An Efficient Adaptive PD Formulation for
Complex Microstructures

DISSERTATION

Zur Erlangung des akademischen Grades eines
Doktor-Ingenieur (Dr.-Ing)
an der Fakultit Bauingenieurwesen
der Bauhaus-Universitit Weimar
Deutschland

vorgelegt von

ALI JENABIDEHKORDI

(interner Doktorand)

Mentor: Prof. Dr.-Ing. Timon Rabczuk

Reviewers: Prof. Dr. Erdogan Madenci
Prof. Dr. Esteban Samaniego
Prof. Dr. rer. nat. Klaus Hackl

Weimar, April 2021



Acknowledgements

I would like to thank my advisor Prof. Dr.-Ing. Timon Rabczuk for all
of his support throughout my Ph.D. and for his patience, motivation, and
thoughtful suggestions during my study. I would also like to thank the
members of my dissertation committee: Professor Erdogan Madenci, Pro-
fessor Esteban Samaniego, Professor Guido Morgenthal, Professor Klaus
Hackl, and Professor Matthias Kraus for generously offering their time,
support, and guidance throughout the preparation and review of this doc-
ument.

I would also like to express my deepest gratitude to my parents, family,
and friends who have supported me in challenging moments with their un-
derstanding, love, and patience.

Ali Jenabidehkordi
Weimar, Germany
April. 2021



Authorship Declaration

I, Ali Jenabidehkordi, hereby solemnly declare that the following disserta-
tion is my own work and that no impermissible assistance from others or
references other than those specially cited were used in its making. Data
and/or concepts taken directly or indirectly from other sources have been
properly referenced. Parts of the dissertation which have already appeared
in examination papers are unambiguously marked as such.

I affirm that no other individuals were involved in producing the content of
this dissertation. Furthermore, no placement or consulting services (pro-
motion consultants or other persons) were paid to assist me in any way. |
affirm that no one received direct or indirect pecuniary compensation or
payment in kind for work conducted in connection with the content of this
dissertation.

This dissertation has not been previously submitted in the same or similar
form to any other examination authority in Germany or abroad.

I certify that, to the best of my knowledge, the declaration above is abso-
lutely true and nothing has been concealed.

Ali Jenabidehkordi
Weimar, Germany
Apr. 2020



To my parents

and my family.

v



Abstract

The computational costs of newly developed numerical simulation play a
critical role in their acceptance within both academic use and industrial
employment. Normally, the refinement of a method in the area of interest
reduces the computational cost. This is unfortunately not true for most
nonlocal simulation, since refinement typically increases the size of the
material point neighborhood. Reducing the discretization size while keep-
ing the neighborhood size will often require extra consideration. Peridy-
namic (PD) is a newly developed numerical method with nonlocal nature.
Its straightforward integral form equation of motion allows simulating dy-
namic problems without any extra consideration required. The formation
of crack and its propagation is known as natural to peridynamic. This
means that discontinuity is a result of the simulation and does not demand
any post-processing. As with other nonlocal methods, PD is considered
an expensive method. The refinement of the nodal spacing while keeping
the neighborhood size (i.e., horizon radius) constant, emerges to several
nonphysical phenomena.

This research aims to reduce the peridynamic computational and imple-
mentation costs. A novel refinement approach is introduced. The pro-
posed approach takes advantage of the PD flexibility in choosing the shape
of the horizon by introducing multiple domains (with no intersections) to
the nodes of the refinement zone. It will be shown that no ghost forces
will be created when changing the horizon sizes in both subdomains. The
approach is applied to both bond-based and state-based peridynamic and
verified for a simple wave propagation refinement problem illustrating the
efficiency of the method. Further development of the method for higher
dimensions proves to have a direct relationship with the mesh sensitivity
of the PD. A method for solving the mesh sensitivity of the PD is intro-
duced. The application of the method will be examined by solving a crack
propagation problem similar to those reported in the literature.

New software architecture is proposed considering both academic and in-
dustrial use. The available simulation tools for employing PD will be
collected, and their advantages and drawbacks will be addressed. The
challenges of implementing any node base nonlocal methods while max-
imizing the software flexibility to further development and modification



will be discussed and addressed. A software named Relation-Based Sim-
ulator (RBS) is developed for examining the proposed architecture. The
exceptional capabilities of RBS will be explored by simulating three dis-
tinguished models. RBS is available publicly and open to further develop-
ment. The industrial acceptance of the RBS will be tested by targeting its
performance on one Mac and two Linux distributions.



Contents

1 Introduction 1
I.1 Motivation . . . . . . . . . . . e e e e 1

1.2 Peridynamic . . . . . . . . . ... 4
1.2.1 Discretizations . . . . . . . . . ... 6

1.22 Horizon . . . . . . . . ... 7

1.23 Damage . . . . . . . . ... 8

1.2.4 Neighborhoodsearch . . . . ... ... ... .. ....... 9

1.25 Contacts . . . . . . ... L 9

1.2.6 Timeintegration . . . . . . . . . . . . .. ... 10

1.3 Organization of Dissertation . . . . . . ... ... ... ....... 11

2 Peridynamics Refinement 13
2.1 The Multi-Horizon Peridynamics . . . . . . .. .. ... ... .... 13
2.2 Absence of GhostForces . . . .. ... .. ... ... ........ 16

2.3 Numerical Examples . . . .. ... ... ... ............ 17
2.4 Computer Implementation . . . . .. ... ... ... ........ 20
2.5 Mesh Sensitivity Affects on Refinement . . . . . . ... ... ... 20
2.6 Smoothed Horizon . . . . ... .. ... .. ... .......... 24
2.6.1 Horizon Enlargement . . . . . . . .. ... ... ....... 24

2.6.2 HorizonRefining . . . .. ... .. ... ... ... ... 26

2.6.3 Adaptive Horizon Refining . . . . . . ... ... ... ... .. 28

2.7 Reduced Sensitivity of Smoothed Horizon . . . . . .. ... ... .. 29

3 Software Architecture and Peridynamic Computer Implementation 31
3.1 Modern Programming Paradigms . . . . . . ... ... ........ 33
3.2 Procedural Programming . . . .. ... ... ... .. ........ 33
3.2.1 Object Oriented Programming . . . . . .. ... ... .... 33

3.2.2 Functional programming . . . . . . . . .. .. .. ... ... 34

3.2.3 Microkernel (Plugin) Architecture . . . . ... ... ... .. 34

3.24 RBS Architecture . . . . . ... ... 35

3.3 Agile Development For Scientific Purposes . . . . .. .. ... ... 36

Vil



3.4 DataStructure . . . . . . ... e e 37

34.1 Co-location Approachand Nodes . . . .. ... ... .... 37

3.4.2 Bonds and Neighborhood . . . ... ... ... ....... 37

35 Relations . . ... ... 55
3.5.1 RBS Architecture . . . . ... ..o 57

4 RBS in Practice 59
4.1 Wave Propagation . . . . . . ... ... ... ... ... ... 59
4.2 Fracture in plate with Pre-existing Crack . . . . . . . ... ... ... 67

4.3 PolymerFracture . . ... ... ... ... .. ... ... ... ... 72

5 Concluding Remarks and Future Prospects 81
5.1 Future Research Prospects . . . . ... ... ... ... ....... 82
References 84
A RBS Codes 91
A.1 Wave Propagation Simulation Code . . . . ... ... ... ..... 91

B RBS Progress Reports 97
B.1 Fracture in Plate with Pre-existingCrack . . . . . .. ... ... ... 97
Curriculum Vitae 102

viil



List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10

2.11
2.12

2.13
2.14

2.15
2.16
2.17
2.18

2.19

3.1

PD discretization, horizon presentation, and schematic bound forces
for three neighborsin2D . . . . .. ... ... ... .. ... ...

The appearance of the ghost force at the refinement bound. . . . . . .
The proposed horizons for nodes inside the refinement zone. . . . . .
Interaction horizon (H;) and natural horizon (H,,)) . . ... . ... ..
Initial configuration of numerical example . . . . . . . ... ... ..
The first eight returned velocity waves. . . . . . . . . ... ... ...
The error of velocity waves. . . . . . . . ... ... ... ......
The first eight returned velocity waves for bar with finer mesh. . . . .
The error of velocity waves for bar with finermesh. . . . . . ... ..
The first eight returned velocity waves to pulse excitation. . . . . . . .
(a) Numerical and theoretical horizon shape differences on 2D domain
(b) Theoretical horizon volume correction (¢) Numerical volume cor-
TECHION . & . v vttt e e e e e e e e e e e e
Change of the horizon stiffness respect to direction. . . . . . . . . ..
(a) The bonds direction of the nodes and the effective direction of each
node. (b) The positioning of the nodes for m = 3 from 0 to 7 (¢) The
contribution of each node in the horizon stiffness. . . . . . . ... ..
Change of horizon stiffness with enlargment. . . . . . . . ... ...
2D schematic illustration of the (a) second and (b) third order horizon
refinement bond and the volume correction distribution over the refined
horizon of order two (c) and three (d). . . . . ... . ... .. ....
Change of horizon stiffness with horizon refinement. . . . . . . . ..
The V. distribution for adaptive horizon refinement. . . . . . . . . . .
Horizon stifness vs bond direction. . . . . . .. .. ... ... ....
The schematic illustration of the initial configuration for the horizon
smoothness simulation . . . . . ... ... ... .00 L.
Second order adaptive smoothed BB-PD fracture. . . . .. ... ...

The Peridigm architecture. . . . . . ... ... ... ... ......

X



32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10

4.11

4.12

4.13

4.14
4.15

The Node UML diagram. . . . . . . ... ... ... .........
The Neighborhood and Horizon UML diagram. . . . . .. ... ...
Schematic illustration of a 2D dynamic background grid . . . . . ..
The coordinate_system::CoordinateSystem UML diagram. . . . . . .
The geometry::Primary UML diagram. . . . . . . ... ... .....
The geometry::Combined UML diagram. . .. ... ... .. .. ..
A cut of a pipe geometry created by geometry::Combined. . . . . . .
The provided static constructors for geometry::Primary. . . . . . . . .
The provided static constructors for geometry::Combined. . . . . . .
The ellipsoid local and global shape. . . . . . .. ... ... .....
The elliptical paraboloid local and global shape. . . . . . . ... ...
The Part UML diagram. . . . . . . .. .. ... ... .........
The Relation UML diagram. . . . .. ... ... ...........
RBS Architecture . . . . . . .. ...

