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Abstract Identification of modal parameters of a space frame structure is a complex assignment due to a
large number of degrees of freedom, close natural frequencies, and different vibrating mechanisms. Research
has been carried out on the modal identification of rather simple truss structures. So far, less attention has
been given to complex three-dimensional truss structures. This work develops a vibration-based methodology
for determining modal information of three-dimensional space truss structures. The method uses a relatively
complex space truss structure for its verification. Numerical modelling of the system gives modal information
about the expected vibration behaviour. The identification process involves closely spaced modes that are
characterised by local and global vibration mechanisms. To distinguish between local and global vibrations of
the system, modal strain energies are used as an indicator. The experimental validation, which incorporated
a modal analysis employing the stochastic subspace identification method, has confirmed that considering
relatively high model orders is required to identify specific mode shapes. Especially in the case of the determi-
nation of local deformation modes of space truss members, higher model orders have to be taken into account
than in the modal identification of most other types of structures.

1 Introduction

Space truss structures are a typical solution adopted in previous decades for many civil engineering and
aerospace applications, such as bridges, roof structures, and spacecraft systems. The reason for their wide use
is not only their lightweight but also their ease of erection and low construction costs. Often, historical space
truss structures do not satisfy the current code requirements, and measuring their actual load-bearing capacity
would be a proof of the liability of these systems. The stress status of space truss structures is a practical guide
to the load-bearing capacity of these systems for further use. Static load testing is a direct and traditional, yet
costly, approach to determine the load-bearing capacity of structures. Alternatively, the determination of actual
axial forces in the members of a space truss structure can help in the assessment of the remaining load-bearing
capacity. Using the dynamic parameters of space frame structures obtained from modal identification, the
actual axial forces can be calculated.

In [1,2], the authors used a sensitivity-based method to identify axial forces in space truss structures
from dynamic measurements. A methodology for model updating and tension force identification of a two-
dimensional truss structure based onmodal parameters has been developed by Luong et al. [3]. In the literature,
several approaches [4–6] are available to determine axial forces in a beam member based on an estimation
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of its bending vibration behaviour. Therefore, the correct identification and assignment of modal parameters
for truss structures and their members is mandatory to accurately determine internal forces based on vibration
tests. Nevertheless, the identification of the dynamic behaviour of space truss structures has received little
attention in the literature so far. Only [7] describes the different vibration mechanisms of space truss structures
and provides a comprehensive approach to consider the interference between global and local mechanisms,
explained further in Sect. 2.2. Therefore, the motivation behind this research is to accurately identify both
the global and local mechanisms of complex space frame structures. Another key aim is to correctly assign
experimentally identified modes to numerical modes, by means of automation, during a model updating phase.
Achieving these objectives will enable the derivation of the actual axial forces in their members.

In this paper, to determine the modal parameters of a space truss structure, a methodology is developed to
identify both local and global vibration behaviours. Numerical modelling provides information on the expected
modal parameters, i.e. frequencies and mode shapes. The numerical model is used to identify the type of
vibration mechanism based on modal strain energy calculation. Further, an experimental test is performed on
a 3-m-long space truss structure to verify the numerical results.

In the following section, we will briefly discuss the theoretical background of methods applied within an
identification approach introduced in Sect. 3. The numerical implementation and experimental verification are
described in Sects. 4 and 5. The results and findings are then discussed in Sect. 6.

2 Theoretical background

Experimental testing is a widely used technique to determine the dynamic behaviour of different types of
structures. Many approaches have been developed to perform field testing, for example, experimental modal
analysis (EMA). This method depends on measuring both the excitation force and the structural response. An
advancement of this method is operational modal analysis (OMA), which only requires the recording of the
structural response. The natural or artificial excitation that is unknown [8] should satisfy some assumptions
with respect to its statistical properties in time and space.

Especially in terms of larger systems, such as civil structures, OMA is a powerful tool, as practically no
technical effort for the generation and recording of an excitation is required [9]. There are many techniques
of OMA, which can be categorised into parametric and nonparametric approaches. In addition, one also
distinguishes between time-domain and frequency-domain methods. This research adopts the covariance-
driven stochastic subspace identification (SSI-cov), a parametric time-domain method based on a stochastic
state-space model.

In the next section, a brief overview of the theory behind SSI-cov is given in order to provide background
for some of the findings of the present study on a space frame system.

