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Zusammenfassung

Die wachsende Komplexitat moderner Ingenieurprobleme erfordert die Entwicklung fortschrit-
tlicher numerischer Methoden. Insbesondere Verfahren, die nicht nur den kontinuierlichen
Fall approximieren, sondern auch direkt mit diskreten Strukturen arbeiten und somit einige
wichtige FEigenschaften der Losung auf einem Gitter exakt abbilden, werden heutzutage im-
mer haufiger eingesetzt. Die diskrete Potentialtheorie und die diskrete Funktionentheorien
bieten eine Vielzahl von Methoden, die diskrete Analogien zu den klassischen kontinuierlichen
Methoden zur Lésung von Randwertproblemen sind. In den letzten Jahren wurden viele
Ergebnisse zu den diskreten Potential- und Funktionstheorien prasentiert. Diese Ergebnisse
hangen jedoch mit den diskreten Theorien zusammen, die auf quadratischen Gittern aufge-
baut sind und schranken somit ihre praktische Anwendbarkeit ein und fithren moglicherweise
zu hoheren Rechenkosten bei der Diskretisierung realistischer Gebiete.

Diese Arbeit prasentiert eine Erweiterung der diskreten Potentialtheorie und der diskreten
Funktionentheorie auf rechteckige Gitter. Wie in den diskreten Theorien iiblich, wird die
Konstruktion diskreter Operatoren stark von der Definition der Vernetzung beeinflusst. Um
konsistente Konstruktionen wéahrend der gesamten Arbeit zu gewahrleisten, wird zu Beginn
der Dissertation eine detaillierte Diskussion der Vernetzung des Innengebietes, des Auflenge-
bietes und der jeweiligen Rander vorgestellt. Danach werden die diskrete Fundamentallosung
des diskreten Laplace-Operators auf einem rechteckigen Gitter, die den Kern der diskreten
Potentialtheorie bildet, ihre numerische Analyse und praktische Berechnungen vorgestellt.
Unter Verwendung der diskreten Fundamentallosung des diskreten Laplace-Operators auf
einem rechteckigen Gitter wird dann die diskrete Potentialtheorie fiir innere und &auflere
Probleme konstruiert. Anschliefend werden mehrere diskrete innere und &uflere Rand-
wertprobleme gelost. Dartiber hinaus werden diskrete Transmissionsprobleme vorgestellt
und mehrere numerische Beispiele dieser Probleme diskutiert. Schliellich wird eine diskrete
Fundamentallésung des diskreten Cauchy-Riemann-Operators auf einem rechteckigen Gitter
konstruiert und Grundlagen der diskreten Funktionentheorie auf einem rechteckigen Gitter
vermittelt. Diese Arbeit zeigt, dass die Losungsmethoden der in der Arbeit betrachteten
diskreten Theorien sehr gute numerische Eigenschaften besitzen, um verschiedene Rand-
wertprobleme sowie Transmissionsprobleme zu losen, die innere und auflere Probleme kop-
peln. Die in dieser Arbeit prasentierten Ergebnisse bilden eine Grundlage fiir die Weiteren-
twicklung diskreter Theorien auf unregelmafiigen Gittern.



Abstract

The growing complexity of modern engineering problems necessitates development of ad-
vanced numerical methods. In particular, methods working directly with discrete structures,
and thus, representing exactly some important properties of the solution on a lattice and
not just approximating the continuous properties, become more and more popular nowa-
days. Among others, discrete potential theory and discrete function theory provide a variety
of methods, which are discrete counterparts of the classical continuous methods for solving
boundary value problems. A lot of results related to the discrete potential and function the-
ories have been presented in recent years. However, these results are related to the discrete
theories constructed on square lattices, and, thus, limiting their practical applicability and
potentially leading to higher computational costs while discretising realistic domains.

This thesis presents an extension of the discrete potential theory and discrete function
theory to rectangular lattices. As usual in the discrete theories, construction of discrete
operators is strongly influenced by a definition of discrete geometric setting. For providing
consistent constructions throughout the whole thesis, a detailed discussion on the discrete
geometric setting is presented in the beginning. After that, the discrete fundamental solution
of the discrete Laplace operator on a rectangular lattice, which is the core of the discrete
potential theory, its numerical analysis, and practical calculations are presented. By using
the discrete fundamental solution of the discrete Laplace operator on a rectangular lattice,
the discrete potential theory is then constructed for interior and exterior settings. Several
discrete interior and exterior boundary value problems are then solved. Moreover, discrete
transmission problems are introduced and several numerical examples of these problems
are discussed. Finally, a discrete fundamental solution of the discrete Cauchy-Riemann
operator on a rectangular lattice is constructed, and basics of the discrete function theory
on a rectangular lattice are provided. This work indicates that the discrete theories provide
solution methods with very good numerical properties to tackle various boundary value
problems, as well as transmission problems coupling interior and exterior problems. The
results presented in this thesis provide a basis for further development of discrete theories
on irregular lattices.
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Chapter 1

Introduction

Solution of modern engineering problems requires advanced numerical methods, because due
to the complexity of these problems, analytical solutions can be constructed only for some
idealised cases. Any numerical method starts with the discretisation step, where continuous
formulations of boundary value problems are converted into the corresponding discrete for-
mulations. Moreover, the discretisation of a continuous problem can be generally considered
on two levels: first level addresses the discretisation of geometry, for example in the case of
the finite element method, continuous domain is discretised (triangulated) by finite elements
[19]; and on the second level, the discretisation of continuous differential operators appear-
ing in the problem is addressed. Although both levels of discretisation influence the overall
quality of a numerical procedure, the discretisation of continuous differential operators has a
more significant impact on the final numerical properties of the complete numerical scheme,
because continuous properties of the model described by the differential operator are ap-
proximated on this level [3]. Particularly, in the case of the classical numerical methods,
such as for example finite element method, boundary element method, and finite difference
method, discretisation of the continuous differential equation does not generally reflect prop-
erties of the continuous problem, such as for example conservations laws or properties of the
solutions, because these properties are just approximated and not satisfied exactly on the
discrete level.

To overcome the limitation of the classical numerical methods, advanced numerical
schemes preserving certain important properties of the continuous problem on the discrete
level need to be introduced. One of a pioneering work in this direction has been done by
A.A. Samarskii in [87], where so-called conservative finite difference schemes, preserving con-
servation laws on the discrete level, have been introduced. Looking at classical continuous
theories, such as complex analysis and potential theory, preservation of important proper-
ties of the models of mathematical physics is supplied on the very basic level of methods
based on these theories. Therefore, the natural idea is to construct discrete counterparts
of the classical continuous theories combining advantages of numerical schemes and explicit
representations provided by analytical methods. While constructing discrete counterparts of
these continuous theories, the classical differential operators are replaced by their difference
analogues and discrete functions are considered. First steps in the direction of creating a



discrete function theory are related to works of R. Isaacs [63], J. Ferrand [36], and R. Duffin
[29], where the following two difference equations have been studied:

Definition 1.1. A complex valued function f defined on A C Z[i] (the Gaussian integers)
is called Isaacs-holomorphic (or monodiffric of the first kind) in A if for all z € A such that
also z + 1 and z + 7 belong to A, it holds that
JEH D)= f()  fE+i)— )
1 1 '
Definition 1.2. A complex valued function f defined on A C Z[i] is called Ferrand-
holomorphic (or monodiffric of the second kind) in A if for all z € A such that also z + 1,
z+14 and z 4+ ¢+ 1 belong to A, it holds that
flz4+i+1)— f(2)  flz+1i)— f(z+1)

141 1—1

Other studies on monodiffric functions of the first kind and monodiffric functions of the
second kind can be found in works [66, 82] and in [1, 65, 67], respectively.

The difference equations introduced in Definitions 1.1-1.2 were constructed on the uni-
form lattice. In the case of Isaacs-holomorphic functions, discretisation with classical finite
differences with respect to coordinate axes have been considered, while for the Ferrand-
holomorphic a diagonal discretisation has been introduced. Several results have been achieved
for the above discrete equations, particularly discrete analogues of polynomials and expo-
nential functions have been introduced, as well as discrete analogues of Cauchy-Riemann
operators. However, the core idea of the complex function theory — factorisation of the
Laplace operator by help of Cauchy-Riemann operators, has not been introduced properly.
Specifically, the resulting factorisation of the discrete Laplacian was compromised by the
phenomenon of enlarging neighbourhood, see [20] for a more detailed discussion.

Although the original ideas of Isaacs and Ferrand towards the introduction of discrete
counterparts of the classical complex analysis were not completely successful because of the
lack of factorisation of the Laplace operator, their works gave rise to the development of
the theory of discrete analytic functions. The theory is based on discrete structures such
as graphs, and utilises methods of algebraic topology and differential geometry adopted to
such structures, see works [11, 76, 84, 90| for particular examples and state of the art in the
theory of discrete analytic functions. The advantage of this theory is the fact that elements
of a general shape tiling the complex plane are allowed. Moreover, by assigning weights to
the edges of the corresponding graph, irregular non-uniform lattices can be constructed. The
theory of discrete analytic functions has various applications in different fields supporting
modelling of real-life phenomena by help of discrete structures, see again works [11, 76,
84, 90] and references therein. In contrast, formulation of classical continuous models of
mathematical physics, e.g. linear elasticity or heat conduction, in the setting of the theory of
discrete analytic functions require a complete modelling of the continuous theory on a discrete
structure, which is not a trivial task in general. Therefore, other approaches to construct
discrete counterparts of the classical complex function theory and its generalisations, which
are more suitable for adapting continuous models to the discrete setting have been proposed.



It is important to mention that there are several different versions of discrete function
theories originating from complex and hypercomplex analysis. The hypercomplex analysis is
the extension of classical continuous complex function theory to higher dimensions is can be
broadly sub-divided into two general fields relevant for current discussion: quaternionic anal-
ysis in R, and Clifford analysis in R™. Various applications of these theories can be found in
[46, 47, 70] and references therein. The discrete counterparts of the complex and hypercom-
plex analysis can be seen as an alternative to the theory of discrete analytic functions in two-
and higher-dimensional cases, respectively. As it has been mentioned previously, the main
idea of a discrete function theory is a factorisation of the discrete Laplace operator (some-
times referred to as star-Laplacian) by a pair of discrete Dirac or Cauchy-Riemann operators.
Roughly speaking, these discrete function theories can be classified in two categories:

(i) theory originated as the extension of the discrete potential theory of V.S. Ryaben’kii
85, 86|, and

(ii) discrete Clifford analysis, e.g. [13, 35].

The first theory (mostly two-dimensional) has been extensively studied in works [43, 44, 56,
where a discrete analogue of potential theory, as well as first steps in the direction of a discrete
function theory have been presented. Moreover, this theory is essentially based on the ideas
of operator calculus, particularly, it is based on right-invertible operators. Applications of the
operator calculus and its discrete counterpart to various problems of mathematical physics
in two and three dimensions, i.e. in quaternionic setting, can be found in works [46, 47].
The methods developed in the discrete potential theory and discrete function theory in the
framework of the first approach have been used in various fields of applications: Navier-
Stokes equations in unbounded domains have been considered in [32], application of discrete
holomorphic functions in the context of linear elasticity has been discussed in [58], the
use of discrete operator calculus to solve the discrete p-Laplace equation has been studied
in [2], the discrete Goursat theorem has been constructed in [59], and finally the general
theory of discrete holomorphic functions arising in the framework of the first approach has
been discussed in [60]. Since this dissertation is focused on a further extension of the first
approach, meaning that more discussions and references will be presented in the upcoming
chapters, it worth to discuss more intensively results in the discrete Clifford analysis in this
introductory chapter.

Several different approaches to the discrete Clifford analysis exist, and without claiming
to be complete, some of known results will be discussed here. Since the continuous Dirac

n

operator D = > e;

=1 %
Clifford analysis aims at introduction of discrete Dirac operator which must factorise the

star-Laplacian in higher dimensions. Thus, several studies of discrete Dirac operators and
constructions of their fundamental solutions have been presented by different authors and
also in different contexts, see for example [34, 43] for studies directly related to Clifford
analysis, and [37, 64, 105] for other perspectives on discrete Dirac operators. In more details
on Clifford analysis-related setting, results presented in [43] focused on the discrete Dirac

places the central role in the classical Clifford analysis, the discrete



operator in quaternionic setting with the aim of providing a discrete analogue of the clas-
sical quaternionic operator calculus: constructing the right-inverse operator to the discrete
Dirac operator (Teodorescu transform), the discrete Cauchy integral, and the discrete Borel-
Pompeiu formula. Further results on this discrete operator calculus can be found in [42, 46].
Moreover, work [43] provided explicit constructive approach to discrete Dirac operator in
quaternionic setting, which exceptionally valuable for practical use of the discrete calculus.
However, as it has been mentioned in [35], the use of explicit representations has a disadvan-
tage in higher-dimensional context, because the transition between R* and R" is not evident
in this case.

Another perspective of the discrete function theory in higher dimensions has been pre-
sented in [33], where discrete basis polynomials and discrete Fischer decomposition have been
presented. In order to achieve these results, a modification of the difference operators have
been made: the discrete Dirac operator has been introduced only by using either forward or
backward finite differences. As the result, these discrete Dirac operator do not factorise the
star-Laplacian, because both types of finite difference operators are needed for the factori-
sation. To overcome this problem, more abstract algebraic point of view has been proposed.
The idea coming again from the continuous case is to introduce lowering and raising op-
erators, which are based on the following facts: differentiating means lowering the power
of a polynomial, and multiplication with a variable raises the power of a polynomial. The
connection between lowering and raising operators is given by the so-called Weyl relations:

0ix; —x;0; = 1, or, applied to a function f, 0;(x;f(x)) —x;0;f(x) = f(x).

The resulting continuous theory is then based on the Fischer duality principle. However this
approach cannot be applied directly in the discrete setting. The reason is that while forward
and backward difference operator commute with each other, the corresponding vector vari-
ables do not commute. Thus, the Fischer duality argument cannot be used in the discrete
setting. To overcome this obstacle, the idea of splitting each basis element e; into two new
basis elements e; and e; , which also carry the orientation, has been proposed in series of
works, see for example [13, 20, 21, 22] and references therein. By help of such splitting of
basis vectors, an appropriate discrete Dirac operator involving both forward and backward
difference operators can be introduced. The resulting discrete analogues of the Weyl rela-
tions were called skew Weyl relations, underlying the fact that the raising operators do not
commute with each other.

The approach to the discrete Clifford analysis based on skew Weyl relations has led to
construction of a discrete Cauchy-Kovalevskaya extension theorem [23], Fueter polynomials
[24], and discrete Taylor series [25], as well as to construction of numerical methods [4, 71].
Moreover, in this framework it was also possible to construct a boundary value theory of
discrete monogenic functions, and thus introducing discrete analogues of Plemelj-Sokhotzki
formulae and Hardy spaces, see [15] for details. Hardy spaces play an important role in
harmonic analysis, because their elements can be identified with boundary values of analytic
functions, and therefore, continuous Hardy spaces have been also studied in the case of
Clifford analysis [39]. General idea of studying boundary behaviour of null-solutions to
the Dirac operator is based on analysing the behaviour of the Fourier multipliers of the
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corresponding boundary operators, see also [80] for more details. This idea has been adopted
to the case of discrete Clifford analysis in [15] for the case of the upper and lower half spaces,
where the discrete Fourier symbols of the boundary operators have been calculated explicitly.
These results were later used to study discrete Hilbert boundary value problems over the half
space [16] in Z", i.e. on a unit lattice. Moreover, extension of the discrete Clifford analysis
to the case of bounded domains in R* and R™ has been presented recently in [17, 18].

Both approaches to the discrete function theory complement each other and both have
advantages and disadvantages in different situations. For example, the discrete Clifford
analysis based on skew Weyl relations provides a lot of tools for theoretical studies, but its
practical implementation is not straightforward. Additionally, the use of Weyl relations puts
additional demands on the symmetry which must be supported by the discretisation, and
thus, limiting possible practical applications. In contrast, the discrete theory originating
from the extension of the discrete potential theory can be straightforwardly implemented in
practical applications because of the explicit formulae and constructive approach. However,
in the same time, because of explicit constructions, it is more complicated to develop the
theory.

Although a lot of results in the discrete potential and function theories, and discrete
Clifford analysis have been obtained in recent years, only uniform lattices with a stepsize h
have been considered so far. The restriction to uniform lattices limits practical applicability
of methods of the discrete theories, since realistic geometries might require a very small
stepsize to be meshed adequately by a uniform lattice. Three possible approaches can be
mentioned for overcoming the limitations of a uniform lattice:

(i) Adapting ideas of the domain decomposition methods, see e.g. [91], to the setting of
discrete theories, where several uniform lattice with different stepsizes in different sub-
domains are combined to construct solution of a boundary value problem. However, a
general possibility of such a construction needs to be studied at first, and, of course,
the question of formulating correct coupling conditions between different sub-domains
cannot be answered easily.

(ii) Extension of the classical results to a more general type of lattices, i.e. lattices allowing
different stepsizes in each direction.

(iii) Finally, the most general case of irregular lattices can be considered. Two cases still
can be distinguished here: general setting of irregular networks which are topologically
equivalent to a two-dimensional square mesh [40], and regular orthogonal meshes with
four different stepsizes [100]. Although in the case of irregular networks, the whole
theoretical background can be done straightforwardly for a square lattice assuming
existence of a topological mapping, practical realisation of this approach is rather
difficult, since construction of such mappings even for simple geometries can be non-
trivial. The case of regular orthogonal meshes with four different stepsizes is, in fact,
a further extension of case (ii). Moreover, such meshes are typically used in practice
not over a whole domain, but rather only in the case of interface problems, where four
different stepsizes can be used near the interface.



In this dissertation, the second approach will be considered, since it can be used as basis for
further results related to cases (i) and (iii), as it will discussed in the scope of future work.
Especially, the extension of the discrete potential and function theories to rectangular lat-
tices, i.e. lattices allowing two different stepsizes hy and hs, will be considered in this work.
The extension to rectangular lattices can serve as a basis for the further generalisation of
discrete theories. Generally speaking, extension of the discrete function and potential theo-
ries to the lattices motivated by recent applications of the finite difference method (FDM),
i.e. non-uniform lattices with coarsening and refinement areas, could be seen as an overall
goal for the theory.

According to the goal of extending the discrete potential and discrete function theory to
the case of a rectangular lattice with two different stepsizes h; and hs, this thesis is organised
as follows:

e Chapter 2 introduces preliminaries for extending the discrete theories to rectangular
lattices. Particularly, the discrete Fourier transform on a rectangular lattice is intro-
duced and its properties are proved. After that, a detailed discussion on construction
of discrete geometrical setting for interior and exterior problems is presented.

e Chapter 3 starts with the construction of the discrete fundamental solution of the
discrete Laplace operator on a rectangular lattice. The difference to the case of a
square lattice is underlined, and numerical calculation of the discrete fundamental
solution, as well as related difficulties coming from the rectangular lattice setting, are
discussed. After that, different estimates for two possible regularisations of the discrete
fundamental solution of the discrete Laplace operator are provided and discussed.

e Chapter 4 introduces discrete potential theory on a rectangular lattice. Particularly,
discrete potentials, as well as Green’s formulae, for interior and exterior problems are
introduces. After that, the use of discrete potentials to solve discrete boundary value
problems is illustrated. Especially, the discrete transmission problems coupling interior
and exterior settings are discussed intensively.

e Chapter 5 presents first results for the discrete function theory on a rectangular lattice.
At first, the discrete fundamental solution of the discrete Cauchy-Riemann operator
is constructed, and then some estimates for the discrete fundamental solution are pro-
vided. After that, discrete Teodorescu transform and discrete Cauchy integral operator
on rectangular lattice are defined. Finally, the discrete Borel-Pompeiu formula on a
rectangular lattice is constructed according to the geometrical setting introduced in
Chapter 2.

e Chapter 6 summarises the results of the thesis and discusses possible directions of
future work.



Chapter 2

Preliminaries and a geometrical
setting

(Classical potential and function theories are based on the idea of a fundamental solution of a
given differential operator. Among other operators, Laplace and Cauchy-Riemann operators
play the central role in both theories: the classical Laplace operator appears as a part of more
complicated differential operators used in practical applications, and the Cauchy-Riemann
operator is the core of the complex function theory. Moreover, a well-known factorisation
of the Laplace operator by the Cauchy-Riemann operator and its adjoint establishes a link
between potential and function theories, see [73] for the details. Nonetheless, the construction
of fundamental solutions of Laplace and Cauchy-Riemann operators is an essential step in
both theories.

A classical approach to construction of fundamental solutions of differential operators
is based on the use of Fourier transform and tools of Fourier analysis utilising the concept
of generalised functions or distributions. Theoretical studies of the theory of differential
operators in this setting go back to the works of L. Hérmander [61, 62] and V.S. Vladimirov
[106, 107]. In parallel to the classical continuous theory, studies of differential operators in
discrete settings have been performed by several authors [94, 95, 96, 97]. In the discrete
setting, the classical differential operators are replaced by their difference analogues and
discrete functions are considered. Similar to the classical setting, a discrete fundamental
solution is then constructed by help of discrete Fourier transform.

Extension of the discrete potential and function theories to rectangular lattices requires at
first construction of discrete fundamental solutions of the corresponding operators defined on
a rectangular lattice. Thus, a discrete Fourier transform must be introduced on rectangular
lattices as well. Therefore, first part of this chapter deals with the definition of discrete
operators and discrete Fourier transform on a rectangular lattice. Moreover, for the sake of
clarity and consistency, all important properties of the introduced discrete Fourier transform
will be straightforwardly proved. The second part of the chapter introduces a geometrical
setting for bounded domains in R? discretised by a rectangular lattice. The geometrical
setting, introduced in this chapter, is based on the ideas presented in [85, 86]. However,
the approach presented in this chapter is more constructive and transparent leading to the



algorithm for discretisation of arbitrary bounded domains presented in the end of the chapter.

2.1 Discrete function spaces and operators

Let us consider a two-dimensional Euclidean space R? with points x = (21, 22). The inner
product of x,y € R?, as well as the norm are defined in a classical way

1

2 2 3
Xy = ijyj, x| == (Z x?) :
j=1 =1

Let us denote by R} = {x € R*|x = (m1h1, mohy), m; € Z,j = 1,2} an unbounded rect-
angular lattice in R? with two lattice constants hy, hy > 0. Let H = I>(R3 ;) be the vector
space of all complex-valued functions defined on R,QU’,W satisfying the property

r (R%n,hz) = § Yhyhg - Z |uh1,h2(x>|2h1h2 <

2
XERhl,hQ

The scalar product and the norm in /2 (Rim) are defined in the classical way

N[

(uh17h2vvh1,h2) = hihs Z Uy iy (X) Uy s (X), ||uh17h2|| = (uh17h27uhlah2) )

XGRil,hQ
where T, 5, denotes the standard complex conjugation of v, .,,. Thus, I* (R} , ) is a
Hilbert space [69].

Let e, = (1,0) and e; = (0,1) be the unit vectors in R%. Further the convention
e_; = —ej, j = 1,2 is introduced, and now shift operators S;: R* — R? can be defined as
follows:

Six = x+ hjje;j, x € R?j =41, £2. (2.1)

By help of these operators, the mappings S;: H — H are given by
Sjuhl,h2 (X) - uh17h2(ij>’ X € Ril,hga Uhy,hy € H’j = =£1, 2.

The inverse and the adjoint operators for shift operators (2.1) are given in the following
theorem [97]:

Theorem 2.1. The operators S; are pairwise interchangeable unitary operators in H and
the following relations hold

STl=S5,,  S=S, @ j=+1,+2



Proof. This theorem has been proved in [97] for the case of a uniform square lattice. The
proof for the case of a rectangular lattice R} , is analogous. However, for the sake of
completeness this proof will be provided here. Each wuy, 5, € H satisfies the equation

Sty = haha D> funy m (SX)* = unn,*, = £1,£2,

2
xER
€ h1,ho

and therefore the mappings S;: H — H are isometries. Thus, the following relations are
satisfied
S; Sk = SkSj, S;S_; =1, j, k= +1,+2,

where I is the identity operator, and consequently it follows S~ 1= S_;. The adjoint operator
S7 has the following representation

*
(uh17h27 Sj vhl,’m) = (Sjuhhhw Uh17h2) ) Uhy by s Vhy,hy € H,

Using the definition of inner product, obtain

hihy > Sty (X)0hy n (%) = htha Yy py (X + Byji€5)0n, 1y (X)

2 2
xGRhl‘h2 xeRhlﬁ2

=Inhy > Unyny (X)0n o (X = Dyj€) = haha > Uy ny (X) S j0n, 1 (),

2 2
xERhl,h2 xeth@

and finally obtain

(uh17h27 S;Uhl,hz) = (Sjuhhhw Uhhhz) = (uh17h27 S_jvh17h2) )

and therefore
Sy=5_;=51 j=+1,42.

]

By using shift operators (2.1) finite difference operators D; are introduced as follows

1 1 .
Dj = h—(SJ — ), D,j = h—([ — S,j), ] = 1,2,
J J

where D; and D_; are forward and backward difference operators, respectively. Now, a
discrete Laplace operator Ay, 5, can be defined as follows

2 2
Ah17h2 = Z D_ij = Z DjD_j. (22)
j=1 j=1



2.2 Discrete Fourier transform on a rectangular lattice

To construct the discrete fundamental solution for the operator (2.2) the discrete Fourier
transform on a rectangular lattice will be introduced. Following ideas presented in [97], at
first the rectangle Qp, 5, is defined as follows:

™

thhz = {y € RQ' - h.
J

m
<Y< =125,

A function g, p, € L2 (Qnyny) With L3 (Qnypy) = {u € L*(R?): u=01in R*\ Qp, 1,} can
now be defined as follows

h1hs e
~ 217T Z uh17h2 (X)e y? y € th,h27
(FhihoUhy hs) (Y) = Ty o () = xe®} (2.3)
0 y eRz\Qthzu

where known theorems about Fourier series for each up, p, € [? (Rilm) are used. Thus, the
mapping Fi, p, 1 Uy ny € (RS, 1) = Uniny € LG (Qnypy) between the spaces I(Rj, ) and
L2 (Qn, n,) is invertible, linear and isometric, and by the Parseval equation, the following
relations are satisfied

(uhhhw Uhl,hz) = (Fhlhzuhhhw Fhlhzvhth) = (ahhhw ﬁh1,h2) .

The mapping F},,p, Will be called the discrete Fourier transform for a rectangular lattice.
According to the Fourier-Plancherel theorem, for every iy, , € L?(R?) the function

1

U(x) = Dy /ﬁhl,hz(Y)eix'ydy, x € R?,

RQ

is again in L*(R?), and therefore the mapping F': iy, n, € L*(R?) — U € L*(R?) is a
unitary operator in L?(R?), and by the Parseval equation, the relations (Thy hys Ohyhy) =
(Flpy pyy FOpy ny) = (U, V) are satisfied.

2.2.1 Properties of the discrete Fourier transform on a rectangular
lattice

In this subsection, basic properties of the discrete Fourier transform for a rectangular lat-
tice (2.3) will straightforwardly proved. All of these properties are well-known for the case of
the classical discrete Fourier transform. Nonetheless, for the sake of completeness, explicit
proofs for the rectangular setting will be provided, since some of these properties will be
used during the construction of the discrete fundamental solutions of Laplace and Cauchy-
Riemann operators.

The discrete Fourier transform for a rectangular lattice F},, 5, satisfies the following prop-
erties:

10



: Rhlyh2FFh17h2uh17h2 = Uhy,hy, with Uhy,hy € I? (R%n,hg)'
Let us denote by Rp, p,un, n, the restriction of the function u on R? on the lattice
R}, 1,» then the following relations hold

thth Fh1,h2uh1,h2 - ththahl,hz - Rh1,h2U = Uhy hy-

The inverse discrete Fourier transform for a rectangular lattice has now the represen-
tation

—1 ) 2 (2
Fhl,hg = RhlahZF . LO (thth) — l (Rhl,}u) .
. thhQRhlmFu = u, for u € L(Z) (thhQ).
Taking into account the previous representation of the inverse discrete Fourier trans-

form for a rectangular lattice the following relation can be immediately obtained

_ -1 _
Fhy o Bhypo B v = Fy o By, 0 =

. FFhl,thhl,th = U, for U € Im (F (L% (th;m)) N LZ)

By using definitions of the operators obtain

FFthQRhl,th - FFhl,h2uh1,h2 - Fﬂhth =U.

. F(=Au) = |y|*F u, with [y|? = ? + y3 for the classical Laplace operator —Au(x) =
0*u 0%

0} 0u3

By applying the Fourier transform to the Laplace operator straightforwardly can be

obtained the following:

*u  0*u 0%u 0%

Fl—Aw) = p(-2Y%_ 24\ _ _p(Z%)_p(2Y

(mAw) ( oz asc%) (ax%) (ax>
= —(iy1)*(Fu) — (igo)*(Fu) = yiFu+ ysFu = (yi + v3) Fu = |y|*Fu.

_ g2 :
: thhz(_Ahl,hz uhl,hz) - dh h Fhl,hQ Uhy,hos with
1,h2

4 ‘2h1y1+ 4 -2h2y2

— SIn S1n
h? 2 R 2

2
dhl,hz -

(2.4)

: 2 2 2

and lim dhl,h2 =y] + ;.
h1—>0
ho—0

11



Applying the discrete Laplace operator (2.2) and using the discrete Fourier transform,
obtain:

Fh1,h2<_Ah1,h2 uh17h2> - Fh1,h2<_D—1D1uh1,h2 - D—2D2uh1,h2)

1
= Fhy hy {—D (h (Uhy by (M1 + 1) Ry, maho) — up, by (m1h1>m2h2))>
1

1
—D_, (h (Uny hy (Maha, (Mo + 1)ha) — wpy by (Maha, mﬂz)))}
2

1
= Fh1,h2 [_Fuhl,hg((ml + 1)h1, m2h2) 5 Upy, h2(m1h1; m2h2)
1

h2
1
h2Uh1 ho (mlhh m2h’2) hzuhl hQ((ml - ]-)h'17 m2h'2)
1
hQuhl ho(Mihy, (Mg 4 1)ho) + hQUhl ho (M1h1, maohy)

1
72 Uhy,ho (mlhla <m2 - 1)h2):| .

h2 75 Why ,ho (mlhb mzhz)
2

Using linearity of the discrete Fourier transform and applying variable substitutions in
several summands, finally obtain:

Fhl,hz (_Ah17h2 uhhhz)

i 1 1 1 i 1 i 1 1 1 i
— _h%e hlyl_|_h2 +h _h_%e hiyr _ h%e h2y2+h2 +h _h_%e hzyz] Fhl,hQUhl,hg

1
= 12 (2 — cos hyy; + isin hyyy — cos hyy; — isin hyyy)
L1
1 . .
+ﬁ (2 — cos hays + isin hoys — cos haya — isin hoya) | Fhy hoUhy by
2

2
— (1 — cos hng):| Fhy by Uny by

2
= h_%(l — cos hyyy) + 2

(4 oy 4 S hoy
2 = h%sm 5

2 2
1 Fh17h2uh1>h2 - dhl,thhl,hz Uhy,ha-

12



10.

This property is proved by using the well-known relation of the Fourier transform

d’I’L
x"u(x) = z”—u(y)
dym
2 2 2 o 0 5 0
FlyPu=F (yju+ ysu) =i a—x%Fu—l—z (9_135Fu = —A(Fu).

_A<Fh1,h2 uh1,h2) = F|Y|2F71Fh1,h2 Uhy s -

Let us assume that uw = F~'F},, p, up, p, in previous property, then obtain:
_A<F P Fh17h2 Uh1,h2) = F|y|2 P Fh1,h2 Uhy,ha >

and therefore,
_A(Fh1,h2 uhhhz) = F|Y|2 -t Fh1,h2 Uhy,hg -

_Ahhhz(thhQFu) = Fh_l?hgd%ll,hg thhz Rhl,thu'
Let up, h, = Rpy p, F'u in Property 5, then it follows immediately

thhz(_Ahth (Rhl,hz FU)) = df2117h2 Fh17h2 Rh1,h2Fu'
Applying now the inverse discrete Fourier transform finally obtain

_ -1 2
_Ah17h2 (ththu) - Fhl,hgdh17h2 thhz Rhl,thu'

_Ah17h2 (ththhl,hz uh17h2) = Fhil%hgd2 Fhl,hz ththhl,hz Uhy,ha -
Analogous to the previous case, by using Property 5 and applying the inverse Fourier
transform the property immediately can be obtained.

y | 1 e
Fh1,h2(Djuh1,h2) = _Shlj,thhlJm Uhy by for ] = 1,2, with fhlj,hg = h_ (1 —e hjy]).

j
Application of the definition of finite differences and calculating the discrete Fourier
transform of each term for j = 1 leads to:

1
Fhl,h2(D1uh1,h2) - Fhl,h2 (h_(uhl,fu((ml + 1)h1’m2h2> - uhhhz(mlhl’m?h?)))
1

1. 1 1,
— (h_le hiyr _ h_1> Fhl,hQU’hl,hz — h_l (e hiy1r _ 1) Fhl,hzuhl,hg

= —— (1 — 6_ih1y1) Fh17h2uh17h2'

Analogously the result for 7 = 2 can be calculated.
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11. Fh1,h2(D*juh1,h2) = fil,thh17h2 Uh17h2 fOI‘ j = 1, 2, with gsz'hhz = %(1 — eihiyf).

Applying the same ideas as in Property 10, the following result is obtained for 7 = 1:

1

Fhoyho(D_1tpy hy) = Fhyho (h—(uhl,hz(mlhhmzhﬁ — Upy hy (M1 — 1)h1>m2h2))>
1

1 1, 1 y
— (h_l _ h_le h1y1) Fhl,hzuh1,h2 — h_l (1 —e h1y1) thhQuhth‘
The result for j = 2 can be obtained analogously.

12. Dj(Rpy noFu) = —Fy 670 Foyng Ry iy Fu, for j =1,2.
Let up, p, = Rpy np [ w in Property 10, then at first it follows

thhz (Dj [Rhl,lmFu]) - _5;1j;h2Fh1,h2Rh1,h2Fu7
and by taking the inverse transform on both sides, the final relation is obtained

_ -1 ¢—J
Dj(Rh1,h2Fu> - _Fhl,h2§h1,h2Fh1,h2Rh1,h2FU'

13. D_j(Rp, noFu) = Fy Y &) 1 Foy g Ry o Fu for j = 1,2,
Let up, py, = Rpy py F'u in Property 11, then it follows

Fhl,h2 (D*j [Rhl,h2Fu]) = gﬁl,thhlythhlﬁzFU”
and taking the inverse transform on both sides leads to

I A
D*j(RhlJmFu) - Fhl,hgfhl,thhhMRhl,thu°

2.3 Geometrical setting

In this section, the construction of a mesh, which will later be used for discrete potential and
function theories, is discussed. The use of these discrete theories for solution of boundary
value problems of mathematical physics in bounded domains requires a more refined con-
struction of a discrete geometry. Especially construction of a geometrical setting for exterior
problems must be performed more carefully since two alternative approaches can be used.
General ideas of constructing geometrical setting for discrete potential and function theories
relevant for ideas discussed in this section have been presented in [85, 86, 104]. The con-
struction, developed in this section, is essentially based on these results, however, a more
detailed discussion on the introduction of a discrete geometry is provided in this section.
Additionally, a general algorithm for meshing, which can be used to discretise an arbitrary
bounded simply connected domain, is presented.
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Remark 2.1. It is important to remark, that results presented in this thesis will be con-
structed for discrete bounded simply connected domains and their complements. But in
fact, these results can be further extended to more general types of domains, such as path-
connected domains. An example of a discrete path-connected domain will be presented in
this section. However, as it will be seen from the upcoming chapters, because of a more
complicated structure of discrete path-connected domains, constructions of discrete poten-
tial and function theories become even more cumbersome, and therefore, only results for
discrete bounded simply connected domains will be discussed in this dissertation.

Let us consider a two-dimensional Euclidean space R?, and let Q C R? be a bounded
simply connected domain with the boundary 02 consisting of sufficiently smooth parts and
polygonal parts. These boundary parts will be specified later in our discussion. Construction
of a mesh can be started with the introduction of discrete version of €2 as follows:

th’h& =0N Ril,}m'

In order to shorten the notations in all upcoming constructions, the indices of points of R%l’ ho
belonging to Qy, p, will be denoted by M ™. Precisely, the set M™ is defined as

M* = {m = (my,ma) | my,my € Z,(mihy,mahs) € 1y } -

Now let K denotes the set of indices corresponding to the classical 5-point stencil associated
with the Laplace operator:

K= {(070); (17()); (_17 O>; (07 1); (07 _1)}'

In the sequel, the elements of set K will be denoted as k;, « = 0,...,4, while the first and
the second components of these elements will be denoted as k;; and k; 2, correspondingly.
Moreover, in a general context without a specific k, also the notation k; and k5 will be used
with the exactly same meaning for first and second component of a general element k.
Applying at each element of M the 5-point stencil the following set can be obtained:

N*:= |J Nm, with Ny={m+k[keK}.

meM+

Additionally, the set KT can be introduced, which is defined as follows
K ={keK|r+k¢ M r=(r,mrn)eN}.

Now, the points v, ,, whose indices are defined by N* \ M~ as boundary points. More-
over, v, 5, Will be called as exterior boundary layer, while the interior boundary layer V}Z,hg
is defined as follows:

fyf[l’hz — {(mlhl,mth) | (my,me) € MY, 3k e K : (m+k)h € 7};1,112} ,

where ((m + k)h) means precisely ((m; + k1)h1, (mse + k2)hs). In the sequel, it will be sim-
ply written ((m + k)h) unless some specific comments are done. Furthermore, the exterior
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Figure 2.1: Discretisation of a rectangular domain for interior problems

boundary 7;, ;. is subdivided into the four parts v, ,, ;= {(r1h1,m2h) € Yoy o |r+ k; €
M*} i =1,..,4 with k&, = (1,0),ky = (0,1),k3 = (—=1,0), ks = (0,—1). All points which
belong to v, ;, and 'Vi;,hg are denoted by vp, n,. Thus, geometrical setting for interior prob-
lems is introduced. Fig. 2.1 shows the introduced sets on a simple example of a rectangular
domain together with the sub-division of the boundary into four parts.

The geometrical setting for exterior problems can be introduced in two possible ways. At
first both alternatives will be described, and after that, the difference between the approaches
and our final choice, which will be used in all upcoming constructions, will be discussed.

(i) In the first approach, the discrete setting will be used directly, and the discrete exterior
domain is defined as follows:

ext, (i _
th,h(z) = R%ﬁ,hg \ (thth U /yhl,hz) .

Next, similar to the interior setting, the following set is considered:
M_’(i) = {m = (ml,mg) |’ITL1,7R2 €, (mlhl, mghg) € QZLT}S)} .
Applying at each element of M~ the 5-point stencil the following set is obtained:

N=D= | Np, with Np:={m+k|keK}.

meM—(%)

As before, points with indices defined by N=® \ M= will be denoted by a,;’% and

will be referred to as boundary points. Moreover, a,;’(}g will be called as exterior

boundary layer, while the interior boundary layer 04:{1(,?2 is defined as follows:

Oé;l’(l) = {(mlhl,mghg) ‘ (ml,mg) € Mi’(i), dk e K : (m + k)h € Oé;{?;%} .

g T

(@)

The division into four sub-parts of 04,:1’, !

case. However, the sub-division of a;{l(,i requires some preliminary steps at first. It

can be done analogously to the interior
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is necessary to define explicitly exterior corner points which also belong to a,—;”(il, and

they will be used later on for discussing exterior setting for the discrete potential theory
in Chapter 4 and discrete function theory in Chapter 5. These corner points are defined
as follows

F14 = {(llhl, lghg) S O{]—;’hg | (llhl, (lg — 1)h2) € a};,hg,l and ((ll + 1)h1, lghg) € O'/fjl,hQA} N
Flg = {(llhl, l2h2) - Oéi—;,hg | ((ll + ].)]’Ll, lQhQ) S Oé;hh272 and (llhl, (lg + 1)h2) S O‘i;,hz,l} s
F23 = {(llhl, lQhQ) S CY}Jlrth | ((ll - 1)h1, l2h2) S Oé]:17h272 and (llhl, (lz + 1)h2) € a’;l,hQ,S} y

F34 = {(llhl, l2h2) c a;17h2 | ((ll — 1)h1, l2h2) € Oé,;17h2’4 and (llhl, (lg — 1)h2) c 06;1711273} .

By using the exterior corner points, the boundary layer 0‘;1(}?2 can now be characterised

as follows: .
O‘Zl(f?z = U O‘E(}gg Ul Ul U3y Uy,
j=1
where the sub-parts 0421’7(2)2,3-, j=1,2,3,4 are defined as follows

06217’(2)27]- = {(mlhl, mghg) | (ml,mg) € Mi’(i), (m + kj)h € af?;,(’?z,j’ kj € K} .

Fig. 2.2 shows the introduced sets for the first case on a simple example of a rectangular
domain with the sub-division of the boundary into four parts.

(a) Sets of indices N~ and M~ (b) Boundary layers Q. by and aﬁm

Figure 2.2: Geometrical setting for exterior problems: first alternative

(ii) In the second approach, the continuous case is considered at first by introducing the
complement of 2 in R?: Q¢ = R?\ Q, where 2 denotes the closure of 2. Similar to the
interior case, the discrete version of the €2¢ can now be introduced:

ext . OcC 2
Qh17h2 - Q mRhl,hQ'
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All necessary geometrical sets can now be introduced straightforwardly:

Mo = {m = (m1,ma) |my, my € Z, (mihy, mohy) € Q52 1,
N= = | ) Np, with Ny oi={m+k|ke€ K},
meM (i)
= {rhlre N\ M)
O‘Zl,hQ,(n’) = {(mlhl, mohsy) | (mq, ms) € M~ Ik e K : (m+k)h € O‘i;,hg} )

Fig. 2.3 shows the introduced sets for the second case on a simple example of a
rectangular domain with the sub-division of the boundary into four parts.
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(a) Sets of indices N~ and M~ (b) Boundary layers o, p, and 0‘;{1,}12

Figure 2.3: Geometrical setting for exterior problems: second alternative

As it can be clearly seen from the trivial examples of rectangular domains, the first
approach provides the following relations

Qhhh2 Rhl ha \ <Q;Lff;l(;) U hl( )) ) Q’eljfil(g) Rh1 ha \ (th,hz U Vgl,hg) ) (25>
since exterior boundary layers v, ’(2) and a;’(}? contain exactly the same set of points. In
contrary, the second approach does not prov1de such relations for the discrete plane, since
exterior corner points belong to «;,’ h , but do not belong to v, (h) Thus, it is attractive to
prefer the first alternative for the upcoming constructions. However, the situation is more
involved in the case of general bounded simply connected domains. Fig. 2.4 shows the
geometrical setting for interior problems in bounded simply connected domains composed of
rectangles.

Figs. 2.5-2.6 show geometrical setting in exterior domains for the first and the second
alternative, respectively. Note that, in the first alternative interior corner points generally
do not belong to «y, ;. , except the case, as in Fig. 2.5b, when there are no additional mesh
points between interior and exterior corners. Moreover, exterior corner points belong always
to O‘Ierl,hz' In the second alternative, interior corner points never belong to a; ., while

exterior corner points always belong to «;, ;..
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Figure 2.5: Geometrical setting for exterior problems for domains composed of rectangles:
first alternative

Next, it is interesting to present examples of discretisations for bounded simply connected
domains with curved boundaries, see Fig. 2.7. As it is indicated by Fig. 2.7, a discretisation
of arbitrary bounded simply connected domains with curved boundaries is more difficult. In
the case of the first alternative, the discrete boundary can be characterised by three bound-
ary layers: Oz,fhhy Viy.hp 0 7h+1,h2’ because the boundary layers v, , and «a; ;. coincide
completely similar to the case of a rectangular domain. In the case of the second alternative,
boundary layers for interior and exterior problems coincide, in particular oy ;. = 7}: 1, and
a;{th = Vhy.h, for most of the points, which is an unexpected situation contradicting to
the trivial examples for domains composed of rectangles. Moreover, a mesh refinement, i.e.
h1 — 0, hs — 0, does not change the principal behaviour of both alternatives.

In summary, from examples presented in Figs. 2.1a-2.7 it can be clearly seen that the first
alternative for constructing discretisation of exterior domains performs better compared to
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Figure 2.7: Interior and exterior boundary layers for the discretisation of an arbitrary
bounded simply connected domain with curved boundaries

the second alternative, because a clear structure of the discrete boundary with three bound-
ary layers is provided. Moreover, geometrical relations (2.5) are satisfied for all domains
which do not have interior corner points. Domains possessing geometrical relations (2.5)
simplify formulation of coupled interior-exterior problems, since transmission or coupling
conditions, can be formulated for the same set of points. In the case, when geometrical rela-
tions (2.5) are not satisfied, i.e. domains with interior corner points, formulation of coupling
conditions at interior corner points must be discussed individually. This situation is not
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unique, since even in the continuous theory interior corner points of polygonal domains also
play a special role [53, 54]. Nonetheless, the second alternative does not provide a possibil-
ity for a consistent formulation of coupled interior-exterior problems. Moreover, as it has
been shown in Fig. 2.7, discretisation of arbitrary bounded simply connected domains with
curved boundaries by help of the second alternative has led to an inconsistent discretisation.
Therefore, in the sequel only the first strategy for discretisation will be considered, and thus,
the upper-index notation (i) will be omitted in all upcoming constructions.

Finally, let us discuss the case of a bounded multiply connected domain with curved
boundaries, which is a path-connected domain. Fig. 2.8 shows the discretisation of 1-
connected bounded domain with curved boundaries according to the first strategy. As it
can be clearly seen from the figure, the geometrical relations (2.5) are satisfied also for this
discretisation. Thus, the first strategy provides a consistent way for discretising different
types of bounded domains, and it is applicable not only for simply connected domains, but
also for a more general type of domains, such as path-connected domains.
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aries
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To finish the discussion on discrete geometrical setting for rectangular lattices, it is
necessary to introduce discrete normal derivatives for interior and exterior settings, which
will be used later in Chapter 4. However, a general definition of normal derivatives in
discrete setting converging to the continuous normal derivatives for hy, hy — 0 for all types of
geometries considered above is not really possible. The restriction comes from the well-known
fact, that approximation of a curved boundary by a lattice requires extra considerations to
approximate normal derivatives to these boundaries, see for example classical works [6,
38, 79]. Therefore, to keep construction short, definitions of normal derivatives only for
boundary parallel to coordinate axes, which correspond to domains composed of rectangles,
will be introduced. Thus, the discrete normal derivative for interior setting is given by the
following definition:

Definition 2.1. Let uy,, be a discrete function defined for all points (myhy, mahs) € Vi,
then its discrete normal derivatives along discrete boundary layer v, ;. are defined as follows:

Byt [(wpyny (T1h1, 72ho) — Uy, (11 4+ k1) b, (1o + ko) ha)]
for (r12h12) € Viihy1 Y Viiho o
UD(Tlhl, T‘th) =
hy ! [(tnyny (r1h, 72ho) — wnyy ((r1 + K )ha, (2 + k2)ho)]
for (r12h12) € Vihp2 U Vihot-

where k € K\ K;I, with K7 :={ke K|r+k¢ M*, r=(r,r) € Nt}
Analogously, the discrete normal derivatives for exterior setting can be introduced:

Definition 2.2. Let uy, 5, be a discrete function defined for all points (myihy, maohs) € apyp,,
then its discrete normal derivatives along discrete boundary layer ay, ;. are defined as follows:

Wit [(nyny (r1ha, 72ha) — wnyny ((r1 + K )ha, (e + k2)Ro)]
for (r12h12) € Wyt Y Oy 30
UD(’T’lhl, T'th) =
hy  [(nyny (r1h, 72Ra) — wnyny ((r1 + K )ha, (e + k2)Ro)]
for (r12h12) € @ 0 U iy 4

where k € K\ K, with K :=={ke K|r+k¢ M, r=(r;,rs) € N }.

Remark 2.2. Tt is important to remark, that the classical continuous definition of a normal

du
derivative, i.e. — = gradu - 7 with 7 denoting the normal vector to a surface, can be

adapted as well. ﬁowever, in this case, the discrete normal vector and the choice of right
or left finite differences for approximation of gradient operator will depend on the boundary
part. In this regard, definitions 2.1-2.2 contain general form of finite differences and discrete
normal vectors, and everything is controlled by the parameter k € K \ K. Therefore, it is
preferred to keep the original notations from the above definitions, rather than introducing
direct discretisation of the continuous definition.
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2.3.1 A general algorithm for the discretisation

Summarising the discussion about geometrical setting from the previous section, a general
algorithm for discretisation of a given continuous domain is presented in this section. The
input data of the algorithm are geometry of a domain 2 and stepsizes hi, ho. After that,
the algorithm goes according to the following steps, see also [50]:

Step 1. Establishing a rectangular lattice €2, , over a domain ' > Q. The domain
(Y satisfying relations Q C € C R? plays a role of the unbounded domain in R2.
The domain € is finite, since in reality computer implementations can work only with
finite objects, up to some extend in functional programming languages, see for example
[9] for details. In practical applications, the size of €' is defined by the region where
a discrete fundamental solution can be calculated numerically, see Chapter 3 for the
related discussion.

Step 2. The set of indices M and points of €2, p, are constructed on this step. In
general, implementation strategy for this step depends on a level of generality desired
by a construction. Perhaps, the most general case is to assume that a characteristic
function of a domain 2 is known, and then points of ,, 5, and elements of M™ are
obtained by application of the characteristic function to points of Q;Zl,,m from Step 1.
Another option would be to explicitly construct points of €, , from the geometrical
definition of € and knowing indices of points €2, ..

Step 3. The set Nt can be constructed from M™ by applying the five-point stencil
K to each element of M™. Alternatively, assuming knowledge of the correspondence
between indices and coordinates, set N can be constructed by addition to M™ ele-
ments obtained by vertical and horizontal shifts of indices of “boundary”elements of
M. Considering that elements of M ™ have the form (my, ms), by “boundary” elements
here understood elements with min m; or maxm; and min msy or maxms.

Step 4. The indices of the points belonging to the exterior boundary layer v, ; can
be constructed directly by calculating set difference N\ M™; or, if the alternative with
“boundary”points has been used on Step 3, then the indices of the points belonging
to the exterior boundary layer v, ;. are the indices, which were added to M *. The
interior boundary layer ”yahQ is then constructed by applying shifts towards interior
of the domain Qp, p,.

Step 5. For the exterior setting, the set of indices M~ and the points of €} , \
(thm U, ,hg) are constructed similar to Step 2. The set N~ is then obtained by
application of the five-point stencil K to M.

Step 6. Indices of points of the exterior boundary layer «; , —are constructed by
calculating N~ \ M, and the points of the interior boundary layer are obtained from
@, n, Dy applying shifts towards exterior of the domain Qp, p,.
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As output, the algorithm provides coordinates and indices of points belonging to: 2, 4,,
ryh_17h2’ 7}:7};27 Q/hl,hz’ Oéf:hhz’ and Oz}—:th.

The presented algorithm is rather generic, and it provides a general strategy for construc-
tion discrete geometrical quantities utilised later in discrete potential and function theory.
Of course, concrete implementations can be slightly different to the proposed scheme, and
they are also influenced by a specific programming language. Moreover, the proposed con-
struction works for discretisation of arbitrary bounded simply connected domains. However,
for concrete geometries, the construction can be significantly simplified.

2.4 Short summary of the chapter

In this chapter, basics about rectangular lattices have been discussed. In particular, discrete
shift operators acting on a rectangular lattice have been introduced, which are then used
for a formal definition of finite difference operators and the discrete Laplace operator Ay, p,.
After that, the discrete Fourier transform on a rectangular lattice has been introduced, and
its properties have been proved. The discrete Fourier transform on a rectangular lattice will
be used in Chapter 3 for defining the discrete fundamental solution of the discrete Laplace
operator Ay, 5, on a rectangular lattice. Further, discrete geometrical setting for interior and
exterior problems has been discussed. Moreover, two alternatives for discretising the exterior
problems were proposed and compared. After that comparison, the first alternative has been
prioritised, because the geometrical relations (2.5) simplifying formulations of transmission
problems are satisfied in this case. Thus, the discussion on discrete geometrical setting
provided in this chapter serves as a basis for constructing consistent discrete potential and
function theories on a rectangular lattice discussed in later chapters of this dissertation.
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Chapter 3

Discrete fundamental solution of the
discrete Laplace operator on a
rectangular lattice

A lot of tools of discrete potential theory are constructed on the basis of a discrete funda-
mental solution of the discrete Laplace operator. Hence, extension of the discrete potential
theory to more general types of lattices must begin with the construction of the discrete fun-
damental solution on such lattices. Therefore, this chapter discusses theoretical and practical
aspects of constructing and calculating discrete fundamental solution of the discrete Laplace
operator on a rectangular lattice. Additionally, the main part of this chapter is devoted to
constructing error estimates for the difference between the continuous fundamental solution
and the discrete fundamental solution. In particular, not only the estimates for the absolute
difference between the two fundamental solutions are constructed, but also [P-estimates for
interior and exterior settings are presented and analysed. Moreover, the difference to the
classical case of a square lattice, as well as the difficulties coming from the consideration
of a rectangular lattice, especially for numerical calculations of the discrete fundamental
solutions, are discussed in this chapter.