The experiment geomentry by Dally etal. . . . . . . .. .. ... ..
The load assumed by Nishawalaetal. . . . ... ... ... ... ..
The reported wave propagation by Nishawalaetal. . . . .. ... ..
The RBS displacement wave propagation. . . . . . . ... ... ...
The RBS velocity wave propagation. . . . . . . .. ... .......
The fracutre example. . . . . . . . ... ...
The bond force-stretch relation. . . . . . . . .. ... ... ......
The wave propagation (left half) and fracture growth (right half) for
2072 constant velocity as boundary conditions applied to the plate il-
lustrated in Figure 4.6. . . . . .. . . . ... ... .. ... ...,
The wave propagation (left half) and fracture growth (right half) for
507 constant velocity as boundary conditions applied to the plate il-
lustrated in Figure 4.6. . . . . .. .. . ... L.
Initial configuration of a polymer matrix composite. . . . . . . . . . .
Schematic presentation of a) the applied velocity on the boundary do-
mains and an example of counterpart nodes of the boundary domains,
b) the displacement vectors between counterpart nodes of the bound-
ary domains, and their reaction forces at initial configuration ¢, and
aftertseconds. . . . ...
Schematic presentation of different force-stretch behavior of the bonds.
a) particle-particle and particle-boundary bonds, b) matrix-matrix, and
matrix-boundary bonds, ¢) particle-matrix bonds . . . . . ... ...
Schematic presentation of neighborhood search for computing the stress-
strain diagram of the polymer specimen. . . . . . ... ... ... ..
The stress-strain curves of the simulation. . . . . .. ... ... ...
Effect of particle-matrix interface on the crack propagation . . . . . .

70

71
72

73


Ali Jenabidehkordi


LIST OF FIGURES

4.16 The crack distribution in polymer.

X1



Xii


Ali Jenabidehkordi
 


List of Tables

2.1

4.1
4.2
4.3
4.4
4.5

The horizon smoothness simulation parameters . . . . .. ... ... 29
The material properties of plate with pre-existing crack. . . . . . . . . 68
The peridynamic simulation parameters. . . . . . . . ... ... ... 68
All material parameters used in the polymer simulations . . . . . . . 74
Configurations of Computers hosting the polymer simulation. . . . . . 77
RBS performance on different computer sets. . . . . . .. ... ... 77

Xiil



Nomenclature

Symbol
o
At

14

p
b

BB - PD
BC
BD

Description

horizon radius

time step duration

Poisson’s ratio

mass density

body force

Bond-Based Peridynamics
Boundary Condition

Boundary Domain

volume correction factor

wave speed in material

nodal displacement at node n
direction function

Young’s modulus

nodal force at node n
Finite-Element

fracture energy per unit area
horizon centered at x

Identification Number

length of subdomain edge

ratio of horizon radius to the node spacing
deformed direction vector field
Molecular Dynamic

Multi-Horizon Peridynamics
Non-ordinary State-Based Peridynamics
Object Oriented Programming
Operating System

Ordinary State-Based Peridynamics
Pascal

Peridynamic

Relation-Based Simulator

left side horizon stiffness

the stiffness of the horizon from « to 5 angles
right-side horizon stiffness

critical stretch

State-Based Peridynamics

force vector state field

peridynamic material



displacement

User Interface

Unified Modeling Language

volume currection for the subdomain centered at x
volume of the subdomain centered at x

volume fractions of polymer particles

currected volume of the subdomain centered at x
position vector

neighbor’s position vector

deformation vector state field



XVvi



Chapter 1

Introduction

1.1 Motivation

Today, scientists working in fields of engineering and most industries are utilizing
computational methods in the form of either opensource or commercial tools for un-
derstanding the fundamentals of the physics. The cost of simulations and their accu-
racy when predicting physical mechanisms are essential keys for selecting a numerical
method to solve a specific problem. For instance, while the complexity of the under-
lying physics in the atomic scale created interest in the development of atomistic and
molecular computational methods, the developed methods are hopeless for simulation
of the bulk model due to the high head computation cost. Throughout the history of nu-
merical simulations, cost efficiency and accuracy have inspired researchers to develop
a new method or modify an old one. Therefore, as can be expected, each numerical
simulation has a native domain of implimentation which promises either more accurate
results or lower costs.

Peridynamics (PD) is a nonlocal continuum mechanics theory proposed by Silling
[1]. One of the key advantages of PD over methods such as the extended finite element
method is that the crack is a natural outcome of the formulation. This is achieved by
rewriting the equation of motion and substituting the divergence of the Cauchy stress
tensor with an integral expression that contains the so-called bond forces. The first
version proposed in 2000 is called bond-based peridynamics (BB-PD). It allows the
symmetric interactions between material points. BB-PD has several restrictions. For
instance, it allows only material models with a Poisson’s ratio of 0.33 in 2D and 0.25 in
3D. Furthermore, the incorporation of arbitrary material models is quite cumbersome
or impossible, as the physical interpretation of the bond force vector is complicated,
especially with the increasing complexity of the constitutive behavior. Therefore, the
so-called state-based peridynamics (SB-PD) has been developed [2]. In SB-PD, the
bond force is related to continuum mechanics stresses and hence allows for the incor-



Figure 1.1: PD discretization, horizon presentation, and schematic bound forces for
three neighbors in 2D; (a) Bond-Base PD forces; (b) Ordinary State-Based PD forces;
(c) Non-ordinary State Base PD forces; (d) nodes outside of the horizon.

poration of more complex material models. Also, the Poisson’s ratio limitation has
been removed. SB-PD can be further categorized into ordinary state-based and non-
ordinary state-based PD. An illustrative figure briefly highlighting the fundamental
idea of the different PD formulation is shown in Figure 1.1, where the BB-PD forces
always have the same magnitude and lie in the direction of the bound. OSB-PD forces
can have different sizes but still must lie in the direction of the bound. NSB-PD forces
can have any direction with any magnitude, and finally, nodes outside of the horizon
cannot have any forces.

PD benefits from highly accurate and simple implementation where the simula-
tion of discontinuities and time-dependent boundaries or interfaces conditions is con-
cerned. For instance, PD does not require any additional criteria or treatment for sim-
ulating discontinuities since they are defined by neglecting the continuum connections
(bonds) between points of two sides of the fracture. Moreover, since the PD introduces
an equation of motion, the method is dynamic in nature, and no further consideration is
required to simulate a dynamic problem. The nonlocality of the PD makes it a perfect
match when it comes to the interaction problem, since no surface recognition is re-
quired when considering the nodes are connected between two bodies. The separation
and contact between multiple bodies is only required to define different simple behav-
ior for bonds involved in the interaction. An example of such simulation is represented



1.1 Motivation

in chapter 4.

Due to several fundamental requirements and limitations, peridynamics cost of
computation is considered high when compared to other numerical methods. The PD
formulation does not have any limitation on the shape of the subdomain and discretiza-
tion scheme (see subsection 3.4.2). However, it requires the subdomain volume to have
a one to one relation to the volume of the domain. Otherwise, any empty space will
be treated as a material vacancy, and any of the overlapping subdomain’s volume will
be modeled as a jump in material stiffness. This will result in either an unhomoge-
nized/anisotropic behavior of the material or accumulation of the bond forces leading
to instability. To avoid such difficulties, most PD implementation utilizes a uniform
grid of nodes with cuboidal shapes and constant distance [3].

The PD material points interact with each other within a limited distance creating
a spherical space around each node, known as the horizon. The horizon radius is
linked with the grid’s spacing, where it is a characteristic length-scale of the material
and, possibly, the simulated phenomenon [4, 5]. Bobaru et al. [6] have demonstrated
that the refinement in peridynamic has a close relation to multiscale modeling, since
the grid spacing has to be changed with the horizon size. This fact has a significant
effect on the refinement of the PD. On the one hand, if the horizon size is maintained
while reducing the grid spacing, the neighborhood size, and thus the number of solved
equations, will approximately increase by r”. Where r is the initial radius of the
horizon in an unrefined area, and D is the dimension of the model. On the other
hand, if we reduce the size of the horizon by the same factor as the grid spacing,
the ghost forces will result in artificial wave reflection at the refinement bond [6] The
introduction of refined areas leads to artificial wave reflections and high sensitivity
in the crack path. The dual horizon peridynamics (DH- PD) [7] drastically alleviates
this issue by distinguishing between active and reactive bond forces. DH-PD can be
applied to BB-PD as well as SB-PD. The proposed algorithms by Bobaru et al. [6]
and Bobaru and Ha [8], introduces techniques for adaptive refinement for 1D and 2D
BBPD.

Although the implementation of the peridynamic in commercial software like AN-
SYS [9, 10], ABAQUS [11, 12], is reported, the nature of hidden solvers makes them
untestable. Thus the reported result of such implementation requires extra caution, es-
pecially when developing a new method. The nature of commercial-software hidden
implementation forces them to use scripting or, in the best case, provides a library to
work with the code, which limits the use of new programming paradigms like object-
oriented programing.

There are various peridynamic codes available online. While the majority are tar-
geting specific benchmarks [13], some are written in an objected-oriented fashion with
compatibility for multiprocessing for large problems. For instance, Peridigm is a well-
known opensource peridynamic code where the authors have provided vast possibili-
ties [14]. However, the provided code is a monolith, and thus, in order to change or



develop part of this code, one must understand the entirety of the code in depth. Com-
bining two or more opensource projects is also not favorable since when any of the
involved project despatch features (e.g., for maintenance reasons) or redesigning the
architecture, the developer will often have high compatibility and adaptability costs.
The use of Molecular Dynamic (MD) codes like LAMMPS is also another option to
implement PD [15]. This approach is a perfect match for multiscale problems if they
are utilizing both MD and PD simulations. However, using MD code for PD simula-
tions will require end-users to have prior knowledge both in the MD and the code. The
development of new PD methods in MD codes is even less convenient due to the fact
that a large part of the code is MD specific and is not needed for PD. The same applies
to the most meshfree method open-source code.

Refinement and optimizing the order of complexity of the computer implementa-
tion are two ways for reducing peridynamics computation costs. The current work is
dedicated to addressing both of the above approaches while introducing a native re-
finement method that does not require changing the PD constitutive model and a road
map for the implementation of any node-based methods (e.g., peridynamics). An ex-
ample of such implementation is provided by utilizing modern computer paradigms.
The strength of the suggested implementation and its result validity is presented via
three distinguished simulations.