2.1 The SSI-cov algorithm

The dynamic behaviour of a multi-degree of freedom system can be described by the well-known system of
equations of motion, e.g. [10]:

[M]{q̈(t)} + [C2]{q̇(t)} + [K ]{q(t)} = { f (t)} (1)

where {q̈(t)}, {q̇(t)}, {q(t)}, and { f (t)} are the acceleration, velocity, displacement, and force vectors, respec-
tively. [M], [C2], and [K ] denote the mass, viscous damping, and stiffness matrices of the system. Equation
(1) defines a set of linear second-order differential equations. This set of equations can be transferred into a
set of first-order differential equations by a simple extension in the following form [10]:

[[C2] [M]
[M] [0]

] {{q̇(t)}
{q̈(t)}

}
︸ ︷︷ ︸

{ṡ(t)}

+
[[K ] [0]

[0] [−M]
] {{q(t)}

{q̇(t)}
}

︸ ︷︷ ︸
{s(t)}

=
[[B]

[0]
]

{u(t)} (2)

where {s(t)} is the state vector and { f (t)} is given by [B] and {u(t)}, which defines the location of inputs
and the time variation, respectively. One can derive from Eq. (2) in some steps the stochastic discrete-time
state-space model, e.g. [9]:

{sk+1} = [A]{sk} + {wk} (3)
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{yk} = [C]{sk} + {vk} (4)

where {sk} is the discrete-time state vector and k denotes the discrete-time instant such that (tk = k�t). The
matrices [A] and [C] are the discrete state matrix and the discrete output matrix, respectively, while {yk} is
the sampled observed (i.e. measured) response of the system. The noise vectors {wk} and {vk} represent a
combination of the stochastic unknown excitation with process noise in the first case and with measurement
noise in the second case.

It can be further shown that the output covariance matrix [Ri ] can be composed based on the measured
output signals as in Eq.5, e.g. [10]. Therefore, the matrices [A] and [C], decomposition of [Ri ], can be related
to the measured output signals as follows:

= E[{yk+i }{yk}T }] = [C][A]i−1[G]
= [C][�c][�d ]i−1[�c]−1[G]
= [V ][�d ]i−1[Gm]; i = 1, 2, . . .

(5)

where [G] is the next state-output covariance matrix that describes the covariance between the system response
and the updated state vector. [�c], [�d ], [V ], and [Gm] are the eigenvector matrix, the eigenvalues diagonal
matrix, the modal output matrix, and the modal next state - output covariance matrix, respectively, of the
discrete-time state-space model.

As indicated by Equation (5), an appropriate decomposition of the output covariance matrix [Ri ] allows
for an identification of the matrices [C] and [A]. The modal parameters can then be obtained by a subsequent
transformation of Equation (5) into modal domain.

In an experimental study, the dimension of matrix [A], i.e. double the number of degrees of freedom (DOF)
of the physical system, is unknown. To overcome this problem, it is common practice to compute the solutions
assuming a number of different model orders. Therefore, it is also common to represent the results of these
model orders in a stabilisation diagram, as shown in Fig. 1. Those poles that occur repetitively as solutions
of the respective matrix decomposition are assumed to be related to physical modes. The diagram allows the
analyst to select the appropriate parameters related to the physical modes of a given system. In this context,
the following stabilisation criteria are applied, as suggested by, e.g. Rainieri and Fabbrocino [9].

| f (n̄) − f (n̄ + 1)|
f (n̄)

< 0.01 (6)

|ζ(n̄) − ζ(n̄ + 1)|
ζ(n)

< 0.05 (7)

1 − MAC({φ(n̄)}, {φ(n̄ + 1)}) < 0.02 (8)

Here, f (n̄), ζ(n̄), and {φ(n̄)} are the frequency, damping ratio, and mode shape vector at model order n̄.
MAC is the model assurance criterion, as given in [11]. Nevertheless, the selection of appropriate poles from
a stabilisation diagram is also influenced by further factors that have their origins both in the physical test and
data analysis.

For example, some modes are usually more excited than others in a modal test. As given in [9] and [12],
the weakly excited modes may appear only at a higher model order. Further, as mentioned earlier, the number
of DOF of the considered system, which determines the order of a respective state-space model, is also related
to the number of modes that can be excited and identified. Accordingly, identifying modes that require the
inclusion of a certain number of DOF in a theoretical model of a structure requires considering a state-space
model obtained from experimental data at a respective high order.

2.2 Numerical distinction between local and global vibrations

On the one hand, the vibration behaviour of space truss structures is characterised by global deformations of
the complete system, for example, plate or beam bending or torsion in the case of truss beams. On the other
hand, individual members can deform in local bending patterns.

