


 
 

Herausgeber 

Tom Lahmer Timon Rabczuk Carsten Könke 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISM-Bericht 01/2023                                                                                 ISSN: 1610-7381 
Institut für Strukturmechanik 
Fakultät Bauingenieurwesen 
Bauhaus-Universität Weimar 
Marienstraße 15 
99423 Weimar 
Germany 
 
 
Tel.  +49 3643 584504 
Fax. +49 3643 584514 
 
 
http://www.uni-weimar.de/ism 
 



BAUHAUS-UNIVERSITÄT WEIMAR

Electromechanics and Hydrodynamics of Single Vesicles and
Vesicle Doublet Using Phase-Field Isogeometric Analysis

Dissertation

Zur Erlangung des akademischen Grades eines

Doktor-Ingenieur (Dr.-Ing.)

an der Fakultät Bauingenieurwesen

der Bauhaus-Universität Weimar

June, 2023

vorgelegt von

Mohammed H. M. Ashour
geboren am 06. August 1986 in Riad, Saudi-Arabien,

aus Gazastreifen, Palästina

Mentor

Prof. Dr.-Ing. Timon Rabczuk



ii



iii

In the loving memory of my father
Hussein M. Ashour

1956-2023



iv



v

EPIGRAPH

“We are at the very beginning of time for the human race. Our responsibility is to
do what we can, learn what we can, improve the solutions, and pass them on. It is
our responsibility to leave the men of the future a free hand. In the impetuous youth
of humanity, we can make grave errors that can stunt our growth for a long time.
This we will do if we say we have the answers now, so young and ignorant; if we
suppress all discussion, all criticism, saying, ‘This is it, boys, man is saved!’ and
thus doom man for a long time to the chains of authority, confined to the limits of
our present imagination. It has been done so many times before.”

Richard P. Feynman,
What Do You Care What Other People Think
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Abstract

Biomembranes are selectively permeable barriers that separate the internal components
of the cell from its surroundings. They have remarkable mechanical behavior which is
characterized by many phenomena, but most noticeably their fluid-like in-plane behavior
and solid-like out-of-plane behavior. Vesicles have been studied in the context of discrete
models, such as Molecular Dynamics, Monte Carlo methods, Dissipative Particle Dynam-
ics, and Brownian Dynamics. Those methods, however, tend to have high computational
costs, which limited their uses for studying atomistic details. In order to broaden the
scope of this research, we resort to the continuum models, where the atomistic details
of the vesicles are neglected, and the focus shifts to the overall morphological evolution.
Under the umbrella of continuum models, vesicles morphology has been studied exten-
sively. However, most of those studies were limited to the mechanical response of vesicles
by considering only the bending energy and aiming for the solution by minimizing the
total energy of the system. Most of the literature is divided between two geometrical
representation methods; the sharp interface methods and the diffusive interface methods.
Both of those methods track the boundaries and interfaces implicitly. In this research,
we focus our attention on solving two non-trivial problems. In the first one, we study a
constrained Willmore problem coupled with an electrical field, and in the second one, we
investigate the hydrodynamics of a vesicle doublet suspended in an external viscous fluid
flow.
For the first problem, we solve a constrained Willmore problem coupled with an elec-
trical field using isogeometric analysis to study the morphological evolution of vesicles
subjected to static electrical fields. The model comprises two phases, the lipid bilayer,
and the electrolyte. This two-phase problem is modeled using the phase-field method,
which is a subclass of the diffusive interface methods mentioned earlier. The bending,
flexoelectric, and dielectric energies of the model are reformulated using the phase-field
parameter. A modified Augmented-Lagrangian (ALM) approach was used to satisfy the
constraints while maintaining numerical stability and a relatively large time step. This
approach guarantees the satisfaction of the constraints at each time step over the entire
temporal domain.
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In the second problem, we study the hydrodynamics of vesicle doublet suspended in an
external viscous fluid flow. Vesicles in this part of the research are also modeled using
the phase-field model. The bending energy and energies associated with enforcing the
global volume and area are considered. In addition, the local inextensibility condition
is ensured by introducing an additional equation to the system. To prevent the vesicles
from numerically overlapping, we deploy an interaction energy definition to maintain a
short-range repulsion between the vesicles. The fluid flow is modeled using the incom-
pressible Navier-Stokes equations and the vesicle evolution in time is modeled using two
advection equations describing the process of advecting each vesicle by the fluid flow.
To overcome the velocity-pressure saddle point system, we apply the Residual-Based
Variational MultiScale (RBVMS) method to the Navier-Stokes equations and solve the
coupled systems using isogeometric analysis. We study vesicle doublet hydrodynamics in
shear flow, planar extensional flow, and parabolic flow under various configurations and
boundary conditions.
The results reveal several interesting points about the electrodynamics and hydrody-
namics responses of single vesicles and vesicle doublets. But first, it can be seen that
isogeometric analysis as a numerical tool has the ability to model and solve 4th-order
PDEs in a primal variational framework at extreme efficiency and accuracy due to the
abilities embedded within the NURBS functions without the need to reduce the order of
the PDE by creating an intermediate environment. Refinement whether by knot inser-
tion, order increasing or both is far easier to obtain than traditional mesh-based methods.
Given the wide variety of phenomena in natural sciences and engineering that are math-
ematically modeled by high-order PDEs, the isogeometric analysis is among the most
robust methods to address such problems as the basis functions can easily attain high
global continuity.
On the applicational side, we study the vesicle morphological evolution based on the
electromechanical liquid-crystal model in 3D settings. This model describing the evolu-
tion of vesicles is composed of time-dependent, highly nonlinear, high-order PDEs, which
are nontrivial to solve. Solving this problem requires robust numerical methods, such
as isogeometric analysis. We concluded that the vesicle tends to deform under increas-
ing magnitudes of electric fields from the original sphere shape to an oblate-like shape.
This evolution is affected by many factors and requires fine-tuning of several parameters,
mainly the regularization parameter which controls the thickness of the diffusive interface
width. But it is most affected by the method used for enforcing the constraints. The
penalty method in presence of an electrical field tends to lock on the initial phase-field
and prevent any evolution while a modified version of the ALM has proven to be suffi-
ciently stable and accurate to let the phase-field evolve while satisfying the constraints
over time at each time step. We show additionally the effect of including the flexoelectric



xv

nature of the Biomembranes in the computation and how it affects the shape evolution
as well as the effect of having different conductivity ratios. All the examples were solved
based on a staggered scheme, which reduces the computational cost significantly.
For the second part of the research, we consider vesicle doublet suspended in a shear
flow, in a planar extensional flow, and in a parabolic flow. When the vesicle doublet is
suspended in a shear flow, it can either slip past each other or slide on top of each other
based on the value of the vertical displacement, that is the vertical distance between the
center of masses between the two vesicles, and the velocity profile applied. When the
vesicle doublet is suspended in a planar extensional flow in a configuration that resem-
bles a junction, the time in which both vesicles separate depends largely on the value of
the vertical displacement after displacing as much fluid from between the two vesicles.
However, when the vesicles are suspended in a tubular channel with a parabolic fluid
flow, they develop a parachute-like shape upon converging towards each other before ex-
iting the computational domain from the predetermined outlets. This shape however is
affected largely by the height of the tubular channel in which the vesicle is suspended.
The velocity essential boundary conditions are imposed weakly and strongly. The weak
implementation of the boundary conditions was used when the velocity profile was de-
fined on the entire boundary, while the strong implementation was used when the velocity
profile was defined on a part of the boundary. The strong implementation of the essen-
tial boundary conditions was done by selectively applying it to the predetermined set of
elements in a parallel-based code. This allowed us to simulate vesicle hydrodynamics in
a computational domain with multiple inlets and outlets. We also investigate the hydro-
dynamics of oblate-like shape vesicles in a parabolic flow. This work has been done in 2D
configuration because of the immense computational load resulting from a large number
of degrees of freedom, but we are actively seeking to expand it to 3D settings and test a
broader set of parameters and geometrical configurations.
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Zusammenfassung

Biomembranen sind selektiv durchlässige Barrieren, die die inneren Bestandteile der
Zelle von ihrer Umgebung trennen. Sie haben ein bemerkenswertes mechanisches Ver-
halten, das durch viele Phänomene gekennzeichnet ist: Vor allem durch ihr flüssigkeit-
sähnliches Verhalten in der Ebene und ihr festkörperähnliches Verhalten außerhalb der
Ebene. Vesikel wurden im Zusammenhang mit diskreten Modellen wie Molekulardy-
namik, Monte-Carlo-Methoden, dissipativer Partikeldynamik und Brownscher Dynamik
untersucht. Diese Methoden sind jedoch in der Regel sehr rechenintensiv, was ihre Anwen-
dung auf die Untersuchung atomistischer Details beschränkt. Um den Anwendungsbere-
ich dieser Forschung zu erweitern, wurde in dieser Dissertation auf Kontinuumsmodelle
zurückgegriffen, bei denen die atomistischen Details der Vesikel vernachlässigt werden
und sich der Schwerpunkt auf die allgemeine morphologische Entwicklung verlagert.
In Kontinuumsmodellen anderer wissneschaftlicher Arbeiten wurde die Morphologie von
Vesikeln bereits ausgiebig untersucht. Die meisten dieser Studien beschränkten sich je-
doch auf die mechanische Reaktion von Vesikeln, indem sie nur die Biegeenergie berück-
sichtigten und eine Lösung durch Minimierung der Gesamtenergie des Systems anstrebten.
In der Literatur wird überwiegend zwischen zwei geometrischen Darstellungsmethoden
unterschieden: Der scharfen Grenzflächenmethode und der diffusiven Grenzflächenmeth-
ode. Beide Methoden verfolgen die Grenzen und Grenzflächen implizit. In dieser Arbeit
wurde sich auf die Lösung von zwei nicht-trivialen Problemen konzentriert. Im ersten
Fall wurde ein eingeschränktes Willmore-Problem untersucht, das mit einem elektrischen
Feld gekoppelt ist. Im zweiten Fall erfolgte die Untersuchung der Hydrodynamik eines
Vesikel-Doubles, das in einer externen viskosen Flüssigkeitsströmung schwebt.
Für das erste Problem wurde ein eingeschränktes Willmore-Problem unter Verwendung
der isogeometrischen Analyse gelöst, das mit einem elektrischen Feld gekoppelt ist. Dies
dient der Untersuchung der morphologischen Entwicklung von Vesikeln, die statischen
elektrischen Feldern ausgesetzt sind. Das Modell besteht aus zwei Phasen: Der Lipid-
doppelschicht und den Elektrolyten. Das Zwei-Phasen-Problem wird mit der Phasenfeld-
methode modelliert, die eine Unterklasse der bereits erwähnten diffusiven Grenzflächen-
methoden ist. Die Biegeenergie sowie die flexoelektrischen und die dielektrischen Energien
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des Modells wurden mit Hilfe des Phasenfeldparameters umformuliert. Ein modifizierter
Augmented-Lagrangian-Ansatz (ALM) wurde verwendet, um die Nebenbedingungen zu
erfüllen und gleichzeitig die numerische Stabilität und einen relativ großen Zeitschritt
beizubehalten. Dieser Ansatz garantiert die Erfüllung der Nebenbedingungen bei jedem
Zeitschritt über den gesamten Zeitbereich.
Im zweiten Problem wurde die Hydrodynamik von Vesikeldoubletten betrachtet, die in
einer externen viskosen Flüssigkeitsströmung schweben. Die Vesikel wurden in diesem
Teil der Untersuchung ebenfalls mit dem Phasenfeldmodell modelliert. Die Biegeenergie
und die mit der Durchsetzung des globalen Volumens und der Fläche verbundenen En-
ergien wurden berücksichtigt. Darüber hinaus wurde die Bedingung der lokalen Undehn-
barkeit durch die Einführung einer zusätzlichen Gleichung in das System sichergestellt.
Um zu verhindern, dass sich die Bläschen numerisch überlappen, wurde eine Definition
der Wechselwirkungsenergie verwendet, um eine kurzreichweitige Abstoßung zwischen
den Bläschen aufrechtzuerhalten. Die Flüssigkeitsströmung wurde durch inkompress-
ible Navier-Stokes-Gleichungen modelliert. Die zeitliche Entwicklung der Vesikel wurde
durch zwei Advektionsgleichungen beschrieben, die den Prozess der Vorwärtsbewegung
jedes Vesikels durch die Flüssigkeitsströmung beschreiben. Um das Geschwindigkeits-
Druck-Sattelpunktsystem zu überwinden, wurde die Residual-Based Variational Multi-
Scale (RBVMS)-Methode auf die Navier-Stokes-Gleichungen angewandt. Zur Lösung der
gekoppelten Systeme wird die isogeometrische Analyse genutzt. Mithin wird die Hy-
drodynamik von Vesikel-Doubletten in Scherströmung, planarer Dehnungsströmung und
parabolischer Strömung unter verschiedenen Konfigurationen und Randbedingungen un-
tersucht.
Die Ergebnisse zeigen mehrere interessante Punkte über die elektro- und hydrodynamis-
chen Reaktionen von einzelnen Vesikeln und Vesikeldoubletten. Zunächst aber zeigt sich,
dass die isogeometrische Analyse als numerisches Werkzeug in der Lage ist, PDEs der
Ordnung 4th in einem primären Variationsrahmen mit extremer Effizienz und Genauigkeit
zu modellieren und zu lösen. Dies liegt an den in NURBS-Funktionen eingebetteten
Fähigkeiten, ohne dass die Ordnung der PDE durch Schaffung einer Zwischenumge-
bung reduziert werden muss. Die Verfeinerung durch Einfügen von Knoten, Erhöhen der
Ordnung oder beides ist viel einfacher zu erreichen als bei traditionellen netzbasierten
Methoden. Angesichts der Vielzahl von Phänomenen in den Natur- und Ingenieurwis-
senschaften, die mathematisch durch PDEs hoher Ordnung modelliert werden können,
gehört die isogeometrische Analyse zu den robustesten Methoden zur Lösung solcher
Probleme, da die Basisfunktionen leicht eine hohe globale Kontinuität erreichen können.
Auf der Anwendungsseite wurde die morphologische Entwicklung von Vesikeln auf der
Grundlage des elektromechanischen Flüssigkristallmodells in 3D-Umgebungen untersucht.
Dieses Modell, das die Entwicklung von Vesikeln beschreibt, besteht aus zeitabhängigen,
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hochgradig nichtlinearen PDEs hoher Ordnung, die nicht trivial zu lösen sind. Die Lösung
dieses Problems erfordert robuste numerische Methoden, wie die isogeometrische Analyse.
Es kann geschlussfolgert werden, dass das Vesikel dazu neigt, sich unter zunehmenden
elektrischen Feldern von der ursprünglichen Kugelform zu einer abgeflachten Form zu
verformen. Diese Entwicklung wird von vielen Faktoren beeinflusst und erfordert eine
Feinabstimmung mehrerer Parameter, vor allem des Regularisierungsparameters, der die
Dicke der diffusiven Grenzfläche steuert. Am stärksten wird sie jedoch von der Methode
beeinflusst, die zur Durchsetzung der Beschränkungen verwendet wird. Die Strafmeth-
ode neigt bei Vorhandensein eines elektrischen Feldes dazu, das anfängliche Phasenfeld
zu fixieren und jegliche Entwicklung zu verhindern. Demgegenüber hat sich eine mod-
ifizierte Version des ALM als ausreichend stabil und genau erwiesen, um das Phasen-
feld sich entwickeln zu lassen, während es in jedem Zeitschritt die Randbedingungen
erfüllt. Außerdem wurde gezeigt, wie sich die Einbeziehung der flexoelektrischen Natur
der Biomembran in die Berechnung auswirkt und wie sie die Formentwicklung beeinflusst
sowie die Auswirkungen unterschiedlicher Leitfähigkeitsverhältnisse. Alle Beispiele wur-
den auf der Grundlage eines gestaffelten Schemas gelöst, was die Rechenkosten erheblich
reduziert.
Im zweiten Teil der Untersuchung wurden Vesikel-Doubletten betrachtet, die in einer
Scherströmung, in einer ebenen Dehnungsströmung und in einer parabolischen Strömung
schweben. Wenn die Vesikel-Doublette in einer Scherströmung aufgehängt ist, kann es
entweder aneinander vorbeigleiten oder übereinander gleiten, je nach dem Wert der ver-
tikalen Verschiebung, d. h. dem vertikalen Abstand zwischen den Masseschwerpunkten
der beiden Vesikel, und dem angewandten Geschwindigkeitsprofil. Wenn die Vesikeldou-
blette in einer ebenen Dehnungsströmung in einer Konfiguration aufgehängt ist, die einer
Kreuzung ähnelt, hängt die Zeit, in der sich beide Vesikel trennen, weitgehend vom Wert
der vertikalen Verschiebung ab, nachdem so viel Flüssigkeit wie möglich zwischen den
beiden Vesikeln verdrängt wurde. Wenn die Bläschen jedoch in einem röhrenförmigen
Kanal mit einer parabolischen Flüssigkeitsströmung aufgehängt sind, entwickeln sie bei
gegenseitiger Annäherung eine fallschirmähnliche Form, bevor sie das Berechnungsgebiet
an den vorbestimmten Auslässen verlassen. Diese Form wird jedoch in hohem Maße von
der Höhe des röhrenförmigen Kanals beeinflusst, in dem die Bläschen schweben. Die für
die Geschwindigkeit wesentlichen Randbedingungen wurden schwach und stark imple-
mentiert. Die schwache Implementierung der Randbedingungen wurde verwendet, wenn
das Geschwindigkeitsprofil auf dem gesamten Rand definiert war. Die starke Implemen-
tierung fand Anwendung, wenn das Geschwindigkeitsprofil auf einem Teil des Randes
definiert war. Die starke Implementierung der wesentlichen Randbedingungen erfolgte
durch selektive Anwendung auf die vorgegebene Menge von Elementen in einem parallel
basierten Code. Auf diese Weise konnte die Hydrodynamik von Vesikeln in einem Berech-
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nungsgebiet mit mehreren Ein- und Auslässen simulieren werden. Ebenfalls untersucht
wurde die Hydrodynamik von Bläschen mit abgeflachter Form in einer parabolischen
Strömung. Diese Arbeit wurde aufgrund der immensen Rechenlast, die sich aus der
großen Anzahl von Freiheitsgraden ergibt, in einer 2D-Konfiguration durchgeführt. Die
Ausweitung 3D-Einstellungen wird zukünftig angestrebt, um eine breitere Palette von
Parametern und geometrischen Konfigurationen zu testen
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1
Summary

1.1 Motivation

Vesicle behavior is among the most complicated natural phenomenon in the human body

[1]. They - among other things - serve the purpose of intra-extra cellular communication

in prokaryotes and eukaryotes, as they can transfer proteins, lipids, and nucleic acids

between the two mediums. This has a significant influence on the various physiological

and pathological functions of both recipient and parent cells [2]. In nature, vesicles are

selectively permeable barriers that separate the internal components of the cell from its

surroundings [3]. They have remarkable mechanical behavior that is characterized by

many phenomena, most noticeably their fluid-like in-plane behavior and solid-like out-

of-plane behavior [4]. Vesicles can exhibit various shape transitions depending on their

ambient environment. Among the most notable are: budding, discocyte-stomatocyte,

reentrant dumbbell-pear-dumbbell, and spontaneous blebbing [5]. Those transitions are

attributed to surface tension [6], osmotic pressure [4], and pressure difference in a fluid

flow [7], which plays crucial roles in shape evolution, e.g., budding happens when a neg-
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ative effective surface tension attained, and a transition from a discocyte into a prolate

ellipsoidal shape occurs in capillary flow in presence of pressure difference. In addition to

the surrounding environment, both the mean-curvature bending stiffness and the sponta-

neous curvature driven by the lipid composition can contribute significantly to the final

resting shape of vesicles [8].

Vesicles have been studied in the context of discrete models such as molecular dynam-

ics [9–11], Monte Carlo methods [12], Dissipative Particle Dynamics [13], and Brownian

Dynamics [14]. Those methods, however, tend to have high computational costs, which

limited their uses to studying atomistic details such as vesicle budding, fission, and fusion.

To study a broader set of phenomena, the continuum models, in which, vesicles are treated

as a continuum by neglecting the atomistic details, have the advantage, mainly the low

computational costs when compared to the discrete methods as they are very expensive

to scale up for large domains [15]. Using continuum models, vesicles hydrodynamics [16,

17], electromechanics [18], electrohydrodynamics [19], multicomponent vesicles [20] and

shape dynamics of vesicles [21] have been studied.

Following this path, and for the work conducted in this thesis, we are employing the

IsoGeometric Analysis (IGA) to study single vesicle electrodynamics and vesicle doublets

hydrodynamics. Isogeometric analysis was first theorized in [22] and later expanded in

[23]. Isogeometric analysis was motivated by the existing gap between Finite Element

Analysis (FEA) and Computer-Aided Design (CAD) [22], as it seeks to unify the fields of

CAD and FEA. The basic idea of isogeometric analysis is to use the CAD basis functions

to model both geometry and field variables in the analysis stage instead of the Lagrange

basis function. The origin of IGA was by using Non-Uniform Rational B-splines (NURBS)

basis functions but was later expanded to use T-splines [24], PHT-splines [25, 26], and

RHT-splines [27]. Isogeometric analysis has proven to show superiority when compared

to classical mesh-based methods due to their limited continuity which necessitate a need

for additional intermediate equations to account for such limitation, as it possesses the

unique ability to solve high-order differential operators since a C1, or even higher order

continuities can easily be implemented and achieved. In addition, Isogeometric analysis

has the unique ability to precisely interpret geometrical shapes, especially in the case of

nonlinear geometries. It has been used in a wide range of mathematical and engineering

problems, such as biomembranes and vesicles morphology [28–31], fluid-structure inter-
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action [32–35], acoustic problems [36–39], topology optimization [40, 41], and many other

fields.

In this work, we are leveraging the advantages and efficiency of isogeometric analysis,

especially, the ability to attain higher-order continuity basis functions, to study and in-

vestigate in detail the following:

1. Solving a constrained Willmore problem coupled with an electrical field to simu-

late the morphological evolution of vesicles subjected to static electrical fields. The

model consists of two phases, the lipid bilayer, and the electrolyte. The two-phase

problem is modeled using the phase-field method, a subclass of the diffusive inter-

face models. The bending, flexoelectric, and dielectric energies of the model are

reformulated using the phase-field parameter. In a primal variational framework,

the resulting Euler-Lagrange equation is a 4th-order PDE which requires C1 ba-

sis function to be solved numerically. For this reason, we use IGA to numerically

approximate the solution of the examples we intend to study,

2. Studying the hydrodynamics of vesicle doublet suspended in an external viscous

fluid flow. Vesicle doublets are also modeled using the phase-field method. The

bending energy and energies associated with enforcing the global volume and area

are considered. In addition, the local inextensibility condition is ensured by in-

troducing an additional equation to the system. To prevent the vesicles from nu-

merically overlapping, we deploy an interaction energy definition to maintain a

short-range repulsion between the vesicles. The fluid flow is modeled using the

incompressible Navier-Stokes equations and the vesicle evolution in time is mod-

eled using two advection equations describing the process of advecting each vesicle

by the fluid flow. The Residual-Based Variational MultiScale (RBVMS) method

to was used to overcome the velocity-pressure saddle point system and solve the

Navier-Stokes equations.

1.2 Phase-Field method

The phase-field method is a mathematical method for solving interfacial problems by

tracing the zero level-set of an order parameter with a distinctive, bounded value, which,
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in the limit of the order parameter, i.e., the sharp interface limit, the interfacial dynam-

ics is recovered. It was first theorized in [42] to study the thermodynamic description

of a solidifying system in a part of a broader pattern formation in the first-order phase

transitions study. Since then, the method has been used in a wide variety of research

fields like single vesicles hydrodynamics [19, 43, 44], single vesicles electrodynamics [18,

45], fracture mechanics [46, 47], phase-separation [48, 49], microstructures evolution [50,

51], void formation and evolution [52, 53], precipitation [54, 55], and many other fields.

The phase-field method is a thermodynamically-based method with multiple advantages,

i.e., it does not require a pre-defined morphological evolution pattern or shape, and since

the phase-field is an implicit method, there is no need to track the interfacial region

explicitly, but rather by extracting the zero-level set which defines the interface between

multiple phases. In addition, it is easy to implement and can easily be extended from a

2D to a 3D formulation with minimal work.

The phase-field formulation can be either a variational or non-variational formulation.

Under the variational formulation, the system’s equations are formulated based on a free

energy functional, which is rewritten as a function of the order parameter. This formu-

lation includes the order parameter describing the location of the interface and another

parameter that regulates the interface width. For the non-variational formulation, the

system’s equations are derived directly without referring to any energy functional, how-

ever, when the asymptotic expansion is performed, the sharp-interface model is recovered

[56, 57]. Generally speaking, the phase-field formulation includes two sets of scalar vari-

ables, i.e., the concentration and the order parameter. The former variable addresses

the spatial distribution of the field of interest in time, like - for example - the chemical

concentration of a substance within the computational domain over the entire temporal

domain. The latter variable describes the temporal evolution of the interface between

phases, which is manifested by the spatial location of the zero-level set [58]. In the realm

of the implicit geometrical description of vesicles, the physical phenomena associated with

its morphology can be mathematically represented as free boundary problems, in which,

the boundary Γ ⊆ ∂Ω of a domain Ω is unknown and subjected to evolution over time.

The surface is diffused over a predetermined distance - using a regularization parameter

ε - from the zero level-set of the function describing the profile of the domain, e.g., the

hyperbolic tangent function in the case of phase-field method, which means that the in-
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terface has a thin thickness nonetheless, diffused over εΓ ⊂ Ω, and all fields of interest

change smoothly across the diffused interface.

In this work, we are using a variational energy-based thermodynamically consistent ap-

proach to rederive the energy functional describing the electromechanical behavior of

single vesicles in terms of the phase-field variable, for which, and within a primal vari-

ational framework, the strong form of the problems is obtained and solved using the

isogeometric analysis. But different from the electromechanical model of single vesicles,

the system of equations describing the hydrodynamics of a vesicle doublet system is a

non-variational based, which is also solved using the isogeometric analysis.

1.3 Isogeometric analysis

The isogeometric analysis was first introduced by Hughes et al., [22] and later expanded

in [59–61] with the purpose of surpassing the CAD-CAE bottleneck manifested by the

disconnected-from-CAD meshes, from which it was originally made, and to integrate

the CAD-FEM into a unified modeling-analysis process. Prior to NURBS-based FEM

(referred to as isogeometric analysis), the ratio of modeling to analysis, time-wise, was

80%-20% [23] with extreme difficulties to develop simulation-specific geometrical models,

in which, the FEM meshes were at best an approximation to the CAD geometries. This

approximation is the most frequent cause for errors in numerical results, where mesh

imperfections, unsuitable elements, small aspect ratios, penetration, and other problems

can lead to a significant degradation in the solution’s accuracy. For those reasons, isogeo-

metric analysis was introduced on the basis of using the same geometry description in the

design and analysis processes. Isogeometric analysis began with the use of non-uniform

rational B-splines (NURBS) - the fundamental building block of most commercial CAD

programs - to represent the geometry of the model and approximate the solution’s control

variable. With this at hand, refinement, which requires access to the exact geometry of

the model was made available by either knot insertion - h-refinement - or order elevation

- p-refinement - or both, i.e., k -refinement.

Different from the classical finite element method, there are no nodal points and nodal

variables, but control points and control variables, and the geometry is an "exact", while

it is an approximation in the classical FEM. In addition, in classical FEM, the continu-
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ity across elements boundaries is fixed to C0 continuity, while in isogeometric analysis,

higher-order continuities can be easily attained across elements boundaries. In addition

to this, and different from FEM, isogeometric analysis by design has two definitions of

mesh, i.e., the control mesh and the physical mesh, which, unlike the FEM, has only

one mesh. The control points are spatially scattered points that define the control mesh,

which in turn control the geometry of the model, and the control mesh interpolates the

control points. Besides that, the basis functions are usually not interpolatory, and the

control variables are the degrees of freedom per control point.