3.1 Fundamental solution of the discrete Laplace op-
erator on a rectangular lattice

To extend the discrete potential theory to rectangular lattices, it is necessary to work with a
discrete fundamental solution Ej,, 5, (m1hy, mahsy) of the discrete Laplace operator (2.2) intro-
duced in Chapter 2. Therefore, definition of the discrete fundamental solution together with
its convergence analysis is presented in this section. Let us start with the basic definition:

Definition 3.1. The function Ej, », is called a discrete fundamental solution of the discrete
Laplace operator Ay, p, if it satisfies

- AhthEthz (X) = 5h17h2 (X) (31)
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for all mesh points x = (myhy, mohy) of RE ., where dp, 4,(x) is the discrete Dirac delta
function defined as follows

1

% —
hii or x = (0,0),

Ony hy (X) :=
0, for x # (0,0).

Construction of the discrete fundamental solution is based in the application of the
discrete Fourier transform on a rectangular lattice (2.3) and using some of its properties
proved in Chapter 2. Application to both sides of (3.1) the discrete Fourier transform on a
rectangular lattice leads to
1

dlethFhl,hZEhl;hQ (X> = %
After taking the inverse transform and regularising the result by the help of the Taylor
expansion in the numerator, as it was shown in [99], finally can be obtained the following
integral representation for the discrete fundamental solution:

" e—Hmihiyi+mahay) _ 1
Eh1 ha (mlhl, mghg ( ) / / 2 dyldyg, (32)
hl,hz
“hy hr

which is the discrete fundamental solution of the discrete Laplace operator on a rectangular
lattice, and the Fourier symbol dj, ,, is given by formula (2.4).

Remark 3.1. 1t is necessary to mention, that the discrete fundamental solution on a rectan-
gular lattice (3.2) cannot be obtained from the discrete fundamental solution on a square
lattice by help of change of variables, as one might expect. Let us consider the discrete
fundamental solution of the discrete Laplace operator on a uniform lattice with stepsize h:

—i(mihy1+mahy2) _
™

_T _
h

:\4

4 h h h
where d2 = 72 (sim2 <%> + sin? (%)) The use change of variables y; = #01, Yo =

fGQ leads to the following expression

sinnmar (8 ] |

. 4 .
with the symbol d? = " (sin2 (thel> + sin? (h2292)) . As it can be seen, the symbol d>
1122

is different to d%m in (2.4). Moreover, calculating Eh(mlhl, mahsy) and Ey, p,(mihy, mahs)

—i(m1h101+maha) _ q

N d0,dbs,

d2

e

:“‘ \S‘:‘
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1
! 2
ator to both of them shows that Ej(mihy, mahs) is not the discrete fundamental solution
because it does not satisfy (3.1), while Ej,, ,(mih1, mahy) does. Fig. 3.1 shows both func-

tions Ep, p,(mih1, maohe) and Ej(myhy, mohy) and the result of applications of the discrete
Laplace operator to them.

numerically on a lattice with e.g. hy = 3, ho = = and applying the discrete Laplace oper-

Discrete fundamental solution Ej, p, Plot of function Ej

0

-0.2

5

0 0

Result of calculation —Ay, 4, Ep, 1, Result of calculation —Ahl’thh

0.8 25

1.5

0.5

-0.5

Figure 3.1: Discrete fundamental solution calculated according to (3.2) (top left) and func-
tion Ej,(myhy, mahy) obtained by change variables (top right), and the result of application
of the discrete Laplace operator to these solutions (bottom left and bottom right, respec-
tively). Rectangular lattice with hy = 3, hy = % has been used for calculations.

Moreover, it is also interesting to apply the inverse discrete Fourier transform to the

symbol d2, and perform calculations for d%m (Chapter 2, property 5 of the discrete Fourier
transform on a rectangular lattice) in a “backward” manner. The following chain of calcu-
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lations is obtained then:

4 h1y1 4 .2h2y2

dZFhl’hQ Uhy,hy = |:h1h2 Il 9 + hthSlIl 5 :| Fh17h2uh17h2

(1 — cos h2y2)1 Fhy hyUny by

2 2
= 1— h
{hth( cos hiyr) + I

1
= {W (2 — cos hyyy +isinhyy; — cos hyy; — isin hyy;)
1102

1
+h 3 (2 — cos hays + i sin hoys — cos hoys — isin hQ?Jz)} Fhy hoWhy by
1he
1 —ih1y1 2 1 ih1y1 1 —ihay2 2 1 ihay2
I D e i e F
l h1h2e i hiho h1h26 h1h26 * hiho h1h2e o ha tihe s
F L (my + 1)y, mohs) + — (1 by, mshs)
= - m m —u mihy,m
husha | = gt e (70 1 Mzhe) et e (M, mohe
1 1
+muh1,h2(m1h1,m2h2) — muhl,hg((ﬂh — 1)hq, mahs)
L (mah, (ma + 1)ha) + gy (i, m3ha)
—u m m —u myhy,m
T Ty e (i (1 2) g e (M Moz
(MRt Mgh) — oty (i, (5 — 1)h)
—u mihy,m —u m Mo —
h1h2 ke (M f, Mok ) = 5 ety (maha, (M 2
F; 1 —D + — 1 —D_ 1 —D + 1 D
= u u u —D_su )
hi,h2 hg 1%hy,ho h2 1%hy,hy — hl 2%h1,ha hl 2Uh1,ho

Thus, as it can be seen, the symbol d? is not related to the discrete Laplace operator on
a rectangular lattice, because the final expression does not represent factorisation of the

discrete Laplace operator by finite difference operators. Moreover, the presence of factors
1

hih
aIISOerom the properties of the discrete Fourier transform on a rectangular lattice proved in
Chapter 2. Thus, the differential operator corresponding to the symbol d? cannot be the
Laplace operator.

As it has been shown now numerically and analytically, the discrete fundamental solution
on a rectangular lattice (3.2) cannot be obtained from the discrete fundamental solution on
a square lattice by help of change of variables.

speaks in the direction of mixed derivatives in the discrete operator, which follows

Remark 3.2. Finally, it is necessary to remark, that naturally the discrete fundamental
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solution on a square lattice can be obtained from the fundamental solution (3.2) by setting
hi = ho, as expected.

The need for regularisation of the discrete fundamental solution is similar to the contin-
uous case, where the fundamental solution needs also to be regularised. Particularly, several
regularisations of the continuous fundamental solutions are possible. For the convergence
analysis of the discrete fundamental solution Ej, p,(m1h1, mahs) the following regularisation
of the continuous solution will be studied:

1 ey — 1 e Xy 1
Ex)=—— ——d d =——(C—-In2+1 3.4
@ =g | [ v [ Sy | = g0 -m2emx). B

yl<1 ly|>1

where C' is the Euler constant. This regularisation is obtained by help of regularisation of a
distribution, see [106, 107] for details.

First steps in convergence analysis will be performed by working with the following
regularised form of the discrete fundamental solution

1 1 ey 1 e~y
Ef(u),hz(x) = (27‘()2 / dy + / dy |, (3.5)

2 2
dh17h2 dhl,hz
yl<1 lY[>1,yEQny ,hy

where it has been taken into account that the convergence analysis is of interest here, i.e.
hi, he — 0, and therefore, the interior of unit disk |y| < 1 needs to lay inside the rectangle

Qh, by, meaning that hy < 7 and hy < m. The discrete fundamental solution E,(i),hz (x) differs
from the discrete fundamental solution (3.2) by the following expression

1 1
K1 = / dy,
(2m)? dil,hQ

lyI>1,y€Qn hy

which depends on hy and hs.

It is important to underline that regularisation (3.5) is one of two regularisations com-
monly used in practice. The second regularisation (3.16) will be also discussed in this chapter.
The principle difference between both regularisations is the fact that (3.16) is better suitable
for working in exterior domains. Nonetheless, for providing a clear overview on the behaviour
of the discrete fundamental solution Ej, j, of the discrete Laplace operator on a rectangular
lattice, both regularisations will be analysed in this chapter and the corresponding estimates
will be constructed, see also [51].

Finally, by using changing of variables in discrete fundamental solution (3.2) the following
corollary can be proved:

Corollary 3.1. The discrete fundamental solution Ep, p,(mih1, mahs) satisfies the following
properties:
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e symmetry property

Ehl,hg (mlhb m2h2) = Ehl,hg (_mlhb mzhz)
= Ep, ny(mihy, —mahy) = Ep, p,(—mahy, —mahs);

e scaling property

Ehl,hg(mlhl,Wth) = Eh1,h2(km1hl,km2h2)7 Jor k€ Q.

It is important to remark, that in comparison to the case of a square lattice, a rectangular
lattice lacks half of symmetries: as it can be seen from the above corollary, the discrete
fundamental solution on a rectangular lattice possess symmetry with respect to quadrants,
while the discrete fundamental solution on a square lattice possess also symmetries with
respect to diagonals of each quadrant.

The scaling property is crucial for practical applications of the discrete potential theory,
since it provides a possibility for refinement of a lattice without the need for recalculating
the discrete fundamental solution with new lattice constants.

3.2 Numerical calculation of the discrete fundamental
solution on a rectangular lattice

In this section numerical calculation of the discrete fundamental solution Ej, p,(mihy, mohs)
on a rectangular lattice will be discussed. To explain better the difference to the case of a
square lattice and related difficulties, general ideas of calculating discrete fundamental solu-
tion on the lattice R? := {x € R?|x = (myh,mah),m; € Z,j = 1,2} will be briefly recalled.
Along our discussion it is necessary to keep in mind, that infinite lattices cannot be con-
structed in a practical computer implementation, and therefore, the goal is to calculate the
discrete fundamental solution in a region as big as possible with the highest possible ac-
curacy. In other words, the region should be big enough for studying convergence of the
algorithms by using the scaling property of the discrete fundamental solution.

Since the expression under the integral of the discrete fundamental solution of the discrete
Laplace operator Ej on a square lattice (3.3) is singular and highly oscillating, a direct use
of the integral representation formula for numerical calculations of Ej(mih, moh) causes
numerical instability and, therefore, requires advanced quadrature rules. However, in the
case of a square lattice, the situation can be significantly simplified:

e The discrete fundamental solution posses more symmetries, in comparison to the case
of a rectangular lattice, precisely the following symmetry properties are satisfied:
En(mih,mah) = Ep(—mih,moh) = En(mih,—mgoh) = Ep(mgh,mih). Thus, it is
necessary to calculate the discrete fundamental solution only in lattice points with in-
dices (my, my) for 0 < my < my, my,my € Z, ie. in % of all lattice points. In contrast,
the discrete fundamental solution on a rectangular lattice must be calculated in i of
all lattice points.
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e Scaling property Ej(mih, moh) = Ej(mq, ms) simplifies significantly the integral rep-
resentation, and therefore, numerical integration routines can be used to calculate the
discrete fundamental solution in a small region, if necessary. Although the case of
rectangular lattice also possess a scaling property, as it was shown in the previous sub-
section, the situation is more involved: the scaling is done only by the same constant £
in both coordinates, and thus, the reference lattice still must be a rectangular lattice.
Even if one of the stepsizes hy or hsy is set to 1, the numerical integration is still an
issue, because the integral will not be so simplified as in the case of a square lattice.

e Finally, for the case of h = 1, the following formula, proved by S.L. Sobolev in [92, 93],
provides values along the main diagonal of the lattice

1 1 1 1
E =—1+-+-+4+... > N.
1(n,n) 7T( +3+5+ —|—2n_1>,n_,n€

Thus, using this formula together with the knowledge that £,(0,0) = 0 and E;(1,0) =
—i, symmetry properties, and use of the discrete Laplace operator, the discrete fun-
damental solution can be calculated, in fact, exactly in a region of arbitrary size.
However, it is also known that the summation formula given above becomes quickly
unstable, and therefore, requires very high accuracy with hundreds of digits after the
decimal point, which can be provided by some computer algebra systems, such as e.g.
Maple. In the case of a rectangular lattice, no such formula exists and, therefore, no

exact calculations of the discrete fundamental solution are possible.

Finally, it is necessary to mention that the discrete fundamental solution of the discrete
Laplace operator can be obtained by using fast Poisson’s solvers. In this case, the follow-
ing boundary value problem for the Poisson’s equation in a discrete domain Qg with the
boundary vz must be solved :

{ —AgFEy = 5H7 fOI‘XGQH, (3 6)

Ey = 8 fOI‘XE*)/H,

where H can be equal to h or to (hq, hy), since the method is applicable to both square and
rectangular lattices, and g is a boundary function, which is either the continuous fundamental
solution

1
E(x1,29) = ~5- In (27 + 23) , (3.7)

or some pre-calculated values of the discrete fundamental solution. A comprehensive review
of different methods for calculating the discrete fundamental solution on a square lattice see
2], as well as for ideas on combining several methods.

As a consequence of the above discussion, to calculate the discrete fundamental solution
Eh, hy(mihy, mahs) only its integral representation (3.2) and ideas related to fast Poisson’s
solvers can be used. A direct numerical integration of (3.2) can be done by using Matlab
routine integral2, which is recommended for calculations of singular integrals. Nonetheless,
the numerical calculations becomes quickly unstable implying that regions bigger then 201 x
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201 lattice points cannot be considered. Fig. 3.2 shows the result of applying numerical
integration to calculate the discrete fundamental solution Ej 5, i.e. hy =1 and hy = 2. As it
can be seen from the figure, the effects of numerical instability can be observed in the region
with indices 90 < |m;| < 100, where j = 1,2. Later on, for shortening notations, instead of
writing 90 < |m;| < 100 and 90 < |ms| < 100, the notation 90 < |m; s| < 100 will be used.

Figure 3.2: Discrete fundamental solutions Eja(my,2ms) calculated by help of numerical
integration in the region 201 x 201 lattice points.

Accuracy of the calculated discrete fundamental solution E;, is checked by applying
the discrete Laplace operator A;, to the result, and the approximation error is evaluated
by calculating the absolute difference with the continuous fundamental solution restricted
to the lattice. Fig. 3.3 shows the results of both calculations, left and right sub-figures,
respectively. Similar to Fig. 3.2, it can be observed that accuracy is lower in the region with
indices 90 < |mq 2| < 100, as expected from the numerically unstable behaviour. The result
of application of the discrete Laplace operator has accuracy of order 107! in the region
near the coordinate origin, and of order 1073-10~* in the unstable region, Fig. 3.3, left. By
analysing the difference |E(my, 2msg) — E1 2(my,2ms)|, as it can be seen from Fig. 3.3, right,
the absolute difference is not close to zero, but rather to a constant value, approximately to
0.1845 in the example. In the case of subtraction of 0.1845 from | E(my, 2ms)— Ej 2(my, 2ms)],
the accuracy of calculations will be of order 107° in the stable region. Nonetheless, these
results indicate that the use of numerical integration can be recommended only for test
examples with a small number of lattice points.
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Figure 3.3: Result of the calculation AjoF,o(my,2ms) (left), and |E(mq,2msy) —
E, 5(my,2my)| (right) for the discrete fundamental solution calculated by numerical inte-
gration.

To calculate the discrete fundamental solution Ej, p,(mihi, mahs) in a bigger region, the
idea with a fast Poisson’s solver will be used. In this case, the boundary value problem (3.6)
with boundary conditions given by continuous fundamental solution (3.7) needs to be solved.
Typically, two types of fast Poisson’s solvers are used in practical calculations: solvers based
on iterative procedures for a finite difference scheme, and solvers realising fast Fourier trans-
form. In calculations for this thesis, both types of solvers will be used, specifically the freely
available Matlab codes for both Poisson’s solvers [72, 89] will be utilised. The solvers are
adapted to the current setting by modifying some of the functions. Moreover, two differ-
ent strategies can be used for solving boundary value problem for a Poisson’s equation:
(i) solution of the boundary value problem in a rectangular region centred at the origin
with boundary data given by the continuous fundamental solution; and (ii) solution of the
boundary value problem in one quadrant with the boundary data given by the continuous
or discrete fundamental solution. After performing numerical experiments with the software
the following facts have been observed:

(i) Accuracy of the result is higher, if instead of solving boundary value problem (3.6) in
one quadrant, it is solved in a rectangular region centred at the coordinate origin. A
possible reason for that is the use of continuous fundamental solution as boundary data,
which has singularity at the coordinate origin. Although, the origin is not included in
the numerical scheme in one quadrant, the boundary data still tend to the singularity.
Use of the discrete fundamental solution as boundary data in one quadrant provide
higher accuracy, but only in a small region, since for indices |m;2| > 90 numerical
integration becomes unstable even along the axes, and therefore boundary data cannot
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be calculated accurately.

(ii) Application of the discrete Laplace operator to the result indicates, that accuracy is
low in the region around the coordinate origin. Similar observation has been made in
2], and it has been suggested to use numerical integration to calculate the discrete
fundamental solution near the coordinate origin and use the result of Poisson’s solver
in the rest of the domain.

(iii) Finally, it has been observed, that FFT-based solver shows exceptionally good accu-
racy in the case of a square lattice: 107! for checking discrete harmonicity, i.e. for
calculating Ay Ey(m1, my), and order 10~7-107® for calculating difference with the con-
tinuous fundamental solution in the region starting already with indices |m 2| > 80.
However, calculations on a rectangular lattice are not that precise and give accuracy
of order 1079 and 1073-10~%, respectively. In contrast, the use of simple iteration pro-
cedure provides accuracy of order 1077-107? (depending on the region) for check of
discrete harmonicity, and 107°-107% for the difference with the continuous solution in
the region with indices |my 2| > 90.

It is necessary to underline, that the important part of computing the discrete fundamental
solution is using it in solution procedures for boundary value problems. Therefore, further
analysis of using the Poisson’s solver for computing the discrete fundamental solution of the
discrete Laplace operator on a rectangular lattice will be performed in Chapter 4, where the
discrete boundary value problems will be discussed.

3.3 Estimates for the discrete fundamental solution of
the discrete Laplace operator

In this section, error estimates for the discrete fundamental solution (3.5) will be presented
as pointwise difference to the continuous fundamental solution, as well as difference in [P
space. It is important to remark that formula (3.2) provides a general form of the discrete
fundamental solution of the discrete Laplace operator on a rectangular lattice. However, for
analysis of this fundamental solution, similar to the continuous case [107], it is necessary
to work with a regularised version of it. Omne of possible regularisations is provided by
formula (3.5), which, as it will be shown in this section, is suitable for constructing error
estimates in the interior setting, but not for the exterior setting. Therefore, the estimates
in the exterior setting will be constructed by working with another regularisation of the
discrete fundamental solution (3.2), which will be introduced in Section 3.3.2. For both
regularisations, estimates for the pointwise difference to the continuous fundamental solution,
as well as difference in [P space, will be presented.

3.3.1 Estimates for the discrete fundamental solution E}(i?hQ

It is natural to start with the following theorem presenting a pointwise estimate:
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Theorem 3.1. Let E,(Lll)J12 be the discrete fundamental solution given in (3.5) of the discrete
Laplace operator, and let E be the continuous fundamental solution (3.4) of the classical
Laplace operator. Then for all x # 0 and all hy, hy < /21 the following estimate holds

C Cs max {h?, h3}

2 max {hy, ha} + —

B, — B()| < Cymax {1, 13} + x| min (i, s}

x|
where C1, Cy, and C5 are arbitrary constants independent on the stepsizes hi and hs.

Proof. The use of definitions of the fundamental solutions and application of the triangle
inequality lead to the following:

1 1 1 1 —ixe
R A O

yl<1

1 1 1 .
- s | e™Vd 3.8
(2m)2 / (d%l,hg IY\2> Y (38)

YI>LY€EQn, hy

L1 / ey
_— y .
(27)? ME

YIERN\Qn 1y

1 1 1 ,
At first, the term [} .= —— —— = — | (7Y = 1)d ill be estimated. Esti-
LT (2r)? / (d,%1 he IY\2> ( B
yl<1 7
mation of I requires at first an adaptation of some preliminary results from [97] to the case

. 1 ,
of a rectangular lattice. Recalling that for the variables ézhhg(yj) = — (1 — ezhﬂ'yf), 7=1,2

h;
the following equalities are satisfied
] 1 2 1 win2
‘ghhhz (y])‘ = ﬁ [(]— — COS h]y]) -+ sin h]y]]
J

L 2 .2

- ﬁ\/1 — 2cos hjy; + cos® hyy; + sin” h;y;
J

- h_j 2 —2cos hyy;| = h_j 4 sin? 323 :h_j si % ’

. 1 )
the following equality for variables ff;] hy (Us) = . (e*”‘iyﬂ‘ — 1)7 7 = 1,2 is obtained straight-
J
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forwardly
Bt
sin Y
2

_; 2
‘ghlj,hg (yj)‘ = . .

J

2
Finally, by help of the Jordan’s inequality —z < sinx < z for x € [0, g], the following
T

estimates can be obtained

2 ; .
;’y]’ < |£i17h2<yj)| < ‘yj‘> J=12 ye Qh1,h2'

Now left inequalities for each j will be considered, and after squaring both sides and adding
inequalities for j = 1 and j = 2, the following inequality is obtained:

2

Y

4
= (Jya? + [2]?) < |§i1,h2(y1)‘2 + & ns (92)

which finally leads to

4
ﬁ|Y|2 S dilahz'

1

To estimate the expression ——— — W, the Fourier symbol d? will be expanded into
hi,ho Yy

Taylor series, and by using the equality e > — P the following estimate is obtained

y T"Chy ho
0< 1 1 ™ {h2,h2} (3.9)
_— - T T a4 _— - maX 17 2 . .
di211,h2 ly[* — 48

By using trigonometric identities, as it has been done above, the expression |[e”*Y — 1| can
be estimated from above by 2. Finally, the term [; is estimated as follows:

1
< oo ma {1, 13) / dy = o max {1, 13} (3.10)
lyl<1
. 1 1 1 _ixy . :
To estimate the term [ := ) F W e dy|, integration by
hi,h2

YI>1,y€Qn, hy
parts w.r.t. y; will be used. Particularly, considering that the integration domain |y| >
1Ay € Qh, p, is a rectangular domain with a circular whole of radius 1, the integration by
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parts leads to the following three summands:

1 1 1 1 -
L, < — / —— | 5— — —= | e Y cos(n, yy)dy
? (2)? iz, (dzm IYI2> )

yl=1
Ry
+ - - — e 2 (e T — e R ) dy,
@) | i (d |y|2>
y2=—@ |yl:hL1
1 |1 2 2h; sin(h .
T2 i / - = s4m( 1) e " Vdy|,
(2m)2 | iy ly| i, o
[y[>1,y€Qh hy

where 77 denotes the outer unit normal vector, which is related to the unit circle |y| = 1 in

our case, and the second summands combines terms obtained for y; = 7 and y; = 7
1 1

Estimating first two summands similar to I, the following expression is obtained:

1 1
I h?, h? / d h?, h? / d
2 192|x1|maX{ 1 } y+96| maX{ 1 } Yo
ly|=1
1 1 / 2y1  2h{'sin(hiyy)
+ — — dy.
(2m)? [ y[* iy, 1,

[y|>1,y€Qn hy
At first, the expression under the last integral is estimated as follows:
2y1  2h{*sin(hiy)

2y1  2sin(hyyr) 2sin(hayr) 2h; tsin(hyyr)

MK dh, 1y |y halyl* halyl* p, by
2y1 — 2h;1 Siﬂ(hlyl) 2 d;lz hy ’y|4
< + — sm(h1y1) —_2
ly|* h dp, py Y1

= I+1L
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Next, expanding sin(h;y;) into Taylor series the term I is estimated as follows:

h? cos(hy1y,©) 3

I — 'Zyl — 2hf1 Sin(h1y1)‘ _ 2y1 — 2y + 2 3 h
ly|* ly|*
2h? | cos(h1110)y? h?
= — < , with © € (0, 1).
3! |y [* 31yl (0.1)

Using the same Taylor expansion for the term IT leads to

d4 _ 4
I1 hz sin(hyy;) <—h1’h2 y >
1

dil,h2|}”4

_ 3 (hlyl o hi’) COS(hlylg) y3) dil,hg — |y|2 dil,hg + |y|2
N 1

i 3t di17h2|y|2 dil,h2|Y|2
o2y Reos(hn) o [, — VP || dh Iy
> i .
hl 3! df211,h2|y|2 di2117h2|Y|2

The last two factors can be straightforwardly estimated as follows:

7T2

~ 2ly[¥’

72 max {h? h3}
48 ’

d%n,hz + lyl?
di211,h2’y’2

dil,hQ - |}”2
dil,hg‘yP

where inequality (3.9) and related results have been used. Thus, the term II is estimated as
follows:

h? cos(h1y10) m*max {h? h3} 7
II < |2y — = HE LALLE
h? cos(hyy,0) 7t max {h?, h3}
< 2 1 3 . 157°2
< 7t max {h? hZ}

h2
(21 5 i)

mtmax {h} h3}
481yl
Collecting both estimates for I and IT leads to:

< <h_%+ 7T4max{h%,h§}) 1

3 48 Iyl

96|y |?

7th? max{h%,h§}| |
288 I

2h; sin(hyyy)
d4
hi,ha

2 B
ly|*

7th? max {h?, h%}‘
y

.31
588 - (3.11)
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Finally, the following estimate for I is obtained:

h?, h2 h? h3
[2 < max { 1 } / maX { 2} / dy2
Y2=—

=192 |a| 96 [x| 1|
ly[=1
1 / h%+7r4max{h%,h% 1 N 4h2max{h%,h2}| | a
42|14 | 3 48 ly| 288

[y|>1,y€Qn, n
1:ho

The last integral has to be calculated by using polar coordinates. To enable the trans-
formation to polar coordinates, the rectangle @, », has been extended to a square with a
side-length equal to the maximum side of the original rectangle. Thus, the transformation

to polar coordinates could be performed leading the following calculations for —

ly|
on mleaT
1 " NGT
—d S/ / —rdrdp=2r | —— —1].
/ ly| Y r v (mln{hl,hg} )

[yI>1,y€Qn, ny 0 1

min {hl, hg

sizes hi, ho needs to be made. In this case, the last term is positive if min {hq, ho} < V2.
Integrating similarly the term |y| and collecting all results, finally the following estimate for
15 is obtained:

2T
In order to assure positiveness of the expression ( V2 7 — 1) , a restriction for step-

I rmax {h? h3} rwmax{h? h3} 1 [ h? N mtmax {h? h3}
2= 96| 1| 48hy |z, | z1] [3v2min {hy, ha}  48v2min {hy, hy}
75v/2h? max {h?, h3} B m3h? max {h?, h3} B h_% B 73 max {h?, h3}
864 min {h3, h3} 1728 6 96 '
o : 1 ey : .
For the estimation of the third term I3 := ) / Wdy , again the inte-
m Yy

YIER\Qp 1y
gration by parts w.r.t. y; is used, and taking into account calculation rules for improper

39



integrals it follows:

1 e*i(21y1+$2y2)d p
I < B —
P (2n) / NI
YIER?\Qny 1y
1| S D
< G i | hgpeg ey
ly|=b
Ay ,
1 671x292 iz
—_— e 'h e 'h)d
+(27r)2 i / 7T2h1_2—|—y§< Hdye
y2—*@
1 1 297 _.
+ - ——e "
(2m)2 | iz / D
[YIER2\Qp, 1y
hl
<

1 I / 1 dy + 1 / 1 d
a2 oo | @+ " 2na] wh 4
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The first improper integral tends to zero for b — oo, as well as the third integral is zero.
Thus, the following estimate for I3 is obtained:

h h
I; < 1 arctan [ 2.
7T3|I'1 | hg
Similarly, the use of integration by parts w.r.t. y, leads to the following estimates for I, and
IgZ

L < rmax {h? h3}  wmax{h? h3} 1 [ h3 N mtmax {h?, h3}
2= 96|, 48y | 25| |z2] [3v2min {hy, hy}  48y2min {hy, hy}
m0v2himax {h}, h3}  wPhimax{h},h3} hi  7°max{hi, h3}

864 min {h3, hi} 1728 6m 96 ’
hs hy
L < — t —
3 < 7T3|x2|arc an(h1>,
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where the restriction min {h;, ho} < /27 has been made again during estimation of .
To obtain the final estimates for I and I3, the expression (|a1|I},)? + (|z2|I;)? for k = 2,3
needs to be studied. For k = 2 it leads to:

mmax{h? h3} mwmax{h? h3} h?
96 48h2 3\/5 min {hl, hg}

(enlB)? + (sl 1)° < (

rtmax {h?, h3}  7%v2h? max {h? h3}
48+v/2min {hy, hy} 864 min {h3, h3}

 mhimax{h} h3} h? 7r3max{h§,h§})2

1728 67 96
<7rmax{h%,h%} 7 max {h?, h3} h3
96 48h4 3v2min {hy, hy}

mimax {h?, h3}  7%V/2hZmax {h? h3}
48v/2 min {hy, hs} 864 min {h?, h3}

- mhimax {hi, h3} By mmax {hi,h3} 2 1
1728 6 96 o

and thus the final estimate for I, is obtained

1
L< —VE (3.12)

Analogously, for k = 3 it leads to:
2 2 Lo 2 (1 L. 2 [ 2
(|x1|13)* + (|z2|13)* < ghl arctan” | — | + ﬁhQ arctan” | — |,

and thus the final estimate for I35 is obtained:

11 h K
Is < g; {h% arctan® (h—;) + h3 arctan® (h—j)} . (3.13)

Finally, combining the estimates (3.10), and (3.12)-(3.13) for Iy, 5 and I3 the final estimate
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is obtained as follows:

1
T 11 hy ha\ |2
L+L+I; < %max{h%,hg} + E; {hf arctan® (h_g) + h3 arctan® (h_lﬂ
+L [(ﬂmax{hf,hg} N 7 max {h? hi} hi
x| 96 48hy 3v2min {hy, hy}

rtmax {h?,h3}  70V2h? max {h? h3}
48+/2 min {hy, hy} 864 min {h3, h3}

 mhimax{h} h3} Kl 7T3ma,x{h§,h§})2

1728 67 96
<7rmax{h%,h%} N 7 max {h?, h3} h3
96 48h4 3v2min {hy, hy}

mtmax {h? h3} 79v/2h3 max {h?, h3}
48\/§m1n {hl, hg} 864 min {h?a h%}

-

mh3max {h3,h3}  h3 7w max {h? h3}\*|°
1728 6 96 ) '

Further, by using estimates hy < max{hy,ho} and hy < max{h,he} in the numerator

of (3.12), as well as using estimates h; < min {h, ho} and hy < min {hq, hy} in the denumer-

ator of (3.12), and omitting fourth-order term, the above estimate can be finally simplified

to the following form

Cama {12,13)
x| min {hy, ho}’

C
Il + IQ + [3 S Cl max {h%, h%} + ﬁ max {hl, hQ} +

X
where C;, Cy, C3 are constants independent on the stepsizes h; and hy. Thus, the assertion
of the theorem is proved. n

Remark 3.3. It worth to mention, that in the case of h; = hy = h, the estimate provided in
Theorem 3.1 reduces to the estimate for uniform lattices presented in [46, 56].

For a better overview of the estimate in Theorem 3.1, the estimate is calculated along
different lines of a rectangular lattice. To provide a better overview of the estimate, all plots
are calculated for the complete form of the estimate obtain on the pre-last step of the proof
of Theorem 3.1, i.e. without involving extra assumptions for simplification of the final form.

Moreover, the influence of ration o = h—2 on the estimate is analysed. Additionally, since

1
the estimates tends asymptotically to zero, only the region with indices till 20 is plotted.
Figs. 3.4-3.7 summarise the results of this analysis:
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e Fig. 3.4: estimate calculated along coordinate axes and along the main diagonal of the
rectangular lattice, i.e. for points (mqhq,0), (0, mahs), and (mqhy, mqhsy), respectively,

1
for hy =3 and hgzz.

e Fig. 3.5: estimate calculated along the main diagonal of the lattice for different values
of ratio a;

e Fig. 3.6: estimate calculated along the x;-axis for different values of ratio «;

e Fig. 3.7: estimate calculated along the xo-axis for different values of ratio a.

Estimate along the main diagonal and coordinate axis for h; = %, hy =1

1
14—
¢ —Estimate for points (mjhy, mihs)
ob i -~-Estimate for points (mjh,0)
: -+ Estimate for points (0, mahs)
®10p
=
|
W o8
B
5}
=
Z o4
m
S
LT -0.__0 ....... Qrerennn P "N N
ape s BT P Gy s Gligily it S Yy S
0 | | | | | | | | 1 i
0 2 4 6 8 10 12 14 16 18 20

Indices of nodes

Figure 3.4: Calculation of the error estimate along the main diagonal and coordinate axes
based on Theorem 3.1.
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Estimate along the main diagonal of the lattice for different @ = 72

120 -

(x) — E(x)|

hy,hy

(=)
o
T

(1)

Estimate |E
IS
(=]
\

0 2 4 6 8 10 12 14 16

Indices of nodes

Figure 3.5: Calculation of the error estimate along the main diagonal for different values of

« based on Theorem 3.1.

Estimate along z;-axis for different a = Z—f
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Figure 3.6: Calculation of the error estimate along x;-axis for different values of o based on

Theorem 3.1.
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Estimate along zo-axis for different a = hf

h
450
ho = 4hy
wor ~hy = 3y
350 — hg — 25h1
I ~hy = 2hy
o —hy = 1.5k
250 —-—ho = 1h;

o

(=3
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Figure 3.7: Calculation of the error estimate along x,-axis for different values of o based on
Theorem 3.1.

As it can be seen from Figs. 3.4-3.7, higher ratio between stepsizes h; and hs leads to
a bigger error; and the lowest error is obtained in the case of h; = hy. This behaviour is
not surprising, because a square lattice is, in fact, the ideal mesh from the point of view of
numerical approximation. It is also known, that any deviation from the ideal mesh produces
higher approximation error, see for example [88], although providing higher flexibility in
practical applications.

For convenience reasons of some theoretical constructions, it is worth to present the
following shorter version of the estimate from Theorem 3.1:

Corollary 3.2. Under assumptions of Theorem 3.1, let us further assume that ho = ahy for
a € R, then the following two case for the original estimate hold:

(i) for a € (0,1):
B0 - Bl < Cun + 2 (6 + ),
(i1) for a € (1,00):

ah
1B, (x) — E(x)| < Cia®h? + |?|1 (Cy + Csa)

where Cy, Cy, and Cs are arbitrary constants independent on the stepsizes hy, ho, and pa-
rameter o.

Analysing the above estimates, it is clear that estimates diverge for a« — 0 and @ — oo
for the first and the second case, respectively. This fact is natural because @« — 0 and @ — 0o
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represent extreme cases of a rectangular lattice with infinitely large rectangles in x; or xs
directions. In practice however, the parameter a will always remain finite and positive, and
thus, the estimate will always be finite, but can be arbitrary large. Finally, the two above
cases can be combined as follows:

Corollary 3.3. Under assumptions of Theorem 3.1, let us further assume that ho = ahy for
a € R, then the following estimate holds:

h
Bl (00 = B()] < Crla)hi + Cal@)
where C1 () and Co() are constants depending on a, which might tend to infinity for o — 0
and o — 0.

Corollary 3.3 presents similar behaviour of the estimate (sum of linear and quadratic
terms with respect to the stepsize) as in the case of a square lattice, see again [46, 56] for
the details. However, in the case of a rectangular lattice, only stepsize h; appears explicitly
in the estimate, while the influence of stepsize h, is controlled by a-dependent constants.

Next step is to construct the estimate in [P(§, p,), which is provided in the following
theorem:

Theorem 3.2. Let E,(Ill)ﬁ2 be the discrete fundamental solution given in (3.5) of the discrete
Laplace operator, and let E be the continuous fundamental solution (3.4) of the classical
Laplace operator. Further let A(Qp, p,) == Y.  hiha, and let Ly := diam Qp, p,, Lo :=

erhl,h2
diram Qpy hys t.e. the diameters of Qp, p, along x1 and x4 directions, respectively. Then for
2

all x # 0 and hy, hy < /27 the following estimates in 1P(Qy, p,) hold:

o forp=1:

| B, ) - Bx)

< g max {h} B3} A(Qu, ) + (Cr + 4max (I, ho})

ll

max {h{, h3}\
X (Cg max {hl,hg} +Cgm ;
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o for 1l <p<2:

| B ) = B

e 1
» = %max{h%’ h%} [A(thfu)]p + (Cl max{hl, hQ}

C2max{h§,h§}) . [( Ahahy |, 2hy

3
max A, o ; WP 4 ph! P — —)
min {hq, ha} h?+h3): p—1 < ! Pt !

1

21

+2—p

((\/ﬁ(max {Ly, Ly} — min {h, hg}))

1
_ _ 3 P
<2h5 p"’ph; P — Lp—l):| ;
2

" (min {A1, hQ})“)

2hy

+p—1

T 1
2 < %maX{hihg} [A(Qh1,h2)]2 + (Cl max{hlahﬂ}

+ Cg — C4<h1 + hg)

< 1 max {h%, h%} [A(th’hg)]% + (Cl max {hl, hz}

max {h? h3} 4hihs
Co— X172 2
min {hq, ho} h% + h3

Jun

V2(max {Ly, Ly} — min {hy, hy})
min {hl, ]’LQ}

+27 In

o for2 <p<oo:

|, ) - Bx)

i — 96
max{h% h%} |: 4h1h2 2h2 < 1— 1— 3 )
Co—n—"22 | % = + 2h; P +ph; P —
“min{hho} ) T LM Rg)E p—1 70 TP T

+I% ((min (b1, ha})2 P — (x/ﬁ(max {Ly, Ly} — min {hy, h2})>2p)

B 3 \1¥
(2@ P4 phy P — L”_l)} :
2

where all constants are independent on the stepsizes hy and hso.

2hy

+p—1
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Proof. For the sake of completeness, the proof of IP(§2,, »,)-estimate will be carried out with
all long expressions, and it will be simplified to the form presented in the statement of the
theorem as the last step of the proof, similarly as it has been done in the proof of Theorem 3.1.
Moreover, for shortening the subscripts, the notation {? will be used instead of IP(£2p, p, ).
The proof starts with using of the definition of the [P-norm and applying the Minkowski
inequality. After that, considering the proof of Theorem 3.1, the following expression is
obtained:

P
HE}(Lll)hz (x) — E(x) . Z ‘Ef(Lll)hz (mihy, mahy) — E(mlh17m2h2)‘ hihg
(m1h1,m2h2)€Qp, h,
T
< | ggmax{ndng|
11 h ho )\ 2
+ P <h§ arctan? (h_g) + h3 arctan® (h_1)> )
N 1 {(7? max {h?, h3} | Tmax {h3, h3} h3
|X‘ 96 48h2 3\/§m1n {hl, hg}
7t max {h?, h3} 79v/2h? max {h?, h3}
48+/2min {hy, hy} 864 min {h3, h3}
_7r3h% max {h? h3} B h_% B m max {h2, h2}\ >
1728 6 96
(Wmax{h%,hg} N 7w max {h? h3} h3
96 48h, 3v2min {hy, hy}
mtmax {h?, h3} 70v/2h3 max {h3, h3}
48+/2 min {h1, hy} 864 min {h3, h3}
1
_7r3h§ max {h?, h3} B h_% B 73 max {h?, h2} i
1728 6m 96
Ip
After shorting notations by defining A(Q, 4,) == Y.  hiho, the following estimate can be

XEth,hQ

48
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obtained:

(1) T 9 19 1 1 1 hy
E —F < — hi, hst [A(Q P h? arct
H hl,hQ(X) (X) p = 96 maX{ 1> 2}[ ( hl,hz)] + |x| o 3 ( arctan <h2
12 arctan? (hz))2 N 1 [(ﬂmax{h%,hg} N 7 max {h? h3} h?
hy 1%/l 96 48hs 3v2min {hy, hy}

2
mimax {h? h3}  7v2h?Imax {h? h3} ~ mhimax{hi, h3} B max{h%,h%})

48v/2min {hy, hy} 864 min {3, h3} 1728 67 96
(Wmax {h3,h3} N 7 max {h? h3} h2 N mtmax {h?, h3}
96 48hy 3v2min {hi,hy}  48v2min {hy, hy}

1

2
76v/2h3 max {h?, h3} B m3h2 max {h?, h3} B h_% B 73 max {h?, h3}
864 min {h3, h3} 1728 67 96

By using the same simplification ideas as during the proof of Theorem 3.1, the above estimate
can be reduced to the form:

IN

| B ) - Ex)

- 1
og [nax {n3, B3} [A(Qh, )7

P

I

]

max {hi hg}
(Cl max {hy, ho} + CZW '

P

1
Application of the definition of the [P-norm to the term —

] leads to the following expres-
X

sion
l1

hyhs hyhy 2 hihy v
( Z Z %—i_ Z (myhq)P mzzzl (m2h2)P> (319

mi1=1mo= 1 +m2

where [; and [y denote maximal indices of a domain €2, 5, in x; and z, directions corre-
spondingly. Note that the indices [; and l; depend on stepsizes h; and hy, and, in fact, they
are inversely proportional to h; and ho, respectively. Keeping this information aside, the
proof will be constructed, and during final simplifications at the very end of the proof, the
dependencies of indices on stepsizes will be addressed.

Since the functions under summations in (3.14) are monotone decreasing functions, the
estimation of these sums will be based on the integral test. Moreover, because the main
interest is to construct the upper bound for the convergence estimate, the upper bound
estimate for the sums will be used as well. Each sum will be estimated individually. Since
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the single sums can be estimated easily, at first the second and the third sums will be
considered. The following estimate is obtained for the second sum:

! " ho(1 -+ 1n |l —1
ZZ ke o h1h2+/—h1h2 dmy < e n|f|)p ="
(miha)? = by (mih)e T by phz . p> 1.

mi1=1 1 p— 1

The third sum can be estimated analogously leading to the estimate:

i e _ h1(1+ln|§%\)p p=1,
(mghg)p - hlhl pp— p > 1.
p

mo=1 _ ]_ ’

Application of the integral test to the double sum leads to the following estimate:

l1h1

l
hih hih h
SN e < e [
mi1=1mao= 1 +m2h )2 (hl +h2)2 i (Jf +h2>2
(3.15)
laha l1hy loho
+ p d dl‘

/ (h2 )2 / / 1:2—|—y Y
ha h1  he

The technique to estimate double sum (3.15) depends on the number p. Therefore, at
first the case p = 1 will be considered, because in that case the double sum can be estimated
explicitly by help of the integral test as follows

S I+ /B3 + 14
hihs hiho 2 2 h2

Z Z NP < T + l1h11In 12;2
mi1=1mo= 1 +m2h )2 h1+h2 1+ 1+Z_§1

L+ /12 + B
—{—lghg In L

14 /1+ 54

The estimation of the double integral in (3.15) for a general p is more difficult, since only
for integer values of p this integral can be calculated explicitly, and even in that case, an
iterative application of known integrals is needed, see [52] for details. Therefore, instead of
estimating the double integral over a rectangular domain, the rectangular domain is extended
to the biggest possible square constructed based on side-lengths of the rectangular, similar to
the idea used during the proof of Theorem 3.1. Thus, the double integral over a rectangular
domain is estimated by a double integral over the biggest square as follows

llhl lzhg 1 max{llhl,lghg} max{llhl,lghz} 1
N A =
(* + )2 , , (* +y?)2

hi  h2 min{hi,ha2} min{hi,ho}
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The construction, proposed above, enables the use of polar coordinates for an exact calcula-
tion of the double integral over the biggest square. Thus, the integral can be estimated now

as follows

max{ll hl,lghz} max{ll hl,lghg} \/i(max{ll h17l2h2}—min{hlvh2}) % 1
—dydx < / /—rdgodr =
(a2 + y?)3 P
min{hi,ha} min{hi,ha} min{hi,h2} 0
= p=2

—In
2

V2((max {l1h1, laha} — min {hy, hy})) ‘
min{hl,hg} 7

2(27T— p) [\/i(max {lh, lahe} — min {Ry, ho})* 7P — (min {/y, hQ})Qip] P72

The one-dimensional integrals in (3.15) for p > 1 and p # 2 can be estimated as follows:

llhl llhl

[ Gt = [ s -
T 3)2

h1

l2h2 lQhQ

Mg < [Ty <t hhi PP — 1),
(h? +y?)? L—p % 7

ha ha

Finally, for p = 2 the double sum can be estimated as follows

h hlhg hlhg llhl hl
Z Z + m2 )§ < h% mn h% + arctan (h_2> — arctan (h_z)

mi1=1mo= l

tarctan { 22 _ arctan | V2((max {lih, Ish} —min {ha, ha})) |
h min {hq, ha}

1

Summarising the above results for different values of p, the following estimates are ob-

tained:
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™

" S %max{h%,hg} A(Qh1,h2) + (Cl max{hl,hg}

12h2
h2, h2 o+ \JB+ 5 A
o, e dhn, ho} 4l hy In =) T L ohy (1t In )
min {hy, ho} 14 /1+l% VR4 h2
L+ + 5
+4l2h2 In l2h1 + 2h1<1 +1H ’lg’) X
1+ /1 + 42
1

o for 1 <p<2:

| B ) = B

m 1
" < %max{hih%} [A(Qp, 00)]7 + (C’1 max {hy, ho}

max {h2, h2} { 4hyhy 2hy Phy ( 3 )
+C——— 22 | x >+ 2+p— —
*min {hy, ho} (R2+h3)>  p-—1 P Pt

+22_7Tp ((x/ﬁ(max {lih1,lohe} — min{hy, hQ})>2—p — (min {h, h2})2—p)

2hihy " 3\
2 I, .
v +p )]

=

m 1
S %max{h%,hg} [A(Qn, 0,)]* + <01 max {hy, ho}

max {h%, h%} 4h1h2 llhl hl
—_— 4 arct —— | —4arct —
+C5 min (i, o} X Ry + 4 arctan . arctan .

2 2

lohe ho he 20 —1 hi 20, —1
4 arct — 4 arct — 2— . 2— -
+4 arctan < I ) arctan (h1> + I I + o b

1
] 2
)

ﬂ(max {llhl, lghg} — min {hl, hg})
min {hl, hg}

+27 In
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o for 2 < p < oc:

T 1
HEf(lll)JLz (X> - E(X) < % max {hi h%} [A(Qh1,h2)]p + (Cl max {hla hZ}

P

max {h?, h3} { 4hyhy 2hy Phy ( 3 )
+Cy——— | X 7+ 2+p— -
“min{hi by | (2 +H)E | p1 P

+]% (<mm{h1, ha})? 7 — (V2(max {Iihy, Lho} — min {h, h2}>>2p)

2hyhL " 3\
24p—— .
" p—1 o B!

Finally, dependencies of the indices [; and [y on h; and hy for a fixed domain Qp, p,
needs to be taken into account. To overcome this issue, instead of working with indices of
points, the quantities Ly = [;h; and Ly = l3hy representing diameters of €, p, in 27 and x5
directions, respectively, will be considered. After that, the above estimates can be simplified
to the form presented in the theorem, and thus, the theorem is proved.

O

Next step is to estimate the difference between continuous and discrete fundamental
solutions in [*°(§2y, p,)-norm, i.e. to estimate HE,(le)h2 (x) = E(X)liso(y, 1,)- This estimate is
provided by the theorem:

Theorem 3.3. Let E}(Lll)’h2 be the discrete fundamental solution given in (3.5) of the discrete
Laplace operator, and let E be the continuous fundamental solution (3.4) of the classical
Laplace operator, then for all x # 0 and hy, hy < /27 the following estimates in 1y 1)
hold:

HE(l) 1

X) e, ) < ~=max {h2 h3} +
iarl0 = B0y, 1) < ggmax {H 1} + s

max{h%yh%}
. max hy, hot
y (01 max /1, ha} + Co—— {hi,ha} )

where constants C1 and Cy do not depend on the stepsizes hy and hs.

Proof. Using the definition of the norm leads to:
1 1
1B (0 = B0,y = 500 B}, (x) = (X)L,

XEQny,hy
where x = (myhy, mohsy) with my, my € Z, and hy, hs are stepsizes tending to zero. Recalling
the estimate provided by Theorem 3.1:

h2. b2
|E,§11{h2(x)—E(x)| < %max{h hi+ — <C’1max{h1,h2} @M),

| n {hhhg}
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and taking into account the definition of |x| and simplifying the resulting expression, the
following estimate is obtained:

1 ™
1B (0 = B i@, ) < g max {4353} +

1
vmin {2, h3}|m|

max {hi, h3}
X <Ol maX{hl,hQ}—f-Ogm s

where |m| = \/m? + m3 and x = (m1hy, mahs). Finally, noticing that the fraction _
min {h{, h3}|m|

takes its maximum for |m| = 1, the final estimate is obtained. Thus, the theorem is
proved. O

Remark 3.4. It is important to notice, that numerical calculations with fixed values of L1,
L, and different stepsizes h; and ho have indicated that the [*°-estimate presented in Theo-
rem 3.3 indeed corresponds to the limit case p — oo for [P-estimates provided in Theorem 3.2,
as expected.

To illustrate the [P estimates for different values of p, the estimates are calculated with
hy = ahy for a = 3 and decreasing values of h;. Fig. 3.8 shows calculations the estimates
for different values of p with respect to the stepsize h; in a logarithmic scale. Similar to the
results presented in Figs. 3.4-3.7, the [P-error is smaller if the parameter « is close to 1. As
it can be clearly seen, all estimates converge to zero for h; — 0, as expected, except the case
p = 0o, which is the “worst-case” estimate. As h; tends to zero, the [*° estimate represents
the difference between continuous and discrete fundamental solutions at a point arbitrary
close the coordinate origin, where the continuous fundamental solution has singularity, and
therefore, this difference cannot become zero for any arbitrary small, but finite, stepsize h;
(since in this example hy = ahy).
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[P-estimate for different values of p and o = 3
105 T T T T T T T T T T T

Value of the estimate

I
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107 10 107 102 107! 10°
Stepsize hy

Figure 3.8: Calculation of the error estimate in [P(£2, p,) from Theorems 3.2-3.3 in a loga-
rithmic scale with respect to hy for hy = 3h; for a rectangular domain with length L, = 1
and height Loy = 2.

Similar to the discussion after Theorem 3.1 summarised in the form of Corollary 3.3, it
is worth to present similar results for the [P-estimates. Therefore, the following corollary is
introduced:

Corollary 3.4. Under assumptions of Theorems 3.2-3.3, let us further assume that ho = ahy
for a € R, then the following estimates hold:

o forp=1:

LS 5e MA@ 1) + Cr(@)hs + Caf@)h}

| B, ) - Bx)

o forl <p<2:

HE;S?,@ (x) - E(x)|| < J—ﬁa%f A )]? + Oy (@) (Cala, p)h2 — Cila, p)ha) ¥
o forp=2:
|00 - B, < cca®hd A0
+hiCy (@) (Cs(a) — Cola)hy — 2 lnhy)? ;
o for2 < p<oo:

< Z 22 [A(Qny p)]7 + haCi(@) (Cola, p)h? =% = Cy(a, p)hn)

| B 60— Beo|| < o

)
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e forp=oo:
1B, (x) = EX)[li= < Ci(a)h? + Co(a),

where some of the constants depend on o and p, while the other depend only on o. Moreover,
all constant tend to infinity for « — 0 and o — oo.

. . . 2
3.3.2 Estimates for the discrete fundamental solution E}(Ll)h2
Looking at the [P-estimates for the discrete fundamental solution E}(Lll)h2 provided in Theo-
rem 3.2, it becomes clear that because of the term A(, 5,) a similar estimate cannot be
obtained for the exterior domain 5", , since the related sum A(Q5*,,) will be a sum over in-

finite set. To overcome this problem, another regularised version of the discrete fundamental
solution is considered now

o o XY _ ] eixy
1,2

yl<1 [y[>1,y€Qn, ,ny

dil,}m |y[? ’

lyl<1

(3.16)

which is more suitable for applications in unbounded domains, see again [46] for more details.
The fundamental solution Ef(i),hQ is different to the E,(lllth by the following constant:

1 1 1
-t () e
*7 2y (%m MJ

lyl<i

which depends on hy, ho, since d%u,hz contains the stepsizes. Moreover, considering that
dy 1, = |y|* for hy — 0 and hy — 0, the constant K, tends to zero as well. Additionally,
consider the difference

B, (%) = By (%) = B, (%) + Ko — By py (%) = K + Ko,

which states the relation between three different formulations of the discrete fundamental
solution of the discrete Laplace operator. Based on previous calculations, the sum K; + K>
can be estimated as follows:

2m max {h?, h3} V2r m 5 19
K+ K, < 1 T K2, h
prfes e M i ey ) 192 max Ay, b}

where each summand corresponds to the estimates for Ky and K, respectively.
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Theorem 3.4. Let E,S?,m be the discrete fundamental solution given in (3.16) of the discrete
Laplace operator, and let E be the continuous fundamental solution (3.4) of the classical
Laplace operator. Then for all x # 0 and all hy, hy < /21 the following estimate holds

C Comax {h2,h3} O
E(2) _E < b ~2 1542 ~3 2 12
hne(X) — E(x)| < ™ max {hi, ha} + ] min {7y, 7n} + x max {hi, h3}

where the constants C1, Cy, and C3 do not depend on the stepsizes hy and hs.