In order to be able to represent the bending vibrations of individual members numerically, they should
be modelled by finite beam elements with a discretisation between the structural nodes. Without intermediate
DOF, a deformation of the truss members, i.e. between the structural nodes, cannot be represented. However,
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Fig. 1 Stabilisation diagram related to identification of global frequencies of a space frame structure, presented in this study, of
a frequency until 500 Hz, with a model order of 50. (◦) satisfies the pre-defined stability criteria, and (◦) is below these criteria

discretising the truss members into several beam elements can make a clear distinction between global and
local mode shapes very difficult.

To distinguish between local and global mode shapes of a numerical model, an approach based on modal
strain energy (MSE) was suggested in [7]. The total modal strain energy of a space frame structure is given as,
e.g. [13],

MSE = 1

2
[�]T[K ][�] (9)

where [�] and [K ] are the modal matrix and the stiffness matrix of the structure, respectively. This relation
can also be applied to single elements, i.e. using the element stiffness matrices. Accordingly, the breakdown
of the modal strain energy to a single beam element allows for a distinction between axial, bending, torsional,
and shear strain energy components.

As the global deformation of truss structures is mainly related to longitudinal forces and strains in the
structural members, the contributions of axial strains dominate the total strain energy for these deformation
states. On the other hand, local deformation of the members results in bending strain energy. Therefore,
calculating the percentage of participation of the axial and bending strain energies to the total strain energy
gives a clear understanding of the type of deformation of each vibration mode.

Additionally, the calculation of the modal strain energy shows which DOF are active in each mode shape.
This facilitates the selection of relevant DOF, i.e. location and direction of sensors, to be considered in exper-
imental set-ups.

2.3 Mode shape pairing

An automated identification of internal member forces requires a correct assignment of numerical modes to
respective identified modes, i.e. a method for the distinction between local and global modal components.
For this purpose, the energy-based modal assurance criterion (EMAC), proposed in [14], is adopted to ensure
correct mode shape pairing in the identification process. The EMAC uses the regular MAC, given in the
following equation:

MACxn = ({�}T
x {�}n)

2

({�}T
x {�}x )({�}T

n {�}n)
(10)
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where {�}n and {�}x are the numerical and experimental mode shapes, respectively. Then, the DOF, in the
case of any given structure, are separated into z clusters, such that the eigenvector of a mode shape n is written
as follows:

{�}T
n = [{�}T

n1{�}T
n2 . . . {�}T

nz]T (11)

and the corresponding clustered stiffness matrices Krl are given by

K =

⎡
⎢⎢⎣

K11 K12 . . . K1z
K21 K12 . . . K1z
...

...
. . .

...
Kz1 Kz2 . . . Kzz

⎤
⎥⎥⎦ (12)

where [K ] is the global stiffness matrix and ∀r, l = 1, 2 . . . z. Afterwards, a weighting factor �nr , which
defines the relative modal strain energy (MSEnr ) for each mode n based on a respective cluster r of DOF, is
calculated by

�nr = MSEnr

MSEn
=

∑z
l=1{�}T

nr [K ]rl{�}nl

{�}T
n [K ]{�}n

(13)

where MSEn is the total modal strain energy of the same mode n obtained from the numerical model. The
EMAC is then calculated, as given in [14] by

EMACxnr = �nr × MACxn (14)

and, similar to the MAC limits, it takes values between zero for no correlation and one showing a high
correlation.

3 Identification methodology

To correctly determine the modal solution of a space frame structure, the following procedure, shown in
Fig. 2, is proposed. The proposed steps target the numerical and experimental identification of local and global
modes of space frame structures. The procedure starts by creating a numerical model for a respective space
frame structure, using finite beam elements to represent the dynamic behaviour of the members in addition to
global structural deformations. By means of the solution of the generalised eigenvalue problem related to the
undamped system, the modal parameters are obtained. Based on the modal strain energy calculation, global
and local vibration modes are distinguished. Afterwards, using the numerical parameters, a group of DOF is
chosen for the experimental modal analyses.

In this study, modal parameters were identified by OMA. Therefore, only the structural response, with
no excitation, was measured during the tests, such that measurement data were acquired at the locations of
accelerometers, i.e. selected DOF, to capture both local and global modes of the structure. To obtain all desired
natural frequencies and mode shapes, a parameter study of the influence of the SSI-cov parameters on the
number of identified modal parameters is necessary, for example, the maximal computed model order. Then,
using the respective SSI-cov parameters, system and modal identification follows. Finally, using the EMAC
criterion, an automatic pairing between numerical and experimental mode shapes is conducted, followed by
the MAC values calculation. Identified mode shapes are complex, while the numerical modal analysis of an
undamped system results in real-valued modes. To overcome this problem, the real part of the experimental
modes was used for theMAC values calculation after a coordinate transformation to minimise the values of the
imaginary part. Eventually, selected mode shapes and natural frequencies are provided for subsequent use to
determine internal member forces. The proposed methodology has been applied and tested on the space truss
structure, shown in Fig. 3. Section4.1 prescribes the characteristics of the space truss structure of this work.
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Fig. 2 Proposed methodology to identify local and global vibrations of space frame structures

