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A multicriterial statement of the above mentioned problem is presented. It differes from the
classical statement of Spanning Tree problem. The quality of solution is estimated by vector
objective function which contains weight criteria as well as topological criteria (degree and
diameter of tree).

1. The formulation of the problem

Let’s consider some classes of Spanning Tree problems on a system of subsets (SS). A
pair P E T= ( , )  is called SS, where E  - is a set of graph edges and E Q T= ,  - is a set of the

feasible solutions of the problem and }{T t= , where t  - is the spanning tree. Vector weighting
function (VWF) is given on the set E

w e w e w e w eN( ) ( ( ), ... , ( ),... , ( )),= 1 ν                                                                        (1)

where w e R N e Eν ν( ) , .∈ ∀ = ∀ ∈1
If elements of set { }E e eQ= 1 ,...,  are numbered than one can consider an individual

VWF w e( )  as matrix W w N Q= ×νκ  in space R NQ , where Q E= .

We determine the vector objective function (VOF) on the set of the solutions T
F t F t F t F tN( ) ( ( ),..., ( ),..., ( )),= 1 ν                                                                           (2)

which contains the following criteria
F t w e
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optν ν( ) ( )= →∑ ,          ν ∈ I1 ,                                                                  (3)
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optν ν( ) ( )max= →
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optν ν( ) ( )min= →
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F t d t
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where I kk , ,= 15  - are sets of the numbers from { }1 2, ,..., N . The criteria (3)-(7) are
numbered by these numbers respactively; s t v

v t
( ) max deg=

∈
 - is the degree of the tree t d t, ( )  -

is the diameter of the tree t  [2].
VOF F t( )  determines Pareto set (PS) ~T  on the set T . By N - criterial problem we

understand the individual problem of finding and presentation of PS ~T  in the explicit form.



Let’s designate any individual problem z W E T W Fj ( ) ( , , , )=  from class Z jj , ,= 0 3  by

z WN ( )  and PS of this problem - by ~( )T W .
Remark 1. The criteria (4),(5) belong to nonlinear criteria. The criteria (6),(7) of the

degree and diameter are called the topological criteria. If we have different sets of VOF criteria,
we obtain the following classes of mass problems:

Z v
0  - N-weighting criterion (3);

Z v
1  - (N-1)-weighting criterion (3) and criterion (6);

Z v
2 - (N-1)-weighting criterion (3) and criterion (7);

Z v
3  - (N-2)-weighting criterion (3) and criteria (6), (7);

Z m
0  - N-criterion (4) or (5);

Z m
1  - (N-1)-criterion (4) or (5) and criterion (6);

Z m
2   - (N-1) - criterion (4) or (5) and criterion (7);

Z m
3  - (N-2)-criterion (4) or (5) and criteria (6), (7).

Later on the symbol min is used instead of opt in the criteria (3)-(7) .

2. The formulation of the Local Stability Problem

In space R NQ  of the matrixes B b= νκ  a norm is given [4]: { }B b N k Q= = =max : , , ,νκ ν 1 1 .

We denote the set of all matrixes B b= νκ  by B( ε ) such that B ≤ >ε ε, 0 .

The obtained by the addition of W  and B∈ B( ε ) matrixes problem z W BN ( )+  is called
perturbated and matrix B  - perturbating.

Definition . The problem z WN ( )  is called ε -stable when the inclusions
~( ) ~( )T W B T W B+ ⊆ ∀ ∈ B( ε ).                                                                           (8)

are fulfilled.
Obviously, the problem z WN ( )  is ε -stable for arbitrary ε > 0  when T T W= ~( ) . Then

this case will be excluded. The problem z WN ( )  is called nontrivial, if .T W T T W( ) \ ~( )= ≠ ∅ .
We define the set

{ }~( , ) ~ ~( ): ( , ~) , ,T W t t T W t t Nw0 0 0 1= ∈ ≥ =τ νν ,                                                   (9)

for any t T W0 ∈ ( ) , where τ νν ν ν
w

kt t F t W F t W I k( , ~) ( , ) (~, ), , , .0 0 13= − ∈ =

The conditions of stability for the problems of the class Z v
0  are described in works [1,3].

According to the definition the considerable perturbation of matrix weights does not exert an
effect  on the value of topological criteria (6),(7). Therefore, the conditions of stability for the
problems of the class Z v

0  are transfered on the problems of classes: Z v
1 , Z v

2 , Z v
3 .