In our work, and for the Willmore problem mentioned in the previous section, we are

considering Helfrich [62] elastic energy, which, after reformulating using the phase-field

variable ϕ produces an energy functional with a 2nd order spatial derivative of the phase-

field variable, for which, the Euler-Lagrangian PDE is of 4th order. In the context of

Galerkin-based numerical methods, upon multiplying by a weighting function, integrat-

ing by parts, and dropping the boundary terms, we end up with a weak form, for which,

the highest spatial derivative is of 2nd order. In the classical finite element method, the

Lagrange basis functions are globally fixed C0 continuous. This makes the method best

fitted to solve PDEs with second-order spatial operators where their primal variational

form necessitates the integration of first-order derivatives which are well-defined and inte-

grable if the basis functions are piece-wise smooth and globally C0 continuous, and hence,

it is not possible to simulate the electromechanical response of the vesicles by considering

Helfrich elastic energy while using the classical finite element method, unless one resorts

to a mixed formulation as in [18, 63] or strong form meshfree methods to compute a

discretized higher-order derivative operators [64–67]. Alternatively, isogeometric anal-

ysis possesses the ability to solve 4th-order PDEs in a primal variational framework as

it incorporates k -Refinement, i.e., the ability to increase the order and continuity. And

hence, the NURBS-based IGA can easily attain C1 or higher order continuities, which

makes it suitable for simulating a phase-field model based on Helfrich elastic bending

energy. The ability to solve high-order PDEs in an isogeometric analysis framework was

exploited extensively. Aside from better results when compared to the mixed formulation

or any other techniques used to solve high-order PDEs, the easiness of the computational

implementation, speed, and efficiency make the isogeometric analysis far better than any

other numerical methods [20, 28, 45, 61, 68–70].
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1.4 Vesicles and lipid bilayer membranes in computational me-

chanics

Vesicles are cellular organelles self-contained lipid bilayer membrane-surrounded pockets

generated by most cells for the purpose of transporting materials and destroying toxic

substances and pathogens. They serve as a communicator to transmit biological signals

between cells [71, 72] and they play a vital role in metabolism and enzyme storage as well

[73]. Vesicles are composed of proteins, lipid bilayers, and nucleic acids, and they vary

significantly in type and functionality. Lipid bilayers are fatty—molecules that make up

about 50% of the mass of most human cell membranes, nearly all of the remainder being

protein. There are approximately 5×106 lipid molecules in a 1 µm × 1 µm area of lipid

bilayer, or about 109 lipid molecules in the plasma membrane. As shown in Fig. (1.1),

all of the lipid molecules in cell membranes are amphipathic (or amphiphilic), and they

have a hydrophilic, i.e., water-loving, or polar end, and a hydrophobic, i.e., water-fearing,

or nonpolar end [74]. Vesicles have peculiar mechanical behavior like their fluid-like in-

plane behavior and solid-like out-of-plane behavior [4]. Their morphology depends highly

on their surrounding environment [5]. For example, and depending on the spontaneous

curvature, vesicles can evolve from a prolate-like shape to a dumbbell, which in turn

can develop into an outward budding or a tube-like vesicle, depending on the volume

change rate. Vesicles can also evolve from an oblate-like shape into a biconcave into

a stomatocyte into an inward budding when the spontaneous curvature has a negative

value [75]. In addition, the mean-curvature bending stiffness [8], the surface tension [6],

osmotic pressure [4] and pressure difference in a fluid flow [7] play crucial roles in shape

evolution. The presence of electric fields can also alter the morphology of vesicles in a

quasi-static state, which triggers a flexoelectric response in the biomembrane, causing the

vesicle to evolve into counter-intuitive shapes [45].

Lipid bilayers have been studied in the context of discrete models. However, when the

atomistic details are not the primary concern of the study, but the overall morphology,

the continuum models are more suitable.
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Figure 1.1: The lipid bilayer consists of a polar hydrophilic phosphate head, and a non-polar hydropho-
bic lipid tail. The lipid bilayer consists of two adjacent sheets of phospholipids, arranged tail to tail.
The hydrophobic tails associate with one another, forming the interior of the membrane. The polar
heads contact the fluid inside and outside of the cell. (Source: [76]).

1.4.1 Vesicles morphology using discrete models

Various discrete models have been used to study the atomistic details of lipid bilayers,

among the most notable is Molecular Dynamics [77–79]. Other models such as Monte

Carlo methods [80–82], Coarse-Grained model [83–85], and Dissipative Particle Dynam-

ics [86–88] have also been used extensively in the context of lipid bilayer studies. Those

studies in general focused on comparing and validating numerical-based results to ex-

perimental ones by studying various settings related to the mechanical behavior of the

lipid bilayers as in [78], in which, the lipid areas, bilayer area compressibilities, bend-

ing constants, and monolayer spontaneous curvatures where studied in depth. Whereas

[79] studied the Protein ion channels and the Potassium-Calcium pump. The increase in

research using those discrete models can be attributed to the massive increase in com-

putational power, the development of reliable molecular dynamics simulation algorithms,

and the development of well-validated empirical molecular mechanical force fields. For

more details about the current state-of-the-art of lipid bilayer simulations using molecular

dynamics, please refer to the review of Moradi et. al. [89].
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1.4.2 Vesicles morphology using continuum models

Unlike the discrete models, the continuum models are used to study the overall mor-

phology of vesicles under various conditions. Conceptually, a Vesicle can be simulated

as a 2D surface embedded in 3D space that could be represented either explicitly or im-

plicitly. Explicit surfaces map a vector-valued parameterization function f : Ω→S from

a two-dimensional parameter domain Ω ⊂ IR2 to a surface S = f (x,y) ⊂ IR3. Implicit

surfaces are defined by the zero set of a scalar-valued function f : IR3 → IR such that

S = {x ∈ IR3 | F(x) = 0}. For complex geometries that feature splitting or merging

phenomenons during deformation, consistent definition without overlapping and\or self-

intersection is difficult to maintain, therefore, ad-hoc cut-and-connect techniques (See

Ref. [90]) need to be deployed to track the topology changes on the vesicle’s surface

mesh, which by itself is a very difficult task to perform, not to mention the immense

computational load associated with such techniques. For such cases, implicit surface

representation has been used successfully as their volumetric definition implies a consis-

tent, closed manifold. Numerous techniques have been used to track interfaces implicitly.

Those techniques can be categorized into two main groups: sharp interface, and diffuse

interface methods. For sharp interface models involving two phases [91–94], the govern-

ing equations for each phase are written separately and additional jump conditions are

considered at the interface to satisfy conservation/continuity of some physical quantities,

e.g., conservation of mass, momentum and/or energy [95], continuity of the traction vec-

tor [96], and conservation of current density across the membrane [19]. The interface

between different phases of the system is considered to be infinitely sharp, i.e., the slope

of the scalar-valued function at the interface is undefined, and the boundaries between

the different domains are described by the interfacial boundaries. For diffuse interface

methods, the interface is smeared out and therefore has a non-zero thickness and the

quantities of interest are distributed throughout the interfacial region [97–99]. The do-

main is represented by a phase-field variable function that is continuous in space and

time. For multicomponent domains, the phase-field variable has the same value for each

phase and the transition at the interface is continuous [100]. Consequently, the interface

can be tracked implicitly by a contour of constant phase-field values, and the energy of

the system is defined over the entire domain. Different from the sharp interface methods,
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jump conditions are included in the governing equations and the interface thickness spans

over a few spatial elements [21, 101].

1.4.2.1 Vesicles studies in the context of Level-Set method

The level-set method is an implicit surface tracking method, in which, a real-valued

surface function takes on a given constant value representing the tracked surface. The

method was first introduced by Stanley et. al. in [102] in an attempt to capture the

moving interface by tracking the zero-level set of an auxiliary field, which distinguished

between multiple phases. The method - like most of the implicit methods - is highly

robust, as it does not require a mesh re-generation at each time step and can be used on

a fixed mesh. Using the level-set method, Salac et. al [103] studied the motion of lipid

vesicles in shear flow and a pressure-driven flow. Doyeux et. al. [104] simulated vesicles

in fluid flow using the level-set method by writing the membrane properties as interfacial

forces between the intra- and extracellular fluids. The method when compared to the

phase-field method is computationally less expensive but at the expense of the fact that

it is more suitable for larger scale simulations, where the interface is not well resolved by

the mesh, and where the problem at hand has only two phases.

1.4.2.2 Vesicles studies in the context of Phase-Field method

Vesicle’s morphology in the context of the phase-field method has been the highlight of

this research field in the last decade. The phase-field method is an implicit method to

solve moving boundary problems. The reason for the method’s popularity can be at-

tributed to its relative easiness of scalability, where the numerical formulation can be

extended from 2D to 3D settings with minimal work. A phase-field model has been

developed by Aland [105] to investigate biomembranes inhomogeneities due to inserted

proteins, absorbed molecules, or different compositions of lipids and cholesterol. Lázaro

et al. [106] presented a phase-field formulation to simulate complex phenomena related

to the dynamics and morphology of biological membranes such as pearling, tubulation,

and RBCs hydrodynamics in microchannels. Rosolen et al. [101] presented an adaptive

meshfree method based on the maximum-entropy approximants for simulating phase-

field models of biomembranes based on Helfrich curvature elastic energy. Kim et al.

[107] presented a finite-element formulation using Nitsche’s method for the phase-field
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model of a single component vesicle by minimizing the curvature energy and deriving

a nonconforming finite-element formulation which is applied to C0-elements. The pro-

posed continuous-discontinuous Galerkin formulation weakly imposes the continuity of

first derivatives across the element boundaries and uses a Nitsche’s method to achieve

stability. Wang et al. [21] combined exponential time differencing Runge–Kutta approxi-

mations for time integration with spectral discretizations for spatial operators on regular

meshes to solve unconstrained and constrained Willmore flow problem using the phase-

field method. They also proposed a modified augmented Lagrange multiplier approach

to avoid numerical instabilities caused by large penalty terms imposed on the system to

penalize the violations in surface area and volume constraints.

Simulation of the electromechanics of vesicles and their corresponding evolution have

been an ongoing effort in the field of biomechanics. Steigmann et al. [108] proposed a

two-dimensional model based on a three-dimensional liquid-crystal theory framework to

simulate the response of electrically polarized lipid bilayers by an applied electric fields

generated by a remote source. Even before this work, Gao et al. [109] proposed an elec-

tromechanical liquid crystal model of vesicles. Soon later, they proposed a phase-field

model for investigating the morphological evolution of vesicles subjected to an external

electrical field [18], where they used a monolithic finite element-based mixed-formulation

to solve a system of second-order PDEs. Only axisymmetric vesicles were considered in

their work.

1.5 The electrodynamics and hydrodynamics of vesicles

The dynamics of vesicles and hence, the morphology, can be described accurately by

the free energy functional of the Canham-Helfrich [62, 110], of which, the vesicle can be

treated as a two-dimensional surface embedded into three-dimensional space and defined

by the two radii of curvature at each point. To this end, the Canham-Helfrich free energy

of the lipid bilayer that describes the bending energy of a homogeneous membrane can

be expressed as follows:

E =
κ

2

∫
Γ

[(H−Hsp)
2 +κG K ]dΓ (1.1)
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where κ is the bending rigidity, κG is the Gaussian bending rigidity, and H, Hsp, K

are the total curvature, the spontaneous and Gaussian curvatures, respectively. Based

on the Gauss–Bonnet theorem, the Gaussian curvature term which is integrated over a

closed surface is considered a topological invariant, and since most studies in the field

of lipid bilayers are not concerned with topological changes, this term will be a constant

contribution in the total free energy and will drop out. This Cahnham-Helfrich model of

Eq. (1.1) is a sharp interface model with an Euler-Lagrangian PDE is of 4th order, which

can be solved implicitly using the phase-field isogeometric analysis as shown later.

1.5.1 Vesicles Electrodynamics

The research focused on the electrodynamics of vesicles is less frequent than the one

focused on the hydrodynamics of vesicles. This is mainly because of the complexity as-

sociated with the electric response of the biomembranes as it incorporates flexoelectric

properties, which makes modeling biomembranes a non-trivial problem to solve. Ye et.

al. [111] used electromagnetic induction with a time-varying magnetic field to develop an

analytical theory to investigate the biomechanics of a modeled vesicle. The suspending

media is treated as a lossy dielectric, with a membrane thickness equal to zero, and the

electric resistance of the membrane is assumed to be negligible. This work provided an

analytical solution for the surface charges (Fig. 1.2), electric field, radial pressure, overall

transnational forces, and rotational torques introduced on a vesicle by the time-varying

magnetic field. Gao et al. [18] developed a phase-field model to investigate the morphol-

ogy of vesicles in static electric fields. His model accounted for the flexoelectric response

of the biomembrane. The energies of the system were reformulated in terms of the phase-

field variable, and the global surface area and volume constraints were dealt with locally

by introducing two Lagrange multipliers to enforce them. The study was conducted un-

der 2D-axisymmetric assumptions. Various evolution patterns emerged from the study

under various conditions, most notably the complexity of the shape evolution when the

flexoelectric response is considered. It is worth mentioning that the system was solved

using a mixed-formulation finite element method, which introduced a new variable to

the system in order to address the C0 issue associated with the classical finite element

method. Li et. al. [112] presented a way to simulate the electroformation process of

giant unilamellar vesicles (GUV) in saline solution. They showed that the formation
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Figure 1.2: Surface charge distribution induced by the time-varying magnetic field. (A): The plot
demonstrated an instant pattern of surface charge distribution. The color represented the amount of
the charge density (C/m2). Field frequency was 10 KHz. σo = 1.2 S/m. σi = 0.3 S/m. (B): There was
no accumulation of surface charges if the two media were set to be electrically identical (σo = σi and
εo = εi). (Source: [111]).

of GUVs in saline solution is in fact affected by many factors, like the amplitude and

frequency of the AC fields, the temperature, and the NaCl concentration. Liu et. al.

[113] studied the phenomena of electroporation and electrofusion and the effect of the

vesicle shape and medium on those two phenomena. They also studied the effect of the

transmembrane voltage and pore density on the possibility of vesicle fusion. Among the

findings of the research, the authors found out that electric pulse can induce a selective

electroporation at the contact area between two vesicles regardless of the vesicle shape.

Nodargi et. al. [114] conducted an isogeometric analysis to study red-blood cells electro-

deformation. A surface shell model has been proposed for capturing the RBC kinematics,

with Helfrich model being used to describe the bending behavior of the biological mem-

brane. The enclosed-volume conservation constraint has been enforced at the structural

level to model the volumetric behavior arising from the nearly incompressible fluid inside

the biomembrane. The authors used a staggered fixed-point iteration scheme that has

been presented for performing the electro-mechanical strong coupling, in such a way that

electrical and mechanical problems can be solved in an uncoupled way by means of re-

spective reliable solvers. Specifically. The numerical simulations reproduced RBC large
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deformation by optical tweezers and RBC electro-deformation have been performed.

1.5.2 Vesicles Hydrodynamics

Unlike the vesicle electrodynamics, the hydrodynamics of vesicles has been studied exten-

sively from different perspectives, and using different implicit - and sometimes explicit

- geometrical description methods, and this, in fact, is part of a larger effort to push

the boundaries of biomechanics further in understanding some of the most complex and

fundamental phenomena inside the human body. To this end, and in an early study in

the field of computational mechanics, Kraus et. al. [115] studied fluid vesicles in a shear

flow. In this study, the authors present a coupling model between the flow within the

membrane and the hydrodynamics of the surrounding bulk fluid. The study is built on

the use of the Oseen tensor to compute the disturbance in flow due to the presence of

the vesicle. Several parameters have been studied like, e.g., linear shear flow and shear

rate. Although the study presented a novelty at the time it was conducted, it does not

address several major issues as the local inextensibility of vesicles and global surface area

and volume conservation. Sukumaran et. al. [116] conducted a study of the dynamics

of three-dimensional fluid vesicles in a bounded and unbounded steady shear flow in the

vicinity of a wall, within the context of the boundary element method. Three cases were

investigated in detail at low Reynolds number, i.e., a neutrally buoyant vesicle, a vesi-

cle filled with a denser fluid, and the dynamics in the case of additional adhesive forces

exerted by the wall on the vesicle. The researchers in their conclusion point out to a

very important issue, which is the need to address the contrast in viscosities between

the intra- and extracellular mediums. Ghigliotti et. al. [117] studied the rheology of a

dilute two-dimensional suspension of vesicles. The numerical method used in this study

was based on the boundary integral formulation, i.e., Green’s function technique, and

the phase-field approach. The flow considered was an unbounded linear shear flow, with

the aim of establishing a link between the rheology of vesicle suspensions and the micro-

scopic dynamics of the constituent particles, e.g., tanktreading and tumbling motions.

Rahimian et. al. [118] did a boundary integral analysis of inextensible vesicles suspended

in a viscous Stokesian fluid. In their research, the authors considered different viscosities

for the fluid within and outside the vesicles, i.e., viscosity contrast. The research covers

the dependence of the inclination on the ratio of the viscosity contrast, the effect of the
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Figure 1.3: The evolution of a single vesicle in an unbounded shear flow. The viscosity contrast ν =
.01, 1, and 100, bending modulus κb = 1, reduced area = .75, and the temporal domain = 9. When ν <
νc, the vesicle reaches an equilibrium and then undergoes tank-treading motion. When ν is large, the
vesicle tumbles. (Reproduced from Ref. [118] with permission from Elsevier and Copyright Clearance
Center’s RightsLink®).

reduced area of the vesicle on the overall hydrodynamics of vesicles, the effective viscosity

of a dilute suspension of vesicles, the lateral migration of vesicles in shear flow, and the

dispersion of two vesicles. Aland et. al. [119] proposed a diffusive interface model for

the dynamics of inextensible vesicles in viscous fluid with inertial forces by including an

additional equation to account for local inextensibility in the vicinity of the vesicle inter-

face. The model also includes novel parameters related to the regularization, relaxation

rate, and novel diffusion coefficient. In the field of multi-vesicle and vesicle doublet sys-

tems in a fluid flow, Quaife et. al. [44] studied the dynamics of adhesive vesicle doublet

suspended in a quiescent flow. Two vesicles were placed apart and moved towards each

other to form a vesicle doublet by pushing the fluid between them. Various configura-

tions of flow were considered, like shear flow and extensional flow. Marth et. al. [120]

investigated the margination of white blood cells and their behavior dependency on a set

of factors like haematocrit, cells’ deformability, and Reynolds number. Their approach

accounts for the short interaction between white and red blood cells by including an in-

teraction energy definition in the variational formulation, which we borrow to maintain

separation between vesicles in the current study. As a summarization, vesicles tend to

lock in a tank-treading motion in a planner shear flow at low viscosity contrast and low

shear rate, while at high viscosity, vesicles transition to a tumbling motion [43, 121, 122].

Vesicle trembling has also been noticed [123, 124]. The reduced area/volume in 2D/3D

of vesicles plays a significant role in the morphology and hydrodynamics [43, 44, 125].
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At a low Reynolds number regime, the inertial forces can be neglected and the Stokes

limit is considered. Under those circumstances, the vesicles undergo small deformations

which result in the aforementioned shape transitions [43, 121–124]. However, the inertial

effects can become significant in vesicles and vesicle doublet hydrodynamics in certain

situations, i.e., margination of WBC and vesicles flow in large blood vessels like arteries,

in which, Reynolds numbers might be equal to or greater than 1.0 [126]. At those limits,

and when the inertial terms of the Navier-Stokes equation are included, the tumbling

motion of vesicles in fluid flow within the Stokes limit is no longer observed [119].

On the experimental side, there also has been extensive research regarding vesicles’ rhe-

ology and hydrodynamics (see e.g. [127–129] and the references therein), and for most

numerical research, the experimental data were used as benchmarking studies to validate

the numerical results.

1.6 Outline

This thesis is divided into 6 chapters. The first one was devoted to a general literature

review of the current state-of-the-art of lipid bilayer research and the motivation behind

this work. In chapter 2, we present a research-oriented introduction to the phase-field

method and the applications in which it was used. We also present a detailed reformula-

tion of energy functional used in this work into the phase-field framework. In chapter 3,

we discuss the isogeometric analysis, the core numerical tool that has been used in this

work. We highlight - in detail - its advantages and the role it plays in solving higher-order

PDEs. In chapter 4, we speak about the Willmore constrained optimization problem cou-

pled with an electrical field. We also present a modified Augmented-Lagrangian approach

we used to satisfy the constraints while maintaining numerical stability and a relatively

large time step. We present our findings on the morphological evolution of the vesicles

under static electric fields and the effect of several factors on the overall morphology of

the vesicles. In chapter 5, we study the hydrodynamics of vesicle doublet suspended in

an external viscous fluid flow. Vesicles, in this part of the research, are modeled using

the phase-field model. The bending energy and energies associated with enforcing the

global volume and area are considered. In addition, the local inextensibility condition

is ensured by introducing an additional equation to the system. To prevent the vesicles
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from numerically overlapping, we deploy an interaction energy definition to maintain a

short-range repulsion between the vesicles. The fluid flow is modeled using the incom-

pressible Navier-Stokes equations and the vesicle evolution in time is modeled using two

advection equations describing the process of advecting each vesicle by the fluid flow. To

overcome the velocity-pressure saddle point system, we apply the Residual-Based Varia-

tional MultiScale (RBVMS) method to the Navier-Stokes equations and solve the coupled

systems using isogeometric analysis. We study vesicle doublet hydrodynamics in shear

flow, planar extensional flow, and parabolic flow under various configurations and bound-

ary conditions. The results show phenomenal dynamics of vesicle doublet under those

various conditions. In chapter 6, we summarize our work and present our conclusions. In

addition, we highlight the research topics we would like to study in the future.
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2
Phase-Field Method

2.1 Introduction

The temporal morphological evolution of vesicles is a moving-boundary problem. This

class of problems is challenging to solve using computational methods due to the severely

deformed boundaries between interfaces, nonlinearity arising from the coupling of the

interface dynamics with the material dynamics, and the different time and length scales.

Methods for tracking the interface position can be generally speaking classified into the

so-called Lagrangian and Eulerian methods. Lagrangian methods - often referred to as

front-tracking methods - track the interface explicitly, while Eulerian methods - often

referred to as front-capturing methods - track the interface implicitly. In the former case,

the interface is tracked by the motion of particles on the interface and accurate calcu-

lation of the curvature [130]. For the implicit methods, the location of the interface is

captured with an additional scalar field [131].

In the explicit geometrical description approach, the governing equations within each field
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are solved on a mesh that deforms in accordance with the moving boundary, and the in-

terfaces are continuously updated. The methods under this definition provide an accurate

estimation of the shape’s morphology at the expense of complexity, as they are limited

to simple cases. On the other hand, implicit methods can accurately track interfaces of

complex geometries. Those methods are based on incorporating of the interface boundary

conditions as sources in the momentum and energy equations. Among the most notable

sub-classes of the Eulerian methods are the Volume Of Fluid (VOF) and the Level-Set

(LS) methods. The first of those methods, i.e., the VOF, has been used to track and

locate the free surfaces in the case of multiple-phase fluid and fluid-fluid interaction, in

which, the interface is treated as a step-wise function and reconstructed by volume frac-

tion values [132, 133]. The level set methods (LSM) are Eulerian methods that implicitly

track the location of the boundary surface. LSM has been used to solve solidification

of binary alloys [134, 135], computational fluid dynamics [136, 137] and also to model

vesicle morphology [138–140], among other applications. The solution of an additional

differential equation is required to track the interface. The numerical approach to solving

the partial differential equations (PDEs) in the context of LSM depends on the degree

of PDEs. For higher-order PDEs, IGA is widely used, while for first and second-order

PDEs, FEM has often been used. Phase-field method belongs to Eulerian methods and

similar to LSM, phase-field models also involve solving an additional differential equation.

In contrast to the LSM, which allows a sharp, i.e. exact, description of the interface, the

phase-field method smears the interface over a small area. This mitigates the need for

the time-consuming re-initialization process of the level-set function, which significantly

simplifies the implementation.

The phase-field method is one of the most popular methods in solving free-boundary

problems and tracking interfaces between different materials. It is a multi-scale method

that can be used on a nano-, micro-, meso- and macro-scale levels, and revolves around

capturing surfaces and interfaces implicitly by introducing an auxiliary field called the

phase-field variable, denoted φ hereinafter, and tracking the zero level-set of this field

which represents the interface between the multiple phases. The method can describe

the morphological evolution of interfaces using a set of conserved and non-conserved field

variables that are continuous across the interfacial regions. It has multiple features that

make it attractive in the realm of implicit geometrical description, like its multidimen-
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sional implementation applicability, i.e., 2D and 3D, and the absence of prior morpho-

logical assumptions, with extreme computational efficiency and scalability [141]. In the

field of vesicles electrohydrodynamics, where the boundaries between multiple phases,

i.e., vesicle’s surface and ambient fluid or electrolyte, are time-dependant and prone to

evolution over time, solving the set of partial differential equations (PDEs) describing

the system is a non-trivial problem as it involves coupling a set PDEs on the boundaries

and within the computational domain with the PDEs on the evolving interface and/or

surface. This class of problems is called free-boundary problems, and it was - prior to the

phase-field era - solved using moving mesh methods, in which, the interface was actually

spatially discretized to allow for the boundary conditions on the interface to be imposed

correctly and then the PDE describing the system to be solved [See Ref. ([142, 143]) for

more on adaptive meshing across boundary interface]. As shown in Fig. (2.1), the order

parameter - e.g., the phase-field variable - takes a constant value within the bulk of each

phase and experiences a smooth transition across the interface, with the interfacial region

being small enough to resemble the physical interface, and yet, have a non-zero thickness

to allow to order parameter and all the quantities defined on the interface to transition

smoothly.

The phase-field method has been applied in various fields such as solidification [144], grain

growth [145–147], evolution of thin films [148, 149], crack propagation [150, 151], elec-

tromigration [152, 153] and biomechanics as pointed out in the summary chapter. The

temporal evolution of the interface can be accurately described by the two well-known

continuum equations of Cahn-Hilliard diffusion equation [154] and Allen-Cahn equation

[155], and the models are derived based on the laws of thermodynamics and kinetics as

will be discussed in the next section.

2.2 Thermodynamics of Phase-Field method

The phase-field model can be derived from classical irreversible thermodynamics. It de-

scribes the compositional and structural domain of any considered system and the inter-

face across multiple phases using a set of variables that are continuous across the interface.

Those variables are classified into two categories, i.e., conserved and non-conserved. In

chemically closed systems, the concentration field represented by the concentration vector
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Figure 2.1: A graphical representation of the interface based on the diffusive interface methods (left),
and the sharp-interface methods (right).

c= {c1(x, t),c2(x, t), ...,cM(x, t)} is conserved, while the order parameter field represented

by an order parameter vector φ = {φ1(x, t),φ2(x, t), ...,φN(x, t)} is not. The total free en-

ergy of the system is then expressed in terms of the phase-field variables as an integration

of the entire volume V of the system, as follows:

F =
∫

V
[ fc(c;φ)+ fg(c;φ)+ flr(c;φ)] dV (2.1)

where fc is the free energy density, fg is the gradient of the interfacial energy density

which includes the gradient coefficients of the concentration and the order parameter and

gives the model its diffusive nature. flr is the long-range interaction energy density. The

evaluation procedures of the concentration c and the order parameter φ vectors involve

solving Cahn-Hilliard and Allen-Cahn equations, respectively, as follows:

∂ci

∂ t
= ∇ ·∑

j

(
Mi j∇

δF
δc j

)
+ζi + ġi + γ̇i + Ṡi (i = 1,2, ....,M) (2.2)

∂φi

∂ t
=−Lρ

δF
δφρ

+ζρ (ρ = 1,2, ...,N) (2.3)

where Mi j and Lρ are the chemical mobility tensor, and the interface mobility, respec-

tively. ζi and ζρ are the thermal fluctuations. The constants ġi, γ̇i and Ṡi are the rates

of generation, reaction, and sink of species i, respectively. The term fg in Eq. (2.1) is
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defined as following:

fg(c;φ) = ∑
m

1
2

κcm(∇cm)
2 +∑

n

1
2

κφn(∇φn)
2 (m,n) = 1,2, ....,(M,N) (2.4)

The aforementioned set of equations, e.g. Eqs. (2.1-2.4), gives a general description of the

phase-field model. Those equations can be used to simulate the morphology of a multi-

components multi-phases system. The free energy definition of Eq. (2.1) can take many

forms as it depends on the definition of the problems. For example, an Entropy-based

formulation can be used for isolated non-isothermal systems, while Gibbs free energy can

be used when the system is isothermal with constant pressure. For systems with constant

temperature and volume, Helmholtz free energy can be used to describe the free energy

functional. Accordingly, the definition of the free energy functional and the phase-field

variables can set the rule for the evolution equations of the phase-field model, which can

be either one of four cases as follows (See Ref. [141]):

• Cahn-Hilliard phase-field model [155]:

This model can be used if the free energy of the system can be described in terms

of the concentration field c, where the temporal evolution is the time derivative of

concentration. Here, the morphology can be obtained by solving the Cahn-Hilliard

equation (See Ref. [61, 156]).