Fig. 3 Physical truss model with (—–) tubular cross section of 22mm diameter and thickness of 1mm, ( ) threaded rod of
8.9mm diameter, and MERO standard nodes

4 Implementation

4.1 Physical model description

The space truss model, shown in Fig. 3, is 3m long and 0.5m wide. The main part has a height of 0.353m.
All elements are of a standardised tubular cross section with an external diameter of 22mm and a 1mm wall
thickness. Apart from the threaded rod that is marked in red in Fig. 2, the structural elements have a length
of 0.5 or 0.7m, depending on their position. The circular cross section of the 2.5-m-long threaded rod has a
core diameter of 8.9mm. Each of the tubular members has a hexagonal connector with an M12 bolt at the two
ends. The M12 bolts connect the members with MERO standard nodes. Figure4 shows the connection detail
between the member and the node.
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Fig. 4 Characteristics of MERO member and end connection to MERO standard node

Table 1 Dimensions of the physical model elements

Item Weight (kg)

500 mm member 0.3801

707 mm member 0.4801

Standard MERO node 0.235
1The weight of the member includes the end connections weight

Fig. 5 End connection between the threaded rod and MERO standard node

Due to the end connections of the member, the total weight of a member is higher than a pure tubular cross
section. In the numerical model, the length of any member is assumed to cover the distance between the centre
lines of the connecting nodes. Table 1 gives the weight of the members and the connecting nodes used in the
physical model. The threaded rod has been introduced to provide a possibility to pre-stress the system such
that different levels of normal force in the truss members can be achieved by tightening a nut at the rod’s end.
Figure5 illustrates how the threaded rod is attached to the MERO node.

Additionally, a non-negligible effect of the mass at the connection nodes on the dynamic behaviour of the
system has to be expected. Therefore, the masses of the respective connectors at the rods’ ends and of the
spherical nodes were taken into account as concentrated masses located at the connection nodes.

4.2 Numerical modelling

For the preparation of the experimental tests, a numerical model of the space truss structure, shown in Fig. 3,
has been created using the finite element software SOFiSTiK [15]. The modelling of the members of the space
truss included finite beam elements using the Timoshenko beam theory. Young’s modulus, Poisson’s ratio,
and density are 2.1 × 105 N/mm2, 0.3, and 7800kg/m3, respectively. These parameters are assumed to be
known and constant. Each member of the truss was discretised into six beam elements, such that five nodes are
always between the structural connecting nodes in the numerical model. The threaded rod was discretised into
forty beam elements to reach mesh convergence. To simplify the numerical model, the members are rigidly
connected. Possible rotational flexibility in the nodes has not been taken into account as the stiffness of the
bolted connection is considered very high regarding the minimal deflections in a modal test.
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Fig. 6 Location of hinged supports of the space truss structure (the threaded rod is omitted)

Table 2 Comparison of the calculated natural frequencies due to free–free support conditions using different discretisations

Mode Coarse discretisation Fine discretisation Diff. [%]

72.0zH05.79zH67.791

96.0zH56.301zH73.4012

19.0zH82.621zH34.7213

63.8zH19.591zH97.3124

A free–free support condition is assumed and simulated in experimental set-ups by suspending the structure
using rubber cords. Such that the experimental boundary conditions, whichwere chosen to avoid uncontrollable
effects from uncertain boundary conditions, could be represented appropriately. In [7], the authors observed for
a similar structure as considered here that the computed natural frequencies of the first global mode differed by
about 75% between two models with and without discretised truss members in the case of free–free boundary
conditions. This phenomenonwas not observed in the case of a clamped support on the one end of the structure,
which gives reason to investigate if similar effects occur with the space truss structure of this study as well.

4.2.1 Effect of the free–free boundary condition on the vibration mechanisms

The first four globalmodes of the case study truss of this work are examined under free–free and hinged–hinged
boundary conditions. In the first model, each truss member was modelled by a single beam element (coarse
discretisation). Then, in the second model, the members were discretised with five intermediate nodes (fine
discretisation). The comparison was carried out without including the threaded rod in the analysis, only the
space truss structure. After investigating these two cases for free–free boundary condition, hinged supports
were introduced into both models at the locations shown in Fig. 6.