Further, we define the conditions of ε - stable for the problems of classes Z jj
m , ,= 0 3 .

Let’s assume that the edge ′e  is defined by the correlation
M t W opt w e w e N

t
ν ν ν ν( , ) ( ) ( ), ,= = ′ = 1 , i.e. the optimum of criterion ν  is attained on the

edge ′e . The quasioptimum significance of ν -th criterion is called the weight of such edge
e e∗ ≠ ′ , that w e t opt w e

e t e
ν ν( , ) ( )

\

∗ =
∈ ′

.

Let’s introduce the definition of i -th quasioptimum to describe the necessary and
sufficient conditions of ε - stable of the class Z m

0 . For this purpose we use the recursion
designations on the steps i = 0 1, ,... , where the value i  is limited by length t  of the solution.



Step 0: e t tν ( ~)0 ∩  - the egde e t t∈ ∩0 ~ , on which the equation ν -th criteria of pareto
and nonpareto solution is obtained, i.e. M t W M t Wν ν( , ) (~, )0 = . We designate the set of
numbers of the criteria for which this equation is fulfilled by J t t( , ~)0 ;

M t Wν
1 (~, )  - the first quasioptimum of solution ~ ~( , )t T W t∈ 0  and it is defined by the

equation M t e t t W M t Wν ν ν
1 0 1(~ \ ( ~), ) (~, )∩ = .

Step 1. e t tν
1 0( ~)∩  - the edge e t t∈ ∩0 ~ , on which the first  quasioptimums are equal,

i.e. M t W M t W M t Wν ν ν
1 0 1 0( , ) (~, ) ( , )= ≠ . We designate the set of numbers of the criteria for

which this equation is fulfilled by J t t1 0( , ~) , where ν ∈ J t t( , ~)0 ;
M t Wν

2 (~, )  - the second quasioptimum of solution ~ ~( , )t T W t∈ 0  and it is defined by the
equation M t e t t e t t W M t Wν ν ν ν

2 0 1 0 2(~ \ ( ~), ( ~), ) (~, )∩ ∩ = .
...........................................................................................................................................................

Step i : e t ti
ν ( ~)0 ∩  - the  edge e t t∈ ∩0 ~ , on which the i -th quasioptimums of

solutions t t0 , ~  are equal and the following sequence of equations and inequalities is fulfilled:

[ ] [ ]
[ ]

M t W M t W M t e t t W M t e t t W

M t E t t W M t E t t W

o

i i o i o i o

ν ν ν ν ν ν

ν ν ν ν

( , ) (~, ) (~ \ ( ~), ) ( \ (~ ),

. ... (~ \ ( ~), ) ( \ ( ~), ) ,

0 1 0 1 0

1 1

= < ∩ = ∩ <

< < ∩ = ∩− −

where { }E t t e t t e t t e t ti o i o
ν ν ν ν
− −∩ = ∩ ∩ ∩1 0 0 1 1( ~) ( ~), ( ~),..., ( ~) .                                       (10)

We designate the set of numbers of the criteria for which this equation is fulfilled by J t ti o( , ~),
where ν ∈ −J t ti o1 ( , ~). An meaningful interpretation of the sequence (10) consists of :

1) the first i -th quasioptimums are defined;
2) these quasioptimums form the monotonically strictly increasing sequence;
3) the final equation of sequence (10) is attained on i -th step.
Now we formulate the conditions of ε -stable for the problems of the class Z m

0 .
Theorem. For ε -stability of the nontrivial problem z WN ( )  it is necessary and

sufficiently, that the solution ~ ~( , )t T W t∈ 0  exists for any solution t T W0 ∈ ( )  with the system of
the inequalities

{ }
M t W M t W J t t J t t

t t N J t t

o i i

w o
ν ν

ν

ε

τ ε

( , ) (~, ) ( , ~) ( ,~),
( , ~) , , ... , \ ( , ~).

− ≥ ∀ν ∈ ⊆

≥ ∀ν ∈







2
2 1 2

0 0

0
                     (11)

3. The stability estimation by means of the quantity method

We use the number {ρ ε( ) sup : ~( ) ~( )W T W B T W B= + ⊆ ∀ ∈ B }( )ε  for the quantitative
measure of the stability. It is called the radius of the stability. The stability radius of the
problem z WN ( )  is defined by the limit of the perturbation elements of the matrix W , when a
new PO do not arise.

