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Limit equilibrium calculations are a broad class of problems arising during investigation of 
strength of constructions. When solving such problems, a maximal level of loading is 
instituted on the given structure, which it can resist without its destruction. Today, most 
universal procedures used for solving such problems are methods of linear and non-linear 
programming [1] and [2]. 

They allow to examine all types of models both for linearized and non-linearized yield 
criteria. However, reduction of the limit equilibrium problem to standard ratios of linear and 
non-linear programming is very complex and requires special skills from the investigator. 

The Pseudorigidity Method (PRM) described hereinafter is a universal tool. At the same 
time, it can be easily automated with existing software for calculation of elastic constructions. 
The designer can naturally and simply use such software. 

 
 
1. TASK DEFINITION 
 

If the construction is in deep plastic deformation conditions, then its elastic deformation can 
be discarded. In this case, the model of the construction is a rigid-plastic body. Such a body is 
described by equilibrium equations and Drucker's postulate [3]. 

In the space of macro factors (generalized stress RBi B and generalized transposition UBi B) yield 
surface equation and Drucker's postulate are written as follows [2] 
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So, for example, if f(RBi B) is a homogeneous quadratic form, then 
{ } [ ]{ }.RU Π= λ&                                             (2) 

In (2) { } { }RU ,&  are matrixes-columns, the elements of which are iU&  and iR , [П] is a square 
matrix, the elements of which are defined according to (1b) if substituting { }U&  with { }U . 

Relations (2) are similar to dependencies between deformation and force factors for elastic 
task definition. The subsequently described PRM is based on this similarity.



Let us specify the mentioned similarity for rod models. We consider a rod in flat bend and 
torsion conditions. For this case of loading in [4], on the basis of Huber-Mizes criterion, 
condition (1b) is obtained in the following form 
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In (3) )(SM i  are the bending momentum (i=1) and torque (i=2) in cross sections of the 

rods; S is the coordinate of the cross section. Coefficients 
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limit momentum of cross section at the "i" type of deformation. From (1b) and (3) we get that 
in (2) 
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The elastic analog (2) in this case is the relation 
{ } [ ] { })()( 1 SMDS −=χ                                        (5) 
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IE
 is the rigidity matrix, 1I  and 2I  are axial and polar momentum of 

inertia, EE =1  is Young's modulus; GE =2  is the shift modulus. 
Using this analogy we can build an elastic scheme, the internal stresses in which under limit 

loading will be the same, as in the discussed rigid-plastic system. Let us demonstrate this. 
Let us assume that the rigid-plastic solution for the considered problem is known. We retain 

the geometrical dimensions, boundary conditions and system loading, and assume that its 
material has not rigid-plastic, but elastic properties. Let us assume the following distribution 
of rigidities of sections: 

- on sections of the rigid-plastic model, where ∑
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- in each deforming part, where 12 =∑ iiMα  
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In (6b) t is the coefficient with a time dimension, )(SK  is the unknown function, which is 

alike for all types of deformation (bending, torsion). 
In the so formed elastic system we create deformation corresponding to the form of 

destruction of the elastoplastic system: itχχ &= . 

Then 
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If we compare (7) with (2) and (4), we can see that values )(SM i  in deformed parts 
coincide in elastic and rigid-plastic systems. The values of internal momentum in places of 
formation of plastic joints completely define the limit loading and the values of internal 



momentum on all sections of the system with nonzero velocity [2]. This is why formed elastic 
and initial rigid-plastic systems have a comparable loading and distribution of internal 
stresses. Thus, the considered rigid-plastic problem is reduced to searching for distribution of 
rigidities iD  in an "equivalent" rigid system. Such values as iD  shall be referred to as 
pseudorigidities. 
 
 
2. ITERATION ALGORITHM OF THE PSEUDORIGIDITY METHOD 
 

For finding K(S) we can propose an iteration algorithm. The result of (6b), (7) and (3) is: 
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Relation (8) is true for all sections of the rod system, including non-deformed sections (in 
this case 0=iχ  and К(S)= )∞ . 

Specifying in zero approximation ∞≠)()0( SK  we can acquire from the solution of the 
elastic problem )()0( Siχ , then using (8) )()1( SK , etc. 

So, the scheme of the iteration process is as follows (n is the number of iteration): 
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In other words, 
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where )(~
iRf  is the yield criterion reduced to a linear homogeneous function. 

At every iteration step the loading applied to the system changes according to the formula 
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The system destruction scheme is defined by values of )(lim SK : in plastic joints )(lim SK  
are finite; in rigid zones .)(lim ∞=SK  Convergence of iterations (9) and (10) to a precise 
solution of the rigid-plastic problem is proved in [5]. 
 
 
3. PSEUDOELASTIC DEPENDENCIES FOR DIFFERENT MODELS 
 



It has been shown before, that with a quadratic yield criteria for realization of PRM (finding 
the distribution of rigidities in an "equivalent" elastic system) it is necessary instead of (2) to 
form a pseudoelastic model: 
{ } [ ] { }UKR 1−Π=                                           (11) 
Next, the scalar multiplier K is determined using an iteration process similar to (9). The 
iteration procedure can be performed on the basis of existing software tools, if a certain 
standard elastic model with a rigidity matrix [ ] 1−Π  will correspond to the matrix [D]=K[П] 1− . 
For the major problems of limited equilibrium such a correspondence exists. 

