are fit
for automating the workflow to that end as well, with the sole exception of the proposed
implementation published by [42] for modelling spall shapes.

Crack detection and segmentation is possible with the inference from a retrained CNN
model so as to determine the critical points comprising the polylines of cracks. Using
and image sequence enables the creation of a dense point cloud that is necessary for
determining a fitting transformation to align to the 3D model. Yet only necessary points of
relevance would be eventually inserted into the model (i.e., points comprising the spalling
regions excluding rebars and the critical points comprising the polylines of cracks along
with their related crack width and depth information).

For crack shapes construction the concept of Desbenoit et al. implementation [21] is well
suited for that purpose. Such construction of damage shapes should facilitate attaching
all semantic information gathered during inspection directly to its shape and further allow
their enhanced visualisation in the 3D model or a VR environment for evaluation and
comparison with previous recorded states for deterioration rate assessment. Having
the geometric representation of the damages would also open the door for automating
the evaluation of the structural safety of the damaged building element required for any
condition assessment of structures by improving simulation of cracks propagation and
estimate the stiffness reductions using FEM analysis software tools.

With all technical measures taken to minimise the errors of calculations in the presented
implementation, the global registration step remains the main contribute to the observe
protrusion from the building element surface. The damage shape positioning has to be
verified against accumulative imprecise estimations with actual measurements, as false
positive feature matches are not filtered out by the RANSAC algorithm during the bundle
adjustment calculations or the the ICP algorithm.

To conclude, Laptev et al. [51] reasoned that it is practically not feasible to develop a
generic algorithm to extract all properties from digital images, as there will always be hu-
man intervention at some point in the automation process and an acceptable level of such
intervention should be defined based on accuracy, efficiency and repeatability [19].

85

Bibliography

[1] I. Abdel-Qader, O. Abudayyeh, M. E. Kelly. “Analysis of Edge-Detection Tech-
niques for Crack Identification in Bridges”. In: Journal of Computing in Civil Engi-
neering 17.4 (2003), pp. 255–263. issn: 0887-3801. doi: 10.1061/(ASCE)0887-
3801(2003)17:4(255) (cit. on p. 30).

[2] R. S. Adhikari, O. Moselhi, A. Bagchi. “Image-based retrieval of concrete crack
properties for bridge inspection”. In: Automation in Construction 39 (2014),
pp. 180–194. issn: 09265805. doi: 10.1016/j.autcon.2013.06.011 (cit.
on p. 34).

[3] S. Y. Alam, A. Loukili, F. Grondin, E. Rozière. “Use of the digital image correlation
and acoustic emission technique to study the effect of structural size on cracking
of reinforced concrete”. In: Engineering Fracture Mechanics 143 (2015), pp. 17–
31. issn: 00137944. doi: 10.1016/j.engfracmech.2015.06.038 (cit. on p. 29).

[4] R. Amhaz, S. Chambon, J. Idier, V. Baltazart. “Automatic Crack Detection on
Two-Dimensional Pavement Images: An Algorithm Based on Minimal Path Selec-
tion”. In: IEEE Transactions on Intelligent Transportation Systems 17.10 (2016),
pp. 2718–2729. issn: 1524-9050. doi: 10.1109/TITS.2015.2477675 (cit. on
p. 44).

[5] M. Andriasyan, J. Moyano, J. E. Nieto-Julián, D. Antón. “From Point Cloud Data to
Building Information Modelling: An Automatic Parametric Workflow for Heritage”.
In: Remote Sensing 12.7 (2020), p. 1094. doi: 10.3390/rs12071094 (cit. on
p. 84).

[6] S. A. Anwar, M. Z. Abdullah. “Micro-crack detection of multicrystalline solar cells
featuring an improved anisotropic diffusion filter and image segmentation tech-
nique”. In: EURASIP Journal on Image and Video Processing 2014.1 (2014). doi:
10.1186/1687-5281-2014-15 (cit. on p. 29).

[7] M. Artus, C. Koch, eds. Modeling Geometry and Semantics of Physical Damages
using IFC. 2020. isbn: 978-3-7983-3156-3. doi: 10.14279/depositonce-9977
(cit. on pp. 19, 22, 67, 71, 72, 84).

[8] M. Artus, C. Koch. “Modeling Physical Damages Using the Industry Foundation
Classes – A Software Evaluation”. In: Proceedings of the 18th International
Conference on Computing in Civil and Building Engineering. Ed. by E. Toledo
Santos, S. Scheer. Vol. 98. Lecture Notes in Civil Engineering. Cham: Springer
International Publishing, 2021, pp. 507–518. isbn: 978-3-030-51294-1. doi: 10.
1007/978-3-030-51295-8{\textunderscore}36 (cit. on pp. 19, 22, 67, 71, 84).

87

Bibliography

[9] H. Bay, T. Tuytelaars, L. van Gool. “SURF: Speeded Up Robust Features”.
In: Computer Vision – ECCV 2006. Ed. by A. Leonardis, H. Bischof, A. Pinz.
Vol. 3951. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 404–417. isbn: 978-3-540-33832-1. doi: 10.1007/
11744023{\textunderscore}32 (cit. on p. 34).