Divergent from the results in [7], the respective natural frequencies obtained for the models with the two
considered boundary conditions, as given in Tables 2 and 3, do not deviate in different orders in case of choosing
a finer discretisation for the truss members. In fact, the respective relative deviations are even smaller if the
system had free–free boundary conditions in most cases. Accordingly, the statement in [7] could not be proven;
therefore, such a negative effect of free–free boundary conditions on the numerical results is not expected.
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Table 3 Comparison of the calculated natural frequencies due to hinged–hinged support conditions using different discretisations

Mode Coarse discretisation Fine discretisation Diff. [%]

52.1zH73.611zH58.7111

49.1zH81.461zH24.7612

05.1zH07.961zH82.2713

73.5zH04.002zH77.1124

4.3 Results of the numerical analysis

The numerical model of the space truss structure is vital to understand the structure’s different vibration
mechanisms. Due to the free–free boundary conditions, the first six mode shapes are rigid body movements
(three translations and three rotations) with frequencies equal to zero Hz. By excluding these modes, the first
eighteen mode shapes, extracted from the numerical model with their natural frequencies, are shown in Fig. 7.
The numerical outcome shows two vibration mode types, global and local vibrations, which agree with the
results given in [7]. If a mode of the complete structure is deformed like a continuum system, the mode shape
is considered a global vibration mode. That is to say that the whole structure deformation is higher than any
local member deformation. For example, the 11th, 14th, and 15th mode shapes in Fig. 7 are classified as global
modes: torsion, lateral bending, and vertical bending.

On the contrary, a mode is classified as local if the deformations of one or several members dominate the
system’s mode shape. For instance, modes 1 to 10 show local vibrations of the threaded rod (lateral and vertical
bending), while the rest of the space truss structure shows barely any deformation. Similarly, modes 12, 16,
and 17 illustrate local member bending of the end inverted pyramids along with the threaded rod.

In some cases, it is infeasible to clearly distinguish which type of vibration dominates because the mode
is a combination of local member deformations and global vibration. For example, modes 7 and 13 combine
global torsion with local member bending of the threaded rod, while mode 18 looks like a second-order global
beam bending mode with local member bending.

Concerning this issue, the global vibration of a space truss structure is related to the axial deformations of
the members. On the other hand, local member vibration corresponds to a bending deformation of the member.
Thus, as implied in [7], a separation between the two types of vibration is possible based on the modal strain
energies, namely axial and bending strain energies of the truss members.

Accordingly, the percentage of participation of either axial or bending strain energies to the total modal
strain energy of a space truss structure can be used as an indicator to distinguish between global and local
modes. As given in Table 4, Ua/Ut and Ub/Ut are the axial modal strain energy and bending strain energy
ratios, respectively, where Ua , Ub, and Ut are the axial, bending, and total modal strain energies, respectively.

For example, in the case of the 7th and 13th modes, the bending modal strain energy is much higher
than the axial. Thus, these modes can be considered as dominated by local member vibrations. The case is
reversed in mode 15, where the axial modal strain energy surpasses the bending, implying that this mode
is a global vibration. In the case of mode 18, the contributions of axial strain and local bending to the total



M. Abdelnour, V. Zabel

Fig. 7 First eighteen numerical mode shapes of the space truss structure with their natural frequencies. (*) These modes include
combined local and global vibrations, the classification, whether local or global, is based on the higher ratio of their modal strain
energy, calculated in Table 4



Modal identification of structures with a dynamic behaviour

Table 4 Contributions of axial and bending strain energies to the total strain energy of the first eighteen modes

Mode Freq. Axial MSE ratio Bending MSE ratio Vibration type

[Hz] (Ua/Ut )1,2 (Ub/Ut )1,2 Global Local G & L

1 6.61 0.000 0.995 – X –
2 6.85 0.000 0.997 – X –
3 18.02 0.002 0.995 – X –
4 18.06 0.000 0.995 – X –
5 35.32 0.000 0.995 – X –
6 35.52 0.000 0.996 – X –
7 58.02 0.010 0.986 – X –
8 58.33 0.000 0.995 – X –
9 86.99 0.001 0.992 – X –
10 87.08 0.002 0.993 – X –
11 97.54 0.912 0.062 X - –
12 121.49 0.000 0.994 – X –
13 122.28 0.026 0.969 – X –
14 127.41 0.928 0.049 X – –
15 144.50 0.835 0.150 X – –
16 161.35 0.006 0.988 – X –
17 161.85 0.012 0.981 – X –
18 191.82 0.472 0.441 – – X
1The summation of the strain energies ratios is not equal to one, because the contributions of shear and torsion strain energies
are not included, 2MSE is an abbreviation of modal strain energy, Ua the axial modal strain energy, Ut total modal strain energy,
and Ub is the bending modal strain energy

Fig. 8 First set-up of sensors to capture global modes of the space truss structure, sensors ( ) are on the structural connection
nodes

modal deformation are almost equal. Consequently, this mode is classified as a combination of global and local
deformation.