Proof. Analogously to (3.8), application of the triangle inequality leads to

(2) 1 1 [
Ehl,hz(x>_E(X)‘ < @) / (di - _W> e dy

yl<1

I 1 / 1 1 —iX'yd " 1 / e_ix~yd
—— — 5 | e Vdy| + 53 —-dy]|.
(2m)? dipy VP (2m)? ME

YI>1,Y€Qny hy YIERI\Qpy 1y

Based on the proof of Theorem 3.1 the following estimate is obtained on the first step:

11 :
‘E,(l?hQ (x) — E(x)‘ < s {h% arctan? (%) + h3 arctan® (%)}

x| 2 1
_}_i [(Wmax{h%,hg} 7w max {h?, h3} h? N 7t max {h?, h2}
x| 96 48hs 3v2min {hy, hy}  48v/2min {hy, ho}

2
m5v2h3 max {h? h3} mhimax{h? h3} h? B w3 max{h%,h%})

864 win {17, h3} 1728 6r 96
(ﬂmax{h%,hg} N 7 max {h? h3} h2 N mtmax {h? h3}
96 48hy 3v2min {hy,hy}  48v2min {hy, hy}

D=

2
m0v2himax {h}, h3}  wPhimax{h},h3} hi  7°max{hi, h3}
864 min {h3, h3} 1728 67 96

1 / 1 1 .
b— = — | e vay]|.
(2m)? (d |y|2>

yl<1
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Thus, proving the theorem implies estimation of the following term:

1 1 1 .
I, = — L/‘ ) exYgy
SN (d |y|2)

y|<1

1 1 1 ) 1 1 )
= lim / — — — | e Vdy + / —— | e Vdy]|.
3 (272 (d \y\?) (d \y|2>

y|<e e<ly|<1

1

By using integration by parts w.r.t. y;, the estimate of R W provided in (3.9) and
hihe Y

2y1  2hy*sin(hyyr)

estimate of
|YI4 d;lll,hg

given in (3.11), the following estimate is obtained:

1 2
I, < (27r)2 18 max{hl,h}hm / dy

ly|<e

-1 .
2y1 B 2hl S:n(hlyl) efix-ydy
M dhl,hQ

. 1 ! 1 /
(27)2 e=0 | iz

1 1 1 1 -
. l‘ o [ —1Xy = d
et (dz |y|2> oy

1 1 1
+——1im |[—— — | e Y cos(n, y1 )d
(2m)2 >0 | iy i \Y|2> i)y
ly|=1
- 1 1 " h%+7r4max{h%,h§} 1 +7r4h%max{h§,h§}| N
= 4n? |zy] 0 3 18 ly] 283 Y
e<|y|<1

L7 max{hf,}ﬂ} / LT max{h h3} /

lyl=e lyl=1

1 <h2 N 73 max {h?, h3} N m3h? max {h?, ha} N 7rmax{h%,h§})

|z1] 96 1728 96
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Analogously, integration by parts w.r.t. y, leads to the estimate:

I < 1 h_% N 73 max {h?, h3} N m3h3 max {h?, h3} N 7 max {h? h3}
* = ao| \ 67 96 1728 96 ‘

Using again the expression (|x1]l4)? + (|z2|I4)?, as it has been done in the proof of Theo-
rem 3.1, finally the estimate for I is obtained in the following form:

Iy

1|/ h? . 7 max {h2, h2} . mh2 max {h2, h2} N 7 max {h2, h2}\”
x| |\ 67 96 1728 96

-

. h2 N 7 max {h2, h2} N mh2 max {h2, h2} . 7 max {h2, h2}\*|’
6 96 1728 96 '

Finally, by collecting all terms together and simplifying the estimate for I, the theorem is
proved. [

Remark 3.5. The estimate obtained above corresponds to the estimate for uniform lattices
presented in [46, 56] in the case of hy = hy = h.

Similar analysis, as the one performed for the estimate presented in Theorem 3.1, is made
for the estimate in Theorem 3.4. The results of analysis are summarised in Figs. 3.9-3.12.

Estimate along the main diagonal and coordinate axis for h; = 1, hy = 2

35+ Y
\ —~-Estimate for points (mjhy, mjhs)
ok —-Estimate for points (mjh,0)
B \ - Estimate for points (0, mahs)
Woask “
h \
— \
520 \

(2

Estimate | E),
\

S
T

0 2 4 6 8 10 12 14 16 18 20
Indices of nodes

Figure 3.9: Calculation of the error estimate along the main diagonal and coordinate axes
based on Theorem 3.4.
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Estimate along the main diagonal of the lattice for different o = h—f
120 -

hy = 4hy
ool —hy = 3hy

B —hy = 2.5h

g —hy = 2hy
80—

! —hy = 1.5h
5/3 "'hg = 1h1
52 60—

Sl

d.)

i
£
&

20~
0
0 2 4 6 8 10 12 14 16 18 20

Indices of nodes

Figure 3.10: Calculation of the error estimate along the main diagonal for different values
of a based on Theorem 3.4.

Estimate along z;-axis for different o = Z—?
120 -
ho = 4hy
100 — *h2 - 3h1
N —~hy = 2.5h;
% —ho = 2h;
80—
| —hs = 1.5h
3% "'hg = 1h1
gz 0
=)
5}
E
£ dop
=
20~
0
0 2 4 6 8 10 12 14 16 18 20

Indices of nodes

Figure 3.11: Calculation of the error estimate along x;-axis for different values of o based
on Theorem 3.4.
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Estimate along zo-axis for different a = hf

h1
450
ho = 4hy
400 - *h2 — 3h1
30| he = 2.5h
% —-hy = 2Ry
300
| —hy = 1.5h4
¥ 250|- —-—ho = 1h;
& 00
[}
=
£ 1501
i
100~
50
0&;-“:—%

0 2 4 6 8 10 12 14 16 18 20
Indices of nodes

Figure 3.12: Calculation of the error estimate along x,-axis for different values of o based
on Theorem 3.4.

Similar to the discuss around the discrete fundamental solution Ei(i)hw next corollary
provides a short form of the previous estimate:

Corollary 3.5. Under assumptions of Theorem 3.4, let us further assume that ho = ahy for
a € R, then the following estimate holds:

B, (x) - E(x)| < @ (Cr(@)hy + Cala)h2) |

where Cy(a) and Cy(a) tend to infinity for « — 0 and o — oo.

Theorem 3.5. Let E,(l?hz be the discrete fundamental solution given in (3.16) of the discrete

Laplace operator, and let E be the continuous fundamental solution (3.4) of the classical

Laplace operator. Let Ly := diam $Qy, p,, Lo := diam Qp, p,, t.e. the diameters of Qn, n,
x1 2

along x1 and x5 directions, respectively. Then for all x # 0 and hy, ho < V27 the following
estimates in [P(p, p,) hold:

max {h7, h3}

(Cy + 4max {hy, ho}) (02 max {hy, ha} + C’3m

+c4max{h§,hg});
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o for 1l <p<2:

max {hi, h3}
min {hl, hQ}

l S (Cl rnax{hl,hg}—i—C’g +03 max{h%,h%})

AN hy s . - 3 2, - . 3
2 p h P _ 2 p P _
[(h%hé)’fp—l(hl P ) s\ T
2 2 >
. L
+5 _”p ((ﬁ(max{Ll,Lg} - min{hl,hg})> - <mm{h1,h2})2—f’>] :
o forp=2:

max {hi, h3}

E(Q) _E il Sh TP
H hasha (X) (X) min {hl, hg}

p < (C’l max {hy, ho} + Cs —}—C’gmax{h%,hg})

1

e max{hg,hg})

ﬁ((max {Ll, LQ} — min {]’Ll, hg}))
min {hy, ha}

+ 04 — C5(h1 + hg) + 27 In

" 4hyhy
hi +h3

o for2<p<oo:

max {h7, h3}

E(2) - B et T2
H hshe (X) (X) min {hl, hQ}

l S (01 maX{hl,h2}+Cg

Ahyho %y [ .3 %y [ 3
P 4 phl P — WP 4 phl —
X{(h%h%)ﬁp—l( IR 7y AR B S o

+% ((min{hl,hQ})”_Q — (ﬁ(max{Ll,La} - min{hl,th)pz)} ;

D=

e forp=oo:

1

<
/min {h?, h3}

max {h7, h3}

E(Q) E
— o0
I h17h2(X) eIl min {hq, ho}

(Cl max {hl, h2} + CQ

+C3max {hi, h3} >;

where all constants are independent on the stepsizes hy and hs.

Proof. The proof of the theorem is analogous to the proofs of Theorems 3.2-3.3.
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Similar, to the [P-estimates for the discrete fundamental solution E}(Li)m, Fig. 3.13 illus-
trates the estimates presented in Theorem 3.5. The estimates are calculated for different
values of p, a rectangular domain with side lengths L; = 1, Ly = 2 is discretised by a lattice
with ho = ah; for @ = 3. As it can be clearly seen, all estimates converge to zero for hy — 0,

as expected, and the [*°-estimate is bounded, as one could expect as well.

[P-estimate for different values of p and o = 3

10*E T

10°

Figure 3.13: Calculation of the error estimate in {?(€2, 5,) from Theorem 3.5 in a logarithmic

scale with respect to h; for hy = 3h; for a rectangular domain with length L; = 1 and height
Ly = 2.

Short forms of the [P-estimates from Theorem 3.5 are provided in the following corollary:

Corollary 3.6. Under assumptions of Theorem 3.5, let us further assume that ho = ahy for
a € R, then the following estimates hold:

o forp=1:
|2, x) - Bx)

S C’l(a)hl —+ CQ(Oé)h% + Cgh:i;

o forl<p<2:

A

B0 — B

< (Ci(a)hy + Co(a)h?) (Cs(er, p)hT™ — Cila, p)ha) 7 ;

I

o forp=2:

|2, - Bx)

N |=

< (Ci(a)hy + Co(a)h?) (Cs(a) — Ca(a)hy — 2w Inhy)? ;

l2

o for2<p<oo:

S

| x) - Ex)

< (Ci(a)hy + Co(a)h?) (Cs(er, p)RY? = Ciyla, p)ha) ™ ;

I

63



e forp=oco:
1B, (x) — E&)[lie < Ci(a) + Cala)h,

where some of the constants depend on o and p, while the other depend only on a, and one
constant for p =1 does not depend on o and p. Moreover, all constant depending on o tend
to infinity for « — 0 and o — oo.

Next step is to construct [P-estimates in the exterior domain, which is now possible, as
it has been mentioned above, since the discrete fundamental solution E}(z)hz is considered.

The following theorem presents the [P-estimates for the exterior domain:

Theorem 3.6. Let E,(i)m be the discrete fundamental solution given in (3.16) of the discrete
Laplace operator, and let E be the continuous fundamental solution (3.4) of the classical
Laplace operator. Let €y, p, be a discrete rectangular domain symmetric with respect to
coordinate origin, and let Q5™ be its exterior domain. Let Ly be the mazimal distance
between the coordinate origin and boundary of 2y, p, in 1 direction, and Lo respectively be
the maximal distance between the coordinate origin and boundary of Cy, p, in x2 direction.

Then for all hy, hy < /27 the following estimate in 1P(Q524,,) holds for p > 2:

max {h7, h3}

HE}(Z2) _EHZ < (Clmax{h17h2}+02 —i—C%,max{h%,h%})

Lhe min {hl, h2}
4hqh 4h 4h 2 _
X — p p—1 2 + p—1 ! + m (mln {Ll,Lz})2 P
(L3+13)2 Ly (p—1) Ly (p—1) p—2

2(2L2 — hg) ) ph1 + L1 2(2L1 — hl) ) th + Lg);
(L1 + hy)P p—1 (La + ho)P p—1 ’

where all constants are independent on the stepsizes hy and hs.

Proof. Again, for the sake of completeness, the proof will be carried out with all long ex-
pressions, and it will be simplified to the form presented in the statement of the theorem as
the last step of the proof, as it has been done before. After using the Minkowski inequality
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the following expression is obtained:

S

P

HE}(j)th — E » = Z ’E’S’?}ZQ(mlhl,Wth) — E(mlhl,mth) hlhg
(mlhl,mghg)éﬂfflfh2
1

11/, 5 (1 5 o (h2)) 2 1 7 max {h? h3}

< Eﬁ (hl arctan (h—2) + h; arctan ™ ) |¥| 9%

7 max {h? hi} h? N mtmax {h? h3}  78v2h?max {h? h}}

48hs 3v2min {hy,hy}  48v2min {hy, hy} 864 min {h?, h3}

_ mhimax {h{,h3} ki 7 rnax{h%,h%})2 N <7Tmax{h%,h%} N 7w max {h?, h3}

1728 67 96 96 48h,
N h? mmax {h,h3} | 7OvV2h3max {h} h3}  whimax {h?, h3}
3v2min {hy, hy}  48v/2min {hy, hy} 864 min {h3, h3} 1728

B3 Pmax{h? B3\?|°
6 96

1 {(h% N 73 max {h? h3} N m3h? max {h?, h3}

x| [\ 67 96 1728

[P

1

+”max{h%’h3}>2+ (h_3+ m max {h, h3} | w*himax {h3, hi} wmax{h%,hg})T |

96 6T 96 1728 96

[P

or in the shorter form:

max {hi, h3}

<
- min {h,l, hg}

]

2
HEf(Ll)JQ - E

(C’l max {hy, ho} + Cy —l—C'gmaX{h%,hg}) )
[P

[P

Recall that the discrete domain €2, 5, is a rectangular domain symmetric with respect
to the coordinate origin. This assumption is necessary for carrying out the proof explicitly,
and the use of this theorem for domains of a general shape will be discussed later. Applying

1
the definition of the [P-norm to the term —, and taking into account that exterior domain

|
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is considered, the following expression is obtained

la—1
1 2 : z : h1h2 Z Z hlhg
2 2 2 L 21,2 21,2\2
|X| ( mi=l1 ma=l2 h +m2h : my=l1+1ma= 1 1h1+m2h2)2

hlhg = hth
4 2 —
S S e ID DR L )

mi1=1mo= l+1 mi=l1+1

SIS

[e.9]
hihs
+2
DR )
mo= 12+1
Fig. 3.14 shows a subdivision of the exterior domain, which simplifies constructions of the
estimate. Thus, the first series corresponds to the region I, where the fact that exterior
corner points belong to the exterior domain has been taken into account, see Chapter 2 for the
details. The second and the third series correspond to the strips 11 and 111, respectively. The
last two series represent summations along coordinate axes. It is also necessary to mention,
that dimensions of the interior domain €y, 5, are fixed, i.e. coordinates of the points (L, Ls),
(=L, La), (L1, —La), (—L1,—Lsy), because exterior domain %", is considered. However,
indices of points corresponding to the discrete boundary layer vhl hy = Q. o, (edges of the
L
rectangle in Fig. 3.14) depend on the stepsizes as [; = h—l and [y = h_2 This dependency
1 2
will be addressed at the last step of the proof, while indices of the corresponding points will

be used during the proof.

1’2“ Q;ilaffhz
] ]
] ]
| |
I voqIT mur I
| |
] ]
(—L1, La) 1 (L1, Ly)
II Qhy hs II
1
II II
(L1, —L2)! (L1, —Lo)
| |
| |
I ! III III ! I
] ]
] ]
] ]
] ]
. .
ext

Figure 3.14: Subdivision of the exterior domain Q" for constructing [P-estimates.
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Let us estimate the terms in (3.17) by help of the integral test. The estimates will be
done for p > 2, because the error for p € [1,2] does not converge to zero in the case of
unbounded domains even for h; and hy tending to zero. The single series in (3.17) can be

estimated as follows:

< by hyihs 7 hihs hihs I +1
< dm, < 1tz (4
2 by S Grvm ) Gumy ml—<z1+1>ph€( +p—1>’

mi1=l1+1 li+1
f’: hyhs - hyhs i / hyhs dmy < hihs i (1 Iy + 1> |
(mghg)p (lg + 1)ph2 (mth)p (lg + 1)ph2 P — 1

mo=lo+1 lo+1

To construct the estimate for the double series corresponding to the region 11, the fact
that this region is, in fact, can be represented as the product

IT:=[l; +1,00) x [1,l5 — 1]

will be used. Thus, the estimate along the x;-axis needs to be multiplied with amount such
lines appearing in the region I7, which is equal to [ — 1. Thus, the following estimate for

the region [ is obtained:

> kol hyh < hh
Z Z e £ = Z (mllhf)p'(lZ_1>

2
mi=l1+1ma= 1 _'_mzh) mi=l1+1

< _ fuhy 1+l1i 2_1
— (L+1)rPR} p—1 ha

. Lah (1+l1—|—1> C luh <1+z1+1)7
<L1+h1)p P — 1 (L1+h1)p p— 1
where the facts that Ly = hyl; and Ly = holy have been used. Similarly, the estimate for the
region [11 can be obtained:

> hlhg = hth
Z £ Z (mohy)P (b1

2
mi1=1mo= l+1 +m2h)

l1—1

IN

Lih lo +1 hih lo+1
< 1102 142 + B 112 142 + .
(LQ + hg)p P — 1 (LQ + hQ)p p— 1
Next step is to estimate the series related to the region I in Fig. 3.14. Application of the
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integral test to the double series leads to the following estimate:

o X hyhs hyhs T h
Z Z 2 S o e T | T e
P A— ht +m3h3)> (IFhi + 13h3)2 5 (22 + 15h3)>
+ | ————Fd d dx.
/ (l2h2 )z / / 2+ 9?) Y
loho lih1 l2h2

To estimate the double integral in the above expression, the transformation to polar
coordinates by extending the rectangular lattice to the biggest possible square lattice is
used. Thus, the following estimate is obtained:

/ / mdydl’ S / / ﬁdyd.%
T 2 T

l1hy loha Y min{ls b1 loha} min{i by lahs} y
leading finally to

o0 [o'e) 0o %

L 1 in {l1h1, lshs})2
/ —dydx < / /—Tdcpdr _ m(min {l1hy, laha})
($2+y ) rp 2(]?—2)

min{ly h1,l2ha} min{lih1,laho} min{l1hy,l2ha} O

The one-dimensional integrals can be estimated as follows:

o0 o0

/ " e < o / Mgy < 2
(x> +303)  ~ (p— 1) (L)t R 1928 Y = (= 1) (Igha) !

l1h1 l2h2

Combining all considerations presented above, the following estimate is finally obtained:

1

x (min {L,, Lz})2_p

4h1h2 4h2 4h1 2w
< 4 p—1 + p—1 +
p \(L3+L3)° LV (-1 Ly (p-1) p—2

2(2Ly — hy) _ phi+ Ly 2(2L; — Iy) . pho + L2)’1’
(Ll _|_h1)p P — 1 (L2+h2)p P — 1

Thus, the theorem is proved.

Finally, [*°-estimate for exterior domain is presented in the following theorem:

Theorem 3.7. Let E,(l?hz be the discrete fundamental solution given in (3.16) of the discrete
Laplace operator, and let E be the continuous fundamental solution (3.4) of the classical
Laplace operator. Let (2, p, be a discrete domain symmetric with respect to coordinate origin,
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and let Q¥ be its exterior domain. Let Ly be the mazimal distance between the coordinate
origin and boundary of Uy, n, in 1 direction, and Lo respectively be the mazimal distance
between the coordinate origin and boundary of Qy, p, in xo direction. Then for all hy, hy <
V21 the following estimate in 1°°(2524,,) holds:

< 1
i T min {L1 + hl, L2 + hg}

HEg{h2 (x) — E(x) H (cl max {hy, ha}

max {hi, h3}

C
e min {hl, hg}

+03max{h§,h§}>

where all constants are independent on the stepsizes hy and ho.

Proof. The proof is analogous to the proof of Theorem 3.3, and it needs to be taken into ac-

count that m has its maximum on the interior boundary layer a,fl n, Of the exterior domain,
X :

which corresponds to minimum indices of the point of exterior domain. This boundary layer
can be characterised by using distances L; and Ls, as it has been done in Theorem 3.5, and
making shifts towards exterior in corresponding directions. Thus, the points of aahQ are
characterised by the distances |L; +hq| and | Lo+ hs| in the z; and x5 directions, respectively.
The rest of the proof follows immediately. m

Fig. 3.15 illustrates the estimates presented in Theorems 3.6-3.7 for the exterior of a
rectangular domain with side lengths L; = 1, Ly = 2 is discretised by a lattice with hy = ahy
for @« = 3. As it can be clearly seen, both estimates converge to zero for h; — 0, as expected,
and thus indicating the advantage of working with the reformulated discrete fundamental
solution E}(i) hy-
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[P-estimate for different values of p and o = 3
10°F e e L B LB B B T T T T T T

100

Value of the estimate

-3 L L Ll L L Ll L L Lol L Ll L
107 107 107 107 107! 10°
Stepsize hy

Figure 3.15: Calculation of the error estimates in [P(95%, ) from Theorems 3.6-3.7 in a
logarithmic scale with respect to hy for hy = 3hy for the exterior of a rectangular domain
with length L; = 1 and height L, = 2.

Remark 3.6. It is necessary to remark how the [P-estimates for interior and exterior domains
presented in this section can be used for discrete domains of arbitrary shape. Consider for
example an L-shape domain, which is not symmetric with respect to the coordinate origin.
In order to apply the [P-estimates presented in this section, the L-shape domain should
be replaced by the smallest possible rectangular domain containing the original L-shape
domain, and the coordinate origin should be placed at its centre of symmetry. After that, all
estimates can be used directly. Of course in this case the estimates will be rough estimates,
and they become worse for domains elongated in one direction. Nonetheless, this approach
provides first ideas for error analysis of arbitrary-shaped discrete domains, since explicit
calculations of error estimates, as presented in this section, can be carried out only for some
specific case, and not in the general case.

The following corollary presents short forms of the [P-estimates in the exterior domain:

Corollary 3.7. Under assumptions of Theorems 3.6-3.7, let us further assume that ho = ahy
for a € R, then the following estimates hold:

o for2 < p<oo:

=

|00 = Bx)

o < (Cu(@)h + Cao@)hi) (Cs(a, )bt + Ci(e, p)ha + C5(p)) 7 ;

e forp=oo:
IEZ,, (x) = B(x)|i= < Ci(a)hy + Coa)h3

where some of the constants depend on « and p, while the other depend only on o or p.
Moreover, all constant depending on « tend to infinity for a« — 0 and o — o0.
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3.3.3 Some further estimates and remarks

For future numerical analysis of the discrete potential method for discrete boundary value
problems, several further estimates are provided in this section. At first, boundedness of the
discrete fundamental solution Ej, p,, as well as its two regularisations Ef(Lll)’h2 and Eg{hw is
stated in the following theorem:

Theorem 3.8. Let E}, p, be the discrete fundamental solution given in (3.2) of the discrete
Laplace operator, and let E}(i)’h2 and E}(L?M be its two regularisations given in (3.5) and (3.16),

respectively. Then for all x # 0 and x < oo, and all hy, hy < /21 the following estimates
hold

’Eh1,h2 (X)|

27 max {h3, h3} V2 - -
In | ———— | + o5 max {h%,h
min {h3, h3} "\ min {h1, ha} 19 max {7, h3 } + C4

h? h3
—i—ﬁmax{hl,hg}—i-%MjL max {h7, h2}~|— Hn\xH

x| x| min {f1, ho}  [x|
Cs Cr max {h?}, h3} 1
E(l) < 2 7 1,792 1
B, G < Csmasx {hi, i} + Imax{hl’h2} I min (i g} T8 g I
C Cyomax{h? h3} C
Bins (0 < ppmax {hs, o} R S max {1, 13} + Cra + 5 [in x]]

where all constants do not depend on the stepsizes hy and hy. For the case x = 0 and all
hi, hy < V21 the following estimates hold:

V2
min {hl, hg} ’

B, (0.0)] < Sn

2m max {h?, h3} V21 7r
B 0, (0,0)] < min {12, h2) n mm{hth} + 109 max{ 2 }

and |Eh1,h2(0>0)| =0.

Proof. The discrete fundamental solution £}, ,, will be discussed first. From the definition
of the discrete fundamental solution it follows immediately that Ej, ,,(0,0) = 0. Next, by
help of Theorem 3.4 and expressions for K; + K, the following estimate is obtained:

B ()] < Enyna(%) = Biyy ()] + [y (%) = B(x)] + | E(x)|

27 max {h?, h3} V21 T 9 19
In|——F—— — hi, h
min (A2 42\ min (A, B} | 192 max (A, ha}

Ch Cy max {h3, h3} 9 1
— hy, h —_ hi,h Cy+—11 .
+|X| maX{ 1 2}+ ’X| min{hl,hg} + ‘ ’maX{ 2}+ 4+27T‘H|XH
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The estimate for boundedness of the first regularisation E}(Lll%hZ of the discrete fundamental

solution is obtained by using Theorem 3.1 for all x # 0 as follows:
1 1
B, ()| < B, (%) = E)| + [B(x)]

C7 max {h?, h3}

Cs
< ; min {y, ha}
< Csmax {hi,h3} + x| min {71, ho}

1
max{hl,hg} +C’8+%|1n|x||.

The estimate for x = 0 is constructed by help of the following straightforward calculations:

1 1 1 1
EY (0,0) = / dy < — / Ty
[ Enins (0,0) (27)? L (2m)> 4 [yI”

[y|>1,y€Qn, hy [yI>1,y€EQR, by

27 mln{hl h2}

1 s
— =—1In
16 / / crdrdp = 3

0

1

V2
min {hl, hg} ’

IN

where the same ideas as during the proof of Theorem 3.1 have been used.
Similarly, by using Theorem 3.4 the following estimate is obtained for Eh )h2 and x # 0:

2 2
B, x| < B, (x) — E(x)|+|E(x)|

ClO max{h%,h%} Cll

Cy
< — hi. h IR S TP .
= max {1, ho} + x| min {h1, he} | |X]

]

The estimate for x = 0 follows immediately from the relations for K; and Ks:

27 max {h? h3} V21 7r
E(2) < 12792 1 h2 h2
By n, (0,0)] < min {12, 12} nl| T} + 02 max{ 2 }

1
ax {hi, h3} + Cia + oy IIn |x|] .

Thus, the theorem is proved. O

Next, for constructing the LP-estimate for the continuous fundamental solution (3.4), the
following geometrical quantity needs to be defined at first:

Wh17h2(m1h1,m2h2) = {X € RQ\mlh@ — 5 < x; < mih; + E,Z = 1,2} ,

i.e. a continuous rectangular domain centred at (mjhy, mohy) and with side lengths equal to
hy and hy. This rectangle will be denoted as Wy, 5, for short. Thus, the following theorem
can now be formulated:
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Theorem 3.9. Let Q C R? be a continuous bounded domain, and let Qp, , be its discrete
version. Then the following estimate for the continuous fundamental solution (3.4) holds for
integer p < 00

3=

/ |E((myhy — &, mahg — &)[PdEEs

W}Ll,hz

1

2
2 ngmax{hl,hg} ,

(C+In 2)(h1h2)p + C (max {hq, hg})

where the constants do not depend on stepsizes.

Proof. Applying the definition of continuous fundamental solution (3.4) the following ex-
pression is obtained:

I = / |E((mahy — &, mahe — &) |Pdé1s

Why ho

3=

m1h1+f m2h2+
— / / ‘ —In2 —+ In \/(m1h1 - 51)2 + <m2h2 - 52)2>

mlhl—* m2h2—*

d&ad€y

By help of the substitution 1 = mih; — & and x5 = moho — &, and after the application of
Minkowski inequality, the following estimate is obtained:

1 1
h1 o hy P hy  hy P
1 2 2 1 2 2
I < §(0+1n2) / / drodry | + Py / / In /22 + 23| deoday
_h ho _h_hg
2 2 2 2
1
fmax{hl ha}t on P
1 1
< (C+ln 2)(hihy)? + | — lim / /|1nr!”rdgpdr
2T 27 e—0
max{h1 ha} or P
1 1
< %(C+ln2)(h1h2)5 + %llil’(l] / / (ln ) rdedr |
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where it has been taken into account that the argument of logarithm is smaller than 1 for
hi,hs — 0. The last integral can be calculated by help of multiple application on known
integrals for logarithms, see for example [30, 52]. Thus, the following estimate is obtained
after the integration:

D=

1

B =

Y2 max
7,2 (ln l)p g max{hi,h2} p 2 {h1:ha} 1 p—1
+ | im | ——"— ] —3 / (ln —> rdr

e—0 2 c r
€

<

1 1
< %(C-f-hl?)(hth)p

. T2 (ln%)p p (_1)kr2 1 pfk k . gmax{hhha} P
] lim [—2 + — (1n;> H(p—y) |
k=1 iy

< 1(C+1 2)(hh)l+0( {h h})zl 1
= 5 n p max , ?» In

27 1702 1 1, 12 TQmaX{hl’hz}

In

N

max {hy, ho}

9

1 1
S %(C + In 2)(h1h2); + Cl (max {hl, hg})

where in the last step it has been again taken into account that logarithm will have negative
values for hq, ho — 0. O

3.4 Short summary of the chapter

In this chapter, the discrete fundamental solution of the discrete Laplace operator on a
rectangular lattice has been constructed and analysed. In particular, several numerical
approaches to computing the discrete fundamental solution have been discussed, and the
difficulties related to considering rectangular lattices have been emphasised. Further, various
estimates between the discrete fundamental solution of the discrete Laplace operator and
the continuous fundamental solution have been constructed and numerically evaluated. It
is important to underline, that not only the estimates of the absolute difference between
the two fundamental solutions are constructed, but also [P-estimates for interior and exterior
settings are presented and analysed. Thus, the results presented in this chapter can be served
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as a foundation for a numerical analysis of the discrete potential method on a rectangular
lattice, which is presented in Chapter 4.
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Chapter 4

Discrete potential theory on a
rectangular lattice and its applications

Discrete potential theory on rectangular lattices will be introduced in this chapter. This
discrete theory is a natural extension of the continuous counterpart to functions defined on
lattices. As it is well known, methods of continuous potential and function theories are
powerful tools to solve boundary value problems of mathematical physics, see for example
[77] for methods of potential theory and [73, 81] for methods of complex function theory.

Methods of the continuous potential theory are built upon using three integral operators,
which have the following form in two-dimensional case [78, 98, 100]:

1
(Pu) (e.y) = / e e OIS
B Cos ¢ o
(Wo) (2.y) = / N s e LGN
Vo) (r.y) = : p() dt.

In
SV +y—n?

which are called single-layer potential, double-layer potential, and volume potential, respec-
tively, and where ¢ is the angle between the inner normal to I at point & = (£, ) with '
being a Lyapunov surface, and the direction to a fixed interior point M, see again [100] for
details. The function

1 1
In-:=1In

r Ve =82+ (y —n)?
is called the logarithmic potential, and it is a solution of the Laplace equation Au = 0 with
two independent variables, possessing circular symmetry about the singularity at the point
r = 0 at which it tends to infinity. Additionally, as a speciality of the two-dimensional case,
the logarithmic potential does not tend to zero for r — oo, as in three-dimensional case, but
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has a logarithmic singularity at infinity. Functions u, o, p are referred to as densities of

the potentials. Moreover, the double-layer potential W contains a normal derivative of the
COS

kernel function of the logarithmic potential, which is given by

The potentials introduced above can be rewritten more generally as follows:

[px-gnar. [ SLEx-godr. [Bx-gpd (1)

r I Q

where E(x) is a fundamental solution of the differential operator under consideration, Laplace
operator in the case of classical formulae discussed in the beginning. General form of continu-
ous potentials (4.1) is the starting point for constructing discrete counterpart of the classical
potential theory. Different approaches towards constructing discrete potential theory have
been presented in works [7, 56, 85, 86, 104]. All of these works have been addressing only the
case of square lattices. As it has been mentioned already earlier, solution of boundary value
problems in slender geometries by help of square lattices leads to higher computational costs,
and more general type of lattices are desired. Therefore, this chapter introduces basics of the
discrete potential theory on rectangular lattices. At first some preliminary considerations
are discussed, then a general lemma presenting a discrete analogue of the known integral rep-
resentation of C?({2) functions in the continuous case is introduced. By help of this lemma,
a connection to the discrete potentials introduced in [85, 86| can be established. After that,
discrete single- and double-layer potentials for interior and exterior boundary value problems
are presented. Next, solution of interior, exterior, and transmission boundary value prob-
lems by help of discrete potentials on a rectangular lattice is discussed. Finally, numerical
analysis of the discrete potentials introduced in this chapter is presented.

4.1 Preliminary considerations for discrete potentials
on a rectangular lattice

To shorten the notations in all upcoming calculations, the following convention will be used:
instead of writing explicitly components for both coordinates, a double subindex will be
written, for example (Iy2h12) instead of (l1hq,lahs), ((M12 — l12)h12) instead of ((my —
ly)h1, (mg —l2)hs), as well as 7, , instead of vy, p,. This convention will be used throughout
the complete chapter. Moreover, by the same reasons the full notations will be omitted in
summations, and it will be written simply e.g. | € v, , instead of full version (I12h12) € 7, - B

Discrete analogues of the continuous volume, smgle— and double-layer potentials will be
introduced next. These discrete potentials preserve structure of continuous potentials (4.1)
in the discrete setting, where the discrete fundamental solution of the discrete Laplace op-
erator (3.2) is used. To fix notations and to avoid repetitive bulky constructions, it is
worth to introduce immediately the discrete potentials, and discuss their precise construc-
tion afterwards. Therefore, the following definitions introduce discrete volume, single- and
double-layer potentials on a rectangular lattice:
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Definition 4.1. For a discrete function f, ,(mi2h12) € P(S%,,), the discrete volume
potential on a rectangular lattice is defined as follows

(Vm,thm) (11,2]11,2) = Z Ehl,g((ll,z - m1,2)h1,2)fh172 (m1,2h1,2)h1h2

meM+
for (l172h172) S th’Q.

Definition 4.2. Let n(ry 2h1 2) be a discrete boundary density defined on the discrete bound-
ary layer v, , then the discrete single-layer potential on a rectangular lattice is defined as
follows ’

(P(mt)ﬂ) (lighia) = Z n(riehie) B, ((lie —r12)hi2)he

"€y 9,19 5.3

+ Z 77(7"1,2]11,2)Eh1,2((l1,2 —r12)hi2)

T€7h172,2u7h1’2,4

for (l1,2h172) € Qh1,2‘

Definition 4.3. Let v(r2h;2) be a discrete boundary density defined on the discrete bound-
ary layer v, , then the discrete double-layer potential for all interior points (Iy2h1) € M
on a rectangular lattice is defined by

(WD) (1 ok 2) =

Z hfl Z [Ehm((h,z - 7“1,2)h1,2) - Ehl,g((ll,z - (7“1,2 + k))h1,2)} th(Tl,th,Q)

- - +
r€7h1,2,lu’7h172,3 keK\ K,

+ Z h§1 Z [Ehl,g((h,z —7r12)h12) — Ehm((lm — (ri2 + k))hl,Q)} hav(ri2h12),

€Yy 52Uy 5 ke K\K;
while for all points of (I;2h12) € 7,, , the following definition holds

(W(mt)y) (11’2;“72) —

Z hl_l Z [Ehm((lu - 7“1,2)h1,2) - EhLz((ll,Q - (7“1,2 + k«‘))hl,z)} h27/(7“1,2h1,2)

- - +
rE’thz,lU’th%S keK\K;

+ Z h2_1 Z [Eh172<(l1,2 — leg)th) — Ehl,Q((ng — (7"1,2 + k’))hlg)} hll/(’l”172h172) — V(lh)

— - +
7"€'yhly2’2U'yh172’4 keK\ K/
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A detailed discussion on the introduced discrete potentials will be provided through the
first part of this chapter. Moreover, it is necessary to remark that Definitions 4.1-4.3 in-
troduce discrete potentials for interior problems, while settings to solve exterior discrete
boundary value problems will also be introduced in this chapter. Additionally, for keeping
analogy to the continuous case, a general representation formula for discrete harmonic func-
tions as a combination of the three discrete potentials and discrete Green’s formulae will be
introduced.

4.2 Discrete potentials for interior problems

For introducing a discrete analogue of the integral representation of C? functions, at first,
a general discrete boundary potential By, , similar to the one proposed in [85] needs to be
studied:

(Bhl,guhm) (ll,zhl,z) = Z Z Ehm ([11,2 - (7“1,2 + /f)] h1,2) aghihg Upy o (7”1,2]11,2)

T€%h1 s \kEK;

for points (I;2h12) € Ri . ,» and where the coefficients a; are explicitly given by

(2 2
— I ko =
h% + h%7 0 (070)7
1
ap = _h_%a kl = (170)ak3 = (_170)7 (42>
1
— 7o k’Q = (0, 1),]{74 == (0, —1)
\ h3

The following lemma illustrates how the general discrete potential By, , and the volume
discrete potential V3, , can be related:

Lemma 4.1. Let Ey,, be the discrete fundamental solution of the discrete Laplace opera-
tor (2.2) in R%m, and let up, ,(m12h12) € Qnyy Uy, s frao(mighi) € Qn,,, then for all
points (l12h12) € R}, the following formula holds

Uh1,2(11,2h1,2), (li, 1) € N7,

(Bhyytin, o) (i2h12) + (Vo fran) (liohae) =
0, (I1,15) ¢ NT.

Proof. The proof of the lemma is based on the proof presented in [56]. Since the fact of
working with a rectangular lattice changes only a general setup for the proof, the detailed
proof is omitted here. The influence of a rectangular lattice is reflected only in the coefficients
of the following difference equation

—Ahmuhm(ml,zhm) = Z akuhm((ml,Q —k)hi2) = fhm (m12h12),

keK
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for all points (mj2h12) € Qp, ,, and the coefficients a; in the discrete Laplace operator are
given in (4.2). It is important to notice that in the case of a square lattice, only two sets
of coefficients are considered, i.e. for kK = (0,0) and k # (0,0). Under consideration of this
difference, the rest of the proof can be done analogously to the one presented in [56]. O

Considering only points with indices [; 5 € N*, Lemma 4.1 represents a discrete analogue
of the integral representation of C? functions. Particularly, the representation

(B yuny o) (lighi2) = uny,(lighi2) — (Vi o fho) (li2ha2)
(4.3)
Uy 5 (112R012) = (= Vi, Dy Uk, ) (2P0 2)

corresponds to the general representation of a discrete potential introduced in [86].

Now, the discrete single- and double-layer potentials, introduced in the beginning of this
chapter, can be related to the general discrete boundary potential By, , defined in (4.3),
which has been studied in [86]:

Theorem 4.1. For all points with indices ly 5 € N*, i.e. points (1 2h12) € Qp, , U Yy o the
following representation holds

(Bhlguhl’g) (l1 2hy 2) (P(mt Uhp,y 2) (ll ol 2) (W(mt Up,y 2) (l1 2l 2)

Proof. The proof of the lemma is based on the proof presented in [56]. O

Next, the discrete harmonicity of the discrete potentials is stated in the following lemma:

(int)

77) (mi2h12) and the discrete double-
layer potential (W(i"t)y) (mi2h12) are discrete harmonic functions in Qs

Lemma 4.2. The discrete single-layer potential (P

Proof. For the discrete single-layer potential the following equality holds for all points
(m1’2h1,2) < thgi
_Ah1,2 (P(mt)n) (m1,2h1,2)

= Z U(T1,2h1,2) (—AhuEhl,g((ml,z - 7’1,2)}11,2)) h

"€y 9,109 9.3

+ Z n(ri2hi2) (—AhmEhm((mm - 7’1,2)]11,2)) hy = 0.

e _
€7h1,272uryh1,2v4

Next, the discrete double-layer potential needs to be studied. Application of the discrete
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Laplace operator to the discrete double-layer potential leads to the following expression:

_Ahm (W(mt)y) <m1,2h1,2) _

= Do bt Y (—AnEa,((mas — i)l

€Y 51V Thy 53 kER\K;"
"‘Ahl,gEth((le —(ria+ k))hl,Z)) hov (11 201 2)+

+ Z hyt Z (—AhmEhl,g((mLz—7”1,2)h1,2)

- - +
T67h1,272U7h1,2,4 keK\K

+An By, ((Mag — (r12 + k’))hm)) hiv(ri2hi2)
which equals to zero for all points with indices my2 € M™T, except the points belonging to

the interior boundary layer fyf[l ,- For the points (my2h2) € ’yf{l , the following expression is
obtained: ’ 7

—Ap,, (W(mt)V) (mighio) =

= S bt Y (“ AL Ena((mag = ri)hi)

€Yy 51V 5.3 keK\K;T
+Ah1,2Eh1,2((m1,2 - (7”1,2 + k))hm)) hQV(T1,2h1,2)

+ Z hyt Z (—Ahl,gEhl,z((ml,Q—7“1,2)h1,2)

- - +
T€7h172,2u'7h1,2,4 keK\ K,

+Ah1,2Eh1,2((m1,2 —(ria+ k))hu)) hyv(r12h1 2)

1 1
+ Z h_%’/((mm +k)hi2) + Z h—%y(('rm,z + k)hi2)

keK, keK;,
1 1 1 1
= - —hy—— — k)hig) — —hy —k)h
> e = Ra) = 3 gy = k)
—keKn, —keKn,

1 1
+ Z h—%l/((mLQ + k’)hl,g) + Z h—%u((mm + kﬁ)hLz) = 0,

keK, keK

where Kt ={ke K :m+k¢ MT*}. O
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4.2.1 Discrete Green’s formulae for the interior setting

One of the main tools of the classical continuous potential theory is the so-called Green’s for-
mulae, which connect integration over a boundary (a curve) and integration over a domain.
Moreover, various important results for harmonic functions can be obtained by help of the
Green’s formulae, see for example [87, 98] for the details. The basics of discrete potential
theory provided before allow introduction of discrete analogues of the classical Green’s for-
mulae in the discrete setting. Naturally, instead of area and boundary integrals, sums over
the corresponding discrete geometries are used. Thus, discrete Green’s formulae connect
summation over the discrete domain €2, , and over discrete boundary Vh, ,- Later on in this
chapter, the discrete Green’s formulae introduced here will be used for obtaining several
results for interior discrete Dirichlet and Neumann boundary value problems.
The first discrete interior Green’s formula is given by the theorem:

Theorem 4.2. For any two grid functions wy, , and uy, , the following relation holds:

Z whl,g(m1,2h1,2)Ah1,2Uh1,2(m1,2h1,2)h1h2

meM~+ )
= - Z ZDz‘whl,g(m1,2h1,2)DiUh1,2(m1,2h1,2)h1h2

meM+ i=1

2
—Z Z Diwhl,g(7’1,2]11,2)D¢Uh1,2(T1,2h1,2)h1h2

i=1 rEny g
- Z wh1’2(r1,2h1,2)D1uh172(T1,2h172)h2+ Z wh1,2(T1,2h1,2)D71uh1,2(7”1,2}11,2)}12
’"G'ijl’z,l 7"675172,3
- Z Whl,z(7’1,2h1,2)D2uh172(T1,2h1,2)h1+ Z wh1,2(T1,2h1,2)D72uh1,2(7”1,2h1,2)h1,
TGW’:I,Q#Q 7"6'7;172,4

where D, j = 1,2 are finite difference operators.

Proof. For shortening the expressions during the proof of the theorem, notation v, will be
used instead of v, ;. To proof the theorem assertion, it is necessary to work with the
discrete Laplace operator rewritten in the following form:

Ap pUn, o (Mighi) = Z [aél)uhl,g(mmhm) — iUy hy (M2 + ki>h1,2)} +
i=1,3
(4.4)

Z [a((f)uhm(ml,zhl,z) — iUpy 5 (M2 + ki)hl,Q)] )

i=2,4
where the coefficients are given by

y_ 1 2 1
aé)_h_f’ @)



Applying now this reformulated representation of the discrete Laplace operator to the left-
hand side expression in the theorem, the following result is obtained:

Z whm(m1,2h1,2)Ah1,2Uh172(m1,2h1,2>h1h2

meM+
= - Z Why ,(M12h12) (Z [a(()l)uhl,z(mmhm) — aiup, ,((m1g + ki)hio)]
meM+t =13
+ (afun, ,(ma2ha ) — aiun, (M2 + /fi)hl,2)]> hihs
i=2,4 i i
= = > wn,(mish (1 his) — k1)his)| hih (4.5)
= h1,2\11,2 1,2) Qg Uhm(mm 1,2) G1Uh1,2((m1,2+ 1) 1,2) 112
meM+ : :
- Z Whl,z(m1,2h1,2) a((]Q)uhl,g(ml,th,Q) - CLQUhl,z((mLQ + k’2)h1,2) hihsy
meM+ i i
- Z Why 2 (m1,2h1,2) a(()l)uhm (m1,2h1,2) - G3Uh1,2((m1,2 + ks)h1,2) hihs
meM+ : :
- Z Whi,o (m1,2h1,2) a((]Q)uhl,Q(ml,th,Q) - G4Uh1,2((m1,2 + k4)h1,2) hihs.
meM+ ) )

Next, to simplify the above expression, new variables m* = m + k3 and m’ = m + k4 will be
introduced in the third and fourth summands of (4.5). Thus, by help of the new variables,
the third summand can be now reformulated as follows:

- Z whl,Q(m1,2h1,2) [a(()l)uhm (ma2h12) — a3uh1,2((m1,2 + k‘s)hm)] hihy

meM+

= = ) wn,((mi, — k)b o) [aél)uhl,g((mik,z — k3)hi2) — a3uh1,z(mi2h1,2)} hihy
m*eM+
+ Z whl,g(ﬁghm) |:a(()1)uh1,2(r1,2h1,2) - a3uh1,2((7”1,2 + k3)h1,2)} hihy
rEYs
- Z whl’g((rl,Q + k1)hi2) [G[()l)uhl,g((ﬁ,z + k1)hi2) — CLSUhl,g(?”l,th)] hihs.
€Y,

Similarly, the use of new variable in the fourth summand leads to:

- Z whl,Q(ml,QhLz) [a((]Q)Uhl,g(mmhLQ) - G4Uh1,2((m1,2 + k‘4)h1,2)} hihg

meM+
= = > wnu((miy — ka)hi) [agznm?((m'L2 — Eq)h1s) — agun, , (m;?hl’z)} hiho
m'eM+
+ Z Whi o (7“1,2h1,2) [aé2)uh1,2 (7“1,2h1,2) - G4Uh1,2((7”1,2 + k4)h1,2)} hihy
TEY,
- Z Why 5 (11,2 + ko)l 2) [a(()muhm((?"l,z + ka)hi2) — a4uh1,2(7’1,2h1,2)} hihs.
€Y,
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Thus, expression (4.5) is now rewritten as follows:

- Z whl,g(mlghm) [a(()l)uhm(ml,zhl,z) - aluhl,Q((ml,z + kl>hl,2)] hyhs

meM+

- Z wh1,2(m1,2h1,2) [GE)Q)UhLQ(mLQhLQ) - a2uh1,2((m1,2 + kz)h1,2)] hihy

meM+

= > wn,((miy = ks)ha ) [aél)uhl,g((miz — k3)hi2) — a’3uh1,2(mi2h‘1;2):| hiho

m*eM+t

- Z Why o (M) 5 — ka)hi2) |:a((]2)uh1,2(<m/1,2 — ka)hi2) — a4uh1,2(m/1,2h172):| hihs

m/'eM+

+ Z Whi 5 (T1,201,2) [aél)uhm (r1,2P1,2) — azun, ,((r12 + k3)h1,2)} hihg

TEYs

- Z whl,Q((le + k1)hi2) [G(()l)uhl,z((rm + k1)hi2) — A3Uh; 5 (7”1,2h1,2)} hyhs

TEY,

+ Z whl,g(r1,2h1,2) [G((f)uhl,g (7’1,2]11,2) - a4uh1,2((7”1,2 + k4)h1,2)} hihg

TEY,

- Z Why o (11,2 + k2)hi2) [a(()2)uh1,2((7”1,2 + ka)hi2) — asup, , (7“1,2}11,2)} hihsy

TEYy

+ Z whl,Q(T1,2h172) [at()l)uhm (7"1,2h1,2) - a3uh1,2((7”1,2 + k’1)h1,2)} hihgy

TEY,

- Z Whi o (T1,2h1,2) [a(()l)uhm (T1,2h1,2) - a3uh1,2((7’1,2 + kl)h1,2)] hyhgy

rey;

+ Z whl,z(ﬁghm) [a(()Q)UhLQ (7“1,2h1,2) - a4uh1,2((7“1,2 + k’2)h1,2)} hihsy

TEYy

- Z Why 2 (T1,2h1,2) [G(()z)uhm (T1,2h1,2) - a4uh1,2((7’1,2 + k2)h1,2)] h1h2,

rEY,

where the last four terms summing up to zero have been added to simplify the upcoming
calculations. Next, the first four summands of (4.6) will be considered, after taking into
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account that ky = —ks, ko = —ky, a1 = as, and ay = a4, the following expression is obtained:

h
- Z whl,g(m1,2h1,2) [Uhl,z(mlghm) - Uh1,2((m1,2 + kl)h1,2)] h_2
meM+ 1
h
- Z Why o (M12h12) [Uhl,g(ml,zhm) — Upy 5 ((M12 + k‘z)hm)] h—l
meM~+ 2 L
+ Z Why o ((M12 + k1)hi2) [Uhl,g (ma2hi2) — U, ,((M12 + k1>h1,2)} h_2
meM~+ !
h
+ Z Why o ((M12 + k2)h12) [Uhm (mighi2) — up, ,((M12 + k2)h1,2)} h—l
2
meM~+
2
= - Z Z(whm (migh12) — way (M1 + ki)hi2)) [Uhl,g(m1,2h1,2) — Up, (M2 + ki)h1,2>] oy,
meM+ 1=1
(4.7)
h h
where oy = h—2 and ap = h—l Next, summands five, seven, nine and eleven from (4.6) are
2

considered, and therefore, the following simplified expression is obtained

4
Z Z whlyg(rl,th,Q) [Uhm (7’1,2]11,2) - uhLQ((TLQ + ki>h1,2)} s, (4-8)

i=1 rey;
2 hy . L
where o = a3 = 7 and g = ay = 7 Finally, summands six, eight, ten and twelve
1 2

of (4.6) needs to be considered, which lead to the following expression:

- Z (wh172<7n1,2h1,2) - whl,z((ﬁg + kl)hl,z)) [Uh1,2(7"1,2h1,2) - uh172<(701,2 + kl)hl,Qﬂ Z—j
€Y,
- Z (Why o (11,2h1,2) — Wiy, (71,2 + k2)h12)) [Uhl,g (r1.2h12) — up, o ((r12 + k2)h1,2)} %
rEYy 2
2
= - Z Z (Why o (r12R12) — Why o (P12 + ki) h12)) |:uh172 (r1,2h12) — un, ,((r12 + ki)hl,Q)} Q,
i=1

rey;

(4.9)
h h
where o = h_2 and ay = h_l Next step is to combine formulae (4.7)-(4.9) and reformulate

2
the resulting expression to the form suitable for introducing finite difference operators, as
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stated in the formulation of the theorem. Thus, the final expression has the following form:

Z wh172(m1,2h1,2>Ah1’2uh1’2(m1,2h1,2)h1h2

meM+

2
(whm (my2h12) — whl,z((ml,Q + ki)h12)) [Uhm (mighi2) — Uhm((ml,z + ki)h1,2)] Q;

meM~+ =1

4
+ Z Z Why ,(T1,2012) [Uhl’g (r1,2h12) — Uy, ((r12 + k’i>h1,2>} o

i=1 rey;

2
- Z Z (Why o (11,2h1,2) — Wiy, (11,2 + ki)h12)) [Uhl,g (r12h12) = up, ,((r12 + k?i)hm)] Q;

=1 rey;

_ Z Why o (M1 2h12) — wh1,2((m1,2 + k1)h12) ‘ Un, 5 (M1,2712) = Uny o, (M2 + k1) 2)

= hlhg
meM+ hl hl
Z Whi 2 (m1,2h1,2) - whl,z((mm + ]fQ)hm) Up, 5 (m1,2h1,2) - Uhl,g((ml,g + k‘2)h1,2)h h
- : 112
meM+ h2 h2
Uhlyg(rl,2h1,2> — Uhl,z((rm + ki)hm)
T Z Z Why (11,201 2) - Iy ho
Z=1,3 7’6’}’;
Uhl,g(rmhl,z) - Uhl,Q((Tl,z + ki)h12)
- Z Z Why 5 (T1,2h12) - Iy hy
1=2,4 rev;
Whi 2 (7“1,2]11,2) - whl,g((ﬁg + kfl)hm) uhlyg(rl,th,Q) - Uhm((ﬁg + k1)h1,2)
_ Z . hiho
. hy hy
€Y,
Whi 2 (T1,2h1,2) - whl,g((ﬁg + k?2)h1,2) uhlyg(rl,th,Q) - Uhm((ﬁg + k2)h1,2)
_ Z . hihs.
‘< hg h2
TEYy
Thus, after introducing finite difference operators, the theorem assertion is proved. O

The second discrete interior Green’s formula on a rectangular lattice is introduced in the
following theorem:
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Theorem 4.3. For any two grid functions wy, , and uy, , the following relation holds:

Z (whl,z ((l1,2 - m1,2)h1,2)Ah1,2Uh172 (ngth)

meM+

—Uhy 5 (ml,zhl,Q)Ahl,Qwhm ((l1,2 - m1,2)h1,2) hth)

= Z Z ug)(rl,2h1,2)wh1,z((ll,2—?"1,2)h1,2)h2

i=1,3

TG’y;L%i
+3°0 N w (i ahi)wn, . ((ha = r12)has)
i=2,4 Ty
h
- Z Z (wh1 2 51 2 7“1,2)h1,2) — Why o ((11,2 - (7“1,2 + k‘i))hlz))lthl 2(7“1 2hy 2)};
1=1,3 Te,yhl i
h
_ Z Z (whl 2 ll 2 7“1,2)h1,2) - Whl,z ((ZLQ — (7“172 ‘l‘ ki))h172)>uh1 2(7"1 th 2) h;
i= 24T€7h172,1

for (li2h12) € Qn, ,, and where u%) and ug) are the discrete normal derivatives introduced
in Chapter 2.