[10] C. Benz, P. Debus, H. K. Ha, V. Rodehorst. “Crack Segmentation on UAS-based
Imagery using Transfer Learning”. In: 2019 International Conference on Image
and Vision Computing New Zealand (IVCNZ). IEEE, 2.12.2019 - 04.12.2019,
pp. 1–6. isbn: 978-1-7281-4187-9. doi: 10.1109/IVCNZ48456.2019.8960998
(cit. on pp. 21, 26, 30, 43).

[11] P. J. Besl, N. D. McKay. “A method for registration of 3-D shapes”. In: IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
14.2 (1992), pp. 239–256. issn: 0162-8828. doi: 10.1109/34.121791 (cit. on
p. 36).

[12] A. Borrmann, S. Muhic, J. Hyvärinen, T. Chipman, S. Jaud, C. Castaing, C. Du-
moulin, T. Liebich, L. Mol. “The IFC-Bridge project – Extending the IFC standard
to enable high-quality exchange of bridge information models”. In: Proceedings
of the 2019 European Conference on Computing in Construction. Computing in
Construction. University College Dublin, 2019, pp. 377–386. doi: 10.35490/EC3.
2019.193 (cit. on pp. 21, 22).

[13] G. R. Bradski, A. Kaehler. Learning OpenCV: Computer vision with the OpenCV
library / by Gary Bradski and Adrian Kaehler. Farnham and Cambridge: O’Reilly,
2008. isbn: 978-0596516130 (cit. on p. 32).

[14] W. S. M. Brooks, D. A. Lamb, S. J. C. Irvine. “IR Reflectance Imaging for Crystalline
Si Solar Cell Crack Detection”. In: IEEE Journal of Photovoltaics 5.5 (2015),
pp. 1271–1275. issn: 2156-3381. doi: 10.1109/JPHOTOV.2015.2438636 (cit. on
p. 29).

[15] G. Buffi, P. Manciola, S. Grassi, M. Barberini, A. Gambi. “Survey of the Ridracoli
Dam: UAV–based photogrammetry and traditional topographic techniques in the
inspection of vertical structures”. In: Geomatics, Natural Hazards and Risk 8.2
(2017), pp. 1562–1579. issn: 1947-5705. doi: 10.1080/19475705.2017.1362039
(cit. on p. 20).

[16] L. Bursanescu, F. Blais. “Automated pavement distress data collection and anal-
ysis: a 3-D approach”. In: Proceedings. International Conference on Recent
Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134). IEEE
Comput. Soc. Press, 12-15 May 1997, pp. 311–317. isbn: 0-8186-7943-3. doi:
10.1109/IM.1997.603881 (cit. on p. 33).

[17] X. Chen, J. E. Michaels, S. J. Lee, T. E. Michaels. “Load-differential imaging for
detection and localization of fatigue cracks using Lamb waves”. In: NDT & E
International 51 (2012), pp. 142–149. issn: 09638695. doi: 10.1016/j.ndteint.
2012.05.006 (cit. on p. 29).

88

Bibliography

[18] Y. Chen, G. Medioni. “Object modeling by registration of multiple range images”.
In: Proceedings. 1991 IEEE International Conference on Robotics and Automation.
IEEE Comput. Soc. Press, 9-11 April 1991, pp. 2724–2729. isbn: 0-8186-2163-X.
doi: 10.1109/ROBOT.1991.132043 (cit. on p. 36).

[19] P. Dare, H. Hanley, C. Fraser, B. Riedel, W. Niemeier. “An Operational Applica-
tion of Automatic Feature Extraction: The Measurement of Cracks in Concrete
Structures”. In: The Photogrammetric Record 17.99 (2002), pp. 453–464. issn:
0031-868X. doi: 10.1111/0031-868X.00198 (cit. on pp. 32, 85).

[20] T. Dawood, Z. Zhu, T. Zayed. “Machine vision-based model for spalling detection
and quantification in subway networks”. In: Automation in Construction 81 (2017),
pp. 149–160. issn: 09265805. doi: 10.1016/j.autcon.2017.06.008 (cit. on
p. 31).

[21] B. Desbenoit, E. Galin, S. Akkouche. “Modeling cracks and fractures”. In: The
Visual Computer 21.8-10 (2005), pp. 717–726. issn: 0178-2789. doi: 10.1007/
s00371-005-0317-z (cit. on pp. 19, 37, 85).

[22] S. Dorafshan, R. J. Thomas, M. Maguire. “Comparison of deep convolutional neu-
ral networks and edge detectors for image-based crack detection in concrete”. In:
Construction and Building Materials 186 (2018), pp. 1031–1045. issn: 09500618.
doi: 10.1016/j.conbuildmat.2018.08.011 (cit. on p. 30).

[23] C. V. Dung, D. Le Anh. “Autonomous concrete crack detection using deep fully
convolutional neural network”. In: Automation in Construction 99 (2019), pp. 52–
58. issn: 09265805. doi: 10.1016/j.autcon.2018.11.028 (cit. on p. 21).

[24] R. Fan, M. J. Bocus, Y. Zhu, J. Jiao, L. Wang, F. Ma, S. Cheng, M. Liu. “Road Crack
Detection Using Deep Convolutional Neural Network and Adaptive Thresholding”.
In: 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 9.06.2019 - 12.06.2019,
pp. 474–479. isbn: 978-1-7281-0560-4. doi: 10.1109/IVS.2019.8814000 (cit. on
p. 30).