1.2 Peridynamic

Peridynamic (PD) is an adjective created by combining the prefix ”peri,” which means
surrounding, and ”dyna,” which means force or power. Silling et al. first used the term
“peridynamic” to describe their newly developed method capable of describing the
discontinuities and long-range forces. In their initial work, they introduce the following
equation of motion to relate the material points’ displacement to each other within a
body.

p(x)(x,t) :/ f(u(x,t) —u(x,t),x —x)dVy + b (x,1) (1.1)

where x and 2’ are the position vectors of two material points within the same domain.
p is the density, b denotes the body force, u is the displacement field and H, the so-
called horizon, which is comparable to the domain of influence in mesh free methods;
superimposed dots denote material time derivatives. f is a linearly dependent function
on x’ — x stretch (i.e., bond stretch) called the pairwise force function. The equation of
motion then proved to satisfy the balance of linear momentum, the balance of angular
momentum, and the balance of energy over any random body.
The pairwise force can be driven from a micro potential w as



1.2 Peridynamic

Ow (u(x',t) —u(x,t),x —x)
9 (Ll (X/7 t) —u (Xv t))
The PD material then is called micro-elastic, and the strain energy density can be
calculated as

fux',t) —u(x,t),x —x) = (1.2)

1 w
W = 5/ (u(x',t) —u(x,t),x —x)dVi_x (1.3)
since the pairwise force function provides two forces with equal magnitude and
opposite direction at two ends of the bond, hence the 1/2 factor. A linear micro-elastic

potential leads to a linear relationship between the bond stretch (s) and bond force fy:

1
wux,t)—u(x,t),x —x) = §c(Hx/ —x))s* [|x" — x| (1.4)
where
D) —ulx )+ ] = x], s
[x" — x||

By subscribing equation 1.4 into equation 1.2 one can compute the pairwise bond
forces based on the micro modules function ¢(||x" — x||) as

dlu(x,t) —u(x,t) +x' — x|
ou (x',t) —u(x,t)

f(ux,t)—u(xt),x —x)=c(||x —x||)s

(1.6)

where the micro modules function represents the bond elastic stiffness, and can be

computed by equating the classical strain energy density with equation 1.3. For 3D
isotropic materials it leads to a contact micro modules function

18k
S
where £ is the bulk modulus and ¢ is the horizon radius.
Since the pairwise force function provides two forces with equal magnitude and
opposite direction at two ends of the bond, it imposes a material constraint on the
simulation. Using equation 1.1 as the equation of motion while assuming a circular
(in 2D) or spherical (in 3D) horizon will enforce the Poisson’s ratio of 0.33 in 2D and
0.25in 3D.
Silling et al. [1] addressed the initial material limitation of the peridynamic by
introducing vector states. A vector state is similar to a second-order tensor in that they
both map vectors into vectors, but they have three major differences:

(1.7)

1. A state is not, in general, a linear function of the initial vector field.



2. A state is not, in general, a continuous function of the initial vector field

3. The real Euclidean space of a vector state has infinite-dimensional, while the real
Euclidean space of second-order tensors has nine dimensions.

Using the vector state, Silling ef al. [1] introduced the force vector state T to the
equation of motion as follows

pii= [ {T—-T}dVy+b (1.8)

H,

where the force vector state T can be related to the deformed direction vector M, a
unit vector pointing from the deformed position of the neighborhood center towards
the deformed position of the neighbor:

T=tM (1.9)

t denoting the magnitude of T thus it is a scalar. If £ = 1, the PD equation of motion
is equivalent to equation 1.1. The PD version is then called bond-based peridynamics
(BB-PD) in contrast with state-based peridynamics (SB-PD), which can be further dis-
tinguished into ordinary and non-ordinary state-based peridynamics. The differences
between these three PD versions can be illustrated best in terms of the bond forces, as
shown in Figure 1.1.

In contrast to BB-PD, SB-PD allows for general constitutive models. PD can also
be regarded as a nonlocal extension of classical continuum mechanics as it replaces
the divergence of the stress by an integral term in the equation of motion. One key
application of PD is the material failure, though the method has meanwhile been ap-
plied to other fields, see e.g., the contributions in [16—18]. In this section, an overview
of the peridynamic, related literature review, and PD implementation approaches are
discussed.

1.2.1 Discretizations

Since T in equation 1.8 is Riemann integrable we can split the right-hand side

pii:/ IdVI/—/ TdV,y +b (1.10)

where the T and T’ are the forces applied to two different material points (collocation
points). The discretized form of the above equation is

pil; = TV, =Y T;Vj+b (1.11)
j=1 =1



1.2 Peridynamic

where ¢ is the index of any point with n neighbors (js).

Similar to classical finite-element (FE) codes, peridynamic codes use unique global
IDs to identify the nodes from each other. The node sets IDs then facilitate the sep-
aration of the initial and boundary condition nodes from the others. If the program
supports parallel computation, local node IDs and a mapping system between global
and local IDs is often implemented to keep track of the nodes in each computation unit.
The use of FE mesh generator tools for PD is then straightforward: solid hexahedral or
tetrahedral centroid will be the PD node location in space, and the volume of the mesh
will be the nodal volume of the PD node. Utilizing a FE mesh generator for performing
PD discretization has several disadvantages

1%, PD requires the boundary condition (BC) to be applied over a volume, while FE
mesh generators do not typically provide any functionality to define extra layers
of mesh around BC faces.

2nd extra caution should be taken when considering the point ID and the set IDs,

since they might not be preserved when converting the FE mesh to PD discretiza-
tion.

37, the FE mesh generator might use a highly graded discretization in some regions,
which is unsuitable for the PD, since it decreases the computational expense
dramatically.

4*" some of the FE mesh generators return a volume of zero for the 2D mesh, in
contrast to the PD which requires the node’s volume to solve the equation of
motion.

Some of the distribution methods applicable to peridynamic are discussed by Henke
and Shanbhag [19].

1.2.2 Horizon

The expanded version of Eq. 1.8 peridynamic equation of motion for any two points
(x and x’) within any continuum media is as follows

p(x)u(x,t) = / ( Tx,t] <x>—x>— T[x’,t] <x—x">)dVe +b(x,t) (1.12)

T

where horizon (/1) is a set of points belonging to the continuum medium and
each of its subsets can influence the force field at x. u(x, t), b(x, t), and p(x), are the
displacement vector field, body force density field and mass density on x at time ¢. The



expanded force vector state field on x due to the x” — x deformation at time ¢ denoted
as T[x,t] <x*—x >.

The balance of linear momentum is naturally satisfied since the same force vector
state filed is in use all over the domain [2], provided that both x and x’ can cover each
other within their horizons. In otherwords, the peridynamic equation of motion cannot
satisfy the balnce of linear momentum if a single point in the domain cannot be found
in one of its neighbor’s neighborhood. Thus, the peridynamic horizons are required to
have central symmetry. Satisfying the balance of angular momentum in any selected
bounded body of the domain by utilizing peridynamic constitutive model gives

/ (Y[xt] <x’—x>x Tx,t] <x’—x>)dV(y_y (1.13)

where Y[x, t| < x” —x > is the deformation vector state field on x due to the x* — x
deformation at time ¢. Since the Y is only zero if X — x is zero, the constitutive model
must satisfy equation 1.13. The ordinary state base peridynamic OSB-PD and bond
based peridynamic BB-PD constitutive model can be written as

, 0 if Yx,t]<x’—x>=0
Tx,t] <x’—x >= ¢ Yxt] <x0ox>
= ¥ <x—x>

(1.14)

otherwise

Thus, the balance of angular momentum demands a force vector state field (T) that
does not change with the direction of the deformation vector state field (Y). In other
words, the forces of the bonds should be independent of the direction of the bonds,
but may be dependent on the deformation and length of the bonds. A hypersphere
horizon is the simplest horizon shape that can ease the computation of the force vector
state field (T) and has central symmetry for satisfying the balance of linear momentum
condition on the peridynamic equation of motion.

1.2.3 Damage

Silling and Askari [3] introduced scalar damage in PD, which ranges from O to 1, 0
denoting intact bonds, and 1 denoting that the bond is broken. The horizon damage is
then the average of all its bonds. Thus a horizon with damage of one denotes that all
the connections between the center of the neighborhood and its neighbors are broken,
and the center is completely disconnected from other nodes in the simulation and can
freely move inside the simulation box to compute the effectiveness of the bond force
on the node force by multiplying the computed bond force to (1 — bondgamage ). Foster
et al.[20] examined different standard damage in classical mechanics and created a
connection to peridynamic bond failure laws, including the formulation of work-based
bond failure. Silling and Askari [3] introduced the so-called critical stretch criterion,



1.2 Peridynamic

where the bond breaks only when it reaches a critical stretch. The critical stretch is

defined as
5G
=4/ —. 1.1
%=\ 9ks (1.15)

1.2.4 Neighborhood search

The neighborhood search is required to identify the neighbor material points of each
point (i.e., the horizon center) inside each body that PD simulation should take place.
The found neighbor material points form the horizon, where the equation of motion
will be applied to identify the displacement of the center. Often a proximity search will
take place to form a so-called neighbor list. The neighbor list might then be extended
to include more neighbors than those composing the horizon, so the further neighbor-
hood search at runtime can be eliminated. In practice, initiating the neighbor list is
cumbersome though it seems straightforward in theory. For the sake of simplicity, let
us assume only one horizon radius is applied to the entire simulation. The compu-
tation of the material point distance is not sufficient if a partial neighbor intersection
is considered [8, 21, 22]. Seleson [21] and Seleson and Littlewood [22], suggested
dividing the domain into a set of subvolumes centralized at material points similar to
what is known as the meshing procedure in the standard finite element method. The
proposed algorithm does not, however, use the subvolumes in computation, but rather
as a pre-processing tool that will be used to determine which points should interact
during processing. This will add more complexity to the neighborhood search since
the volume shape of the subvolumes, and the horizon shape, should also be considered
during the search. The result of the search should be stored and used throughout the
simulation run time, which increases the computation cost even more. The treatment of
a variable horizon in PD can be found in the [23] and [8]. Note that, if the Lagrangian
approach is used [3], the neighbor lists may not undergo changes during simulation.
This allows the creation and storing of the neighborhoods once during pre-processing.