Based on the numerical analysis results, it can be concluded that it should be possible to identify several
modes by modal testing as global and others as local member modes. At the same time, due to relatively close
natural frequencies and some mode shapes that combine local and global deformation patterns, it is a great
challenge to identify some modes correctly and relate them to the numerical results.

5 Experimental verification

5.1 Experimental set-up

In the modal tests, 3d-accelerometers (PCB 356A16, sensitivity ± 100 mV/g) were installed in three set-ups
to focus on a clear distinction between global and local vibration mechanisms. The sensors in the first set-up
were positioned on the connecting structural nodes of the space truss structure to identify only global vibration
modes, as shown in Fig. 8.

The second and third set-ups target the local bending vibrationmodes of tension and compressionmembers,
respectively, as indicated in Fig. 9. The structural response to multiple impulsive excitations, generated by
means of an impulse hammer, was simultaneously recorded using the accelerometers in lateral and vertical
directions. The broadband spectrum of the impulses covered a frequency range of up to approximately 220
Hz. No pre-stressing was applied to the threaded rod in any set-up configurations. For the modal identification,
the SSI-cov was utilised as implemented in [16].
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Fig. 9 Second and third set-ups of sensors to capture local member vibration modes of the space truss structure, sensors ( ) are
distributed equally along the length of the members, set-up 2 is for tension top chord members, while set-up 3 is for compression
bottom chord members

Fig. 10 Influence of the maximal model order on the number of identified experimental modes from tests in the first set-up,
number of block rows considered equals 300, (•) only these points are considered in the analysis

5.2 Modal identification

Prior to a modal identification, it is important to investigate the influence of the analysis parameters used within
the SSI-cov, such as the number of block rows of the block-Toeplitz matrix and the maximal considered system
model order, for example, as proposed in [17]. On the one hand, if the model order is underestimated, it may
result in some modes being left unidentified within the considered frequency range. On the other hand, the
consideration of model orders greater than the actual system model order results in spurious solutions that are
not related to the physical system behaviour. Particularly in the case of space truss structures, vibration modes
of non-instrumented members may contribute to the measured signals and result in identified modal solutions
that are difficult to interpret.

Additional effects can occur due to interference betweenmodeswith close natural frequencies, for example,
global and local modes, which is the case in this work. A stabilisation diagram is a reliable tool for selecting
physical mode shapes to obtain solutions for a parametric modal identification.

Figure10 shows the relation between the maximum model order used in the identification process and
the number of obtained experimental modes. The relation between the identifiable modes and the maximum
model order indicates that not only the mathematical system, to be identified in the first step of the system
identification, is related to the modal model but also to a mechanical system model with a certain number of
actual DOF. For example, as in this study, only a model that includes DOF between the structural connection
nodes can show modes representing deformation along the truss members. Therefore, the minimum model
order to identify local vibration modes is by far higher than the one required for identifying global ones,
which only includes DOF at the structural connecting nodes. Nonetheless, modal contributions of the analysed
measurements include the well-known effect on the minimum model order required to obtain modes that have
hardly a response at the respective DOF.

The maximummodel order is typically bounded by 100 or 200 for common civil engineering applications.
Yet, as shown in Fig. 10, the increase in the model order leads to more identified modes. Figure11 shows how
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Fig. 11 Stabilisation diagram of identified modes from tests in the first set-up; using a model order of 800 with 300 block rows
and a model order of 100 with 50 block rows

insufficient the use of a model order of 100 is for identifying modal parameters of the considered space truss
structure. In a range of frequencies up to 300 Hz, it is possible to extract only four or five modes. However, for
the same frequency range but with a model order greater than 100, additional stable poles appear that are not
only spurious solutions but are also related to the physical modes of the structure. This observation differs from
the identification of continuous systems, for example, bridges, towers, and structural floors, where a smaller
model order would be sufficient with the frequency range under consideration.

5.3 Experimental results

5.3.1 Selection of physical modes from the first set-up

Figure12 shows the stable poles, according to the stability criteria in section 2.1, for the identified modes of
the space truss structure. However, not all of the stable poles are solutions related to physical modes. Thus,
additional selection criteria based on the following parameters are utilised:

1. damping ratio to be positive and less than 5%,
2. mode shape complexity by modal phase collinearity (MPC) value [18] to be equal to or greater than 0.9.