[25] Fan Yang, Lei Zhang, Sijia Yu, Danil Prokhorov, Xue Mei, Haibin Ling. Feature
Pyramid and Hierarchical Boosting Network for Pavement Crack Detection. 2019
(cit. on p. 45).

[26] A. W. Fitzgibbon. “Simultaneous linear estimation of multiple view geometry and
lens distortion”. In: Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. CVPR 2001. IEEE Comput. Soc,
8-14 Dec. 2001, pp. I-125-I–132. isbn: 0-7695-1272-0. doi: 10.1109/CVPR.2001.
990465 (cit. on p. 24).

[27] C. Geuzaine, J.-F. Remacle. “Gmsh: A 3-D finite element mesh generator with
built-in pre- and post-processing facilities”. In: International Journal for Numerical
Methods in Engineering 79.11 (2009), pp. 1309–1331. issn: 00295981. doi:
10.1002/nme.2579 (cit. on p. 66).

[28] R. Girshick. “Fast R-CNN”. In: 2015 IEEE International Conference on Computer
Vision (ICCV). IEEE, 7.12.2015 - 13.12.2015, pp. 1440–1448. isbn: 978-1-4673-
8391-2. doi: 10.1109/ICCV.2015.169 (cit. on p. 31).

89

Bibliography

[29] J. A. Glud, J. M. Dulieu-Barton, O. T. Thomsen, L. Overgaard. “Automated counting
of off-axis tunnelling cracks using digital image processing”. In: Composites
Science and Technology 125 (2016), pp. 80–89. issn: 02663538. doi: 10.1016/
j.compscitech.2016.01.019 (cit. on p. 29).

[30] C. Gunkel, A. Stepper, A. C. Müller, C. H. Müller. “Micro crack detection with
Dijkstra’s shortest path algorithm”. In: Machine Vision and Applications 23.3
(2012), pp. 589–601. issn: 0932-8092. doi: 10.1007/s00138-011-0324-1 (cit. on
p. 29).

[31] Z. Guo, R. W. Hall. “Parallel thinning with two-subiteration algorithms”. In: Com-
munications of the ACM 32.3 (1989), pp. 359–373. issn: 0001-0782. doi: 10.
1145/62065.62074 (cit. on p. 47).

[32] H. K. Ha. Crack Segmentation. 2018. url: https://github.com/khanhha/
crack_segmentation (cit. on pp. 43, 45).

[33] D. Hähnel, S. Thrun, W. Burgard. “An Extension of the ICP Algorithm for Modeling
Nonrigid Objects with Mobile Robots”. In: IJCAI-03, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August
9-15, 2003. Ed. by Georg Gottlob, Toby Walsh. Morgan Kaufmann, 2003, pp. 915–
920. url: http://ijcai.org/Proceedings/03/Papers/132.pdf (cit. on p. 36).

[34] U. B. Halabe, H.-L. Chen, V. Bhandarkar, Z. Sami. “Detection of Sub-Surface
Anomalies in Concrete Bridge Decks using Ground Penetrating Radar”. In: ACI
Materials Journal 94.5 (1997). issn: 0889-325X. doi: 10.14359/324 (cit. on p. 33).

[35] M. Hamrat, B. Boulekbache, M. Chemrouk, S. Amziane. “Flexural cracking behav-
ior of normal strength, high strength and high strength fiber concrete beams, using
Digital Image Correlation technique”. In: Construction and Building Materials 106
(2016), pp. 678–692. issn: 09500618. doi: 10.1016/j.conbuildmat.2015.12.
166 (cit. on p. 29).

[36] R. I. Hartley. “Euclidean reconstruction from uncalibrated views”. In: Applications
of Invariance in Computer Vision. Ed. by G. Goos, J. Hartmanis, J. L. Mundy,
A. Zisserman, D. Forsyth. Vol. 825. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1994, pp. 235–256. isbn: 978-3-540-
58240-3. doi: 10.1007/3-540-58240-1{\textunderscore}13 (cit. on p. 35).

[37] R. Heideklang, P. Shokouhi. “Multi-sensor image fusion at signal level for improved
near-surface crack detection”. In: NDT & E International 71 (2015), pp. 16–22.
issn: 09638695. doi: 10.1016/j.ndteint.2014.12.008 (cit. on p. 29).

[38] N.-D. Hoang, Q.-L. Nguyen, X.-L. Tran. “Automatic Detection of Concrete Spalling
Using Piecewise Linear Stochastic Gradient Descent Logistic Regression and
Image Texture Analysis”. In: Complexity 2019 (2019), pp. 1–14. issn: 1076-2787.
doi: 10.1155/2019/5910625 (cit. on p. 32).

[39] P. Hüthwohl, I. Brilakis, A. Borrmann, R. Sacks. “Integrating RC Bridge Defect
Information into BIM Models”. In: Journal of Computing in Civil Engineering
32.3 (2018), p. 04018013. issn: 0887-3801. doi: 10.1061/(ASCE)CP.1943-
5487.0000744 (cit. on pp. 19, 22, 71, 84).

90

Bibliography

[40] V. Iglovikov, A. Shvets. “TernausNet: U-Net with VGG11 Encoder Pre-Trained on
ImageNet for Image Segmentation”. In: ArXiv abs/1801.05746 (2018) (cit. on
p. 26).