1.2.5 Contacts

Contact modeling is an important feature for all of the numerical simulations. The
short-range force approach models by Silling and Askari [3] allows simulating of
multi-body contact interactions, fragmentation, penetration, and impact. The short-
range force approach is recovered from the molecular dynamics techniques [3]. At
each time step, a spring is assumed between the points that are close to each other. The
spring applies pairwise repulsive forces with an inverse relation to the spring length.
This approach alows disconnected bodies to become full contact or vice versa. Other
approaches can be found in the literature [24], where a conventional (local) contact



algorithm is applied to the PD. The short-range force method has difficulties detect-
ing the contact surfaces, since it represents surfaces as a collection of nodes. This
becomes particularly important when a nonuniform hexahedral or tetrahedral mesh is
used for discretization. Although some solutions can be found in the literature [25], the
unphysical interpenetration of the contact models is often possible with extra attention.

Contact detection and enforcement algorithms are requisites of any contact model.
The contact detection defines which nodes are in a range to become part of the contact
face, which may or may not be deferent from the neighborhood search algorithms. The
enforcement algorithm then applies the forces to the contact nodes.

The high cost of contact modeling usually governs the whole simulation computa-
tional expenses. Often computer programs limit the range of possible contact interac-
tions by including specific nodes into the contact, which reduces the contact modeling
computational cost. The other problem is that the contact model often reduces the
maximum stable time step of explicit time integration schemes. Typically, the contact
model results in artificial material stiffening in regions where contact is occurring. This
can cause instability if the critical time step changes suddenly between two sequential
time steps.

To date, PD contact modeling is a pen area of research. A nonlocal contact model
is more likely to be successful since it follows the nature of the PD. The importance of
a nonlocal contact model is better understood when comparing the boundary condition
in PD with the contact. In principle, if we apply the boundary condition locally to PD
simulation, the stiffness be raised artificially, which causes artificial wave reflection
and hardening close to the BC. As explained above, the local short-range force contact
method has the same problem. If a contact model can produce the force density over
a volumetric region, we can apply a nonlocal contact model along with PD simula-
tion. To the best knowledge of the author, this has not been addressed in the literature
yet, which can be due to the lack of currently available computer programs allowing
nonlocal contact modeling.

1.2.6 Time integration

Like any other numerical model, time integration drives the PD simulation. The time
integration scheme computes the nodes displacement from computed nodal PD forces
by the constitutive model. The displacement then will cause extra bond forces in the
next time step. In principle, the PD time integration schemes are not any different from
those available for classical local computational methods [26, 27]. Due to the dynamic
nature, PD is often employed for transient simulations, which makes the explicit time
integration schemes a suitable match. The explicit time steps are conditionally stable,
which is resulting in a limited maximum time step duration. One can use the Courant-

10



1.3 Organization of Dissertation

Friedrichs-Lewy approach to determine the maximum critical time step duration.

Atcritical = ﬁa C= - (116)
c p

where ¢ denotes the wave speed in material, and h is the minimum length scale asso-
ciated with the discretization. Equation 1.16 will give a very conservative critical time
step duration if the h selected to be equal to the minimum node spacing. It is proven
that the h can be set to the smallest horizon radius to improve the computation costs
[28].

In some cases, the implicit time integration schemes may be employed to compute
the preloading as a quasi-static process.

1.3 Organization of Dissertation

The key concerns on the peridynamic computational costs, literature review on PD re-
finement methods, currently available tools for simulating PD, and its implementation
difficulties are reported in the above sections. A novel refinement method will be in-
troduced in the next chapter; its application in a one-dimensional simulation will be
examined. The difficulties rasing from implementing the new refinement method in a
higher dimension will be explained in detail, and a solution will be proposed and be
tested using numerical simulation of the crack propagation in a plate.

In chapter 3 a new architecture for a PD implementation will be introduced, which
is capable of addressing some of the aforementioned implementation difficulties of
the PD in this chapter, and those originating from the new refinement method. The
new architecture allows the researchers to expand the PD beyond its initial formula-
tion, a developed code called Relation-Based Simulator is developed by the author to
demonstrate this fact. The proposed architecture’s new features will be practiced by
simulating three models in chapter 4. Finally, chapter 5 will summarize the works that
have been presented in this dissertation and will include some recommendations for
future works.

11



12



Chapter 2

Peridynamics Refinement

As explained in subsection 1.2.2 in the conventional PD, a fixed horizon size over
the whole domain is often applied in order to eliminate unexpected behavior, which
causes high computational cost. The refinement approaches presented in [29] allow
for variable horizon sizes but introduce so-called ghost forces, which lead to artifi-
cial wave reflection between domains of different horizon sizes. Other contributions
dealing with improving the computational efficiency of PD have been proposed, for
instance, by Pasetto et al. [30] or by Lindsay et al. [31], and Ren et al. [7, 32]. How-
ever, to the best of the author’s knowledge, none of the proposed refinement methods
in the literature offers a native solution. A native refinement method would not require
alternation of the PD constitutive model for implementation. For instance, the FEM
refinement is native since it does not require the deriving of a new set of equations in
the refined area. Refining the PD grid, while keeping the horizon radius constant, is
considered native. Still, this approach is not applicable since the high cost of PD will
grow exponentially by the power of the simulation dimension (see section 1.1).

In this chapter, a simple alternative idea of the native refinement approach while
dealing with multiple horizon sizes is described. The implementation in 1D, its ad-
vantages, and disadvantages are reported. The difficulties arising from extending such
refinement methods to 2D and 3D are discussed, and solutions provided.

2.1 The Multi-Horizon Peridynamics

As illustrated in Figure 2.1, in a condition where a subdomain at a position X has a
horizon radius of R and its neighbor at X’ has a horizon radius of r, where R > r
and r < |X — X'| < R. The X will include the X" in its neighborhood but will not
be included in the X’ neighborhood. Thus the X will have a force toward X’ (i.e.,
ghost force) without X’ having any force toward X, causing an imbalance in the bond

13



i Refinement Zone ,
I — |

Figure 2.1: The appearance of the ghost force at the refinement bound.

between X and X'.

The PD equations of motion theoretically introduce no limitation on the integra-
tion over its horizon [1] (see also subsection 1.2.2). The PD domain can be refined
by utilizing the ’standard’ formulation, which requires a fixed spherical horizon with
a constant radius. The refinement cost will increase by the neighborhood size, which
is exponentially growing by the refinement factor (the difference between refined and
course subdomains dimension). Employing different horizon radiuses will lead to a
defection in PD formulation, causing artificial results or even instability of the simula-
tion, namely the formation of ghost forces.

For the sake of simplicity, let us assume refinement occurs along a straight line,
as illustrated in Figures 2.2 and 2.3. The proposed approach suggest enforcing the
symmetry of the interaction nodes having different horizon sizes by forcing all the
nodes to include themselves to all of their neighbor nodes’ neighborhood (horizon).
For instance, «’ in Figure 2.2 will include all volumes of the subdomains in which the
2’ is included in their neighborhood (e.g., x in Figure 2.2). Thus, the nodes in the
refined domain may have more than one horizon. Note that, the interaction between
the domains is a one to one relation, thus multi-horizons of the refined nodes cannot
coincide.

Let us call the part of the multi-horizon that has the same radius as those of refined
nodes as the natural horizon (H,,), and the rest of the multi-horizon as the interaction
horizon (H;). Figure 2.2 illustrates the horizons of two nodes on the refinement zone,
x, and z’, while Figure 2.3 presents the natural horizon and interaction horizon of the
refined node. Outside of the refinement zone, multi-horizons do not affect the PD
equation of motion which can be written for each point of domain positioned at z and
anode z’ inside its horizon H in the global form of

pi= [ {T-Thavi+b @1
H

where p, b, and u are the density, the body force, and the displacement of the center

14



2.1 The Multi-Horizon Peridynamics

Refinement Zone | ’
/

Figure 2.2: The proposed horizons for nodes inside the refinement zone.

g 1

Figure 2.3: Multi-horizon of a node inside refined domain (/;: interaction horizon,
H,,: natural horizon).

of 2’s horizon respectively. Note that equation 2.1 is valid for all PD-types, i.e. bond-
based (BB-PD), ordinary state-based (OSB-PD), and non-ordinary state-based (NSB-
PD) peridynamics. Let us consider the force vector state T'. Its relation to the deformed
direction vector state M is given as

T=tM (2.2)

where ¢ can be written as a scalar function over the domain for OSB-PD, and in the
special case where t = 1 Eq. 2.2 presents the BB-PD, and any other form of function
for ¢ gives NSB-PD.

The Eq. 2.1 within the refinement zone can be written as

pii= [ (z-wpaves [ {T-Tjavieb, (2.3)
H, H; _

where Ts are the force vector states for the interaction horizon, and T;s must be
defined in a way that Eq. 2.1 and Eq 2.3 have one to one equivalent integral functions

15



on their right-hand side. In other words, the multi-horizon formulation must provide
the same acceleration, as if the whole domain was refined. This requires

/H{I—z}dv;/: {I—z}dv;/+/

H;

{2 -m}av,

HTL

[ aeme | {nomyw e

where H — H,, is the difference between the ’standard’ horizon and the natural hori-
zon, which is a subset of the interaction horizon since it still has no intersections with
the natural horizon. Rewriting Eq. 2.2 for T; and utilizing the deformed direction
vector state M, we obtain

T~ M
thus,
T T
ot
li
Ti=7T=al. (2.5)
Substituting 2.5 into 2.4
| -y - [ feT-oriav 2.6)
H—H, H;

Since « is constant for both BB-PD and OSB-PD, we can rewrite Eq. 2.6 as following

| memyae o[ @-man @)
H—-H, H;

where the only unknown parament is «, that can be easily computed having the interac-
tion horizon and its equivalent horizon in case of refining the whole domain (H — H,,).
Note that a remains time-independent and therefore, it needs to be computed only at
the initial configuration. It is also worth mentioning that NSP-PD can also be imple-
mented as a multi-horizon method if Eq. 2.6 is satisfied. If the refined node is located
within a finite number of refinement zones, Eq. 2.7 can be utilized for each of the
interaction horizons individually.

2.2 Absence of Ghost Forces

Ghost forces occur due to violation of Newton’s law, which is the case for unsymmetric
interactions of particles, which commonly occur for nodes with different horizon sizes.