By means of the above mentioned theorem the formulas for the stability radius of the
problems connected with Z j

v  and Z jj
m , ,= 0 3  classes are obtained:

1) for the problems of the class Z v
0  we have :

ρ
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ν
ν

ν( ) min max min
( , ~)

( , ~)
, ,~W

t t
c t t

N
to t

w o

o= ∈1 ,                                                                 (12)

where c t t n t t( , ~) ( ~ ).0 02 1= − − ∩

Remark 2. The formula (12) is fulfilled for the problems Z Zv v
1 2,  under the condition

that { }ν ∈ −1 1, N  and formula (12) is fulfilled for the problem Z v
3 , if { }ν ∈ −1 2, N .



2) for the problems of the class Z m
0  we have :
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                                                                                                                                             (13)
Remark 3. The formula (13) is fulfilled for the problems Z Zm m

1 2,  under the condition
that

{ }ν ∈ −1 1, N  and formula (13) is fulfilled for the problem Z m
3 , if { }ν ∈ −1 2, N .

4. An example of the stability radius calculation for  Spanning Tree Problem

Let’s calculate the stability radius for individual 3-criterial problem of the class Z m
2  on the

weighting 4-vertex graph G :
       e3

                 e5

 e1

                  e4

       e2

The following matrix of the weights W  is given :    N\E ( t )    e1      e2       e3     e4       e5

                                                                                                                                         1              17    23    19    26    20
                                                                                   2        22    21    24    18    25

VOF: F t F t F t F t( ) ( ( ), ( ), ( )),= 1 2 3  where
F w e

e t T1 2, max ( ) min= →
∈ ν                                                                                     (14)

F t d t
T3( ) ( ) min= →                                                                          (15)

For conveniente let’s place the results of the stability radius calculation with the help of
the formula (13) into the following table:

   T     E(t)       F1     F2      F3           
~T            τ

1
    τ

2
       min      max       min/2

   t1   e1e2e3        23    24    3        *
   t2   e2e3e4        26    24    3      t1,t4               3,7         3,2              3,2                  3                   3/2
                                                                                                         3,9          2,2             2,2                  2                   2/2

   t3   e2e3e5     23    25    3      t1,t5                   3,3          1,4             1,3                  3

                                                                                                         
4,3          1,3             1,3                  3

   t4   e1e2e4        26    22    2        *
   t5   e1e3e5        20    25    2        *
   t6   e3e4e5        26    25    3     t1,t4,t5               3,6,6       1,3,7           1,3,6               6

                                                                                                        
3,6,6        1,3,3          1,3,3               3

   t7   e1e4e5        26    25    3     t1,t4,t5               3,6,6       1,3,3           1,3,3               3

                                                                                                        
3,6,6        1,3,1          1,3,1               3

   t8   e2e4e5     26    25    3     t1,t4,t5              3,6,6        1,3,4           1,3,4               4

                                                              3,9,6        1,3,1           1,3,1               3

Each column of the table is given below:
Column 1 - the set of the feasible solutions , which presents all spanning trees of the graph G .
Column 2 - the edge structure of each spanning tree.
Columns 3 - 5 - the significances of  VOF criteria, which are calculated by formulas (14),(15).



Column 6 - PO are maked by the symbol *. PO are enumerated in the lines which correspond to
the nonpareto solutions t 0  and these PO dominate the solution t 0  under consideration.
Columns 7 - 8 - the difference of significances on criteria F F1 2( )  between pareto and
nonpareto solutions. It is calculated by formula (9). Here, the upper row of numbers is the
difference M t W M t Wo i

ν ν( , ) ( , )− 0  and the lower one of numbers is - M t W M t Wo i
ν ν( , ) (~, )− .

Column 9 - the choice of minimum significances among τ1  and τ 2 ; the first number is
obtained by means of the choice of the minimum among the first significances τ1  and τ 2 ; the
second one is obtained by means of the second significances τ1  and τ 2  and so on.
Column 10 - the  maximum of the values which were taken before from the column 9.
Column 11 - values which represent the minimum among significances of the column 10.

According to formula (13) we get:

ρ( ) min , .W = 






=3

2
2
2

1

Conclusion

Many real processes are not determined yet. And that is why the investigation of the stability is
very important. Many errors are connected with calculations. The stability analysis of vector
combinatorial problems allows to discover the value of changes in the initial data for which the
optimal solution is not changed.

Furthermore, the investigation of the stability allows to construct the class of the
problems on base of the one problem by means of the parameter variations. Analysis of the
problems with belong to this class allows to obtaine axact and adecuate discription of model.
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