[41] S. Iliopoulos, D. G. Aggelis, L. Pyl, J. Vantomme, P. van Marcke, E. Coppens,
L. Areias. “Detection and evaluation of cracks in the concrete buffer of the Belgian
Nuclear Waste container using combined NDT techniques”. In: Construction and
Building Materials 78 (2015), pp. 369–378. issn: 09500618. doi: 10.1016/j.
conbuildmat.2014.12.036 (cit. on p. 29).

[42] D. Isailović, V. Stojanovic, M. Trapp, R. Richter, R. Hajdin, J. Döllner. “Bridge
damage: Detection, IFC-based semantic enrichment and visualization”. In: Au-
tomation in Construction 112 (2020), p. 103088. issn: 09265805. doi: 10.1016/
j.autcon.2020.103088 (cit. on pp. 19, 20, 22, 84, 85).

[43] G. James, D. Witten, T. Hastie, R. Tibshirani. An Introduction to Statistical Learning.
Vol. 103. New York, NY: Springer New York, 2013. isbn: 978-1-4614-7137-0. doi:
10.1007/978-1-4614-7138-7 (cit. on p. 45).

[44] A. Johnen, C. Geuzaine, T. Toulorge, J.-F. Remacle. “Efficient Computation of
the Minimum of Shape Quality Measures on Curvilinear Finite Elements”. In:
Procedia Engineering 163 (2016), pp. 328–339. issn: 18777058. doi: 10.1016/
j.proeng.2016.11.067 (cit. on p. 76).

[45] S. Kabir. “Imaging-based detection of AAR induced map-crack damage in concrete
structure”. In: NDT & E International 43.6 (2010), pp. 461–469. issn: 09638695.
doi: 10.1016/j.ndteint.2010.04.007 (cit. on p. 29).

[46] D. Kang, S. S. Benipal, D. L. Gopal, Y.-J. Cha. “Hybrid pixel-level concrete crack
segmentation and quantification across complex backgrounds using deep learn-
ing”. In: Automation in Construction 118 (2020), p. 103291. issn: 09265805. doi:
10.1016/j.autcon.2020.103291 (cit. on p. 31).

[47] M. Kashif, T. M. Deserno, D. Haak, S. Jonas. “Feature description with SIFT,
SURF, BRIEF, BRISK, or FREAK? A general question answered for bone age
assessment”. In: Computers in biology and medicine 68 (2016), pp. 67–75. doi:
10.1016/j.compbiomed.2015.11.006 (cit. on p. 34).

[48] P. M. Knupp. “Achieving finite element mesh quality via optimization of the Jaco-
bian matrix norm and associated quantities. Part II?A framework for volume mesh
optimization and the condition number of the Jacobian matrix”. In: International
Journal for Numerical Methods in Engineering 48.8 (2000), pp. 1165–1185. issn:
00295981. doi: 10.1002/(SICI)1097-0207(20000720)48:8{\textless}1165::
AID-NME940{\textgreater}3.0.CO;2-Y (cit. on p. 76).

[49] Kok-Lim Low. “Linear Least-Squares Optimization for Point-to-Plane ICP Surface
Registration”. In: Department of Computer Science University of North Carolina
at Chapel Hill (2004) (cit. on p. 36).

[50] C. Kropp, C. Koch, M. König. “Interior construction state recognition with 4D BIM
registered image sequences”. In: Automation in Construction 86 (2018), pp. 11–
32. issn: 09265805. doi: 10.1016/j.autcon.2017.10.027 (cit. on p. 84).

91

Bibliography

[51] I. Laptev, H. Mayer, T. Lindeberg, W. Eckstein, C. Steger, A. Baumgartner. “Auto-
matic extraction of roads from aerial images based on scale space and snakes”.
In: Machine Vision and Applications 12.1 (2000), pp. 23–31. issn: 0932-8092.
doi: 10.1007/s001380050121 (cit. on p. 85).

[52] C. L. Lau, T. Scullion, P. Chan. “Modeling of Ground-Penetrating Radar Wave
Propagation in Pavement Systems”. In: Transportation Research Record: Journal
of the Transportation Research Board 1355 (1992), pp. 99–107. issn: 0361-1981.
url: http://onlinepubs.trb.org/Onlinepubs/trr/1992/1355/1355-012.pdf
(cit. on p. 33).

[53] Y. LeCun, Y. Bengio, G. Hinton. “Deep learning”. In: Nature 521.7553 (2015),
pp. 436–444. doi: 10.1038/nature14539 (cit. on p. 30).

[54] J. Lee, H.-S. Kim, N. Kim, E.-M. Ryu, J.-W. Kang. “Learning to Detect Cracks on
Damaged Concrete Surfaces Using Two-Branched Convolutional Neural Network”.
In: Sensors (Basel, Switzerland) 19.21 (2019). doi: 10.3390/s19214796 (cit. on
p. 21).

[55] T. C. Lee, R. L. Kashyap, C. N. Chu. “Building Skeleton Models via 3-D Medial
Surface Axis Thinning Algorithms”. In: CVGIP: Graphical Models and Image
Processing 56.6 (1994), pp. 462–478. issn: 10499652. doi: 10.1006/cgip.1994.
1042 (cit. on p. 47).

[56] S. Li, X. Zhao. “Image-Based Concrete Crack Detection Using Convolutional Neu-
ral Network and Exhaustive Search Technique”. In: Advances in Civil Engineering
2019 (2019), pp. 1–12. issn: 1687-8086. doi: 10.1155/2019/6520620 (cit. on
p. 21).