• Allen-Cahn phase-field model [157]:

Unlike the previous model, if the free energy of the system can be described in

terms of the order parameter φ , where the temporal evolution is the time derivative

of the order parameter, i.e., the phase-field variable. In this case, the morphology

can be obtained by solving Ginzburg-Landau or Allen-Cahn equation.

• Wheeler, Boettinger, and McFadden (WBM) phase-field model [158]:

In this model, the free energy is a function of both the concentration field c and

the order parameter field φ . for a multi-phases system of α and β , the free energies

of the two phases are defined as fα(c) and fβ (c) with a single order parameter

field φ used to distinguish the two phases. A key feature of this model is that the

model assumes that both phases α and β have the same concentration at the same

spatial point x but different volume fractions. The temporal evolution is given as

the solution of the Cahn-Hilliard and Allen-Cahn equations.
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• SG Kim, WT Kim, and Suzuki (KKS) phase-field model [159]:

This model is a multi-phases model as the previous one, with the difference be-

ing that both phases α and β have different concentrations at any spatial point

x=(x1,x2,x3) within the computational domain, however, the concentration fields

have the same chemical potential definition.

2.3 Single vesicle electrodynamics in the context of the phase-

field method

In the following subsections, we present our mathematical model for a single vesicle

subjected to a static electric field and the corresponding phase-field formulation. We

start by defining the free energy functional that accounts for the mechanical and electric

response of the vesicle membrane, from which we derive the phase-field formulation of

the problem at hand.

2.3.1 Mathematical model

Based on the electromechanical model proposed in [18, 109] and [160], Helmholtz free

energy of the lipid bilayer system consists of the elastic bending energy denoted henceforth

EB, the flexoelectric energy EF , the dielectric energy which can be decomposed into two

phase-based domains: of the membrane EDM and of the electrolyte EDE , and the energies

associated with enforcing global area and volume constraints using a Lagrange multiplier

method. The Lagrange multipliers are imposed on the system to maintain a constant

volume and surface area and their physical interpretation is the osmotic pressure and the

surface tension, respectively. The total energy functional is expressed as following [109]:

E= EB+EF+EDM+EDE+△p (
∫

Ω

dΩ−V0) +λ (
∮

dΓ−A0) (2.5)

with EB, EF , EDM, and EDE defined as following:

EB =
∮ 1

2
κ(2H +Hsp)

2 dΓ+
∮

κG K dΓ (2.6)

EF =−
∮ ∫ dm

0
Pf ·E dr dΓ (2.7)

EDM =−1
2

∮ ∫ dm

0
De ·E dr dΓ (2.8)
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EDE =−
∫ 1

2
εr|∇ψ|2 dΩ (2.9)

where dΩ is the volume element of the bulk, dΓ is the area element of the surface, dm

the membrane thickness, △p is the pressure difference, λ is the surface tension, κ is

the bending rigidity, κG is Gaussian bending rigidity, H the mean curvature, Hsp is the

spontaneous curvature, K is the Gaussian curvature, P f = −c1(∇ ·m) m is the bending-

induced polarization, c1 is the flexoelectric constant, m the unit normal vector of the

membrane surface, ψ the electric potential, E is the electric field intensity, and De is the

electric displacement [161], defined as De = εmE = εm (EuY,u+EvY,v+Emm), where εm

is the dielectric constant of the vesicle. Here, Y,u and Y,v are tangential vectors of the

surface that along with m form an orthogonal coordinate system on the surface of the

membrane. Considering a system where the vesicle is subjected to a static electrical field,

then the electric potential is governed by the following linear elliptic PDE of second-order:

∇ · (σ∇ψ) = 0 (2.10)

where the conductivity is defined as σ = σm on the membrane, σ = σi in the electrolyte

inside the membrane, and σ = σo in the electrolyte outside the membrane.

By taking the first variation of Eq. (2.6) and using integration by parts, the following

shape equation emerges:

∆

[
2κH +κHsp− c1

∫ dm

0
Em dr

]
+ f = 0 (2.11)

where the last term on the left-hand side f is defined as:

f = κ(2H +Hsp)(2H2−HspH−2K)+△p

−2λH +H
∫ dm

0
εm[E2

m+guu E2
u +gvv E2

v]dr

+2c1K
∫ dm

0
Em dr+ εi (E2

i −
1
2

Ei ·Ei)− εo (E2
o −

1
2

Eo ·Eo)

(2.12)

The operator ∆ = ∇2 = ∇ ·∇ is the Laplace operator, εi and εo are the dielectric con-

stants of the inner and outer electrolytes, Ei and Eo are the electric field intensities in

the inner and outer electrolytes, Ei = Ei ·m, Eo = Eo ·m,
∫ dm

0 Emdr = ψin−ψout being the

trans-membrane voltage drop in the m direction and guu,gvv are surface metrics defined

as Y,u ·Y,u and Y,v ·Y,v, respectively.
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2.3.2 Phase-Field formulation

Next, we review the phase field model for the above electromechanical model of vesicles

as proposed in [18]. The phase-field approximation of the energy functional in Eq. (2.5) is

obtained by introducing an auxiliary phase field variable φ taking constant values in each

of the phases and experiencing rapid but smooth transition across the interfacial region.

We are defining the profile of the phase field variable by the hyperbolic tangent function

such that: φ(x) = tanh( d(x)√
2 ε

) with d(x) being a signed distance function between a point

in the computational domain and the surface of the vesicle. Values of φ(x) range between

-1 and 1 with φ(x) > 0 represents the electrolyte domain outside the vesicle, φ(x) < 0

represents electrolyte domain inside the vesicle and φ(x) = 0 represents the surface of the

vesicle.

Following the ideas in Wang work [162], the following expressions after some arrangement

emerge:

m = ∇d(x) =
√

2ε

1−φ 2 ∇φ (2.13a)

∇d(x) ·∇d(x) = m · m = 1 (2.13b)

∇ ·m = ∆d(x) =
√

2ε

1−φ 2 [∆φ +
φ

ε2 (1−φ
2)] (2.13c)

H =−1
2

∇ · m =
−
√

2ε

2(1−φ 2)
[∆φ +

φ

ε2 (1−φ
2)] (2.13d)

lim
ε→ 0

1
ε

∫
Ω

p(
d(x)

ε
) f (x)dx =

∫
∞

−∞

p(t)dt
∫

Γ

f (s)ds (2.13e)∫
∞

−∞

[1− tanh2(
x√
2 ε

)]2dx =
4
3

√
2ε (2.13f)

Using Eqs. (2.13), we can transform all the surface integrals in Eqs. (2.6-2.8) into volume

integrals and reformulate all the energies in terms of the phase field variable. The energies

of the system recasted in phase field variable are as follows:

1. Bending Energy

For surfaces of constant topology, the second integral in the curvature energy is a

constant, and for this reason, it is often ignored [101]. The bending energy in terms
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of phase field variable is:

EB =
∫

Γ

1
2

κ[2H +Hsp]
2 dΓ≈ (

∫
Γ

1
2

κ[2H +Hsp]
2 dΓ)(

3
4
√

2ε

∫
∞

−∞

[1−φ
2]2dx)

EB(φ) =
3κ

4
√

2ε

∫
Ω

[ε∆φ +(
φ

ε
−

Hsp√
2
)(1−φ

2)]2 dΩ

(2.14)

2. Flexoelectric Energy

Assuming a constant membrane thickness dm, and since the bending-induced polar-

ization P f = −c1 (∇ ·m)m, the flexoelectric energy in terms of phase field variable

is:

EF =−
∫

Γ

∫ dm

0
Pf ·E dr dΓ =−2c1dm

∫
Γ

HE · m dΓ

≈ (−2c1dm

∫
Γ

HE · m dΓ)(
3

4
√

2ε

∫
∞

−∞

[1−φ
2]2dx)

EF(φ) =−
3c1dm

2
√

2

∫
Ω

[ε∆φ +
φ

ε
(1−φ

2)]∇φ ·∇ψ dΩ

(2.15)

3. Dielectric Energies of Membrane and Electrolyte

EDM =−1
2

∫
Γ

∫ dm

0
De ·E dr =−dm εm

2

∫
Γ

|∇ψ|2 dΓ

≈ (−dm εm

2

∫
Γ

|∇ψ|2 dΓ)(
3

4
√

2ε

∫
∞

−∞

[1−φ
2]2)dx)

EDM(φ) =−3dm εm

8
√

2ε

∫
Ω

(1−φ
2)2|∇ψ|2 dΩ

(2.16)

EDE(φ) =
−1
2

∫
Ω

εr(φ)|∇ψ|2dΩ

ε(φ) =
εin

2
(1−φ)+

εout

2
(1+φ)

(2.17)

4. Surface Area and Volume

A(φ) =
3

2
√

2

∫
Ω

(
ε

2
|∇φ |2 + 1

4ε
(φ 2−1)2

)
dΩ

V (φ) =
∫

Ω

1
2
(1−φ) dΩ

(2.18)

A full version of the aforementioned formulation can be found in Appendix A. Under a

static electric field, the equation governing the electric potential recasted in terms of the

phase field variable is given as

∇ · (σφ ∇ψ) = 0 (2.19)
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where σφ is the conductivity expressed in terms of the phase field variable. Due to

Ion impermeability of the biomembrane, charges tend to pile up on both sides of the

membrane which make it resemble a capacitor, leading to a discontinuity of the electrical

potential across the membrane [91]. In addition, the scalar value of the conductivity σφ

across a line profile in the domain passes through the axis of the vesicle, i.e., normal to

the vesicle surface, shows that it experiences a discontinuity, characterized by a value

jump at the vesicle-electrolyte interface due to the order of magnitude difference between

the conductivity values for membrane and electrolyte. Hence, an interpolating function

[18] that smooths out this discontinuity and can accurately represent the conductivity in

the intra- and extracellular domains, is as follows

σφ =
σi

4
(1−φ)2

φ
8 +

σm

4
(1−φ)2(1+φ)2 +

σo

4
(1+φ)2

φ
8 (2.20)

The constrained optimization problem of the system is written as follows:

min
φ

E(φ) = EB(φ)+EF(φ)+EDM(φ)+EDE(φ) (2.21)

subjected to V(φ) ≈ α0 to preserve the initial volume and A(φ) ≈ β0 to preserve the

initial surface area. Several constrained optimization solving algorithms have been con-

sidered. Among the most known is the penalty method. After intensive testing, we

conclude that the penalty method is not suitable for the given problem as the penal-

ization coefficients need to be very large to penalize the violations in the constraints,

which leads inevitably to a very stiff system, preventing any evolution of the phase field

variable in time. Alternatively, the Lagrange multiplier approach can be used to evaluate

the time-dependent multipliers. However, as shown in [163], the time step size must be

taken very small to maintain numerical stability and convergence.

Wang et al. [21] built on the traditional augmented Lagrange multiplier approach and

developed a modified augmented Lagrange multiplier algorithm to repeatedly solve the

unconstrained objective energy functional while maintaining numerical stability and rel-

atively large time step size, ranging from 10−4 to 10−2 where the steady state is reached

at about t = 10. The proposed algorithm was tested for the constrained phase field Will-

more problem. We are borrowing the idea and implementing it for the phase field model

of electromechanics of vesicles.
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The ALM version of the unconstrained objective functional in Eq. (2.21) reads as follows:

min
φ

Etot(φ) = E(φ)+
1
2

M1(V (φ)−α0)
2 +

1
2

M2(A(φ)−β0)
2

+λ1(V (φ)−α0)+λ2(A(φ)−β0)

(2.22)

This way, the penalty parameters can be taken as constants with relatively small values

over the run time. The time-dependent Lagrange multipliers λ1 and λ2 are updated after

each iteration as following:

λ1← λ1 +M1(V (φ)−α0)

λ2← λ2 +M2(A(φ)−β0)
(2.23)

and the gradient flow characterizing the evolution of the phase field in Eq. (2.22) is as

the following:

∂φ

∂ t
+

δEtot(φ)

δφ
= 0

∂φ

∂ t
+

δE(φ)
δφ

+M1(V (φ)−α0 +λ1(t))
δV (φ)

δφ
+M2(A(φ)−β0 +λ2(t))

δA(φ)
δφ

= 0
(2.24)

where the variational derivatives are obtained by taking the first variation of the function-

als, performing integration by parts and dropping the boundary integrals by assuming

zero-flux boundary conditions on the phase field and electric potential. Doing these steps

results in:

δE(φ) =
∫

Ω

[ 3κ

2
√

2ε
(ε∆φ +(

φ

ε
−

Hsp√
2
)(1−φ

2))(
1−3φ 2

ε
+
√

2Hspφ)
]
δφ dΩ

+
∫

Ω

[ 3κ

2
√

2
∆(ε∆φ +(

φ

ε
−

Hsp√
2
)(1−φ

2))
]
δφ dΩ

+
∫

Ω

[−3c1dm

2
√

2

(
(
1−3φ 2

ε
)∇φ ·∇ψ−∇ ·

(
(ε∆φ +

φ

ε
(1−φ

2))∇ψ

)
+∆(ε∇φ ·∇ψ)

)]
δφ dΩ

+
∫

Ω

[ 3dm

2
√

2ε
εm(φ −φ

3)|∇ψ|2
]
δφ dΩ+

∫
Ω

[1
4
(εin− εout)|∇ψ|2

]
δφ dΩ

(2.25)

δV (φ) =
∫

Ω

[
− 1

2

]
δφ dΩ (2.26)

δA(φ) =
∫

Ω

3
2
√

2
(ε∇φ ·∇δφ +

1
ε
(φ 2−1)φδφ) dΩ

=
∫

Ω

[ 3ε

2
√

2
(−∆φ +

1
ε2 (φ

3−φ))
]
δφ dΩ

(2.27)
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By the fundamental lemma of variational calculus, δφ(x) is an arbitrary continuous func-

tion for all x∈Ω, then it follows that the functional derivatives of the energy contributions

in the aforementioned equations are the terms inside the brackets. Finally, we can write

the functional derivative of the total energy as the following:

δEtot(φ)

δφ
=

3κ

2
√

2ε
(ε∆φ +(

φ

ε
−

Hsp√
2
)(1−φ

2))(
1−3φ 2

ε
+
√

2Hspφ)+
3κ

2
√

2
∆(ε∆φ +(

φ

ε
−

Hsp√
2
)(1−φ

2))

− 3c1dm

2
√

2

(
−ε∆φ∆ψ− (

φ −φ 3

ε
)∆ψ +2ε∇∇φ : ∇∇ψ + ε∇φ ·∇(∆ψ)

)
+

3dm

2
√

2ε
εm(φ −φ

3)|∇ψ|2 + 1
4
(εin− εout)|∇ψ|2

−M1

2
(V (φ)−α(t))+

3ε M2

2
√

2
(A(φ)−β (t))

(
−∆φ +

1
ε2 (φ

3−φ)

)
(2.28)

where α(t) = α0− λ1(t) and β (t) = β0− λ2(t). Here, ∇∇φ and ∇∇ψ are second-order

tensors of the second-order partial derivatives of the phase field and electric potential,

respectively, which their components are expressed as following
φ,xx φ,xy φ,xz

φ,yx φ,yy φ,yz

φ,zx φ,zy φ,zz

 and


ψ,xx ψ,xy ψ,xz

ψ,yx ψ,yy ψ,yz

ψ,zx ψ,zy ψ,zz


and ( : ) denotes the double contraction of the two tensors defined as A :B=∑

3
i, j=1 Ai jBi j.

2.4 Vesicle doublet hydrodynamics in the context of the phase-

field method

The mathematical model for vesicle doublet suspended in an external viscous fluid flow

and the corresponding phase-field formulation are presented in the following two subsec-

tions. The bending energy and energies associated with enforcing the global volume and

area are considered. The vesicle’s local inextensibility condition is ensured by introducing

an additional constraint equation to the system. A phase-field-based interaction energy

definition is also considered to maintain a short-range repulsion between the vesicles.

The fluid flow is modeled using the incompressible Navier-Stokes equations and the vesi-

cle evolution in time is modeled using two advection equations describing the process of

advecting each vesicle by the fluid flow. To overcome the velocity-pressure saddle point
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system, we apply the Residual-Based Variational MultiScale (RBVMS) method to the

Navier-Stokes equations and solve the coupled systems using isogeometric analysis.

2.4.1 Mathematical model

The mathematical model of a system consist of an inextensible vesicle doublet suspended

in an incompressible fluid flow is given by the sharp interface model. The mathematical

model consists of two transport equations with the purpose of describing how a scalar

field, which in this case is the phase-field variable φ , is transported through space and

evolves through time with the appropriate boundary conditions. In addition to this, the

Navier-Stokes equations are considered to study the motion of the viscous fluid flow.

Following the work of Valizadeh et. al. [43], and considering the sharp interface model

presented in Laadhari et. al [164], we can formulate the mathematical model as following:

Let Ω ∈ Rd, where d = 2,3, denote the computational domain dimensionality in which

the system of the vesicle doublet is suspended. The vesicle doublet is suspended in an

incompressible flow. The vesicle intracellular domain and membrane are denoted by Λi

and ∂Λi, respectively, where i = 1,2, corresponding to the first and second vesicles. The

outward normal vector to the surface of the vesicle is denoted by ni, while the outward

normal vector to the computational domain is denoted by m [See Fig. 2.2]. Let u denote

the velocity profile defined on the boundary, and φi denote the level-set function which

represents the spatial location of the interface and let p denote the pressure, and let λi

to be the Lagrange multiplier mimicking the surface tension of each vesicle. The strong

form of the problem in the context of the sharp-interface model becomes:

Find u, p, φ1,φ2, λ1, and λ2 such that:

∂φ1

∂ t
+u ·∇φ1 = 0, in Ω× (0,T ), (2.29)

∂φ2

∂ t
+u ·∇φ2 = 0, in Ω× (0,T ), (2.30)

∂u
∂ t

+u ·∇u+∇p− 1
Re

∇ · (2µD(u)) = 0, in (Ω\(∂Λ1∪Λ2))× (0,T ), (2.31)

∇ ·u = 0, in Ω× (0,T ), (2.32)

∇s ·u = 0, on ∂Λ1× (0,T ), (2.33)

∇s ·u = 0, on ∂Λ2× (0,T ), (2.34)

[[u]] = 0, on ∂Λ1× (0,T ), (2.35)
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Ω

∂Ω

n1 n2Λ1

∂Λ1

φ1,ρ1,µ1

Λ2

∂Λ2

φ2,ρ2,µ2

m ub
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Figure 2.2: A schematic diagram shows the system of vesicle doublet suspension.

[[u]] = 0, on ∂Λ2× (0,T ), (2.36)

−κ1

(
∆sH1 +H1(

H2
1

2
−2K1

)
n1

+H1λ1n1−∇sλ1 + [[2µ
∗D(u)− pI]] ·n1 = 0 on ∂Λ1× (0,T )

(2.37)

−κ2

(
∆sH2 +H2(

H2
2

2
−2K2

)
n2

+H2λ1n2−∇sλ2 + [[2µ
∗D(u)− pI]] ·n2 = 0 on ∂Λ2× (0,T )

(2.38)

φ1 = φ2 = φn, on ∂Ω−× (0,T ) (2.39)

u = ub, on ∂ΩD× (0,T ) (2.40)(
2µD(u)− pI

)
·m = 0, on ∂ΩN× (0,T ) (2.41)

φ1(0) = φ2(0) = φ0, in Ω× (0,T ) (2.42)

u(0) = u0, in Ω× (0,T ) (2.43)

2.4.2 Phase-Field formulation

To attain thermodynamic consistency, the first law of thermodynamics must be satisfied.

That is, a global mass conservation, i.e., d
dt
∫

∂Λi
u dA = 0, and negative energy dissipation,

i.e., d
dt E[Λi,u]≤ 0 for an advecting system. The interface of the vesicle doublet ∂Λi is the

zero level set of the phase-field function φ defined by the tangent hyperbolic function such

that φ(x, t) = tanh −d(x,t)√
2ε

, with d(x, t) being a signed distance function to the membrane

interface and ε being a regularization parameter. By choosing d(x, t) to be negative

inside the membrane and positive outside, we render φ ≈ 1 inside and φ ≈ −1 outside.



33

Stemming from this definition the outward normal vector to the membrane n = − ∇φ

|∇φ |

and the total curvature H = ∇ ·n.

To this extent, and based on the phase-field model for vesicle hydrodynamics proposed

by Du et al. [165, 166] that accounts for global volume and surface area, and by including

the inextensibility constraint proposed by Aland et. al [119] and the interaction energy

defined as in Marth et. al [120] work, and considering two advection-diffusion equations

describing the time evolution of vesicle doublet in a viscous fluid flow with inertial forces,

the evolution equation of the phase-field variables φi for i = 1,2 is written as follows:
∂φi

∂ t
+u ·∇φi =−ηφ (gi−λg(i)fi−λv(i)+ ςi) (2.44)

where u is the velocity vector. Both gi and fi are defined as following:

gi = (1/(Re Ca))[∆ fi− (1/ε
2)(3φ

2
i −1) fi],

fi = ε∆φi− (1/ε)(φ 2
i −1)φi.

λg(i) and λv(i) are spatially constant Lagrange multipliers to enforce the conservation of the

total surface area and total volume, respectively. The dimensionless chemical potentials

ςi being defined as the variational derivative of the interaction energy E(φi) w.r.t the

phase-field variable φi is defined as:

ςi =
δE(φi)

δφi
(2.45)

while the interaction energy of the vesicles is the overall sum of the interaction energy

associated with each vesicle individually, and defined in the context of the phase-field

model as follows:

Ei(φ1, ...,φi) =
1

Re IN

∫
Ω

B(φi)
n

∑
j=1
j ̸=i

w j dΩ (2.46)

with B(φi) = (1/ε)(φi
2−1)2 and IN being a dimensionless interaction number defined as:

(4
√

2/3)(v0 U/α), where α is the interaction parameter determining the strength of the

repulsive interaction between the two vesicles, v0 is the fluid dynamic viscosity and U is

the characteristic velocity. The variational derivative of the non-dimensional interaction

energy is as follows:
δEint(φi, ...,φn)

δφi
=

1
Re IN

(4φi

ε
(φ 2

i −1)
n

∑
j=1
j ̸=i

w j +w′i ∑
j=1
j ̸=i

1
ε
(φ 2

i −1)2
)

(2.47)

Where the short-range interaction function w j is:

w j =

exp
(
− 1

2(ln
1+φ j
1−φ j

)2
)

if |φ j(x)|< 1

0 otherwise
(2.48)
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and its derivative w.r.t. the phase field variable is:

w j
′
=


2exp(−1

2 (ln
1+φ j
1−φ j

)2) ln
1+φ j
1−φ j

φ 2
i −1

if |φ j(x)|< 1

0 otherwise
(2.49)

The evolution equation (2.44) of the first vesicle has two cases depending on φ1 and φ2,

and reads as following:
∂φ1

∂ t
+u ·∇φ1 =−ηφ (g1−λg1f1−λv1 + ς1) (2.50)

However, only when the vesicles are in close proximity, the interaction terms comes into

effect. Otherwise, when |φ1(x)| ≥1 and\or |φ2(x)| ≥ 1, the term completely drops, and

the evolution equation reduces to
∂φ1

∂ t
+u ·∇φ1 =−ηφ (g1−λg1f1−λv1) (2.51)

The second evolution equation of the second vesicle follows the same principle and reads

as follows:
∂φ2

∂ t
+u ·∇φ2 =−ηφ (g2−λg2f2−λv2 + ς2) (2.52)

and reduces to an evolution equation without the interaction term when the vesicles are

apart away as follows:
∂φ2

∂ t
+u ·∇φ2 =−ηφ (g2−λg2f2−λv2) (2.53)

Where ς1 and ς2 are defined as following:

ς1 =
1

Re IN

[
4φ1

ε
(φ 2

1 −1)exp
(
− 1

2
(ln

1+φ2

1−φ2
)2
)
+

2exp(−1
2 (ln 1+φ1

1−φ1
)2) ln 1+φ1

1−φ1

φ 2
1 −1

(
1
ε
(φ 2

2 −1)2)

]
(2.54)

ς2 =
1

Re IN

[
4φ2

ε
(φ 2

2 −1)exp
(
− 1

2
(ln

1+φ1

1−φ1
)2
)
+

2exp(−1
2 (ln 1+φ2

1−φ2
)2) ln 1+φ2

1−φ2

φ 2
2 −1

(
1
ε
(φ 2

1 −1)2)
)]

(2.55)
The non-dimensional Navier-Stokes equation reads:

∂u
∂ t

+u ·∇u+∇p− 1
Re

∇ · (2µ
∗D(u)) =

n

∑
i=1

φ
♯
i ∇φi (2.56)

with µ∗ is the dynamic viscosity and expressed as a function of the phase-field variable

µ∗(φ) and calculated based on a normalized value of the unified phase-field φ = φ1+φ2+1

such that µ∗(φ) = 0.5(1+ φ)β + 0.5(1− φ), where β is the viscosity ratio between the

intracellular µi and the extracellular fluids µo. D(u) is strain rate tensor that describes

the rate of stretching and shearing and defined as (1/2)(∇u+∇T u). The right-hand side
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is defined as follows:
n

∑
i=1

φ
♯
i ∇φi = ∇ · (δε1Pλ1)+(g1−λg1 f1−λv1 + ς1)∇φ1+

+∇ · (δε2Pλ2)+(g2−λg2 f2−λv2 + ς2)∇φ2

(2.57)

where P is the tangential projection operator and δε is the diffusive interface approxima-

tion of the surface delta function.
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3
Isogeometric Analysis

3.1 Introduction

The IsoGeometric Analysis (IGA) was first theorized by Hughes, Cottrell, and Bazilevs

[22] back in 2005 with the aim of bridging the gap between the Computer-Aided Design

(CAD) part of any simulation process and the analysis part, especially when the method

in use is the Finite Element Method (FEM). In the industrial world, CAD systems are

the most used technologies to generate geometries using Non-Uniform Rational B-splines

(NURBS), subdivision surfaces, T-splines, and other techniques, to be later used in the

analysis, whether in static structural, dynamic, hydrodynamic, mechanical, thermal or

other types of analysis. In doing so, some features of the CAD-based geometries would

be lost upon transferring those models to Computer-Aided Engineering (CAE) software

as a result of the reparametrization process due to the use of linear Lagrange polynomials

used in FEM to approximate the geometry. The reparametrization process is labor-cost

intensive and leads to poor and unsatisfactory results analysis-wise. This is where the
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IGA comes to address. Instead of using different basis functions to describe the geometry

and approximate the solution, IGA unifies the design-analysis process by using the same

basis functions used in the geometrical description of the model to also approximate the

solution. Building on this idea, the B-splines and NURBS were used to construct the

geometry of the model as well as approximating the solution of the PDEs in the weak form

within the context of the Galerkin method. NURBS major advantages come from their

ability to generate an exact replica of the CAD geometry, whereas the finite element mesh

is merely an approximation of the CAD geometry. Therefore, NURBS-based geometry

can be used to represent exact circles, spheres, ellipsoids, and many other geometrical

shapes. In addition to that, the NURBS possess the ability to be k-refined, a property

unique to NURBS over the classical Lagrange polynomials used in FEM. The k-refinement

is the order elevation procedure carried out using two steps; order elevation of the original

knot vector, then knot insertion. Unlike the hp-refinement, the k-refinement is limited to

NURBS-based FEM, i.e., IGA, and does not have an analog in the standard FEM [23].