Proof. To prove the theorem, the expression

Z whw((llz - ml,?)hl,Q)Ahl,guhLz(ml,th,Q)hlh2

meM+

needs to be studied at first. After applying the discrete Laplace operator and performing
change of variables my 5 = ny 2 + k with ny 2 € N7, the following form is obtained

Z Whl,z((lm - m1,2)h1,2)Ah1,2Uh172 (m1,2h1,2)h1h2

meM+

= = Z thm((ll,z —my2)hi2)un, , (M2 — k)R 2)arhihg

meM+ keK

= - Z Z Why o (L2 — (n12 + k) Ry 2)un, ,(n12h1 2)axhiho

neNt ke K\K,

= - Z Z Why o ((I1,2 = (P12 + k) Ry 2)un, ,(n12h1 2)axhiho

neNt keK

+ Z Z Why o ((l2 = (n12 + k) hi2)un, , (11201 2)aghyhe.

n€N+ keKn

Because the set K, is empty for all ny» € M, the following expression is obtained:

Z Apy Why o (L2 — 112) P 2) s, , (11201 2) R by

neN+

+ Z Z whl,g((lm —(ria+ k))hl,Q)uhLQ(T1,2h1,2>akh1h2-

T€Yhq 5 ke KT
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Next, the expression

Z Uhy o (m1,2h1,2)Ah1,2wh1,2((l1,2 - ml,z)hl,z)h1h2

meM+

will be subtracted from the expression obtained above, which leads to

Z Ahl,zwhl,g((ll,z - nl,z)hlg)uhl,Q(n1,2h1,2)h1h2

neN+

+ Z Z Why o ((l1,2 = (r12 4+ k) hio)un, 5 (r12h12)axhihy

T€%hy 5 k€K,

- Z Uhl,g(ml,zhl,Q)Ahl,gwhl,g((11,2 —my2)h12)hihy

meM+

= Z Z whlg((ll,Q — (r12+ /f))hm)uhm (11,271 2)akhi e

"€V 5 kKT
+ Z Upy o (11,201,2) Ay oWhy o (L2 — T1,2)R12) haho.

7'67;1 )

(4.10)

By splitting the first summand of (4.10) into summations over 7;22 and v, ,, the above

expression can be rewritten as follows

Z Z Whyo((li2 — (12 +K))hi2)un, , (51201 2)arhihy

567;;1 ) keK

+ Z Z Whyo((li2 = (12 + k) h12)un, , (1201 2)arhi by

7’67;1 ) keK;t

+ Z Uth(Tl,th,Q)Athhm((ZI,Q —r12)h12)hihs.

rE’y,?l 9

(4.11)

Performing again the change of variables r = s 4+ k in the summation over 7;;1 , leads to:

Z Z Why o ((l1,2 = (12 + k))h12)un, , (51,201 2)arhihy

SE’V}TI ) keKy

= Z Z Wh o ((Ir2 = r12)hi2)un, , (12 + (—k))hi2)aghiho

"€, , —keK\K;"

= Z Z Why o (L2 = r12)h12)un, , (112 + k)i g)aghyhy.

€Y, , KEK\KT
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Next, the second summand of (4.11) will be considered:

Z Z Whyo((l2 = (12 + k) hi2)un, o (1201 2)aghihy

rev,, , keKT

= Z Z whl,Q((ll,z —(rig+ k))hl,Q)uth(r1,2h1,2)akh1h2

rev,, , kKT

+ Z thl,z((ll,z — (r12 + k)i 2)un, ,(r12h12)arhi by

re~y keK
Th (4.13)
- Z thl,g((h,z - (7“1,2 + k‘))hm)uhm(7“1,2h1,2)ak:h1h2
Te’y}jlg keK
= Z Z Whyo((li2 = (12 + k) h12)un, ,(r12h1 2)arhi by
T67;1’2 keK

- Z Z Whyo((li2 = (12 + k) h12)un, ,(r12h12)axhihy.

ST ke K\K;
Finally, after collecting all above expressions, the following expression is obtained:

Z Z Why (L2 = 112) e 2)un, , ((r12 + K)ha 2)aghi by

rev,, , KER\KT

- Z Z Why o (L2 = (r12 + k)b 2)un, ,(r12h2)akhihy

€%, ke K\K;

= Z Z Why o ((li2 = T12)h2)uny o (112 + K)ha2)agh by

rev,, , KER\KT

- Z Z Why o (L2 = (r12 + k)b 2)un, ,(r12h 2)akhi by

€Y, ke K\K;

+ Z Z Why o ((lr2 = T12) P 2)uny (11201 2)arhohy

7‘6'\/}71 ) keK\K;

- Z Z thg((ll,Q_Tl,?)hlﬂ)uhl’g(Tl,th,Q)a/khth

€N, ke K\K;

= Z Z (uth((Tl,Q +k)hi2) — Uhl,g(T1,2h1,2))wh1,2((l1,2 —r12)h12)arhihy

e, 5 KER\KT

- Z Z (Whl,g((lm — (r12 + k))h1,2> - whl,z((hg - 7‘1,2)]11,2))%1,2(7"1,2h1,2)akh1h2;

€, ke K\K;
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which can be finally simplified to

Z whl,z((lm - m1,2)h1,2)Ah172Uh1,2(m1,2h1,2)

meM+

—Uhpy 5 (m1,2h1,2)Ah1,2wh1,2 ((l1,2 - m172)h172)h1 ho

h
= Z Z (Uhl,g(rlghm) - Uhl,Q((Tm + ki)hl,Z))thg((ll 2 —T1 2)h1 2) h2
i=13rey; . 1
h
+ Z Z (uny o (r1,2h12) = Uny o (12 + ki) 2) )wn, , (L2 — r12)h12) hl
=24 e 2
ho
- Z Z (whm((lm - Tl,z)hl,z) - whl,g((ll,z - (7“1,2 + ki))hl 2))Uh1 2(7”1 2l 2) A
111,3 T€7;1’27i 1
h
- Z Z (whl,g((lm - 7”1,2)]11,2) - wh172<<l1,2 - (7’1,2 + ki))hl 2))Uh1 2(7”1 2hy 2) o
i=24rey; 2

Thus, by using the definition of discrete normal derivatives, the theorem statement is proved.

]

Remark 4.1. Tt is important to remark, that in the case of equal stepsizes hy = hy = h
the discrete interior Green’s formulae on the rectangular lattice introduced above will be
immediately reduced the classical discrete Green’s formulae for a square lattice.

It is worth also to mention, that if wy, , is a discrete fundamental solution of the Laplace
operator and uy, , is a discrete harmonic function, then the second discrete interior Green’s
formula provides the following relation between discrete single- and double-layer potentials:

Z (Eh172<<l1,2 - m1,2)h1,2)Ah1,2uh1,2 (m1,2h1,2)—
meM+

Uhm(m1,2h1,2)Ah1,2Eh1,2((ll,z - m1,2)h1,2)h1h2) = (P (int) ) (11 ohy 2) (W (int) ) (l1 ohy 2)

Additionally, it is important to underline that the second discrete interior Green’s formula
is not a direct analogue of the classical Green’s formula in a strong sense, because of the
presence of variable (I3 2h;2). Hence, this difference in the Green’s formula can be seen as a
particularity of the discrete setting.

Similar to the continuous case, the third Green’s formula can be obtained from the second
one by substituting the discrete fundamental solution of the discrete Laplace operator Ej,, ,
instead of wy, ,. Thus, the third discrete interior Green’s formula has the following form for
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(51,2h1,2) € th,zi

Uh1,2(51,2h1,2) = Z (Ehm((lm - m1,2)h1,2)Ah172uh172(m1,2h1,2)h1h2)

T€M+
- Z Z Usj)(ﬁghlz)Ehm((lm —7r1.2)h12)ho
’i=1,3 T€7;1,2,i
- Z Z Ug)(ﬁ,th,Q)Ehm((lm —r12)h12)
222,4 TE’Y}TLQ,Z'
h
+ Z Z (Enyo((ha —7m12)h2) = Eny (g — (12 + ki))hlﬁ))uhlg(Tl72h1,2)h_2
i=L3rey 1
h
+ Z Z (B o ((lig —r12)h12) — By, (L — (12 + ki))hl,Z))uth(T1,2h172)h_1;
i=2rey, 2
for points (I 9h12) € 7, . the third discrete interior Green’s formula has the form:
) ) hi,2
0= Z (B, o ((lg — mag)hy2) Mg, yun, ,(maghy 2)hihs)
meM~+
- Z Z Ug)(rl,zhl,z)Ehm((ll,z - T1,2)h1,2)h2
i:1,3 TE'Y;1 0.
- Z Z Ug)<7’1,2h1,2)Eh172<(l1,2 - 7”1,2)h1,2)h1
=24 rey
h
+ Z Z (B, ((lig —r12)h12) — Epy (L — (r12 + ki))hm))uhl,z(T1,2h1,2)h—2
=13 e !
’ h
+ Z Z (Bny o ((h2 —7r12)h2) = Eny o (g — (112 + ki))hl,Q))Uhl,g(7“1,2h1,2)h—1;
=24 ey 2

for points (I; 2h12) ¢ (th’z U, 2) the third discrete interior Green’s formula has the form:

0= Z (B, o ((lg — mag)hi2) Ap, yun, ,(maghy 2)hihs)

meM~+
- Z Z Ug)(rl,zhl,z)Ehl,g((ll,z - T1,2)h1,2)h2
i:1,3 TE'Y;1 0.
- Z Z Ug)(rl,th,Z)Ehlyg((hQ - 7”1,2)h1,2)h1
=24 rey
h
+ Z Z (B, ((Iig —r12)h12) — Epy o (L — (ri2 + kz’))hlg))uhl,Q(T1,2h1,2)h—2
=13 rey, 1
’ h
+ Z Z (Bny o ((ha —7r12)h12) = Eny (g — (112 + ki))hl,Q))Uhl,g(7“1,2h1,2)h—1-
i=2dreys 2
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Finally, by help of the third discrete interior Green’s formula the following corollary can
be straightforwardly obtained:

Corollary 4.1. By setting uy,, = 1 in the third discrete interior Green’s formula formula
the following representation of the discrete double-layer potential with density v = 1 can be
obtained for three sets of points:

(i) for points (l12h12) € Q-

mt ( hl 2)
Z Z (Bnyo((lig —r12)h12) — Epy o ((lig — (rig + ki) i)

L 2,8 h
Z Z Ehlz (11 2 —T1 2)h1 2) — Ehl,z((h,z - (7”1,2 + kz))hm))h—l =—1

2
=24 re’yhl 125

(ii) for points (l12h12) € Vhio®

W (1 50 2)
h
- Y Bl = ri2)hag) = B (b — (rio + ki) ), 2))h_2
=3 rey )
h
+Z24 Z Eh12 l12—7“12)h12) Eh12((l12_(7"12+]€))h12))h—; =0;
! reryhla,z

(iii) for points (I12h12) & (th,z U'Vf:m)’

znt)( hl 2) ,
Z Z (Bny o (2 = m12)h12) = Eny (g — (r12 + Ki)) 2))h—2
1
=L3ren,,
h
+ Z (B (2 = r12)h12) = Epy (e — (12 + ki) 2))h—; =0.

=24 T€%h 9,

4.3 Discrete potentials for exterior problems

Before introducing the discrete single- and double-layer potentials for exterior problems, the
following set K,  needs to be defined

K, ={keK|r+k¢M ,reN"}.
Discrete exterior single- and double-layer potentials can now be introduced as follows:
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Definition 4.4. Let 1(r12h12) be a discrete boundary density of single-layer potential on
the discrete boundary layer «;, , then the discrete exterior single-layer potential for exterior
problems on a rectangular lattice is defined as follows

(P (eat) ) (ll 2l 2) = Z 77(7“1,2h1,2)Eh1,2((51,2 - 7’1,2)h1,2)h2+

TEah1’271Uah1’273

Z 77(7‘1,2h1,2)Eh172((l1,2 - T1,2)h1,2)h1-

7“60%1’272Uozh1!274

Definition 4.5. Let v(rq 2h; 2) be a discrete boundary density defined on the discrete bound-
ary layer «y, , then the discrete exterior double-layer potential for all exterior problems on
a rectangular lattlce is defined by

(WD) (hiahi) = Y > (Bnu((hz— (ria+k)hio)—

reay keK\K,

Ehm((h,z - T1,2)h1,2)) 1/(7“1,2h1,2)akh1h2,

for all exterior points (l12h12) € Qifg, while for all points of (I;2h12) € o, , the following
definition holds ’

(W(eact)y) (lighia) = Z Z Eh1 (g = (rig +k)hig)—

re€ay ke K\K,

Ehm((lm - T1,2)h1,2)) V(T1,2h1,2)akh1h2 - V(ll,2h1,2).

It is worth to underline that the definitions of exterior discrete potentials introduced
above are motivated by the continuous case, where exterior problems are solved by help
of continuous potentials and taking the corresponding normal vectors, which are opposite
of normal vectors for interior problems. The change of normal direction is visible in Def-
inition 4.5 of the discrete exterior double-layer potential if compared with Definition 4.3.
Additionally, the two definitions are differ by summations over o, , and 7, , in the exte-
rior and interior case, respectively. Moreover, although only dlscrete geometrles for which
Mgy = Ty, A€ considered (because of considerations of transmission problems), it is pos-
sible to use discrete potentials for interior and exterior problems for geometries separately,
i.e. solve only interior or exterior problems, in the case when Wy #+ Vi o Therefore, two
different settings are necessary.

As it can be seen, the definition of the discrete exterior double-layer potential is written
in a more general way, than in Definition 4.3 for discrete potentials for interior problems.
The reason for this more general writing comes from the structure of the discrete boundary

ap, ,: exterior corner points of a rectangular domain belong to the boundary layer a; _, see
; 1,2

again Chapter 2 for details, meaning that points of the boundary layer o, , neighbouring
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the exterior corners have different number of elements in the set K \ K, , than other points
of Wy Thus, writing the definition of discrete double-layer potential for exterior problems
in the form similar to Definition 4.3 requires 20 terms, and therefore, the compact form is
introduced in Definition 4.5. The relevance of these points for practical calculations with
the discrete double-layer potential W) will be discussed later in this chapter.

When discussing exterior setting for the discrete potential theory it is necessary at first
to discuss a proper definition of a discrete harmonic function in the exterior. Behaviour of
discrete harmonic functions (although not always explicitly named in this way) has been
studied in several classical works on difference operators, such as for example [28, 93, 94].
Summarising discussions from these works, the following definition is introduced:

Definition 4.6. A discrete function uy,, is called discrete harmonic in exterior domain
Q7' if it satisfies
Ah1,2uh1,2 (m1,2h172) =0

for all (mq2hy2) € Qi"ftz and behaves at infinity as follows

Up, 5 (M1 2Ry 2) < const - Iny/mihi + m3h3, for [my| — oo, |mg| — oo.

Now the discrete harmonicity of single- and double-layer potentials for exterior problems
can be discussed:

Lemma 4.3. The discrete single- and double-layer potentials P* and W are discrete
harmonic functions in Q5" .

Proof. The proof is analogous to the proof of Lemma 4.2. The only extra part to be dis-
cussed is the asymptotic behaviour of the discrete potentials at infinity, which follows from
Definition 4.6 and the estimate

Cl() max{h 2} 011

1
—_— h3, b3 — 1
x| min {A, hg} |X| ax{ 2} + Gt 2 [

Cy
|Eh1 By (X)| < ﬂmaX{hh%}

presented in Theorem 3.8. As it can be seen from this estimate, for |m;| — oo and
|ms| — oo the behaviour of the discrete fundamental solution E,(i)’hz is dominated by the

1 1
term Cho + o lIn|x]||, or, in fact by the term o |In |x||, considering that In |x| tends to
m 7r

infinity for |x| — co. Thus, E}(j)’h{z is a discrete harmonic function in the exterior domain
fol’tz Further, considering Definitions 4.4-4.5, their behaviour at infinity is controlled by the
discrete fundamental solution, similar to the continuous case, see again [87, 98]. Therefore,
discrete single- and double-layer potentials P¢*) and T (*") are discrete harmonic functions

in the exterior domain Qf** . O

4.3.1 Discrete Green’s formulae for the exterior setting

Similar to the interior setting discussed in the previous section, exterior setting also allows
introduction of discrete analogues of the classical continuous Green’s formulae. Hence, these
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discrete analogues will be presented in this subsection. The discrete exterior Green’s formulae
developed here will be used later on in this chapter for obtaining several results for exterior
discrete Dirichlet and Neumann boundary value problems.

It is important to underline that since discrete Green’s formulae connect summations over
discrete boundaries and over a discrete domain, in the exterior setting it implies also the
summation over Qiffz, i.e. unbounded exterior domain. Therefore, for the validity of these
formulae it is necessary to discuss under which conditions the corresponding summations over
Qe”2 converge. However, for the clarity of presentation, the first discrete exterior Green’s
formula will be introduced at first, and the necessary convergence conditions will be discussed
after the proof of this formula.

The first discrete exterior Green’s formula is given by the theorem:

Theorem 4.4. The following relation holds:

Z whl,g(ml,zhl,Q)Ahl,Quhl,Q(m1,2h1,2)h1h2

meM—

2
= - Z ZDz‘whm(ml,th,Q)'D¢Uh172(m1,2h1,2)h1h2

meM— i=1

+ Z Why » (r1,201,2) D 1un, 5 (r1,201,2) e + Z Why o (1,201,2) D_otn, ,(r1,2h1,2) 1
rea,:l,Q’l 7‘6(1;1’2’2

- Z whl,g(7"1,2h1,2)D1Uh1,2(7’1,2h1,2)h2 - Z Whl,z(Tl,zhl,z)Dzuhl,g(7”1,2h1,2)h1
Tea;1,2,3 7‘604,717%4

Z Dlwhl,g(7“1,2h1,2)D1Uh1,2(7"1,2h1,2)h1h2 - Z Dzwhm(T1,2h1,2)D2uh1,2(7’1,2h1,2)h1h2

rEa;LQ’S 7‘604;1 2.4

- Z whl,z(ml,zhm) 1Uh12(m1 2h12 ho — Z wmg my 2h1 2) 1Uh1,2(m1,2h1,2)h2
melsy melag

+ Z Dlwhl,g(m1,2h1,2)D1Uh1,2(m1,2h1,2)h1h2+ Z whl,z(m1,2h1,2)D1Uh1,2(m1,2h1,2)h2
mela mel2

+ Z Diwh, ,(ma2hi2) Dyug, ,(maghyg)hihs + Z Why o (M12h12) Dy, , (M gk 2)hy
meliy meliy

- Z whl,z(mLzhm)D—zuhl,g(m1,2h1,2)h1 - Z whl,g(m1,2h1,2)D—2Uh1,2(m1,2h1,2)h1
mel4 melsy

+ Z DQOJth(ml,zhl,z)DQUhl,g(m1,2h1,2)h1h2+ Z whl,g(ml,th,Q)DQuhLQ(ml,th,Q)hl
mela mel2

+ Z D2wh1,2(m1,2h1,2)D2uh1,2(m1,2h1,2)h1h2+ Z thQ(ml,th,Q)DQU/hLQ(m1,2h1,2)h17
melag mela3

Jor any two grid functions wy, , and uy, , and where Dij;, 7 = 1,2 are finite difference oper-
ators.

Proof. Similar to the proof of Theorem 4.2, the notation «; will be used instead of «, , ;.
Additionally, the reformulation (4.4) of the discrete Laplace operator will also be utilised
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during the proof. Applying now this reformulated representation of the discrete Laplace
operator to the left-hand side expression in the theorem, the following result is obtained:

Z whm(m1,2h1,2)Ah1,2Uh1,2(m1,2h1,2)h1h2

meM—
= - Z Why ,(M1,2R12) (Z [a(()l)uhl,g(mmhm) — atp, ,((m1g + ki)hi )]
meM— i=1,3
+2 (a§un, ,(mapha ) — agup, ,((M2 + ki)hl,z)]> hihs
i=2,4 i i
= - Z Why 2 (m1,2h1,2) a(()l)uhl,z (m1,2h1,2) - aluhlyg((ml,Z + /ﬁ)hm) hihy (4'14)
meM— : :
- Z Whi o (m1,2h1,2) a(()Q)UhI,Q (m1,2h1,2) - CLQUhm((mLQ + kﬁg)hm) hihgy
meM— : :
- Z Why o (m1,2h1,2) agl)uhm (ml,zhl,z) - a3uh1’2((m1,2 + ks)h1,2) hihs
meM— i i
- Z Whi o (m1,2h1,2) a(()2)uh1,2 (m1,2h1,2) - a4uh172((m1,2 + k4)h1,2) hyihs.
meM— ) )

Next, to simplify the above expression, new variables m* = m + k3 and m’ = m + k4 will
be untroduced in the third and fourth summands of (4.14). Thus, substituting the new
variables the following expression is obtained for the third summand:

- Z Why o (m1,2h1,2) [aél)uhm(mmhm) - G3Uh1,2((m1,2 + kg)h1,2)} hihg

meM—
= = > wnmal(min— ke)hie) [af un o (mi g — ks)hiz) = aun, o (m5 o) | huho
m*eM—
(1) _

+ Z Why 5 (T1,201,2) [ao Up, o (T1,2R12) — azun, ,((r12 + kg)h1,2)} hihg
rea;

- Z Why o ((r12 + k1)hi2) [a(()l)uhm((rm + k1)hi2) — QSUhl,Q(TLth,Q)} hihsy
re€ag

- Z whl,z(muhl,z) [aél)uhl,z (m12h12) — G3Uh1,2((m1,2 + ksﬁh,z)} hiha
melsy

- Z whl,g(m1,2h1,2) [a(()l)uhl,g(mmhm) - asuhl,g((mm + k’3)h1,2)} hihgy
melag

+ Z Why o (M2 + k1)hi2) [a(()l)uhm((ml,z + k1)hi2) — a3uh172(m1,2h1,2)} hihy
mel2

+ Z thg((ml,Q + k1)hi2) [a(()l)uhl,z((mlz + k1)hi2) — asuhm(ml,zhlg)} hihs.
meliy

It is worth to underline, that the last four summations over exterior corners are, in fact, also

summations over Q57 cat

¢ because these corner points belong to o = C Q¢! and not to o ..
27 hi,2 hi,2 hi,2
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Similarly, the use of new variable in the fourth summand of (4.14) leads to:

- Z whl,g(m1,2h1,2) [a((f)uhl,g(ml,zhl,z) - a4uh1,2((m1,2 + k‘4)h1,2)] hyhsy

meM—

= = D wn,((mhy = ka)ho) [a(()Z)Uhl,z((m/m — ka)hi2) — agup, (m,1,2h1,2>} hihy

m/'eM~+

+ Z Whi o (11.2h1,2) [G[()z)uhm (r12h12) — a4uh1,2((7"1,2 + k4)h1,2)] hihs

T€a2

- Z Why o (11,2 + Kk2)hy2) [G((]Q)Uhl,z((rm + ka)h12) — a4uh1,2(7”1,2h1,2)] hyhy

7"60!4

- Z Why 2 (m12h12) [Gél)uhl,z(m1,2h1,2) - a3uh1,2((m1,2 + k4)h1,2)] hyiha

melsy

- Z whl,z(m1,2h1,2) [a(()l)uh1,2(m1,2h1,2) - CLSUhl,Q((mLz + k‘4)h1,2)] hihgy

mel4

+ Z Why (M2 + k2)hi2) [G(()I)Uhm((mm + k2)h12) — azup, , (m1,2h1,2)i| hihsy

mela

+ Z Why o ((M12 + k2)h12) [a((]l)uhl,z((mm + ka)hi2) — azup, , (m1,2h1,2)} hyihs.

melaz
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Thus, expression (4.14) can now be rewritten as follows:

- Z Why ,(M1,2h12) [a(()l)uhl,z(mmhm) — ayup, (M1 + kl)hl,Z)} hihs

meM—

- Z Whi o (m1,2h1,2) [a(()Q)uth(ml,thﬂ) - azuhl,g((ml,z + k2)h1,2)} hihs

meM—

— Y wha((miy — ks)hg) [a(()l)uhl,z((miz — k3)hi2) — azup, , (mT,th)} hiho+

m*eM—

- Z Why o (MY 5 — ka)hi2) [a(()z)uhl,z((mﬁ,g — ka)hi2) — asup, , (m'mhla)} hihs

m/'eM—

+ Z Why o (7’1,2711,2) [G(()l)uhl,g(rmhl,z) - asuhl,g((ﬁg + k3)h1,2)} hihs

T‘Eal

- Z Why o (1,2 + k1)h12) [aél)uhw((ﬁ,z + k1)hi2) — azun, , (T1,2h1,2):| hihs

TEOC3

+ Z Whl,g(Tlghl,Q) [(182)Uh1,2(7“1,2h1,2) - G4Uh1,2((7”1,2 + k4)h1,2)} hiho

rEQy

- Z thQ((rl,Z + k2)h12) [a(()Q)UhLQ((T’m + k2)h12) — AqUp, 5 (r1,2h1,2):| hihs

T‘Ea4

- Z Wh o (ngth) [a(()l)uhm (m1,2h1,2) - CLSUhM((mLQ + k3)h1,2)} hihgy

melay

- Z Whi o (m12h12) [aél)uhLQ (ma2h12) — asuhl,g((ml,z + ks)hm)} hihg

melag

+ Z Why o (M1 + k1)) [aél)uhl,g((mm + k1)hi2) — asup, , (m1,2h1,2)] hyhgy

mela

+ Z Why o ((M12 + Fk1)hi2) [Clél)uhl,g((mm + k1)hi2) — asup, , (m1,2h1,2)] hihsy

melis

- Z Whi o (m1,2h1,2) [Gél)uhm (m1,2h1,2) - a3uh1,g((m1,2 + k4)h1,2)} hihs

melsy

- Z Why 2 (i 2h12) [a(()l)uhl,g(mlzhm) - G3Uh172((m1,2 + k‘4)h1,2)} hihs
mel'ia

08 (4.15)



+ g w + + — hih
((m12+ k2)hi2) [a(()l)uhl ,((ma2 k‘g)hm) aztp, , (m172h172):| 1ho
h1,2 ) ) s

mel2

+ E W, ™m + + — ™m hih
(( 1.2 kz)hl 2) [agl)uhl 9 ((ng kg)h1’2> aguhm( 1’2h1,2):| 1112
h1,2 ) i s

melag

+ E w a — da 1 + h h
h (Tl th 2) |: él)uhl 2 (T1,2h172) 3uh172 (( 1,2 kl)h1,2>i| 1762
1,2 ) ) s

7"6043

— E w 7 a 7 —Qa 7 + h h
h ( 1 2h1 2) |: (()l)uhl 2( 1,2h1,2> 3uh1,2 (( 1,2 kl)hl,2):| 1762
1,2 ) ) »

T‘EQS

+ E w a, — a T + h h
h (7"1 2h1 2) [ (()Q)Uhlg(rl,th,Q) 4uh1,2(( 1,2 k2)h1,2)} 1762
1,2 ) ) 5

7”6044

- E w 1 a 1 —a 1 + h h
h ( 1 Zhl 2) |: [() )uhl 2( 1,2h1,2> 4uh1,2 (( 1,2 kQ)hl,Q)] 1762
1,2 ) ) »

T€a4

+ W, _11 + — asu _ h h
h (ml Qh]_ 2) él)u’hl 2((m1,2 kl)hl,Q) 3 h172 (m1,2h1,2) 1762
E 1,2 , s | ,

mel'a

- E w -41 + — Q, - h h
h (ml th 2) ((]l)u’hl 2 ((ml,Q kl)hl,Q) 3uh172 (m1,2h1,2> 1742
1,2 s ) L s

mel'io

+ E w _(1 + — asu ] h h
h (ml th 2) (()l)uhl 2((m1,2 kl)hl,Z) 3 h172 (m1,2h1,2) 1762
1,2 ) ) L s

mel'iy4

- E -(l m + — Q ™m - h h
(,L)h (ml th 2) él)uhl 2 (( 1,2 kl)hl,Q) 3uhlyg( 1,2h1,2> 1762
1,2 ; 3 L s

melg

+ E w _(Z + — q, ] h h
h (m1 th 2) g)l)uhl 2((m1,2 k2)h1,2) 3Uh172 (m1,2h1,2) 1762
1,2 ) ) L s

mel2

E w, _CL m [0 m — h h
h (ml th 2) él)uhl 2 (( 1,2 k2)h‘1,2) 3uh1’2( 1,2h1,2> 1702
1,2 ) ) L s

mela

+ E w -(1 + — Q. - h h
h (ml th 2) E)l)uhl 2((m1,2 k2)h1,2) 3uh172 (m1,2h172) 1762
1,2 ) ) I ,

méelag

- E w m _0/ + —Q - h h y
h ( 1 2h1 2) él)uhl 2 ((m1,2 k?)h‘l,Q) 3uh172 (m1,2h1,2> 1762
1,2 ) ) L s

melas
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where the last twelve terms summing up to zero have been added for the upcoming calcula-
tions. Next, the first four summands of (4.15) will be considered, after taking into account
that ky = —k3, ke = —ky, a1 = a3, and as = a4, the following expression is obtained by using
finite differences:

h
- Z whl,g(ml,zhm) [Uhl,g(mlghm) - Uhl,Q((ml,Q + kl)hl,z)] h_2
meM— hl
- Z thQ(ml,th,Q) [Uhm(mmhm) - uhl,z((mm + k?Q)hl,z)] h—l
meM— 2 L
+ EZM Why o (M2 + k1 )haa) [un, ,(Maghy2) — sy, ((Mag + k1)ha o)) h_j (4.16)
h
+ Z Why o ((M12 4 k2)h12) [Uhl,g (migh12) — up, ,((M12 + kz)hm)] h—l
meM— 2
2
= - Z ZDiwhl,Z(ml,zhl,Q)'Diuhl,z(ml,zhl,z)mhz
meM— =1

Next, summands five, seven, seventeen, and nineteen from (4.15) are rewritten using finite
differences as follows:

Z Whl,g(rl,2h1,2>Dfluh172(T1,2h1,2)h2 + Z Why 2 (7’1,2}11,2)1772’&}11,2(T1,2h1,2)h1

rea; rEa,
(4.17)
- Z Whi o (T1,2h1,2)D1uh1,2(T1,2h1,2)h2 - Z Whi o (Tl,zhl,z)DWhm(7“1,2h1,2)h1-
reas rea,

Summands six, eight, eighteen, and twenty of (4.15) need to be considered, which lead to
the following expression in the form of finite differences:

h
— Z (whm(?"l,zhl,z) - Whm((ﬁ,z + k1)h12)) [Uhl,z (rioh12) — Uh172((7’1,2 + kl)hmﬂ h_2
réas 1
h
- Z (Why o (r12R12) — Why o ((r12 + k2)hi2)) [uhm (r1,2h12) — Uy, ((r12 + k2)h1,2)} h—l
2
reay,
= - Z D1wh1,2(7“1,2h1,2)D1Uh1,2(T1,2h1,2)h1h2 - Z Dzwhl,g(ﬁ,th,z)Dzuhl,z(7“1,2h1,2)h1h2-
TEa; rEay
(4.18)

Collecting all summands from (4.15) related to exterior corner points and simplifying it the
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following expression can be obtained:

- Z Whl,g(m1,2h1,2)D71uh172<m1,2h1,2)h2 - Z Wth<m1,2h1,2)D71uh172(m1,2h1,2)h2

melsy melas
+ Z Diwh, ,(mi2h12) Dy, ,(m12hy 2)hihs + Z Why 5 (M1,2h1,2) Ditin, 5 (M1 2Ry 2)ho
mela melis
+ Z Dlthg(m1,2h1,2>Dluh172(m1,2h1,2)h1h2+ Z Whm(m1,2h1,2)D1uh1,2(m1,2h1,2)h2
mel4 mely
- Z whl,g(ml,zhl,Q)D—zuhl,Q(ml,zhl,z)hl - Z whl,g(ml,zhl,z)D—Quhm(m1,2h1,2)h1
mel'iy melzy
+ Z Dowh, ,(mi2h1,2) Doty , (1,201 2)hiho + Z Why 5 (M1,271,2) Datin, 5 (M1,2R1 2) I
mela meliz
+ Z Down, ,(my2h12) Do, , (M 2hy2)hihy + Z Why o (M12h12) Doy, , (M1 2hy2)h.
melas melas
(4.19)
Combining expressions (4.16)-(4.19) the theorem assertion is proved. O

Next, it is necessary discuss conditions under which the first discrete exterior Green’s
formula is valid, i.e. the summation over Qex’; converges. Looking at the continuous case,
see again [98], discussion on pp. 140-147, the following condition is introduced: second finite
differences of the discrete functions wp, , and uy, , must be discrete harmonic in Q,elﬁ, and
their first finite difference must satisfy the estimates

1 1
D ju <(C—, —,
[Destinal < Oy ]
for |x| — oo, and where C'is a constant. These conditions will be assumed for the remaining
part of this subsection.
The second discrete exterior Green’s formula on a rectangular lattice is introduced in the
following theorem:

| Dijwn,,| < C j=1,2,

Theorem 4.5. For any two grid functions wy, , and uy, , the following relation holds:

Z (whm((lm - m1,2)h1,2)Ah1,2Uh1,2 (m1,2h1,2)
meM—

- uhl,g(ml,th,Q)Ahl,gthg<<l1,2 - m172)h172)h1h2)

Z Z Whlyg((ll,Q - T1,2)h1,2)(uh1,2((7”1,2 + k)h1,2) - Uhl,Q(Tl,zhm))akhth

rea” keK\K;

- Z Z Uhy o (T1,2h1,2)(wh1,2((11,2 - (7“1,2 + k))hm) - whl,g((h,z - T1,2)h1,2))akh1h2,

rea” ke K\K,
t
fO’l" (lLQhLQ) € Qzaljg.

Proof. Proof of the theorem is made analogously to the interior case. The theorem presents
a short form of the final expression for the second Green’s formula. However, to underline
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clearly the difference to the interior case, a full form of the final expression will be presented
here. To do so, the following notations needs to be introduced:

Uy = {(liha, lbho) € gy |
A = {(lih, lbho) € a4y |
Ry = {(lih1, lho) € ay 4, 4]
Lay = {(lih1,l2ho) € ap, p, 4]
Ust = {(lih1,lshs) € ap, 5|
Ay = {(llhla lahs) € oy 4, 5|
Lys = {(lih1,loho) € a4, 5 |

Ry = {(llh1712h2) S a;1,h272 |

(Iihy, (Ia + 1)hy) € T14},
(l1hy, (Io — 1)hg) € T'1a},
(L = D)y, lohy) € Tiy},
(L + 1)hy, lahy) € Ty},
(liha, (I + 1)hy) € Taa},
(l1hy, (Ia — 1)hy) € Tag},
((I1 + 1)hq, lxhs) € To3},

((ll — ].)]'Ll, lghg) € Flg}.

(4.20)

The reason to specify these points comes from the fact that in the exterior case, the points

of a~ neighbouring the corner points have two elements in the set k € K\

K. while the

T

other points of &~ have only one element in £ € K \ K, . Thus, the full version of the final
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expression is written now as follows:

Z (whlﬁg((ll,Q - m1,2)h1,2)Ah1,27~bh1,2 (m1,2h1,2)
meM—

— Uhy o (m1,2h1,2)Ah1,2wh1,2((l1,2 - m172)h1,2)h1h2)

= - Z Why, 2((11 2T 2)h1 2)(Uh1 2((7”1 2+ ks)hl 2) — Uhy, 2(7’1 2l 2))h2

hy
TEOLl_\(UMUAlz) h
- Z Wh, 2((l1 2— "N 2)h1 2)(Uh1 2((7“1 2 + k‘2)h1 2) — Uhy, 2(7“1 2l 2)) hl
relUyg h2
- Z Why o (2 = 112)h2) (U, (112 + k3)ha2) — Uny ,(112012)) h2
relUiq hl
= > wnia(le = r2)hug) (uny o (712 + ki 2) = g, (r ol 2))};
reAiz
h
= > wna (b = 12)h1s) (g, (110 + ks) ) = g, (r1,9h1 ) hi
T€A12

+ Z Uhl,z(7‘1,2h1,2)(wh1,2((l172 - (7“172 + k3))h1,2) - Whm((ll 2 —T1 2)h1 2))

TE(X;\(U14UA12)

+ Z uhLQ(Tl,th,Q)(thg<<l1,2 —(rig+ke))h12) — whlﬁg((ll 9 —r12)h, 2))22
relUia

=+ Z Upy 5 (r1,201,2) (Why o (L2 = (11,2 4 K3))ha2) — Wiy o ((le — r12) P, 2))23
relia

+ ZA: Uhm(T1,2h1,2)(wh1,2((l1,2 - (7”1,2 + k‘4))h1,2) - thg((ll 2— 7 2)h1 2)) Z;
reA12

+ ZA: Uhl,z(Tl,zhl,z)(whl,g((lm — (rig+ks))hi2) — whl,g((h 9 —Tr12)h1 2))2?
rTEA12

hy

- Z wh172<(l1,2 - Tl,z)hl,z)(uhm((’f’lg + k4)h1,2) Uh, 2(7”1 2hy 2))h2

TEO[;\(R:[QULQS)

h
- Z thQ((ll,Q - 7’1,2)]11,2)(Uh1,2((7“1,2 + ks)hl,z) Uhy, 2(7”1 2hy 2)) h2
recRi2 hl
= > wna((la = r12) ) (ung o ((r1 + ka) ) = g, (11,9h1,2)) hl
rE€R12 h2
- Z whl,Q((ll,Q - 7"1,2)h1,2)(uh1,2((7”1,2 + ka)hi2) — up, 2(7’1 2l 2))};
r€Log
h
= > wnia((le = 112)h ) (ny o (11 + ki) ) = ny o (r1200 2))};
reLog
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+

§ 2 )W 1 w h jg))
(r 2h] )( h ((l12 ( 1,2 k3))h1,2) hl’g((llz 1 2) 1
uhl,Z 17 ) 1,2 )
E 2 T 2 h’l 2))
(7 1 2h'l 2)<(’°h1 ((l 2 (7 1,2 k4)>h|,2) whlyg((l 2 )
uhl,Q ) ) ) )
E 1,2 W l 2 1 Q)hl 2))
k: ))h ; ) h1,2(( 1
h 1 2h 2)(“’]11 2((l1,2 (TI,Q 4
u 1,2( 5 1, ,

: : ) ) ) ) 5 )h ))
(( ) (
uhl,Q( 1 2h1 2)(("’11,2 1,2 1,2 1 1,2 2 1 2

E W h h
((ZIQ - Q)hl 2)(“}1172((7"1,2 kl)hl,Q) U 12(T12 12))
h1,2 ) ) )
§ w U T - h
h ((112 Tl 2)h1 2)( h12(( 12 k4)h1 2) U’h12(r12 12))
5 w l h
(<l12 &1 Q)hl 2)(uh1,2(( 1,2 kl)hl,2> Uh12(7’12 12))
hl,2 5 5 5

= Upy 5 7“12]112))
- Z Why o ((l12 = 11.2) P 2) (Uny o (12 + k2)ha2) (

+

+ E W — + —w T h 2))
(r th 2)( h ((ll 2 (Tl,Q kl))hl,Z) h172<<ll 2 1 2) 1
Uhy 2\T1, , 1,2 ,
E 1 ni 2))
h (7 2h1 2)(C°h1 2((l12 (ﬁ 1,2 k4))h1,2) Wh1,2<<ll2 12)
u 1,2 1a ) s )
E l 1 Q)hl 2))
k1)>h1,2) Lz(( 1,2
h/ )( hlg((llﬂ ( 1,2
uhLQ(] 1,2701.2 W , 1 Wh 7

(( ’ (r ’ ’
h1,2 (lr ’ h ) )( 1,2

- E w —1 7 + — r1.9h
((l12 12)h1 2)(uh12(( 1,2 k2)h1 2) Upy, 2( 1,2 12))
hi,2
E w — 1 (0 + h
h ((ll 2 1 2)h1,2)( hi,2 ((Tl,Z kS)hl,Q) Up,y 2(r1 2701 2))

h
- Z Why o ((l12 — 7"1,2)}11,2)(%1,2((7“1,2 + kl)h1,2> Uh12(7’12 12))

2.

reay \(R12UL23)
rER12
reR12
r€los
re€Llos
2
r€ag \(A23UU34)
re€Aas
reAaz

relUsy

reUsy

>

r€ag \(A23UUs4)
reAss
reAss
re€Usq
r€Uszy
2
reoay \(R14UL34)
r€R14

r€R14

relsy

Up, 2(7"1,2h1,2)(wh1,2((l1,2 - (7‘1,2 + k4))h1,2)

1.2 —T12 2 2 1 1.2 1 Qh] 2))
Wh ((l 7 )hL )(uhl’ ((11’ + k )h , ) uh12(7
1,2 ) ) 2

h
Up, 2<T1,2h1,2)(wh172((l1,2 - (7“1,2 + k1)) 1,2)

W 2 1.2 2 7 2 + 2 2) — 7 h
((ll 1, )hl )(uh12(( 1 k )h‘l ) U’hlg( 1 1 ))
h1 2 2 2
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ha
h
ha
ha
hy
ha
ha
hy
ha
ha

ha

h

h

hea

ha

h

ha

ha

ha
h
h
ha
ha
ha
h
ha
h
ha

h

ha

ha

h

ha

ha

— Wy, (L2 = T12)h12))

— Wy (L2 = T12)P12))

h
ha

ha
hy



h

- Z whl,g((ll,Q - 7‘1,2)h1,2)(uh1,2((7”1,2 + k’z)hm) = Uhy o (7“1,2h1,2))h—1
relsy 2 h

1

+ Z Uhy o (7’1,2h1,2)(wh1,2((11,2 — (r12 +k2))hi2) — whl,Q((Zl,z —7r12)h12))
ha

TEQZ\(R14UL34)

h
+ Z Upy o (11,201.2) (Why o (I — (11,2 + K2))h12) — Wiy, (T2 — T1’2>h1’2))h_1
reRy4 2

h
+ Z Uhy o (7"1,2h1,2)(wh1,2((l1,2 - (7”1,2 + k’3))h1,2) - whm((lm - Tl,z)hm))h—z
rcRi4 1

h
+ Z Uhm(7"1,2h1,2)(wh1,2((l1,2 — (ri2 +k1))hi2) — Whl,z((lm - 7“1,2)h1,2))h—2
relss hi
+ Z Upy o (11,2012) (Wi o (12 — (11,2 + K2))ha2) — Wiy, (T2 — 7’1,2)h1,2))h—-
relsy 2

]

As in the interior case, it is important to underline that the second discrete exterior
Green’s formula is not a direct analogue of the classical Green’s formula in a strong sense,
because of the presence of variable (I;2h;2). Hence, this difference in the Green’s formula
can be seen as a particularity of the discrete setting.

Similar to the interior case, if wy,, is a discrete fundamental solution of the discrete
Laplace operator and uy, , is a discrete harmonic function, then the second discrete exterior
Green’s formula provides the following relation between discrete single- and double-layer
potentials:

Z (Ehm((llz - m1,2)h1,2)Ah1,2Uh1,2 (m12h12)
meM—

—Uhm(m1,2h1,2)Ah1,2Eh1,2((51,2 - m1,2)h1,2)h1h2) = (P(ext)n) (l1,2h1,2) - (W(ezt)l/) (l1,2h1,2).

Finally, by substituting the discrete fundamental solution of the discrete Laplace operator
E}, , instead of wy, , in the second discrete Green’s formula for exterior domains, the third
discrete exterior Green’s formula is obtained in the following form:

Uhl,Q(l1,2h1,2) = Z (Ehm((ll,Q - m1,2)h1,2)Ah1,2uh1,2(m1,2h1,2)h1h2)

meM—

- Z Z Ehl,g((ll,Q - 7"1,2)}11,2)(%1,2((7“1,2 +k)hia) — Uhy o (r1,2P12))arhihy

reay keK\K,

+ Z Z Upy 5 (T1,2P1,2) (B 5 (e — (ri2 + k) hi2) — Eny o (e — 71.2)h12))aghih;

reay keK\K,
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for points (l12h12) € oy, , the third discrete exterior Green’s formula has the form:

0= Z (Ehm((lm - m1,2)h1,2)Ah1,2uh172 (m1,2h1,2)h1h2)

meM—

- Z Z Ehm((lm - 71,2)h1,2)(uh1,2((7“1,2 + k)h1,2) = Uhy 5 (7’1,2h1,2))akh1h2

reay keK\K,

+ Z Z Uhl,g(7°1,2h1,2)(Eh1,2((51,2 — (ri2 +k))hi2) — Ehl,g((ll,z —r12)h12))arhihy;

7‘604,7172 keK\K,

and finally for points (I;2h12) ¢ Q% U ay,, , the third discrete exterior Green’s formula is
given by:

0= Z (Ehl,g((ll,z - m1,2)h1,2)Ah1,2Uh172 (m1,2h1,2)h1h2)

meM—

- Z Z Ehm((lm - T1,2)h1,2)(uh1,2((7”1,2 + k’)hm) = Uhy o (T1,2h1,2))akh1h2

reay. keK\K,

+ Z Z Up, o (T1,2012) (B, ((lig — (12 + k) hi2) — By, (L — r12)ha2))arhihs.

reay keK\K,

Finally, by help of the third discrete exterior Green’s formula the following corollary can
be obtained:

Corollary 4.2. By setting uy,, = 1 in the third discrete exterior Green’s formula the follow-

ing representation of the discrete double-layer potential with density v = 1 can be obtained
for three cases:

(i) for points (l12h12) € Q}eﬁt2 .
W(Citt (ll th 2) _
Z Z (Enyo((he = (ri2 +k)hi2) — Epy (L2 — ri2)ha2))achihy = 1;

reay keK\K,

(it) for points (l12h12) € ay, -
W(ext)(hzhm) =
D D (Buullhs = (rig+k)Dhio) = Eno((ha = r12)h2))aghihy = 0;

Ty keK\K,

(1ii) for points (l12h12) ¢ QZ?,Z Uay, ,*
WD (1 ohy ) =
Z Z (Bny o (2 = (rig + k))haa) = By, ((lz — r12)ha))aghihs = 0.

reay keK\K,
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4.4 Applications of discrete potentials to boundary value
problems of mathematical physics

This section is devoted to studying applications of discrete potentials introduced previously
in this chapter to different boundary value problems for Laplace operator in interior and
exterior setting. At first, Dirichlet and Neumann boundary value problems for interior
case are considered, after that, exterior boundary value problems are studied, and finally,
transmission problems coupling both interior and exterior problems will be addressed. It is
important to underline, that to the best of authors knowledge, transmission problems in the
context of discrete potential theory have not been considered so far in scientific literature.

4.4.1 Interior boundary value problems
Interior Dirichlet problem

Let us consider at first the classical discrete Dirichlet problem for the discrete Laplace op-

erator:
{Ahl,Quhl,Q = 07 m th,m

' (4.21)
Uhy s = Phig, OL ’thyg'

Here and after, the discrete domain €2, , is always assumed to satisfy geometrical rela-
tion (2.5), as it has been discussed already in Chapter 2. This restriction is important for
the theory, because boundary layers Vi o and 0, do not coincide otherwise. The latter
case will be briefly discussed in the last chapter of this dissertation in the scope of ideas for
future work.

Next step is to show the uniqueness of solution of the discrete Dirichlet problem (4.21).
A classical approach to prove uniqueness of solution of the Dirichlet boundary value problem
is based on the use of maximum principal for harmonic functions, see for example [78, 98].
Similar approach has been used in the discrete setting by A.A. Samarskii [87], and it would
be also possible to apply in the current setting. Further, discrete analogues of Green’s
formulae have been presented by V.S. Ryaben’kii [86]. However, to underline the use of
theory of discrete potentials in the sense of A. Hommel [56], the proof presented below is
based on the use of the first discrete Green’s formula and, in fact, analogous to the proof from
[56, 86]. The essential ingredient for the proof was to construct discrete Green’s formulae
on a rectangular lattice, while the formal reasoning is then the same as in the classical case
of a square lattice. Thus, the uniqueness result is provided by the following theorem:

Theorem 4.6. If a solution of the discrete interior Dirichlet problem (4.21) exists, then it
is unique for arbitrary boundary data oy, ,.

(1)

Proof. As in the classical setting, the proof starts by assuming two solutions u,;, ', and u,(fl)

2
to the discrete Dirichlet problem (4.21). Because u&)z and ugi)Q are solutions of (4.21), then

their difference ugl)Q — “5121)2 = ugi)z is a solution of the homogeneous problem. By using
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the first discrete Green’s formula from Theorem 4.2 with wy, , = us, , = u,(LSI)Z, the following
expressions is obtained:

2
0= — Z ZDiugi)g(m1,2h1,2)Dz‘U§i),2(m1,2h1,2)h1h2

meMt i=1

Z Dluf;)g(Tl,th,Q)Dlugi)z(T1,2h1,2)h2

7“67;1’2’1
} : 3) 3)
Dzuhm (7"1,2h1,2)D2Uh172 (7’1,2h1,2)h1-
rG’y;l’zyz

Applying the definitions of finite difference operators and taking into account zero boundary
values for uf’) the latter expression can be further expanded after multiplication of both
sides with —1 as follows:

2
u (myahiz) — ul?) ((mas + k1)hi o)
0="> (— ’ hihs

meM+ In
uh1 ,(maghi2) — Ug)2((ml,2 + k2)hi2) i
—+ Z h hlhg
meM+ 2
D (r1s + k)hia) ) i ((rg + E)hio)\
+ hat ) s .
rey; TEYy

Because the right hand side is a sum of squares of real-valued expressions, it can be equal to
zero only if each summand is zero. Thus, it implies that “5131)2 = 0, and therefore, “511)2 ufi)z,

meaning the uniqueness of solution of (4.21). O

Similar to the continuous case, solution of the discrete problem (4.21) is given by the dis-
crete double-layer potential W) introduced in Definition 4.3, i.e. for all points (my 2hi2) €
Qp, , holds

Uhy o = (W(mt)V) (m172h172),

where v is the discrete boundary density of the discrete double-layer potential. The density
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v needs then to be identified from the boundary equation:

¢h1,2(l1,2h1,2) =

Z hl_l Z (Ehm((llz —r12)h12) — Ehl,g((lm — (r12 + k)1 2)hov (11 20 2)

- - +
rE'y,Ll,QJU’thQ’S keK\ K,

+ Z hy! Z (Bny o (2 = r12)h12) = Enyy((lig — (r12 + k) hi2)hav(r12ha2) — v(lh),

- - +
re'yhl’2’2ufyh172y4 ke K\ K/

for all points (l12h12) € 7, ,.- The above equation represents, in fact, a discrete analogue
of the classical Fredholm integral equation of the second kind. In the operator form, this
integral equation can be written as follows:

(W(mt) - I) V= =0h 2, (422)

where [ is the identity operator.

Remark 4.2. For shortening the notations, numerical examples presented in this chapter
will be formulated in terms of continuous quantities, which are then discretised by help of
projections on a lattice.