[57] X. Li, H. Jiang, G. Yin. “Detection of surface crack defects on ferrite magnetic
tile”. In: NDT & E International 62 (2014), pp. 6–13. issn: 09638695. doi: 10.
1016/j.ndteint.2013.10.006 (cit. on p. 29).

[58] Y. Lin, W.-C. Su. “Use of Stress Waves for Determining the Depth of Surface-
Opening Cracks in Concrete Structures”. In: ACI Materials Journal 93.5 (1996).
issn: 0889-325X. doi: 10.14359/9855 (cit. on p. 33).

[59] Y. Liu, J. Yao, X. Lu, R. Xie, L. Li. “DeepCrack: A deep hierarchical feature learning
architecture for crack segmentation”. In: Neurocomputing 338 (2019), pp. 139–
153. issn: 09252312. doi: 10.1016/j.neucom.2019.01.036 (cit. on pp. 21, 30,
43, 45).

[60] S. Lockley, C. Benghi, M. Černý. “Xbim.Essentials: a library for interoperable
building information applications”. In: The Journal of Open Source Software 2.20
(2017), p. 473. doi: 10.21105/joss.00473 (cit. on p. 67).

[61] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: Inter-
national Journal of Computer Vision 60.2 (2004), pp. 91–110. issn: 0920-5691.
doi: 10.1023/b:visi.0000029664.99615.94 (cit. on p. 34).

[62] J. J. Lu, X. Mei, M. Gunaratne. “Development oF an Automatic Detection System
for Measuring Pavement Crack Depth on Florida Roadways”. In: (2002). url:
https://fdotwww.blob.core.windows.net/sitefinity/docs/default-
source/research/reports/fdot-bb884-rpt.pdf?sfvrsn=3ec85132_2 (cit. on
p. 33).

92

Bibliography

[63] B. D. Lucas, T. Kanade. “An Iterative Image Registration Technique with an Appli-
cation to Stereo Vision”. In: Proceedings of the 7th International Joint Conference
on Artificial Intelligence - Volume 2. IJCAI’81. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc, 1981, pp. 674–679 (cit. on p. 34).

[64] M. Eisenbach, R. Stricker, D. Seichter, K. Amende, K. Debes, M. Sesselmann,
D. Ebersbach, U. Stoeckert, H. Gross. “How to get pavement distress detection
ready for deep learning? A systematic approach”. In: 2017 International Joint
Conference on Neural Networks (IJCNN). 2017, pp. 2039–2047. doi: 10.1109/
IJCNN.2017.7966101 (cit. on p. 45).

[65] A. Martinet, E. Galin, B. Desbenoit, S. Akkouche. “Procedural modeling of cracks
and fractures”. In: Proceedings Shape Modeling Applications, 2004. IEEE, 7-9
June 2004, pp. 346–349. isbn: 0-7695-2075-8. doi: 10.1109/SMI.2004.1314524
(cit. on pp. 19, 37).

[66] N. Meierhold, M. Spehr, A. Schilling, S. Gumhold, H.-G. Maas. “Automatic Feature
Matching between Digital Images and 2D Representations of a 3D Laser Scanner
Point Cloud”. In: International Archives of Photogrammetry, Remote Sensing and
Spatial Information Science 38-5 (2010), pp. 446–451 (cit. on p. 35).

[67] A. Mohan, S. Poobal. “Crack detection using image processing: A critical review
and analysis”. In: Alexandria Engineering Journal 57.2 (2018), pp. 787–798. issn:
11100168. doi: 10.1016/j.aej.2017.01.020 (cit. on p. 29).

[68] M. Muja, D. G. Lowe. “Fast Approximate Nearest Neighbours with Automatic
Algorithm Configuration”. In: (2009). url: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.160.1721&rep=rep1&type=pdf (cit. on p. 34).

[69] S. Mukherjee, B. Condron, S. T. Acton. “Tubularity flow field–a technique for
automatic neuron segmentation”. In: IEEE transactions on image processing : a
publication of the IEEE Signal Processing Society 24.1 (2015), pp. 374–389. doi:
10.1109/TIP.2014.2378052 (cit. on p. 31).

[70] N. Nazaryan, C. Campana, S. Moslehpour, D. Shetty. “Application of a He3Ne
infrared laser source for detection of geometrical dimensions of cracks and
scratches on finished surfaces of metals”. In: Optics and Lasers in Engineer-
ing 51.12 (2013), pp. 1360–1367. issn: 01438166. doi: 10.1016/j.optlaseng.
2013.05.002 (cit. on p. 29).

[71] F. Ni, J. Zhang, Z. Chen. “Pixel-level crack delineation in images with convolutional
feature fusion”. In: Structural Control and Health Monitoring 26.1 (2019), e2286.
issn: 15452255. doi: 10.1002/stc.2286 (cit. on p. 30).

[72] Ç. F. Özgenel. Concrete Crack Images for Classification. 2019. doi: 10.17632/
5y9wdsg2zt.2 (cit. on p. 45).

[73] S. G. Paal, I. Brilakis, R. DesRoches. “Rapid entropy-based detection and proper-
ties measurement of concrete spalling with machine vision for post-earthquake
safety assessments”. In: Advanced Engineering Informatics 26.4 (2012), pp. 846–
858. issn: 14740346. doi: 10.1016/j.aei.2012.06.005 (cit. on p. 31).