3.2 B-splines basis functions

In the world of Computer-Aided Design (CAD), the NURBS are the industry standards

in geometry generation. NURBS are an extended version of B-splines. A B-spline is a

piecewise polynomial function, in which the pieces constructing the curve are joint to-

gether at spatial points called knots. Let Ξ = {ξ0,ξ1,ξ2, ...,ξm,} be a one dimensional

knot vector, consisting of m+1 nondecreasing set of real numbers, i.e., ξi ≤ ξi+1, where

each ξi ∈ R, and i = 1, 2, ...., m-1, then the i th B-spline basis function with a polyno-

mial order p, denoted by Ni,p(ξ ) is defined recursively using the Cox-de-Boor [167, 168]

formula as following:

p = 0

Ni,0(ξ ) =

{
1, ξi ≤ ξ < ξi+1

0, otherwise
(3.1)

and for p≥ 1

Ni,p(ξ ) =
ξ −ξi

ξi+p−ξi
Ni,p−1(ξ )+

ξi+p+1−ξ

ξi+p+1−ξi+1
Ni+1,p−1(ξ ) (3.2)
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The knot vector Ξ can be uniform if all knots are equally spaces in the parametric space,

or non-uniform otherwise. In addition to this, the knot vector can be open if the first and

last entities are p+1 repeated. From Eqs. (3.1-3.2), we can see that zeroth order of any

basis function is a step function, whereas, for the first order onward, the basis function

for any knot is a linear combination of two (p-1)-degree basis functions. In addition to

this, the i th-knot span defined as the open interval [ξi , ξi+1) can has a zero-length due

to knot multiplicity. The B-splines basis functions have a set of properties that control

the geometric characteristics of curves and surfaces, such as:

• Any basis function has a local support property, in that, Ni,p(ξ ) = 0 if ξ is outside

the open interval
[
ξi , ξi+p+1

)
. An example of this can be seen in Fig. (3.1), where

N4,2 is only defined on the interval [ξ4 , ξ7) spanning from [0.5,1) in the knot vector,

• There are only p+1 nonzero basis functions Ni−p,p, ... , Ni,p on the knot span [ξi , ξi+1).

This is due to the fact that the only nonzero zeroth-basis function of the given in-

terval is Ni,0, which leads to Ni−p,p, ..... ,Ni,p being the only nonzero basis function

on the aforementioned knot span. To illustrate this, ξ of 0.625 in the knot vector

of Fig. (3.1) is located in the 4th knot span, and therefore, for the given knot span,

only the basis functions N2,2, N3,2, and N4,2 are nonzero,

• The basis functions attain a nonnegativity property, i.e., Ni,p(ξ )≥ 0, over the entire

knot vector of order p, and for any arbitrary knot span i and ξ values. This can

be easily seen in Fig. (3.1), where all basis function has nonnegative values ranging

between 0 and 1,

• The basis functions attain a portion of unity property, that is, for an arbitrary knot

span [ξi , ξi+1), we have:
i

∑
j=i−p

N j,p(ξ ) = 1 ∀ξ ∈ [ξi , ξi+1) (3.3)

An example of this can be drawn using Eq. (3.2) for ξ = 0.625, where we have the

basis functions N2,2, N3,2, and N4,2 operating on the knot span ξ is located in. The

values of those basis functions are 0.125, 0.75, and 0.125, respectively,

• By default, the derivatives of Ni,p(ξ ) are defined within the borders of the knot

span on which the basis function sub-polynomials are defined. It follows that at

any arbitrary knot within the knot vector ξ , the nonzero basis functions Ni,p(ξ )
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are p− k continuously differentiable, where k is the multiplicity of the knot. We

can conclude from this that increasing the degree of the knot vector increases the

continuity while increasing the knot multiplicity decreases the continuity.

For more details on the B-splines basis function, the reader is referred to [169].

0 0 0 0.25 0.5 0.75 1 1 1

1

0.625

N0,2
N1,2

N2,2 N3,2
N4,2

N5,2

Figure 3.1: The quadratic basis functions, i.e., (p = 2) for the open uniform knot vector
ξ = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}. The number of basis functions is n− p−1, yielding 6 basis func-
tions over the entire knot vector.

3.3 B-splines Curves and Surfaces

3.3.1 B-Spline Curves

The B-splines based curves are defined as a linear combination of the control point set,

e.g., control polygon, {Pi} and the basis functions Ni,p, as following:

C(ξ ) =
n

∑
i=0

Ni,p(ξ )Pi. (3.4)

where i is the B-spline basis function index, Ni,p is the ith B-spline basis function, and

p is the polynomial orders in the ξ parametric direction. Any B-spline curve, however,

reduces to a Bézier curve in the case of n = p, where the number of basis functions equals

n+ 1, and p is the basis function order. The number of control points per parametric

direction is controlled by the size of the knot vector in that direction, such that the

number of the control points equals the number of the basis function. In addition to this,

the B-spline curve has a convex hull property where the curve is contained within its

control polygon, which leads to the endpoints of the curve coinciding with the endpoints

of the control polygon. A graphical representation of a B-spline curve can be seen in Fig.

(3.2). The curve has 7 spatial control points, which in turn constructs the control polygon
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containing the B-spline curve. The second-order knot vector has seven basis functions as

shown in Fig. (3.3), which is the same number as the control points.

P0

P1
P2

P3 P4

P5 P6

∗

∗
∗

∗ ∗

∗ ∗

Figure 3.2: A second order B-spline curve constructed using the knot vector of Fig. (3.3), with a con-
trol polygon {Pi} coordinates of {(1.5,1), (2,4), (4,4.5), (3,-1), (6,-1), (5,1.8), (6,1.7)}.

0 0 0 0.20 0.4 0.60 0.80 1 1 1

1

N0,2
N1,2

N2,2 N3,2 N4,2
N5,2

N6,2

Figure 3.3: The quadratic basis functions, i.e., (p = 2) for the open uniform knot vector
ξ = {0, 0, 0, 0.20, 0.40, 0.60, 0.80, 1, 1, 1}. The number of basis functions is n− p− 1, yielding 7
basis functions over the entire knot vector.

3.3.2 B-Spline Surfaces

Similar to B-spline curves, but in bidirectional settings, the B-spline surface is constructed

from a net of control points. Each physical direction has a parametric knot vector which

sets the element number and length of each element in this direction. The B-spline curve

is defined as the summation of univariate products of the basis functions with the control

point corresponding to the basis functions as follows:

S(ξ ,η) =
n

∑
i=0

m

∑
j=0

Ni,p(ξ )N j,q(η)Pi, j. (3.5)
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where i, j are the B-splines function indices, Ni,p, N j,q are the ith, jth B-spline basis function,

and p,q are the polynomial orders in the ξ ,η directions. Assuming the knot vectors U(ξ )

and V(η) have r+1 and s+1 knots, respectively, then it follows that n = r− p−1 and

m = s−q−1.

3.4 The Non-Uniform Rational B-splines (NURBS)

NURBS curves and surfaces are the gold standard of Computer-Aided Design (CAD) for

their ability to represent very complex geometrical shapes [22]. They attain the same

properties of the B-spline from which they are constructed and provide more flexibility to

control surfaces and curves due to the embedded feature of control points weights [170].

A univariate NURBS function is defined as follows:

Ri,p(ξ ) =
Ni,p(ξ )wi

∑
n
j=0 N j,p(ξ )w j

(3.6)

where w js are the set of weights of the control points, with the same size. Eq. (3.6)

can easily be extended for 2D and 3D configuration. For example, a trivariate NURBS

function defined recursively over the parametric space is given by:

Ri, j,k(ξ ,η ,ζ ) =
Ni,p(ξ )N j,q(η)Nk,r(ζ )wi, j,k

∑
n
i=1 ∑

m
j=1 ∑

t
k=1 Ni,pN j,q(η)Nk,r(ζ )w(i, j,k)

for trivariate cases. (3.7)

with i, j,k are the NURBS function indices, the Ni,p, N j,q and Nk,r are the ith, jth and

kth B-spline basis function and p,q,r are the polynomial orders in the ξ ,η ,ζ directions,

respectively. wi, j,k being the weight associated with the control point Pi,k, j.

Following this, a NURBS surface can be defined as follows:

S(ξ ,η) =
n

∑
i=0

m

∑
j=0

Rp,q
i, j (ξ ,η)Pi, j (3.8)

This equation can easily be extended to a trivariate form to produce a NURBS-based

volume object.

3.5 hpk-Refinement

B-spline basis function can be refined by various mechanisms without changing the geom-

etry and the corresponding parameterization. This can be done in three ways: a) Knot

insertion, b) order elevation, and c) higher order and higher continuity. The first method

of refinement is the knot insertion, in which the knot vector is extended to include the
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additional knot/s. In the case of a B-spline curve or surface, the new control points set

is also extended by a linear combination of the original control points. This form of

refinement is analog to the h-refinement of the FEM. The second method of refinement

is the order elevation, e.g., from quadratic to cubic, cubic to quartic .. etc. When this

mechanism is implemented, attention must be paid to preserving the discontinuities in

the various derivatives existing in the original curve. During order elevation, the multi-

plicity of each knot value is increased by one, but no new knot values are added. Similar

to the knot insertion method, neither the geometry nor the parameterization is changed.

This type of refinement is analog to the p-refinement of the FEM. Thirdly, a knot vector

can also be refined by augmenting its order and continuity. This involves elevating the

order of the original knot vector, and afterward, a unique knot is inserted. This leads

to the order and continuity elevation at each ξ in the new knot vector. This is called

k -refinement, and it is unique to IGA and does not have an analog in the classical FEM

[22, 170].

3.6 Preliminary IGA Work: Rectangular plate with a circular

hole

In This section, we present our preliminary work. We solved a linear elasticity problem

for a rectangular plate with a central circular hole under an in-plane load. This example

has been extensively studied in the literature and it does not have any novelty, it only

serves as an example of IGA-based analysis.

3.6.1 Problem’s equations

Let σ = [σi j], ε = [εi j], and ui be the Cartesian components of the Cauchy stress tensor,

strain tensor, and the displacement vector, respectively. Where the strain tensor is the

symmetric part of the displacement gradient as follows:

εi j =
ui, j +u j,i

2
(3.9)

By Hook’s law, which relates the stress tensor to the strain tensor, we have

σi j = ci jklεkl (3.10)
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Figure 3.4: A schematic diagram of the rectangular plate under in-plane load.

where the ci jkl are elastic coefficients, better known as the modulus of elasticity, for which,

constant values over the domain constitute a homogeneous material.

3.6.2 The Strong form of the problem

Let fi : Ω ∈ Rd, gi : ΓDi ∈ R, and gi : ΓNi ∈ R, then the strong form of the problem is as

follows: find ui : Ω→ R such that:

σi j, j + fi = 0 in Ω (3.11)

ui = gi on ΓDi (3.12)

σi jn j = hi on ΓNi (3.13)

where, gi and hi are the prescribed boundary conditions and traction, respectively. Γ =

ΓDi ∪ΓNi and ΓDi ∩ΓNi = /0.

3.6.3 The Weak form of the problem

Let V = H1 be the Sobolev space of scalar-valued square-integrable functions with square

integrable first derivatives and let S be the trial solution space, and the weighting function

spaces W. The weak form of the problem then reads: find ui ∈ S ⊂ V such that: ∀wi ∈

W⊂ V
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∫
Ω

w(i, j)σi j dΩ =
∫

Ω

wi fi dΩ+
d

∑
i=1

(∫
ΓNi

wi h j dΓ

)
(3.14)

The continuous form of the problem states that for S = {u|ui ∈ Si}, and let V = {w|wi ∈

Vi}, then the weak form of the problem becomes:

a(w,u) = L(w) (3.15)

where

a(w,u) =
∫

ω

w(i, j)ci jklu(k,l) (3.16)

L(w) =
∫

Ω

wi fi dΩ+
d

∑
i=1

(∫
ΓNi

wi h j dΓ

)
(3.17)

The finite-dimensional trial solution functions spaces Sh ∈ S and Vh ∈ V are defined using

the isoparametric NURBS basis with vector-valued control variables. Assuming gh ∈ Sh,

then it follows that: ∀uh ∈ Sh, we have:

uh = vh +gh (3.18)

Where vh ∈ Vh, and the Galerkin formulation is then reads: find uh = vh +hh ∈ Sh, such

that ∀wh ∈ Vh:

a(wh,vh) = L(wh)−a(wh,gh) (3.19)

where the ith component of uh and wh are expressed as following:

uh
i =

neq

∑
A=1

= NA diA +gh
i

wh
i =

neq

∑
A=1

= NA ciA

(3.20)

We solve for d the following equation:

Kd = F (3.21)

With the global stiffness matrix is defined as follows:

K = eT
i

∫
Ω

BT
A D BB dΩe j (3.22)

In this equation, D is the elasticity coefficients tensor, and BA is the strain displacement

matrix.

3.6.4 Numerical results

We solved Eq. (3.21) using a Matlab hand-written code designed for this problem. The

initial parametric space is defined by two second-order knot vectors, ξ = {0, 0, 0, 0.5, 1,
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1, 1} and η = {0, 0, 0, 1, 1, 1}, which gives an initial elements number count of 2. For

the first knot vector, we have a total of 4 basis functions, while for the second one, we

have a total of 3 basis functions. As mentioned in subsection (3.3.1), the corresponding

2-D control net and associated weights are defined as a matrix with the same dimensions

as the basis functions, i.e., 4×3, as following:

Pi =


(−1,0,1) (−1,

√
2−1,1+ 1√

2
) (1−

√
2,1,1+ 1√

2
) (0,1,1)

(−2.5,0,1) (−2.5,0.75,1) (−0.75,2.5,1) (0,2.5,1)

(−4,0,1) (−4,4,1) (−4,4,1) (0,4,1)

 (3.23)

The matrix D has a plain-stress definition, with a modulus of elasticity E equals to 1×105

and a Poisson’s ratio ν of 0.3. The geometrical description of the problem can be seen

in Fig. (3.4). The plate is 8× 8 unit length, with a hole at the center of radius 1 unit

length. Taking advantage of the axes of symmetries, we can reduce the whole plate to a

quarter around the vertical and horizontal lines passing through the center of the circle

by fixing the displacement in the direction parallel to the symmetry lines. As shown in

Fig. (3.5), the initial mesh shows that the computational domain is discretized into two

elements as per the definition of the initial knot vectors ξ and η . We can see from Fig.

(3.5a), that there are two non-polar control points close to the circumference of the hole

but not exactly on the circumference. This is achieved by manipulating the weights of

those two control points as shown in the control points matrix Pi of Eq. (3.23).

An h-refinement of the knot vectors ξ and η would increase the element count in both

directions, by inserting new unique knots within each knot vector, thus, increasing the

span count of each knot vector and consequently the number of the elements in each

direction. This can be seen in Fig. (3.6), where each element from the previous refinement

order is split in half, thus doubling the element numbers.

In a similar manner, a p-refinement can also be implemented to increase the order of the

initial knot vector. However, different from the h-refinement, and when implemented on

the initial knot vector, the p-refinement does not change the spatial discretization. Only

the number of the basis functions is increased and the number of the control points per

direction. To maintain the continuity of the original knot vector, duplicated knots are

inserted across element boundaries. As shown in Fig (3.7), the initial mesh is still the same

as in Fig. (3.5b) since no h-refinement was applied to the initial knot vector, however, the

control points number has increased by each p-refinement by the same number the basis
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function increased by. Alternatively, a k-refinement can also be implemented to refine the

initial knot vector. As mentioned in section 3.5, the k-refinement is unique to isogeometric

analysis and does not have an analog in the standard FEM. When implementing this

technique to the initial knot vector, we end up with the results shown in Fig. (3.8).

One interesting fact about this model and its configuration is the repeated control point

on the top left corner of the plate. From the control points matrix of Eq. (3.23), we see

that there are two control points with the same spatial coordinates. This results in a C0

continuity, given that upon implementing any type of refinement, the corresponding knot

span will always have a continuity of C0 on both sides of the element. But in all cases, it

is evident that the exact geometry can be obtained with the coarsest mesh considered.

(a) Initial control points (b) Initial mesh

Figure 3.5: The computational domain corresponding to the two second-order knot vectors ξ and η

with a) control points projected on the computational domain (black dots), and b) elements and nodes
(black dots).
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(a) Control Points of first refinement order (b) Mesh of first refinement order

(c) Control Points of second refinement order (d) Mesh of second refinement order

(e) Control Points of third refinement order (f) Mesh of third refinement order

Figure 3.6: First (a-b), second (c-d), and third (e-f) refinement orders of initial computational domain.
Figures (a), (c), and (e) shows the control points distribution, while figures (b), (d), and (f) shows the
mesh and the spatial discretization of the initial computational domain.



49

(a) Control points, 3rd order knot vector (b) Initial mesh, 3rd order knot vector

(c) Control points, 4th order knot vector (d) Initial mesh, 4th order knot vector

(e) Control points, 5th order knot vector (f) Initial mesh, 5th order knot vector

Figure 3.7: Third (a-b), fourth (c-d), and fifth (e-f) order-based control points distribution and corre-
sponding initial mesh.
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(a) Control points, k-refinement (b) Mesh after k-refinement

Figure 3.8: A k-refinement for the initial knot vector by elevating the original order by one degree, e.g.,
3 and increasing the continuity across element boundaries.

The X- and Y-components of stress fields based on the initial knot vector are shown in

Fig (3.9), while in Fig. (3.10), we had a second-order knot vector with a refinement order

of 5, e.g., an h-refinement implemented on the initial knot vector, and in Fig. (3.11), we

elevated the degree of the knot vector to 5.
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(a) Stress in X-Dir., p = 2. Refinement order = 0.
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(b) Stress in Y-Dir., p = 2. Refinement order = 0.

Figure 3.9: Stress fields based on a geometry and a solution approximation using initial knot vector.

From a visual perspective, we can see the results are improving when an h-refinement is

implemented as shown in the difference between Fig. (3.9) and Fig. (3.10). But at this

point, when elevating the degree of the knot vector from a second-order one to a fifth-

order one, the visuals are almost similar, and the accuracy of the solution approximated

using order-varying knot vectors can only be measured using the norms-based error. As

shown in Figs (3.12-3.13), an h-refinement for the knot vector while maintaining the same

degree would reduce the error noticeably, but a more effective method is to apply a p-

refinement or a mix of both, i.e., a k-refinement, as it would reduce the error by 100%
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(a) Stress in X-Dir., p = 2. Refinement order = 5. (b) Stress in Y-Dir., p = 2. Refinement order = 5.

Figure 3.10: Stress fields based on geometry and a solution approximation using a second-order knot
vector and a refinement of 5th order.

(a) Stress in X-Dir., p = 5. Refinement order = 5. (b) Stress in Y-Dir., p = 5. Refinement order = 5.

Figure 3.11: Stress fields based on geometry and a solution approximation using a fifth-order knot
vector an a refinement of 5th order.

after a certain thresh-hold of refinement has been passed. For example, a quadratic knot

vector refined 7 times would have an error in the energy norm of 7.22428×10−07, while it

would have an error in the energy norm of 3.57773×10−13 in case the order of the knot

vector was elevated to the sixth degree, e.g., Hexic, with the same h-refinement order.

The same thing can also be seen when comparing the stress error in the L2-norm as shown

in Fig. (3.13). Those findings are similar to the results in [22, 171].
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Figure 3.12: A comparison between the error in the Energy-norm between versus hMAX , the largest
element diameter in the mesh, for the solutions approximated for degrees ranging from p = 2 to p = 6,
and refinement orders ranging from 0 to 7.
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Figure 3.13: A comparison between the stress error in the L2 versus hMAX , for the solutions approxi-
mated for degrees ranging from p = 2 to p = 6, and refinement orders ranging from 0 to 7.
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4
A Constrained Optimization Problem of

Morphological Evolution of Vesicles in

Electric Fields

4.1 Introduction

In this chapter, we build up on the mathematical model and the phase-field formulation

presented in section 2.3 to formulate the strong form of the problem, which consists of

two PDEs; one describes the time evolution of the vesicle, while the other one describes

the electric potential within the computational domain. The first PDE is a fourth-

order equation, hence, we solve it within the framework of isogeometric analysis due

to the need for higher than C0 continuity as explained in section 1.3, which can not

be achieved using standard FEM, and therefore, we resort to isogeometric analysis to

solve the problem given the ability to attain higher-order continuity required to solve
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the problem. After introducing the strong form of the problem, we then introduce the

weak form, and afterward, we solve multiple examples under various conditions, e.g., a

constrained Willmore flow problem, the effect of flexoelectricity on vesicles morphology,

and the membrane conductivity role.

4.2 The strong form

Let Ω ⊂ IR3 be an open set representing the computational domain. The boundary of

Ω denoted as ∂Ω is assumed to be sufficiently smooth. The unit outward normal vector

to ∂Ω denoted n. For the initial boundary problem of the phase field approximation

of the electromechanical model, where Ω is the closure of Ω, ∂Ω−y and ∂Ω+y are bot-

tom and top sides of Ω respectively, the strong form is stated as the following: find φ :

Ω × (0,T ) 7→ IR, such that

∂φ

∂ t
+

3κb

2
√

2
(∆φ)(

1−3φ 2

ε
+
√

2Hspφ)+
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√
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ε
−

Hsp√
2
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2)(
1−3φ 2

ε
+
√

2Hspφ)

+
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2
√

2
∆(ε∆φ +(

φ

ε
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Hsp√
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)(1−φ
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2
√
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(
−ε∆φ∆ψ− (

φ −φ 3

ε
)∆ψ

+2ε∇∇φ : ∇∇ψ + ε∇φ ·∇(∆ψ)

)
+

3dm

2
√

2ε
εm(φ −φ

3)|∇ψ|2 + 1
4
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−M1

2
(V (φ)−α(t))+

3ε M2

2
√

2
(A(φ)−β (t))

(
−∆φ +

1
ε2 (φ

3−φ)

)
= 0 in Ω× (0,T )

φ = 1 on ∂Ω× (0,T )

∇φ ·n = 0 on ∂Ω× (0,T )

φ(x,0) = φ0(x) in Ω

(4.1)

For the electric potential, we have

∇ · (σφ ∇ψ) = 0 in Ω× (0,T )

ψ =+V on ∂Ω−y× (0,T )

ψ =−V on ∂Ω+y× (0,T )

∇ψ ·n = 0 on ∂Ωt× (0,T )

ψ(x,0) = ψ0 in Ω

(4.2)
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4.3 The weak form and numerical formulation

The continuous problem in the weak form can be formulated in two ways, a monolithic

approach or a staggered approach. In the monolithic formulation, we are formulating

the weak form of the problem and solving for two degrees-of-freedom per control point,

simultaneously. Another way of approaching the problem is by solving the weak form of

Eq. (4.2) by assuming the phase-field is given and then solve the weak form of Eq. (4.1)

by considering the electric potential from the previous step at each iteration to evaluate

the phase field. For the problem at hand, both formulations yield nearly the same results,

however, the staggered scheme is computationally less expensive since the linear Laplacian

Eq. (4.2) can be efficiently solved using an iterative linear solver such as Generalized

Minimal Residual (GMRES) method, which reduces significantly the nonlinear solver

computational load. In the following, we are presenting the weak form for the staggered

scheme.

4.3.1 Continuous problem in the weak form

Let V = H2 being the Sobolev space of square-integrable functions with square integrable

first and second derivatives and denote the trial solution space by S and weighting function

space by W spaces. Multiplying Eq. (4.1) by the weighting function and integrating by

parts gives the weak form as follows: find φ ∈ S⊂ V, such that ∀w∈W⊂ V,

B(w,φ) = 0, where (4.3)
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(., .)Ω is the L2 inner product with respect to the domain Ω.

4.3.2 The semidiscrete formulation

Find φ h ∈ Sh ⊂ S⊂ V such that ∀wh ∈Wh ⊂W⊂ V

B
(
wh,φh

)
= 0 (4.5)

where wh and φ h are defined as the following

wh =
nb

∑
A=1

NA(x)wA, φ
h =

nb

∑
A=1

NA(x)φA (4.6)

where NA(x) is NURBS function [169], defined recursively over the parametric space as

Ni, j,k(ξ ,η ,ζ ) =
Ni,p(ξ )N j,q(η)Nk,r(ζ )wi, j,k

∑
n
i=1 ∑

m
j=1 ∑

t
k=1 Ni,pN j,q(η)Nk,r(ζ )w(i, j,k)

for trivariate cases. (4.7)

with i, j,k are the NURBS function indices, the Ni,p, N j,q and Nk,r are the ith, jth and

kth B-spline basis function and p,q,r are the polynomial orders in the ξ ,η ,ζ directions,

respectively. wi, j,k being the weight associated with the control point Pi,k, j. For simplicity,

we are denoting the trivariate basis function by NA(x). The NURBS functions are of non-

interpolatory nature. This prevents strictly interpolating control variables as opposed to

Lagrangian finite element methods [23].

4.3.3 Time discretization and numerical implementation

The Generalized-α method has been used to implement the time discretization of the

semi-discrete Galerkin formulation from the previous subsection. Generalized-α contains

a parameter to control the degree of damping of high frequencies, which gives the method

the advantage accuracy-wise over other time implicit integration schemes like the Back-

ward Differentiation Formula (BDF). Nonetheless, numerical testing revealed both time

integrators produce identical results for the problem at hand, except for the Generalized-

α method being faster in reaching the stationary state of the system.

Let ϕ and ϕ̇ denote the vector of degrees of freedom of phase field and phase field time

derivative, respectively. We start by defining the residual vector as:

R = {RA},

RA = B(NA,φ
h)

(4.8)

Given ϕ and ϕ̇ and ∆tn = tn+1− tn, the time integration algorithm can be formulated as
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following: find ϕ̇n+1, ϕn+1, ϕ̇n+αm and ϕn+α f such that:

R(ϕ̇n+αm,ϕn+α f ) = 0 (4.9)

ϕn+1 = ϕn +∆tnϕ̇n + γ∆tn(ϕ̇n+1− ϕ̇n) (4.10)

ϕ̇n+αm = ϕ̇n +αm(ϕ̇n+1− ϕ̇n) (4.11)

ϕn+α f = ϕn +α f (ϕn+1−ϕn) (4.12)

where α f ,αm,and γ are real-valued parameters that define the method. For a linear first-

order system of ODEs, the Generalized-α method is second-order accurate in time [172]

if

γ =
1
2
+αm−α f (4.13)

and unconditionally stable if:

αm ⩾ α f ⩾
1
2

(4.14)

where αm and α f are as following

αm =
1
2

(3−ρ∞

1+ρ∞

)
, α f =

( 1
1+ρ∞

)
. (4.15)

The spectral radius of the amplification matrix at an infinitely large time step, ρ∞ ∈ [0,1],

which controls the high-frequency damping, was set to 0.5, which results in α f = 0.666̇ and

αm = 0.833̇ and hence, satisfying Eq. (4.14) for unconditionally stable time integration

for a system of linear ODEs. The situation is, however, more complicated for nonlinear

problems, as the notion of stability is problem-dependent. For nonlinear phase-field

problems, there is still little known about the stability of the generalized-α method [172,

173]. Nonetheless, based on our numerical experience, the method is computationally

stable [174, 175] for the range of time-step sizes we considered in this paper. The nonlinear

system of Eqs. (4.9)–(4.12) is solved using Newton’s method, according to a two-stage

predector-multicorrector approach as the following:

1. Predictor stage

ϕ
(0)
n+1 = ϕn (4.16)

ϕ̇
(0)
n+1 =

γ−1
γ

ϕ̇n (4.17)

with the superscript denoting the iteration index of the nonlinear solver.

2. Multicorrector stage Repeat the following steps for i = 1,2,3, ...., imax, or until con-
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vergence is reached.

• Evaluate iterates at α-levels:

ϕ̇
(i)
n+αm

= ϕ̇n +αm(ϕ̇
(i−1)
n+1 − ϕ̇n) (4.18)

ϕ
(i)
n+α f

= ϕn +α f (ϕ
(i−1)
n+1 −ϕn) (4.19)

• Use α-level iterates to assemble the linear system of equations corresponding

to the linearization of Equation (4.9)

R(i+1)
n+1 = R(i)

n+1 +K(i)
∆φ̇

(i)
n+1 = 0 (4.20)

This linearized system is solved using GMRES method available through KSP

solvers in PETSc [176–179].