16



2.3 Numerical Examples

This is also possible for un-symmetric or dissimilar shapes of the horizons. For models
with only spherical horizon shapes for all sub-domains, only differences in the horizon
radius between two sub-domains can cause ghost forces in the refinement zone. Multi-
horizons guarantee the existence of the nodes inside the domain with larger horizon
radiuses in the nodes of the refinement zone, which ensures the absence of ghost forces.

2.3 Numerical Examples

The computation of o can be cumbersome for complex refinement zones, especially
in 2D and 3D as the intersections of the associated volumes of the neighboring nodes
may demand complex geometry computations. For the sake of simplicity, we present
a simple 1D example to demonstrate the performance of the multi-horizon approach.
Consider a 1D bar of length 100 mm and two fixed ends applied to a velocity wave
excitation at the midpoint of the bar, as illustrated in Figure 2.4. The two ends of the
bar have a node distance of 0.Imm. The distance between nodes and the horizon radius
at the midpoint of the bar is four-times bigger than the ends. The velocity wave has an
exponential equation of

v — 6—0.03(m—0.05)2m/8 (2.8)

To study the artificial wave reflection added by refinement zone, the response of
the bar is recorded whenever the displacement of the mid node arrives at its peak.
Figure 2.5 presents the first eight returned velocity waves. The artificial wave reflec-
tion due to the refinement zone is relatively small. As illustrated in Figure 2.6, the
maximum error of 15% is observed after the eight wave reflections.

N
[\ Velocity

/ !
Ax
ol o
Y - /
/ _— LV
%
Ax =0.1 mm Ax =0.4 mm Ax=04mm| Ax=01mm }V
%
/1 L
)X %
// / /
20 mm 60 mm 7 20mm /

Figure 2.4: Initial configuration of numerical example

17



1,00 —1st Wave return

E
0.80 £ —2nd Wave return
’ *g 3rd Wave return
0,60 § 4th Wave return
—5th Wave return
0,40 —6th Wave return
—7th Wave return
0,20 —8th Wave return
0,00
X(m
-0,20 (m)

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10

Figure 2.5: The first eight returned velocity waves for the bar in Figure 2.4

15% | o
o
10% “5
5% o
2
0%
-5%
-10%
-15%
X
-20% (m)

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10

Figure 2.6: The error of velocity waves in Figure 2.5 compare to the non-refined bar
(Colors are the same as Figure 2.5)

18



2.3 Numerical Examples

1

g —1st wave return
= 2nd wave return
08 > d wave retu
'g 3rd wave return
06 9 —4th wave return
—5th wave return
0,4 —6th wave return
—7th wave return
0.2 —8th wave return
0
X (m)
0,2

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10

Figure 2.7: The first eight returned velocity waves for a bar similar to the bar Figure 2.4
with half of the node distance

0,20% | .
o
I
0,10% =&
o
S
()]
>
0,00%
-0,10%
X(m)
-0,20%

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10

Figure 2.8: The velocity error of waves in Figure 2.7 compare to the non-refined bar
(Colors are the same as Figure 2.7)

Let us consider now a 0.2mm node distance in the middle and 0.05mm node dis-
tance at the two ends of the bar. The velocity and its error after the eight wave reflec-
tions can be found in Figures 2.7 and 2.8, respectively.

Finally, we test a pulse excitation on the same bar (see Figure 2.4) where the node
distances are 0.05 and 0.2mm at the end and middle, respectively. Figure 2.9 illustrates
the first eight wave reflections. Although the error is about 40%, the simulation still
remains stable. Note that this error is expected as PD is not well suited for capturing
such sharp wave shapes.

19



1,40

Q —Pulse
1,20 g 1st Wave return
1,00 :.>: 2nd Wave return
S 3rd Wave return
0,80 g 4th Wave return
0,60 5th Wave return
—6th Wave return
0,40 —7th Wave return
0,20 —8th Wave return

0,00 A
-0,20
-0,40 X{(m)

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10

Figure 2.9: The first eight returned velocity waves for a bar similar to the bar Figure 2.4
with a pulse excitation

2.4 Computer Implementation

Implementing the concept of multi-horizons into an existing PD-code requires three
changes:

- At the initial configuration, the nodes in the refinement zone have to be deter-
mined.

- The parameter a(s) for each node located inside the refinement zone should be
determined. Note that neighbor nodes may share their representative volume
with more than one horizon.

- After computing the bond forces, the forces of the interaction horizons have to
be multiplied with a.

Implementing the first two changes usually requires the modification of the data
structure in which the horizons and their neighbors are stored.

2.5 Mesh Sensitivity Affects on Refinement

Recently, several researchers have observed PD sensitivity to its meshing [19, 33, 34],
Dipasquale et al.[34] reported the sensitivity of the fracture path to the meshing direc-
tion as an effect of the lower energy released by the crack path parallel to the meshing.
Nevertheless, the nature of this sensitivity is not discussed in detail. The PD mesh
sensitivity has frequently been reported as the effect of the ratio between horizon size
to the subdomain sizes (known as m ratio), which are the result of variational studies
that have been done comparing the sensitivity to the m ratio. The proposed relation,

20



2.5 Mesh Sensitivity Affects on Refinement

however, can be questioned since the variational research does not promise any con-
nection between two phenomena. Hence, there is a possibility that they are caused
by another factor rather than each other. This section clarifies the understanding of
horizon smoothness, which explains the PD mesh sensitivity and its connection to the
refinement.

The general form of peridynamic constitutive model can be written as

T =T(Y,A)) (2.9)

where T is called peridynamic material and is a bounded, Reiman-integrable function
on the horizon. A is representing all other parameters where the current deformation
vector state cannot describe but must be used to equalize the PD material with the
continuum material behavior. PD Material is called simple if A = 0. Since T is a bi-
jective function [2], the continuum domain point set and PD domain point set required
to be equivalent. If PD material is unable to present even one point of it equivalent
continuum model, the PD simulation does not present its equivalent continuum model.
Therefore, the PD simulation domain cannot possess any cavitation or duplication of
material points. Thus, regardless of the discretization method, the PD domain should
exactly match the continuum problem geometry. A random discretization demands
comprehensive overlapping and cavitation search over the PD domain.
The discretized form of the equation of motion (equation 1.8) is:

p(x)u(x,t) = Z /E( Tx,t] <x’—x>— T, t] <x—x">)dVy + b(x,1)

(2.10)
where E's are the discretized subdomains which sharing volume with the horizon. since
T linearly depends on Y (equation 1.14) in BB-PD and OSB-PD, performing the inte-
gration over the subdomain gives:

p(x)i(x,6) = > (( Tx, 1] <X, — x> — T[x,, 1] <x— X, >) Vx, +b(x,8) Q2.11)
E

where, x,, are the integration points of the subdomains, Vx, is the volume of the sub-
domain that contains Xx,,, and V§\n is the shared volume of V5 with the horizon of x.
The exact computation of Vi, has a high-cost, especially in 3D. Therefore, using
a weighting function for computing the V5 from  is practically acceptable for PD
implementation. The instance of weighting function at the x,, called volume correction
and noted by C',. Re-writing equation 2.11 using volume correction concept we have

p(xi(x,t) = > ( T[x, 1] < X, —x > — T[x,,,t] <x—x,, >) Oy, +b(x, 1),
: (2.12)

21



Similar to the continuous form of the peridynamic equation of motion, the satisfaction
of the balance of angular momentum leads to a set of z,s with centroid symmetry.
Thus an ununiform discretization (either soft change of subdomain size in one dimen-
sion or sharp change as refinement) cannot satisfy the balance of angular momentum
and needs extra care [7]. Due to the limitation mentioned above, the numerical and
theoretical horizon differ in shape (Figure 2.10a). Similarly, distribution of the volume
correction differs between numerical and theoretical horizon, compare Figures 2.10b
and 2.10c.

Figure 2.10: (a) Numerical and theoretical horizon shape differences on 2D domain
(b) Theoretical horizon volume correction (¢) Numerical volume correction

Thus the boundary of the numerical horizon is a pixelized version of its theoretical
counterpart (spherical horizon) generated by the background of the uniform mesh of
the domain. Since ||T|| is not dependent on the direction of the bond, the only factor
that can create a dependency of force value on the right-hand side of equation 2.12 to
the direction of the bond is volume correction (C'y).

The bond forces highly depend on the boundary condition of the domain, but the
resistance of the horizon to deformation (the accumulated bond stiffness of the hori-

22



2.5 Mesh Sensitivity Affects on Refinement

-
o
R

P
L~

o
o

N
|

N
~

—1
-

o
©
o
L

T
I
I

1

-

3

o
s

!
\

o
o
=

\
s

)
1
v

0.16

OTheoretical

\]M

s " 16= 1.105
UL

g n g u
- ~

K=}
[}
N

ns*

Directional Horizon Stiffness

0.16 |

ot6m= 1 305
[

'

n o i
n © ©

I

n
o0

= Numerical

K=}
o
o

{l

Bond Direction

gm

=) o
v ~

"3
~

o
©

n
0

o

o n o
@ < -y

-40

Figure 2.11: Change of the horizon stiffness respect to direction.

zon) only depends on the constitutive model and is more efficient for identifying the
numerical horizon’s smoothness effects. The illustrated volume correction functions in
Figures 2.10b and 2.10c are used for determining the horizon stiffnesses dependency
to direction. A very fine mesh (Af = 0.001°) applied to both numerical and theoretical
horizon. The right-hand side of equations 2.12 and 2.10 were integrated and divided
to the deformation of the slice caused by a uniform constant deformation in all direc-
tions. The result of the computation is a dimensionless parameter called “Directional
Horizon Stiffness” which depends only on the meshing direction. This parameter is
illustrated in Figure 2.11, and it can efficiently present the bond force dependency of
numerical simulations to the mesh direction. The area below the ”Directional Horizon
Stiffness” diagram (Figure 2.11) is the density of the stiffness of the horizon and it can
be calculated between any two angles. For instance, the area between any two random
bond angles, o and f3 is noted by S? which represents the stiffness of the horizon be-
tween a and 3. If 8 = 7 the density of horizon’s stiffness is called right-side horizon
stiffness and noted as S.F. Similarly left side horizon stiffness is indicated as S, .