[74] L. D. Payne, R. S. Walker. The Use of Lasers for Pavement Crack Detection. url:
https://library.ctr.utexas.edu/digitized/texasarchive/phase2/1141-
1.pdf (cit. on p. 33).

93

Bibliography

[75] F. C. Pereira, C. E. Pereira. “Embedded Image Processing Systems for Automatic
Recognition of Cracks using UAVs”. In: IFAC-PapersOnLine 48.10 (2015), pp. 16–
21. issn: 24058963. doi: 10.1016/j.ifacol.2015.08.101 (cit. on p. 29).

[76] S. Pommier, A. Gravouil, A. Combescure, N. Moës. Extended Finite Element
Method for Crack Propagation. Hoboken, NJ USA: John Wiley & Sons, Inc, 2013.
isbn: 9781118622650. doi: 10.1002/9781118622650 (cit. on p. 82).

[77] F. Poux, C. Mattes, L. Kobbelt. “UNSUPERVISED SEGMENTATION OF INDOOR
3D POINT CLOUD: APPLICATION TO OBJECT-BASED CLASSIFICATION”. In:
ISPRS - International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences XLIV-4/W1-2020 (2020), pp. 111–118. doi: 10.
5194/isprs-archives-XLIV-4-W1-2020-111-2020 (cit. on p. 84).

[78] D. Rebolj, Z. Pučko, N. Č. Babič, M. Bizjak, D. Mongus. “Point cloud quality re-
quirements for Scan-vs-BIM based automated construction progress monitoring”.
In: Automation in Construction 84 (2017), pp. 323–334. issn: 09265805. doi:
10.1016/j.autcon.2017.09.021 (cit. on p. 84).

[79] T. Saarenketo, T. Scullion. “Road evaluation with ground penetrating radar”. In:
Journal of Applied Geophysics 43.2-4 (2000), pp. 119–138. issn: 09269851. doi:
10.1016/S0926-9851(99)00052-X (cit. on p. 33).

[80] M. Sansalone, N. J. Carino. “Impact-Echo Method: Detecting Honeycombing, the
Depth of Surface-opening Cracks and Ungrouted Ducts”. In: Concrete Interna-
tional 10.4 () (cit. on p. 33).

[81] M. Sansalone, J.-M. Lin, W. B. Streett. “Determining the Depth of Surface-Opening
Cracks using Impact-Generated Stress Waves and Time-of-Flight Techniques”.
In: ACI Materials Journal 95.2 (). issn: 0889-325X. doi: 10.14359/362 (cit. on
p. 33).

[82] A. Saxena, M. Sun, A. Y. Ng. “Make3D: learning 3D scene structure from a
single still image”. In: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE 31.5 (2009), pp. 824–840. issn: 0162-8828. doi:
10.1109/TPAMI.2008.132 (cit. on p. 34).

[83] U. Schlengermann. “Determination of Crack Depths using Ultrasonics - An Over-
look”. In: UTonline Application Workshop 2.05 (May 1997). url: https://www.
ndt.net/article/wsho0597/schleng2/schleng2.htm (cit. on p. 33).

[84] H. M. Shehata, Y. S. Mohamed, M. Abdellatif, T. H. Awad. “Depth estimation
of steel cracks using laser and image processing techniques”. In: Alexandria
Engineering Journal 57.4 (2018), pp. 2713–2718. issn: 11100168. doi: 10.1016/
j.aej.2017.10.006 (cit. on p. 34).

[85] Y. Shi, L. Cui, Z. Qi, F. Meng, Z. Chen. “Automatic Road Crack Detection Using
Random Structured Forests”. In: IEEE Transactions on Intelligent Transportation
Systems 17.12 (2016), pp. 3434–3445. issn: 1524-9050. doi: 10.1109/TITS.
2016.2552248 (cit. on p. 44).

94

Bibliography

[86] A. A. Shvets, A. Rakhlin, A. A. Kalinin, V. I. Iglovikov. “Automatic Instrument Seg-
mentation in Robot-Assisted Surgery using Deep Learning”. In: 2018 17th IEEE
International Conference on Machine Learning and Applications (ICMLA). IEEE,
17.12.2018 - 20.12.2018, pp. 624–628. isbn: 978-1-5386-6805-4. doi: 10.1109/
ICMLA.2018.00100 (cit. on pp. 27, 45).

[87] I. Sobel, G. Feldman. An Isotropic 3x3 Image Gradient Operator. 2015. doi:
10.13140/rg.2.1.1912.4965 (cit. on p. 29).

[88] H. Son, C. Kim. “Semantic as-built 3D modeling of structural elements of buildings
based on local concavity and convexity”. In: Advanced Engineering Informatics
34 (2017), pp. 114–124. issn: 14740346. doi: 10.1016/j.aei.2017.10.001
(cit. on p. 84).

[89] S. Suzuki, K. be. “Topological structural analysis of digitized binary images by
border following”. In: Computer Vision, Graphics, and Image Processing 30.1
(1985), pp. 32–46. issn: 0734189X. doi: 10.1016/0734-189X(85)90016-7 (cit. on
p. 54).

[90] S. Thrun, W. Burgard, D. Fox. Probabilistic robotics. Intelligent robotics and au-
tonomous agents. Cambridge, Mass. and London: MIT, 2005. isbn: 0262201623
(cit. on p. 30).