Next step is to present numerical calculations of using the discrete double-layer potential
W) for solving interior Dirichlet boundary value problems. In all examples presented
here and in the upcoming sections, a rectangular domain 2 = [0, L] x [0, Ls] is considered,
where L, and Ly its diameters in z; and x, directions, respectively. For a better overview
of flexibility provided by using rectangular lattices, numerical examples will be computed
for different values of «, precisely for o« = 2 1 L1 4 3 = Noreover, for having a clear
relation between o and the aspect ration of a rectangular domain 2, discretisations with
equal number of nodes in x; and x5 directions will be considered in the sequel. Of course,
it is also possible to work with different number of nodes in both directions, but analysis
and interpretation of the results will more complicated in this case. Finally, some interesting
observations regarding numerical calculations of the discrete fundamental solution of the
discrete Laplace operator on a rectangular lattice discussed in Chapter 3 will be addressed
later on.

As a first example the following boundary value problem is considered:

Au=0 in Q = [0, Ly] x [0, L],
u = sin s, for z; = 0,
u=0, for xy =0, (4.23)

u=eMsinx,, foraz =L,
u = e"'sin Ly, for xo = Lo,

which has the exact solution u = e*'sinz,. As mentioned in Remark 4.2, the discrete
analogue of this problem, i.e. in the form (4.21), is obtained by considering discrete Laplace
operator and projection of boundary data on the lattice.
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Numerical calculations will be done for the following rectangular domains
Q; =10,2] x [0,1], Q2 =10,3] x[0,1], €3 =10,5] x [0,1],

Qy=10,7] x[0,1], Q5=10,39] x [0,4], Q¢ =1[0,100] x [0, 3],
corresponding to v = 2,1 L 1 4 "3 regpectively.

As it has been already mentioned, during calculations of numerical example an interesting
observation regarding the computing of discrete fundamental solution of the discrete Laplace
operator has been made, which worth to be discussed here. Numerical calculation of the
discrete fundamental solution by using direct numerical integration and Poisson’s solvers has
been discussed in Chapter 3 with respect to the discrete harmonicity and approximation of
the continuous fundamental solution. However, since the final goal of the discrete potential
theory is to solve boundary value problems, it is also important to study how quality of
the solution of boundary value problems depends on the discrete fundamental solution.
Considering that the direct numerical integration can be used only in a smaller domain, and
coupling of different calculation methods for the discrete fundamental solution leads to a
higher error at the transition interface, see [2] for details, the fast Poisson’s solver [89] will
be analysed here, because it showed a better behaviour for a rectangular lattice.

The fast Poisson’s solver [89] uses explicit iteration scheme, and thus, the number of
iterations can be set arbitrary. In this regard, Fig. 4.1 shows the relative [2-error for the
solution of the boundary value problem (4.23) in €, discretised by a rectangular lattice
with a = % for different number of iterations. The discretisation contains points with indices
|m1| < 350 and |ms| < 350, i.e. 116277 points in total and 1356 boundary points.
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Relative I?-error for the solution of interior Dirichlet problem
depending on the number of iterations used in Poisson solver for
calculating the discrete fundamental solution

Relative [?-error

10°-=-700000 iterations
=-1000000 iterations
=1500000 iterations

10> 10°
Number of boundary nodes

107

Figure 4.1: Relative [?-error for the solution of (4.23) calculated with a@ = % for differ-
ent number of iterations used to compute the discrete fundamental solution of the discrete
Laplace operator on a rectangular lattice.

As it can be clearly seen from Fig. 4.1, the use of the fast Poisson’s solver to compute
the discrete fundamental solution on a rectangular lattice is numerically unstable. However,
increasing the number of iterations helps to avoid the numerical instability. Particularly,
already for 1.5 Mil. of iterations, the numerical instability starts to appear only on the
last few steps of refinement. Nonetheless, the accuracy of order 107% can be easily reached.
Moreover, the bigger discretisation is required, the more iterations are necessary. Naturally,
increasing the number of iterations increases also the computational costs, but the biggest
advantage of the discrete potential theory is the fact, that the discrete fundamental solution
can be pre-calculated for various values of o, and then the pre-calculated discrete fundamen-
tal solution can be used for solving boundary value problems. Thus, the computational costs
of computing the discrete fundamental solution belong to the method development phase,
and do not really affect practical calculations with the methods of discrete potential theory.

Fig. 4.2 shows the relative [*-error obtained for the solution of (4.23) in the rectangular
domains €, i = 1,...,6. As it can be seen from the figure, the relative /2-error tends to zero
for all rectangular domains. However, the error is smaller for values of « closer to one, or
in other words, if the shape of a cell of the rectangular lattice is closer to a square. Fig. 4.2
also indicates the main advantage of using a rectangular lattice: adaptivity with respect to
geometry, which is reflected directly in the discrete fundamental solution pre-calculated on
rectangular lattices for specific a. In this context, o can be interpreted as the aspect ration of
a domain. The adaptivity practically means that discretisations with lower number of nodes
can be used for numerical calculations. In the example shown in Fig. 4.2, boundary value
problems in all domains €2;, 2 = 1,...,6 have been solved by using the finest discretisations
containing points with indices |m;| < 350 and |msy| < 350, i.e. 116277 points in total and
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1356 boundary points, even for domains {25 and g with a5 = % and ag = %, respectively.

Relative [2-error calculated for different rectangular domains
10 g1 ‘ : ; ;

--Domain €2; —Domain Qg
10° —Domain Q3-Domain {4
~+Domain 5 -+Domain €4/

Relative [*-error

10° 10°
Number of boundary nodes

Figure 4.2: Relative [>-error for the solution of (4.23) calculated for different domains ;,
i=1,...,6, which are discretised by help of rectangular lattices with o = 2,1 1 1 4 3
respectively.

The results presented in Fig. 4.2 show that domains with arbitrary aspect ratio can be
effectively discretised by help of rectangular lattices, and boundary value problems in such
domains can be solved accurately with a low number of boundary points. It is important
to remark, that, evidently, a square lattice can also be used for such domains, but a higher
number of nodes will be required for a uniform discretisation. However, a direct comparison
of the results obtained by help of a rectangular lattice and a square lattice is not really
possible by several reasons starting from the fact, that the discrete fundamental solution on
a square lattice can be computed easier and with higher accuracy, than on a rectangular
lattice, see again Chapter 2 for details. Considering that the discrete fundamental solution
plays the crucial role in the discrete potential theory, an objective comparison of the results
obtained on two lattices can be done only after achieving the same order of accuracy in
computing the discrete fundamental solution, which is one of the topics of future work, see
Chapter 6.

Fig. 4.3 shows the condition numbers of matrices of linear systems of equations obtained
by using the discrete double-layer potential to solve boundary value problem (4.23) in dif-
ferent domains €);, ¢ = 1,...,6. As it can be observed, the condition numbers do not grow
fast with the refinement. Similar to the relative [2-error, the condition number is smaller for
a closer to one, as it could be expected. Nonetheless, even for the linear system obtained for
Qg with ag = 13—0 the biggest condition number is 52.9562, which is obtained for a full matrix
with 1838736 elements. This observation shows that the method of discrete potential theory
has exceptionally good numerical behaviour with respect to stability. Therefore, the method
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has potential to be used not only to solve direct boundary value problems, but also inverse
problems, where numerical stability is very often the main obstacle because the problem is
ill-posed, see for example [31, 101].

Condition numbers of the linear system obtained by the discrete potential

method for different rectangular domains
60 \ \ \ \

50 - =

—Domain )1 -Domain 25| |

N
(=1
T

—Domain 23—Domain 4

=
(=1
T

-Domain 25+ Domain g

Condition number

[N
=
T
|

—
10—~

0 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Number of boundary nodes

Figure 4.3: Condition number of matrices of linear systems of equations obtained by us-
ing the discrete double-layer potential to solve boundary value problem (4.23) in differ-

ent domains €2;, ¢ = 1,...,6, which are discretised by help of rectangular lattices with
a = %, %, %, %, %, 1—30, respectively.

As it is underlined by the numerical results presented above, the discrete potential theory
on a rectangular lattice can be successfully used for rectangular domains with different aspect
ratios. In the remaining part of this chapter, numerical examples will be presented for the
rectangular domain €2; = [0,2] x [0, 1]. The discrete fundamental solution on a rectangular
lattice with a = 3 is then calculated on a mesh containing points with indices |m;| < 1000
and |msy| < 1000 by using the fast Poisson’s solver with 20000000 iterations. Fig. 4.4 shows
the relative [?-error obtained in this case. The finest refinement contains 3916 boundary
nodes providing the accuracy of order 1075,
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Relative [?-error on the rectangular domain €; with a = %

107 Fr—— T

Relative [?-error

) . ‘ ‘ ‘ L
107 10°
Number of boundary nodes

Figure 4.4: Relative [?-error for the solution of (4.23) calculated for the domain €, which
is discretised by help of rectangular lattices with a; = %

To finish the discussion on first numerical example, Fig. 4.5 presents the condition number
of the linear system obtained during solving boundary value (4.23) in Q;, as well as the
result of curve fitting. The curve fitting has been done by using the Curve Fitting Toolbox
of Matlab with the two ansatz functions of the form fi(z) = aln(br) and fo(z) = az®
leading to fi(x) = 0.2387In(27050x) and fy(z) = 2.704x°95941 respectively. It is important
to underline that the general shape of the function corresponding to condition numbers
presented in Fig. 4.3 is always the same, and only constants a and b vary depending on
the rectangular lattice parameter «. Finally, it is worth to stress one more time, that the
condition number of the finest refinement is 4.4292, but the matrix of linear system is full
matrix with 15335056 elements. In comparison, the classical Finite Element Method leads
to a linear system of equation, which is much worse conditioned. For example, the solution
of a two-dimensional Poisson’s equation with 16129 degrees of freedom leads to a system
which has condition number 9655.79, see [41], since the condition number is proportional
to the number of degrees of freedom [103]. For the classical Finite Difference Method, it is
well-known that the condition number of a linear system obtained for a Poisson’s equation
is of order O(h™2), see [75] for the details, which would apply the condition number of order
105 — 107 in the considered example.
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Condition number of the linear system obtain by using the rectangular

lattice with o = % together with the result of curve fitting
4.6 \ \ \ \ \ \ \
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Figure 4.5: Condition number of the matrix of linear systems of equations obtained by using
the discrete double-layer potential to solve boundary value problem (4.23) on a rectangular
lattice a = % plotted together with the result of curve fitting.

Interior Neumann problem

Next step is to consider the discrete Neumann problem for the discrete Laplace operator:

{Ahl’zuhu = 0, 1mn th,2’

Up = Phyy, O ’7;1,27

(4.24)

where up denotes the discrete normal derivative of function uy, , as introduced in Chapter 2.
It is important to underline once more, that only discrete domains satisfying geometric
relations (2.5) are considered in this chapter. Since such domains do not contain interior
corner points, there is no problems in defining discrete normal derivatives at all boundary
points. Domains containing exterior corner points require a separate treatment.

As in the continuous case, see for example [78, 98], interior Neumann boundary value
problem is not always solvable. In the continuous case, solvability of the interior Neumann
boundary value problem is assured by the condition:

[ eterder—o

T

where ¢ is the boundary condition for normal derivative, and I" is the boundary of a continu-
ous domain. Similar condition has been introduced in the discrete setting, which is provided
in the following lemma:
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Lemma 4.4. The condition

Z Ohy o (T12h12)ha + Z ©ny o (T12R12)h =0

"€Vh1 219y 9,3 "€y 9,29 9.4

is a necessary condition for solvability of the discrete Neumann problem (4.24).

Proof. Proof of this lemma follows the general strategy from [56], and is based on the use
of the first discrete Green’s formula for wy,, = 1. Considering also that wuy, , satisfies the
discrete Laplace equation in interior domain, the following expression is obtained:

0= — Z D1Uh1,2(7”1,2h1,2)h2+ Z D71Uh1,2(7”1,2h1,2)h2

Te'yhl,zl Te’yhl,?*‘o’

- Z D2Uh172(7’1,2h1,2)h1+ Z D—Quhl,z(rl,zhm)hl

re’yhl,zy2 T€7h1,2,4

= Z Oy o (T12h12)ha + Z Phy o (T12012) R

7“G'Yhu,l,’s T67h1,2,2,4

As it can be clearly seen, although the general strategy of the proof is similar to the case of
a square lattice as in [56], nonetheless, consideration of a rectangular lattice introduces its
own particularities. O

Theorem 4.7. If a solution of the discrete interior Neumann problem (4.24) exists, then it
is unique up to a constant for arbitrary boundary data oy, ,.

Proof. Similar to the uniqueness proof of the solution for discrete Dirichlet problem, two

solutions u,(lll)2 and ugi)z to the discrete Neumann problem (4.24) are assumed, whose dif-

ference u,(lll)2 — u,(i)Q = “231)2 is a solution of the homogeneous problem. By using again the
: : : 5

first discrete Green’s formula from Theorem 4.2 with wp,, = up,, = uhl)z, the following
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expression is obtained:

hihs

2
<ug?;%2<m1,2h1,2> — ) ((muz + kl)hm))
I

p

2
Uhl - (my2hy12) — U;i)Q((mLQ + k?Q)hl,z)
’ hiho

meM+ ha
2
N Z UEi)Q (r1,2h12) — Ugi)g((ﬁg + k1)hi2) L
hi ?

TEY,

: 2
ugi)z (r12h12) — Ui(z?g((ﬁ,z + ko)hi2) h
+ EE: hg 1-

TEYY

Because the right hand side is a sum of squares of real-valued expressions, it can be equal to
zero only if each summand is zero. Considering that each summand in the above expression
is a discrete derivative (after rewriting everything in terms of the difference operators, as
in the formulation of Theorem 4.2), the only possibility for these summands to be zero is
if u,(fl)z is equal to a constant C' < oo for all points (m12h12) € Qp,, and (r12h12) € Vhns-

Thus, it implies that ugll) — uf) = C, and therefore, two solutions of (4.24) can be different

only by a constant C'. O

Solution of the discrete Neumann boundary value problem (4.24) is given by the discrete
single-layer potential P("") introduced in Definition 4.2, i.e. for all points (mj2h12) € Qn
holds

Uhy o = (P(mt)n) (m172h1,2)7

where 7 is the discrete boundary density of the discrete single-layer potential. Taking into
account the boundary condition from (4.24), discrete normal derivative of the discrete single-
layer potential needs to be calculated. By using Definition 2.1 of the discrete normal deriva-
tive, the following expression for the discrete normal derivative of the discrete single-layer
potential is obtained:

(PUn) (I ohy2) =

h
E E h—z(Ehl,z((llz —712)h12) = Enyy (e + k) — r12)ha2)n(r1 20 2)
1

+ — —
keK\K, rethzJuthgﬁ

DS DI

keEK\K;" T€%, 5.2 Vhy 44

(Em 2((l1 2 — 7”1,2)h1,2) - Ehl,Q(((lm + k) - 7’1,2)h1,2)77(7"1,2h1,2)

1
2
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for points (l;2h12) € Qp,,. Using this expression for the discrete normal derivative of
the discrete single-layer potential in boundary condition from (4.24), the following discrete
boundary equation for identifying the density 7 is obtained:

Ohyo(lighi2) =
ho
Z Z h_(Eh1,2<(ll,2 —r12)hi2) = Eny, (L + k) — m12)ha2)n(ri 2k 2)
keEK\K; "€y 9,19 5,3 '
h
2 Y Bl - ra)he) - Bua(((a+ k) = )b o),
2

KER\K, rev;, , oU%,, 4

for all points (l12h12) € 7, ,- As in the case of the discrete Dirichlet problem (4.21), the
above equation represents a discrete analogue of the classical Fredholm integral equation
of the first kind. In the operator form, this discrete boundary equation can be written as

follows: .
P = o, ,, (4.25)

where P is the operator obtained after taking discrete normal derivative of interior dis-
crete single-layer potential. Thus, solution of the interior Neumann problem is reduced
to solution of the discrete boundary equation (4.25) whose solvability is discussed in the
following theorem:

Theorem 4.8. The discrete boundary equation

Ohyo(lighi2) =
hy
S PBullhe = nia)hie) - Bual((ha + k) = rig)hia)n(rihiz)
keK\K," "€ 519V 5,3 !
h
+ Z Z h_1<Eh1,2((ll,2 —ri2)hi2) — Eh1,2(((l1:2 + k) = r12)hi2)n(ri2ha 2),
2

ke K\K;" T€%, 529y o4

is solvable under the condition in Lemma 4.4, and the discrete single-layer potential PU™)

is a solution of the interior Neumann problem (4.24).

Proof. At first, similar to [56], the necessity of the condition in Lemma 4.4 will be proved.
So, by help of the symmetry property of the discrete fundamental solution provided in
Corollary 3.1 and using Corollary 4.1, the following equalities for the discrete boundary
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equation hold:

Z Ohy o (T12R12)h2 + Z Ohy o (T12P12) 01 =

l€7;1,271U7;1,2»3 1671:1,272&7’:1,2,4

h
> >y h—2(Eh1,2((11,2 —r12)h12) = Epyp (L2 + k) — rip)ha2)n(righa2) | he
1

- + -
l€7h1’271’3 keK\K, r€7h1’2’173

h
+ = (Bny 5 (g — m12)h2) = Eny, (g + k) = 112)hao)n(righae) | b
ha

— + —
l€7h1’2,2,4 keK\Kl T€7h172,2,4

h
= Z ?7(7“1,2h1,2) Z Z h_j(Eth((rl,Z - 11,2)h1,2) - Ehm((ﬁ,z - (l1,2 + k))hl,Z) Do

— — +
rEﬂ/hLz,l,S l€'yh1’2’1,3 kEK\K,

h
+ Z n(ri2hi2) Z Z h_;(Ehl,g«Tl,Q —li2)hi2) = By, (12 — (ha +k)hig) | b

- - +
T€7h1,2,2,4 l€7h172,2,4 kGK\Kl

= 0.

It is worth to underline that although the discrete fundamental solution Ej, , possess less
symmetries as in the case of a square lattice, the symmetries shown in Corollary 3.1 are
sufficient for the proof.

Next, it is necessary to show that the condition in Lemma 4.4 is also sufficient for the
solvability of the discrete boundary equation, as well as to show that the discrete single-layer
potential is a solution of the interior Neumann problem, which will be shown on the way. Let
us consider a homogeneous system of equations, which is adjoint to the discrete boundary
equation (4.25), and it is given by

h
E E h—Q(Ehl,Q((llz —7r12)h12) = Eny,((lig — (112 + k) hi2)w(ri2h 2)
1

- - +
TG’yhl’%lU'yhl’zyg keK\ K,

h
T Z Z h_l(Eh1,2<<l1,2 - T1,2)h1,2) - Eh1’2(<11,2 — (7”1’2 + k>>h1:2)w(r172h172)
2

- - +
r€7h17272u'yh1,2’4 ke K\ K/

=0.

According to Corollary 4.1, this system has a non-trivial solution w(ry2h12) = 1. Thus,
according to the Fredholm’s theorems [69], the homogeneous system of equations associated

119



with (4.25) has at least one non-trivial solution 7*(r;2h12). The goal is now to show that
the necessary solvability condition from Lemma 4.4 will not be satisfied by the solution
n*(r12h12). Solvability of the discrete boundary equation (4.25) implies that the normal
derivative of the discrete single-layer potential evidently satisfies

(p(mt)n) (51,2h1,2) _

h
Z Z h_2(Eh1’2((l1’2 —7112)h12) = Eny o (L2 + k) = 712)ha2)n(ri2h 2)
lcEK\KlJr TE'Y;L?JU’Y;LQ@ 1
h
+ Z Z h_l(EhLQ((ll,Z - r1,2>h1,2) - Ehl,Q(((ll,Q + k) — 7’1’2)]1172)77(7"172}1172)
2

keK\K; T€%, 5.2 Vhy 44

= Sohl,g(ll,2h1,2)-

Moreover, considering that according to Lemma 4.2, the discrete single-layer potential is a
discrete harmonic function in €2, ,, and as it is written above, its normal derivative satisfies
the boundary conditions, the discrete single-layer potential is indeed a solution of the interior
Neumann problem. In this regard, the discrete harmonic function (P(i”t)n*) (l1,2h4 2) repre-
sent a solution of an interior Neumann problem with homogeneous boundary data. However,
if the interior Neumann problem with homogeneous boundary data has a non-trivial solu-
tion, then from the uniqueness theorem it follows that (P(mt)n*) (l12h12) = C. Moreover,
considering that discrete single-layer potential, similar to the continuous case, defines always
a discrete harmonic function in the whole plane, it follows that

(P(mt)n*) (l1,2h1,2) —C
for all (mq2,h12) € Riw. Therefore, for all boundary points (l; 2h12) € 7,:1’2 the relation

1

0=An, (P(im)n*) (h2hn2) = hyhs

77*<l1,2h1,2)

is fulfilled, which contradict to the assumption that n*(r;2hi2) is a non-trivial solution.
Thus, it follows that

* *
g n*(ri2hi2)he + g n*(ri2hi2)hy = Cy # 0.
7467{1,271U7’:1,2,3 7467’:1,272U7’:1,2a4

Finally, according to Fredholm’s theorem, it is necessary to show that the homogeneous
system Pr(Lmt)(lmhLz) = 0 has no other solutions, which are linearly independent from
n*(ri2h12). Assuming that A(ri2h;2) is another non-trivial solution, which must satisfy,
as shown above, the relation

Z )\(7“172h172)h2 —+ Z A<T172h172)h1 = 02 7A 0.

"€Vh1 219y 9,3 "€y 9,29 9.4
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From the uniqueness theorem it follows that the difference A(rishia) = n*(ri2hi12) —
A(r12h12) is a solution of the homogeneous discrete boundary equation. In this case, from
the equation

Z A(r12h1 2)ha + Z A(r12h12)h =0,

"€V 9,190 2,3 "€y 9,297 9.4
it follows that A(ri2h12) = 0 for all boundary points (r12h12) € 7, ,, and, therefore
Cy ’

>\(7"1,2h1,2) = C

1
homogeneous system of equations has no solutions, which are linearly independent from
w(r12h12) = 1, implying that the statement of the theorem holds for all oy, ,(l12h1,2) satis-
fying the solvability condition from Lemma 4.4. O

n*(r12h12). Thus, from the Fredholm’s theorem follows that the adjoint

Next, a numerical example for interior Neumann problem will be discussed. Originating
from the Dirichlet problem considered in the previous section, the following boundary value
problem is considered:

([ Au=0 in Q=1[0,2] x [0,1],
0
au_ —sinzy, for x; =0,
on
0
gu_ —e", for xo = 0,
on (4.26)
0
au_ e?sinxy, for xy = 2,
on
0
Zh_em cosl, for xzy =1,
\ On

which has the exact solution u = e”* sin 5. On the first step, necessary solvability condition
from Lemma 4.4 must be checked. The result of this check is provided in Table 4.1.

As it can be seen from Table 4.1, the solvability condition is not fulfilled with a sufficient
precision. Therefore, it is necessary to modify the boundary conditions for discrete problem.
This modification can be done in various ways, and in this work, the following expression
will be subtracted from boundary conditions in (4.26):

> SDhl,z(Tl,th,z)h2+ > ¢h1,2(r1,2h1,2)h1

TE'V;LQ,l,:s TE’Y;:LQ,QA
)
Yoo ha+ D>, Iy
’"67’;172,1,3 T€7;1,2,2,4

which can be seen as a kind of averaging over the discrete boundary. Nonetheless, many
other possibilities can be used, such as for example subtracting the above expression only at
one or several specific points. It is hypothesised that the choice of these possibilities depends
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Number of boundary nodes Yo Puma(righig)he + Y oo (ri2hi2)h

€Y g1 "€, 52,4
156 0.0284
316 0.0144
636 0.0073
1276 0.0036
2556 0.0018

Table 4.1: Results of checking the solvability condition from Lemma 4.4 for Neumann bound-
ary conditions in (4.26).

on specific boundary values, but this must be further studied in future work. For simplicity,
let us denote the boundary function obtained after such a modification by ¢}, . Table 4.2
provides the result of checking solvability condition for the function ¢} .

Number of boundary nodes > s (ri2hi2)he + >, s (r12h12)h1

re»y,jL%l’S 7"6'7{172,2,4
156 4.4409 - 10716
316 8.8818 - 10716
636 4.8850 - 1071°
1276 0
2556 —6.6613 - 10715

Table 4.2: Results of checking the solvability condition from Lemma 4.4 for the modified
Neumann boundary conditions ¢}, .

Similar to the interior Dirichlet problem discussed in the previous subsection, the discrete
fundamental solution on a rectangular lattice calculated on a mesh containing points with
indices |m| < 1000 and |mg| < 1000 by using the fast Poisson’s solver with 20000000
iterations will be used at first. Fig. 4.6 shows the relative [*>-error obtained in this case
for two cases: without correction of boundary conditions (blue line), and with correction of
boundary conditions (black line).
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Relative [?-error for the interior Neumann problem
in the rectangular domain Q = [0, 2] x [0, 1]

1072 r T T T T ]
-without correction||
-with correction
-
I
¢
N
=
~
10° - _
L L L L L L L L |
10% 10

Number of boundary nodes

Figure 4.6: Relative [>-error for the solution interior Neumann problem (4.26) calculated
over the domain Q = [0, 2] x [0, 1].

As it can be clearly seen from Fig. 4.6, the discrete solution obtained by the discrete single-
layer potential PU™) converges to the exact solution with the refinement (3916 boundary
points for the finest refinement) with and without correction of boundary condition. More-
over, the correction of boundary condition has only little influence on the [2-error. This fact
is surprising, since the boundary condition without correction satisfy the discrete solvability
condition only with accuracy of order 1073-10~* for finest refinements. A possible explana-
tion of this behaviour could be that the method is more tolerable in practical calculations
with respect to the discrete solvability conditions, than expected from theoretical studies.
But this point must be further analysed in future work. Nonetheless, the results presented
above support practical applications of the discrete single-layer potential on a rectangular
lattice, because the method works well even if the boundary conditions do not satisfy exactly
the theoretical solvability condition.

Fig. 4.7 shows the condition number of the corresponding linear system of equations.
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Condition number of the linear system constructed
while solving the interior Neumann problem

Condition number

0 500

1000

I L
1500 2000

I
2500

Number of boundary nodes

I
3000 3500

4000

Figure 4.7: Condition number of the matrix of linear systems of equations obtained by using
the discrete single-layer potential to solve interior Neumann problem (4.26).

The behaviour of the condition number of the linear system shown in Fig. 4.7, indicates
that the condition number reduces with the refinement from order of 10'? to order of 10°.
For a better overview of the values of the condition number, Table 4.3 presents condition
numbers and number of nodes depicted in Fig. 4.7.

Boundary nodes 156 316 476 636 796
Condition number 4.164-10'2 9.69-10"  3.84-10% 2.015-10% 1.233-10%
Boundary nodes 956 1116 1276 1436 1596
Condition number 8.326 - 10 5.907-10'° 4.299-10' 3.259-10'% 2.547-10%
Boundary nodes 1756 1916 2076 2236 2396
Condition number 2.04-10° 1.668-10° 1.386-10' 1.166-10'° 9.945-10%
Boundary nodes 2556 2716 2876 3036 3196
Condition number 8.588-10% 7.497-10% 6.602-10% 5.864-10% 5.243-10%
Boundary nodes 3356 3516 3676 3836

Condition number 4.718-10% 4.269-10% 3.883-10% 3.547-10%

Table 4.3: Condition number of the matrix of linear systems obtained for interior Neumann

problem (4.26).

Additionally, an interesting observation has been made: it is well-known that due to
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ill-possedness of interior Neumann problem, the linear system, obtained by help of a square
lattice, has a reduced rank; however, in the case of a rectangular lattice, the linear system has
a full rank. A possible explanation for this observation could be that because of a rectangular

lattice, the fractions —L and h—Q, which appear after computing discrete normal derivatives
of the single-layer potential, are not equal to 1, as in the case of a square lattice, but equal

to — or «, respectively. Hence, the linear system is influenced by these resulting coefficients.

o
In that regard, a rectangular lattice acts as a regulariser for the interior Neumann problem.
Next, for illustrative purposes, let us consider the following boundary value problem:

(( Au =0 an:[O,Q]X[O,l],
@ - _ 0.001 forz; =0
n — 0.001% + (x5 + 0.001)2 P
@ - _ 0.001 for zo =0
on ~ (z;+0.001)2 +0.001%’ L (4.27)
@ — 2.001 forz; =2
dn ~ 2.001% + (w3 + 0.001)% T
o 1.001 o )
- = I To =
L On (21 +0.001)2 + 1.0012’ 2T

which has the exact solution u = In <\/(:c1 +0.001)% 4 (22 + 0.001)2>. Because of singu-

larity of the exact solution at the point (—0.001, —0.001), i.e. close to the boundary of the
domain (2, it is expected that the error of discrete solution will be higher compared to the
case of singularity being far from the boundary. Tables 4.4-4.5 show the result of checking
the solvability condition from Lemma 4.4 before and after subtracting the extra term, as in
the previous example.

Number of boundary nodes Yo Pha(righig)ha+ D on,(ri2hi2)h

€N 13 €Ny 2
156 1.4355
316 1.3708
636 1.2330
1276 1.0118
2556 0.7318

Table 4.4: Results of checking the solvability condition from Lemma 4.4 for Neumann bound-
ary conditions in (4.27).
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As it is clearly visible from Table 4.4, the solvability condition is not satisfied with a
sufficient precision, although the expression becomes smaller with refinement. Hence, a
higher difference between the solutions obtained for corrected and uncorrected boundary
conditions are expected than in the previous example.

Number of boundary nodes > s (ri2hig)he + >, his (r12h12)h1

refy;L%l’S 7"@;1,2,2,4
156 —6.6613 - 10716
316 —1.1102- 10716
636 —5.5511-10716
1276 1.1102 - 10716
2556 —1.1102- 10716

Table 4.5: Results of checking the solvability condition from Lemma 4.4 for the modified
Neumann boundary conditions ¢}, .

Fig. 4.6 shows the relative [2-error obtained in this case for two cases: without correction
of boundary conditions (blue line), and with correction of boundary conditions (black line).
Similar to the first example of interior Neumann problem, both solutions converge to the
exact solution with the refinement. Moreover, as expected the difference between solutions
for corrected and uncorrected boundary conditions is more pronounced in this example.
Further, because of singularity of the exact solution, the convergence to zero is slower, as
discussed before.

Relative [?-error for the interior Neumann problem
in the rectangular domain Q = [0, 2] x [0, 1]

0.85 : ‘ ‘ — : ‘ 3
08F —~without correction’
075 -with correction
0.7 ;* -
065 E
5 060 E
3 E
~ 0550 -
g C
£ 051 3
~0asf ]
041 7
035 -
C L |
10 103

Number of boundary nodes

Figure 4.8: Relative [*-error for the solution interior Neumann problem (4.27) calculated
over the domain Q = [0, 2] x [0, 1].
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Table 4.6 presents condition numbers in dependence on the number of nodes.

Boundary nodes 156 316 476 636 796
Condition number 4.164-10'2 9.69-10'  3.84-10 2.015-10" 1.233-10"

Boundary nodes 956 1116 1276 1436 1596
Condition number 8.326-10'° 5.907-10% 4.299-10'° 3.259-10'° 2.547-10%

Boundary nodes 1756 1916 2076 2236 2396
Condition number 2.04-10% 1.668-10* 1.386-10° 1.166-10'° 9.945-10%

Boundary nodes 2556 2716 2876 3036 3196
Condition number 8.588-10% 7.497-10% 6.602-10% 5.864-10% 5.243-10%

Boundary nodes 3356 3516 3676 3836
Condition number 4.718-10% 4.269-10% 3.883-10% 3.547-10%

Table 4.6: Condition number of the matrix of linear systems obtained for interior Neumann
problem (4.27).

Evidently, Table 4.6 is identical to Table 4.3, because the matrix of linear system of
equations obtained by the discrete single-layer potential is not changed while considering
different boundary conditions. This is one of the advantages of the discrete potential method.
Additionally, example (4.27) indicates once more, that the discrete potential method is robust
against the numerical inaccuracies in satisfaction of the solvability condition: if the values
of checking are tending to zero (even slow), then the discrete solution will converge to the
exact solution.

4.4.2 Exterior boundary value problems
Exterior Dirichlet problem

Exterior discrete Dirichlet problem for the discrete Laplace operator is formulated as follows:
Find function uy, , satisfying

_ : ext
{Ahl,Quhl,Q - 07 m thyga

Uhyy = $Phyg, OL a;1,27

(4.28)

and behaving at infinity according to Definition 4.6

Up, 5 (M1 2h12) < const - In \/m3h? +m3h3, for |my| — oo, |ms| — oo,

to assure that the solution of exterior Dirichlet problem is regular discrete harmonic function
at infinity.
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The uniqueness of solution of the exterior Dirichlet problem (4.28) is provided by the
following theorem:

Theorem 4.9. If a solution of the discrete exterior Dirichlet problem (4.28) exists, then it
is unique for arbitrary boundary data oy, ,.

Proof. As in the classical setting, the proof starts by assuming two solutions uflll)Q and ufl)z to

the discrete exterior Dirichlet problem (4.28). Because u&)Q and ugi)Q are solutions of (4.28),

then their difference uﬁf} , uﬁ)g = ugl) is a solution of the homogeneous problem. By using

the first discrete Green’s formula from Theorem 4.4 with wy, , = us, , = u,(i)Z, the following

expressions is obtained:

2
0= — Z Z DiUgQ (m1,2h1,2) : Diug?;%Q(ml,th,z)hth

meM— i=1

Z Dwgg(T1,2h1,2)D1U§32(7’1,2h1,2)h1h2— Z Dzug)’z(Tl,zh1,2)D2U§i)Y2(7’1,2h1,2)h1h2

1”60%1‘2’3 rea’l1,2,4

- Z US;)’Q(ml,zhl,Q)Dflugi)g(ml,zhl,z)hz— Z UEZ?Q(m1,2h1,2)D71U§i),2(m1,2h1,2)h2

mel'sy melss

+ Z D1U§i)’2(ml,2h1,2)D1U§i)72(m1,2h1,2)h1h2+ Z ugi),g(m1,2h1,2)D1U5131?2(m1,2h1,2)h2

melia mel2

+ Z Dluhl 2(m1 2hy 2)Dlug11 2(m1 oh12)hihg + Z Uﬁ)g m1,2h1,2)D1U§i)2(m1,2h1,2)h2

melia mel'ig

- Z USBQ(m1,2h1,2)D—2U§L?2(m1,2h1,2)h1 - Z Ugi)g(m1,2h1,2)D—2U§32(m1,2h1,2)h1

melig melsy

+ Z DQUhl 2(m1 2hy 2)DzU§L1 ) (ma2h12)hihe + Z Uﬁ)g m1,2h1,2)D2U§L?2 (ma2h12)hy

melg mel'a

+ Z DQUEZ?)I)’Q(ml,th,Q)DWgQ(m1,2h1,2)h1h2+ Z Ugi)g(m1,2h1,2)D2U§i)2(m1,2h1,2)h1'

melag melas

Next, the definitions of finite difference operators must be applied. Additionally, it is nec-
essary to take into account that the exterior corner points belong to the exterior domain,

as well as, that ué‘?Q has zero boundary values at «a; . Thus, the following expression is
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obtained now:

- -y

2
(@fﬁg (maghi2) —up) ((mys+ kl)hm)> -

meM— hl
2
Z ugi)z (m12ha2) — ugg((mm + k2)h12) W
hg 1762
meM—
2 2
_ Z ugi)z((rm + k3)h1:2) Bl — Z u§7/31),2<<r172 + k4)h172) b
_ hl 1 - hg 12
reag reoy
2 h 2 h
=30 (2 omiahi2) 22 >0 (u (maahia))
mel'sy 1 melag !
2 h 2 h
+ Z (UEL?Z(muhm)) h_j - Z (Uﬁ),Q(mLzhLz)) h_j
mel2 melia
2 h 2 h
w30 () omiahia) 22 = >0 (u (mahia))
mely 1 mel'y !
2 h 2 h
_ Z (U;L?;)’Q(ml,Zhl,Q)> h_l_ Z (ugi)g(mlzhl’g)) h—l
melig 2 melsy 2
2 h 2 h
+ Z (“EL?;),Q(mLZhIQ)) h_l_ Z (Ug)ﬂ(mmhm)) h—l
mela 2 mel'2 2
2 h 2 h
+ Z (ugz(mmhm)) h—l— Z <U,§i)’2(m1,2h172)> h—l
mel'sz 2 melss 2

After cancelling out some of the summands in the above expression, the right hand side
becomes a sum of squares of real-valued expressions, and it can be equal to zero if each
summand is zero. Thus, it implies that ugiz = 0, and therefore, uﬁlllz = uEi)Q, meaning that

the uniqueness of solution of (4.28). O

Solution of the discrete problem (4.28), similar to the continuous setting [98], will be
constructed by using the discrete double-layer potential W (") introduced in Definition 4.5,
i.e. for all points (mq2hi2) € Q5* holds

Up, o = (W(m)V) (m12h12),
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where v is the discrete boundary density of the discrete double-layer potential. The density
v needs then to be identified from the boundary equation, which has the following operator
form:

(Wt — Ny =y, ,, (4.29)
for all points (l12h12) € ay, -

Remark 4.3. Tt is important to underline that according to Definition 4.6, formulation of the
exterior boundary value problem (4.28) requires that a discrete function grows not faster
than a logarithm at infinity. Considering Lemma 4.3, it is clear that the solution obtained
by the discrete double-layer potential W (") satisfies the required asymptotic conditions.
Hence, functions behaving at infinity not according to Definition 4.6, e.g. growing faster
than logarithm, cannot be obtained by using the discrete double-layer potential.

As a numerical example for exterior Dirichlet problem, let us consider the following
boundary value problem:

((Au=0 in R*\ ([0,2] x [0,1]),
U= 2 5, for x; =0,
1+(J}2—%)
u=0, for x5 = 0,
(4.30)
u:—x2 5, forz; =2,
1
1+([L’2—§)
1
U= -——"7%5—", for xo =1,
L (.%'1—1) +Z

T2

(.’L‘l — 1)2 + (1'2 — %)2

In contrast to the interior problems, the presentation of numerical results for exterior
boundary value problems is not so straightforward, because unbounded domains are consid-
ered. In particular, asymptotic behaviour of a discrete solution against the exact solution
must be checked. For practical calculations it implies, that the discrete fundamental solu-
tion must be calculated on a very huge mesh allowing a sufficient refinement of a discrete
boundary, where the discrete boundary equation is written, and in the same time, providing
possibilities to check the solution quality “far away” from the boundary. Evidently, consid-
ering that the discrete fundamental solution on a rectangular lattice has been calculated by
using the fast Poisson’s solver with 20000000 iterations on a mesh containing points with in-
dices |m;| < 1000 and |ms| < 1000, a sufficient refinement similar to the interior problems of
a boundary and discretisation of a very huge exterior domain cannot be done simultaneously.

Fig. 4.9 illustrates the current setting: with the refinement, the number of boundary
nodes will be increased implying that more nodes will be created in the interior €2, while less
and less nodes will be available in the exterior Q¢*. Thus, the size of computable exterior
domain, highlighted by grey colour in Fig. 4.9, will become smaller with the refinement. In

which has the exact solution u =
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general, this problem is not really avoidable, because Q" is infinite, and even in the case
of the discrete fundamental solution calculated on a larger mesh, the computable exterior
domain will become smaller with the refinement anyway. Therefore, the numerical results
related to the solution of exterior Dirichlet problem will be discussed in the following way:

e The discrete harmonicity of the obtained solution will be checked in ¢,

e The maximum difference between the exact solution and approximated one obtained by
the discrete double-layer potential will be checked in . Note that this difference will
become bigger with the refinement, because less and less mesh points will be available
in Qe*t,

e The absolute difference between exact boundary conditions and calculated by help of
the discrete double-layer potential will be checked. This difference must be close to
zero indicating that the discrete potential method has been implemented correctly.
Recall also that the exterior corner points do not belong to the discrete boundary layer
W, by the construction of geometry presented in Chapter 2.

)

Qea:t

0

Figure 4.9: Interior domain  and exterior domain ¢ used for presenting numerical results
for the exterior Dirichlet problem (4.30).

Figs. 4.10-4.11 present results of calculating

xggg(t |u(x) — Upy (X)’ and xg%z%ﬁ ’Ah1,2uh1,2 (X)‘v

hy2 hy2
respectively. As indicated by Fig. 4.10, than less mesh points are available in Q5% than
bigger the maximum difference, i.e. the difference increases with refinement. A possible
explanation for such a behaviour could be the difference in the asymptotic behaviour of
the exact solution and the discrete double-layer potential: the exact solution tends to zero

131



at infinity, while the discrete double-layer potential behaves as logarithm, see Lemma 4.3.
Nonetheless, as it can be clearly seen from Fig. 4.11, the discrete solution obtained by
the discrete double-layer potential is a discrete harmonic function in the exterior domain.
Additionally, it is important to mention that the values of the difference shown in Fig. 4.10
appear only in few points of the domain, which are located at aa% 4 around the node with
x = 1. The reasons for such a behaviour of the solution are not really clear, and therefore,
this problem needs to be studied in future work.

Maximum difference between the exact solution and

the discrete double-layer solution in Q¢!

o
0
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W
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Figure 4.10: Values of max |u(x) — u, ,(x)| calculated over the exterior domain indicated

x Qea:t
€ h1,2

by grey colour in Fig. 4.9.
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Check of the discrete harmonicity of the solution in Q¢!
3 obtained by the discrete double-layer potential
2 T T

6 T T T
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Figure 4.11: Values of max |A, yup, ,(x)| calculated over the exterior domain indicated by
erf&Q ’ ’

grey colour in Fig. 4.9. The horizonal axis has been reversed for illustrative purposes.

To support observations discussed around Figs. 4.10-4.11, Fig. 4.12 shows the result of
calculating min  |u(x)—up, ,(x)[. Asit can be seen from this figure, the minimum difference
h1,2

in Q" remains of order 107° for all levels of refinement. This level of accuracy is achieved

ext

in most points of ;7 .

Minimum difference between the exact solution and

o the discrete double-layer solution in Q¢*!
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Figure 4.12: Values of min |u(x) — up, ,(x)| calculated over the exterior domain indicated

xeNert
hi,2

by grey colour in Fig. 4.9. The horizonal axis has been reversed for illustrative purposes.
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Fig. 4.13 shows the maximum difference on oy, , between the exact boundary values and
the once calculated by using the discrete double-layer potential for exterior problems. For
this purpose, the discrete boundary density obtained by solving the linear system of equations
is then used in the formula for the discrete double-layer potential from Definition 4.5. Hence,
in fact, the maximum difference on g, calculated in this way represents the residual vector
of solving linear system. As expected, the difference between two boundary values are close
to zero indicating that discrete potential method has been implemented correctly.

Maximum difference between the exact boundary conditions
g and obtained by the discrete double-layer potential
I I
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Figure 4.13: Values of max |u(x) — up, ,(x)|, where uy, , has been calculated by help of the

an;LQ
discrete boudnary density obtained from the solution of linear system. This figure respresents
the residual vector for the linear system.

Next, Fig. 4.14 illustrates the condition number of the linear system constructed by using
the discrete double-layer potential for solving the exterior Dirichlet problem (4.30). As it can
be clearly seen from the figure, the use of the discrete double-layer potential is numerically
stable, and the condition number is extremely low even for a large number of boundary
nodes.
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Condition number of the linear system constructed

while solving the exterior Dirichlet problem
1.93 \ \ \ \ \
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1.89 - -

Condition number

1.87 - -
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Figure 4.14: Condition number of the matrix of linear systems of equations obtained by
using the discrete double-layer potential to solve the exterior Dirichlet problem (4.30).

Finally, it is important to mention that all calculations presented above have been made
without extra terms related to the boundary points next to the exterior corner points, which
have been introduced during the proof of the second exterior Green’s formula. The reason
for that is the fact, that adding these extra terms disturbs the solution procedure. In
particular, the discrete harmonicity of the solution constructed by the discrete double-layer
exterior potential is lost. Thus, these extra terms are not necessary for practical use of
the discrete double-layer potential. Nonetheless, all constructions presented in Section 4.3
still hold, and it is only necessary to consider the elements of k € K \ K leading to the
shifts in the perpendicular directions to each part of Wy Furthermore, the extra terms
can also be omitted by the argument, that the double-layer potential contains, in fact, a
normal derivative of the discrete fundamental solution, and the extra terms are related to
the tangential directions, and thus, must be omitted.

For further studying of exterior Dirichlet problems, let us consider the following boundary

value problem:
(Au=0 in R\ ([0,2] x [0,1]),

u=1Iny/23, for x; = 0,
u=Iny/a?, for 25 =0, (4.31)
u=1Iny/4+ 2% foraz =2,
u=1Iny/2?+1, forzy =1,
\

which has the exact solution u = In y/z? + 3. Evidently, the exact solution in this case has
logarithmic grows, and thus, reflects the asymptotic behaviour of the discrete double-layer
potential shown in Lemma 4.3.
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Similar to exterior problem (4.30), Figs. 4.15-4.16 present results of calculating

Xgﬁz{t |u(x) — Uhy o (X)’ and xgz%ﬁ ’Ah1,2uh1,2 (X)‘v

hy2 hy2
respectively. As indicated by Fig. 4.15, the maximum difference decreases with the refine-
ment, and the solution obtained by the discrete double-layer potential is a discrete harmonic
function in the exterior domain as shown in Fig. 4.16.

Maximum difference between the exact solution and

the discrete double-layer solution in Q¢!
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Figure 4.15: Values of max |u(x) — u, ,(x)| calculated over the exterior domain indicated

x Qea:t
€ h1,2

by grey colour in Fig. 4.9.
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Check of the discrete harmonicity of the solution in Q¢!
3 obtained by the discrete double-layer potential
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Figure 4.16: Values of max [Ay, ,up, ,(x)| calculated over the exterior domain indicated by
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hy,2

grey colour in Fig. 4.9. The horizonal axis has been reversed for illustrative purposes.

To show that the linear system of equations has been solved correctly, Fig. 4.17 shows the
maximum difference on ST between the exact boundary values and the once calculated by
using the discrete double-layer potential for exterior problems. As expected, the difference
between two boundary values are close to zero indicating that discrete potential method has
been implemented correctly.
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Maximum difference between the exact boundary conditions

e and obtained by the discrete double-layer potential
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Figure 4.17: Values of max |u(x) — us,,(x)|, where uy, , has been calculated by help of the

XEO&;LQ
discrete boudnary density obtained from the solution of linear system. This figure respresents
the residual vector for the linear system.

Finally, Fig. 4.18 illustrates the condition number of the linear system constructed by
using the discrete double-layer potential for solving the exterior Dirichlet problem (4.31).
It is important to underline, that the discrete potential method has the advantage, that
independent on the boundary value problem, the matrix of linear system of equations remains
the same, and hence, the condition number of the linear system is always the same. Thus,
Fig. 4.18 is identical to Fig. 4.14.
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Condition number of the linear system constructed

while solving the exterior Dirichlet problem
1.93 \ \ \ \ \
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Figure 4.18: Condition number of the matrix of linear systems of equations obtained by
using the discrete double-layer potential to solve the exterior Dirichlet problem (4.31).

As a summary to exterior Dirichlet problems, it is worth to mention that the discrete
potential method shows a promising behaviour, but the quality of solution depends on the
asymptotic behaviour of exact solution. For example, boundary value problem (4.30) indi-
cated that although the discrete solution is discrete harmonic in the exterior domain and
the exact solution convergences to zero at infinity, the maximum difference in few points is
not decreasing with the refinement. In the case of boundary value problem (4.31), the exact
solution has a logarithmic behaviour at infinity, and the maximum difference decreases with
refinement. Nonetheless, further analysis of exterior Dirichlet problems is necessary and it
will be done in future research.

Exterior Neumann problem

The discrete exterior Neumann problem for the discrete Laplace operator is formulated as
follows: Find function uy, , satisfying

_ : ext
{Ahmuhm = 0, mn th,Z’

UD = Phy,, ON oz;m,

(4.32)

and behaving at infinity according to Definition 4.6

Up, 5 (M1 2h12) < const - Iny/mihi +m3h3, for mi| — oo, |ms| — oo,

to assure that the solution of exterior Dirichlet problem is regular discrete harmonic function
at infinity, and with up denoting the discrete normal derivative of function wy, ,.

The next lemma present a solvability condition of the discrete exterior Neumann prob-
lem (4.32):
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Lemma 4.5. The condition

Z Ony o (r1,2h12)he + Z Ohy 2 (T12R12)h1 =0

Tea;1,2,1,3 7‘6(1;1’2,274
is a necessary condition for solvability of the discrete Neumann problem (4.32).

Proof. The proof of this lemma is similar to the proof of Lemma 4.4, and therefore, will be
omitted. It is only worth to mention, that the extra terms related to the boundary points
next to the exterior corner points, namely the points Lsy4, Los, Ris, Ri4, Uig, Uss, Aqo, and
Agy, should also be omitted during the construction by the same arguments as discussed for
exterior Dirichlet problems.

[]

Similar to the interior Neumann problem, a solution of the exterior Neumann problem is
unique up to a constant:

Theorem 4.10. The solution of discrete exterior Neumann problem (4.32) is unique up to
a constant for arbitrary boundary data @, .

Proof. The proof is analogous to the proof of Theorem 4.7, and therefore, will be omitted.
O

Solution of the discrete Neumann boundary value problem (4.32) is given by the discrete

single-layer potential P*" introduced in Definition 4.4, i.e. for all points (m;9h12) € Qs
holds ’

Uhy 5 = (P(m)ﬂ) (m1,2h1,2)7

where 7 is the discrete boundary density of the discrete single-layer potential. The density
is then identified from the following boundary equation in operator form:

Py = oy, ., (4.33)

for all points (I12h12) € «,, , With P denoting the operator obtained after taking normal
derivative of exterior discrete single-layer potential, and it is explicitly given by

(PLn) (laha2) =
ho
> > 7 (Bha((l2 = 112)hag) = By (e + k) = r12)h2)n(rizhe e)
1

keK\K, rea, qUey g

h
+ Z Z h—;(Ehl,g((h,z —7r12)h12) = Eny (e + k) — r12)h12)n(r12h12).

keEK\K, reay oUag Ly

Here, it is important to underline, that the discrete normal derivative is taken with respect
to variable [h, and not rh, as in the case of the discrete double-layer potential.
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As a numerical example for exterior Neumann problem, let us consider the following
Neumann boundary value problem obtained from the Dirichlet problem (4.30):

(( Au=0 iDRQ\quQ]X[O’lD’

0 2
4 o for 1 =0,

" i@y

ou 1

- - - for o =0
8 . 2 17 Y
g_u = 2 7 for x1 = 2,
"o (e
1 1
8u: — , for xzy =1,

L0 [P+ -7

N

T2

(.’L‘l — 1)2 + (1’2 — %)
On the first step, necessary solvability condition from Lemma 4.5 must be checked. The
result of this check is provided in Table 4.7.

which has the exact solution v =

R

Number of boundary nodes Yo ma(righig)he + Y O (ri2hi2)h

€Y g1 €Y, 52,4
156 18.0252
316 18.0239
636 18.0231
1276 18.0226
2556 18.0224

Table 4.7: Results of checking the solvability condition from Lemma 4.5 for Neumann bound-
ary conditions in (4.34).

As it can be seen from Table 4.7, the solvability condition is not satisfied. Therefore,
similar to the interior Neumann problem discussed previously, in order to satisfy the solvabil-
ity condition, it is necessary to modify the boundary conditions for discrete problem (4.34).
This modification will be done in the same way as for the interior Neumann problem, namely
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by subtracting the following expression from the boundary conditions in (4.34):

> 90h1,2(7“1,2h1,2)h2+ > 90h1,2(7“1,2h1,2)h1

TEV;1,2,1,3 7'67;1,2,2,4
Y
> het X M
T€7;1,2»1a3 T€7;1,272’4

which is one of many possible choices. Table 4.8 provides the result of checking solvability
condition for the modified function ¢ , as it can be clearly seen, the solvability condition
is satisfied now for all levels of refinement.

Number of boundary nodes > s (ri2hi2)he + >, Ohis (r12h12)h1

TV 51, €Y, 52,4
156 8.8818 - 1071¢
316 2.8866 - 10717
636 —1.1324 .10~
1276 —3.3307 - 10715
2556 3.1086 - 10~1°

Table 4.8: Results of checking the solvability condition from Lemma 4.5 for the modified
Neumann boundary conditions ¢j, .