The nature of the PD allows only force waves to propagate through the domain.
Other imposed forms of waves on boundary domains (e.g., velocity wave) will be inte-
grated by time integration scheme to find the displacements, and then the forces will be
defined by the PD, which will propagate through the domain. (see equation 1.8). The
dynamic force wave then travels through the horizons by producing bond forces and
strains. If a wave force inters a horizon at a specific angle of the 3, it will experience
different horizon stiffness on the left and right side if and only if the Sg # 5. This
condition is valid for any angle on the theoretical horizon since its stiffness is not de-
pendent on the direction of the meshing, but it is only true for = F£7 on the numeri-

cal horizon where £ is an integer. For instance, in Figure 2.11, the S:rctan 0.5/3.5)=0.142
and S

arctan(0.5/3.5)=0.142r AT€ calculated to be 1.105 and 1.305 respectively. If a wave
enters the hOI‘lZOl’l with the angle of 0.1427, it will receive less stiffness in its right

23



side and will distribute faster to the left side. Then it will enter to a stiffer volume of
the Sy 642, and softer volume of S*, ;- and will return to the same angle of 0.1427.
Similarly, in the other half of the horizon, the wave will distribute to the right and then
left but finally continues its pass with the same angle at which it entered the horizon.
Therefore, mesh sensitivity of the numerical horizon will not affect the numerical result
since we are not interested in the bonds’ forces but rather their accumulation, which
governs the displacement of the nodes. However, the difference between the left and
right directional horizon stiffnesses becomes essential if the numerical horizon does
not have symmetry around the perpendicular face to the force wave. Such scenarios
can be found in any sharp change of material property, either as the interaction of two
domains (with or without refinement) or fracture (mostly at the tip of the crack path).

It is worth mentioning that the angles of the bonds are also discontinuous. The
distribution of the bonds effectiveness and their contribution to the angular horizon
stiffness illustrated in Figure 2.12 for m = 3 and due to the symmetry of the horizon
only for span between 0 to +45 degrees.

2.6 Smoothed Horizon

Since the pixelization of the horizon leads to mesh sensitivity along the domain interac-
tion lines and crack paths, reducing the difference between the numerical and theoret-
ical horizon should reduce the PD mesh sensitivity. This can be achieved by different
approaches, namely, horizon enlargement, horizon refining, and adaptive horizon re-
fining.

2.6.1 Horizon Enlargement

Increasing the ratio of the horizon radius to the subdomains edge length (m) will reduce
the pixelized effect of the meshing. Figure 2.13 illustrates the horizon stiffness of
different m ratios. The horizon stiffness is less sensitive to a finer pixelized horizon.
Although this seems to be the most effective way to reduce the numerical horizon
effects on PD, a very high computation cost can be expected. The complexity of the
bond force computation is O(n(2m)”), where n is the number of PD nodes, and D
is the problem dimension. Increasing the m by a factor of two gives two times higher
bond force computation cost for 1D problems, four times higher for 2D problems,
and eight times higher for 3D problems in each time step. Considering the minimum
of the same amount, higher storage cost, this option is not as efficient as it might
seem at first glance. However, it benefits from a very comfortable implementation.
Figure 2.13 illustrates the effect of the horizon enlargement to the horizon stiffness.
The comparison and effectiveness of horizon enlargement are reported by Dereso et.al.
[34].

24



2.6 Smoothed Horizon

Directional Horizon Stiffness

0,92

0,90

0,60

0,50

0,40

0,30

0,20

Directional Horizon Stiffness

0,10

0,00

sl
71
’
N7 -7 |
4 I
S
7 1
4 |
’
I
/
/4' _______ F===-==== 1
Al | 1
4 }
N4 ,* ! N5 I N6 :
[ ] 1 ® | e 1
, 4 | I |
- -1st order iR / 0O ’ ! ! !
. L’ g 'L/ 1 1 1
Yoo 5 e r————---- t——-———=- 1
—Theoretical 8’ | | 1 |
- 1 | 1
0 5 10 15 20 25 30 35 40 45 : N1 | Nz. ! N3 |
— ) — - ———— — e —— ——— -
Bond Direction O -. .
(a) (b)
T T T
—— Contibution of N1 ==+ Contibution of N2
—— Contibution of N3 <<+ Contibution of N4 .o
[ = Contibution of N5 —— Contibution of N6 XS
* Contibution of N7 e —.\ T
- — - \ o
\ / N\ o *
\ / N
\ / Lo N\
\ , * N
7
\ \ N
‘\ ..' \ o
Y N
R X : >
\ /N SN
A + : ‘--, \.... N
\ / N AN
d K '." AN
/ // \\ .". N
: * o N
\Y) N e
0 5 10 15 20 25 30 35 40 45

Bond Direction

(©)

Figure 2.12: (a) The bonds direction of the nodes and the effective direction of each
node. (b) The positioning of the nodes for m = 3 from 0 to 7 (¢) The contribution of
each node in the horizon stiffness.

25



1,02

1,00

0,98

0,96

—1st order
2nd order
3rd order

- -4th order

—5th order

—Theoretical

0,94

0,92

Directional Horizon Stiffness

0,90
-90,00 75,00 -60,00 45,00 -30,00 -15,00 0,00 15,00 30,00 45,00 60,00 75,00 90,00

Bond Direction

Figure 2.13: Horizon Stiffness change with bond direction for various ratio of the
horizon radius to the subdomains edge length (1)

2.6.2 Horizon Refining

The volume correction of the border neighborhoods ( Cy, # 1) is the bases of the
horizon stiffness dependency on mesh direction. The refinement of the volume at the
border neighborhoods creates a softer change at the horizon stiffness, which leads to
smoother horizon stiffness. The suggested refinement occurs only at the horizon level
and does not require h-refinement in subdomain meshing. Figures 2.14a and 2.14b
illustrate refined horizons of order 2 and 3 in 2D, respectively. The added bonds will
take place in force computation rather than the bond itself. The original bond force
then is the sum of the added bonds. The same analogy shall be used in damage, the
total damage of the bonds is equal to the damage of the original bond. The deformation
of the added bonds will be calculated by the displacement interpolation of the relatively
added refined-subdomain from the original node displacement.

The constitutive model will not change by horizon refinement, and only the volume
correction will be affected. The horizon refinement highly smoothes the stiffness of
the numerical horizon, as it can be seen in Figures 2.14c and 2.14d.The comparison
between Figure 2.13 and Figure 2.15, shows more effective smoothness caused by
horizon refinement than enlargement. Although the horizon refinement reduces the
stiffness of the horizon, 17, horizon refinement promises lower costs than enlarging
the horizon size. Considering the complexity of O(n(b;+b,d,.)) where b; is the number
of inner bonds, b, represents the number of refined bonds at the border of the horizon,
and the d, is the refinement order. The second-order refinement provides us with at
least the % cost of horizon size enlargement and third-order refinement almost half of
the cost in 3D problems.

26



2.6 Smoothed Horizon

(©) (d)

Figure 2.14: 2D schematic illustration of the (a) second and (b) third order horizon
refinement bond and the volume correction distribution over the refined horizon of
order two (c¢) and three (d).

1,02

— -2nd order

3rd order
~ -4th order
—5th order
—Theoretical

Directional Horizon Stiffness
o
o
(<))

0,90
-90 75 -60 -45 -30 -15 0 15 30 45 60 75 9

Bond Direction

Figure 2.15: Horizon Stiffness change with bond direction for various horizon refine-
ment orders

27



(a) (b)

Figure 2.16: The volume correction distribution for (a) second and (b) third order
adaptive horizon refinement without neighborhood search.

2.6.3 Adaptive Horizon Refining

Horizon refinement is relatively faster than horizon size enlargement, but still requires
high cost on the PD. Alternatively, the horizon refinement can be adaptively used
whenever the horizon overlaps with two or more domains or experiences any dam-
age. Adaptive horizon refinement does not require any remeshing, nor any change in
the formulation of the PD, therefore, it enjoys easier implementation, and lower cost
in comparison to any other mentioned smoothness method above. Some of the refined
subdomains may not be found in the initial neighborhood search. There are different
approaches to address this problem. First, by initiating neighborhood search around
the newly added nodes to the refinement area at the beginning of each time step. This
option has low memory cost, but it comes with high computation cost since the neigh-
borhood search is one of the most expensive processes of the post-processing of PD.
Second, reducing the cost of neighborhood search in each time step by storing all the
found neighbors in a cubic neighborhood, and applying C'y = 0 to their bonds at the
initial neighborhood search. The moderate neighborhood search can be expected since
the newly added nodes cannot have a new neighbor outside their cubic neighborhood.
Third, neglecting the refined subdomains outside of the current horizon. Neglecting
the neighborhood search changes the shape and distribution of the volume correction
over the horizon. A comparison between Figures 2.16a and 2.16b with their similar
order in Figures 2.14c and 2.14d shows that the higher the order of horizon refine-
ment, the larger the difference between the distribution of the volume correction over
the horizon with and without neighborhood search. However, the purpose of hori-
zon smoothing is not to find the closest distribution to the theoretical horizon rather
smoothing the horizon in a way that the left and right side stiffness stays similar in all
of the angles. Figure 2.17 illustrates the horizon stiffness change with the bond direc-
tion for the adaptive refinement with no neighborhood search. The minimal difference

28



2.7 Reduced Sensitivity of Smoothed Horizon

-
=]
=]

o
)
©

o
©
k-

o
©
s

1st order
2nd order
3rd order
— -4th order
—5th order
—Theoretical

o
©
N

Directional Horizon Stiffness

o
©
o

o
0
®

-90 75 -60 -45 -30 -15 0 15 30 45 60 75 90

Bond Direction

Figure 2.17: Horizon Stiffness change with bond direction for various horizon refine-
ment orders without neighborhood search.

of second horizon refinement shows that the second-order adaptive horizon refinement
without neighborhood search can safely be used.
Table 2.1: The horizon smoothness simulation parameters

Young’s modulus  Poisson’s ratio mass density
BB-PD FE = 73.4GPa v =0.33 p = 244024

2.7 Reduced Sensitivity of Smoothed Horizon

The mesh sensitivity only occurs when we find a line passing through a horizon cen-
ter, which can introduce different horizon stiffnesses in each half of the horizon. (see
section 2.5). This situation will occur in the interaction faces of domains with differ-
ent PD material, or at the tip of the crack since damage material stiffness creates a
non-symmetrical horizon stiffness. Since the fracture simulations have only one re-
lated parameter (e.g., crack direction) to horizon smoothness, they are preferred to
wave propagation simulation in a refinement bound between two domains. Although
the fracturing process is more straightforward in PD, fast-wave propagation can cause a
complex fracturing scheme. Thus inquiring the PD mesh sensitivity is more convenient
on a fracture problem with slow-wave propagation. A PD code developed to present
the effect of the smoothed horizon using second order adaptive horizon refining, Fig-
ure 2.18, illustrates the geometry of a plate with an initial crack and the geometry of the
boundary domains (see chapter 3) and the direction of applied forces on the boundary
domain nodes. As expressed by Dipasquale et al.[34], the choice of PD (i.e., BB-PD
and OSB-PD) has no effect on the crack path direction. Thus for the sake of the com-
parability, the same parameters (see table 2.1) are selected for the BB-PD simulation.