[91] S. Ullman. “The interpretation of structure from motion”. In: Proceedings of the
Royal Society of London. Series B, Biological sciences 203.1153 (1979), pp. 405–
426. issn: 0950-1193. doi: 10.1098/rspb.1979.0006 (cit. on p. 34).

[92] S. Ullman. The Interpretation of Visual Motion. The MIT Press series in artificial
intelligence. Cambridge, Mass.: MIT Press, 1979. isbn: 9780262257121 (cit. on
p. 34).

[93] J. P. de Villiers, F. W. Leuschner, R. Geldenhuys. “Centi-pixel accurate real-time
inverse distortion correction”. In: Optomechatronic Technologies 2008. Ed. by
Y. Otani, Y. Bellouard, J. T. Wen, D. Hodko, Y. Katagiri, S. K. Kassegne, J. Kofman,
S. Kaneko, C. A. Perez, D. Coquin, O. Kaynak, Y. Cho, T. Fukuda, J. Yi, F. Janabi-
Sharifi. SPIE Proceedings. SPIE, 2008, p. 726611. doi: 10.1117/12.804771
(cit. on p. 23).

[94] R. S. Walker, R. L. Harris. Noncontact Pavement Crack Detection System. Wash-
ington D.C: 1991 (cit. on p. 33).

[95] G. A. Washer. “Developments for the non-destructive evaluation of highway
bridges in the USA”. In: NDT & E International 31.4 (1998), pp. 245–249. issn:
09638695. doi: 10.1016/S0963-8695(98)00009-7 (cit. on p. 33).

[96] J. Wells, B. Lovelace. Improving the Quality of Bridge Inspections Using Un-
manned Aircraft Systems (UAS). url: https : / / www . dot . state . mn . us /
research/reports/2018/201826.pdf (cit. on p. 20).

[97] H. Wu, X. Ao, Z. Chen, C. Liu, Z. Xu, P. Yu. “Concrete Spalling Detection for Metro
Tunnel from Point Cloud Based on Roughness Descriptor”. In: Journal of Sensors
2019 (2019), pp. 1–12. issn: 1687-725X. doi: 10.1155/2019/8574750 (cit. on
p. 32).

95

Bibliography

[98] Y. Xu, S. Li, D. Zhang, Y. Jin, F. Zhang, N. Li, H. Li. “Identification framework for
cracks on a steel structure surface by a restricted Boltzmann machines algorithm
based on consumer-grade camera images”. In: Structural Control and Health
Monitoring 25.2 (2018), e2075. issn: 15452255. doi: 10.1002/stc.2075 (cit. on
p. 30).

[99] Y. Morvan. “Acquisition, compression and rendering of depth and texture for
multi-view video”. PhD thesis. Department of Electrical Engineering, 2009. doi:
10.6100/IR641964 (cit. on p. 26).

[100] J. Yang, H. Li, D. Campbell, Y. Jia. “Go-ICP: A Globally Optimal Solution to 3D
ICP Point-Set Registration”. In: IEEE TRANSACTIONS ON PATTERN ANALYSIS
AND MACHINE INTELLIGENCE 38.11 (2016), pp. 2241–2254. issn: 0162-8828.
doi: 10.1109/TPAMI.2015.2513405 (cit. on pp. 28, 64).

[101] J. Yang, H. Li, Y. Jia. “Go-ICP: Solving 3D Registration Efficiently and Globally
Optimally”. In: 2013 IEEE International Conference on Computer Vision. IEEE,
1.12.2013 - 08.12.2013, pp. 1457–1464. isbn: 978-1-4799-2840-8. doi: 10.1109/
ICCV.2013.184 (cit. on pp. 28, 64).

[102] S.-N. Yu, J.-H. Jang, C.-S. Han. “Auto inspection system using a mobile robot
for detecting concrete cracks in a tunnel”. In: Automation in Construction 16.3
(2007), pp. 255–261. issn: 09265805. doi: 10.1016/j.autcon.2006.05.003
(cit. on p. 32).

[103] T. Yu, S. Vinayaka. “Quantification of surface crack depth in concrete panels using
1.6 GHz GPR images”. In: Nondestructive Characterization and Monitoring of
Advanced Materials, Aerospace, Civil Infrastructure, and Transportation IX. Ed. by
P. J. Shull, T.-Y. Yu, A. L. Gyekenyesi, H. F. Wu. SPIE, 27.04.2020 - 08.05.2020,
p. 6. isbn: 9781510635371. doi: 10.1117/12.2558952. url: https://www.spi
edigitallibrary.org/conference-proceedings-of-spie/11380/2558952/
Quantification-of-surface-crack-depth-in-concrete-panels-using-
16/10.1117/12.2558952.full (cit. on p. 33).

[104] H. Zakeri, F. M. Nejad, A. Fahimifar. “Image Based Techniques for Crack Detection,
Classification and Quantification in Asphalt Pavement: A Review”. In: Archives of
Computational Methods in Engineering 24.4 (2017), pp. 935–977. issn: 1134-
3060. doi: 10.1007/s11831-016-9194-z (cit. on p. 29).

[105] L. Zhang, F. Yang, Y. Daniel Zhang, Y. J. Zhu. “Road crack detection using deep
convolutional neural network”. In: 2016 IEEE International Conference on Image
Processing (ICIP). IEEE, 25.09.2016 - 28.09.2016, pp. 3708–3712. isbn: 978-1-
4673-9961-6. doi: 10.1109/ICIP.2016.7533052 (cit. on pp. 30, 45).