Similar to the exterior Dirichlet problem, numerical results for the exterior Neumann
problem will be presented based the same ideas discussed around Fig. 4.9. Again, the
discrete fundamental solution of the discrete Laplace operator calculated on a rectangular
lattice containing points with indices |m4| < 1000 and |msy| < 1000 by using the fast Poisson’s
solver with 20000000 iterations will be used in numerical calculations. Figs. 4.19-4.20 present
results of calculating

max |u(X)_uh1,2<X)’ and maXt ’Ahl,Quhl,Q(X)‘7

x Qezt xeer
€ hi,2 € hi2

respectively. Fig. 4.19 shows the maximum difference for the cases without and with sub-
traction of the extra term that the effect of the satisfaction of solvability condition is clearly
visible. Nonetheless, as indicated by Fig. 4.19, the maximum difference does not decrease
even after correcting the boundary conditions. This behaviour is similar to the first Dirichlet
exterior problem considered previously, and perhaps it can be explained by the difference
in the asymptotic behaviour of the exact solution and the discrete single-layer potential.
Nonetheless, as it can be clearly seen from Fig. 4.20, the discrete solution obtained by the
discrete double-layer potential is a discrete harmonic function in the exterior domain. Note
that, similar to the discrete exterior Dirichlet problem, the result of checking the discrete har-
monicity becomes worse with the refinement, because less and less mesh points are available
in Q¢ as discussed previously.
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Maximum difference between the exact solution and
the discrete single-layer solution in Q¢
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Figure 4.19: Values of max |u(x) — up, ,(x)| calculated over the exterior domain indicated
erf&Q ’

by grey colour in Fig. 4.9.
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Figure 4.20: Values of max |A, yup, ,(x)| calculated over the exterior domain indicated by
er‘;fl',Q ’ ’

grey colour in Fig. 4.9. The horizonal axis has been reversed for illustrative purposes.

Fig. 4.21 shows the maximum difference on o, , between the exact boundary values and
the once calculated by using the single double-layer potential for exterior problems. For this
purpose, the discrete boundary density obtained by solving the linear system of equations

is then used in the formula for the normal derivative of single double-layer potential pleh),
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As expected, the difference between two boundary values are close to zero indicating that
discrete potential method has been implemented correctly.

Maximum difference between the exact boundary conditions
and obtained by the discrete single-layer potential
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Figure 4.21: Values of max [P (x) — ©h(X)], where P has been calculated by help

XEQ,
hi,2

of the discrete boudnary density obtained from the solution of linear system.

Next, Fig. 4.22 illustrates the condition number of the linear system constructed by
using the discrete single-layer potential for solving the exterior Neumann problem 4.34.
As it can be clearly seen from the figure, the use of the discrete single-layer potential is
numerically stable, and the condition number is low even for a large number of boundary
nodes. Moreover, similar to the interior Neumann problem, the linear system constructed by
using the discrete single-layer potential has a full rank also in the case of exterior Neumann

problem.
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Condition number of the linear system constructed

while solving the exterior Neumann problem
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Figure 4.22: Condition number of the matrix of linear systems of equations obtained by
using the discrete single-layer potential to solve the exterior Neumann problem (4.34).

Finally, let us consider the following Neumann boundary value problem obtained from
the Dirichlet problem (4.31):

A in B2\ ([0,2] x [0, 1)),
% =0, for 1 = 0,
% =0, for zo = 0,
(4.35)
%:_ﬁ, for x1 = 2,
\ %:_ﬁ, for zy =1,

which has the exact solution u = In \/a? + z3.

Tables 4.9-4.10 present results of checking the necessary solvability condition from Lemma 4.5
before and after subtracting the averaging expression, respectively. As it can be seen from
Table 4.9, the solvability condition is not satisfied, and, in fact, it has almost constant value
—1.5 for all refinements. In contrast, after subtracting the averaging expression, the solv-
ability condition is satisfied with order of 1071°-10716 even for the coarsest refinement, as it
is shown in Table 4.10.

Figs. 4.23-4.24 present results of calculating

xg;f%%{tz |U(X) — Uhy (X)| and XIGI}%%EQ |Ah1,2uh1,2 (X)|7
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Number of boundary nodes Yo Puma(righig)he + Y oo (ri2hi2)h

€Y g1 "€, 52,4
156 —1.5295
316 —1.5502
636 —1.5605
1276 —1.5656
2556 —1.5682

Table 4.9: Results of checking the solvability condition from Lemma 4.5 for Neumann bound-
ary conditions in (4.35).

Number of boundary nodes > s (ri2hig)he + >, Phas (r12h12)h1

€Yy g1 €Y, 52,4
156 —3.3307 - 10716
316 —1.3323 10715
636 —1.7764 - 10715
1276 9.9920 - 10716
2556 6.3283 - 1071°

Table 4.10: Results of checking the solvability condition from Lemma 4.5 for the modified
Neumann boundary conditions ¢}, .

respectively. Fig. 4.23 shows the maximum difference for the cases without and with sub-
traction of the extra term so that the effect of the satisfaction of solvability condition is
clearly visible. As indicated by Fig. 4.23, the maximum difference decreases with the refine-
ment, and the solution obtained by the discrete single-layer potential is a discrete harmonic
function in the exterior domain as shown in Fig. 4.24.
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the discrete single-layer solution in Q¢
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Figure 4.23: Values of max |u(x) — up, ,(x)| calculated over the exterior domain indicated
erf&Q ’

by grey colour in Fig. 4.9.
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Figure 4.24: Values of max [Ay, ,up, ,(x)| calculated over the exterior domain indicated by
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grey colour in Fig. 4.9. The horizonal axis has been reversed for illustrative purposes.

Fig. 4.25 shows the maximum difference on ay,, , between the exact boundary values
and the once calculated by using the single double-layer potential for exterior problems.
As expected, the difference between two boundary values are close to zero indicating that
discrete potential method has been implemented correctly, because this difference is, in fact,
represents the residual for solution of the linear system.
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Maximum difference between the exact boundary conditions

per and obtained by the discrete single-layer potential
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Figure 4.25: Values of max |P\“"(x) — ©n, 5 (X)], where P has been calculated by help
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of the discrete boudnary density obtained from the solution of linear system.

Finally, Fig. 4.26 illustrates the condition number of the linear system constructed by
using the discrete double-layer potential for solving the exterior Neumann problem 4.35.
Similar to the discrete double-layer potential, the matrix of the linear system obtained by
single-layer potential is not changed, if different boundary conditions are used. Therefore,
the condition number remains the same, as shown in Fig. 4.26, which is identical to Fig. 4.22.

Condition number of the linear system constructed

while solving the exterior Neumann problem
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Figure 4.26: Condition number of the matrix of linear systems of equations obtained by
using the discrete single-layer potential to solve the exterior Neumann problem (4.35).
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As a summary, similar to exterior Dirichlet problems, the discrete potential method shows
a promising behaviour, but the quality of solution depends on the asymptotic behaviour of
exact solution. In both examples considered in this section, the discrete single-layer potential
provided solutions which are discrete harmonic in the exterior domains, as expected from
the theoretical results presented in this chapter. Nonetheless, further analysis of exterior
Neumann problems is necessary and it will be done in future research.

4.4.3 Transmission problems

After discussing discrete boundary value problems in interior and exterior settings in pre-
vious sections, transmission problems coupling both settings are considered in this section.
Motivation for this study comes from the following continuous problem appearing in the field
of acoustic and electromagnetism, see for example [83, 102] and references therein:

Au = f, in{,
Au = 0, in Q=)
[u] = wy, on 09, (4.36)

0
[8—2] = wuy, on 0f2,

where €) is a bounded simply connected domain with a sufficiently smooth boundary 0f2,
Q) is the exterior domain, [u] denotes the jump of the function u on the boundary and it
is defined as follows

)

[U] — u(e:ct) . u(znt)

u
{—} is the jump normal derivative on the boundary:

on

on on '

ou au(ezt) au(mt)
ki
and f is a sufficiently regular right-hand side.

The aim of this section is to discuss different discrete formulations of the continuous
transmission problem (4.36), and construct solutions of discrete transmission problems by

help of discrete volume, single-, and double-layer potentials. Therefore, let us consider the
following general discrete transmission problem:

Ah1,2uhl,2 = fh1,27 m Qh1,27

Ahl,Quhl,Z = 0, in ngfty
|: :| . n - - (437)
Uhy o = $Phigs O ’yh1,2 - Oéhl,2’
[UD] = 1/}}7«1,27 on ’th,g = ah1,27

together with asymptotic conditions at infinity according to Definition 4.6
Up, 5 (1 2h12) < const - Iny/mihi + m3h3, for my| — oo, |ms| — oo,
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to assure that the solution wy, , is regular discrete harmonic function at infinity.

Next, the jump conditions must be described in the discrete setting. For adapting the
notion of jumps to the discrete case, let us fix the convention that if a point (r1hq,r2hs)
belongs to the boundary part v, , ; = o, , ;, then the point ((r12 +k)hi2) € 7,:,2’1 belongs
to ,,, and the point ((ri2 — k)hi) € a?{ml belongs to Q5 . Further, considering that
discrete functions approximate their continuous counterparts with an arbitrary accuracy for
hi2 — 0, the following definition of a “discrete jump” can be introduced:

[un, o] = o ((r12 + k) 2) — tn o, ((r12 — K)ha o) = up? — ufe™). (4.38)

A similar approach can be used for defining a “discrete jump” condition for normal
derivatives of functions. Moreover, the situation is in some sense simpler, because the discrete
normal derivative uses points (r1hy,72h2), ((r12+ k)h12), and ((r12 — k)h12), and thus, the
following definition of a “discrete jump” for normal derivatives can be used directly:

[up] := ul™ (ryoh1s) — ul™ (11 5hy ), (4.39)

where the discrete normal derivatives are calculated according to the Definitions 2.1-2.2 on
the corresponding parts of the discrete boundary layer v, a1 = Mpan

It is worth to underline, that since wuy,, approximates a continuous function, then
[uhm} will tend to zero with a refinement of the lattice. However, since the difference
Upy 5 ((r1,2 + K)h12) — ((r1,2 — k)h12) is written not for two neighbour points, for oscillating
continuous functions convergence of this difference to zero will be slower, than for non-
oscillating continuous functions, but nonetheless, the difference will converge to zero; for
functions having jumps, this difference will converge to the value of these jumps. A similar
behaviour is expected also for the convergence of the “discrete jump”condition for discrete
normal derivatives.

Remark 4.4. An alternative approach to defining jump conditions could be by using {>-norms
calculated for all points ((ri2 + k)hi2) € %, 1 € V), ,1 and ((r2 — k)hip) € o ;. This
approach can be seen as an adoption of mortar methods, see for example [8] and references
therein, to the discrete setting. However, considering that jump conditions provide extra
equations for a linear system of equations, the approach with [>-norms has a clear disadvan-
tage, that non-linear equations will be added, and thus, the solution procedure will become
more complicated.

Remark 4.5. Additionally, it is important to underline, that the discrete transmission prob-
lems of the type (4.37), can be addressed only in discrete geometries satisfying geometric
relations (2.5), i.e. domains without interior corner points. For domains which do not satisfy
these relations, i.e. in the case when Vi #* oy, ,» & separate study is necessary, which goes
beyond the scope of the current work.

Thus, the discrete transmission conditions appearing in (4.37) are formally written now
as follows

[Uhm] = U;:f?(ﬁzhm) - Uéi?(ﬁ,zhl,z) = S0h1,2(7“1,2h1,2),
[UD] = Up (7"1,2 1,2) Up (7“1,2 1,2) = ¢h172(7‘1,2 1,2)-
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Looking at the continuous case [83], where the solution ansatz for transmission prob-
lems combines single-layer, double-layer, and volume potentials, and considering that the
discrete transmission problem (4.37) combines Dirichlet and Neumann problems, as well as
the Poisson equation in €y, ,, the following general solution ansatz for solving the discrete
transmission problem is proposed:

(Vh1,2fh1,2 + W(im)y + P(mt)n) (m172h1,2)7 for th,w
Up, ,(M12h12) = (4.40)
(VhlythLg + W(emt)y + P(emt)n) (mLQhLz), fOI' QZ?;

In the sequel, individual components of this general ansatz will be analysed with respect to
satisfaction of the discrete jump conditions (4.38)-(4.39).

The discrete volume potential in formula (4.40) provides solution of the discrete Poisson’s
equation in 2, ,. Evidently, by using the definition of discrete fundamental solution and
discrete volume potential:

Ahl,z (Vhl,thl,z) (11,2}11,2) = Z Ahl,QEhlyg((lm - m1,2)h1,2)fh1’2 (m1,2h1,2)h1h2

meM+

0, if l1,2 # my g,

1

hihy
From these calculations, it also follows that the discrete volume potential satisfies the discrete
Laplace equation in Qext because ;5 # mq o for all l;5 € M~. Further, it is necessary to
discuss the asymptotic behav10ur of the discrete volume potentlal Similar to Lemma 4.2,
since the discrete volume potential satisfies the discrete Laplace equation in exterior, as it
has been shown above, the asymptotic behaviour at infinity is controlled by the discrete
fundamental solution, and follows again from the estimate
OlO max {h%, h%} CH 2 ;92 1
bdm—i—mm {hl,h2}+012+%|1n|x||
presented in Theorem 3.8. Thus, the discrete volume potential grows not faster than a
logarithm at infinity, as expected.

Next step is to discuss boundary equations arising from the discrete jump conditions (4.38)-
(4.39), and which will be used to identify boundary densities  and v of discrete single- and
double-layer potentials, correspondingly. Motivated by the continuous case, especially by
jump properties of volume, single-layer, and double-layer potentials, see again [87, 98] for
details, and considering solution procedures for Dirichlet and Neumann problems discussed
in this chapter, the discrete double-layer potentials and discrete single-layer potentials will be
used to address the discrete jump conditions for function values and its normal derivatives,
respectively. Hence, the following system of operator equations needs to be solved:

(WD) (Lg + k)hig) — (W) (e — ki) = ny,(liohie),

fh1 2(m1 2hy 2)h1h27 it [y 2 = M12.

Cy
B, (x)] < gmax{hl,@}

(4.41)
(Pémt)n) (l1,2h1,2) - (P ewt)??) (ll ohy 2) = ¢h1,2(l1,2h1,2)7
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for points (/3 2h1) belonging to the boundary layer v, , =« ,.

Remark 4.6. Evidently, the use of general solution ansatz (4.40) in discrete jump conditions
will lead to more terms in (4.41). These terms will also be addressed below. It is important
to underline, that for the validity of operator equations (4.41), it is necessary that all of these
extra terms must be equal to zero in the final expression. To show that it is indeed the case
in practical calculations, the discrete jump conditions (4.38)-(4.39) will be checked directly
with the general solution ansatz (4.40) in all numerical examples of discrete transmission
problems presented in this chapter.

The difference between double-layer potentials in the first equation from (4.41) is explic-
itly expressed as follows

(W) (1 + B 2) = (W00) ({12~ K ) =

Z hl_l Z [Ehm((lm +k— 7“1,2)h1,2) - Ehl,g((lm - 7“1,2)h1,2)} th(Tl,zhLQ)

- - +
rE’yhl’ZJU’yhlg’S ke K\K;

+ Z h2_1 Z [Ehl,z((lm +k— T1,2)h1,2) - Ehl,z((lm - 7‘1,2)h1,2)} h1V(7”1,2h1,2)

€Y 5. 2Py 5 keK\K;

- Z hl_l Z [Ehm((lm - 7”1,2)h1,2) - Ehm((lm +k— 7’1,2)}11,2)] h2V(7“1,2h1,2)
r€ay; s 1Y% 53 ke K\K,

- Z hg_l Z [Ehm((lm - 7”1,2)h1,2) - Eh1,2((l1,2 +k— 7’1,2)}11,2)] h1V(7“1,2h1,2)-
reay 42U oy ke K\K

Because only geometries satisfying the condition v, , = «;, , are considered, several terms
in the above expressions can be brought together and simplified. For example, the following
expressions is obtained for v, ,, = ,;:

h
E h_2 [Bhy o (g + k1 —r19)hig) — Eny o ((ly — m12)ha )
1

rE’thQ’l

—Ep o, ((he —ri2)hig) + By, ((Lig + ks — 7“1,2)h1,2)] v(rizhi2)

hy

= Z e [Ehm((lm +ky — 7’1,2)h1,2) - 2Eh1,2((l1,2 - 7"1,2)h1,2)
1

7’67}11‘2,1

+Eh1,2((l1,2 — ki — T1,2)h1,2)} V(T172h1,2)-

Performing similar simplifications over all boundary parts, the following expression for the
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difference of discrete double-layer potentials is obtained:

(WD) ((ha+ B)as) = (W) (= R z) =

= Z Z b; [Ehl,g((lm + ki — 7’1,2)h1,2) - QEhl,Q((lm - 7“1,2)h1,2)

e

+Eh1,2((l1,2 — ki — 7"1,2)h1,2)} V(T1,2h1,2),

h h
where b; = =2 fori= 1,3 and b; = L fori= 2,4.
hl h2 )
Next, using the expressions for P and P calculated during the discussion of in-

terior and exterior Neumann problems and again the fact, that v, , = «; _, the following

expression is obtained for the difference (P,S,mt) — Pé”“) n(li2h12)
(P(znt) P (ext) ) (ll th 2)

= Z Z bi [Eny o (2 — ki) = r12)h12) = Eny (e + ki) — m12)ha2) | n(ri2ha2),

= TE’Y’H,Q,Z

h hq
where b; = h_2 fori =1,3 and b; = e for i = 2,4. Thus, system of operator equations (4.41)
1 2

leads to the following linear system of equations with respect to boundary densities n and v:

4
Z Z b; [Ehlg((ll,Z + ki — 7“1,2)h1,2) - 2Eh1,2((l1,2 - 7"1,2)h1,2)

=1 7"6’7;1‘2’7;

+Eh172<(l1,2 - ki - T1,2)h1,2)} V(T’1,2h1,2) = 80h1,2(l1,2h1,2),

Z Z bi [Eny,((lio — ki — r12)hi2)

17
re
’yhl 2,1

\ Ehl,g((lm + ki - 7“1,2)h1,2)} 77(7"1,2]11,2) = ¢h172<l1,2h1,2)-

Problem (4.37) represents a general formulation of a discrete transmission problem. For
the sake of providing a clear constructive discussion on solution of such transmission prob-
lems, simplified cases will be considered at first in the sequel. Therefore, the following three
cases will be addressed further in this section:

(4.42)

(i) both jumps ¢y, , and ¥y, , equal to zero;
(ii) one of jumps ¢y, , and ¥y, , is zero, while another one is not zero;

(iii) both jumps ¢, , and ¥y, , are not zero.

Practical motivation for all of these three cases comes from the field of electromagnetism,
and in particular it is related to some specific electromagnetic problems arising in the field
of induction heating process, see for example [26, 27, 49] and references therein.
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Remark 4.7. 1t is important to remark, that several explicit formulae for the solutions of dis-
crete transmission problems for the three cases will be presented in the sequel. Nonetheless,
the system of equations (4.42) together with the general solution ansatz (4.40) will be used
to discuss solutions of the discrete transmission problems for each of three cases described
above. This system of equations will always be solved numerically even in the case of zero
jump to assure that the constructions presented in this chapter are correct. Moreover, the
checking of discrete jump conditions (4.38)-(4.39) will also be done by help of the general
solution ansatz (4.40) for all three cases by the same reason.

To check the discrete jump condition for the discrete normal derivative, the difference of
discrete normal derivatives of discrete double-layer potentials needs to be calculated. By us-
ing the definitions of discrete normal derivatives, the following explicitly written expressions
are obtained:

. 1 h
W,(Lmt)u(l1,2h1,2) = <h_1 Z h_j [Ehw((h,z —7112)h12) = En o (e — 12 — k1)hi2)

"€V ho 1

—Ehl,g((lm —rig+ ki)hi2) + Ehl,Q((lm —7r12— ki + k1)h1,2)}

1 h
+h_2 Z h_; [Ehm((lm —r12)h12) — Ehl,Q((ll,z — 119 — k2)h12)

TE’th hg,2

_Ehlg((ll,Q — 112+ k2)hi2) + Ehl,z((ll,z —7ri2 — ko + kQ)hl,Q)]

1 h
+h_1 Z h—i [Ehm((lm - 7”1,2)]11,2) - Ehl,z((lm —T12 — k3)h1,2)

T€Vhhy,3

—Ehl,g((lm — T2+ kg)h1,2) + Ehl,z((lm — 7119 — ks + k3)h1,2)}

1 h
+h_2 Z h_; [Ehl,Q((le —r12)h12) — Ehl,g((ll,z — 119 — ka)h12)

"€V ho 4

—Ehm((llz — 112+ ka)hi2) + Ehl,Q((ll,z —7T12— ka4 k‘4)h172ﬂ )V(T’l,zhlz),
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and

1 h
WDy (1 ghy o) = (h_ E h_2 [Bn (g =12 — k3)hi2) — Eny (e — ri2)hag)
1 1

TEQ) po1

_EhLQ((ll,Q — 119 — ks + ks)hio) + Ehl,Q((ll,Q — T2+ k‘3)h1,2)]

1 h
T > h_: [Eny (o — 112 — ka)hi2) — Epy o ((lie — r12)haa)

TEQY oo

—Ehl,Q((11,2 —h7”1,2 — kg + kqg)hy2) + Ehl,z((ll,z — T2+ k4)h1,2)]
1
i 2 Bnallie = = k)hia) = Buy((he = ri2)h)

TE hy 3

—Ehl,g((hg — 112 — ki +ki)hio) + Ehl,Q((ll,Q — T2+ k‘1)h1,2)]

1 h
+h_2 Z h_: [Ehm((ll»? — T2~ k2>h1,2) - Eh1,2((ll,2 - 7’1,2)h1,2)

TEQY o4

—Ehl,g((ll,z — 119 — ka+ ka)hio) + Ehl,z((lm — T2+ k2)h1,2)] >V(7°1,2h1,2)-

Thus, these expressions will be used to compute the difference <W7(f”t) — W,Eext)> v(li2hi2)

while checking the discrete jump condition (4.39). Moreover, from the theoretical point of
view, this difference must be zero, because of the following calculations for o;, , ; =7, ,,

1 h
T Z =2 [2Eh1’2((11,2 - 7“1,2)}11,2) - Eh172<(l1,2 — T2 — kl)h1,2> - Ehl,g((h,z — T2+ kl)hl,Q)
hy hy

T€Vhqho,1

+Eh172<<l1,2 —r12—ks)hi2) + Ehm((ll,Q — 112+ k3)hi2) — 2Eh1,2((11,2 - 7“1,2)]11,2)} v(r12h12)

1 h
=T Z h_j [—Ehm((ll,z — 712 — k1)hi2) — Ehl,g((ll,z — 712+ k1)hi2)
+Eh1,2((l1,2 —ria+ ki1)hi2) + Ehl,z((lm — T2 — kl)h1,2)] v(riahia) = 0.

Similarly, it can be shown that summations over other three boundary parts are also zero.
Thus, the expression (W,Smt) — W,&e‘”)> v(ly.9h12) is zero, which also reflects the continuous

case. Nonetheless, full expressions for Wémt) and Wéext) be used in numerical calculation to
check that their difference is indeed zero in practical examples.
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Next, the difference between discrete single-layer potential is considered:

(PU0) (2 + B)hi2) = (P) (o = k)hi2) =

Z hoBn, ,((li2 +k —112)h12)n(r12h12)

"%y 9,19 9.3

+ Z hlEth((llQ + k —r12)h12)n(r12h1 2)

TE'Y}LLQ ,QU’yhl’Q ,4

— Z hQEhLQ((lLQ +k —ri2)hi2)n(ri2hi 2)

rea; Ua,
hi,2,1° %y 2,3

- Z hiEy, ,((Ii2 +k —r12)hi2)n(ri2h ).

reQ; o,
€ h1,272U hi,2,4

Similar to the case of discrete double-layer potentials, summations over the same boundary
parts can be combined leading to the following final expression:

(P(mt)y) ((ll,Q + /{?)hl,g) _ (P(ezt)y) (([172 — k)h1,2) —

= Z Z & [Ehl,z((lm + ki — 7”1,2)]11,2) - Ehm((lm — ki — T1,2)h1,2)] 77(7”1,2h1,2),

=1 TG’Y}:LQ,'L

(4.43)
where ¢; = hy for i = 1,3 and ¢; = hy for i = 2,4.
Finally, it is necessary to present the jump conditions for the discrete volume potential.
Discrete jump condition (4.38) for function value leads to the following equation:

( i fins) (i + B)hag) = (VA ) (2 = R)hag) =

= Z Z Ehw((ll,Q + ki — m1,2)h1,2) - Ehl,g((h,z — ki — m172)h1,2)} fhm (m172h172)h1h2.
=1 meM+
(4.44)

Discrete jump condition (4.39) for normal derivatives leads then to the equation:

t) t)
( h1”; fh12 - hlez fh12) (l1,2h1,2) =

= Z Z d; [Ehl,g((lm — ki — ng)th) - Ehlyg((llﬂ + ki — m1,2)h1,2)} fhl,Q(m1,2h1,2)7
i=1 meM+
(4.45)
where d; = hy for i = 1,3 and d; = hy for i = 2,4.
In summary, the discrete transmission problem (4.37) will be solved by using system of
equations (4.42) for identifying discrete boundary densities  and v of the discrete single-
layer and double-layer potentials, respectively. After that, these discrete boundary densities
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will be used in the general solution ansatz (4.40), which include three discrete potentials.
Finally, this general solution ansatz will be used in checking discrete jump conditions (4.38)-
(4.39), and hence, verifying extra equations (4.43)-(4.45), which must be zero, if boundary
densities identified from (4.42) indeed correspond to the solution of the discrete transmission
problem (4.37).

Finally, it is important to mention, that the linear systems of equations arising dur-
ing solution of discrete transmission problems have very different ranks: the discrete jump
condition for function values leads to a system of linear equations based on the discrete
double-layer potential which has a full rank, but the discrete jump condition for discrete
normal derivative leads to a system of linear equations based on the discrete single-layer po-
tential which has a very small rank in comparison to the dimension of the system — around
ten times smaller than the dimension. Nonetheless, as it will be illustrated by the examples
in the next subsections, it is still possible to obtain solutions of the discrete transmission
problems.

Case of zero jumps

In the case when both jumps ¢y, , and ¢, , are equal to zero, the following discrete trans-
mission problem is considered:

Ah1,2uhl,2 = fh1,27 in Qh1,27
Ahl,Quhl,Q = 07 m Qifg; (446)
[uh1,2] - [UD] = 0, on '7}7172 = Oz;l,Q'

In this case, the following homogeneous system for identifying densities v and 7 is obtained

(W) (i + Rhaz) = (W) (i~ B)hua) = 0,

(PE) (s ) = (PE0) (ahn) = 0.

implying that both densities v and 7 are zero. Thus, it is necessary to address only the
right-hand side function fj, ,, i.e. to solve the discrete Poisson’s problem, which is given by
the discrete volume potential:

uhl‘z (m172h1’2> = (Vhl,thm)(mLQth), fOI' (mLQth) € Qhu U Qz‘f; (447)

Formula (4.47) provides the explicit solution of the discrete transmission problem (4.46).
As a numerical example, let us consider the following transmission problem:

Au = xy(x - 2)<y - 1) in ) = ([072] X [07 1])7

Au =0 in Qe
o i (4.48)
[u] = [%] =0, on 0S).

For presenting the numerical results for transmission problems, ideas used for computing
the exterior Dirichlet and Neumann problems will be used. Figs. 4.27-4.28 present results of
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calculating

max ’f(X) - Ah1,2uh1,2 (X>| and max |Ah1,2uh1,2 (X)|7

ext
x€Qn, 5 erhL2

respectively, where f is the right-hand side in (4.48). Note that the horizontal axis for the
check of discrete harmonicity in Qthz has been reversed, as in the case of exterior boundary
value problems. As it is clearly visible from Fig. 4.27, the difference maxxeq,,, |f(x) —
Ap, ,up, ,(x)| converges to zero with the refinement. The check of discrete harmonicity in the
exterior domain presented in Fig. 4.28, shows behaviour similar to the exterior problems, i.e.
then less mesh points are available in Qiaf,tw than bigger the value. Nonetheless, the solution
given by (4.47) satisfies the Poisson’s equation in the interior and the Laplace equation in

the exterior, as required.

Maximum difference between the right-hand side fj,,

and Ay, ,up,,(x) for x € Qp,
0.025 : : : -

0.02 -

0.015

0.01 —

Value max |f(x) — Ap,,up, , (%)

0.005 —

! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000
Number of boundary nodes

Figure 4.27: Values of max |f(x) — Ay, ,un, ,(x)| calculated for the solution (4.47).

XEth 2
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Check of discrete harmonicity in 9! of the solution of

5 the transmission problem with zero jump conditions
6 T T T

Value max |Ay, ,up,,(x)| calculated over 2
5] w
\ \

0 \ \ \ \ \
4000 3500 3000 2500 2000 1500 1000 500 0
Number of boundary nodes

Figure 4.28: Values of max [Ay, ,up, ,(x)| calculated over the exterior domain indicated by

x€ENsT
hy,2

grey colour in Fig. 4.9. The horizonal axis has been reversed for illustrative purposes.

Figs. 4.29-4.30 present results of checking the discrete jump conditions (4.38)-(4.39) for the
solution of transmission problem (4.48) given by the representation formula (4.47). As it
can be clearly seen from these figures, both discrete jump conditions for function values
and its normal derivatives converge to zero with refinement. Thus, Figs. 4.29-4.30 clearly
indicate that (4.47) is a solution of the discrete transmission problem (4.48), since the differ-

ential equations are satisfied in the interior and exterior, as well as the discrete transmission
conditions.
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R Check the discrete jump condition for function values
I I I I I I I

b
n
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T
|

) (ext)
- uhx.z ‘
w
(98 wn
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1 1

(int
hia
N
n

I

|

Value max |u
S
\ \
I I

0.5+ -

\ \ \ \ \ \
0 500 1000 1500 2000 2500 3000 3500 4000
Number of boundary nodes

Figure 4.29: Check of the discrete transmission condition (4.38) for the solution given by
formula (4.47).

Check the discrete jump condition

for discrete normal derivatives

3
x10™
3 T T T

N
[
I
|

) ugm
(i8]
I
\

(int
D

n
T
|

Value max |u

0.5+ -

0 1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000

Number of boundary nodes

Figure 4.30: Check of the discrete transmission condition (4.39) for the solution given by
formula (4.47).

As a summary for the first case of zero jumps, it is important to underline once more, that
the result clearly illustrate that the discrete transmission conditions converge to zero with the
refinement. Moreover, the results presented above also indicate, that extra equations (4.43)-
(4.45) indeed converge to zero with the refinement, as it was hypothesised during construction
of the solution procedure for transmission problems. If these terms were not converging to
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zero, then evidently the discrete transmission conditions would be satisfied. Hence, the
solution procedure proposed in this dissertation is generally correct, but nonetheless, further
theoretical analysis must be performed in future work.

Case of one non-zero jump

Let us consider at first the case when )y, , = 0, which corresponds to the following discrete
transmission problem:

Ah1,2uhl,2 = fh1,2> m Qh1,2?
Ahl,2uhl,2 = 07 in Q}?l:tz’
- e (4.49)
[Un2] = @nas on Thie = Yoo
[up) = 0, On Yy = Qpyp sy

In this case, the following system of equations is obtained for identifying densities v and n

(W) ((hz+ k)hn2) = (W) (e = k)he) = s

(P,(f”t)ﬂ) (ligh12) — (Péext)n) (hohi2) = 0,

implying that the density n is zero. Thus, a general solution of the discrete transmission
problem (4.49) is formally written as follows:

(Vh172fh1,2 + W(Wlt)]/) (mLQth), fOr (m172h172) & th,m
Uhy o (m1,2h1,2> = (450)
(Vara S + W(m)y) (ma2hi2), for (mighiy) € Qiftz

As a first numerical example, let us consider the following transmission problem:

Ahl,Quhl,Q = ;E'y(l’ - 2)(3/ - 1)7 in (2= ([07 2] X [07 1]) )

Ahmuhm = 0, iIl QZ?;? (4 51)
[uhlﬂ] - 4’ on 7;1,2 - a};z’ '
[up) = 0, on Vs, =y,

Similar to the first numerical example of transmission problem, Figs. 4.31-4.32 present results
of checking that the discrete solution satisfies the Poisson’s equation in )y, , and discrete
harmonicity in the exterior domain.

161



Maximum difference between the right-hand side fj,,

and Ay, ,up,,(x) for x € Qp,
0.025 ‘ ‘ ‘

0.02 - -

0.015 _

Value max |f(x) — Ay, ,up, , (%)

0.005 — -

\ \ \ \ \ \
0 500 1000 1500 2000 2500 3000 3500 4000
Number of boundary nodes

Figure 4.31: Values of max |f(x) — Ay, ,upn, ,(x)| calculated for the solution of (4.51).

XEth 2

Check of discrete harmonicity in 9! of the solution of the transmission

107 problem with zero jump condition for normal derivative
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Figure 4.32: Values of max |Ay, jup, ,(x)| calculated over the exterior domain indicated by
eriﬁ’Q ’ ’
grey colour in Fig. 4.9 for the solution of (4.51). The horizonal axis has been reversed for

illustrative purposes.

Fig. 4.33 presents results of checking the discrete jump conditions (4.39) for the solution
of transmission problem (4.51) given by the representation formula (4.50). As it can be
clearly seen from these figures, the discrete jump condition for discrete normal derivatives
converge to zero with refinement.
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Check the discrete jump condition

o3 for discrete normal derivatives
X
3 T T T
25+ —|
IS il
|
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ENkls 4
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g2k -
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0 | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000

Number of boundary nodes

Figure 4.33: Check of the discrete transmission condition (4.39) for the solution of (4.51)
given by formula (4.50).

The discrete jump condition for function values shows a more tricky behaviour. Fig. 4.34
shows checking of the discrete transmission condition (4.38) calculated over the discrete
boundary v, , = «,, , for the finest refinement. This figure shows an behaviour near the

exterior corner points, which do not belong to the discrete boundary Vhio = Qoo while
for points far from the exterior corner points the calculated solution tend to the exact jump
values. Similar effects appear in other examples, where the jump conditions do not smoothly
go zero while approaching the exterior corner points. This effect must be studied further
in future work. Additionally, Fig. 4.35 presents computations of maximum and minimum
differences between exact and calculated jump values. Both curves shows similar decreasing
behaviour, and the minimum difference converges to zero. The maximum difference is also
decreasing, however perhaps it will not converge to zero with further refinements, but this
effect will be localised only at few nodes neighbouring the exterior corner points, similar to
the classical Fourier approximation of discontinuous functions.
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Calculated discrete jump condition for function values
54 T T T T T T T
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|
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Indices of boundary nodes for the finest refinement

Figure 4.34: Check of the discrete transmission condition (4.38) for the solution of (4.51)
given by formula (4.50) for the finest refinement.

Minimum and maximum difference for the discrete jump condition

for function values
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Figure 4.35: Minimum and maximum difference for the discrete transmission condition (4.38)
for the solution of (4.51) given by formula (4.50).

For further analysis of effects observed during solution of transmission problem (4.52),
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let us consider the following problem:

( Ah1,2uh1,2 = xy(m—
ApyyUny, =
[uhlxz]
[uhm]
[up)]

|
SO ON

in 2 = ([0,2] x [0,1]),

in QY

on 7h—1,2,2 = Oéf:1,2,27 (452)
On Yy i = 0,5t =134,

on 7h1,2 = ah1,2’

where only one part of the boundary has non-zero transmission condition for function values.
Figs. 4.36-4.37 present results of checking that the discrete solution satisfies the Poisson’s

equation in €, , and discrete harmonicity in the exterior domain.

Maximum difference between the right-hand side fj,,
and Ay, ,up,,(x) for x € Qp,

0.025 T

o
=
T

Value max | f(x) —

0.005 —

| |
0 500 1000 1500 2000
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Figure 4.36: Values of max |f(x) — Ay, ,up, ,(x)| calculated for the solution of (4.52).
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Check of discrete harmonicity in 9? of the solution of the transmission

: problem with zero jump condition for normal derivative
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Figure 4.37: Values of max |Ay, yup, ,(x)| calculated over the exterior domain indicated by
erf&Q ’ ’
grey colour in Fig. 4.9 for the solution of (4.52). The horizonal axis has been reversed for

illustrative purposes.

Fig. 4.38 presents results of checking the discrete jump conditions (4.39) which converges
to zero with refinement.
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Figure 4.38: Check of the discrete transmission condition (4.39) for the solution of (4.52)
given by formula (4.50).

Next, similar to the previous example, Fig. 4.39 shows checking of the discrete transmis-

sion condition (4.38) calculated over the discrete boundary v, , = «, , for the finest refine-
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ment. As it can be clearly seen from this figure, the result does not show a kind of Gibbs
phenomenon behaviour near the exterior corner points, as in the case of problem (4.51), and
thus, approximates much better the exact transmission condition. Figs. 4.40-4.41 present
computations of minimum and maximum differences between exact and calculated jump
values, respectively. The minimum difference is very low and fast converges to zero. The
maximum difference show behaviour similar to the previous example, i.e. a decreasing trend
which converges to a non-zero value localised at the nodes neighbouring the exterior corner
points.
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Figure 4.39: Check of the discrete transmission condition (4.38) for the solution of (4.52)
given by formula (4.50) for the finest refinement.
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Minimum difference for the discrete jump condition
5 for function values
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Figure 4.40: Minimum difference for the discrete transmission condition (4.38) for the solu-
tion of (4.52) given by formula (4.50).

Maximum difference for the discrete jump condition for function values
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Figure 4.41: Maximum difference for the discrete transmission condition (4.38) for the solu-

tion of (4.52) given by formula (4.50).

As the final example for transmission problems of the form (4.49), let us consider the

168



following problem:

( Ah1,2uh1,2 =
ApyyUny, =
[uhlxz] =
[uhm]
[up)]

in Q= ([0,2] x [0,1]),

in QY

on 7h—1,2,2 = Oéf:1,2,27 (453)
On Yy i = 0,5t =134,

on 7h1,2 = ah1,2’

where the non-zero transmission condition is given only on one part of the discrete boundary,
and it is given by a continuous function having zero values at the exterior corner points.

Figs. 4.42-4.43 present results of checking that the discrete solution satisfies the Poisson’s
equation in (2, , and discrete harmonicity in the exterior domain.
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Figure 4.42: Values of max |f(x) — Ay, ,up, ,(x)| calculated for the solution of (4.53).
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Check of discrete harmonicity in 92! of the solution of the transmission

5 problem with zero jump condition for normal derivative
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Figure 4.43: Values of max |A, yup, ,(x)| calculated over the exterior domain indicated by
erf&Q ’ ’
grey colour in Fig. 4.9 for the solution of (4.53). The horizonal axis has been reversed for

illustrative purposes.

Fig. 4.44 presents results of checking the discrete jump conditions (4.39) which converges
to zero with refinement.
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Figure 4.44: Check of the discrete transmission condition (4.39) for the solution of (4.53)
given by formula (4.50).

Next, similar to the previous example, Fig. 4.45 shows checking of the discrete trans-

mission condition (4.38) calculated over the discrete boundary v, , = «; , for the finest
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refinement. As it can be clearly seen from this figure, the result does not show a kind of
Gibbs phenomenon behaviour near the exterior corner points, and thus, approximates much
better the exact transmission condition. Figs. 4.46-4.47 present computations of minimum
and maximum differences between exact and calculated jump values, respectively. The fig-
ures clearly indicate that both differences converge to zero with refinement.
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Figure 4.45: Check of the discrete transmission condition (4.38) for the solution of (4.53)
given by formula (4.50) for the finest refinement.
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Figure 4.46: Minimum difference for the discrete transmission condition (4.38) for the solu-
tion of (4.53) given by formula (4.50).
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Maximum difference for the discrete jump condition for function values
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Figure 4.47: Maximum difference for the discrete transmission condition (4.38) for the solu-
tion of (4.53) given by formula (4.50).

Next, the following discrete transmission problem is considered:

Ahl,QU’hl,Q = fh1,2) n th,w
Ahmuhm = 0, n fofty
_ e (4.54)
[uhlﬂ} - ’ on ’th,z - ahl,z’
[U/D] = wh1,27 on ’yhl!g = Oéh1,2'

The system of operator equations (4.41) leads to
(WD) (Lo + k)hig) — (WD) (e — k)hg) = 0,

(Péi"t)n) (lighi2) — (Prgext)n) (h2hiz) = Yns

implying that the density v is equal to zero. Hence, a general solution of the discrete
transmission problem (4.54) is formally written as follows:

(Vhl,thl,Q + P(int)n) (mighig), for (mighia) € Uy .,
Uhy o (m1,2h172) = (455>
(Vhlﬁf’“a? + P(m)n) (mighi2), for (myghis) € Q?ﬁtz

As a first numerical example for transmission problems with zero jump condition for
function value, let us consider the following transmission problem:

Ah1,2uhl,2 = l’y(l’ - 2)(y - 1)7 in (2= ([072] X [07 1])7

_ : t
Ahwuhl’z = 0, 1mn Qzalcg, (4 56)
[uhlﬂ] = 0’ on fyf:l,z = agl,27 .
[up] = 4, on Yy, , = Qp -



Figs. 4.48-4.49 present results of checking that the discrete solution satisfies the Poisson’s
equation in 2, , and discrete harmonicity in the exterior domain. As it can be clearly
seen from these figures, the maximum values for both checks are not close to zero for all
refinements. It is important to underline that these maximum values appear only in few
nodes for each refinement, while the general order of accuracy for both checks is 107%-107°.
The reason for such behaviour of the discrete solution is not clear and this topic must be
further studied in future work.
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Figure 4.48: Values of max |f(x) — Ay, ,up, ,(x)| calculated for the solution of (4.56).
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Check of discrete harmonicity in 92! of the solution of the transmission

problem with zero jump condition for function values
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Figure 4.49: Values of max |A, yup, ,(x)| calculated over the exterior domain indicated by
eriﬁ,Q ’ ’
grey colour in Fig. 4.9 for the solution of (4.56). The horizonal axis has been reversed for

illustrative purposes.

Fig. 4.50 presents results of checking the discrete jump conditions (4.38) which converges
to zero with refinement.
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Figure 4.50: Check of the discrete transmission condition (4.38) for the solution of (4.56)
given by formula (4.55).

Next, Fig. 4.51 shows checking of the discrete transmission condition (4.39) calculated

over the discrete boundary v, , = «a; , for the finest refinement. As it can be clearly seen
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from this figure, the calculated values of discrete jump condition for discrete normal derivate
oscillate around the exact value and provide accuracy of order 10~*. Further, Fig. 4.52
present computations of minimum and maximum differences between exact and calculated
jump values for discrete normal derivatives. The figures clearly indicate that both differences
converge to zero with refinement.

Calculated discrete jump condition for discrete normal derivatives
4.00004 ‘ ‘ : ‘ ‘ ‘ ‘

4.00002

H

£23.99998

—u

2 399996

3
Q
= 3.99994
= 3.
>
3.99992 -

3.9999 -

500 1000 1500 2000 2500 3000 3500 4000
Indices of boundary nodes for the finest refinement

3.99988
0

Figure 4.51: Check of the discrete transmission condition (4.39) for the solution of (4.56)
given by formula (4.55) for the finest refinement.
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Figure 4.52: Minimum difference for the discrete transmission condition (4.39) for the solu-
tion of (4.56) given by formula (4.55).
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As the final example for this subsection, let us consider the following transmission prob-

lem: )
Ah1,2uh1,2 =
Ah1,2uh1,2 =
[un] =
lup] =
[up] =

\

:ry(m - 2)<y - 1)? in = ([07 2] X [07 1]) )

0,

0,
(2 — ),

0,

in Q5

on %;1,2 = O[f;,z’ (457>
O Vpyh2 = Qg y05

On Yy i = it = 1,34,

where the non-zero transmission condition is given only on one part of the discrete boundary;,
and it is given by a continuous function having zero values at the exterior corner points.
Figs. 4.53-4.54 present results of checking that the discrete solution satisfies the Poisson’s
equation in €2, , and discrete harmonicity in the exterior domain. Similar to the previous
example, the maximum values for both checks are not close to zero for all refinements. Again,
these maximum values appear only in few nodes for each refinement, while the general order
of accuracy for both checks is 1074-107°.
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Figure 4.53: Values of max |f(x) — Ay, ,up, ,(x)| calculated for the solution of (4.57).
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Check of discrete harmonicity in 92! of the solution of the transmission

problem with zero jump condition for function values
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Figure 4.54: Values of max |A, yup, ,(x)| calculated over the exterior domain indicated by
erf&Q ’ ’
grey colour in Fig. 4.9 for the solution of (4.57). The horizonal axis has been reversed for

illustrative purposes.
Fig. 4.55 presents results of checking the discrete jump conditions (4.38) which converges
to zero with refinement.
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Figure 4.55: Check of the discrete transmission condition (4.38) for the solution of (4.57)
given by formula (4.55).

Next, Fig. 4.56 shows checking of the discrete transmission condition (4.39) calculated
over the discrete boundary v, , = a;  for the finest refinement. As it can be clearly
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seen from this figure, the calculated values of discrete jump condition approximate well the
exact value. Further, Fig. 4.57 present computations of minimum and maximum differences
between exact and calculated jump values for discrete normal derivatives. The figures clearly
indicate that both differences converge to zero with refinement.

Calculated discrete jump condition for discrete normal derivatives
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Figure 4.56: Check of the discrete transmission condition (4.39) for the solution of (4.57)
given by formula (4.55) for the finest refinement.
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Figure 4.57: Minimum difference for the discrete transmission condition (4.39) for the solu-
tion of (4.57) given by formula (4.55).
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General case

Finally, the general discrete transmission problem (4.37) is considered. In this case, the
general system of operator equations (4.41) with respect to the boundary densities  and v
must be solved:

(WD) (g + k)hiz) — (WD) (e — k)hiz) = @n,s

(Pémt)n) (l1.2h12) — (Pém)n) (lighi2) = Uhy -

The general solution in this case, as it has been discussed before, is given by the general
ansatz (4.40):

(Vhl,thl,z + W(int)]/ + P(lnt)n) (m1,2h'1,2)7 for th,m
Uhy o (m1,2h172) =
(Vh1,2fh1,2 + W(wt)y + P(ext)n) (m1,2h172>7 fOI‘ ngfz

As a first numerical example, let us consider the following transmission problem:

Ah1,2uh1,2 = Iy(l’ - 2)<y - 1)7 in Q = ([072] X [07 1]) )

_ : ext
ApypUp,, = 0, in Q5T (4.58)
[uhlﬂ] = 4’ on 7h1,2 = ah1,2’
[up] = —4, On Vs, = Q-

Figs. 4.58-4.59 present results of checking that the discrete solution satisfies the Poisson’s
equation in €2, , and discrete harmonicity in the exterior domain. Similar to the case of
non-zero transmission condition for discrete normal derivatives, the maximum values for
both checks are not close to zero for all refinements. Again, these maximum values appear
only in few nodes for each refinement, while the general order of accuracy for both checks is
107%-1075.
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Figure 4.58: Values of max |f(x) — Ay, ,up, ,(x)| calculated for the solution of (4.58).
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of the general transmission problem
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Figure 4.59: Values of max [Ap, ,up, ,(x)| calculated over the exterior domain indicated by
LS UAMR ' ’

grey colour in Fig. 4.9 for the solution of (4.58). The horizonal axis has been reversed for
illustrative purposes.

Fig. 4.60 shows checking of the discrete transmission condition (4.38) calculated over the
discrete boundary v, . = Wy for the finest refinement. As expected from the discussion
around the transmission problem (4.51), the constant transmission condition for function
values shows a kind of Gibbs phenomenon behaviour near the exterior corner points, which
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do not belong to the discrete boundary -, 2= Yy while for points far from the exterior
corner points the calculated solution tend to the exact jump values. Additionally, Fig. 4.61
presents computations of maximum and minimum differences between exact and calculated
jump values. Both curves shows similar decreasing behaviour, and the minimum difference
converges to zero. The maximum difference is also decreasing, however perhaps it will not
converge to zero with further refinements, but this effect will be localised only at few nodes
neighbouring the exterior corner points, similar to the classical Fourier approximation of
discontinuous functions.
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Figure 4.60: Check of the discrete transmission condition (4.38) for the solution of (4.58)
given by formula (4.40) for the finest refinement.
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Minimum and maximum difference for the discrete jump condition

for function values
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Figure 4.61: Minimum and maximum difference for the discrete transmission condition (4.38)
for the solution of (4.58) given by formula (4.40).

Next, Fig. 4.62 shows checking of the discrete transmission condition (4.39) calculated
over the discrete boundary v, , = oy B for the finest refinement. As it can be clearly seen
from this figure, the calculated values of discrete jump condition for discrete normal derivate
oscillate around the exact value and provide accuracy of order 10~*. Further, Fig. 4.63
present computations of minimum and maximum differences between exact and calculated
jump values for discrete normal derivatives. The figures clearly indicate that both differences
converge to zero with refinement.
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Calculated discrete jump condition for discrete normal derivatives
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Figure 4.62: Check of the discrete transmission condition (4.39) for the solution of (4.58)
given by formula (4.40) for the finest refinement.
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Figure 4.63: Minimum difference for the discrete transmission condition (4.39) for the solu-
tion of (4.58) given by formula (4.40).

As the final example for this section, let us consider the following general transmission

183



problem:

( Ay = zay(x—2)(y—1), in Q=([0,2] x[0,1]),
[uhm] = sin o, for Vhiod = Oyt
[uhm] = 0, for Vo2 = Mhyy 2
[un, ,] = e? sin xo, for v, , 5=y, , 3
[uhm] = e*tsinl, for Vipod = Oy gt (4.59)
[up] = — sin o, for Vinod = Oy
lup] = —er, for 7;:1,2,2 = O‘}Z,Q,Qa
[up] = e? sin zo, for v, , 5=y, 3
L [up] e cos 1, for Vhnad = Oy 0

where the transmission conditions are given by functions related to the Dirichlet and Neu-
mann problems considered previously in this chapter.

Figs. 4.64-4.65 present results of checking that the discrete solution satisfies the Poisson’s
equation in €2, , and discrete harmonicity in the exterior domain. As in the previous ex-
ample, the maximum values for both checks are not close to zero for all refinements. Again,
these maximum values appear only in few nodes for each refinement, while the general order
of accuracy for both checks is 1074-107°.
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Figure 4.64: Values of max |f(x) — Ap, ,upn, ,(X)| calculated for the solution of (4.59).
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Check of discrete harmonicity in 9 of the solution

of the general transmission problem
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Figure 4.65: Values of max |Ap, yup, ,(x)| calculated over the exterior domain indicated by
erf&Q ’ ’
grey colour in Fig. 4.9 for the solution of (4.59). The horizonal axis has been reversed for

illustrative purposes.

Fig. 4.66 shows checking of the discrete transmission condition (4.38) calculated over
the discrete boundary v, , = a; , for the finest refinement. The figure shows that the
calculated values of discrete jump condition approximate well the exact value. Note that
the shape of the plot is influenced also by the numbering of boundary nodes. Figs. 4.67-4.68
present computations of minimum and maximum differences between exact and calculated
jump values, respectively. Both curves shows similar decreasing behaviour, and the minimum
difference converges to zero. The maximum difference is also decreasing, however perhaps
it will not converge to zero with further refinements, but this effect will be localised only
at few nodes neighbouring the exterior corner points. This behaviour is expected from the
previous examples of various transmission problems considered in this section.
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Calculated discrete jump condition for function values
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Figure 4.66: Check of the discrete transmission condition (4.38) for the solution of (4.59)
given by formula (4.40) for the finest refinement.

Minimum difference for the discrete jump condition
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Figure 4.67: Minimum difference for the discrete transmission condition (4.38) for the solu-
tion of (4.59) given by formula (4.40).
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Maximum difference for the discrete jump condition for function values
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Figure 4.68: Maximum difference for the discrete transmission condition (4.38) for the solu-
tion of (4.59) given by formula (4.40).

Next, Fig. 4.69 shows checking of the discrete transmission condition (4.39) calculated
over the discrete boundary Vs = Yhy s for the finest refinement. The figure shows that the
calculated values of discrete jump condition for the discrete normal derivative approximate
well the exact value. Note that the shape of the plot is influenced also by the numbering
of boundary nodes. Further, Fig. 4.70 present computations of minimum and maximum
differences between exact and calculated jump values for discrete normal derivatives. The
figures clearly indicate that both differences converge to zero with refinement.
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Calculated discrete jump condition for discrete normal derivatives
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Figure 4.69: Check of the discrete transmission condition (4.39) for the solution of (4.59)
given by formula (4.40) for the finest refinement.

Minimum and maximum difference for the discrete jump condition

e for discrete normal derivatives
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Figure 4.70: Minimum difference for the discrete transmission condition (4.39) for the solu-
tion of (4.59) given by formula (4.40).
4.5 Short summary of the chapter

In this chapter, basics of the discrete potential theory on rectangular lattices have been pre-
sented. In particular, discrete volume potential, discrete single-layer potential, and discrete
double-layer potential have been constructed for interior and exterior setting. Additionally,
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discrete analogous of the classical Green’s formulae have been proposed for both interior
and exterior constructions. Moreover, the difference appearing on the way of constructing
the discrete Green’s formulae and related to the specific geometrical setting have been un-
derlined. The main part of this chapter has been devoted to applications of the discrete
potential method to interior and exterior boundary value problems, as well as to the dis-
crete transmission problems. Several theoretical results related to the discrete boundary
value problems have been provided, and the solution method of discrete transmission prob-
lems has been proposed originating from the discrete jump conditions for function values
and discrete normal derivatives. Finally, various numerical examples underling the practi-
cal usability of the discrete potential method have been presented in the final part of this
chapter.
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Chapter 5

Basics of discrete function theory on a
rectangular lattice

Similar to the potential theory, discussed in Chapter 4, the classical complex function theory
is constructed on the basis of the fundamental solution of Cauchy-Riemann operator. The
corresponding operator calculus is then based on the Borel-Pompeiu formula, which has the
following form for a complex-valued function u [10]:

1 ult)ydt 1 [ou 1 u(z), z€Q,

— [ an=
2mi ) t—z w ) 0zZt—z
r Q

If function u is holomorphic in €2, i.e. a—u =0, z € (), then we obtain the classical Cauchy
z

integral formula

1 u(t)dt _ { u(z), z ; Q,
0, z & (.