Table 5 provides the selection criteria values for 15 poles, as shown in Fig. 12. Identified experimental
modes 1, 2, and 3 fail to satisfy the chosen criteria to obtain physical modes. Despite this, it is worth noting
that a comparison of the solutions for these modes at different model orders reveals an increase in solution
accuracy with higher model orders. Thus, it may be possible to obtain solutions for these modes that meet
the criteria at even a higher model order than 800. Additionally, even though these solutions are concentrated
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Fig. 12 Stabilisation diagram of stable and non-stable poles for the identification of physical modes of the space truss structure
from tests in the first set-up. (◦) denotes poles satisfying the pre-defined stability criteria defined in Sect. 2.1, and (◦) refers to
poles below these criteria

Table 5 Natural frequencies, modal damping ratios, and MPC of the poles of the identified modes from tests in the first set-up

Mode Exp. Freq. Damping ratio MPC Mode shape type
(Hz) (%) (–)

1 3.88 14.34 0.94 *
2 50.21 4.30 0.84 *
3 73.39 1.26 0.46 *
4 93.30 0.57 0.99 1st-order torsion
5 100.94 0.46 0.99 1st-order torsion
6 126.42 0.06 0.99 1st-order lateral bending
7 139.41 0.25 0.99 1st-order vertical bending
8 185.04 0.28 0.99 2nd-order vertical bending
9 200.65 0.20 0.92 2nd-order lateral bending
10 207.49 0.21 0.99 2nd-order torsion
11 212.80 0.35 0.94 2nd-order torsion
12 220.85 0.10 0.99 2nd-order torsion
13 225.34 0.07 0.98 1st-order vertical bending
14 237.23 0.19 0.99 2nd-order vertical bending
15 247.43 0.07 0.99 2nd-order lateral bending

(*) The type of mode shape could not be identified because the solution’s resolution was insufficient

in the region close to the local vibration of the threaded rod, according to the numerical results, a very slight
global vibration of the space frame structure could be observed. For example, the 7th numerical mode may be
possible to capture by the first set-up in case of considering a higher model order.

The next step was the automatic pairing of the experimental mode shapes with the numerical results, using
EMAC values calculation, as explained in Sect. 2.3. For this calculation, the weighting factor � is based on a
cluster of axial DOF for each numerical mode. The EMAC values of the identified experimental modes (4th
to 15th) and the numerical modes (11th to 18th) are shown in Fig. 13.

Based on the experimental results, the 4th and 5th experimental modes exhibit first-order torsion with
very close natural frequencies, which strongly correlates with the 11th numerical mode. It is worth noting that
the 5th experimental mode is obtained from a lower model order compared to the 4th experimental mode.
This suggests that the 5th experimental mode is more likely to be a solution related to a physical mode rather
than the 4th experimental mode. Therefore, the 5th experimental mode is considered to be a more reliable
representation of the system’s behaviour in terms of torsion.
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Fig. 13 EMAC values of identified modes, from the tests in the first set-up, and the numerical modes for an automatic pairing of
the mode shapes

In a similar manner, the 8th and 14th experimental modes are second-order vertical bending, but with
significantly different frequencies. These modes correlate with the 18th numerical mode, which upon closer
inspection, is found to be a combination of local deformation and global vibration, refer to Fig. 7. It is important
to note that the first experimental set-up only considered DOF at the structural nodes, and the weighting factor
� was based solely on axial DOF, without considering any bending DOF. As a result, the complete shape
of the 8th experimental mode may have been underestimated. Despite this limitation, based on the natural
frequencies of the 8th and 14th experimental modes, the 8th experimental mode is selected to represent the
second-order vertical bending behaviour of the 18th numerical mode.
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Fig. 14 Identified global modes of the space truss structure and their corresponding frequencies

Fig. 15 MAC values of four global mode shapes of the space truss structure

5.3.2 Global modes

With accelerometers installed at the structural nodes in the first set-up, identifying global mode shapes with
their frequencies was successful. Figure14 shows four global modes within a frequency range from 90 Hz to
200 Hz. The experimental results showed a high correlation to the numerical modes, as shown in the MAC
values calculated for these four modes, shown in Fig. 15.