[106] T. Y. Zhang, C. Y. Suen. “A fast parallel algorithm for thinning digital patterns”. In:
Communications of the ACM 27.3 (1984), pp. 236–239. issn: 0001-0782. doi:
10.1145/357994.358023 (cit. on p. 47).

[107] Y. Zhang, C. Chen, Q. Wu, Q. Lu, S. Zhang, G. Zhang, Y. Yang. “A Kinect-Based
Approach for 3D Pavement Surface Reconstruction and Cracking Recognition”. In:
IEEE Transactions on Intelligent Transportation Systems 19.12 (2018), pp. 3935–
3946. issn: 1524-9050. doi: 10.1109/TITS.2018.2791476 (cit. on pp. 33, 36,
84).

96

Bibliography

[108] Q.-Y. Zhou, J. Park, V. Koltun. Open3D: A Modern Library for 3D Data Processing.
url: http://arxiv.org/pdf/1801.09847v1 (cit. on p. 60).

[109] Z. Zhu, I. Brilakis. “Automated Detection of Concrete Columns from Visual Data”.
In: Computing in Civil Engineering (2009). Ed. by C. H. Caldas, W. J. O’Brien.
Reston, VA: American Society of Civil Engineers, 6192009, pp. 135–145. isbn:
9780784410523. doi: 10.1061/41052(346)14 (cit. on p. 84).

[110] Z. Zhu, I. Brilakis. “Concrete Column Recognition in Images and Videos”. In:
Journal of Computing in Civil Engineering 24.6 (2010), pp. 478–487. issn: 0887-
3801. doi: 10.1061/(ASCE)CP.1943-5487.0000053 (cit. on p. 84).

[111] Z. Zhu, S. German, I. Brilakis. “Visual retrieval of concrete crack properties
for automated post-earthquake structural safety evaluation”. In: Automation in
Construction 20.7 (2011), pp. 874–883. issn: 09265805. doi: 10.1016/j.autcon.
2011.03.004 (cit. on pp. 32, 53, 54, 56).

[112] Q. Zou, Y. Cao, Q. Li, Q. Mao, S. Wang. “CrackTree: Automatic crack detection
from pavement images”. In: Pattern Recognition Letters 33.3 (2012), pp. 227–238
(cit. on p. 45).

[113] Q. Zou, Z. Zhang, Q. Li, X. Qi, Q. Wang, S. Wang. “DeepCrack: Learning Hier-
archical Convolutional Features for Crack Detection”. In: IEEE transactions on
image processing : a publication of the IEEE Signal Processing Society (2018).
doi: 10.1109/TIP.2018.2878966 (cit. on pp. 21, 30, 43, 44, 74, 75).

All links were last followed on December 18, 2020.

97

A Appendix

A.1 Diagrams explaining the developed Python Projects for the
Workflow

Figure A.1: A class UML diagram for vectorisation.

Figure A.2: A class UML diagram for the backwards projection project.

Figure A.3: A class UML diagram for estimating correct normals project.

Figure A.4: A class UML diagram for the ICP project.

Figure A.5: A class UML diagram for shape construction project.

A.2 Additional Online Material

The relatively large sized content of the appendix that cannot fit for printing is provided in
a digital format under the following URL: https://1drv.ms/u/s!AvzPFc2eYo6ThzYe_
Q9dKJvBq-ZI?e=ZiqHyw

Figure A.6: A sequence diagram showing the interaction between different classes in
Python.

	1 Introduction
	1.1 Problem Statement
	1.2 Motivations
	1.3 Research objectives and target
	1.4 Methodology
	1.5 Roadmap

	2 Background
	2.1 Projective Geometry
	2.2 Transfer Learning for TernausNet16
	2.3 Global Registration using ICP

	3 Related Work
	3.1 Cracks Detection, Segmentation and Properties Retrieval
	3.2 Spalls Detection, Segmentation and Properties Retrieval
	3.3 Vectorization and Retrieval of Crack Properties
	3.4 Conversion from Camera’s Pixel Units to a Metric World Coordinate System and Alignment to a 3D Model
	3.5 Crack Shapes Construction

	4 Methods for Modelling Cracks' Geometries and Application on Use Case
	4.1 Camera Calibration and Distortion Correction
	4.2 Point Cloud Reconstruction via SFM
	4.3 Pixelwise Segmentation
	4.4 Vectorisation
	4.5 Conversion from Pixel Units to 3D World Coordinates
	4.6 Cracks Shapes 3D Reconstruction
	4.7 Adding Shapes into Model

	5 Evaluation of Results
	5.1 Camera Calibration
	5.2 3D Reconstruction via OpenSfM
	5.3 The Retrained TernausNet16 Model
	5.4 Validating Estimated Width Measurements
	5.5 Quality of Meshing
	5.6 Point Cloud Registration via GoICP
	5.7 IfcVoidingFeature vs. Blender's Boolean Difference Modifier

	6 Summary and Concluding Remarks
	6.1 Summary
	6.2 Technical Challenges and Observed Shortcomings
	6.3 Suggestions for Further Improvements and Future Work
	6.4 Conclusion

	Bibliography
	A Appendix
	A.1 Diagrams explaining the developed Python Projects for the Workflow
	A.2 Additional Online Material