—

In a short form, the Borel-Pompeiu formula can be written as follows

u(z), z€Q,

Fpu+TDu:{07 -0,

where F1 and T are called Cauchy-Bitsadze operator and Teoderescu transform, correspond-
ingly, and D is the conjugated Cauchy-Riemann operator.

Similar to the discrete potential theory, where the discrete fundamental solution of the
discrete Laplace operator plays the central role, a discrete counterpart of the classical com-
plex function theory is built upon the discrete fundamental solution of the discrete Cauchy-
Riemann operator. Therefore, extension of the discrete function theory to a rectangular
lattice, proposed in this chapter, starts with the construction of the discrete fundamental
solution of the discrete Cauchy-Riemann operator. After that, discrete Teoderescu transform
and Cauchy-Bitsadze operator are introduced, which are finally used to construct discrete
Borel-Pompeiu formula on a rectangular lattice. Thus, this chapter presents first steps in
extending the discrete function theory to a rectangular lattice.
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5.1 Fundamental solutions of the discrete Cauchy-Riemann
operators on a rectangular lattice

As it has been mentioned in the beginning of Chapter 2, methods of the discrete function
theory are based on the discrete fundamental solution of a discrete Cauchy-Riemann opera-
tors. Therefore, this section discusses construction of these discrete fundamental solutions,
as well as provides some estimates for them.

5.1.1 Short repetition of the continuous case

The classical continuous Cauchy-Riemann operator and its conjugated are given as follows

9] 0 9] 9,
1._ : 2._ _
b= (8:51 +Za:r;2> and D (8951 83:2) (5.1)

82
which factorise the Laplace operator D'D? = D?D! = A with A := Z

Now, let D be the space of all infinitely differentiable functions w1th Compact support.
In the sense of distributions, the solutions E* of the equation
DFEF(x) = 0(x), with (0,¢) =9(0), @ €D and ke {1,2}

are called fundamental solutions of Cauchy-Riemann operators. These fundamental solutions
are explicitly given by

1 1 1 1
F'x)= ——— and F*x)=———.
21 x1 + 1xg 27Xy — i
1 .
By using the Fourier transform (Fu(y))(x) = o / u(y)e”™¥dy and the corresponding
T
y€eR?
1 .
inverse Fourier transform (F~'v(x))(y) = By / v(x)e™Ydx, the transformed versions of
T
x€R?

the fundamental solutions can be calculated:

) De cact ) S
FUEYy) = — L2 and (FUEY)(y) = —2 .

) . . . —b
Next, by using representation of complex numbers a + ¢b as matrices (Z a ), the funda-

mental solutions of Cauchy-Riemann operators can be written as follows:

n Y2 N Y2
P2 (2 P2 —p (2
(R () () ()
E(x)= - , E*(x) = —
2m 2m
ME M M ME
where functions y;|y| =2, j = 1,2 are locally integrable, see [60, 106] for details.
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5.1.2 Discrete fundamental solutions of the discrete Cauchy-Riemann
operators

To construct the approximation of continuous Cauchy-Riemann operators (5.1), at first these
operators will be rewritten in a matrix form as follows

09 9 0
. 0y 0xo i Oor; Oxs
o0 | 90
Ory Oy O0ry  0Oxy

By using the classical finite difference operators D;,j = £1, 42 introduced in Chapter 2,
the following pair of discrete operators on a rectangular lattice can be defined

~ D_1 —D2 ~ Dl D2
D’l”’hQ = (D—2 D, ) ’ D}zll’}” = (—D_2 D_l) ' (5:3)

Obviously, operators (5.3) approximate the continuous Cauchy-Riemann operators for hy, hy —
0. Moreover, straightforward calculations show that the discrete Cauchy-Riemann opera-
tors (5.3) also factorise the discrete Laplace operator:

- ~ - ~ A 0

Dy o Diny = Dip aDppy = (7002
hi,h2*"h1,h hi,h2*"h1,h :
1,h2 1,h2 1,h2 1,h2 0 Ah1,h2

Thus, the discrete Cauchy-Riemann operators factorise the discrete Laplace operator, as in
the continuous theory.

Additionally, similar to the continuous case, the notion of discrete holomorphic functions
can be introduced:

Definition 5.1. Let €, , be a discrete domain, then a discrete function fj, , defined for all
(mighy2) € Qp, , and satisfying

(Dilzl,hthl,2> (m12hi2) =0,

is called a discrete holomorphic function in €2y, ,. Similarly, a discrete function f, , defined
for all (my2hy2) € Qp, , and satisfying

<Dl211,h2fh1,2) (ma2h12) =0,

is called a discrete anti-holomorphic function in €y, ,.

Methods of the discrete function theory are based on the discrete fundamental solutions

of operators f);l’h2 and Dihhz. Therefore, these discrete fundamental solutions need to be
calculated. Thus, following approach for square lattices described in [45, 60], the following
definition on a rectangular lattice is introduced:
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Definition 5.2. Each 2 x 2 matrix £}, , which is a solution of

(Dl _D2> (Efill,hz,ll Elill,hz,m) — (5h1,h2 0 ) (54>
Doy Dy ) \Ep oot Enyno2o 0 Onyh

is called a discrete fundamental solution of the discrete Cauchy-Riemann operator. Analo-
gously, each 2 x 2 matrix Ef, , , which is a solution of

( Dl D2) (Eil,hg,ll Eg1,h2,12) — <6h1’h2 0 ) (55)
_D—2 D—l Elel,hz,Ql Ef211,h2722 0 6h1’h2

is called a discrete fundamental solution of the discrete conjugated Cauchy-Riemann operator.

To construct the discrete fundamental solutions of the discrete Cauchy-Riemann operator
and its conjugated, the same strategy as for the discrete Laplace operator will be used: the
discrete Fourier transform (2.3) will be applied to both sides of equations (5.4)-(5.5). The
use properties 10 and 11, see Chapter 2, of the discrete Fourier transform leads to

1
gl’lbl,hz f’:ﬁhQ (FhlthE}]ith,ll) (y) (FhlthEf]il,h2712) (y> % 0
gil,hg _’Sfjll,hg (Fhlyh2E]111,h2,21) (Y) (Fhlyh’QElilll,hQ,22) (y> O i
2

for the discrete Cauchy-Riemann operator, and

1
_gf:llth _gf:fhz (Fh17h2Ef211,h2,11) <Y) (Fh17h2Ef2Ll,h2,12) (y) % 0
—5}2“,@ fflll,hQ (FhlahZEgl,hg,Ql) (Y) (FhlmEfQLl,hzgz) (Y) 0 i

2T

for the discrete conjugated Cauchy-Riemann operator. Next, both sides of the above equa-
tions are multiplied with inverse matrices of Fourier symbols of difference operators, and
thus it follows

—1 -2
§h1,h2 é.hth

1
(Fhl’hZEflll,hmll) (}’) (thh?E}thth?) (y) 2— 0 df2l17h2 df2117h2
— T
= 1 ,
(Fhl,hQEftl’f@’Ql) (y) (Fhl,hQEflLl,hQ,22) (Y) 0 % 5}27,1,}12 _gl:’ll,l,hz

2 2
dh17h2 dhlyhz

. . -1 —9 .

where it has been taken into account that &, ;&0 + &7 160, = —dh, n,» which follows
immediately from the factorisation of the discrete Laplace operator by the discrete Cauchy-
Riemann operators. Similarly, for the discrete conjugated Cauchy-Riemann operator the
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following formula is obtained

1 . £l1117h2 . 5;12,]12
(Fhl,thl%th,ll) (y) (Fhl,h2E]?Ll,h2,12) (}’) 2— 0 d%hh& d%ll,hQ
— T
2 2 O 1 2 —1
(Fhlvh2Eh17h2,21) (Y) (Fh17h2Ehlyh2,22) (y> % _€h17h2 €h17h2

2 2
dh17h2 dhl,h2

Finally, by taking inverse Fourier transform the following representation of the discrete
fundamental solutions of the discrete Cauchy-Riemann operator for all points (mih;, mahs)

is obtained
S it
RthQF d21, 2 Rhl,hQF d21, 2
h1,h2 h17h2

E,ihhz(mlhl,mghg) = s (56)

ggl,hz 5}llfl,ha
Ry '\ 57— | BpynF | —5—
dhl,hz dhl,hz

and for the discrete conjugated Cauchy-Riemann operator

gilzl,hg £f712,fm
Ry o F > Rpy o I P
h1,h2 h17h2

Eil,@(mlhl’mth) = ; (5.7)
-1
F _ 5}2'47}1& F Shl,hz
Rh17h2 2 Rh17h2 2
hi,h2 hi,h2
where o
. hy R 44
)3 ] [ s
Ry, F|—=—|=|=— 2hhe o —i(mihiy+me 2y2)dy1dy2
1,h2 (d%l’hQ o2 ) d%ll,hQ
Thy TRy
with 7 =1, 2.

5.1.3 Estimates for the discrete fundamental solutions of the dis-
crete Cauchy-Riemann operators

For estimation of each matrix element of the discrete fundamental solutions Ej, , and E} ;.
will be used the following theorem of Thomée [99]:

Theorem 5.1. Let n be the dimension of the Euclidean space and pi, ps be two positive
integers with ps < p1 +n. For a natural number N > 0 let kx be the set of functions of the

form T(©) = ggg;

, 0# O € Qr, where T;(©) are trigonometric polynomials
T;(0) =) t;ue™®, =12,
i
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which satisfy the following conditions:

(1) there are ordinary homogeneous polynomials P;j(©) of degree p;, j = 1,2, such that
T;(©) = Pj(©) + o(|O7) when © — 0,

(i) |T2(©)| = N7'Of=, © € Qn,

(ii1) |tjul <N,

(w) t;, =0 for |u| > N.
For any N > 0 satisfying (ii)-(iv) there is a constant C' such that for all p (with integer
components) and T € Ky,

/ T(©)e0do| < C(|u| + 1)-m—r2) (5.8)

™

Lemma 5.1. At each mesh point (mh) = (myhy, mahs) elements of matrices E}“m(mlhl, mohs)
and Eglm (myih1, mahs) can be estimated as follows:

e
(i) / ghl ha —z (m1h1y1+mahaysz) dyldy2 < Cl max {h%7 h%}
o @ ~ ha(Imh| +max{hy, hy})?
“hy Ry
’ ' I CQ max {hl, hg}
ho(|mh| + max {hy, ho})’
hl

2
h1,h2

/ / hl h2 o—i(mihiyi+mahays) dy1dy2 < - C3hi max {h%> h%} ~
d h3(|mh| + max {hy, ho})
’T T hy

C4h1 max {hl, hg}
h3(Jmh| + max {hy, ha})’

where the constants do not depend on stepsizes.

Proof. At first, the following element of Eilm (myhi, mahsy) will be estimated:

o
Ry
1 ? 6hl ha —z(m1h1y1+m2h2y2)
I = 7 7 ———e dy, dys
& S Qhyhy
T hy Ry
hy Ay
2 — ety
_ i i (1 ) e—i(m1h1y1+m2h2y2)dy dy
2 hi 4 2h1y1 2 haya 1892] -
T 132 sin + h2 sin 5
_m 1
ho hy
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Using change of variables © = (01, 0,) = (hyy1, haoys) leads to:

—101
I = / / ke e~ HmO1tm202) 49, 4O, | .
27T h2hsy 1he h2 sin % sin %

—T —T

wml’k

1
Additionally, — 12 will be factored out from the denominator, and thus the following expression
1

is obtained:

_ —191)
I — i(m1®1+ﬂ’L2@2)d@ d@
' 7T2h2h2//4sm2 61 —|—4h2 sin 626 e

Zrln 2

_ —1@1) )
_ Z(m1@1+m2@2)d@1d@2
47T2h2//4s1n2 @1+4h2 sin 9—

2

2sin @7 —i(m1©1+m20y)
_ - e 191 202 d@ld@Q
477 h2 481n2 61 + h; sin? %

7 rr sin © ,
+— / / g ¢ MOT0d0,d6,| .
4m2hy g 4 sin? =+ 4}7% sin? &2

2
Next step is to consider the following expression from the first summand:

2sin® 9

T(@l, 62) -

4 sin? % + 42—% sin? %7
Tl (@17 @2)
T2(®17 @2)
to the Thomée’s theorem. The polynomial 7 then has the form
1, 1 —i01

Tl(@l, @2) =1- 56191 - 56

which can be expressed in the form with T;(©) = >~ t;,,e™® for j = 1,2 according
m

1
thus implying that ¢, , = —3 for 4 = (1,0) and p = (—1,0), and t;, = 1 for u = (0,0),
and t;, = 0 otherwise. After using the Taylor expansion it follows that 77(0;,0,) =
2

P(©) +0o(|8) for ©® — 0 with P,(0) = %, and therefore, the degree of polynomial P;(©)

is p; = 2. After reformulating the second trigonometric polynomial T5(01, ©5) in the form

h3 %) o, M e, M _e
T,(©,,0 24 9L P11 _ o701 L0 L0
2(01,02) =2+ 2 € h%e h%e g
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it becomes clear that

rtgu—2+2Z—§, for = (0,0),
ta, = —1, for u=(1,0),u = (=1,0),
t2u__Z_§7 for pp = (0,1), = (0, -1),
[ L2, =0, otherwise.

Again, by help of the Taylor expansion, it follows that T5(0;,05) = P»(0) + o(|©?) for
2

© — 0 with P(0) = 62 + %@%, and therefore, the degree of polynomial P(0©) is p, = 2.
Finally, it is necessary to discass the number N from the Thomée’s theorem. For the second
condition |T5(0)| > N~YO|P2 of the Thomée’s theorem, |T5(0)| needs to be estimated at
first. The corresponding estimate is obtained by using the same approach as in constructing

estimate (3.9). Noticing that

T5(0) = [ha&h, 1, (O1)* + (M€, 4, (©2) 7,

then from the use of Jordan’s inequality and the second condition of the Thomée’s theorem
it follows

4

2

lop . mler

’ 2( )’ = = 4(|@1|2+$|@2‘2)

1
(|@1’2 + g\@zp) >

The last inequality needs to be analysed with respect to a:

( 2

a=1 = N2> 7r—;
4
<] —» 7|02 < 72|02 . N> w2
o = Z
6.7+ /6.7 = 1o i
7%|0|? m2|0|? a’n?
a>1 = T ST Ten T — N2
( 4(1612 + £[02%) ~ 4(&161 + £102)

Because some of the coefficients t5, depend on stepsizes h; and hg, the next step is to
show that the last inequalities for N will be satisfied in this case as well. Considering the
expressions for coefficients ¢;, for j = 1,2, the following inequality must be studied

2

h 1
2425 <N, or 2+2= <N.
hs a?

The goal now is to show that for any «, it is possible to find a number N satisfying the
inequality above and the third condition |¢;,|] < N of Thomée’s theorem. Because « is
always a finite number not equal to zero, the above inequality is fulfilled for arbitrary h; and
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hs, but with different N, but still finite, depending on «. Considering the results obtained
above for @« <1 and «a > 1, it becomes clear from the pair of inequalities

1 2
2+2—2§N and N >—, fora<l,
« 4

1
that the first inequality becomes dominant, because factor — tends to infinity for o — 0,

o)
and thus, the number N must be increased for small «; in contrast, the second pair of

inequalities
o’n?

fora>1

1
2425 <N and N2>
«

1
implies that the second inequality is the most important, since — tends to zero for a — oo.

In fact, the smallest possible N satisfying both cases is obtamed then a =1, ie. for hy = hg,
and it follows that N > 4, as in the classical case, see [60]. Thus, underhmng again that «
is a finite number different from zero, it is always possible to find such a number N, that
the condition |¢; ,| < N will be satisfied, and therefore, the Thomée’s estimate can be used.

The analysis of the second summand in [; is analogous, and it leads to the fact that
p1 = 1, po = 2 in this case. Thus, the double integrals can be estimated by using the
theorem of Thomée as follows:

B
(i) / Shl,h2 e—z(m1h1y1+m2h2y2 dyldyg < Ol + 02 ‘
2r) ) &, = ha(Im[+1)*  ho(jm| +1)
T hy Ry

1
The same estimate holds for Ry, 4, F <£h1’h2> as well. Similarly, the following estimates can

d2
hl ,h2
be obtained:

, 2 A1
(i) / / €h1,h2 —z (mih1y1+mahay2) dy1dy2 < Cghl + C4h1 .
o) ) ) @ = W3(0ml+ 12 W3(fml+ 1)
T hy Ry

Finally, in order to provide a clear dependence of the estimate on a point (mh) = (myhy, mahs),
-1

the estimate for Ry, p, F' (Ehl’hQ) is reformulated as follows

dilth
C C C C.
ol 17 il 1) /71 o /72
? 2 hs ( mihi 4 mshi | 1) hy ( i n 1)
= 2+ 1 022 2 272 '
h2 <max{f1Ll,h2} + m2h2 + 1> h2 (max{hl,hg} mlhl + m2h2 + 1)

Thus, after simplification of the resulting expressions, the assertion of lemma is proved. [J
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Since the estimates provided in Lemma 5.1 depend not only on hq, hy and m = (m, ms),
but also on unknown constants C;, ¢ = 1,2,3,4, Figs. 5.1-5.4 illustrate these estimates
calculated along the main diagonal of the lattice in dependence on the constants (see Fig. 5.1-

1 h
5.2 for cases f,jfll,u and 5}:—?@, respectively) for hy = 3> hy = 7 and on the ratio a = h_2 for
’ ' 1
fixed values of constants C; = Cy = C3 = Cy = 50 (see Fig. 5.3-5.4 for cases §i{h2 and §i%h2,
respectively).

Estimate along the main diagonal of the lattice
for different values ¢y = Cy = C' and h; = %, hy = %

600 —

- (C=25
500 - —-—C=50
-—C=75
_saoo] C=100
5;;; 200 —
ol ‘¥
0 ! \ * s 3 ——————a—a—a——a—
0 2 4 6 8 10 12 14 16 18 20

Indices of nodes

Figure 5.1: Estimate for the elements of E,llhh2 (myhy, mohsy) and E}%th (myhy, mahy) for fi{hQ
calculated along the main diagonal of the lattice with h; = % and hy = % for different values
of constants C; = (5 based on Lemma 5.1, where the horizontal axis represents indices of
nodes, and the vertical axis is the value of the estimate.
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Estimate along the main diagonal of the lattice
for different values C3 = Cy = C and hy = 3, hy = }

1200

-(C=25
-—C=50
-—C=75
- C=100
—(C=150
C=200

1000

h,he
%
o
=]
T

+2

(=)

(=3

(=]
T

Estimate for ¢

N

=3

S
T

°l \\'\‘_‘K 2

0 | | T > >
0 2 4 6 8 10 12 14 16 18 20
Indices of nodes

Figure 5.2: Estimate for the elements of Ej , (mihy, mohy) and Ef . (mihy, mahs) for f,jff’hz
calculated along the main diagonal of the lattice with h; = % and hy = % for different values
of constants C'5 = Cy based on Lemma 5.1, where the horizontal axis represents indices of
nodes, and the vertical axis is the value of the estimate.

Estimate along the main diagonal of the lattice for different o = Z—?
60—
~ho = 4h;
ol —hy = 3hy
—-—hy = 2.5h
~hy = 2Ry
40 |-
—hy = 1.5k
hy = 1hy

4 1
Estimate for for &,
o
(=]

\

0 2 4 6 8 10 12 14 16 18 20
Indices of nodes

Figure 5.3: Estimate for the elements of Ej ;. (mihy, moho) and Ef . (mihy, mahsy) for fﬁhQ
calculated along the main diagonal of the lattice with C; = Cy = 50 for different values of
ratio a based on Lemma 5.1, where the horizontal axis represents indices of nodes, and the
vertical axis is the value of the estimate.
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ha

Estimate along the main diagonal of the lattice for different o = i

60—

--ho = 4h;
Al —hy =3Iy
——ho = 2.5y
hos = 2hy
el —hy = 1.5~
hes = 1y

30~

Estimate for £

0 2 4 6 8 10 12 14 16 18 20
Indices of nodes

Figure 5.4: Estimate for the elements of Ej, , (mihy, mahy) and Ef . (mihy, mahs) for 5?;2’@
calculated along the main diagonal of the lattice with C3 = Cy = 50 for different values of
ratio a based on Lemma 5.1, where the horizontal axis represents indices of nodes, and the
vertical axis is the value of the estimate.

As it can be seen from Figs. 5.1-5.4, smaller values of constants lead to smaller values of
the estimate, as naturally expected. Moreover, similar to the discrete fundamental solution
of the discrete Laplace operator, the estimate is better when lattice is close to the square
one, since the case hy = ho provides the smallest values of the estimate. Nonetheless, a
rectangular lattice provide more flexibility in practical applications. Moreover, as it has
been pointed in Chapter 2, this situation is not unique, because the use of lattices and
meshes, which are not ideal, lead to a higher error, see again for example [88]. Thus, there
is always a trade-off between approximation quality and flexibility in practical applications.

Next, approximation error of the discrete fundamental solutions Ei’fl,hw k = 1,2 must be
studied. Therefore, let us consider the following element-wise difference between the matrix
of the continuous fundamental solution of the Cauchy-Riemann operators and its discrete

counterpart:

1 1 —coshsYs _itmpn.
E,’fl,h27lj(m1h1,m2h2) —Elkj<m1h1,m2h2) = (271')2 / :I:Tye ( hY)dy
S
Gy hi,heo
, 51 hS S 3 ) S —1 . ) S —1 .
¥ / lLwe—l(mh-y)dy — / i%e Umh-y) gy — / ﬂ:%e Umh-y) gy
hsdy,, by M M
YEQh g YERAQp, hy YEQhy by
(5.9)
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where [, = 1,2 and s = 1 if [ = j and s = 2 otherwise. Thus, the estimate is presented in
the following theorem:

Theorem 5.2. Let E’,jl,h%lj, l,j = 1,2 be the discrete fundamental solutions given in (5.6)-
(5.7) of the discrete Cauchy-Riemann operators, and let E{; be the continuous fundamental
solutions of the classical Cauchy-Riemann operators, for k =1 and k = 2, respectively. Then
for all x = (myhy, mahs) # 0 and all hy, hy > 0 the following estimates hold:

G max {h?, h3} Comax {h? h3}
- 47r2h2]m1h1]2 47r2h2(]mh\ -+ max {hl, hg})27

}E}ljl,h%lj (mahy, mahg) — Elkj(mlhla m2h2)|

forl =7, and

Csmax {h?, h3} Cyhy max {h?, h3}

Ep, hypaj(mahy, mahy) — Efy(myhy, mahs)| <
Bl g mahs, maha) = By mabn, maha) | € = e Qo]+ max (i, o))

for 1 # j, and where the constants are independent on stepsizes hy and hs.

Proof. To keep the presentation short, the proof will be done for £ = 1 and [,57 = 1, i.e.
the expression ‘E}L17h2,11(m1h17m2h2) — Elll(mlhl,mghg)| will be estimated. At first, the
last three terms of (5.9) will be considered. After using the change of variables 6, = hyy,
0y = hsoys, the following expression is obtained:

1 SIN YL . W1 i(mh-
I = —— / e~ im y)dy— 2L o—i(m Y)dy
(2m)? hadj, 4, ly[?

€Qhy hy YEQhq by

: 2 12 -
_ / WL it gy | < 1 max {Qhuhz} / __isin o _itmOgg
ly| (2m) hihs 4sin® 5 + 4sin” %

YERZ\Qny 1y €Qx

01 _ime) / 017 i

— ——e im0 49 — —— e mOqg| .
/IH\26 o12°

0€Qx OERA\Q

The last expression can be rewritten by help of Fourier transform as [Fvy(0)](m1, ma) with
function v, given by

max {h?, h3} sin 0y 01 6,
0) = — _ )
'Ul( ) Qﬂ_h%hz 0o |0’2 XQxr |0’2XR \Qxr | »

4 sin? %1 + 4sin? 3

where xq, and xg2\g, characteristic functions defined in the classical way over indicated
sets. Following [106], and taking into account that the function v, is locally integrable, and
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therefore, it can be identified with the functional (vy, ¢) for all ¢ € D, the following property
can be used:

(Pu@)0.500) = (~ 57 (T ) o). (5.10)

i

Let now I'g, be the boundary of the square @, and let Q_L: QrUTq,. According to [106],
the distributional derivatives of the function v,(6) € C?*(Q,) N C*(R? \ Q,) can be written
in the form

82’01 62?)1 8 5 (9?]1 .

™

821}1 81}1
where 77 is the outer normal unit vector at the points @ € I'g_, < ——— ¢ and are
P Qn {aeiaej } { 20,
0? 0
oand 22 respectively, and [v1]r,, as well as

06,00, " 99, @

0 0

H 8?;1 H denote the jump of v; and { 821} when passing through I'g, from R* \ Q,
7 T )

to (), along the direction of 7. Based on this formula, the partial derivative of v; can be

calculated as follows:

the classical parts of the distributions

9’vy  max{hi, h3} sin 0, 3 sin 26,
00?2 2mh3hy dsin® G +4sin® % (4sin® & 4 4sin? %)’
i 8 SiH3 91 691 8&‘{13 ( 6&1 88% )
- Xr mz o6 ) XRAD
(4sin? & + 4sin2 %2)° 0] [6]° ) *Ter T \Jgjt  jofe) e
0 sin 6,
+— | - cos(n, 0
0t ( 4sin® % + 4sin® %2 ( 1)XFQ”>

2sin” 9
+ (( S o1 oS 92> cos(1, «91))(1“@”] )

. . 2 fain20 2
4sin® % + 4sin® %) 4sin” 5 + 4sin”

Next, considering that Fourier transform along the boundary I'¢_ is zero, the Fourier integral
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at the points with indices (mj, my) can be written now in the following form

—LF 0?v1(0) _ max {h? h3} / B sin 0,
m3 06? 42h2hom? 4sin® % + 4sin® %2
€Qr
3sin 26, 8sin® 6,
(4 sin? %1 + 4sin? %2)2 (4 sin? %1 + 4sin? %2)3
(5.11)
601 89? _'( 0)
- - = “mdo
ol el ) ¢ i
/ 601 807\ _imo) g9
o] 10]°
0cR2\Q~

The expression under the first integral can be estimated from above by C~’1IO|_1. Therefore,
the resulting integral is weakly singular and exists. Hence, the first integral can be estimated
by a constant independent on h; and hs. The expression under the second integral can
be estimated from above by C’2|9|_3, and then can be easily calculated by help of polar
coordinates, and it equals also to a constant independent on hy and hsy. Thus, the following
estimate for I; is obtained:

Cimax {h3,h3}  Cymax{hi, h3}

I; < = .
L= 47r2h%h2m% 47r2h2|m1h1|2

Next, the last remaining term of (5.9) can be easily estimated by using the result of
Lemma 5.1, and thus the following estimate is obtained:

1 / 1 — cos hyy; iy gy | < Comax {h?, h3}
(271')2 hldzl,hz B 47T2h2(|mh| —l—max{hl,hz})Q'

YEQh, o

Finally, the statement of the theorem is proved by applying the same ideas for the

remaining differences |Ef’fhh27lj (myhy, mohs) — Elkj(mlhl, mahs)|. O

For the analysis of the estimate presented in Theorem 5.2, similar analysis as to the
estimate from Lemma 5.1 is performed. However, since the current estimate has three
arbitrary constants, the influence of C is analysed on the estimate is analysed in more
details, because the terms with constants C'; and C5 are the same as Lemma 5.1. Moreover,
two cases are considered: (i) [ = j; and (ii) [ # j. Figs. 5.5-5.6 display error along the main

,ho = 1 for varying constants in (i)

N | —

diagonal of the rectangular lattice with stepsizes h; =

and (ii) cases, respectively.
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Zk}(mlhhmth)‘
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w

(5]
93
1

5]
(=
T

Estimate for \Ekhhﬂj(mlhhmmg) -
[=)

(=1

Error along the main diagonal of the lattice
for different values Cy = C, = C and hy = 3, hy = }

-(C=25
-—C=50
-—C=75
- C=100
—(C=150
C=200

4 6 8 10 12 14 16 18 20

Indices of nodes

Figure 5.5: Estimate from Theorem 5.2 calculated along the main diagonal of the lattice

with hl == %, hQ =

%, and [ = j for different values of C} = Cy = C', where the horizontal

axis represents indices of nodes, and the vertical axis is the error.

B w
W =

"(mlhlam2h2)|
S

k
lj

[~ —_ 5] (35 ) (%)
W o w S [ =} 3

Estimate for \E""hhﬂj(mlhl, mahy) —
(=)

(=1

Error along the main diagonal of the lattice
for different values C5 = Cy = C and h; = %, hy = %

- (=25
-—C=50
—C=T75
- (=100
—(C=150
C=200

4 6 8 10 12 14 16 18 20
Indices of nodes

Figure 5.6: Estimate from Theorem 5.2 calculated along the main diagonal of the lattice

with hy = %, hy = i, and [ # j for different values of C3 = C; = C, where the horizontal

axis represents indices of nodes, and the vertical axis is the error.

Figs. 5.7-5.8 show error along the main diagonal of the rectangular lattice in case of fixed
constants C; = Cy = 50 and varying ration « for (i) and (ii) cases, respectively.
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Error along the main diagonal of the lattice for different o = Z—f and [ =7

= 12~

é: ho = 4hy

:f oL —°—h2 = 3h1

S hy = 2.5h

& —hy = 2h;

I 8r

. —hy = 1.5y

=

£ —=hy = 17y

e

£
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@ 2r

%

5 0 | ; ; . - I "
0 2 4 6 8 10 12 14 16 18 20

Indices of nodes

Figure 5.7: Estimate from Theorem 5.2 calculated along the main diagonal of the lattice
with hy = %, hy = }1, and [ = j for different values of o and fixed C} = C5 = 50, where the
horizontal axis represents indices of nodes, and the vertical axis is the error.

Error along the main diagonal of the lattice for different o = Z—f and [ # j

= 3r
£ hy = 4dhy
£l —hy =3
£ hg = 25h1
=) —~hy = 2h;
I 2F
= —hs = 1.5
=
g ~hy = 1y
— 1.5+
=
£
&
8
B 05
=
£
E 0 | | ! ' - - -
0 2 4 6 8 10 12 14 16 18 20

Indices of nodes

Figure 5.8: Estimate from Theorem 5.2 calculated along the main diagonal of the lattice
with hy = %, hy = }1, and [ # j for different values of o and fixed C5 = Cy = 50, where the
horizontal axis represents indices of nodes, and the vertical axis is the error.
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5.2 Discrete function theory on a rectangular lattice

The discrete Borel-Pompeiu formula and related operators on a rectangular lattice in interior
and exterior settings will be introduced in this section. All results presented in this section
are constructed for discrete geometries described in Chapter 2 and satisfying relations (2.5).

For the upcoming calculations it is necessary to define unit normal vectors on the four
J J

boundary parts ;" j = 1,...,4, which are identified with 2 x 2 matrices (njl n?), where
ng 1y
n% n% _ n‘f ng’ (-1 0
ni ny) \m3 ni)  \0 -1)’
ni n3\ B nf n3\ (0 1
n: ni) ni ni) \-1 0)°

5.2.1 Interior setting

and

At first, the discrete Teodorescu transform (T-operator), which is the right inverse of the
discrete Cauchy-Riemann operator, needs to be introduced:

Definition 5.3. The discrete T-operator on a rectangular lattice is defined as follows

Ty [f°, f1] (magha 2)
T (1% f1] = Thy [ SO, 1] (magha ) = ) (5.12)
T [f°, f] (m12ha )

where the components T}, k = 1,2 have the form
Telf°, fl(maghi2) = TR0 fl(maghi2) + T [f°, f1(maghas),
with
By ((myp — h2)ho)\' (£ 2ha2)
TR0 1 o) = Wil 5l 1,2 — l1,2)N12 1212
v Ly f](maghy 2) Z 12 (EéQ((ml,z —l12)h12) 1 (li2hy2)
(l1,2h1,2)€Qh1’2

and

Tl;r [fo’ f1]<m1,2h1,2) =

E;i ((m1,2 - 11,2)h1,2)>T (fo(ll,th,Q)>
Z s (E;i;((ml,z - l1,2)h1,2) 0

(1,2h1,2)€%, , 2 U, 53U T2s

ElL((mig—lig)h 2)>T ( 0 )
hih k1 ' ' ' )
i Z v (E112((m1,2 - 11,2)h1,2) fl (1172h1,2)

(l1,2h1,2)€’7,:1 ol U’Y;LQA UT14
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Now the following theorem can be formulated:

Theorem 5.3. For an arbitrary function f(miahy2) with (mighy2) € Qp,, C Rim 1t holds

(D—1 —D2> <T1 1f0, f1] (m1,2h1,2)) _ (fo(m1,2h1,2))
Dy Dy ) \Ta[f° '] (mi2hi) fHmighiz) )’
for all mesh points (my2h12) € Qy, ,, where the T-operator is defined by (5.12).

Proof. This theorem can be proved by straightforward calculations, as it has been done in
[57]. Thus, the following expression is considered at first:

- 1 D,1 —D2 TQ 0, 1 +T¥7 07 !
Dhl,z (Th1’2 [f07f }) - (D2 Dl ) (T;Q{;Ovﬁli +T;_ %-jj%ﬁl}) .

Next, components of the resulting vector expressions related to the discrete domain and
discrete boundary will be considered separately. Thus, the following four cases needs to be
considered:

(i) Dy (TS, f1]) — Do (T[S, f']). Application of the definition of T[f°, f!] leads to

Z hihoD_, Ef((mig —li2)hig) ! f0<ll’2h172))

(I1,2h1,2)€m, , o E211((m1,2 — l1,2)h1,2) fl(lmhm)

- > kD ( t2((m12 = lmm,z))T (f”(l1,2h1,2>>
e E%Q((ml,Q - ll,?)h1,2) fl(lLQhLQ)

(11,2h1,2)€ﬂh1,2

= Z hiho

i B 1 _
ot aTestn Ey((mig —lhia)hiz) Ey((mig —li2)hig)

© T (et} (Fn )

(11,2h1,2)€Qh1,2

fo(mmhm), Y (mighio) € th,z,
0, otherwise.

D,

(ii) D < /Y, f1]> (T'y [f°, fl]). Application of the definition of 77" [f°, f!] leads

208

(D 1)T (E111((m1,2 - 11,2)h1,2) Ellg((mm - 11,2)]11,2)) (fo(ll,zhl,z)
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to

5 | (%) (Bl T B i) (M)
C 5 (%) (B B (1,9, )
(

— Y (5h1’2((m1720— 11,2)/11,2)) < o 2h12))

(l1,2h1,2)€E1

T
. Z hih (5h1,2((m1,20— l1,2)h1,2)) (f1(l12h172))

(l1,2h1,2)€E2
fo(m1,2h1,2), Y (mighi2) € Vhy o2 U Vhio,3 UT s,
0, otherwise,

where = = V2,2 U Vhio3 UT 23 and =5 = Vhio)l U Vhy o, U T
(iii) D_y (TH[fO, f1]) + Dy (T[S0, f1]). Application of the definition of T[f°, f!] leads to
Z hihy (D 2)T (E ((ml 2 — I 2)h1 2) E112<<m1,2 - 11,2)h1,2)> (fo(ll,th,Q))
D, E; ((ml 9 — U1 2)h1 2) E212<<m1,2 - ll,z)hl,z) f1(11,2h1,2)
(l1,2h1,2)€0%, ,

- 0 fOl2ha o)
= Z fhs (5h1,2((m1,2 - 51,2)h1,2>> (fl(ll’zhw))

(l1,2h1,2)€0%, ,

{ fl(m1,2h1,2), Y (mighi2) € th,g,

0, otherwise.

(iv) D_, <Tf [f°, f1]> +D; <Tfr [f°, f1]>. Application of the definition of 77" [f°, f1] leads

to
Z hih (D 2)T (Elll((ﬂh 2 b 2) ) ((m1,2 - 51,2)h1,2)) (fo(lmhl,z))
(L 2h1a)EEn He D, Egll((mm L 2) 1 2) ((m1,2 - 51,2)h1,2) 0
D\ [E! ((mig —lig)hi2) Ely((mis — l1,2)h1,2)) ( 0 >

+ Z hhy [( Dy ) (Ei((ml,z —li2)hi2) Ellz((mm —l12)h12) ] fHlah )

(l1,2h1,2)EE2

- 0 ’ fo(ll,zhl,z))
N Z bz (5h1,2((m1:2 B l1v2>h1’2)) < 0

(I1,2h1,2)€E1

0 ! 0
+ Z fhs (5h1,2((m1,2—l1,2)h1,2)) (fl(lmhm))

(l1,2h1,2)€E2
_ I (mi2h12), V(mishia) € Vhioil U Vhy o4 UT 4,
0, otherwise,

where = = 7;1’2’2 U 7;1273 U3 and =, = 7;1271 U 7;17274 U4
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Thus, the theorem is proved. O]
In fact, during the proof of last theorem, the following corollary has been proved:

Corollary 5.1. For an arbitrary function f(miahi2) the following equalities are satisfied:
D_Th [fo, fl} (ma2h12) — DoTh [fO, fl] (mighiz) = fO(mighi o),

for (my2hi2) € U Vhna2 U Vhra3 U3, and
DTy [f°, 1] (maghao) + DiTs [f°, f1] (maghig) = fH(maghie),

for (mi2hi2) € Qo Uy 50 Uy pa Ul

Finally, the corollary and the previous theorem lead to the following theorem:

Theorem 5.4. The discrete T-operator (5.12) satisfies
(Th1,2 [D;ILLQ (Th, [£°, fl])D (m12h12) = (Tyy [0, f1]) (Ma2ha2),

for (my2hi9) € Qny U Vhio UL UTas.

Proof. The proof is done by straightforward calculations:

T, [Dh, (Thus [£0.£])]

= Th1,2 [Dfl (Th1,2 [foa fl:|) - D2 (Th1,2 |:f07f1}) ;D*Q (Th1,2 [foa fl]) + Dl (Th1,2 [foa fl])}

< ) (G B
(I1,2h1,2)€Q, k2\THL2 T 01,2)70,2 ) -2 Uhz U 1 Lhp T
* o E (s i) (O D )
i (ZLQ%E% e (gimi _ ﬁiiiziii)T (D_2 (Th s 1F9, £1) 0+ Dy (Ton [, fl]))
- 2w (e ()
o2 (gt (M)
5 (G TR () = T D) e

(l1,2h1,2)€E2
where = = Vha2 U Viyo3 JT@2s and =, = Viyo U Vo U4 ]
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The last theorem states that the discrete Teodorescu operator is indeed a right inverse of
the discrete Cauchy-Riemann operator introduced in the previous section. This fact is the
first building block in the discrete function theory as a special realisation of the theory of
right invertible operators. The next step is the study of the commutator DT — T'D, which
defines automatically an operator acting on boundary values of lattice functions, see [43]
and references therein for a further discussion. The crucial question for developing a discrete
function theory is whether this operator can serve as a discrete analogue of the Cauchy
integral operator. Thus, the following definition can now be introduced:

Definition 5.4. The discrete boundary operator on a rectangular lattice is defined as follows:

Fl[fO, fl](m1,2h1,2)
Ff 1] o= [Fuo(f% 1] (maghis) = ; (5.13)
B[f°, f](ma2hy2)

where the components Fy, k = 1,2 have the form

F[f°, 1 (magha o) ==

3 .
_ Z Z h2 <E]%1((m1,2 - l1,2)h1,2)>T (nl né) (f(l](ll’th’Q))
N —ha)h ] L 2h
=) (i 2k 2)E, , p((m12 —li2)his) ny ny) \J (lh2hi2)
4 o
-2 X M (E%1<<m1,2—h,z>hl,2>>T(n{ n) (foul,ghl,z))
El((mig —lig)hio) ny ny) \S'lighio))

J7=2(2) (l1,2h1,2)67;:1 9.

If the F-operator introduced above is well constructed, then it should coincide with
the commutator DT — T'D. The equality FF = I — T'D is usually referred to as Borel-
Pompeiu formula. Tt is well-known that the classical Borel-Pompeiu formula is the core of
the applications of function theoretic methods to boundary value problems of mathematical
physics. Particularly, the operator calculus presented in [46, 47] shows how powerful tools
of function theoretic methods are. Thus, extending the results related to the discrete Borel-
Pompeiu formula will provide a new perspective for applications of the discrete function
theory to engineering problems.

The proof of the discrete Borel-Pompeiu formula is quite technical and follows the same
approach presented by A. Hommel in [57]. The discrete Borel-Pompeiu formula presented in
[57] was constructed for domains allowing interior corner points, but exterior corner points
were not taken into consideration, and therefore, function values were set to zero at these
points. The motivation for this setting was not coming from the discrete geometry, as in
the case of this dissertation, but from the difference Cauchy-Riemann operator, because the
exterior corner points cannot be reached by the discrete Cauchy-Riemann operator applied at
the interior points. Then in [74], by A. Legatiuk, K. Giirlebeck, and A. Hommel, the results
from [57] were extended to the case of a rectangular lattice with two different stepsizes, and
also the exterior corner points were included into the construction aiming at extending the
class of functions to which the discrete Borel-Pompeiu formula can be applied. However, no
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geometrical reasoning has been taken into account during this extension. Finally, another
extension of the discrete Borel-Pompeiu formula from [57] to include the exterior corner
points has been proposed in [2] by Z. Al-Yasiri for the case of a square lattice with only one
stepsize. The motivation again was coming not from geometrical considerations, but from
the goal of considering a wider class of functions.

Because this dissertation aims at studying discrete potential and function theories on
the consistent geometrical basis, it is necessary to adapt the results from [74] to the current
geometrical setting introduced in Chapter 2. Therefore, another version of the discrete Borel-
Pompeiu formula on a rectangular lattice for geometries without interior and exterior corner
points is introduced in the following theorem:

Theorem 5.5. The discrete Borel-Pompeiu formula on a rectangular lattice has in each
component the form

_ 0 - o
D DONCED-B e
for all points (my2h12) € Oy, ,, where

fomaighig)  for (maghis) € (o Up 1 Udh,e)

f? _ ~
0 for (ma2h12) & (i Uhy o1 UVnian )

fHmighig) for (mighin) € (s U ,3YU Y ,a)
O fOI‘ (mLQth) ¢ Qh1,2 U 7}:1’2,3 U 7]:17274

Proof. The proof of the theorem is based on explicit calculations with 7" and F' operators
introduced previously. The main idea is to apply these operators and simplify the resulting
expressions in order to show that the claim of the theorem holds.

Let us now consider the following expression

S1= Z hih (Elil((mL? - l1,2)h1,2))T (D—lfo(ll,ghlg) — D2f1<l1,2h1,2))
! A\ EBL((mig — hig)hao) D_5f%l12h12) + D1 f (lighi2) )

(l1,2h1,2)€Q, ,

After performing matrix multiplication, the resulting sum can be separated into four parts.
For shortening reasons, technical calculations will be shown only on the first term from the
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resulting expression:

> hhoEl((mig — li2)hia) Do1 fO(l 2hi o)

(ll,2hl,2)€Qh1’2

= Z hQE]il((mlz - 11,2)h1,2)f0(l1,2h1,2)

(11,2h1,2)69h1’2

- Z hQE]il((ml,Q - 11,2)h1,2)f0((l1,2 + k3)hi2)

(l1,2h1,2)€Qh1’2

= Z hZE]il((ml,Z - 11,2)h1,2)f0(l1,2h1,2)

(l1,2h1,2)€Q, ,

- Z haEyy ((mag + ks)hy g — lighi2) (I 2ha 2)

(I1,2h1,2)€Qp, , U7;1,2,1\7;1,273

= > hheD_1Ej((mag — hia)hi2) (1 2he o)

(l1,2h1,2)€Q, ,

- Z ha By (myghy s — (g + k1)hio) Ol 2ha o)

(11,2h1,2)€’7,:1 ol

+ Z haEjy (m1ahis — (g + k1)ha ) fO(liohy ).

(l.2h12)€7; , 5

Application of the same idea to all terms of S; leads to

S = Z hiho [D—lEél((mm - l1,2)h1,2) + D—2E;12((m1,2 - l1,2)h1,2)} f0(11,2h1,2)

(l1,2h1,2)€0%, ,

+ Z hyhy [_DQEiil((ml,Q - 5172)}11,2) + D1E;12((m1,2 - l1,2)h1,2)} fl(l1,2h1,2)

(l1,2h1,2)€0, ,

- Z ho By (maghio — (g + ki)hao) fO(lioha o)

(l1,2h1,2)€7h1’2’1

+ Z ho By (maghyo — (g + ki)hao) fO(lioha o)

+
(11,2h1,2)€’yh1’273

— Z hlEél(m1,2h1,2 — (l12 + k4)h1,2)f1(l1,2h1,2)

(l1,2h1,2)67h1,274

+ Z hlE]il(ml,th,Q — (2 + k4)h172)f1(51,2h1,2)

+
(11,2h1,2)€’yh1’272
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- Z hy By (myohio — (lig + ko)ha o) fO(lioha o)

(11,2h1,2)67;1 0.2

+ Z hy By (myoho — (lig + ko)ha2) fO(li2ha )

+
(l1,2h1,2)6’7h11274

+ Z h2E;12(m1,2h1,2 — (l12 + k?3)h1,2)f1(l1,2h1,2)

(l1,2h1,2)67;1 2.3

— Y haEu(mishia — (g + ks)hi) f1(lioha o).

(l.2h1,2)€7;, 41

Using properties of discrete Fourier transform on a rectangular lattice discussed in Chapter 2,
the following relations are obtained for k =1

-2
1 2 1 2 5’%2_—2 1 1
Fhl,Z‘D—2E12 - §h172Fh1,2E12 - §h1,2 —2 12 - §h172Fh1,2E21 - _Fh1,2D2E21a
TThy by
and
5—2

1 -1 1 -1 hia -2 1 1

Fhl,leEIQ - _gthFh1,2El2 - _ghLQ I d? - _€h172Fh1,2E11 - Fh1,2D2E11'
hi,ho

Next, the use of the inverse discrete Fourier transform on a rectangular and the properties
of the discrete fundamental solution for the first two summands of S; leads to

Z hyhs [D—1E111<<m1,2 - 11,2)]11,2) + D—2E112((m1,2 - 11,2)h1,2)} fo(l1,2h1,2)

(11,2h1,2)69h172

+ Z hyhs [—D2Eh((m1,z — lig)hi) + DiEfy((ma s — 11,2)]11,2)} fH(ligha )

(l1,2h1,2)€0, ,

= Z hiho [D—1E111((m1,2 - 11,2)’11,2) - D2E211((m1,2 - l1,2)h1,2)} fo(ll,zhl,z)

(l172h172)69172

+ Z hihg [_D2E111((m1,2 —li2)h12) + D2E111((m1,2 - 11,2)}1172)] f1(11,2h1,2)

(11,2h1,2)69h172

= Z h1h25h172((m1,2 - 11,2)h172)f0(l1,2h172) = fo(m1,2h1,2)XQhL2,

(l1,2h1,2)€Qh172

where xq, . is the characteristic function of €, , defined classically as follows
hio 1,2 y

— 17 v (ml,th,Q) S Qh1727
X, 0, otherwise.

The expression for kK = 2 is analogously simplified to fl(m1,2h1,2)XQh1 - After that, both
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cases can be unified as follows

Sp = fk_l(m1,2h1,2)XQh1,z - Z ho By (maghz — (L2 + k)ha2) f2(l 2ha 2)
(l12h12)€,) 510

+ Z haEpy (myghy s — (g + k1)hio) (I 2ha 2)
(11,2h1,2)€7;f1’2,3

- Z hiEpy (myghy s — (g + ka)hio) £ (1 2ha o)
(2h12)€7,, 54

+ Z hi By (maghy g = (lg + ka)ha2) fH(lgha 2)
(11,2h1,2)€72f1’2,2

- Z hi By (maghyz = (L2 + k2)ha2) f2 (L 2ha 2)
(2h12)€7,, 0

+ Z hiEjy(maghiz — (lug + ko)l o) f2(l2ha o)
(l1,2h1,2)€7?f1,2,4

+ Z ho Eja(maghiz — (lug + k)l o) f1 (12ha o)
(l,2h1,2)€7,, 53

o Z h2E112<m1,2h1,2 —(ha+ k3)h1,2)f1(l172h1,2)-

(h2m12)€v 0

On the next step, the expression Sy consisting in terms related to four boundary parts
Yiy 0o & = 1,...,4 will be added to S;. To shorten the derivation, only calculations related

to the boundary part v, ., are presented. Thus, the following expression is considered

Vhy 0.2 EL((mi2 —lia)h 2))T <—D2f1<l1 ohy 2))
St = hahy (kT2 T B )i, 2,
2 Z e (Eéz((ml,z —li2)h12) 0

(l1,2h1,2)€%, , -

E: E} ((m12 -4 2)h1 2) g D—lfo(ll ohy 2)

+ h h k1l ) 5 5 5 5

_ e (Eéz((mm —li2)h12) 0
(11,2h1,2)E’th,Q’22(11,2+k3)h1,2€'yh172’2 (515)

+ Z ha By ((mag — lig)ha2) fO(l2ha2)

(11,2h1,2)€'y;1 2’2;(11,2+k3)h1,2¢7;1 9.2

- Z ha By ((mag = lio)hyo) fO((lia + ks)ha2).

(li,2h1,2)@y,, , 0:(li2+k3)h12€7,

Performing calculations, similar to the one, shown during derivation S, the expression for
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S,"2% can be finally simplified to:

Vhy 9,2
5’2’”* = Z hthD—lElil((mLQ - ll,z)hl,z)fo(l1,2h1,2)

(li,2h1,2)€v,, 4 9

— Z hiEL (myghia — (lig + ka)hio) fH (11 2h1 o)

(l,2h1,2)€7,, ,

+ Z h1E;};1((m1,2 - l1,2)h1,2)f1(l1,2h172)-

(l1,2h1,2)6%71 2.2

Applying to the first term the same technique as during the derivation of Sy utilising prop-
erties of the discrete Fourier transform on a rectangular lattice for £ = 1 and k£ = 2, and
simplifying the resulting expression, the following result is obtained

7_127
Sy = > B (mighig — (g + ka)hio) fO(loha 2)

(li,2h1,2)€7;, 40

- ) By (mighia — (g + ka)hio) £ (Liaha 2)

(l1.2h12)€7;, 5 o

- Z hlE]iQ((ml,Z - 11,2)h1,2)f0(51,2h1,2)

(li,2h1,2)€7y, 40

> mBL(ma b)) f (i) + e )X,

(l1,2h12)€%, , 5

where 0y ; is the classical Kronecker delta, and Xyr belongs to the set of characteristic
1,2

function of v, , ; defined as follows

B — 17 v(ml,th,Q) S 7}:1’271'72. = 17"'747
XVhl,z,z‘ 0, otherwise.