The MAC values of the 5th, 6th, and 7th experimental modes with the 11th, 14th, and 15th numerical
modes are above 90%, while for the last mode, the MAC is only 70%. As indicated in Table 4, the modal strain
energy is mainly related to axial member deformations. Thus, placing the sensors at the structural nodes led to
the identification of these modes with high correlation. On the contrary, in the case of the 18th numerical mode,
the modal strain energy is almost equally distributed between axial and bending deformations. Consequently,
an installation of sensors at both structural nodes and local members is essential to capture the full mode shape
with sufficient spatial resolution. In this case, only the structural nodes were used, which explains the low
MAC value of this mode.
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Fig. 16 Stabilisation diagram of stable and non-stable poles for the identification of physical modes of the space truss structure
from tests in the second set-up. (◦) denotes poles satisfies the pre-defined stability criteria defined in Sect. 2.1, and (◦) refers to
poles below these criteria

Fig. 17 Stabilisation diagram of stable and non-stable poles for the identification of physical modes of the space truss structure
from tests in the third set-up. (◦) denotes poles satisfies the pre-defined stability criteria defined in Sect. 2.1, and (◦) refers to
poles below these criteria

Table 6 Natural frequencies, modal damping ratios, and MPC of the poles of the identified modes from tests in the second set-up

Mode Exp. Freq. Damping ratio MPC Mode shape type
(Hz) (%) (–)

1 127.32 0.40 0.99 1st-order lateral bending
2 139.64 0.39 0.99 1st-order vertical bending
3 186.76 0.11 0.99 2nd-order vertical bending

5.3.3 Selection of physical modes from the two and three set-up

Figures 16 and 17 present stabilisation diagrams for the system identification of tests conducted on the second
and third set-ups, respectively, to determine the local vibration modes of specific tension members in top chord
and compression members in the bottom chord, as explained in Sect. 5.1.

In both cases, a high model order of 600 and 500, respectively, was required to accurately capture the local
vibration modes that correspond to the global vibration behaviour of space frame structure. However, the tests,
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Table 7 Natural frequencies, modal damping ratios, and MPC of the poles of the identified modes from tests in the third set-up

Mode Exp. Freq. Damping ratio MPC Mode shape type
(Hz) (%) (–)

1 125.92 0.14 0.99 1st-order lateral bending
2 140.35 0.55 0.99 1st-order vertical bending
3 186.38 0.09 0.99 2nd-order vertical bending

Fig. 18 Identified local member vibrations that are related to global modes of selected tension members and their frequencies.
(∗) Numerical results are slightly modified to include an extra mass loading of the accelerometers and their installations, used in
this set-up

in the second and the third set-ups, also showed that the local vibration mode related to the 11th numerical
mode was not identified using the current model order. This finding suggests that a higher model order may be
necessary to accurately capture this mode shape. Another reason is that the selected tension and compression
members are in the middle of the space truss structure, while the relevant nodal DOF of the 11th numerical
mode are on the four corners of the space truss, where no sensor was located in these set-ups.

Only three experimental modes for the tension and compression members’ local vibrations are extracted
from Figs. 16 and 17. These modes correspond to the range of the numerical results, yet more modes could
be identified. The selection criteria of these modal solutions are given in Tables 5 and 6 for the local vibration
modes of the tension and compression members, respectively.

5.3.4 Local modes

With the second and third set-ups, identifying local vibration modes that correspond to both global and local
modes was possible. Figures18 and 20 show local member vibration for tension and compression members,
respectively. Experimental and numerical results of the local modes show good agreement, as given by the
MAC value calculation in Figs. 19 and 21. In both cases, the identified local modes are relevant to the 14th,
15th, and 18th global numerical modes.

6 Conclusion

Amethodology is givenwithin this paper to identify local and global vibrationmodes of space frame structures.
The obtained modal parameters help to determine member forces. Numerical modelling provides essential
information on the expected range of frequency and the corresponding mode shapes. Estimating modal strain
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Fig. 19 MAC values of tension members’ local vibration corresponding to the three global mode shapes of the space truss
structure

Fig. 20 Identified localmember vibrations that are related to globalmodes of selected compressionmembers and their frequencies.
(∗) Numerical results are slightly modified to include an extra mass loading of the accelerometers and their installations, used in
this set-up

energies is necessary to distinguish between local and global mechanisms of vibrations. Numerical modelling
and the computation of modal strain energies facilitate the selection of DOF to be instrumented with sensors
for modal testing.

Due to the high number of DOF required to describe both global and local modes of space frame structures,
it is also necessary to consider comparatively highmodel orders in a parametric modal identification. As shown
in a case study, the maximal model order to be taken into account for an identification, especially of local
and combined local/global modes, can be by far higher than commonly chosen in the modal identification of
typical civil structures such as bridges, towers, or floor systems.

To further improve the current understanding of the studied space truss structure, two enhancements
are proposed. Firstly, it is suggested that all members of the space frame structure to be instrumented with
accelerometers to fully visualise local bending deformation. Secondly, testing of a larger space frame structure
is recommended to validate the applicability of current outcomes.
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Fig. 21 MAC values of compression members’ local vibration corresponding to the three global mode shapes of the space truss
structure
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