29



I o i O O O,
. = @

Initial Crack
0.05m

0.25x0.25 m?

LR
osvea § $ $ & & &

Figure 2.18: The schematic illustration of the initial configuration for the horizon
smoothness simulation

The load has an intensity of 0.8 MPa where applied to the nodes of the upper and
lower boundary domain nodes as illustrated in Figure 2.18. Figure 2.19 illustrates the
result of a simulation with a meshing angle of 10 degrees to the initial crack direction,
where it was reported to have the highest effect on the crack propagation. Smoothing
the horizon by utilizing the second-order adaptive horizon refining reduces the mesh
sensitivity of the PD to the mesh direction. The same should be expected applying the
horizon smoothness to the refinement bound between a course and fine domain.

Figure 2.19: Second order adaptive smoothed BB-PD fracture.

30



Chapter 3

Software Architecture and
Peridynamic Computer
Implementation

The first peridynamic computer implementation was called EMU code. It was de-
veloped by Sandia National Laboratories using Fortran 90 [35]. The subsequently
released codes by Sandia National Laboratories capable of simulating peridynamic
models are SIERRA/SM [36], LAMMPS [15], and Peridigm [14]. The EMU and
SIERRA/SM are not publicly accessible. Thus, their implementation details are not
available to discuss. The LAMMPS is a dynamic molecular simulator that was ini-
tially developed using Fortran77, which was later updated to Fortran 90 and currently
available in C++. Although the LAMMPS is capable of simulating different meshfree
methods like smooth particle hydrodynamics, [37] and Peridyanmic [15], due to the
complexity of its architecture, modifying its source code for applying new methods
requires a deep understanding of the provided library. In other words, the LAMMPS is
a very useful software for simulating meshfree methods, but further development of its
source code is a cumbersome task and needs specialized knowledge. The Peridigm is
a C++ code explicitly developed to simulate peridynamic multi-physics problems. It is
capable of simulating large-scale parallel domains with a contact in both BB-PD and
SB-PD. It is also able to use implicit and explicit time integrations. The Peridigm sup-
ports pre- and post-processing tools like Paraview visualization tools. Like LAMMPS,
the Peridigm is a monolith that limits its user from the further extension of the code
on specific topics. Figure 3.1 illustrates the Peridigm architecture and extendable ar-
eas reported by the Peridigm developer team. Thus developing out-of-box constitutive
modes, contact face search, neighborhood search, etc., are not achievable in a short
time [38]. For instance, the implementation of multi-horizon refinement (see chap-
ter 2) requires the researcher to clone the code and modify the data structure.

Other implementation of PD using commercial software can be found in the litera-

31



] Proximity search
Input neighborhood construction
Deck
Compute Classes

\

1

1

I

! 1

! 1

Discretization 1 Internal Force - .
N 1 I

N fenteﬁsl's mesh . Time integrator 1
z) In‘::rnaelmesh Material Model(s) 1) Explicit transient dynamics |
) L . 1
generator 2) Implicit dynamics .
3) Quasi-statics '

Damage model(s) \_ .

1

\
\
N

contact interactions

1
Output
A 1 Exodus file
[ Proximity search | | Contactmodel] !

Orange denotes extensible components

Figure 3.1: The Peridigm architecture and its extendable areas reported by the
Peridigm developer team.

ture [9—12]. Due to two main problems associated with such implementation, they are
not recommended. First, the limited interaction with the solver prevents the researcher
from modifying the solver. Second, the solver’s hidden nature can generate unex-
pected, untestable, artificial results which the user cannot prevent or, in some cases,
even recognize.

In this chapter, a software architecture for node-based methods (e.g., peridynamic)
is proposed. The proposed architecture aims to reduce the cost of method implementa-
tion for computational scientists while providing them with a robust and secure system
to use. It also allows collaboration between computational engineering researchers by
following the characters of microkernel and agile architectures. Thanks to microkernel
initials, researchers can enjoy the code’s high performance while securely implement-
ing PD’s advancement. The security provided by microkernel architecture allows the
researchers of other fields (e.g., mechanical engineers) to utilize the provided code by
computational engineering researchers or combine those methods to fit their needs. An
implementation of the proposed architecture called Relation-Based Simulator (RBS) is
developed incrementally by following the agile development approach during the last
three years and can be found on the GitHub website !. Note that the proposed architec-
ture is not limited to the PD, and one should be able to implement any other numerical
simulation following the provided material in this chapter.

'ttps://github.com/alijenabi/RelationBasedSoftware

32


https://github.com/alijenabi/RelationBasedSoftware

3.1 Modern Programming Paradigms

3.1 Modern Programming Paradigms

Programming paradigms are a set of concepts that help programmers achieve their
goals with less effort to maintain, develop, and modify their code at a lower cost. The
paradigms are not mandatory to use, and some of the languages are only built around
one paradigm. For instance, the Prolog language is built around logic programming
paradigms and Haskell around functional programming paradigms.

In this section, the programming paradigms that the proposed architecture uses are
explained. The advantage of such paradigms for developing a node base program is
described. The practical applications of such advantages are explained.

3.2 Procedural Programming

A computer code that is written as a long series of operations to execute is called pro-
cedural. Procedural programming is often the choice of computational researchers for
presenting the proposed method’s implementation because their audiences can sim-
ply follow the series of operation execution to understand how to implement the new
method [13]. In procedural programming, code can be organized into named functions
or sub-routines to make the code modular and maintainable. Although it is easy to
create simple programs in terms of sequential steps, those programs suffer from a lack
of readability, often have code multiplication leading to high maintenance cost, and
most importantly, the code tends to become very complex while growing in size.

3.2.1 Object Oriented Programming

Object-Oriented Programming (OOP) splits code into several self-contained objects.
Each object contains its logic, data, and behavior related to other objects. A procedu-
ral approach and an object-oriented approach are the same although they organize the
code in a different matter. Code written in an object-oriented manner is reusable; it is
easier to maintain, modify, and develop in an agile manner. Object-Oriented Program-
ming reduces code complexity by introducing four new features: abstraction, polymor-
phism, inheritance, and encapsulation. In terms of developing a code able to simulate
any node-based computational method (e.g., PD), abstraction allows the developer to
create an abstract of their object and instantiate as many as they need. Data security
is the most significant advantage of encapsulation in OOP, where we can limit access
to the information (e.g., initial node position) and ensure that it will not be altered
unintentionally during the runtime of the program. Inheritance allows us to develop a
series of base classes (also known as parent classes) that are necessary for the code to
run, and then another researcher will be able to create subclasses (also known as child
classes) of those base classes and add more functionality or even override the base

33



class behavior on the new class. For instance, in our proposed architecture (Relation-
Based Architecture, RBA) a base class called Node manages the storage of vector and
constants related to that Node; the PD Node is a subclass of the Node class that only
provides functionality related to peridynamic (see subsection 3.4.1). Polymorphism
allows us to introduce interfaces where we define only the possible properties of each
object, but the object that inherits the interface is responsible for implementing the
procedure itself. For instance, Relations in RBA have all the same functionality. Thus,
if a researcher is required to introduce a new constitutive model to the program, they
can create their own class and inherit the relation interface. In this way, the researcher
can benefit from the facilities provided by RBA without knowing how they work in
detail. Polymorphism also allows for the rewriting the base class properties. For in-
stance, when developing a new peridynamic refinement method, one can inherit the
Peridynamic class and override the required functions.

3.2.2 Functional programming

Functional programming is a paradigm for minimizing testing effort by enforcing the
program states to be a set of stand-alone functions. Thus if all the functions are work-
ing as expected, the program will run flawlessly. Functional programming minimizes
data mutations, replaces loops with recursion, and prefers expressions over statements,
so that the functions are pure and side-effect free. Following the functional program-
ming paradigm, the outputs of each function depend only on its inputs, and they are
not allowed to change an out-of-scope state of the program. Although many languages
are not built to support this paradigm, one can implement a set of guidelines and rules
to enjoy the benefits of functional programming in any language. Initially, C++ did
not support any functional programming feature, but the C++11 standard library pro-
vides the means to employ both functional and object-oriented programming. RBA
uses functional programming in several spots where a default behavior is defined, but
additional change is assumed to be required by future works. For instance, the neigh-
borhood search parameters are defined to support a hypersphere neighborhood shape,
but it is possible for the researcher to create a custom function for employing new
behavior for the neighborhood search. The theoretical points are explained in subsec-
tion 3.4.2.

3.2.3 Microkernel (Plugin) Architecture

The microkernel architecture is initially employed on operating systems (OS) by plac-
ing the system’s essential capabilities (e.g., memory and the file system) to a single
stand-alone executable called the kernel. Other stand-alone execution units can be
plugged into the kernel to provide extra functionality. These small executables are

34



3.2 Procedural Programming

often called plugins. The “’plugging in” in today’s operating system world relates to al-
lowing the new plugin to call the kernel functions and members directly, which creates
an efficient communication path between the plugin and the kernel. In the older ver-
sion of Unix, the OS had to be recompiled in order to add or remove a plugin from it.
The most complicated and challenging task in microkernels architecture is the messag-
ing; in early OSs, a special part of memory was allocated for the plugin’s messaging.
Even pointers of the kernel functions were available for plugins to call. This approach
was not successful since a single plugin could cause insecurity in the system. The
implementation of such a complex architecture for RBA is burdensome and overkill.
However, RBA plugins like implementation of relations offers the following benefits
when employing microkernel architecture:

- The plugins are independent; thus, when two researchers are developing different
parts of the code or different methods simultaneously, it is impossible to affect
each others’ work.