• Update the solution

ϕ̇
(i)
n+1 = ϕ̇

(i−1)
n+1 +∆ϕ̇

(i)
n+1 (4.21)

ϕ
(i)
n+1 = ϕ

(i−1)
n+1 + γ∆tnϕ̇

(i)
n+1 (4.22)

The tangent matrix in Eq. 4.20 is evaluated as following:

K =
∂R(ϕ̇n+αm,ϕn+α f )

∂ ϕ̇n+αm

∂ ϕ̇n+αm

∂ ϕ̇n+1
+

∂R(ϕ̇n+αm,ϕn+α f )

∂ϕn+α f

∂ϕn+α f

∂ ϕ̇n+1

= αm
∂R(ϕ̇n+αm,ϕn+α f )

∂ ϕ̇n+αm

+α f γ∆tn
∂R(ϕ̇n+αm ,ϕn+α f )

∂ϕn+α f

(4.23)

where the iteration index i has been dropped for simplicity, and the tangent matrix

K = {KAB} is formulated as the following:
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(4.24)

where ∇∇NB is a second-order tensor of the second-order partial derivatives of the NURBS

function, which its components is expressed as the following
NB,xx NB,xy NB,xz

NB,yx NB,yy NB,yz

NB,zx NB,zy NB,zz


Remark. To save computational time, we treat the non-local terms of the residual vector,

A(φ) and V (φ), explicitly. Therefore, instead of evaluating these terms in (4.9) at tn+α f ,

they are evaluated at tn.

4.3.4 Modified ALM implementation

We are employing the algorithm in [21] to calculate the Lagrange multipliers in Eqs. (4.9)

and (4.24). The proposed modified ALM overcomes the setbacks of the penalty method

and has proven to be sufficiently stable with relatively large time steps. The idea is to

repeatedly solve Eq. (4.20) using an updated set of the Lagrangian multipliers α and β

so the solution vector is converging to an admissible one, i.e., satisfying all constraints

simultaneously. Considering the kth iterations, the multipliers are updated according to

the following update mechanism:
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α

β

←
α

β

−TAV
−1

V (φ n+1)−α0

A(φ n+1)−β0

 (4.25)

where TAV is a 2×2 Jacobian of v and a at αk−1 and β k−1, and are approximated such

that after updating the solution vector according to Eq. (4.22) at tn+1, it still upholds

the constraints v := V (φ n+1) = α0, a := A(φ n+1) = β0. Algorithm 1 shows the solution

procedures of the phase field electromechanical problem with fixed volume and surface

area. It ensures that the solution vector will converge gradually to an admissible set by

upholding the two constraints.

Algorithm 1 Modified ALM for constrained PF electromechanical problem with 2 Lagrange
multipliers

Input: Initial phase field configuration φ0
Initial electrical field configuration ψ0
The end time T > 0 and the initial time step size ∆tn
Target Volume α0 and Area β0
Small termination tolerance tol > 0
Constant penalty parameters M1, M2 > 0

Procedures:
1: Set α = α0,β = β0
2: Initialize the 2×2 Jacobian matrices, TAV

−1 = I
3: Evaluate the solution vector at initialization ϕ0
4: for (n = 0,1, ...,Nt−1) do
5: for (i = 1,2,3) do
6: Update (α,β ) according to Eq. (4.25), use ϕn instead of ϕn+1 when i =1
7: Evaluate ϕn+1 according to Eq. (4.22)
8: if max[ |V (ϕn+1)−α0|/α0 , |A(ϕn+1)−β0|/β0 ]≤ tol, pass control to next n
9: Set αi = α , βi = β , vi = v , and ai = a

end
10: while true do

11: Set TAV
−1 =

(
α2−α1 α3−α1

β2−β1 β3−β1

) (
v2− v1 v3− v1
a2−a1 a3−a1

)−1

12: Update (α,β ) according to Eq. (4.25)
13: Evaluate ϕn+1 according to Eq. (4.22)
14: if max[ |V (ϕn+1)−α0|/α0 , |A(ϕn+1)−β0|/β0 ]≤ tol, pass control to next n
15: Set respectively α1, α2, α3, β1, β2, β3, to α2, α3, α, β2, β3, β

16: Set v1, v2, v3, a1, a2, a3, to v2, v3, V (ϕn+1), a2, a3, A(ϕn+1)
end

end
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4.4 Numerical results

The numerical results presented in this section are implemented using NURBS-based

PetIGA [180], a high-performance isogeometric analysis software. PetIGA uses inten-

sively algorithms and data structures from PETSc [176–179], the Portable, Extensible

Toolkit for Scientific Computation. For the details of the cost estimates and the com-

putational efficiency of PetIGA for different methods and problems, we refer to [180–

185]. We consider a 3D configuration. The spatial domain is discretized by uniform el-

ements in all spatial directions. The temporal discretization is done by Generalized-α

method. The time adaptivity scheme Digital Signal Processing (DSP) [174, 175] imple-

mented in PETSc is considered in all examples. Numerical examples are initiated with a

time step size of △t=1.0×10−10. A cap is placed on the time-step controller so the time

step would not exceed 1.0 seconds in any of the iterations. This is to maintain stability

and numerical accuracy. In addition, if chosen, PETSc implements a delay on increasing

a converged time-step △t after a decreased one due to convergence failure. This is to pre-

vent the adaptor from bouncing back and forth between two nearby time-steps. We are

delaying the increase until three consecutive steps converge successfully to start increas-

ing △t once again. This option provides an additional layer of stability in reaching the

maximum time step size specified. To check the correctness of the hand-coded Jacobian,

we compare it with the finite difference’s Jacobian. The relative difference is less than

1.0×10−09 and the absolute difference was less than 1.0×10−25, this is to be tested us-

ing quad-precision and it virtually implies the correctness of the hand-derived Jacobian.

The initial condition of the phase field variable is generated using the hyperbolic tangent

function as the following

φ0 = tanh

(√
x2 + y2 + z2−R0√

2ε

)
(4.26)

Unless otherwise stated, we use cubic NURBS elements, each with 6 integration points

per direction. In models where the electrical response of the vesicle is under investigation,

the dielectric constant for electrolytes inside εin and outside εout the vesicle is taken as

6.4×10−10As/V m, and 4.4×10−11As/V m for the membrane εm. The bending rigidity κb

is 1.0×10−19J. The conductivity of electrolyte inside σin is taken as 0.3 Sm−1, 1.2 Sm−1

for outside σout , and 3.0× 10−7 Sm−1 for membrane σm. The flexoelectric constant of
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the membrane c1 is taken as 1.0× 10−10C/m. These parameters are adopted based on

Kotnik et al. [186] work. It is worth mentioning that the units to be used in all models

henceforth are SI-Based normalized units in order to avoid the large order-of-magnitude

difference between the variables.

We note that a detailed convergence study of a Willmore flow problem was conducted in

our previous work [20] which should be consulted for more details about the convergence

behavior of isogeometric analysis for this class of problems.

4.4.1 Constrained Willmore flow problem

We start by considering a Willmore problem. A sphere and a prolate spheroid are mod-

eled. For the sphere, we take the geometrical settings of the model to be later inves-

tigated for the electromechanical response. The initial 3D profile of the vesicle was

constructed using Eq. (4.26) with R0 = 10µm on a computational domain Ω of [−30,30]

µm×[−15,15]µm×[−30,30]µm and element count of [60]3. We consider cubic NURBS

functions and 6 integration points in each direction per element. The regularization pa-

rameter ε is set to 2h, where h is the element length. In the absence of an electric field,

the sphere is expected to maintain its original shape, giving it the lowest possible sur-

face area-to-volume ratio when compared to other geometrical shapes. The energy at

the stationary state converges to the exact Willmore energy, that is 8π as shown in Fig.

(4.3a). It can be seen from Fig. (4.3b) that both the surface area and the volume are

kept constant over time. For the prolate spheroid model, we are considering a dimen-

sionless setting on the computational domain [−7,7]3. The semi-major and minor axes

are set to 2.0 and 0.5, respectively. In the absence of any additional external fields, the

vesicle evolves to a dumbbell shape at the stationary state, which matches the profiles of

prolate vesicles in the numerical work of Yuan et. al [75] and experimental observations

of Yanagisawa et. al [187].

4.4.2 Electrical response of vesicles

Here, we test the electromechanical behavior of vesicles in the absence of flexoelectricity.

An approximately uniform electric field with varying magnitudes ranging from 1 to 50

kV/m is applied. The initial phase field is constructed using the same settings for the Will-

more problem. The computational domain is Ω := [−30,30]µm×[−15,15]µm×[−30,30]µm.
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(a) t = 0 (b) t = 1.0×10−5 (c) t = 1.0×10−4

Figure 4.1: Evolution of a sphere from initial state (4.1a) to the stationary state (4.1c)

(a) t = 0 (b) t = 5.69×10−03 (c) t = 1.58×102

Figure 4.2: Evolution of a prolate spheroid from initial state (4.2a) to the stationary state (4.2c)

In the presence of an electric field, the vesicle is expected to deform from its original

spherical shape. Numerical testing shows that the vesicle is morphologically evolving

towards an oblate-like shape under the increasing magnitude of electric fields. As shown

in Fig. (4.4), the total energy of the system is decreasing monotonically for E0 up to

10 kV/m, due to the absence of flexoelectric effect, which is not the case as shown later

when the flexoelectric response is included. Interestingly, the bending energy of the sys-

tem increases slightly as the vesicle deforms to its stationary state. This observation

is also recorded, but more bluntly, as shown later for models when the flexoelectric is

included. The values of E0 for which the vesicle is tested are shown in Fig. (4.5) with

the corresponding values of x-y planar sections shown in Fig. (4.6). It can be seen that

with increasing magnitudes of the static electric field, the vesicle semi-minor axis in the

direction of the electric field decreases while the semi-major axis increases in the lateral

dimension, mimicking an evolution towards an oblate setting. Although the deformations

up to 10 kV/m are barely noticeable, any increase of the electric field intensity E0 beyond

this value tends to significantly accelerate evolution towards an oblate-like shape. For an

electric field intensity of E0 = 1 kV/m, the vesicle deforms to an oblate-like shape with
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Figure 4.3: (4.3a)Willmore flow of a spherical vesicle, (4.3b) Area ratio and Volume ratio. R0 = 10µm

a minor axis of 19.5275 µm and a major axis of 20.6850 µm, where for E0= 50 kV/m, it

deforms to 17.6821µm×21.4628 µm for the minor and major axes, respectively.

(a) 0 kV/m (b) 1 kV/m (c) 5 kV/m

(d) 10 kV/m (e) 15 kV/m (f) 20 kV/m

(g) 30 kV/m (h) 40 kV/m (i) 50 kV/m

Figure 4.5: Stationary states of a vesicle subjected to electrical field ranging between (4.5b) 1 kV/m
and (4.5i) 50 kV/m. Flexoelectric effect is neglected.
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Figure 4.4: Total Energy corresponding to: (4.4a) 10 kV/m, (4.4b) 15 kV/m, (4.4c) 20 kV/m, (4.4d) 30
kV/m, (4.4e) 40 kV/m and (4.4f) 50 kV/m. Flexoelectric response of the biomembrane was neglected.
Time is expressed in seconds on x-axis. Energy is expressed in electronvolt unit [eV] on y-axis.



66

−11 −8 −5 0 5 8 11
−11

−8

−5

0

5

8

11

X-Axis [µm]

Y
-A

xi
s

[µ
m

]

1 5 10 15 20

30 40 50

−0.75 0.75
8.5

10

9.75 10.95
−0.5

0.5

Figure 4.6: A planar section shows the temporal evolution of vesicle in absence of flexoelectric re-
sponse. Electrical field with values ranging between 1-50 kV/m. Both x and y axes are limited to [-
11,11] µm for more distinction.

A streamline interpolation shown in Fig. (4.7a) of the results shows that despite an initial

uniform electrical field, the vesicle membrane tends to deflect the electrical charges away

from the vesicle. This observation is consistent with the physical understanding of the

membrane as it behaves like a capacitor, preventing charges from moving freely from the

extracellular to the intracellular medium. We find out that the electric field intensity

away from the vesicle is as assigned in the initial condition of the problem, while it nearly

vanishes inside the vesicle as shown in Fig. (4.7b). Additionally, there is a spike in

the electric field intensity at the top and the bottom of the vesicle in the direction of

the electric field. This depicts an accumulation of the electric charges in those regions.

Given the nature of the membrane, this observation is expected, and it indicates a good

solution as it validates the physics of the biomembrane regarding its impermeable nature

to ions and electric charges. Fig. (4.8) shows a projection of the electrical potential on a

semi-spherical zero-level set of the phase field, i.e., the vesicle surface. Certain locations

of the interface are experiencing higher values due to the rippled overlapping distribution

of the electric potential. Perrier et. al [188] reported tubule formation in vesicles with an

electric field intensity of 90 V/mm, as shown in Fig. (4.8c) which might be the case for
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Fig. (4.8b), however, we have not tested this beyond this point.

(a) (b)

Figure 4.7: (4.7a) A streamline interpolation of the electric field shows a reorientation in direction due
to the presence of the membrane. (4.7b) A planar section shows a spike in the electric field intensity at
the top and the bottom of the vesicle.

The algorithm in 4.3.4 manages to accurately satisfy the constraints on surface area

and volume of vesicle over the entire temporal domain. During the vesicle shape evo-

lution, no rigid body motion or transitional movement, laterally or vertically, has been

noticed. A correct implementation of the algorithm 4.3.4 ensures that the phase field

profile is maintained during the simulation as shown in Figures 4.9b and 4.9a. Usually,

it takes between 2-4 outer iterations to optimize the solution vector in order to satisfy

the constraints within a predetermined tolerance. In addition, when implementing time

adaptivity with the parameters explained previously, the time step size can be easily seen

to increase steadily, indicating a significant improvement over the penalty method-based

formulation. For the model with E0 = 10 kV/m, the timestep size △t reaches the cap

time limit of 1 second exactly after 34 steps starting from △t = 1.0×10−10.

4.4.3 Evolution of Vesicles in presence of flexoelectric effect

In this section, we test the full model by incorporating the effect of flexoelectricity. Due

to a higher computational load characterized by more iterations per time step to meet

the tolerances, we are considering two cases only: a) E0 = 10 and b) E0 = 50 kV/m. We

solve this example in 3D Cartesian space using the same settings as in the previous exam-

ples. The polynomial order of the NURBS functions was set to 3, which are C2 globally
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(a) t = 0 (b) t = 300
(c)

Figure 4.8: Electrical potential projected on 0-Level set of phase field at (4.8a) initial state, (4.8b) sta-
tionary state and (4.8c) tubule formation in vesicles [188]. Electric field intensity = 10 kV/m. Flexo-
electric response of the biomembrane neglected.

continuous across element boundaries in absence of repeated knots. The regularization

parameter ε was set to 2h. This way, we ensure the diffusive region will span over 4

spatial elements on each side of the interface, and hence there is a smooth transition in

phase field variable values across the interface.

The computational domain is Ω := [−30,30]µm×[−15,15]µm×[−30,30]µm which is dis-

cretized by 80×40×80 elements. Given that the solution vector ranges between -1 and

1 as defined by the hyperbolic tangent function, it is of paramount importance to run

the model using extended quad-precision to mitigate any round-off errors, a feature that

can be easily implemented in PETSc.

We begin by testing a vesicle subjected to E0 = 10 kV/m while considering the flexoelec-

tric response of the membrane. The result revealed that the symmetry of the vesicle

evolution over time breaks to form an asymmetrical shape. Asymmetric vesicle shapes

in the direction of the electric field were also reported in [18] where only axisymmetric

vesicles were studied.

Giving that this example and the corresponding one without the flexoelectric effect – see

section 4.4.2 – were run using the same parameters reveals the impact of including the

flexoelectric nature of the biomembrane in the calculations. Numerical results show that

the modified ALM can satisfy the constraints imposed on the system. The asymmetry of

the evolution is more obvious in the case of E0 = 50 kV/m as shown in Fig. (4.10b).
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Figure 4.9: Phase field profile along: (4.9a) Y-axis, (4.9b) X-axis. Both profiles correspond to the 50
kV/m models. Red corresponds to the initial phase field profile along the axis, and blue corresponds
to the phase field profile at the stationary state. The X-Axis is limited to [-15,15] µm for comparison
purposes.

(a) (b)

Figure 4.10: Vesicle at stationary state with flexoelectric effect included subjected to (4.10a) E0 = 10
kV/m, and (4.10b) E0 = 50 kV/m.

The impermeability nature of the biomembrane can be seen from the electrical potential

across the computational domain. This phenomenon can easily be spotted by the high

electric potential concentration on the outer layer of the biomembrane, where the values

vary depending on the relative proximity from the source but remain relatively higher

than the electrical potential inside the biomembrane. This, in turn, can be attributed

to the order-of-magnitude difference between the conductivities of the biomembrane and

the surrounding medium. A phase field-based interpolation of the conductivity within Ω

based on Eq. (2.20) can be seen in Fig. (4.11a), and the corresponding profile can be

seen in Fig. (4.11b). It is clear from the interpolated values the capacitor-like nature

of the biomembrane. One additional remark regarding the dielectric energies is that the
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membrane energy is always somewhere between 0.01196% and 0.0122% of the electrolyte

energy regardless of whether or not the flexoelectric response is included. To further

explain the spike in the electric field magnitude as shown in Fig. (4.7b), a set of electric

potential projections as shown in Fig. (4.12a) on a PF-level set of 0.3 (vesicle exterior)

and -0.3 (vesicle interior) reveals that due to the impermeability of the biomembrane,

the electric potential inside the vesicle is in the vicinity of zero as shown in Fig. (4.12b).

Using the same scale, one can see a high concentration of electric potential on the outer

side of the vesicle at the top and bottom tips, as shown in Fig. (4.12c). As expected, the

electric potential mid-domain in the direction of the electric field is zero, as shown by the

magenta strip in Fig. (4.12c).
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Figure 4.11: (a) PF-based interpolation of the conductivity according to Eq. 2.20, and (b) the corre-
sponding profile.

(a) (b) (c)

Figure 4.12: (4.12a): 0.3 and -0.3 PF-level sets with electric potential projection. Wireframe represents
0 PF-level set, (4.12b) -0.3 PF-level set, and (4.12c) 0.3 PF-level set.
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We consider the vesicle has reached a stationary state when there is no more change in

the total energy of the system with time. The temporal evolution of energies is plotted

in eV unit in Fig. (4.13). Although the flexoelectric energy contributes slightly to the

overall energy of the system, the flexoelectric response of the biomembrane plays a crucial

rule in the morphological evolution of the vesicles. Initially, the flexoelectric energy of

the system increases quadratically over a small period of time to -25.21 eV as a reflex

to the applied electric field. In the absence of an external electric field, the flexoelectric

effect of the biomembrane is neglected per Equation 2.15. Considering the fundamental

definition of the flexoelectricity, in the absence of any deformation, the flexoelectricity

is supposed to vanish after reaching the equilibrium position, which is the case for our

model as seen in Fig. (4.13b), as it drops to 4.0256 eV and keeps dissipating by 0.001 eV

for each timestep onward. Interestingly, the bending energy of the system is increasing

while the overall energy of the system is decreasing. This counter-intuitive observation

can be attributed to the fact that the vesicle tends to diverge from its original spherical

shape to a more compressed-shaped due to the external electric field, as shown in Fig.

(4.10). By comparison, we can see from Fig. (4.13d) (Red curve), that including the

flexoelectricity in the formulation tends to change the overall behavior of the vesicle over

time, and hence the total energy, compared to when the flexoelectricity is neglected as

shown in Fig. (4.4a) for the case of the electric field E0 = 10 kV/m.
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Figure 4.13: Temporal evolution of system’s energies: (4.13a) Bending energy, (4.13b) Flexoelectric
energy, (4.13c) Dielectric energy of the biomembrane, (4.13d) Dielectric energy of the electrolyte
(Blue) and total energy of the system (Red). All energies are expressed in eV = 1.602×10−19 Joule.

4.4.4 Conductivity role in morphological evolution

Several experimental studies addressed the effect of the conductivity values of the elec-

trolyte inside and outside the vesicle on the morphological evolution of the giant vesicles.

In the context of the phase field formulation, and regardless of the conductivities values,

the conductivity scalar field is affected largely by regularization parameter ε as depicted

by Fig. (4.11b). For large values of h and hence ε , the numerically evaluated conduc-

tivity field would not capture the physical interpretation of the conductivity, i.e., a steep

drop across the membrane. For small values of h, the diffusive interface region itself

is manifested by a steep transition in values representing the outside and inside of the

vesicle across a smaller number of spatial elements, and hence, the phase field evolution
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can not be accurately evaluated. One way to address this issue is to use local refine-

ment that spans outward and inward of the interface as seen in [101], or by just simply

increasing the mesh density over the entire computational domain. To test the effect of

the ratio of the conductivity of the intracellular and extracellular electrolytes σin\σout ,

we are fixing the value of ε = 2h and varying the ratio from 0.25 to 4.0, which represents

a flipping of the values mentioned in section introductory by increasing the intracellular

value by 0.1 S/m and decreasing the extracellular value by the same amount. Accounting

for a sphere-prolate transition, we have modified the computational domain such that

Ω = [−30,30]µm ×[−20,20]µm×[−30,30] µm in 3D Cartesian space with an element

count of 80×60×80. Testing with E0 = 50 kV/m, we can see that vesicle evolves to two

stationary states depending on the conductivity ratio, i.e., to a sphere-oblate as shown in

Fig. (4.16a) when the ratio is less than one, and a sphere-prolate 4.16c when the ratio is

larger than one. Those observations are in good agreement with the experimental work

of Dimova et.al. [189] as shown in Fig. (4.16).

−12 −8 −5 0 5 8 12
−12

−8

−5

0

5

8

12

X-Axis

Y
-A

xi
s

Figure 4.14: Vesicle subjected to an electric field E0 = 50 kV/m with varying conductivity ratio. Green
represents a sphere-to-prolate morphological evolution with largest ratio value of 4, red represents a
sphere-to-oblate morphological evolution with smallest value of 0.25. Dotted black profile depicts a
vesicle with a conductivity ratio of 1.
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(a) σin\σout = 4.00 (b) σin\σout = 2.75 (c) σin\σout = 2.00

(d) σin\σout = 1.50 (e) Initial profile (f) σin\σout = 0.87

(g) σin\σout = 0.50 (h) σin\σout = 0.36 (i) σin\σout = 0.25

Figure 4.15: Vesicle subjected to an electric field E0 = 50 kV/m with varying conductivity ratio
σin\σout ranging between 4.0 and 0.25. Vesicles in green have a sphere-to-prolate evolution at station-
ary state. Vesicles in red have an sphere-to-oblate evolution at stationary state. Initial profile in yellow
is shown in Figure 4.15e. Corresponding planer values are plotted in Figure (4.14.)
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(a) (b)

(c) (d)

Figure 4.16: The stationary state for the extreme tested values of 0.25 and 4.0 conductivity ratios.
(4.16a) shows a sphere-oblate evolution and (4.16c) shows a sphere-prolate evolution. Figures (4.16b)
and (4.16d) shows the corresponding experimental observations [189] (Reproduced from Ref. [189]
with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society
of Chemistry).

We would like to mention that the data extracting for the curves, the vesicle snapshots,

phase field profiles, and the conductivity profiles were done using VTK [190] files exported

as binary files using PETSc writing functionalities and converted using the igakit [191].

4.5 Summary

In this chapter, we address several points. First, it can be seen that isogeometric analysis

as a numerical tool has the ability to model and solve 4th-order PDEs in a primal varia-

tional framework at extreme efficiency and accuracy due to the abilities embedded within

the NURBS functions without the need to reduce the order by creating an intermediate

environment. Refinement whether by knot insertion, order increasing or both is far easier

to obtain than traditional mesh-based methods. Given the wide variety of phenomena in

natural sciences and engineering that are mathematically modeled by high-order PDEs,

the isogeometric analysis is among the most robust methods to address such problems as

the basis functions can easily attain high global continuity. On the applicational side, we
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study the vesicle morphological evolution based on the electromechanical liquid-crystal

model in 3D settings. This model describing the evolution of vesicles is composed of time-

dependent, highly nonlinear, high-order PDEs, which are nontrivial to solve. Solving this

problem requires robust numerical methods, such as isogeometric analysis. We concluded

that the vesicle tends to deform under increasing magnitudes of electric fields from the

original sphere shape to an oblate-like shape. This evolution is affected by many factors

and requires fine-tuning several parameters, mainly the regularization parameter. But it

is most affected by the method used for enforcing the constraints. The penalty method

in presence of an electrical field tends to lock on the initial phase-field and prevent any

evolution while a modified version of the ALM has proven to be sufficiently stable and

accurate to let the phase-field evolve while satisfying the constraints over time at each

time step. We show additionally the effect of including the flexoelectric nature of the

biomembrane in the computation and how it affects the shape evolution as well as the

effect of having different conductivity ratios. All the examples were solved based on a

staggered scheme, which reduces the computational cost significantly.
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5
Phase-Field Navier-Stokes model for vesicle

doublets hydrodynamics in incompressible

fluid flow

5.1 Introduction

In this chapter, we study the hydrodynamics of vesicle doublet suspended in incompress-

ible fluid flow. In section 2.4, we presented the mathematical model and the corresponding

phase-field formulation for the problem, and in this chapter, we present the set of equa-

tions representing the strong form of the problem. Given that the system of Navier-Stokes

equations is solved using the Residual-Based Variational MultiScale (RBVMS) method,

we are presenting the RBVMS full implementation alongside the numerical formulation.

The weak form of the problem is then solved within the isogeometric analysis framework.

We study several configurations of vesicle doublet and investigate the effect of the inter-
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action number on the vesicle doublet hydrodynamics. In addition, we study the vesicle

doublet hydrodynamics in a shear flow and in a planar extensional flow. We also f ork

the well-known PetIGA [180] library to strongly impose velocity boundary conditions

of certain portions of the domain to simulate a fluid junction with two inlets and two

outlets.

5.2 The strong form

The strong form of the non-dimensional phase-field Navier-Stokes model then reads as

follows:

∂φ1

∂ t
+u ·∇φ1 =−ηφ (g1−λg1f1−λv1 + ς1), in Ω× (0,T ), (5.1)

∂φ2

∂ t
+u ·∇φ2 =−ηφ (g2−λg2f2−λv2 + ς2), in Ω× (0,T ), (5.2)

∂u
∂ t

+u ·∇u+∇p− 1
Re

∇ · (2µ
∗D(u)) =

∇ · (δε1Pλ1)+(g1−λg1 f1−λv1 + ς1)∇φ1+

∇ · (δε2Pλ2)+(g2−λg2 f2−λv2 + ς2)∇φ2,

in Ω× (0,T ),

(5.3)

f1 = ε∆φ1−
1
ε1
(φ 2

1 −1)φ1, in Ω× (0,T ), (5.4)

f2 = ε∆φ2−
1
ε2
(φ 2

2 −1)φ2, in Ω× (0,T ), (5.5)

g1 =
1

Re Ca

(
∆ f1−

1
ε2 (3φ

2
1 −1) f1

)
, in Ω× (0,T ), (5.6)

g2 =
1

Re Ca

(
∆ f2−

1
ε2 (3φ

2
2 −1) f2

)
, in Ω× (0,T ), (5.7)

∇ ·u = 0, in Ω× (0,T ), (5.8)

ξ ε
2
1 ∇ · (φ 2

1 ∇λ1)+δε1P : ∇u = 0, in Ω× (0,T ), (5.9)

ξ ε
2
2 ∇ · (φ 2

2 ∇λ2)+δε2P : ∇u = 0, in Ω× (0,T ), (5.10)

A1 = A2 = A0 for (0,T), (5.11)
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V1 = V2 = V0 for (0,T), (5.12)

φ1 = φ2 = φb on ∂Ωφ × (0,T ), (5.13)

u = ub on ∂ΩD× (0,T ), (5.14)

f1 = f2 = fb on ∂Ω f × (0,T ), (5.15)

λ1 = λ2 = λb on ∂Ωλ × (0,T ), (5.16)

(2µD(u)− pI) ·m= 0 in ∂ΩN× (0,T ), (5.17)

φ1(0) = φ2(0) = φ0 in Ω, (5.18)

u(0) = u0 in Ω, (5.19)

where the Lagrange multipliers λgi and λvi in equations [5.1], [5.2] and [5.3] can be cal-

culated such that the time derivative of the volume and the global area constraint are

zeros, which gives the following system of equations:

λvi

∫
Ω

dΩ+λgi

∫
Ω

fi dΩ =
∫

Ω

( 1
ηφ

u ·∇φi +gi + ςi

)
dΩ+

1
2∆t

(V0−V ) (5.20)

λvi

∫
Ω

fi dΩ+λgi

∫
Ω

f 2
i dΩ =

∫
Ω

( 1
ηφ

u ·∇φi +gi + ςi

)
fi dΩ− 1

2∆t
(A0−A) (5.21)

Those two equations then can be solved after each converged time step to update the

multipliers, where the penalty terms on the RHS are added to prevent error accumulation

and provide more accuracy to the solution [43, 119, 163]. The parameter ξ is Equations

(5.9-5.10) is a regularization spatially constant parameter with a positive value, which

based on the conclusions and recommendations of [119] will be set to 1.0 throughout the

entire research.