For bending plates and beams-walls [ ] 1−ΠK =[D] 5,0=ν , where [D] 5,0=ν  is a rigidity matrix for 
the elastic model with Poisson's ratio 5,0=ν  and a variable modulus of elasticity Е(x,y). 

For shells [ ] [ ]HK =Π −1 , where [H] is a rigidity matrix with variable E for an elastic 
multilayer shell at 5,0=ν . 

For a 3D problem at 5,0=ν  there is no matrix [D]. In this case for forming pseudoelastic 
dependencies we should use models describing non-compressible materials. However, the 
PRM provides a high accuracy if we accept [ ] [ ] 49,0

1
=

− = νDПK , where [D] is the rigidity 
matrix for a 3D stressed state. 

The previously described relations are based on the Huber-Mizes yield criterion. In [4] it is 
shown that the PRM can be applied also for linearized yield criteria. 

Let us call the program performing elastic calculation with the rigidity matrix D=К[П] 1−  - 
the basic program (BP). The iteration process is described by relations (9b) and (10). 

Interaction between the iteration procedure and the BP is realized as follows: 
 
• a strength model of the examined system is formed within the BP; 
• the elastic problem is solved for this model, whereas the level of the given type of 

loading can be selected randomly; 
• internal stresses of the model, determined by elastic calculation, enter the program 

realizing the PRM as an output file of the BP. PRM processes this file and changes the 
rigidity parameters of the examined model. After that the new rigidity parameters enter 
the BP as a new file of initial data for the problem. 

 
 
4. TEST EXAMPLES 
 

The author has calculated a number of test models: beams, frames, plates, shells, 3D bodies. 
Results produced with the PRM differ from known solutions not more than by 2% [4]. For 
example, arc calculation results (Hodgee's problem) are shown in Table 1 (where   
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PRp = , R is the arc radius, ϕ2  is the aperture angle, 2P is the force in 

the center of the arc.) 

 

Table 1 
Limit loading of the arc considering the longitudinal force 



Limit loading of the arc ϕ=10P

o
P
 ϕ=20P

o
P
 ϕ=30P

o
P
 ϕ=40P

o
P
 ϕ=50P

o
P
 ϕ=60P

o
P
 

P (according to [2]) 5.6 6.6 7.0 6.6 5.9 5.2 
p (PRM) 5.75 6.6 7.0 6.55 5.9 5.2 
 Comparison of MPR with results given in [2] for a spherical segment is shown in Fig.1. 

Fig.1. Comparison of calculations using MPR with the results of [2]. 
* - MPR,         - results of [2]. 

 
 
5. APPLICATION OF MPR FOR SOLVING PRACTICAL PROBLEMS 
 

The author has used MPR for resolving a whole number of practical problems. Below you 
can see the results of calculating a plastic damper and protective ring frame support of a 
metal-concrete container. Plastic dampers are used for protecting different technical objects 
from shock loading [6]. 

The damper is designed as a connection of curvilinear metallic rods with a round section. 
The axis of each of the rods is a semicircle. The calculation scheme of such a damper with 
applied to it loading is shown on Fig.1. The results of calculation of the yield surface of the 
plastic damper are shown in Table 2. 
 
 
 
 
 
 (a)         (b) 
 
 
 
 
Fig.1. Plastic Damper (a) and its calculation scheme (b). 
 
Table 2 
Yield surface of a three-dimensional plastic damper 
ϕ(°) 0 10 20 30 40 50 60 70 80 90 



Py/Pyo 1 0.881 0.731 0.587 0.462 0.344 0.250 0.156 0.081 0 
Px/Pyo 0 0.156 0.262 0.337 0.387 0.412 0.431 0.437 0.444 0.45 
In Table 2 Py, Px are components of limit loading; ϕ is the angle between axis Y and  loading 
applied to the damper laying in the XY plane; Pyo is the value of limit loading at ϕ = 0; PBzB=0. 

          (a)                          (b) 
Fig.2. FE model of MCC (a) and calculation of stress in ring support (b). 
 

A metal-concrete container (MCC) has been developed for storing processed nuclear fuel. 
According to existing standards, MCC must preserve its durability after falling on a rigid 
basement from a height H=9 meters. For protecting MCC from shock loading plastic 
deforming ring frame supports are used. A finite element model of MCC and ring frame 
support is shown on Fig. 2.a. Results of calculating the stress of interaction between MCC and 
the foundation using MPR are shown on Fig. 2.b. 
 
 
6. CONCLUSION 
 

The pseudorigidity method is a new technology for solving limit equilibrium problems. The 
technology is efficient (insignificant time losses for computer processing and problem 
preparation) and compact (requires little computer memory). Its important advantage is the 
ability to function on the basis of an elastic calculation program. Design and research 
companies usually always possess such software. At the same time the pseudorigidity method 
is highly universal. 
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