Continuing in the same way with three other expressions from S; and adding them to
S1, the following expression is obtained after some simplifications

S3=3851+ 5y = fk_l(m1,2h1,2))(ﬂhl,2 + fo(m172h1,2)5k,1X7;1 .
+f0(m1,2h1,2)5k:71X7g1’271 + fl(m1,2h1,2)5k,2><7}71’23 + fl(m1,2h1,2)5k,2>(y;1‘24
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- Z hlEég((mLQ - l1,2)h1,2)f0(l1,2h1,2)

(li2h12)€v, 0

+ Z hlE]il((mlﬂ - l1,2)h1,2)f1(l1,2h1,2)

(l1,2h1,2)€”/h1’2’2

- Z h2E;i1((m1,2 - l1,2)h1,2)f0(l1,2h1,2)

(li2h1,2)€7, 54

- Z h2E;2((m1,2 - l1,2)h1,2)f1(l1,2h1,2)

(l1,2h1,2)€7, 51

+ Z h2E;2((m1,2 - l1,2)h1,2)f1(l1,2h1,2)

(11,2h1,2)€“/h_1 0.3

+ Z hoEgy ((mag — li2)ha2) (L2 )

(11,2h1,2)€’7h_1 0.3

- Z h1E;i1((m1,2 - 11,2)h1,2)f1(11,2h1,2)

(11,2h1,2)€’)/;1 0

+ Z h1E;i2((m1,2 - 11,2)h1,2)f0(11,2h1,2)-

(11,2h1,2)€’7;1 "

Next, the last eight terms of the above expression will be considered. Again, for shortening
the calculations, only terms related to v, ,, will be discussed explicitly. For these terms,
the following expression is obtained

- Z hlEéQ((ml,Q - 11,2)h1,2)f0(l1,2h1,2)

(l1,2h1,2)€%, 4, -

+ Z hlE]il((ml,Q - 11,2)h1,2)f1(11,2h1,2)

(li2h1,2)€v,, , 9

_ E11((m1,2—11,2)h1,2) g 0 1 f0(11,2h1,2)
- 2 (EZQ((WM - 11,2)’11,2)) (—1 0) (fl(l1,2h1,2>)

(l1,2h1,2)€%, , 2

— Z h (Elh((mm — l1,2)h1,2))T (n% n%) (f0<l1,2h1,2)
A\ Eia((maz = ho)hn o) n3 ni) \f'(hahg))’

(li2h1,2)€7, 0

)

Rewriting the expressions for other parts of the boundary leads to the following final expres-
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sion

S

fk_l(m1,2h1,2>Xk—1

A .
Z Z b (Ekl((mm - 11,2)h1,2))T (njl
*\ Era((mig — lig)hi o) 3

7=12) (h2ha2)evy, 5

hy (Ekl((ml,Q - 11,2)h1,2))T (njl

Era((mig —lig)h
j:2(2)(l1,2h1,2)67h1’2,j kQ(( b2 1’2) 1’2)

o (mashy o) k-1 + Fi[f0 f1](mighy o)

+

(]

with characteristic functions given by

and

X0 = 0,
X1 = 0,

otherwise,

otherwise.

Y (mighi2) € Qo U Vhio,l U Vhy 2,27

v (m172h’172) G th,Q U 7}:1,2,3 U 7}:172747

Next, it will be taken into account that the exterior corner points do not belong to €y, ,,

and therefore, it can be assumed that f and f! are zero at these points. A similar approach
has been used in the classical proof of the discrete Borel-Pompeiu formula on a square lattice

presented in [57]. Based on that, the following relation for the last term of S;hl’Q’Q in (5.15)

will be used

- 2.

hoEjy (i — lia)hio) fO((lua + k3)hy o)

(11,2h1,2)¢’7;71 2’21(11,2+k3)h1,2€’Y;1 2,2

- Z ha By ((myo — by 2)ha2) fO((lo + ks)ha )

(l1,2h1,2)€l23
(l1,2h1,2)€l23
+ D
(l1,2h1,2)€l23
(l1,2h1,2)€l23

> haEl((mag = hia)ha2) Doy fO(l2ha 2)

(l1,2h1,2)€l23

(l1,2h1,2)€l23

Z h1h2E;i1((m1,2 - l1,2)h1,2)D—1fo(ll,2h1,2)-

(l1,2h1,2)€l23

th,h((ng — 11,2)h1,2)f0((l1,2 + k3)hi2)
ha By (maz — o)y 2) fO(l12ha o)

hoEpL(mig — l19)h12) fO(li 2Ry 2)

hoEgy ((m1a — lig)hi2) fO(ligh )
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Analogously rewriting the third term of S;hl’z’Q in (5.15) and making some simplifications,
the following final representation is obtained

Tnip2 Ep((mig —lig)hio) ! —Daf (b2l 2)
Sy = Z huhe (E;Q((ml,g —li2)h12) 0

(11,2’11,2)6721‘2,2
E} ((mlz -4 Q)hl 2) g Dflfo(ll 2hy 2)
+ hihg (g b2 b2 22l
Z 1 (E;2<(m1,2 - 11,2)h1,2) 0
[(11,2h1,2)€’7;1722] Ul(l1,2h1,2)€T 23]

.-
Continuing similar calculations for the remaining terms of S, **” and after some simplifica-
tions, the following representation formula for S5 is obtained:

Sy = (T,j‘ [D_1f° = Dyf*, D_of° + Dy fl}) (mh).

The sum Sy + S5 can now be written as

Si4+ 8 = (T3 [D-1f* = Daf', Do f* + Dif']) (mighi) + Ss
= (TI? [Dflfo — Dyof ', Do f° + lel}) (myi2hi2)

+ <ka [D—1f0 - D2f1, D_2f0 + D1f1}) (m1,2h1,2) + Fk[fo, fl](m1,2h172)~

Finally, the last relation together with formula (5.16) lead to the statement of the theorem.
O

Similar to the continuous case, the discrete interior Cauchy formula on a rectangular
lattice can be immediately obtained from the discrete Borel-Pompeiu formula if the func-
tion f = (f°, f 1)T is a discrete holomoprhic function. Thus, the following theorem can be
straightforwardly formulated:

Theorem 5.6. Let f be a discrete holomorphic function, then the discrete interior Cauchy
formula on a rectangular lattice has in each component the form

(Fl [fo,f1]> _ (f$>
B[ f1] i
for all points (my2h12) € Qy, ,, where

fomaighig)  for (mighis) € (o Up 1 Un,e) s

[l = _ -
0 for (mi2h1,2) & (s Uiy n Yliise) s
fl fl(m172h172) for (m172h172) € Qh1,2 U ’7]:1’273 U ’7}:1’2’4 N
0 for (mi2h1,2) & (1 Uiy Y Vo
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5.2.2 Exterior setting

Similar to the interior case, the discrete Teodorescu transform for exterior domain needs to
be introduced:

Definition 5.5. The discrete exterior Teodorescu transform on a rectangular lattice is de-
fined as follows

; Tfext) [foa fl] (m1,2h1,2)
T [£0, 1 o= T [0, f1] (miaha o) = : (5.17)
T3 [£0, 1] (o 2ha 2)

where the components T,f““’, k = 1,2 have the form

T;Sext) [fO, f1]<m1,2h1,2) = T;.?m [f07 fl](m1,2h1,2) + T;éf [fO, fl](ml,zhm),
with
EL((mys — Lo)hia)\ " [ fO(lohis)
T 0’ N (ms oh — ( k1 1,2 1,2)1,2 1,211,2
k [f f ]( 1,2 1,2) (ll’2hwz)€m£t2 E}é((ml,g _ l1,2)h172) f1<l172h172)

and -
T [f, f1(maghas) =

> hah (Eé1<<m1,2 - 11,2>h1,2>)T ( 0 )
= A EL((mag — hig)ha ) [l 2h 2)
(h2hi2)€ay ) sUay 5
E} ((ml 9 — U1 2)h1 2))T (fo(ll 2hy 2))
hih k1 s , , , ,
" Z o (Eiiz((ml,z —li2)h12) 0
(l1,2h1,2)€ah12,1Uochl’274

+ Z hyhs (Elh((mm - 11,2)h1,2))T fO(l1 20y 9)

0
(l1,2h1,2)€R12

0
hih
* Z 1 (E;ig((mm - 11,2)]11,2)

(li,2h1,2)EA12

)
Y hih (Ezil((mm—lm)hm))T
)

(l1,2h1,2)€U34

0
+ hih
Z . <E112((m1,2 - 51,2)h1,2)

(l1,2h1,2)€L34

Now the following theorem can be formulated:

Theorem 5.7. For an arbitrary function f(myghyz) with (mizhi2) € Q¥ it holds

D_y —D, Tl(ezt) [f07 fl] (m1,2h1,2) fo(m1,2h1,2)
D_y Dy T [0, £ (my.2h19) fHmagha 2)
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for all mesh points (my2hy2)

€ Qfﬁg} where the T -operator is defined by (5.17).

Proof. The proof of this theorem goes analogously to the proof of Theorem 5.3.

]

Similar to the interior case, the following corollary and theorem can be proved for the
exterior setting:

Corollary 5.2. For an arbitrary function f(myahi2) the following equalities are satisfied:

D71T1(ext) [f0> fl} (m1,2h1,2) - Dsz(ext) [f()» fl} (m1,2h1,2)

for (mighi2) € 5, Uy, Uy, , 4 U Ri2UUss, and

fOT’ (m172h1’2>

D—QTl(em) [fo, fl} (m1,2h1,2) + D1T2(ext) [fO, fl] (m1,2h1,2) =

€ Qzal;fg U 06}21,2,2 U 06}21’273 U A12 U L34‘

Theorem 5.8. The discrete T**Y-operator (5.17) satisfies
(T2 [Dhs (T [1°.41)]) tmaaha) = (7377

fOT (m172h1,2) S Q?Lf?z U al:LQ'

12, 11]) (i 2h2),

Next, the discrete F' operator for exterior setting can now be introduced:

= fo(m1,2h1,2>7

fl(m1,2h1,2),

Definition 5.6. The discrete boundary operator on a rectangular lattice for the exterior
case is defined as follows:

where the components F

with

ext

F(emt) [f(]?fl] — |: htlfa;t)(fo f ) (m172h1’2) =

, k = 1,2 have the form

FEI1f0 Y (myghy o)

Y

Fz(em) [foa fl] (ml,zhl,z)

Fk(ext) [fov fl] (m172h172) =

Fe 1% f(maghig) ==

3 (
()(l12h12 Eah 2.

j=1
4

7=2(2) (11 2h1 2 Eahl 2.

1
k1
1
k:

1
k
1
k

m1,2 - ll,z)hl,z))T (njl

m1,2 - l1,2)h1,2)

m1,2 - l1,2)h1,2))T (”jl
J
3

m1,2 - ll,z)hl,z)

221

F 10, fY(maghiz) + Fy7 10, F1(maghi2)

n%) (fo(ll,th,Q))
n} ) \ S (l12h12)
f
f

J
J
Ty

1(l1,2h1,2)

0(l1,2h1,2))

(5.18)



and

FISI_ [foa fl](ml,zhm) = Z hQE}il((ml,Q - 11,2)h1,2)f0(51,2h1,2)

(l1,2h1,2)€ER12

+ Y By ((mig — (g + k)hio) fO(lioha 2)

(l1,2h1,2)€L23

+ Z hiEL ((m1o — (Lo + k) hi2) fr(Li2h2)
(l1,2h1,2)€A23

- Z h1E;i1((m1,2 - l1,2)h1,2)f1(l1,2h1,2)

(l1,2h1,2)€U34

+ Z h Eg((mag — (lig + ka2))ha2) fO (L 2ha 2)

(l1,2h1,2)€U14

- Z h1E;12((m1,2 - 51,2)h1,2)f0(51,2h1,2)

(l1,2h1,2)€A12

- Z hoEgy((maa — (Lo + ks))hu2) f Lok 2)

(l1,2h1,2)€R14

+ Z h2E;12((m1,2 - 11,2)h1,2)f1(l1,2h1,2)-

(l1,2h1,2)€EL34

By using the discrete T" and F' operators for the exterior setting introduced above, the
discrete exterior Borel-Pompeiu formula is presented in the following theorem:

Theorem 5.9. The discrete exterior Borel-Pompeiu formula on a rectangular lattice has in
each component the form

T(ext) D.. —D 0 F(ewt) 0, 1 E
E)IE: DO () -¢) o
for all points (my2h12) € Qi’fg, where

fo(m172h1’2> for (m172h1’2> € Qiffg U Oé}:17271 U Oé};17272 s

0 for (mi2h12) ¢ (47, Uy, , Uy o),
fHmaghig) for (mighis) € (U, Uay  sUay o),
0 for (m172h1»2) ¢ Q(fﬁg U 04}717273 U 04,71’274

Proof. Let us now consider the following expression

S, — Z Bl (Eél((mm — l1,2)h1,2))T (leo(ll,zhl,z) - D2f1(51,2h1,2)) .
Ei2((ml,2 —l12)h12) D72f0(l1,2h1,2) + D1f1(11,2h1,2)

ext
(l1,2h1,2)69h1’2
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After performing matrix multiplication, the resulting sum can be separated into four parts.
For shortening reasons, technical calculations will be shown only on the first term from the
resulting expression:

Z h1h2Ei1((m1,2 - l1,2)h1,2)D—1fo(l1,2h1,2)

ext
(t,2h1,2) €T

= Z h2E;11((m1,2 - 51,2)h1,2)f0(11,2h1,2)

ext
(l172h1!2)69h172

- Z hoEgy ((m1o — lig)hi2) f2((Liz + k3)hi2)

ext
(l1’2h1,2)€Qh172

= Z h2E111((m1,2 - 11,2)h1,2)f0(11,2h1,2)

(llyghl,z)egext

hi,2
- > ha gy ((ma + ks)ha 2 — b ol o) £l 2ha 2)
(llghl,Z)GQZaifQ U 04;172‘3 U L3y U ng\atl,Q!l\F14\F12

= Z hthDflE]il((ml,Z - 11,2)h1,2)f0(l1,2h1,2)

ext
(t1,2h1,2) €T

— ) mEj(mighis — (b + k1)hi2) £l 2ha o)
(l1,2h1,2)€a;17273

- Z ho Bl (myohia — (lig + k1)hi2) fO(l12h12)

(I1,2h1,2)EL34

- Z h2E;11(m1,2h1,2 — (ha2+ kl)h1,2)f0(l1,2h1,2)
(l1,2h1,2)€L23

+ Z h2E;11(m1,2h1,2 — (l12 + k?1)h1,2)f0(l1,2h1,2)
(l1,2h1,2)€0¢2—12,1

+ Z hQEiil(ml,th,Q — (l12 + k1)h1,2)f0(l1,2h1,2)

(l1,2h1,2)€T 14

+ Z ho By (maghia = (lug + k1)hi2) fO(luzha 2).

(l1,2h1,2)€l12

Using the same idea to all terms of 57, the following expression is obtained

S = Z hiho [D—lEél((ml,Q - l1,2)h1,2) + D—2E;12((m1,2 - 11,2)h1,2)} fo(l1,2h1,2)

ext
(l172h1!2)69h172

+ Z hihs [—D2E;11((m1,2 —lio)hi) + DiEjy((maa — l1,2>h1,2)] fHligha )

ext
(l1}2h1,2)€Qh1,2
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_ Z hQE]il(ml,th,Q — (2 + kl)hl,Z)fO(lvahm)
(h2h2)€ay, 5

_ Z h2E111<m1,2h1,2 — (l12 + k?1)h1,2)f0<l172h172)
(l172h1,2)6L34

_ Z hoEpy (maohis — (Lo + ki)hi2) f2(l2ha2)

(I1,2h1,2)€L23

+ E ha By (maghiz — (g + k)he) fO(Lipha 2)
(l1,2h1,2)€a:1,2,1

+ Z hoEjy (mishia — (L + k1)hi2) [ (l12h12)
(11!2}“,2)61—‘14

+ Z ho By (mighia — (L + ki)hi2) 2l 2h2)

(l1,2h1,2) €12
_ Z h1E111 (mi2h12 — (Lo + k4)h1,2)fl<ll’2h1’2)
(l1,2h1,2)€a;17272

_ Z hi By (maghio — (g + ka)hao) f1 (L2l 2)

(l1,2h1,2)€A12

_ Z hEp (mighio — (lig + ka)hio) f1 (11 2h2)
(l1’2h1,2)€A23

+ Z P Ejy(mishya — (lua + ka)hio) £ (11 2h12)
(21 2)€0yy 4

+ Z hiEjy(mishya — (lua + ka)hio) [ (11201 2)

(li,2h1,2)€T14

+ Z h Egy(maghig — (Lo + k’4)h1,2)f1 (h2hi2)

(l1,2h1,2)€l'34
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_ Z h1E112(m1,2h1,2 — (2 + k2)h1,2)f0(l172h172)
(h2h2)eay )4

_ Z h1E112(m1,2h1,2 —(lh2 + kz)h172)f0(ll72h172)
(l172h1,2)6U14

- Z hiEgo(maghy o — (L + k2)hy2) fO(li2h 2)

(li,2h1,2)€U34

+ Z hiEpy(mashis — (g + ka)ha2) fO(liohy o)
(11,2h1,2)€azl’272

+ Z hi Ejy(mashis — (g + ka)ha2) fO(liohy o)
(li,2h1,2)€T12

+ Z hlElig(ml,thQ — (l12 + kQ)hl,Q)fo(lmhl,Q)
(l1,2h1,2)€l23

+ Z hoEgo(maahy o — (I + ka)hy2) fH(T2ha 2)
(11,2h1,2)€a,:1,2,1

+ Z haEpy(myghy s — (g + ks)hio) f (1 2ha 2)

(li,2h1,2)€ER14

+ Z haEpy(myghy s — (g + ks)hio) £ (121 2)
(l1,2h1,2)ER12

— Z hQE;Q(ml,Zhl,Q — (2 + k3)h172)f1(l1,2h1,2)
(l1,2h1,2)6a2’1’273

— Z th,é(ngth —(lig+ k3)h1,2)f1(l1,2h1,2)
(l1,2h1,2)€l'34

— Z hoElo(myohio — (lig + k3)hi2) fH (11 2h12)-

(l1,2h1,2)€l23

Using again properties of discrete Fourier transform, the following relations are obtained for
k=1
Fh1,2D72E112 = _Fh1,2D2E2117 and Fh1,2D1E112 = Fh1,2D2E111'

Next, the use of the inverse discrete Fourier transform on a rectangular and the properties
of the discrete fundamental solution for the first two summands of S; leads to

Z hyhs [D71E111<(m1,2 - l1,2)h1,2) + D72E112<<m1,2 - 11,2)}11,2)} fo(ll,zhl,z)

ext
(ll’zl”LLz)GQhL2

+ Z hihy [—DQElll((ml,z —li2)h12) + D1E112(<m1,2 — ll,z)hl,z)] fl(l1,2h1,2>

ext
(11,2’11,2)69;11,2
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= Z hihs [D—lElll((ml,Q - l1,2)h1,2) - D2E211((m172 - ll,z)hl,Q)] fo(l1,2h1,2)

ext
(l1,2h1,2)€Q5T"

+ Z hihs [_D2E111((m1,2 - l1,2)h1,2) + D2E111((m1,2 - 51,2)h1,2)] fl(l1,2h1,2)
(11,2h1,2)eﬂiﬁf2

= Z h1h25h1,2((m1,2 - 11,2)h1,2)f0(l1,2h1,2) = fo(m1,2h1,2)XQ;f1t2,

ext
(11,2h1,2)€Qh1’2

where Xqget 18 the characteristic function of fol”’; defined classically as follows
1,2 )

ert —
Xth

1, Y (m172h172) c ngfg,
0, otherwise.

The expression for k = 2 is analogously simplified to fl(mmhm)xﬂzm . After that, both
1,2

cases can be unified as follows

S = fkil(m1,2h1,2)XQ;ﬁt2 - Z haEyy (maghy s — (g + k1)hi2) (1 2ha 2)

(ll’ghl,z)eozglﬁ’3

- Z hoEgy(maghy g = (lg + k1)) fO(lgha 2)

(I1,2h1,2)EL34

— Z hoEpy (maghis — (L + ki)hi2) f2(l12ha2)
(l1,2h1,2)€L23

+ Z th;il(mmhLz — (l12 + k‘1)h1,2)f0(l1,2h1,2)
(l1,2h1,2)€a;{1’2,1

+ Z hQE]il(ml,th,Q — (l12 + k‘1)h1,2)f0(l172h1,2)

(li,2h1,2)€l14

+ Z hoEgy(maghy g = (lg + k)l 2) fO(l2ha 2)

(li,2h1,2)€l12

- Z hi By (mighis — (g + ka)ha) f1(li2hy o)
(11,2h1,2)€0¢;1’272

- Z hi By (mighio — (i + ka)ha ) f1 Lok 2)
(l1,2h1,2)€A12

— Z h1E;11(m1,2h1,2 — (l1,2 + k4)h1,2)f1(l1,2h1,2)
(l1,2h1,2)€A23

+ Z h By (maghy g = (lg + ka)hy o) fH(T2ha 2)
(11,2/11,2)601;{1,2,4

+ Z hiEgy (maghia = (lg + ka)hi2) £ (lzha 2)

(li,2h1,2)€l14

+ Z hi By (mashis — (g + ka)ha o) f1(lioha o)

(li,2h1,2)€l34
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_ Z h1E112(m1,2h1,2 — (2 + k2)h1,2)f0(l172h172)
(h2h2)eay )4

- Z hlE]iQ(ml,th,Q —(lh2 + kz)h172)f0(51,2h1,2)

(l1,2h1,2)€U14

- Z hi Epy(myghy s — (g + ka)hi2) 2l 2ha 2)

(li,2h1,2)€U34
+ Z h1E;12(m1,2h1,2 — (ly2 + k2)h1,2)f0(l1,2h1,2)
(ll,ghlyz)eazl’272

+ Z h1E;12(m1,2h1,2 — (ly2 + k’2)h1,2)f0(l1,2h1,2)

(li,2h1,2)€T12

+ Z hlElig(ml,thQ — (l12 + kQ)hl,Q)fo(lmhl,Q)

(l1,2h1,2)€l23
+ Z hoEly(miohia — (lig + k3)hi2) f(l12h2)
(11,2/11,2)601;:1,2,1

+ Z h2E]iz(ml,2hl,2 — (lh2 + k3)h1,2)f1(l1,2h1,2)

(li,2h1,2)€ER14

+ Z h2E1i2(m1,2h1,2 —(l12 + ks)h1,2)f1(11,2h1,2)

(11,2h1,2)€R12
_ Z hoEjy(mishia — (lua + k3)hio) f (11 2h12)
(lh2h12)€07, 5

- Z th,é(ngth —(lig+ k3)h1,2)f1(l1,2h1,2)

(l1,2h1,2)€l'34

— Y heBEly(mighia — (L + ks)hio) f1(lsha ).
(l1,2h1,2)€l23
On the next step, similar to the interior case, the expression Sy consisting in terms related
to four boundary parts a; _;, @ = 1,...,4 will be added to S;. Again, only calculations

717

related to the boundary part «;, , , are presented:

Ay o2 El ((m1 9 — ll 2)]11 2))T ( 0 )
Sy " = P
2 Z 1 (E;ig((mm - 11,2)]11,2) D—2f0(l1,2h1,2)

(h2h12)€ay, 5

E;} ((mlz -4 Q)hl 2))T ( 0 )
h h k1 y ) s
+ Z 1 (Eég((ml,z - 11,2)h1,2) lel(l1,2h1,2)

(11,2h1,2)60;71}272:(l1,2+k1)h1,2€a;l’272 (520)
- Z h2E,12((m1’2 - l1,2)h1,2)f1(l1,2h1,2)
(l1,2h1,2)EOA,:LQ’Q1(l1,2+k1)h1,2¢a;1’272
+ Z haEpy((mag — lig)ha2) f1 (I + k1)ha o).

(11,2h1,2)¢a;1’2722(11,2+k1)h1,2€a§

Performing calculations, similar to the one, shown during derivation S;, the expression for
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S,"2% can be finally simplified to:

Sy Lt Z hiha D1 Ely((mys — lio)hi2) f (liahi )

(h2h12)€ay, , 5

- Z hi By (myghis — (g + ka)hi2) fO(l2hy o)

+
(11,2h1,2)6ah1’2’2

+ Z h1E;12((m1,2 - l1,2)h1,2)f0(l1,2h1,2)-

(12h12)€ap, o

Applying to the first term the same technique as during the derivation of Sy utilising prop-
erties of the discrete Fourier transform on a rectangular lattice for £ = 1 and k£ = 2, and
simplifying the resulting expression, the following result is obtained

S, = > mEL(mighis — (ha+ k)hio) fH(loh2)

(h2h12)€0y, op

- Z hi Epo(magh g = (lg + k2)hu2) fO(l2ha 2)

(i2h12)€qy, 5

- Z hlE]il((mlz - 11,2)h1,2)f1(11,2h1,2)

(h2h12)€0y, op

+ Z hiEgo((mag = lig)hao) fOliohia) + F1(maahy2)0kaXe-
hy 2.2

(h2h12)€qy, , o

where 0y 2 is the classical Kronecker delta, and Xor belongs to the set of characteristic
1,2

function of Wy i defined as follows

o 1, W (m172h1,2) € Oé};l’%i,ll = 1, ce ,4,
Xo‘hmw‘ 0, otherwise.

Continuing in the same way with three other expressions from S; and adding them to
S1, the following expression is obtained after some simplifications

S3 =51+ 52 = fk_l(m1,2h1,2)XQ;ﬁt2 + fl(m1,2h1,2)5k,2Xa;1 ,

’ 72

+f1(m1,2h1,2)5k,2xa}: + fo(m172h1,2)5k:,1xa* + fo(ml,th,Z)(Sk,lXa*
1,251 hi23 hy2

4
,
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— Z hi By ((mag — lio)hye) f1(l2ha )
(l1,2h1,2)€0‘l:1,2,2

+ Z h1E112((m1,2 — l1,2)h172)f0(l1,2h172)
(l1,2h1,2)€a;1,2,2

+ Z hoEgy ((maa — lig)h2) f2(ligh o)
(l1,2h1,2)€0‘}:1,2,1

+ Z haEjy((my s — l1,2)h172)f1(11,2h172)

(l1,2h1,2)60‘;1,2,1

B Z hoEl (mio — li2)hi2) fO(l12h12)
(h2hip)eay 4

Y B — ha)hio) f (k)
(h2h12)€ay, 4

1 1

+ ) By (g — la)hia) f(liaha )
(11,2}1«1,2)60‘}:1,2,4

_ Z hiEgo((mag — lia)hn2) fO(laha o)

(h2hi2)€ay o4

_ Z ha By (maghis — (Liz + k)hae) f2(lighi2)

(l1,2h1,2)€L3a

_ Z haEpy (maghis — (lig + k1)hi2) fO(li2ha 2)

(l1,2h1,2)€L23

+ Z h2E111 (mighia — (lio+ kl)h1,2)f0(l172h1’2)
(l112h1,2)€1—\14

n Z hQEél (m1’2h172 — (ZLQ + kl)hl,Q)fO(ll,th,Q)

(l1,2h1,2)6F12

B Z hlE/il (m172h1,2 _ (l1,2 + k‘4)h1,2)f1 (l1,2h1,2)

(I1,2h1,2)€A12

_ Z hi Egy(mashi s — (lig 4 ka)hao) f (li2ha )
(l1,2h1,2)€A23

+ Z hEgy (mishis — (lig + ka)hao) (L 2ha )
(11,2h1,2)6F14

+ Z h1E1i1 (mi2h12 — (Lig+ k4)h1’2)f1 (hhiz)

(I1,2h1,2)€T'34
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— Z hlE;Q(ml,th,Z — (l12 + kQ)hLz)fO(lehl,Q)
(l1,2h1,2)€U14

— Z hlEéQ(ml,Zhl,Z — (Lo + k2)h1,2)f0(11,2h1,2)
(l1,2h1,2)€U34

+ Z hiEjy(mishis — (i + ka)ha2) fO(li2hy o)
(l1,2h1,2)€l12

+ Z hlE]iQ(ml,th,Z — (2 + kzg)h172)f0(l172h172)
(l1,2h1,2)€l23

+ Z haEgo(maghy g — (g + k3)hy o) fH (12l 2)
(l1,2h1,2)ER14

+ Z ha By (myghy s — (o + ks)hio) f1 (1251 2)

(l1,2h1,2)ER12

— ) By (mighis — (hia + ks)hi) fH 1zl o)

(l1,2h1,2)€l'34

— Y hEh(mighis — (g + ks)hao) fH Lok 2).

(l1,2h1,2)€l23

Next, the summands of S3 over «, , will considered pairwise, and for shortening the
calculations, only terms related to «, , , will be discussed explicitly:

- Z h By ((mia — lig)ho) f Lok )

(l1,2h1,2)€06;12,2

+ Z h1E;};2((m1,2 - 11,2)h1,2)f0(l1,2h1,2)

(l1,2h1,2)€o¢}:1‘2’2

_ > o <E’11((m172 - ll,z)hl,z))T (0 —1) fOli2ha )
_ Ejy((m12 = li2)hi ) 1 0 FH(li2hy 9)
(l1,2h1,2)€ah1’272
- Z hy <E111((m1,2 — 51,2)h1,2)>T (n% n3 fo(ll72h172)
_ E112((m1,2_l1,2)h1,2> n: ni fl(lLth’Q) ’
(11,2h1,2)€ah1’272

Rewriting the expressions for other parts of the boundary leads to the following final expres-
sion

S3 = k_l(m1,2h1,2)Xk—1

3 o
-y 3 B (Er((maz = liz)h o) ’ ni nd\ (fO(li2hi2)
J=1(2) (11 21 2)€ i Bra((mrp — lip)hi2) ny n fl(l1,2h1,2)

1,211,2 ahl 2 i

4 S
- h (Ekl((mm B l1’2)h172))T <n]1 ny\ (fO(li2hi2)
"\ Brz((maz — lig)hio) n} ni) \ S (li2h12)

J=2(2) (ll 2h1 2)€ah1 20
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— Z hQE]il(ml,th,Q — (l12 + k‘1)h1,2)f0(l1,2h1,2)
(li,2h1,2)€L34

- Z hQE]il(ml,th,Q — (Lo + kl)hl,Q)fo(l1,2h1,2)
(l1,2h1,2)€L23

+ Z hao By (mighio — (g + k1)ha ) fO(liohy2)
(l1,2h1,2)€T14

+ Z hZElil(ml,thQ — (l12 + k‘1)h1,2)f0(l1,2h172)
(l1,2h1,2)€T12

- Z hlE]il(ml,2hl,2 —(Lip+ k4)h1,2)f1(51,2h1,2)
(li,2h1,2)€A12

- Z h1E1il (myghio — (Lo + k4)h1,2)f1(l1,2h1,2)
(l1,2h1,2)€A23

+ Z hiEyy (maghy g — (o + ka)ba2) f1 (12 2)
(l1,2h1,2)€T14

+ Z hiEjy (mighio — (i + ka)ha ) f1 Lok 2)

(l1,2h1,2)€l'34

- Z hi Egy(maghio — (lig + ka)hao) fO(li2ha o)
(l1,2h1,2)€U14

- Z hi By (maahy g — (o + k2)ha2) fO(l 2 2)
(l1,2h1,2)€U34

+ Z hi Ejy(mashis — (g + ka)ha2) fO(liohy o)
(l1,2h1,2)€l12

+ Z hlE]iQ(ml,th,Q — (2 + kg)h172)f0(l1,2h1,2)
(l1,2h1,2)€l23

+ Z hoEpy(myghi s — (g + ks)hio) f1 (1251 2)

(l1,2h1,2)€R14

+ Z ha By (myghy s — (o + ks)hio) f1 (1251 2)
(l1,2h1,2)ER12

- Z haoEjy(mishio — (lig + ks)hi) f1 (li2hy2)
(l1,2h1,2)€l'34

- Z haEpy(myghi s — (g + ks)hi2) f1 (12l 2),

(l1,2h1,2)€l23

where the second and the third terms represent F* in (5.18), and with the characteristic
functions given by

XO _ { ]_, V (m1,2h1,2> € Qh(iz; Uale’z,:i Uagl,2,47

0, otherwise,
and

Xl — ]" v (m112h172> e Qi‘f; U a]:LQ,l U a;1’2,27
0, otherwise.
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Next, the last term of S;h“’ in (5.20) will be considered

Z hoEy((mag — lio)ha2) f1((Lig + ki)ha )
(11,2h1,2)¢Oé;17272Z(l1,2+k1)h1,2€a;1,2’2

= Z hoEy((mag — lig)ha2) f1((Lig + kr)ha )

(l1,2h1,2)€T12

= Z hQE]iQ((mI,Q - l1,2)h1,2)f1((l1,2 + k1)hi2)

(l1,2h1,2)€l12

- Z th/iz((ml,z - 1172)h1,2)f1(11,2h1,2)

(l1,2h1,2)€l12

+ Z hoEgy((mag — li2)ha2) 1 (lioha 2)

(li,2h1,2)€l12

= Y hiheEL((mig — li2)hio)Dif (lhghi o)

(l1,2h1,2)€l12

+ Z h2E1iz((m1,2 — l1,2)h1,2)f1(l1,2h1,2)-

(l1,2h1,2)€l12

Analogously rewriting the third term of S, "2y (5.20) and making some simplifications,

the following final representation is obtained

Ohy g, E} ((m12 -0 2)711 2) g 0
Sy = hihy L b2 2
2 Z He (E;ig((mm —l12)h12) D_5f%(l1 201 2)

(11,2h1,2)€a;172,2
E} ((m12_l12)h12) g 0
+ o e
Z 1 (E;ig((mm - l1,2)h1,2) D1f1(l1,2h1,2)
[(11,2h1,2)€a;1’22] Ul(l1,2h1,2)€T12]

- Z hoEy((mag — lig)h2) f1 (g + k1)ha o)
(ll,2h1,2)€a;172,22 (I1,24k1)h1,2€023
+ Z h2E112((m1,2 - 11,2)h1,2)f1(ll,2h1,2)-

(l1,2h1,2)€T12

. .. . .. Vhy o2 . .
Continuing similar calculations for the remaining terms of S, *~ and after some simplifica-
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tions, the following representation formula for the sum S; + Ss is obtained

S1+ Sy = Z Ba((m1 = ho)h) ' D_1f%(ligh12) — Daf*(l12h1,2)
1 ’ (lohs 7)€t El((mig —li2)hi2) D_5f°%l12h12) + D1 fH(l12h12)
1,2h1,2 Ryo

El((mig—lig)h 2)>T ( 0 )
h h k1 , s )
* Z B e <E,i2((m172 - 51,2)]11,2) D—QfO(l1,2h1,2) + D1fl(ll,2h1,2)

(l172h172)ea;172’2 U 1,23

+ Z h1h2 (E ((ml 2 = ll Z)hl 2)) (leo(llghl’z)o— Dgfl (1172}11’2))

E((mig —lig)hig)
Ej 2\ (—Daf'(lizhaz)
+ Y ks ( i ) ( UEL
(l1.2h1,2)€ 12 B 2) D f (1,27 2)
Epy((mig — g 12) (L 2hy2)
+ hiho (%
(i Q;E:)Epm o (Eliz mio — l12)h12) 0(11 oh12)
N Z h2EI£2((m12 I 2)h1 2)
(l1,2h1,2)€a;1 g2 (I3 2+k1)h1 2€Ta3

+ Z haEgo((m1z — lig)hig) f (1 zhy2)

(l1,2h1,2)€l12

+ Z hEg ((mag — lio)hao) f1 (g + ka)ha )

(l1,2h1,2)€0<;1,271 : (Li,2+k2)h1 2€T14

- Z hlEél((ml,z - 11,2)h1,2)f1(l1,2h1,2)

(I1,2h1,2)€T12
+ Z hE((mis —li2)h12) fO((li + ka)hi2)

(l1,2h1 2)Eoch 3¢ (l1,2+ka)h1,2€T23

- Z hlEkQ((ml,Q - l1,2)h1,2)f0(l1,2h1,2)

(l1,2h1,2)€l34

+ Z hoEpy ((myo — by 2)ha2) fO (Lo + ks)ha )

(11,2h1,2)€(1;17274 : (Li,2+k3)h12€T14

= Y haEL((mia = ha)hio) fOligh o).

(l1,2h1,2)€l'34

(l172h1,2)6a}:1’271 UC“;:L2,4
miyo — l1,2

)h
miyo — l1,2)
)
)

/—\/—\ AA
— —

Next, the expression for S; + Sy will be equalised with S3 in (5.21). After that, the following
pair of terms is considered

- Z hoEgy((mag — lio)hao) f1((Lig + ki)ha )

(I1,2h1 2)€ah o5 (l1,2+k1)h1 2€T23

= - Z h2Ek2((m1,2 — (lhia + ks)hi2) 1 (Lighy ),

(l1,2h1,2)€l23
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and because both of them are equal to

- Z hoEgy((myo — lig)hg) fH (L + k1)ha ),

(l1,2h1,2)€L23

these term can be cancelled out. Similarly, the pairs

Z hlE}};Q((ml,Q - l1,2)h1,2)f0((l1,2 + ky)hi2)
(l1,2h1,2)€c¥gl‘2’3: (l1,24+ka)hy1 2€l23

= Z h1E;12((m1,2 — (l1,2 + kig))h1,2)f0(l1,2h1,2)

(l1,2h1,2)€l23

Z hi By (ma — lig)hao) fH((lg + k2)ha )

(11,2h1,2)€a,:1’2’1 : (l1,2+k2)h1,2€T 14

= Z hiEg (mag — (lug + ka))ha2) fH(Ligha )

(l1,2h1,2)€T14

Z hoEgy ((maa — lig)hi2) f2((Lio + k3)hy o)

(11,2h1,2)€a;1’2,4 : (l1,2+k3)h1,2€T14

= Z ho By ((mag — (g 4 k1) ha 2) fO(li 2ha o)

(l1,2h1,2)€T14

can be cancelled out by showing that expressions in each of them are equal to

Z hiEpy((mag — lig)hag) fO((lig + ka)ha ),

(l1,2h1,2)€A23

Z hi By ((myz — lig)hag) fH((Lue + k2)ha ),

(l1,2h1,2)€U14

Z hoEgy ((mag — li2)h2) fO((Lig + ks)ha o),

(l1,2h1,2)€R14

respectively. Next, the following difference consisting of terms from S; + Sy and Ss is
considered:

Z h2E,12((m172 - l1,2)h1,2)f1(11,2h1,2)

(l1,2h1,2)€l12

- Z haEyo(maahy g — (o + k3)ha2) f1 (12 2)

(l1,2h1,2)€R12

= Z h2E112((m1,2 - 11,2)h1,2)f1(11,2h1,2)

(l1,2h1,2)€T12

- Z hQE;Q((mIQ - l1,2)h1,2)f1((l1,2 + k1)hi)

(l1,2h1,2)€l12

= - Z hthE]iz((mlz - 11,2)h1,2)lel(l1,2h1,2)-

(l1,2h1,2)€l12
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Similarly, the following relation is obtained:

- Z h2E111((m1,2 - 11,2)h1,2)f1(11,2h1,2)

(l1,2h1,2)€T12

+ Z hi By (maghis — (g + ka)ha ) f1 (liohy o)

(l1,2h1,2)€A12

= Z h1h2E1i1((m1,2 - 51,2)h1,2)D2f1(51,2h1,2)-

(l1,2h1,2)€T12

After combining both summations over I'y5, the resulting term can be cancelled out with

Z hah <E111((m1,2 - 11,2)h1,2))T (—D2f1(11,2h172))
PP\ EL ((mg — lLio)hio) Dy fY(liohi2) )
(l1,2h1,2)€T12

Analogously, the terms

- Z hlE]iQ((mLQ - l1,2)h1,2)f0(l1,2h1,2),

(l1,2h1,2)€l'34

- Z thlil((mm - 11,2)h1,2)f0(l1,2h1,2)7

(l1,2h1,2)€l'34

— Z h2E;i1 (m1,2h1,2 — (lha+ k1)h1,2)f0(l1,2h1,2)

(l1,2h1,2)€L34

- Z hiEgo(maghia — (lg + k2)hi2) f0(l2hi 2)

(l1,2h1,2)€U34

can be cancelled out with the

Z hih (Eél((ml,z - 11,2)h1,2)>T (D1f0(l1,2h1,2))
A\ BL((mi2 — lig)h) D_5f%lioh12) )

(l1,2h1,2)€l34
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Next, the following terms are considered and reformulated:

> heBl(mighig — (g + ki)hi) fO(lioha 2)
(l1,2h1,2)€T12
+ Z h1E;12(m1,2h1,2 — (L2 + k2)h1,2)f0(51,2h1,2)

(l1,2h1,2)€l12

= Z h2Eli1((m1,2 — 51,2)h1,2)f0((11,2 + k3)hi2)

(l1,2h1,2)€ER12

+ Z hEg((mag — lig)hi2) fO((Lg + ka)ha o)

(li,2h1,2)€A12

- Z h2E;11((m1,2 - 51,2)h1,2)f0(51,2h1,2)

(l1,2h1,2)€R12

+ Z hoEgy (mag — lig)hu2) fO(lh2ha 2)

(l1,2h1,2)€R12

- Z hlE;2<<m1,2 - ll,z)h1,2)f0(ll,2h1,2)

(l1,2h1,2)€A12

+ Z h1E;12((m1,2 - 51,2)h1,2)f0(5172h1,2)

(l1,2h1,2)€A12

= - Z hthElil«ml,Z - l1,2)h1,2)D—1f0(11,2h1,2)

(l1,2h1,2)€R12

- Z hthE]i2<(m1,2 - 11,2)h1,2)D—2f0(l1,2h1,2)

(l1,2h1,2)€A12

+ Z hQE}il((ml,Q — l1,2)h1,2)f0(11,2h172)

(l1,2h1,2)€R12

+ Z M Egy((myo — lig)hy2) f(lighy )

(li,2h1,2)€A12

236



Analogously, the following expression is obtained:

> By (mighis — (i + ka)hio) £ (1 2ha )

(l1,2h1,2)€l34

- Z haEpy(mishis — (lig + k3)ha o) f1 (li2hy o)

(l1,2h1,2)€l34

= Z hEgy ((myo — lig)hio) 1 (L + k2)hy )

(li,2h1,2)€U34

- Z hoEgy((mag — lio)ho) f1((Lig + k1)ha o)

(l1,2h1,2)€L34

- Z hlE,il((ml,z - 11,2)h1,2)f1(11,2h1,2)

(li,2h1,2)€U34

+ Z hlE]i1(<m1,2 - 51,2)h1,2)f1(51,2h1,2)

(l1,2h1,2)€U34

+ Z hoEgy((mag — lio)hi2) f1 (L 2hi )

(l1,2h1,2)€L34

- Z thkl;Q((ml,z - 51,2)h1,2)f1(51,2h1,2)

(li,2h1,2)€L34

= Z h1h2E;%1((m1,2 - 11,2)h1,2)D2f1(11,2h1,2)

(li,2h1,2)€U34

- Z hthE;Q((ml,Q - l1,2)h1,2>D1f1(l1,2h1,2)

(l1,2h1,2)€EL34

+ Z hlElil((mlﬁ - 51,2)h1,2)f1(51,2h1,2)

(l1,2h1,2)€U34

- Z thiz((mm - 11,2)h1,2)f1(l1,2h1,2)-

(I1,2h1,2)€L34
Finally, S7 + Sy — S5 can now be written as
Si+ Sy — Sy = (T,? [D_1f° — Daf', D_yf* + Dy f1]> (m1.2hys)
+ (T;fﬁ [D_1f° = Dof', D_of° + lelw (m12h12)
+F 10 f(magh o) + F U [0, 1 (magha o)
— f* (mapha2) Xkt
Thus, the theorem is proved. O

Next, analogously to the interior case, the discrete exterior Cauchy formula on a rectan-
gular lattice can be immediately obtained from the discrete Borel-Pompeiu formula if the
function f = (f°, f 1)T is a discrete holomoprhic function:

Theorem 5.10. Let f be a discrete holomorphic function, then the discrete exterior Cauchy
formula on a rectangular lattice has in each component the form

FET0 1 (f,?)
e )\
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for all points (mq2hy 2) € Qﬁffz, where

fo(m172h172) for (mlghl,g) c Q;ﬁg U 01;172’1 U CY}:L%Q ,

1=

ext — -
0 for (mihip) & (41, Va1 Ua, ,,),

fl (m172h1’2> for (ngth) € QZJ:Q U &};1’273 U ()6;17274 y

fl=

*

ext - -
0 for (mq2h12) ¢ O, Uy s Uag g

5.3 Short summary of the chapter

Basics of the two-dimensional discrete function theory on a rectangular lattice have been
introduced in this chapter. Particularly, a discrete fundamental solution of the discrete
Cauchy-Riemann operator has been constructed and some estimates for this discrete funda-
mental solution have been provided. After that, discrete counterparts of the classical con-
tinuous operators, such as Teodorescu transform and Cauchy integral operator, have been
introduced on a rectangular lattice for interior and exterior settings. Similar to the continu-
ous case, these operators constitute the famous Borel-Pompeiu formula, which plays a central
role in various applications of complex function theory [73], as well as its higher-dimensional
extensions [46, 47]. All results presented in this chapter are constructed according to the
geometrical setting introduced in Chapter 2, and thus, rounding this dissertation in terms a
consistent geometrical basis. In summary, this chapter constitutes a foundation for further
studies in the discrete function theory on a rectangular lattice and its applications. Particu-
larly, boundary values for the discrete Cauchy-Riemann operator, discrete Riemann-Hilbert
problems, as well as definition of discrete Hardy spaces can be studied in future work.
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Chapter 6

Summary and conclusions

6.1 Summary

In recent years, there has been a growing demand for advanced numerical methods, which not
only approximate a continuous problem, but also preserve some of its important properties
on the discrete level, i.e. on lattices. In particular, considering that the classical continuous
theories, such as complex analysis and potential theory, provide a variety of methods for
solving boundary value problems, construction of their discrete counterparts, which combine
advantages of numerical schemes and explicit representations provided by analytical meth-
ods, has been addressed by several authors. However, only classical square lattices have been
considered so far. Therefore, the goal of this thesis was to extend a discrete potential theory
and a discrete function theory to rectangular lattices allowing two different stepsizes h; and
hg.

The extension of a discrete potential theory and a discrete function theory to rectangular
lattices requires first a construction of a discrete fundamental solution of the discrete Laplace
Ap, hy or the discrete Cauchy-Riemann operator [?,1117@, respectively. The classical approach
to construct a discrete fundamental solution is to use the discrete Fourier transform. Because
a rectangular lattice with two different stepsizes h; and hs is considered, it is necessary to
properly define the discrete Fourier transform on such lattices. This Fourier transform Fj, s,
has been introduced in the first part of Chapter 2, and its several important properties have
been proved.

The second part of Chapter 2 lays the foundation for building consistent discrete theories
by discussing discretisation of continuous geometries by the help of a rectangular lattice.
As it has been pointed out during this discussion, two general approaches can be used to
introduce the discrete geometrical setting for exterior problems: in the first approach, the
discrete setting is used directly, and the discrete exterior domain is defined as follows:

t,(1) ._ 2 -
Q;Lalj,h; T Rhl,hg \ (Qh17h2 U 7h1,h2) )

while in the second approach, the continuous case is considered at first by introducing the
complement of {2, and then the discrete version of the ¢ is introduced as follows:

ext e Y 2
Qh17h2 - Q mRh17h2-
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By analysing both approaches, it became evident, that the main difference is that the first
approach provides the geometric relations between interior and exterior settings

thﬁ? = szll,hz \ (QZ?;Z(;) U 04,21’7(2)2) ’ QZ?}L(;) = R}leth \ (thahQ U Fyhil,}m) )
because exterior boundary layers 7,;’7(2)2 and 04;1(,?2 contain exactly the same set of points.
This fact significantly simplifies formulations of transmission problems coupling interior and
exterior problems, because discrete boundary equations are then formulated for the same set
of boundary points. Therefore, the first approach has been chosen as a basis for this thesis.

Chapter 3 is devoted to study of a discrete fundamental solution Ej, , of the discrete
Laplace operator Ay, ,. At first, this discrete fundamental solution is constructed by the
help of the discrete Fourier transform Fj, j,, and the result is compared to the case of a square
lattice. Moreover, it has been clearly underlined that the discrete fundamental solution Ej, p,
on a rectangular lattice cannot be obtained from the classical fundamental solution Ej on
a square lattice. Hence, an extension of the discrete potential theory and discrete function
theory to rectangular lattices cannot be done by a simple variable substitution, and therefore,
must be worked out completely.

Additionally, a detailed numerical analysis of the discrete fundamental solution Ej, p,
has been presented in Chapter 3. Es(pecially, two regularisations of the discrete fundamental
solution Ey, p,, namely E,(llhh2 and Eh21)7h2, have been studied, and various estimates have been
constructed for both regularisations. It is important to underline, that not only estimates
of the absolute difference, but also (P-estimates for interior and exterior settings have been
presented and analysed. Moreover, the influence of a rectangular lattice setting has become
evident during all constructions.

The first part of Chapter 4 presents a discrete potential theory on a rectangular lattice for
interior and exterior settings. Discrete single-layer potential P and double-layer potential
W) have been defined for interior settings and for exterior setting, W) and P(*") as
well as a discrete volume potential V},, , has been introduced, and their properties have been
proved. Discrete Green’s formulae for interior and exterior setting have been constructed
as well. Moreover, the influence of the exterior corner points I'14, I'12, I'a3, I's4 has been
discussed in details.

The second part of Chapter 4 is devoted to studying discrete boundary value problems
in interior and exterior settings. Discrete Dirichlet and Neumann problems for the Laplace
operator are discussed in both settings. Several theoretical results related for solution of
these problems are presented. Moreover, numerical examples are presented for each type
of a boundary value problem. Further, discrete transmission problems are discussed at the
end of the chapter. To define discrete transmission problems, definitions of discrete jumps
for function values and normal derivatives have been proposed. After that, explicit solution
formulae for different types of transmission problems have been constructed, and various
numerical examples have been presented. The numerical results indicate clearly that the
discrete potential method on a rectangular lattice provides a good accuracy and flexibility
in solving practical problems.

Finally, Chapter 5 is devoted to the extension of a discrete function theory to a rectan-
gular lattice. The chapter starts with the construction of a discrete fundamental solution
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E}le of the discrete Cauchy-Riemann operator Dllu,hz as a 2 X 2 matrix. Several estimates
are then provided for this fundamental solution. After that, the discrete Teodorescu trans-
form (T-operator) and the discrete boundary operator (F-operator) have been introduced
for interior and exterior settings. Finally, discrete versions of the Borel-Pompeiu formula
have been constructed also for interior and exterior settings.

6.2 Conclusions

Development of discrete counterparts of the classical continuous theories has been an area of
active research for many years. In particular, discrete potential theory and discrete function
theory have provided various results towards solutions of discrete boundary value problems.
However, only classical square lattices have been considered so far. In this thesis, an extension
of these discrete theories to rectangular lattices has been proposed.

The conclusions, drawing from the results of this thesis, can be summarised as follows:

(i) Extending the classical discrete theories to more general types of lattices requires a
consequent construction from the very beginning of the theory. For example, it has
been clearly pointed out, that the discrete fundamental solution on a rectangular lat-
tice cannot be obtained from the discrete fundamental solution on a square lattice.
Nonetheless, general strategies for obtaining results on a rectangular lattice resemble
ideas from the case of a square lattice, as it could be expected.

(ii) The extension of discrete theories to rectangular lattices proposed in this thesis is
consistent in the sense, that all classical results, i.e. on a square lattice, can be recovered
by setting h; = ho = h. Because of that fact, all explicit constructions on a rectangular
lattice become more technical and bulky. However, explicit constructions need to be
carried out only one time, and after that, short-form operator notations can be used.

(iii) From the results of the thesis it became also evident, that definition of discrete geo-
metric setting plays a crucial role influencing the whole theory. For example, if the
exterior corner points I'14, I'12, a3, I's4 are considered to be a part of the exterior
boundary layer 7, , . then different definitions of discrete F- and T-operator would
appear, implying that several versions of a discrete function theory can be obtained.
Therefore, to construct a consistent extension to rectangular lattices, two approaches
to discretisation have been analysed and one approach has been chosen as a basis for
the theory.

(iv) Numerical examples of discrete boundary value problems presented in this thesis in-
dicate clearly, that the discrete potential method provides high accuracy with low
computational costs. Moreover, the use of discrete double-layer potential on a rectan-
gular lattice is numerically stable as the condition number of resulting linear system
is extremely low in comparison to conventional numerical methods. Computational
costs of the method are related not to the method itself, but rather to computing
the discrete fundamental solution Ej,, 5, on a large enough lattice, which is extremely
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computationally expensive. However, these computations must be done only one time
for different values of a = Z—f (the aspect ratio of a rectangular cell in a lattice), and
can be used then for solving boundary value problems on various rectangular lattices.

(v) The formulations of discrete transmission problems presented in this thesis indicate
clearly the advantages of working with discrete counterpart of continuous theories and
not with numerical methods in the classical sense. Moreover, to the best of the authors
knowledge, this thesis presents the first attempt to address transmission problems
coupling interior and exterior settings in the discrete setting.

6.3 Open questions for future research

As it is always the case with mathematical theories, the work presented in this thesis indicates
directions of future work.

One direction of future work is related to a further numerical analysis of the discrete
potential theory on a rectangular lattice. In particular, given the exceptional numerical
stability observed in the numerical examples, a rigorous stability analysis of the discrete
potential method should be performed in future work. Additionally, convergence analysis of
discrete potentials, as well as further operator norm estimations, should also be addressed.

Another direction of work is related to further analysis of transmission problems. Nu-
merical examples presented in this thesis show the need for further studies on a theoretical
level, e.g., convergence and stability of the method, and on practical level related to stud-
ies of more complicated transmission problems. In particular, coupling discrete potential
theory in the exterior and the classical finite difference method in the interior could lead
to an adaptive coupled numerical procedure, which will be able to deal with more general
equations in the interior and with unbounded region in the exterior.

Finally, the connection between both discrete potential theory and discrete function the-
ory can be established. In the classical complex analysis such a connection is well known,
and developing a similar result in the discrete setting will indicate that two theories con-
sidered in this thesis are not completely independent theories, but closely connected and
complimenting each other constructions.
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