5.3 Numerical formulation and RBVMS implementation

The strong form in the previous section is solved using the isogeometric analysis. The

Galerkin NURBS-based IGA is used to solve the set of advection-diffusion equations.

Isogeometric analysis is a superclass of finite element analysis. It incorporates the hpk -
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Refinement, i.e., the ability to increase both continuity and order, in addition to a set

of advantages like the ability to present the exact geometry of the model compared to

an approximate geometry in classical FEA. On the other hand, Navier-Stokes equations

are solved using the residual-based variational multiscale method (RBVMS) proposed by

Bazilevs et. al. [192]. The idea of RBVMS is that the decomposition of the fine and

coarse scale equations is exact, in the sense that the solution to those equations will give

the exact solution to the original variational problem of Navier-Stokes equations. The

process starts by approximating the fine-scale equations analytically and then substituting

them into the coarse-scale equations which are in turn solved numerically. We start with

a direct-sum decomposition of the trial solution and weighting function spaces S into

coarse-scale and fine-scale subspaces, S and S′, respectively,

S= S⊕S′ (5.22)

where S is assumed to be a finite-dimensional space of the coarse-scale and S′ is the

infinite-dimensional space of the fine-scale subspaces. The trial solution functions of the

velocity and pressure fields Su and Sp are defined as

Su = {u|u(., t) ∈ (H1(Ω))d, u= ub on ∂ΩD} (5.23)

Sp = {p|p(., t) ∈ L2(Ω),
∫

Ω

p dΩ = 0 if ∂Ω = ∂ΩD} (5.24)

where L2(Ω) is the space of scalar-valued functions that are square-integrable on Ω with

square integrable first derivative, and (H1(Ω))d being the Sobolev space of vector-valued

square-integrable functions on Ω with square integrable first derivatives, respectively. The

test functions for the velocity and pressure Vu and Vp are identical to the trial solution

functions spaces, except for the fact that the weighting functions for the velocity field w

vanish on the essential boundary.

Assuming U = {u, p} ∈ S, the variational formulation of Navier-Stokes equations reads

as follows: Find U = {u, p} ∈ S such that ∀V = {w,q} ∈ S:

∫
Ω

w · (∂u

∂ t
+ u ·∇u−b)dΩ+

∫
Ω

D(w) : S(u, p)dΩ+
∫

Ω

∇w : BdΩ+
∫

Ω

q∇ ·udΩ = 0

(5.25)



81

where S(u, p) = 2µ∗

Re D(u)− pI is the stress tensor. The given body force b defined per unit

volume, is decomposed into two components, i.e., the gradient of the phase field scaled

by the source term in the evolution equation, (g−λgi f −λvi+ςi)∇φ as in the first term of

Eq. [5.25], and the gradient of B = δεPλ , which after expressed in the weak form results

in the third term of the aforementioned equation. If existed, an additional term can be

included in Eq. [5.25] to account for prescribed traction on the boundary.

By virtue of Eq. [5.22], both the velocity and pressure fields and the corresponding

weighting functions can also be decomposed into their coarse and fine-scale components,

that is:

u = u+u′, p = p+p′, w = w+w′, q = q+ q′. (5.26)

Using a linear H1-projector, the trial solution U = {u, p} can be decomposed into its

coarse and fine-scale approximation as follows:

U = P U, U′ = U−P U = (I−P)U. (5.27)

where I is the identity operator and P is the projection operator. Similarly, the weighting

functions can be decomposed into the coarse and fine-scale as follows:

W = P W, W′ = W−P W = (I−P)W. (5.28)

The solution U = {u, p} can then be obtained by approximating the fine-scale solution

analytically as a function of the coarse-scale residual and the coarse-scale solution and

then substituted into the coarse-scale equations, which are to be solved numerically. The

approximation of the fine-scale solution can be written as follows:

Ũ′ =

ũ′

p̃′

=−τRes(Uh) (5.29)

where Uh replaced U. In Eq. [5.29], τ is an element-wise matrix-valued stabilization

parameter defined on the diagonal with two components, i.e., τm and τc, such that:

τ =

τm I3×3 03

0T
3 τc


The residual of Uh is defined by the two components rm(uh, ph) and rc(uh), corresponding
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to the linear momentum and continuity residuals, respectively. Following this, the fine-

scale velocity field can be defined as:

u′ =−τmrm(uh, ph) (5.30)

with τm being:

τm =
( 4

∆t2 +uh ·Guh +C1(
µo

Re
)2G : G

)−1/2
(5.31)

and rm(uh, ph) being:

rm(uh, ph) =
(

∂uh

∂ t
+uh ·∇uh−bh

)
−∇ ·S(uh, ph)−∇ ·Bh (5.32)

The fine-scale pressure field can also be defined as:

p′ =−τcrc(uh) (5.33)

with τc defined as:

τc = (tr(G)τm)
−1, where tr(G) is the trace of matrix G, (5.34)

and rc(uh) defined as:

rc(uh) = ∇ ·uh (5.35)

In Eq. [5.31], G is the element metric tensor [193], and C1 is a positive mesh-independent

constant, which will be set to 6P4 throughout this study, where P is the order of the

NURBS-basis function. Further details about RBVMS method and its implementation

can be found in Bazilevs et. al. [192]. The equations (5.9) and (5.10) serve the pur-

pose of ensuring local inextensibility constraint of vesicles doublet, i.e., preventing the

membrane from stretching and preserving the surface area. This was first theorized by

Aland et. al. [119], by introducing a spatially varying Lagrange multiplier λi which re-

sembles the tension forces on the membrane interface in the form of ∇ · (δεPλi), where P

is the tangential projection operator and δε is the diffusive interface approximation of the

surface delta function. The inextensibility constraint ∇s ·u = P : ∇u = 0 is extended to

the whole domain away from the interface by equations (5.9) and (5.10), in which, both

equations reduces to ∆λi away from the vesicle interface since δε ≈ 0, and reduces to the
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inextensibility constraint P : ∇u = 0 in the vicinity of the interface, hence, ensuring the

local inextensibility.

As shown later, the weak form of Navier-Stokes equations will consist of terms obtained

using the standard Galerkin method, in addition to stabilization terms and terms pro-

duced by the RBVMS method itself. On the other hand, the weak forms for the evolution

equations (5.1) and (5.2), the intermediate equations (5.4) and (5.5), and the local inex-

tensibility equations (5.9) and (5.10) are obtained using standard Galerkin method. The

infinite-dimensional trial solution functions spaces S f , Sφ and Sλ are defined as

S f = { f | f (., t) ∈ H2(Ω)), f = fb on ∂Ω f } (5.36)

Sφ = {φ |φ(., t) ∈ H1(Ω)), φ = φb on ∂Ωφ} (5.37)

Sλ = {λ |λ (., t) ∈ H1(Ω)), λ = λb on ∂Ωλ} (5.38)

and the test functions V f , Vφ and Vλ are defined similarly to the trial solution functions

spaces but with homogeneous Dirichlet boundary conditions. Note that in what follows,

the finite-dimensional approximation of a function space □ will be denoted by □h.

5.4 The weak form

The weak form of the transport equations, the Navier-Stokes equation, and the local

inextensibility constraint equations are written as follows: Find u ∈ Su , p ∈ Sp, f1, f2 ∈

S f , φ1, φ2 ∈ Sφ , and λ1, λ2 ∈ Sλ , such that: ∀ w∈ Vu, q ∈ Vp, l1, l2 ∈ V f , r1, r2 ∈ Vφ ,

and s1, s2 ∈ Vλ :

B({w,q, l1, l2,r1,r2,s1,s2},{u, p, f1, f2,φ1,φ2,λ1,λ2}) = L({w,r}), and (5.39)
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B({w,q, l1, l2,r1,r2,s1,s2},{u, p, f1, f2,φ1,φ2,λ1,λ2}) =(
w ,

∂u
∂ t

+u ·∇u
)

Ω

+
(
D(w) : S(u, p)

)
Ω

+
(

q , ∇ ·u
)

Ω

+(
u ·∇w+∇q , τmrm(u, p)

)
Ω

+
(

∇ ·w , τcrc(u)
)

Ω

−
(

w ·∇u , τmrm(u, p)
)

Ω

−(
∇w , τmrm(u, p)⊗ τmrm(u, p)

)
Ω

+(
l1 , f1

)
Ω

+
(

∇l1 , ε1∇φ1

)
Ω

+
(

l1 ,
1
ε1
(φ 2

1 −1)φ1

)
Ω

+(
l2 , f2

)
Ω

+
(

∇l2 , ε2∇φ2

)
Ω

+
(

l2 ,
1
ε2
(φ 2

2 −1)φ2

)
Ω

−(
r1 ,

∂φ1

∂ t
+u ·∇φ1

)
Ω

+
(

r1 , ηφ1(g1−λg1f1 +ψ1)
)

Ω

+(
r2 ,

∂φ2

∂ t
+u ·∇φ2

)
Ω

+
(

r2 , ηφ2(g2−λg2f2 +ψ2)
)

Ω

+(
∇s1 , ξ ε

2
1 φ

2
1 ∇λ1

)
Ω

+
(

s1 , δε1P : ∇u
)

Ω

−
(

∇s2 , ξ ε
2
2 φ

2
2 ∇λ2

)
Ω

+
(

s2 , δε2P : ∇u
)

Ω

(5.40)

L({w,r}) =
(

w ·b1

)
Ω

+
(

w ·b2

)
Ω

−
(

∇w : B1

)
Ω

−
(

∇w : B2

)
Ω

+(
r , ηφ1λv1

)
Ω

+
(

r , ηφ2λv2

)
Ω

(5.41)

where (., .)Ω is the L2 inner product with respect to the domain Ω, A : B denotes the

double contraction of the two tensors A and B, and a⊗b is the tensor product of vectors

a and b.

5.4.1 The semi-discrete formulation

The semi-discrete formulation of Eq. (5.39) can be stated as following:

find uh ∈ S
h
u, ph ∈ S

h
p, fh1, fh2 ∈ S

h
f , φ h

1 , φ h
2 ∈ S

h
φ , and λ h

1 , λ h
2 ∈ S

h
λ , such that: ∀ wh ∈ V

h
u,

qh ∈ V
h
p, lh

1 , l
h
2 ∈ V

h
f , rh

1,r
h
2 ∈ V

h
φ , and sh

1,s
h
2 ∈ V

h
λ :

B({wh,qh, lh
1 , l

h
2 ,r

h
1,r

h
2,s

h
1,s

h
2},{uh, ph, f h

1 , f h
2 ,φ

h
1 ,φ

h
2 ,λ

h
1 ,λ

h
2 })−L({wh,rh}) = 0 (5.42)



85

with the test function and the corresponding trial solution functions defined as follows:

wh =
nb

∑
A=1

NA(x)wA, uh =
nb

∑
A=1

NA(x)uA

qh =
nb

∑
A=1

NA(x)qA, ph =
nb

∑
A=1

NA(x)pA

fhi =
nb

∑
A=1

NA(x)fAi, lh =
nb

∑
A=1

NA(x)lA

φ
h
i =

nb

∑
A=1

NA(x)φAi, rh =
nb

∑
A=1

NA(x)r

λ
h
i =

nb

∑
A=1

NA(x)λAi, sh =
nb

∑
A=1

NA(x)s

(5.43)

where NA(x) is NURBS function [169], defined recursively over the parametric space, and

φ h
i - for example - is the control variable for the phase-field parameter, and nb is the

number of the basis function. Those NURBS functions are non-interpolatory functions,

in that, for an open knot vector, they are interpolatory at the end of the parametric

space where the first and the last knots must appear p+ 1 times, where p is the order

of the knot vector, and at the corner of patches in multiple dimensions. This means

that the control mesh interpolates the physical mesh at those locations, but they are not

interpolatory functions at the interior knots, where the physical mesh might not conform

to the control mesh [23].

5.4.2 Time discretization and numerical implementation

In order to get a system of ordinary differential equations to be solved using a time-

integration scheme, the vector form of Eq. (5.42) should be formulated. By virtue of the

arbitrariness of the control variables of the test function listed in Eq. (5.43), the vector

form can be formulated as follows:

RM
(

U̇,U,P,F1,F2,Φ1,Φ2,Λ1,Λ2

)
= 0, (5.44)

RC
(

U̇,U,P,F1,F2,Φ1,Φ2,Λ1,Λ2

)
= 0, (5.45)

RF1
(

F1,Φ1

)
= 0, RF2

(
F2,Φ2

)
= 0, (5.46)
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RΦ1
(

U,F1,Φ̇1,Φ1

)
= 0, RΦ2

(
U,F2,Φ̇2,Φ2

)
= 0, (5.47)

RΛ1
(

U,Φ1,Λ1

)
= 0, RΛ2

(
U,Φ2,Λ2

)
= 0, (5.48)

The residual vectors of the system, consisting of RM and RC of the linear momentum and

continuity equations, RF1 and RF2 for the intermediate equations, RΦ1 and RΦ2 for the

phase-field variables, and RΛ1 , RΛ2 for the local inextensibility equations are defined as

following:

RM = [RM
A,i], RC = [RC

A], RF1 = [RF1
A ], RF2 = [RF2

A ], RΦ1 = [RΦ1
A ],

RΦ2 = [RΦ2
A ], RΛ1 = [RΛ1

A ], RΛ2 = [RΛ2
A ],

(5.49)

where,

RM
A,i = B({NAei,0,0,0,0,0,0,0},{uh, ph, f h

1 , f h
2 ,φ1,φ2,λ1,λ2}) −L({NAei,0})

RC
A = B({0,NA,0,0,0,0,0,0},{uh, ph, f h

1 , f h
2 ,φ1,φ2,λ1,λ2}) −L({NAei,0})

RF1
A = B({0,0,NA,0,0,0,0,0},{uh, ph, f h

1 , f h
2 ,φ1,φ2,λ1,λ2})

RF2
A = B({0,0,0,NA,0,0,0,0},{uh, ph, f h

1 , f h
2 ,φ1,φ2,λ1,λ2})

Rφ1
A = B({0,0,0,0,NA,0,0,0},{uh, ph, f h

1 , f h
2 ,φ1,φ2,λ1,λ2}) −L({0,NA})

Rφ2
A = B({0,0,0,0,0,NA,0,0},{uh, ph, f h

1 , f h
2 ,φ1,φ2,λ1,λ2}) −L({0,NA})

Rλ1
A = B({0,0,0,0,0,0,NA,0},{uh, ph, f h

1 , f h
2 ,φ1,φ2,λ1,λ2})

Rλ2
A = B({0,0,0,0,0,0,0,NA},{uh, ph, f h

1 , f h
2 ,φ1,φ2,λ1,λ2})

(5.50)

where A is the control point index in isogeometric analysis, similar to the nodal index in

classical finite element, and ei is a unit Cartesian basis vector.

The Generalized-α method has been used to implement the temporal discretization of the

semi-discrete Galerkin RBVMS formulation above. We discretize the temporal domain

[0,T ] into segments of ∆tn = tn+1− tn, with tn being the current time step and tn+1 the

next time step. Let U̇n, Un, Pn, Fn
1, Fn

2, Φ̇n
1, Φn

1, Φ̇n
2, Φn

2, Λn
1 and Λn

2 denote the global

vectors of the control variables at tn. Given ∆t, the problem can be stated as following:

find U̇n+1, Un+1, Pn+1, Fn+1
1 , Fn+1

2 , Φ̇
n+1
1 , Φ

n+1
1 , Φ̇

n+1
2 , Φ

n+1
2 , Λ

n+1
1 , Λ

n+1
2 at tn+1 such that

RM
(

U̇n+αm,Un+α f ,Pn+1,Fn+1
1 ,Fn+1

2 ,Φ
n+α f
1 ,Φ

n+α f
2 ,Λn+1

1 ,Λn+1
2

)
= 0, (5.51)
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RC
(

U̇n+αm ,Un+α f ,Pn+1,Fn+1
1 ,Fn+1

2 ,Φ
n+α f
1 ,Φ

n+α f
2 ,Λn+1

1 ,Λn+1
2

)
= 0, (5.52)

RF1
(

Fn+1
1 ,Φ

n+α f
1

)
= 0, RF2

(
Fn+1

2 ,Φ
n+α f
2

)
= 0, (5.53)

RΦ1
(

Un+α f ,Fn+1
1 ,Φ̇n+αm

1 ,Φ
n+α f
1

)
= 0, (5.54)

RΦ2
(

Un+α f ,Fn+1
2 ,Φ̇n+αm

2 ,Φ
n+α f
2

)
= 0, (5.55)

RΛ1
(

Un+α f ,Φ
n+α f
1 ,Λn+1

1

)
= 0, (5.56)

RΛ2
(

Un+α f ,Φ
n+α f
2 ,Λn+1

2

)
= 0, (5.57)

where - for example - for the first phase-field variable Φ1, we have:

Φ1n+1 =Φ1n +∆tnΦ̇1n + γ∆tn(Φ̇1n+1− Φ̇1n)

Φ̇1n+αm
= Φ̇1n +αm(Φ̇1n+1− Φ̇1n)

Φn+α f =Φn +α f (Φn+1−Φn)

(5.58)

Eq. (5.58) can also be extended for the remaining fields of velocity, pressure, intermediate

equation variables, phase-field variables and local inextensibility Lagrangian multiplier.

The variables α f ,αm,and γ are real-valued parameters that define the method. For a

linear first-order system of ODEs, the Generalized-α method is second-order accurate in

time [172] if

γ =
1
2
+αm−α f (5.59)

and unconditionally stable if:

αm ⩾ α f ⩾
1
2

(5.60)

where αm and α f are as following

αm =
1
2

(3−ρ∞

1+ρ∞

)
, α f =

( 1
1+ρ∞

)
. (5.61)

The spectral radius of the amplification matrix at an infinitely large time step, ρ∞ ∈

[0,1], which controls the high-frequency damping, was set to 0.5, which results in α f =

0.666̇ and αm = 0.833̇ and hence, satisfying Eq. (5.60) for unconditionally stable time

integration for a system of linear ODEs. The situation is however more complicated
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for nonlinear problems as the notion of stability is problem-dependent. For nonlinear

phase-field problems, there is still little known about the stability of the generalized-

α method [172, 173]. Nonetheless, based on our numerical experience, the method is

computationally stable [174, 175] for the range of time-step sizes we considered in this

paper. The nonlinear system of Eqs. (5.58) and the corresponding equations related to

the other fields of interest are solved using Newton’s method. For Φ1 and Φ̇1 representing

the global vectors of control variables of φ1 and φ̇1, the two stages Predictor-Multicorrector

approach as the following:

1. Predictor stage:

Φ
(0)
1n+1

=Φ1n (5.62)

Φ̇
(0)
1n+1

=
γ−1

γ
Φ̇1n (5.63)

with the superscript in those equations is denoting the iteration index of the non-

linear solver.

2. Multicorrector stage:

Repeat the following steps for i = 1,2,3, ...., imax, or until convergence is reached.

• Evaluate iterates at α-levels:

Φ̇
(i)
1n+αm

= Φ̇1n +αm(Φ̇
(i−1)
1n+1
− Φ̇1n) (5.64)

Φ
(i)
1n+α f

=Φ1n +α f (Φ
(i−1)
1n+1
−Φ1n) (5.65)

• Use α-level iterates to assemble the linear system of equations corresponding

to the linearization of Equation (5.54)

K(i)
φ1U ∆U(i)

n+1 +K(i)
φ1F1

∆F(i)
1n+1

+K(i)
φ1φ1

∆Φ
(i)
1n+1

= −RΦ1(i)
n+1 (5.66)

This linearized system is solved using the GMRES method available through

KSP solvers in PETSc [176–179].
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• Update the solution

Φ̇
(i)
1n+1

= Φ̇
(i−1)
1n+1

+∆Φ̇
(i)
1n+1

(5.67)

Φ
(i)
1n+1

=Φ
(i−1)
1n+1

+ γ∆tnΦ̇
(i)
1n+1

(5.68)

Note: The Predictor-Multicorrector stages for the other global control variables are ob-

tained in a similar manner to the first phase-field variable as in equations (5.62-5.68).

The tangents matrices - for example - KΦ1U, KΦ1F1 and KΦ1Φ1 in Eq. (5.66) is the partial

derivative of the residual of the first phase-field variable w.r.t. the velocity field, i.e.,

U, first intermediate equation, i.e., F1 and the first phase-field variable, i.e., Φ1, respec-

tively. The tangent matrix KΦ1Φ1 w.r.t. the first phase-field variable Φ1 is evaluated as

following:

KΦ1Φ1 =
∂RΦ1

∂ Φ̇1n+αm

∂ Φ̇1n+αm

∂ Φ̇1n+1

+
∂RΦ1

∂Φ1n+α f

∂Φ1n+α f

∂ Φ̇1n+1

= αm
∂RΦ1

∂ Φ̇1n+αm

+α f γ∆tn
∂RΦ1

∂Φ1n+α f

(5.69)

where the iteration index i has been dropped for simplicity. We resort to the finite-

difference approximation of the Jacobian within the numerical library [177–179]. This has

proven sufficient accuracy as shown in [45] when compared to the hand-written Jacobian.

In addition, the aforementioned formulation is obtained under the assumption that the

time derivative of the coarse-scale velocity vector is zero within the domain, while the

fine-scale velocity vector equals zero on the boundaries, and under the orthogonality

condition of
[
D(wh) , (2µ∗/Re)D(u′)

]
Ω
= 0.

5.5 Numerical examples

The computational implementation of the isogeometric formulation of the aforementioned

weak form was conducted using the NURBS-based PetIGA [180]. PetIGA is a compu-

tational framework to approximate the solution of PDEs using isogeometric analysis.

It relies heavily on PETSc [176, 177, 179], Portable, Extensible Toolkit for Scientific

Computation, by exploiting a huge part of its algorithms, data structures, and solvers.

PETSc uses Message Passing Interface (MPI) standard protocol for communication and
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data exchange between multiple processes among single or multiple communicators in

a given run. In the field of biomembrane mechanics and hydrodynamics, the computa-

tional load is immense, and therefore, the availability of a parallel-based framework for

computational implementation of the numerical formulation is paramount, and this is

where PetIGA/PETSc fits in. But all things considered, PetIGA has been used to tackle

some challenging problems in a wide range of fields [20, 40, 43, 45, 173], and hence, it is

extensively tested and highly reliable.

Due to the large set of parameters that can alter the outcome of this study, we are not

conducting a parametric study in regards to the Reynolds and Capillary numbers, and

the values were set to 5× 10−3 and 1.0× 104, respectively unless otherwise stated. In

what follows, all examples are spatially discretized using C1 quadratic NURBS elements

with 6 integration points per direction, with 1 unit of length spanning over 32 elements. A

convergence study was conducted using ε = 2h - where h is the element size - for different

unit length to elements ratios of 1:8, 1:16, 1;32, and 1:64. Results show at this value of

regularization parameter and the ratio of unit length to element numbers, that the area

relative error of the system tends to converge to the values obtained using a ratio of 1:32,

where a ratio of 1:64 gives a very small change in the relative error equals to 0.0024%.

In our previous work involving vesicles electromechanics [45], we have noticed that in

certain situations we need to use an unequally-spaced knot vector to densify the mesh

in a part of the domain engulfing the vesicle. However, a correct and accurate choice of

the regularization parameter along with sufficient smoothness of the basis function will

give satisfactory results. We have not noticed any “peculiar ” behavior when vesicles are

subjected to large deformations and\or coming close to each other; this is due to two

factors, the first one is the implicit method we used to track the interface, which is most

suitable for this class of problems, and second, is the incorporation of the interaction

energy definition that maintains a certain distance between the vesicles preventing them

from overlapping. With two factors in mind, we concluded – as shown later – that there

is no need for adding extra control points in certain parts of the domain, especially when

the phase-field model is used, which tracks the evolution of the interface on a fixed mesh,

rending the use of extra control points meaningless.

The temporal discretization is done by the Generalized-α method and was evenly spaced

with a timestep size ∆t of 0.0001, hence, adaptivity was disabled for most examples. For
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some examples, however, the initial timestep size was set to 0.005 and the cap value was

set to 0.05. When considered, the Digital Signal Processing (DSP) time adaptivity scheme

[174, 175] was used. The cap is placed on the timestep controller so step size would remain

within the range of the initial timestep size and the cap at any of the iterations. This is

in part to maintain stability and numerical accuracy. Using the timestep-increase delay

functionality in PETSc, we delay the increase in the timestep size until three consecutive

steps converge successfully in order to prevent the time-controller from bouncing back

and forth between two nearby timesteps which provides an additional layer of stability in

reaching the maximum timestep size specified. Throughout the remainder of this section,

the numerical examples are presented in 2D dimensional settings, where the reduced area

χ ∈ (0,1] is defined as the ratio between the vesicle area and the area of a circle with the

same perimeter as following

χ =
A0

π

(2π

P0

)2
(5.70)

where A0 and P0 are the area and perimeter of the vesicle, respectively. Consequently,

the initial condition of the phase field variable accounting for the reduced area in the

Cartesian coordinates system is generated using the hyperbolic tangent function as the

following

φ0 = tanh

[−( (x∗+y∗)0.5

(γ−2x∗+γ−2y∗)0.5 (
√

x∗+ y∗−R0)
)

√
2ε

]
, where

γ = [1+(1−χ
2)0.5]0.5

(5.71)

Unless otherwise stated, the coefficients ηφi and ξ were set to 0.1 and 1, respectively.

The computational domain dimensions and the velocity profile vary depending on the

numerical example to be presented. The scalar and vector absolute and relative tolerance

values for the System of nonlinear equations (SNEs) context were set to 1×10−3, which

was also used for the linear Krylov subspace (KSP) solvers. In the following subsections,

we are presenting a verification example. We also study the hydrodynamics of vesicle

doublet in planar extensional flow with various interaction number values. In addition,

we study the hydrodynamics of vesicle doublet in a shear flow, and in parabolic planar

extensional flow with two inlets and two outlets with various domain, dimensions to

simulate different ambient environments with various values of fluid velocities. The vesicle

doublet might align vertically or might have an initial vertical displacement, i.e., an offset
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(a) Vesicle spheroidal initial shape (b) Vesicle peanut-like final shape (c) Velocity vector during evolution

Figure 5.1: Temporal evolution of a single vesicle from (5.1a) the spheroidal shape to the (5.1b) well-
known peanut-like shape in absence of external forces. Fig. (5.1c) shows the velocity profile during the
evolution.

in the vertical direction between two centers of masses of the vesicle doublet. Aside

from one example where the vesicles have an initial oblate-like shape, all examples are

initialized with vesicle doublets having a prolate-like spheroid shape.

5.5.1 Vesicle doublet in stationary fluid

As a verification example for the proposed phase-field Navier-Stokes model, we test the

system for the well-known elliptical configuration of the vesicle, which is supposed to

evolve morphologically to a peanut-like shape, i.e., a biconcave shape [43, 45, 103, 194]

in absence of external forces. The computational domain Ω is defined as [0,5]× [0,5]

spanning over [160×160] quadratic NURBS-elements. The boundary conditions for the

velocity field and Lagrangian multipliers are imposed strongly, i.e., u = 0, λ1 = 0, and λ2

= 0. Homogeneous natural boundary conditions are assumed for the phase-field variables

φ1 and φ2 and the intermediate variables f1 and f2. The velocity is set to zero on all

boundaries and hence, within the domain. As shown in Fig. (5.1), each vesicle is evolving

to form a peanut-like shape upon equilibrium as shown in Fig (5.1b). One interesting

outcome of this verification example is the development of a velocity vector within the

extra-cellular medium even though no velocity profile was defined at the initialization.

This can be explained by the movement of the vesicle membrane which generates small

ripples within the fluid outside the vesicle as shown in Fig. (5.1c).
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5.5.2 Effect of Interaction Number

The value of the dimensionless Interaction Number IN in Eq. (2.46) has a significant im-

pact on vesicle doublet hydrodynamics. Conceptually, the interaction energy is inversely

proportioned to the interaction number which is also inversely proportioned to the repul-

sion parameter α . Therefore, a smaller value for α , i.e., a weak repulsion, gives a large

value for the interaction number, which is manifested by a strong interaction between the

vesicle doublet and a higher interaction energy for the system, due to the contribution of

the short-range interaction function. To test this, we chose three values for the interaction

number IN, i.e., 0.05, 0.5, and 5. The computational domain Ω is defined as [0,5]×[0,5]

spanning over [160×160] quadratic NURBS-elements. The reduced area χ = 0.84 and

the characteristic length Re = 0.863. The vesicle doublet was suspended in planar ex-

tensional flow in the x-direction, i.e., uble f t = 10e⃗1 + 0e⃗2 and ubright = −10e⃗1 + 0e⃗2 at the

side inlets of the computational domain to simulate a push on both vesicles to displace as

much fluid as possible from in between with the purpose of testing the interaction num-

ber effect. We consider stress-free boundary conditions on the outlet boundaries. The

vesicle doublets are centered with no initial vertical displacement to prevent any sliding

motion. The Reynolds number remains unchanged from the previous example. Results

indicated that a larger interaction number, i.e., a small value of repulsion parameter α

leads to more interaction between vesicle doublet when compared to a smaller interaction

number. In addition, values of IN greater than 5 will result in the phase-field of the

vesicle doublet overlapping, which practically does not hold any physical meaning. It

can be seen from Figures (5.2a-5.2c) that the fluid velocity in the vicinity of the vesicles

decreases significantly compared to the inlet fluid velocity. In addition, and as shown in

Fig. (5.2f), an area of high-pressure forms on the sides of both vesicles facing the inlets,

and in between the vesicles themselves. Both vesicles also experience an elongation in

the direction perpendicular to the fluid flow when compared to the initial state of the

vesicle doublet showed in Fig. (5.2d), which results in tension areas on both sides of the

vesicle doublet and a small compression area on the tips of each vesicle as shown in Fig.

(5.2). For the remainder of this work, we are considering IN to be 0.5. This would allow

the vesicles to get as close as possible to each other without overlapping.
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(a) IN : 0.05 (b) IN : 0.5 (c) IN : 5.0

(d) Vesicle doublet at initial
state

(e) Phase-Field corresponds to
IN of 0.5

(f) Vesicles Pressure at IN
of 0.5

Figure 5.2: Velocity Streamlines of vesicle doublet suspended in planar extensional flow with various
interaction number (IN) of: (5.2a) 0.05, (5.2b) 0.5, and (5.2c) 5.0. λ1 and λ2 projected on the zero
level-set of phase-field variables φ1 and φ2, and interpreted as the surface tension on both vesicles. In
figure (5.2f), the pressure projected on the zero-level set of the phase field shows increased values on
both sides facing the inlet and facing the other vesicle.

5.5.3 Vesicle doublet suspended in a shear flow

Single vesicle hydrodynamics in a shear flow is well understood and verified. Vesicles can

undergo either one of two types of motions - in a tubular channel - based on a set of factors

like viscosity contrast embedded in the definition of the dynamic viscosity and Reynolds

number. Those two types of motion are tank-threading and tumbling. Trembling motion

has also been observed in [123, 124]. Based on the work done by Valizadeh et. al. [43] and

reported in [195, 196], single inextensible vesicles undergo tumbling motion in the Stokes

limits, i.e., small Reynolds numbers and at certain viscosity ratios. When the Reynolds

number is relatively large, vesicles start showing tank-treading motion with a stationary

shape at a certain inclined angle. That being said, the hydrodynamics of vesicle doublet

suspended in a shear flow does not fit any of those two types of motion as more dynamics

emerge, as will be shown later. We start by testing two inextensible vesicles placed

apart from each other. The computational domain Ω is defined as [0,8]×[0,4] spanning

over [256×128] quadratic NURBS-elements. The vesicles are 4 units length apart and
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centered at (2.0,2.0) and (6.0,2.0), respectively. The interaction number is set to 0.5. We

consider identical vesicles with an effective radius R0 of 0,863 and a reduced area χ of

0,840. The vesicles are suspended in a shear flow acting in the x-direction, i.e., ubtop =

10e⃗1 + 0e⃗2 and ubbottom = −10e⃗1 + 0e⃗2. The Dirichlet boundary condition characterized by

the aforementioned velocity profile defined on the top and bottom boundaries is imposed

weakly using the method proposed by Bazilevs et. al. [197], which was designed to avoid

oscillations in the solution especially when the boundary data is discontinuous. This is

done by removing the essential boundary conditions from the trial and test functions

spaces and adding the following terms to the LHS of Eq. (5.39):

nb

∑
A=1

(
τB wh · (uh−uh

b

)
ΩD
−

nb

∑
A=1

(
wh ·S(uh, ph) ·m

)
ΩD

−
nb

∑
A=1

[(2µ0

Re
D(wh) ·m+qh m

)
·
(

uh−uh
b

)]
ΩD

(5.72)

where m is the normal vector to the boundary, and ub is the velocity vector imposed on the

boundary elements ΩD subjected to the essential boundary conditions. The stabilization

parameter τB is defined as:

τB =
CB

I (
µ0
Re)

hn
(5.73)

with the wall-normal element size parameter hn is (m ·G ·m)−1/2, and CB
I is a large posi-

tive constant, which was set to the value 5(P+1).

As shown in Fig. (5.3), the tank-threading motion of a single vesicle is reproduced. This

is mainly because both vesicles are at least one semi-major axis apart, which prevents

them from coming in contact when they start tilting and prolonging in the direction of the

flow, and since the vesicles are apart enough for the velocity profile to be reconstructed

as it was at the inlet without being obscured by any of the vesicles, then both vesicle

exhibit similar dynamics. A further indication of the validity of the results presented in

this example is by comparing the inclination angle for both vesicles with values in [43],

where both vesicles incline to an angle of 0.423 and 0.419, respectively.

In another case, when the vesicles are placed close to each other to form a vesicle doublet,

the dynamics change completely. Depending on the velocity profile and initial vertical dis-

placement, vesicle doublet can develop two types of dynamics, i.e., separating and drifting

apart or separating and sliding on top of each other. Beginning with the first case where
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Figure 5.3: (5.3a) Vesicles suspended in a shear flow, and (5.3b) their corresponding inclination angles.
φ1 denotes the vesicle on the left and φ2 denotes the vesicle on the right. Fluid flow motion is shown by
the velocity streamlines.

the vesicle doublet is expected to separate and drift apart, we test two different settings.

For both settings, we have a computational domain Ω defined as [0,6]×[0,4] spanning over

[192×128] quadratic NURBS-elements. The reduced area χ = 0.84 and the characteristic

length Re = 0.863. The vesicle doublet in the first set is centered at (2.2,2.0) and (3.8,2.0)

and in the second set is centered at (2.0,2.02) and (4.0,1.98), respectively. That means

we have for the first setting no vertical displacement, while for the second set, we have a

vertical displacement of 0.04 unit length, and a 1.6 unit length of horizontal displacement,

center-to-center. We apply a shear flow characterized by a prescribed fluid velocity vector

in the x-direction on both the top and bottom of the computational domain. For the first

setting, we consider the following fluid velocity vector: ubtop = 10e⃗1 + 0e⃗2 and ubbottom =

−10e⃗1 + 0e⃗2, while for the second one, we consider the following: ubtop = 15e⃗1 + 0e⃗2 and

ubbottom = −15e⃗1 + 0e⃗2. The interaction and Reynolds numbers remain unchanged from

the previous example, and the velocity boundary conditions are imposed weakly on Γ at

the top and the bottom sides of the computational domain. In the first set, and as shown

in Fig. (5.4), the vesicle doublet tends to tilt in the direction of the shear flow, i.e., to

the right from the top and to the left from the bottom. It can be seen that after initial

inclination, the vesicle doublet lock in position and remains so for the remainder of the

temporal domain. In absence of external factors that might alter the morphology and
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(a) (b)

Figure 5.4: Vesicle doublet suspended in a shear flow with no initial vertical displacement at (5.4a)
initial state and (5.4b) equilibrium state. Vesicle doublet lock in position due to the absence of initial
vertical displacement. Fluid flow motion is shown by velocity streamlines.

hydrodynamics of the vesicle doublet, and when there is no initial vertical displacement,

this is the equilibrium shape, in which, the hydrodynamic forces exerted by the fluid flow

on the vesicle doublet are not great enough to overcome the interaction energy between

two vesicles to cause a separation between them. In Fig. (5.4b), we can see that the

vesicle on the right is experiencing higher values of surface tension compared to the one

on the left, this is due to the fact that this vesicle is not as much inclined as the one on

the left, which leaves it exposed to hydrodynamic forces from the fluid flow moving in

the upper and lower regions of the computational domain, whereas the vesicle on the left

is mainly inclined in the region of the fluid of low velocity.

In the second set of the first case, when the fluid velocity is increased, i.e., ubtop = 10e⃗1 to

ubtop = 15e⃗1 and ubbottom = −10e⃗1 to ubbottom = −15e⃗1, and the initial vertical displacement

is introduced and the horizontal distance between two vesicle increases, we notice com-

pletely different hydrodynamics. As shown in Fig. (5.5), the vesicle doublet starts to tilt

in the direction of the shear flow, i.e., in the positive x-direction on the top and in the

negative x-direction on the bottom. Due to a larger horizontal displacement of 2.0 unit

length when compared to the previous setting, where the horizontal displacement was 1.6

unit length center-to-center, and because of the higher fluid velocity, we can see that the

vesicle doublet is separating and drifting apart as shown in Figures (5.5b-5.5e). Once the

vesicles start experiencing hydrodynamic forces, the surface tension starts to build up

where it reaches a maximum value around t = 0.4. This is the time when vesicles come

into contact with each other and the interaction energy is at maximum value as shown

in Fig. (5.6a). From now on, the vesicles drift apart slowly till an equilibrium state is

reached as shown in Fig (5.5f). We have also tested the vesicle doublet suspended in a
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(a) t = 0 (b) t = 0.1

(c) t = 0.2 (d) t = 0.4

(e) t = 1 (f) t = 2

Figure 5.5: Vesicle doublet suspended in a shear flow with initial vertical displacement of 0.04 unit
length at (5.5a) initial state, (5.5b) t = 0.1, (5.5c) t = 0.2, (5.5c) t = 0.2, (5.5d) t = 0.4, (5.5e) t = 1, and
(5.5f) t = 2. Fluid flow motion is shown by velocity streamlines.

shear flow with a prescribed x-component velocity of 20 on top and -20 on the bottom

using the same parameters and initial vertical displacement. And even with the increased

velocity and shear flow intensity, the same hydrodynamics were observed where the vesi-

cles separate and drift apart.

However, when we push the velocity a bit further to ubtop = 30e⃗1 and ubbottom = −30e⃗1,

increase the initial vertical displacement to 0.06 unit length, and increase Reynolds num-

ber to 5× 10−2, we start seeing different dynamics. To start with, the vesicle doublet

undergoes a completely different behavior where both vesicles start moving towards each

other and then tumbling on top of each other. These dynamics have not been observed

before when the fluid velocity and Reynolds number were smaller. In this example,
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the computational domain Ω is defined as [0,6]×[0,4] spanning over [192×128] quadratic

NURBS-elements. The vesicle doublet is centered at (2.2,2.03) and (3.8,1.97), respec-

tively. Subsequently, the initial vertical displacement is 0.06 units in length, and the

vesicles are 1.6 units in length, center-to-center, apart. For this example, and in order

to broaden the experiment, we impose periodic boundary conditions on both left and

right boundaries. The velocity boundary condition is imposed weakly on the top and

bottom boundaries per Eq. (5.72). As shown in Fig. (5.7b), the vesicle doublet starts

behaving like its counterpart from the previous example, however, due to the increased

velocity and initial vertical displacement, and instead of sliding and drifting apart, the

vesicles start tumbling on top of each other as shown in Figures (5.7c-5.7h). As seen

from the hydrodynamics of Fig. (5.7), the interaction energy definition incorporated in

the mathematical model and the corresponding numerical model successfully prevents the

vesicle doublet from overlapping or the phase-field from collapsing at any point within

the temporal domain. As shown in Fig. (5.6b), upon initial contact, the interaction

energy records the highest value, this is due to the fact that the vesicle is rotating from

a vertical alignment to a horizontal one, during which, the fluid flow is exerting pressure

on both vesicles pushing them together. But once this configuration is attained, the in-

teraction energy upon contact is not as high as the value recorded at the first one, and

the peak value upon each consequential contact keeps dropping. In addition, when the

vesicles are close to each other, or about to rotate from a semi-vertical alignment to a

horizontal one, the surface tension spikes to its maximum value as shown in Fig. (5.7k),

due to the hydrodynamic stretching forces exerted on both vesicles by the fluid flow in

the upper and lower portions of the computational domain, but once the vesicles pass

each other and drift to the mid-zone of the tubular channel, the surface tension starts to

drop once again. From the results presented in this subsection, we can notice a pattern

in the hydrodynamics of vesicle doublet suspended in a shear flow. At low velocities,

and without any initial vertical displacement, the vesicle doublet is expected to separate

and drift apart, and even when an initial vertical displacement is introduced, the vesicle

doublet still separated and drifted apart. However, when the velocity increases beyond

a certain threshold, i.e., ubtop = 30e⃗1 and ubbottom = −30e⃗1 in this study, as well as the

initial vertical displacement and Reynolds number, we start seeing vesicles going in the

direction of the shear flow and sliding on top of each other. The original tank-treading
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Figure 5.6: (5.6a) Interaction energy of vesicle doublet system in a shear flow with initial vertical dis-
placement of 0.04 unit length and a velocity vector ubtop = 15e⃗1 and ubbottom = −15e⃗1, and (5.6b) inter-
action energy of vesicle doublet system in a shear flow with an initial vertical displacement of 0.06 unit
length and a velocity vector ubtop = 30e⃗1 and ubbottom = −30e⃗1.

motion was reproduced for two vesicles placed apart from each other as a verification

example for the underlying work, which agrees with the findings of Quaife et. al. [44]

5.5.4 Vesicle doublet suspended in a planar extensional flow

In this subsection, we are presenting a set of examples for vesicle doublet suspended in

planar extensional flow. Different from the shear flow, vesicle doublet in planar exten-

sional flow (PEF) tend to move toward each other and collide after displacing fluid from

in between the vesicles. In certain cases, a slip-like behavior is observed depending on

the initial condition of the problem. We are going to test the hydrodynamics of vesicle

doublet in multiple settings: at a junction, where we have two inlets on two side bound-

aries and two outlets on the other two side boundaries, and in a tubular channel with

two inlets on two side boundaries and partial outlets on the other two side boundaries.

In addition, we are presenting the results for an example, where the boundary condition

was imposed strongly on a portion of a boundary. First, we consider a junction config-

uration, where a velocity profile is defined on two sides simulating two inlets. On the

other two sides, we assume stress-free boundary conditions. The computational domain

Ω is defined as [0,5]×[0,5] spanning over [160×160] quadratic NURBS-elements. The
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(a) t = 0 (b) t = 0.1 (c) t = 0.3

(d) t = 0.5 (e) t = 0.7 (f) t = 1.0

(g) t = 1.2 (h) t = 1.3 (i) t = 1.4

(j) t = 1.9 (k) t = 3.3 (l) t = 3.5

Figure 5.7: Vesicle doublet suspended in a shear flow with vertical displacement of 0.06 unit length
and a horizontal displacement of 1.6 unit length at (5.5a) initial state and (5.7l) t = 3.5. Fluid flow mo-
tion shown by velocity streamlines, and a velocity profile ubtop = 30e⃗1 and ubbottom = −30e⃗1.
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(a) t = 0 (b) t = 0.01

Figure 5.8: (5.8a) Initial state of vesicle doublet suspended in planar extensional flow at t = 0 with ve-
locity streamlines showing fluid flowing in the x-direction, and (5.8b) and the corresponding velocity
profile at t = 0.01.

reduced area χ = 0.84 and the characteristic length Re = 0.863. For this example, we

test three initial vertical displacement values of 0.02, 0.1, and 0.2. Therefore, for the

first, second, and third configurations, we have the vesicles centered at (1.7,2.51) and

(3.3,2.49), (1.7,2.55) and (3.3,2.45), and (1.7,2.6) and (3.3,2.40), respectively, which gives

the aforementioned initial vertical displacements. The interaction number IN considered

is 0.5, and the Reynolds number is 5×10−3. The configuration of the example is depicted

in Fig. (5.8), where the flow is pouring into the computational domain from both side

boundaries, and leaves the computational domain from the top and bottom boundaries.

The results show how the constant velocity profile for the fluid flow inlet evolves over time

to form a planar extensional flow as shown in Figures 5.9a, 5.9d and 5.9g. In addition,

and as shown in Figures 5.9b, 5.9e and 5.9h, the vesicle location affect the velocity of

the fluid flow since the vesicle membrane acts like a barrier between the extra- and in-

tracellular medium, which results in reducing the velocity within its vicinity significantly

compared to the inlet velocity, especially when the vesicle doublet is placed in a PEF

pushing on the doublet from both sides. We can also see from Fig. (5.9) the effect of the

initial vertical displacement, where vesicle doublets with larger values of initial vertical

displacements tend to separate faster than ones with smaller as shown visually in Figs.

(5.9a) and (5.9d), where a vesicle doublet with initial vertical displacement of 0.02 is

about to separate at t = 0.8, whereas the same vesicle doublet will separate at t = 0.52

when the initial vertical displacement is 0.2. The results presented here agree with the
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findings of Quaife et. al. [44].

However, vesicle doublet hydrodynamics when suspended in a PEF in a tubular channel

is different from those presented in Fig. (5.9) since the vesicles are bound to move within

a narrow channel and evolve according to the velocity profile imposed on the boundaries

as shown in Fig. (5.10) before moving towards the existing outlet. Valizadeh et. al.

[43] showed that when a vesicle is suspended in a parabolic flow, it evolves to form a

parachute-like shape, therefore, to test the limits of our model, we are considering two

vesicles suspended in a parabolic extensional flow with two side inlets and two mid-

span upper and lower outlets with the same surface area in order to maintain a constant

volumetric flow rate. The computational domain Ω is defined as [0,16]×[0,4] spanning over

[512×128] quadratic NURBS-elements. The reduced area χ = 0.84 and the characteristic

length Re = 0.863. The vesicles centered at (1.5,2.1) and (14.5,1.9), resulting in an

initial vertical displacement of 0.2. The interaction number IN considered is 0.5, and the

Reynolds number is 0.01. The profiles prescribed on the left and right inlets are defined

as follows: uble f t = (8y−2y2)e⃗1 + 0e⃗2 and ubright = (−8y+2y2)e⃗1 + 0e⃗2, which results in

a parabolic flow velocity with a maximum value of 8 in the x-direction. For this example

in particular, the no-slip boundary condition is imposed strongly on the upper and lower

boundary portions highlighted in red in Fig. (5.10), and since the argument for weakly

imposed boundary condition was based on the use of C0 basis function which might lead

to oscillation in the solution [197], then this can be mitigated all together with the use of

C1 NURBS-basis functions. In PetIGA [182], the computational framework we are using

throughout this study, the function IGASetBoundaryValue() is used to impose Dirichlet

boundary conditions on ΓD by specifying a scalar value for the entire boundary. In a

parallel implementation, the computational domain Ω is divided according to the specified

communicator size to produce a structured rectangular layout, where each sub-domain is

assigned to a single process with a specified rank, therefore, the boundary elements will

most likely be distributed among multiple processes. In our implementation, we use the

non-normalized knot vector initialization in PetIGA to specify the portion of boundary

using the same unit length of the computational domain, e.g., for a boundary that starts

from -4.0 and ends at 4.0, with a corresponding 2nd order knot vector in the parametric

space of {−4,−4−4, ...,4,4,4}, we can directly specify - for example - all elements that

span from -4 to -2 directly. In case the beginning - or the end - of the boundary portion
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(a) t = 0.80,Vertical Disp. (VD): 0.02 (b) X-Dir. Velocity Profile, VD = 0.02 (c) Y-Dir. Velocity Profile, VD = 0.02

(d) t = 0.60,Vertical Disp. (VD): 0.1 (e) X-Dir. Velocity Profile, VD = 0.1 (f) Y-Dir. Velocity Profile, VD = 0.1

(g) t = 0.52,Vertical Disp. (VD): 0.2 (h) X-Dir. Velocity Profile, VD = 0.2 (i) Y-Dir. Velocity Profile, VD = 0.2

Figure 5.9: (5.9a) Vesicle doublet temporal evolution suspended in a planar extensional flow at t = 0.8
with initial vertical displacement of 0.02, (5.9b) the corresponding X-Direction velocity profile, and
(5.9c) the corresponding Y-Direction velocity profile. (5.9d-5.9f) Ditto, at t = 0.60 with initial vertical
displacement of 0.1, and (5.9g-5.9i) Ditto, at t = 0.52 with initial vertical displacement of 0.2.
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Figure 5.10: A not-to-scale representation of the computational domain with two vesicles suspended in
a planar extensional flow in a tubular channel with two side inlets and two outlets.

did not coincide with a specific knot within the knot vector, we consider the nearest

knot to the specific value, which results in a set of elements being subjected to strongly

imposed boundary conditions. Upon the element loop during the residual vector and

tangent matrix assembly procedures, each element will be checked for the possibility of

being a boundary element, afterwards, if the boundary has partial boundary conditions,

the element will be checked against the set of elements specified upon initialization. The

element index can be obtained from a partitioning and a distribution function that specify

the global indices for the set of elements on each process based on the communicator size.

To summarize, we added another check to whether the boundary element has a boundary

condition in case the partially strongly-imposed Dirichlet boundary condition was applied.

Fig. (5.11) shows a set the elements (in blue) with strongly-imposed BC on the top and

bottom boundaries distributed among multiple processes in the communicator.

Figure (5.12) shows the temporal evolution of the two vesicles suspended in a parabolic

fluid flow. The parachute-like shape of the vesicles starts to develop at around t = 0.2.

However, unlike the results reported by Valizadeh et. al [43], the vesicles do not show a

symmetric evolution due to the fact that both vesicles are not centered around the line of

the maximum velocity layer of the fluid flow, which results in the asymmetric shapes as

in Figures (5.12c-5.12d). Once the two vesicles reach the domain of the outlets where the

flow is not anymore characterized by its parabolic profile, they start to retract to a sharp
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Figure 5.11: A representation of the computational domain Ω being distributed on 8 processes, which
corresponds to mpiexec -n 8.

prolate spheroid shape due to the hydrodynamic forces exerted on both vesicles which

result in the maximum surface tension values recorded during the temporal domain of

this example as shown in Figures (5.12e-5.12g).

For a close-up inspection of those surface tension values the left vesicle in Fig. (5.12)

experiences, we project those values of the zero-level set of the phase field variable φ1

as shown in Fig. (5.13). In the beginning, we start noticing compression values on the

side of the vesicle facing the fluid flow and tension values on the other side as shown in

Fig. (5.13a), and as the vesicles move towards the center of the computational domain,

the surface tension values intensifies as shown in Figures (5.13c-5.13d). At the point

where the vesicle starts to evolve to the prolate spheroid shape as in Fig. (5.13e), it is

no longer under the influence of the parabolic fluid flow, but rather, under the influence

of the exiting flow which exerts hydrodynamic forces on the vesicle causing it to stretch,

and hence, increasing the surface tension of the vesicle as shown in Fig. (5.13f). The

aforementioned morphological evolution presented in Fig. (5.13) is compared to the

morphological evolution of the same two vesicles, but in a wider tubular channel, that

is, a computational domain Ω defined as [0,16]×[0,6], i.e., an increase by 50% from the

computational domain of vesicles in Fig. (5.13). To ensure we get the same velocity

profile with a different channel height, we apply the following boundary condition: uble f t

= [(48y−8y2)/9]e⃗1 + 0e⃗2 and ubright = [(−48y+8y2)/9]e⃗1 + 0e⃗2. As shown in Fig. (5.14),

in the early stages, the vesicle profile is almost identical, but when hydrodynamic forces

are strong enough to cause the shape transition, we can see that the vesicle in the wider

tubular channel - in blue in Fig. (5.14) - does not evolve to the parachute-like shape even

when suspended in a parabolic flow. The clearest distinction between the two cases can

be seen in Fig. (5.14d).
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Another interesting case can be observed when the vesicles have an oblate spheroid shape,

i.e., a major axis in the direction of the flow. In this case, the vesicles transition from an

oblate-like shape to a prolate-like shape upon coming in close proximity with each other

once both vesicles enter the outlet region. The computational domain of this example and

all other numerical and physical parameters are similar to that of the previous example.

The vesicles were initiated with an oblate spheroid shape by tilting the phase-field profiles

from the previous example by π/2. From Fig. (5.15), we can see the transition process

from the original oblate-like shape to the prolate-like shape. Initially, the vesicle’s surface

starts experiencing compression as the vesicle undergoes a shape transition as in Figures

(5.15a-5.15c). However, once the vesicle is in the outlet region and under the influence of

the exiting fluid, it starts experiencing tension forces on its surface as shown in Figures

(5.15d-5.15f).

5.6 Summary

In this chapter, we present a phase-field Navier Stokes model to simulate the hydrody-

namics of vesicle doublets suspended in various settings of incompressible fluid flow. A

crucial factor in the successful implementation of the model is the incorporation of the

interaction energy defined in Eq. (2.46), as it prevents the phase-field defined vesicles

from overlapping, opening the way for a wide variety of vesicle doublets hydrodynam-

ics. The model accounts for a local inextensibility constraint within the vicinity of the

zero-level set of the phase-field variables by introducing an additional equation to the

system. To overcome the numerical difficulties of standard Galerkin-based finite element

solutions of the Navier-Stokes equations, we apply the Residual-Based Variational Multi-

Scale (RBVMS) method and solve the coupled systems using isogeometric analysis. We

investigated the effect of the interaction number value on the evolution of the vesicle

doublet and how this might affect its morphology. We consider vesicle doublet suspended

in a shear flow, in a planar extensional flow, and in a parabolic flow. When the vesicle

doublet is suspended in a shear flow, it can either slip past each other or slide on top

of each other based on the value of the initial vertical displacement, that is the vertical

distance between the center of masses between the two vesicles, and the velocity profile

applied. When the vesicle doublet is suspended in a planar extensional flow in a con-
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(a) Vesicles evolution at t = 0.

(b) Vesicles evolution at t = 0.14.

(c) Vesicles evolution at t = 0.42.

(d) Vesicles evolution at t = 0.62.

(e) Vesicles evolution at t = 0.75.
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(f) Vesicles evolution at t = 0.93.

(g) Vesicles evolution at t = 1.0.

(h) Vesicles evolution at t = 1.0 with a parabolic velocity profile. Color map shows the X-component of the ve-
locity vector with the Velocity vector projected as Streamlines.

(i) Vesicles evolution at t = 1.0 with a parabolic velocity profile. Color map shows the Y-component of the veloc-
ity vector with the Velocity vector projected as Streamlines.

Figure 5.12: Snippets of the temporal evolution of two vesicles suspended in a planar extensional flow
with an initial vertical displacement of 0.2. The velocity vector is projected as streamlines. The X- and
Y-components of the velocity vector are shown in Figures (5.12h) and (5.12i).
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(a) t = 0 (b) t = 0.054 (c) t = 0.14

(d) t = 0.57 (e) t = 0.75 (f) t = 0.85

Figure 5.13: The temporal evolution of the left vesicle in Fig. (5.12) in a parabolic extensional flow
with an initial vertical displacement of 0.2.

(a) t = 0 (b) t = 0.054 (c) t = 0.14

(d) t = 0.57 (e) t = 0.75 (f) t = 0.85

Figure 5.14: A comparison between the morphological evolution of two vesicles suspended in a pla-
nar extensional flow. The blue vesicle is suspended in a tubular channel with a width of 6 unit length,
while the red one is suspended in a channel of 4 unit length.
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(a) t = 0 (b) t = 0.224 (c) t = 0.38

(d) t = 0.47 (e) t = 0.53 (f) t = 0.80

Figure 5.15: The temporal evolution of an oblate spheroid vesicle suspended in a planar extensional
flow with a parabolic velocity profile. Fig. (5.15a) shows the initial oblate-like shape, while Fig.
(5.15f) shows the final shape of the vesicle as it exits through the top outlet. Domain configurations
are similar to Fig. (5.10).

figuration that resembles a junction, the time in which both vesicles separate depends

largely on the value of the initial vertical displacement. However, when the vesicles are

suspended in a tubular channel with a parabolic fluid flow, they develop a parachute-

like shape upon converging towards each other before exiting the computational domain

from the predetermined outlets. This shape however is affected largely by the height of

the tubular channel in which the vesicle is suspended. The velocity essential boundary

conditions are imposed weakly and strongly. The weak implementation of the boundary

conditions was used when the velocity profile was defined on the entire boundary, while

the strong implementation was used when the velocity profile was defined on a part of the

boundary. The strong implementation of the essential boundary conditions was done by

selectively applying it to the predetermined set of elements in a parallel-based code. This

allowed us to simulate vesicle hydrodynamics in a computational domain with multiple

inlets and outlets. We also investigated the hydrodynamics of oblate-like shape vesicles

in a parabolic flow.
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6
Summary, conclusions, and future research

In this dissertation, we explore the possibility of coupling the phase-field method with

isogeometric analysis to solve two of the most difficult problems related to vesicles mor-

phology. In what follows, we summarize our work and draw our conclusions, and list the

potential research direction.

6.1 Summary

We have addressed two main points. In the first, we study the morphology of single

vesicles immersed in an electric field, and in the second, we study the morphology and

hydrodynamics of vesicle doublet in an incompressible flow.

1. Vesicle morphology under static electric loads:

In this part of the research, we simulate the vesicle morphology under static elec-

tric loads. Our work is built on the electromechanical model proposed in [18, 109,

160]. We consider the Helmholtz free energy of the lipid bilayer, which accounts
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for the elastic bending energy, the flexoelectric energy, and the dielectric energy for

both the membrane and electrolyte. Each of those energies is recast in terms of

the phase-field variable φ . The total energy of the system is then complemented by

two constraints to preserve the initial volume V0 and the surface area A0. Using the

gradient flow approach, we formulate the time evolution of the vesicle interface as

the sum of the time derivative of the phase-field variable and the variational deriva-

tive of the total energy functional. Due to the need for high-order continuity basis

functions, we resort to the NURBS-based isogeometric analysis to approximate the

solution in a staggered scheme. This entails solving the linear Laplacian PDE de-

scribing the electric potential distribution within the computational domain and

then solving for the phase-field variable by considering the electric potential that

has been evaluated separately at each time step. This type of problems is extremely

demanding computational-wise, and hence, we use the open-source PetIGA library.

PetIGA is heavily reliant on PETSc, and provides the possibility of a parallel im-

plementation for structured mesh problems, which is an essential part of solving

this type of problems in a reasonable time-scale.

We test the response of vesicles subjected to static electric fields with varying in-

tensities, e.g., from 10 10 kV/m to 50 10 kV/m. We also test the vesicle evolution

when the flexoelectric nature of the membrane is accounted for, and the role the

contrast in electrolyte conductivities inside and outside the vesicle. We intensively

test the effect of the diffusive interface thickness on the stability of the solution and

the overall morphology of the vesicle.

2. Vesicle doublet hydrodynamics in incompressible fluid flow:

In the second part of the research, we address the issue of vesicle doublet hydro-

dynamics. In this problem, we solve two advection-diffusion equations describing

the process of advecting each vesicle by the fluid flow, in addition to the set of

Navier-Stokes equations. We account for the local inextensibility by introducing a

constraint equation based on the model proposed by [119] that takes effect within

the vicinity of the interface. To prevent the phase-field variables representing the

vesicles from overlapping, we introduce an interaction energy definition for this

purpose. The proposed phase-field Navier-Stokes model has 9 degrees of freedom

and is solved using isogeometric analysis in 2-D settings. We formulate the weak
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form of the problem in a hybrid framework, where the set of advection-diffusion

equations are weaken using the Galerkin NURBS-based IGA. Meanwhile, for the

Navier-Stokes equations, we use the Residual-Based Variational MultiScale (RB-

VMS) method proposed in [192]. The RBVMS is based on the idea is to decompose

the fine and coarse scale equations, then approximating the fine-scale equations

analytically and to use the results into the coarse-scale equations, which are solved

numerically. As in the previous problem, we used PetIGA to solve our numerical

model, but different from it, we approximate the tangent matrix using PETSc’s

build-in finite-difference method.

In order to build our results on sound foundations, we started by testing the inter-

action number’s effect on the repulsion between vesicle doublets. Then, we test the

hydrodynamics of the vesicle doublet in a shear flow and how the relative proxim-

ity of both vesicles might alter the outcome of the numerical experiment. We also

test the vesicle doublet hydrodynamics in a planar extensional flow in two different

configurations, e.g., when the entire top and bottom sides of the boundaries were

considered as outlets, and when only a portion of the top and bottom boundaries

were considered as outlets (A junction configuration).

6.2 Conclusions

In what follows, we list our conclusions which are divided between the physics of the

problems we solved and the numerical aspects of the research we have conducted.

1. The isogeometric analysis posses the unique ability to solve higher-order PDEs,

e.g., of order 2m, due to the ability to obtain Cm−1 basis functions, by tweaking the

multiplicity of any given knot within the knot vector. For any PDE in the strong

form, there are certain differentiability requirements on the trial and test function

spaces to obtain a smooth continuous solution within the weak form formulation;

and those requirements are satisfied in the case of a basis function of Cm−1 contin-

uous. This can be seen in the Euler-Lagrange equation of (2.3.2). In the context of

the gradient flow approach, we end up with a fourth-order PDE, which necessitates

the basis functions to be at least C1 continuous, which is in fact the case in all of

our numerical examples,
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2. In the case where the electric response of the vesicle’s membrane is the point of

interest, the penalty method is not suitable to maintain any constraint imposed to

preserve certain properties of the vesicle, like the initial volume and surface area.

After intensive and lengthy testing, the penalty method in this particular type of

problems suffers two deficiencies; when the penalty constant has a moderate to

a large value, the vesicle interface tends to lock-on to the initial shape and not

evolve over time, however, when the penalty constant is small to mitigate the lock-

on problem, the phase-field variable tend to dilute over the entire computational

domain or in another word, the diffusive interface with pre-defined width will not

be maintained during the temporal domain of the problem,

3. The vesicle tends to deform due to the presence of the electric field. An increase in

the electric field intensity leads to an increase in the deformation from the initial

spherical shape to an oblate-like shape. When the flexoelectric nature of the vesicle’s

membrane is considered, the vesicle evolves to an asymmetrical shape. Besides this,

the vesicle’s membrane acts like a capacitor preventing charges from moving freely

between intra- and extracellular medium, which leads to accumulations of charges

at the top and the bottom poles of the vesicles in the direction of the electric field.

The conductivity ratio, σin\σout , plays also a key role in the stationary state of

vesicles, where a sphere-to-prolate shape was observed on the higher end of the

tested spectrum, and a sphere-to-oblate was observed on the lower end,

4. When modeling the hydrodynamics of vesicle doublet in incompressible fluid flow,

the RBVMS method shows robustness, as it does not involve any ad hoc mecha-

nisms. It and the standard Galerkin method for the transport equation can ade-

quately predict the interaction between vesicles in a doublet system when a proper

interaction number is chosen. In our numerical simulation, we found out that a

value of 0.5 for the dimensionless interaction number would allow the vesicles to

get as close as possible to each other without overlapping or locking,

5. When placed in a shear flow, the vesicle doublet can either slip past each other or

slide on top of each other. This depends largely on the vertical displacement between

the two vesicles and the velocity profile applied to the boundaries. However, in a

planar extensional flow where the vesicle doublet system is placed at what resembles
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a junction, the vesicles slip past each other but at a varying times to do so. This is

also mainly affected by the vertical displacement. Different from this, a parachute-

like shape develops when the vesicles are placed in a tubular channel with two inlets

and two outlets. Upon converging on each other, the vesicles retract to form a

prolate-like shape before exiting the channel from the side outlets. The parachute-

like shape develops when the velocity profile is defined to be parabolic, and the

symmetry depends on whether the vesicles are centered around the centerline of

the velocity profile or not.

6.3 Future research

With the knowledge and experience gained over the course of this research in the fields

of vesicles electromechanics and hydrodynamics, we are actively seeking to address the

following points:

1. Investigate the time-varying electric and transmembrane potentials of the lipid bi-

layers, where due to the nature of the biomembrane as a barrier, electric charges

tend to pile up on the vesicle’s surface, and a concentration in the electric potential

starts to develop on both sides of the membrane, and thus, the electric potential

field experience a discontinuity. This discontinuity is expressed as jumps in the

Maxwell stress tensor, which in turn exerts large forces on the biomembrane [91]

itself, resulting in phenomenal morphological shapes of vesicles in time. A stream-

lines interpolation as shown in Fig. (4.7a) shows that despite an initial uniform

electrical field, the vesicle membrane tends to deflect the electrical charges away

from the vesicle. Additionally, there is a spike in the electric field intensity at the

top and the bottom of the vesicle in the direction of the electric field, as shown

in Fig. (4.7b) which depicts an accumulation of the electric charges in those re-

gions. It is because of this reason that a comprehensive study using the phase-field

method needs to be conducted to accurately calculate the electric potential across

the biomembrane given its vital rule in the time-varying evolution of vesicles where

the interpolating function used to approximate the conductivity within the compu-

tational domain, i.e., Eq. (2.20) does not capture the real physics of vesicles but

rather consider as a simplification for this complex physical multi-fields problem.
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2. In the case of vesicle doublet hydrodynamics, we conducted our research on the as-

sumption that the fluid inside the vesicle and outside it has the same viscosity, which

is not always the case [198, 199]. This simplification can be revisited by accounting

for the viscosity contrast and, therefore, solving the Navier-Stokes equation in its

full form. A broader image of single- and multi-vesicle systems hydrodynamics can

also be built in the case where a parametric study was to be conducted to test

vesicle behavior in turbulent flow at various Reynolds numbers. This can as well

be extended to account for different geometrical configurations, such as channels

with varying radii and curved channels, to study vesicles margination and hydro-

dynamics in a spatial environment similar to that in the human body. Doing so,

however, requires access to a powerful high-performance computing cluster, and a

highly optimized code to mitigate extra running costs. This can be implemented us-

ing PetIGA, with the need to devote more time in the prepossessing phase in order

to generate the required geometries, which requires generating and manipulating a

control mesh to produce the desired geometry.
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A
Phase-Field formulation of Bending,

Flexoelectric and Dielectric energies
In his doctoral thesis, Wang [162], proposed and proved two lemmas to reformulate the

sharp-interface defined bending energy surface integral to a phase-field defined bending

energy volume integral. In chapter 2, we relied heavily on those two lemmas to recast the

original definition of the bending, flexoelectric and dielectric energies into the phase-field

form. In this appendix, we show the original transformation, and although Wang [162]

models were only limited to incorporating the bending energy, we apply the lemmas to

the flexoelectric sharp-interface defined energy as well as the dielectric energy.

1. The first lemma

lim
ε→ 0

1
ε

∫
Ω

p(
d(x)

ε
) f (x)dx =

∫
∞

−∞

p(t)dt
∫

Γ

f (s)ds (A.1)

2. The second lemma ∫
∞

−∞

[1− tanh2(
x√
2 ε

)]2dx =
4
3

√
2ε (A.2)

The second lemma can be also further manipulated by dividing both sides of the equation

by the term on the right hand side, as following:
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3
4
√

2ε

∫
∞

−∞

[1− tanh2(
x√
2 ε

)]2dx = 1 (A.3)

The phase-field variable φ is defined by the profile of the tangent hyperbolic function and

regularized by the regularization parameter ε as following:

φ(x) = tanh
(di(x)√

2ε

)
, where

∇di(x) = n, and

n =

√
2ε

1−φ 2 ∇φ , and

∇ ·n =

√
2ε

1−φ 2

[
∆φ +

φ(1−φ 2)

ε2

]
=−2H

(A.4)

A.1 Bending Energy

The sharp-interface definition of the bending energy is as following:

EB =
∫

Γ

1
2

κ[2H +Hsp]
2 dΓ (A.5)

Using Eq. (A.3), we can rewrite the aforementioned definition in terms of the phase-field

variable φ , as following:

EB(φ)≈
(∫

Γ

1
2

κ[2H +Hsp]
2 dΓ

)(
3

4
√

2ε

∫
∞

−∞

[1−φ
2]2dx

)
(A.6)

And using the total curvature definition from Eq. (A.4) into Eq. (A.6), then we have:

EB(φ) =
3κ

8
√

2ε

∫
Ω

(1−φ
2)2(2H +Hsp)

2dΩ

=
3κ

8
√

2ε

∫
Ω

(1−φ
2)2
(−√2ε

1−φ 2

[
∆φ +

φ(1−φ 2)

ε2

]
+Hsp

)2

=
3κ

8
√

2ε

∫
Ω

[
−
√

2ε(∆φ +
φ

ε2 (1−φ
2))+Hsp(1−φ

2)
]2

=
3κ

8
√

2ε

∫
Ω

[
−
√

2ε∆φ −
√

2φ

ε
(1−φ

2)+Hsp(1−φ
2)
]2

=
3κ

8
√

2ε

∫
Ω

[
−
√

2ε∆φ −
√

2φ

ε
(1−φ

2)+

√
2√
2

Hsp(1−φ
2)
]2

=
3κ

8
√

2ε

∫
Ω

[−
√

2]2
[
ε∆φ +

φ

ε
(1−φ

2)− 1√
2

Hsp(1−φ
2)
]2

=
3κ

4
√

2ε

∫
Ω

[
ε∆φ +

φ

ε
(1−φ

2)− 1√
2

Hsp(1−φ
2)
]2

=
3κ

4
√

2ε

∫
Ω

[ε∆φ +(
φ

ε
−

Hsp√
2
)(1−φ

2)]2 dΩ

(A.7)
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A.2 Flexoelectric Energy

The flexoelectric energy defined on the surface of the vesicle as following:

EF =−
∫

Γ

∫ dm

0
Pf ·E dr dΓ =−2c1dm

∫
Γ

HE · n dΓ (A.8)

using the second lemma of Eq. (A.3) in Eq. (A.8), and substituting for the total curvature

and normal vector to the surface of the vesicles from Eq. (A.4), we end up with:

EF(φ)≈
(
−2c1dm

∫
Γ

HE · n dΓ

)(
3

4
√

2ε

∫
∞

−∞

[1−φ
2]2dx

)
=−6 c1 dm

4
√

2ε

∫
Ω

[
(1−φ

2)2 Hn ·∇ψ

]
dΩ

=−6 c1 dm

4
√

2ε

∫
Ω

(1−φ
2)2
( −√2ε

2(1−φ 2)

[
∆φ +

φ(1−φ 2)

ε2

]
n ·∇ψ

)
dΩ

=−6 c1 dm

4
√

2ε

∫
Ω

(1−φ
2)2
( −√2ε

2(1−φ 2)

[
∆φ +

φ(1−φ 2)

ε2

] √2ε

1−φ 2 ∇φ ·∇ψ

)
dΩ

=−6 c1 dm

4
√

2ε

∫
Ω

(1−φ
2)
( −√2ε

2(1−φ 2)

[
∆φ +

φ(1−φ 2)

ε2

]√
2ε∇φ ·∇ψ

)
dΩ

=−6 c1 dm

4
√

2ε

∫
Ω

(√2ε

2

[
∆φ +

φ(1−φ 2)

ε2

]√
2ε∇φ ·∇ψ

)
dΩ

=−6 c1 dm

4
√

2ε

∫
Ω

(
ε

2
[
∆φ +

φ(1−φ 2)

ε2

]
∇φ ·∇ψ

)
dΩ

=−6 c1 dm

4
√

2ε

∫
Ω

[
ε

2
∆φ +φ(1−φ

2)
]
∇φ ·∇ψ

)
dΩ

=−6 c1 dm

4
√

2ε

∫
Ω

ε

[
ε∆φ +

φ

ε
(1−φ

2)
]
∇φ ·∇ψ

)
dΩ

=−3c1dm

2
√

2

∫
Ω

[ε∆φ +
φ

ε
(1−φ

2)]∇φ ·∇ψ dΩ

(A.9)

A.3 Dielectric Energy of the Membrane

The sharp-interface definition of the dielectric energy of the membrane is as following:

EDM =−1
2

∫
Γ

∫ dm

0
De ·E dr

=−dm

2

∫
Γ

De ·E dA
(A.10)

where De is the electric displacement defined as De = εmE, and εm is the dielectric constant

of the vesicle. The term inside the surface integral of Eq. (A.10) De ·E can be simplified
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to εm |∇ψ|2 given that E =−∇ψ . Following this, Eq. (A.10) becomes:

EDM =−1
2

∫
Γ

∫ dm

0
De ·E dr =−dm εm

2

∫
Γ

|∇ψ|2 dΓ (A.11)

And by the second lemma of Eq. (A.3), the dielectric energy of the membrane can be

written as following:

EDM ≈
(
−dm εm

2

∫
Γ

|∇ψ|2 dΓ

)(
3

4
√

2ε

∫
∞

−∞

[1−φ
2]2
)

dx)

EDM(φ) =−3dm εm

8
√

2ε

∫
Ω

(1−φ
2)2|∇ψ|2 dΩ

(A.12)
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[186] Tadej Kotnik and Damijan Miklavčič. “Second-order model of membrane electric field

induced by alternating external electric fields”. In: IEEE Transactions on Biomedical

Engineering 47.8 (2000), pp. 1074–1081. DOI: 10.1109/10.855935.

[187] Miho Yanagisawa, Masayuki Imai, and Takashi Taniguchi. “Shape deformation of ternary

vesicles coupled with phase separation”. In: Physical review letters 100.14 (2008),

p. 148102. DOI: 10.1103/PhysRevLett.100.148102.

[188] Dayinta L Perrier et al. “The role of gel-phase domains in electroporation of vesicles”.

In: Scientific reports 8.1 (2018), pp. 1–10. DOI: https : / / doi . org / 10 . 1038 /

s41598-018-23097-9.

[189] Rumiana Dimova et al. “Giant vesicles in electric fields”. In: Soft matter 3.7 (2007),

pp. 817–827. DOI: 10.1039/b703580b.



140

[190] Will Schroeder, Ken Martin, and Bill Lorensen. The Visualization Toolkit An Object-

Oriented Approach To 3D Graphics. 4.1. Kitware, 2018.

[191] L. Dalcin and N. Collier. Toolkit for IsoGeometric Analysis (IGA). 2015.

[192] Y. Bazilevs et al. “Variational multiscale residual-based turbulence modeling for large

eddy simulation of incompressible flows”. In: Computer Methods in Applied Mechanics

and Engineering 197.1 (2007), pp. 173–201. DOI: https://doi.org/10.1016/j.

cma.2007.07.016.

[193] Peter Gamnitzer. “Residual-based variational multiscale methods for turbulent flows

and fluid-structure interaction”. PhD thesis. Technische Universität München, 2010.

[194] Kian Chuan Ong and Ming-Chih Lai. “An immersed boundary projection method for

simulating the inextensible vesicle dynamics”. In: Journal of Computational Physics

408 (2020), p. 109277. DOI: https://doi.org/10.1016/j.jcp.2020.109277.

[195] David Salac and Michael J Miksis. “Reynolds number effects on lipid vesicles”. In:

Journal of Fluid Mechanics 711 (2012), pp. 122–146. DOI: https://doi.org/10.

1017/jfm.2012.380.

[196] Aymen Laadhari, Pierre Saramito, and Chaouqi Misbah. “Vesicle tumbling inhibited

by inertia”. In: Physics of Fluids 24.3 (2012), p. 031901. DOI: 10.1063/1.3690862.

[197] Y. Bazilevs and T.J.R. Hughes. “Weak imposition of Dirichlet boundary conditions in

fluid mechanics”. In: Computers and Fluids 36.1 (2007). Challenges and Advances in

Flow Simulation and Modeling, pp. 12–26. DOI: https://doi.org/10.1016/j.

compfluid.2005.07.012.

[198] Badr Kaoui and Jens Harting. “Two-dimensional lattice Boltzmann simulations of vesi-

cles with viscosity contrast”. In: Rheologica Acta 55.6 (Aug. 2015), pp. 465–475. DOI:

10.1007/s00397-015-0867-6.

[199] John W. Barrett, Harald Garcke, and Robert Nürnberg. “Numerical computations of the

dynamics of fluidic membranes and vesicles”. In: Physical Review E 92.5 (Nov. 2015).

DOI: 10.1103/physreve.92.052704.



Mohammed H. A. Ashour

Contact
Information

Marienstr. 7
Institute of Structural Mechanics (ISM)
Bauhaus-Universität Weimar
99423 Weimar, Germany mohammed.ashour@uni-weimar.de

Education PhD. Scholar Sept. 2017 - Jul. 2022
Institute of Structural Mechanics (ISM)
Bauhaus-Universität Weimar, Weimar
Deutschland

Master of Science, M.Sc., Sept. 2010 - Feb. 2015
Faculty of Civil Engineering
Islamic-University of Gaza, Gaza
Gaza Strip, Palestinian Territory

Bachelor of Science, B.Sc., Sept. 2005 - Feb. 2010
Faculty of Civil Engineering
Islamic-University of Gaza, Gaza
Gaza Strip, Palestinian Territory

Research Bauhaus-Universität Weimar Weimar, DE-TH, October 2017 - July 2022
Researcher and PhD. Scholar, Vesicles Morphology using Phase-Field Isogeometric
Analysis from Computational Mechanics Point of View. Worked on:

• Vesicles morphology in Electric Fields using Phase-Field Isogeometric Analysis

• Phase-Field Navier-Stokes model for Vesicle Doublet Hydrodynamics

• Isogeometric Analysis and Parallel Implementation using PetIGA

Publication • Mohammed Ashour, Navid Valizadeh, and Timon Rabczuk. “Isogeometric
analysis for a phase-field constrained optimization problem of morpho-
logical evolution of vesicles in electrical fields”. In: Computer Methods in
Applied Mechanics and Engineering 377 (2021), p. 113669.

• Mohammed Ashour, Navid Valizadeh, and Timon Rabczuk. “Phase-Field
Navier-Stokes model for vesicle doublets hydrodynamics in incom-
pressible fluid flow”. In: Computer Methods in Applied Mechanics and Engi-
neering (Under Review).

Conferences
Proceedings

• Mohammed Ashour, Navid Valizadeh, “Isogeometric analysis of a phase
field model for simulating electromechanical behavior andmorphologi-
cal evolution of vesicles”. Conference Proceedings of Data Driven Computing
and Machine Learning in Engineering (DACOMA-19). Advances in Computa-
tional Mechanics. Volume 4, 2019. ISSN: 1940-5820 (printed). China, September
2019. [DOI: 10.32604/acm.2019.00185]

• Mohammed Ashour, Navid Valizadeh, and Timon Rabczuk. “Isogeometric
Analysis for a Phase-field Model of Vesicles Under the Influence of an
Electric Field”. Conference Proceedings of The International Conference on
Modern Mechanics and Applications (ICOMMA), Modern Mechanics and Appli-
cations, ISBN: 978-981-16-3238-9, December 2020 in Ho Chi Minh City, Vietnam.

Employment
and Experience

Supervising Site Engineer Jan. 2017 - Aug. 2017

Art-House Consultant
Gaza Strip, Palestinian Territory

Curriculum Vitae, Mohammed H. M. Ashour, 1

141



Site Engineer Oct. 2016 - Aug. 2017

PALCON Contracting Co.
Gaza Strip, Palestinian Territory

Supervising Site Engineer Apr. 2015 - Feb. 2016

Universal Group for Engineering and Consulting
Gaza Strip, Palestinian Territory

Finite Element Analyst Mar. 2016 - May. 2016

Universal Group for Engineering and Consulting
Gaza Strip, Palestinian Territory

Project Manager Oct. 2013 - Jan. 2016

Salam Residential Building Reconstruction Committee
Gaza Strip, Palestinian Territory

Structural Engineer and Quantity Surveyor Sep. 2013 - Feb. 2015

PALCON Contracting Co.
Gaza Strip, Palestinian Territory

Site Engineer Jun. 2011 - July. 2012

Catholic Relief Services (CRS)
Gaza Strip, Palestinian Territory

Site Engineer Jan. 2012 - Aug. 2013

PALCON Contracting Co.
Gaza Strip, Palestinian Territory

Curriculum Vitae, Mohammed H. M. Ashour, 2

142


	DEDICATION
	EPIGRAPH
	Ehrenwörtliche Erklärung
	Preface
	Acknowledgements
	Abstract
	Zusammenfassung
	Nomenclature
	Summary
	Motivation
	Phase-Field method
	Isogeometric analysis
	Vesicles and lipid bilayer membranes in computational mechanics
	Vesicles morphology using discrete models
	Vesicles morphology using continuum models
	Vesicles studies in the context of Level-Set method
	Vesicles studies in the context of Phase-Field method


	The electrodynamics and hydrodynamics of vesicles
	Vesicles Electrodynamics
	Vesicles Hydrodynamics

	Outline

	Phase-Field Method
	Introduction
	Thermodynamics of Phase-Field method
	Single vesicle electrodynamics in the context of the phase-field method
	Mathematical model
	Phase-Field formulation

	Vesicle doublet hydrodynamics in the context of the phase-field method
	Mathematical model
	Phase-Field formulation


	Isogeometric Analysis
	Introduction
	B-splines basis functions
	B-splines Curves and Surfaces
	B-Spline Curves
	B-Spline Surfaces

	The Non-Uniform Rational B-splines (NURBS)
	hpk-Refinement
	Preliminary IGA Work: Rectangular plate with a circular hole
	Problem's equations
	The Strong form of the problem
	The Weak form of the problem
	Numerical results


	A Constrained Optimization Problem of Morphological Evolution of Vesicles in Electric Fields
	Introduction
	The strong form
	The weak form and numerical formulation
	Continuous problem in the weak form
	The semidiscrete formulation
	Time discretization and numerical implementation
	Modified ALM implementation

	Numerical results
	Constrained Willmore flow problem
	Electrical response of vesicles
	Evolution of Vesicles in presence of flexoelectric effect
	Conductivity role in morphological evolution

	Summary

	Phase-Field Navier-Stokes model for vesicle doublets hydrodynamics in incompressible fluid flow
	Introduction
	The strong form
	Numerical formulation and RBVMS implementation
	The weak form
	The semi-discrete formulation
	Time discretization and numerical implementation

	Numerical examples
	Vesicle doublet in stationary fluid
	Effect of Interaction Number
	Vesicle doublet suspended in a shear flow
	Vesicle doublet suspended in a planar extensional flow

	Summary

	Summary, conclusions, and future research
	Summary
	Conclusions
	Future research

	Phase-Field formulation of Bending, Flexoelectric and Dielectric energies
	Bending Energy
	Flexoelectric Energy
	Dielectric Energy of the Membrane
	Curriculum Vitae