- The isolation between plugins makes it impossible for one plugin to make direct
calls to methods within another one. Thus, researchers are limited and must stay
in the framework in which they are developing. This leads to a more testable and
reliable system. It also ensures that individual mistakes will not affect the core
functionality of the system.

- The plugins are relatively small in size. Thus maintenance, debugging, and mod-
ification of them will be inexpensive.

It worth mentioning that employing the microkernel architecture also has a down-
side. If the kernel needs to be changed, all the plugins must be adopted to the new
kernel. Moreover, the flaws in the kernel can cause a system failure. Since the RBA’s
kernel (named Analyses) is not as complicated as an OS might be, this downside is not
relevant.

3.2.4 RBS Architecture

The main theme of the RBA is OOP, as the nodes, neighborhoods (i.e., horizons),
mathematical vectors, points, and many more concepts naturally occur within the OOP
concept of Object. Functional programming is often used to minimize the researchers’
effort when introducing or replacing a mathematical function in the simulation pro-
cess in the RBA. For instance, the bond force-stretch function of bond-based peridy-
namic can be altered by writing a suitable lambda and passing it to the bond-based
peridynamic relation constructor. The microkernel architecture (i.e., plugging archi-
tecture) concepts as explained above are utilized for structuring Relations and their
dependencies. For instance, the time-integration schemes are specific to the methods

35



(e.g., PDVelocityVerletAlgorithm) and not shareable across the constitutive models.
The simplicity of following simulation steps by procedural programming is adopted
by RBA when implementing simulations. Along with a familiar naming system to for
the computational concepts namespaces, objects, and functions, The RBA values the
researcher’s aim to provide a simple presentation of their work to their audience. Thus,
a researcher with limited or no prior C++ knowledge can understand the steps taken on
the program’s main function. See the following code, which defines a BrittleFracture
only on a part of the model’s body (i.e., platePart).

const auto shouldFracture =
[plateDimension] (const Part::NeighborhoodPtr& horizon, const Part::NeighborhoodPtr&)
{
// Get the position vector of horizon’s center.
const auto& posVec = horizon->centre()->initialPosition () .value<space::Point<3> > ()
.positionVector();
// Check if horizon’s center is located inside fracturable area.
return - plateDimension / 4 < posVec[l] && posVec[l] < plateDimension / 4;
bi

relations::peridynamic: :BondBased: :BrittleFracture (
criticalStretch, materialConstant, gridSpacing, horizonRadius, platePart, true /x
override forces x/, shouldFracture);

3.3 Agile Development For Scientific Purposes

Agile development is mostly addressed for implementing online businesses as stated
in the the agile manifesto !, “Business people and developers work together daily
throughout the project.” Agile development is based on a cyclical process known as
the inspect and adapt loop, where the developer modifies some part of the code and
releases it to get the end-user feedback. This incremental thinking set is not far from
computational engineering science, with a small difference: the researchers are seek-
ing other researchers’ interest in their work and the applicability of their proposed
method rather than the end-user feedback. The RBS architecture follows the agile de-
velopment principle, so that other researchers’ incremental work can improve upon the
implemented code.

'https://agilemanifesto.org

36


https://agilemanifesto.org

3.4 Data Structure

3.4 Data Structure

In this section, the proposed architecture and its implementation are explained in detail.
The specifics of peridynamic on each topic are first explained, then the RBS architec-
ture (i.e., RBA) approach and its implementation are presented. Note that the same
procedure can be done to introduce any other node-based method to RBS.

3.4.1 Co-location Approach and Nodes

The discretization of the space and time introduced by Silling and Askari [3] divides
the PD problem’s physical system into a finite number of subdomains in which the
co-location approach is employed. The co-location approach is relevant to the one
point Gauss quadrature scheme where all the physical parameters are constant over the
subdomain. The co-location approach requires the subdomains to cover the entirety of
the domain, otherwise, the non-covered area of the domain will be handled as material
cavitation by PD. Thus a random generation of the subdomains similar to most mesh-
free methods cannot be accepted and requires extra attention to fulfill the co-location
approach condition.

The implementation of any node-based method approach requires the nodes to
carry the relative subdomain information such as position, displacement, velocity, di-
latation, etc. The co-location approach does not limit the storage of data at Node in
any respect. RBA suggests using a global Node that may or may not own its parameter
by itself. For instance, it is recommended that the node’s initial position be owned
by other quantities that can secure the covering of the entirety of the co-location ap-
proach’s domain condition. Still, the force is recommended to be stored inside the
Node to ensure that the node forces remain independent. The recommended UML dia-
gram of such implementation is illustrated in Figure 3.2, and its implementation details
can be found under /source/configuration/Node.h on the RBS.

The Node is a base class for all of the nodes. Each numerical method (e.g.,
PD) that desires to have a specialized subclass of the Node must implement its own
definition of the Node (e.g., PDNode) inside the relation that is required to use the
new node definition to follow the microkernel architecture. Thus the RBS includes
the Node inside rbs::configuration namespace while the PDNode is defined inside
rbs::relations::peridynamic namespace.

3.4.2 Bonds and Neighborhood

Peridynamic equation of motion, Eq.3.1, describes the relationship between the space
(i.e., acceleration i of co-location node located at X), time (¢), and the inner force of
each subdomain. The inner forces are composed of body force density field (b) applied
to the subdomain and so-called force vector state field T caused by the displacement

37



<<union>>
Parameter

#ownedParaments : Parameter[0..*]
#texternalParameters : Parameter[0..*]

+int
+double
+vector
+matrix

+contains(Parameter): bool
+parameter(Index: int): Parameter
+setExternal(Parameter)

+Setowned(Parameter)
+size(): int -

VectorType
+removeAllParameters() yP

1
1
A : 2 initialPosition
) @ currentPostion
(Y displacement
: force
1 velocity
PDNode -—-l1 acceleration
Al
M ScalarType
+have(VectorType): bool
+have(ScalarType): bool damage
+get(VectorType): Parameter Dilatation
+get(ScalarType): Parameter weightedVolume
+set(VectorType, Parameter) maximumBondScratch
+set(ScalarType, Parameter) minimumBondScratch
timelteration

Figure 3.2: The Node UML diagram. The parameter stands for any data type to store
node properties or information

(strain) of the surrounding material (X’) within a boundary, which is well-known as the
horizon of the subdomain, Hx. Note that the PD equation of motion does not imply
any shape requirements on the horizon or the subdomain.

p(X)i(X, 1) = [ {T[X.4] (X = X) = T[X, 1] (X = X))} dVi+b(X, 1) (3.1)
Hx
Considering the balance of linear momentum for any bonded body (3, we obtain
/ p(X)ii(X, £)dVys = / b(X,t) V>0 (32)
B B

where it holds regardless of the choice of T [2], Therefore, satisfying the linear mo-
mentum does not require the subdomains to include each other on their horizon. Thus
as long as the equation of motion and balance of linear momentum are satisfied, the
PD equation of motion allows one end bonds.

38



3.4 Data Structure

The balance of angular momentum is required to satisfy
[0 < o0 0} ave 0 w0 63
B

where
v(X,t) =X +u(X,1) YVt >0 (3.4)

and u(X,¢) stands for the displacement after time ¢ of the co-location node located
initially at X.

The global form of the PD constitutive model as described in Eq 3.8 does not limit
the T to be only depended on the displacement of its surrounding nodes, Silling et
al.[2] however, introduced the SB-PD constitutive model in order to depend only on
the deformation vector state field

T X, (X' = X) =T (Y [X, (X' - X)) (3.5)

where f is a bounded Riemann-integrable operator over the horizon and the deforma-
tion vector state field defined as

Y[X 1] (X' = X) =y(X, 1) —y(X, 1) (3.6)

While y introduced by Eq. 3.4, Eq. 3.6 assumes that no two nodes could be located
inside the same subdomain and there exist no overlapping subdomains inside the do-
main. The state-based constitutive model is then introduced by Silling ef al.[2] in the
form of

T X, 1] (X'~ X) = ¢[X, 1] M (Y. [X, ] (X' — X)), (3.7)

M (Y [X, 1] (X' = X)) = (DirY [X, 1)) (X' — X)), (3.8)

where if ¢ is scalar force state field, the PD method is called ordinary; Otherwise, it
is called nonordinary. M is the deformed direction vector state, and the Dir refers to
direction of state Y defined as

(DY X, ) (X'~ X) = { vixopesg o ! (.9
T Fxix—x) Otherwise ’ '

The bound based Peridynamic is then a special case of ordinary state-based peri-
dynamic where the ¢ = 1. Two end bonds are the requirement of the OSB-PD and the
BB-PD because the T must have central symmetry around each node at any given time.

Consequently, the following point needs to be addressed while implementing the
bond as a data type:

- Forcing the bonds to have two ends in any implementation restricts the code to
those node-based methods that required two-end bonds. Otherwise, implemen-
tation of other constitutive models with exactly one or more than two bonds will
be extremely expensive or impossible.

39



- The bonds are the connection of the nodes in the configuration. In non-local
node-based methods, the size of the neighborhood will dominate the cost of the
simulation. Thus the storage size of the bonds is vital to the practicability of the
code. By increasing the size of the bonds, the number of possible nodes in the
domain reduces exponentially.

- Each bond needs to carry out the information of its shared volume with the hori-
zon (i.e., the intersecting volume between the horizon and the neighbor subdo-
main)

1
Neighborhood c

#neighbors : Neighborhood[0..*]
#neighbors_properties: { Neighborhood: Parameters[0..*] }
#center: Node

+cetner(): Node

+addNeighbor(Neighborhood)

+at(Index: int) : Neighborhood

+removeNeighbor(Index: int)
+connectionParameters(Neighborhood) : Parameters[0..*]

*
+appendParameter(Neighborhood, Parameter) 0.

<<union>>
1 Parameter

+int
+double
+vector
+matrix

-center : PDNode
-neighbors : Horizon[0..*]

+cetner(): PDNode
+addHorizon(Horizon)
+At(Index: int) : Horizon
+removeHorizon(Index: int)

Figure 3.3: The Neighborhood and Horizon UML diagram. The Parameter, Node and,
PDNode relations can be found in Figure 3.2

Figure 3.3 illustrates the proposed architecture for the Neighborhood class where
Horizon is its realizations for PD. The RBS does not define any form of data struc-
ture to store the bonds. Instead, it stores the Nodes’ connection inside the Neighbor-
hood and as a form of pointers to the neighbor Nodes’ Neighborhoods; this approach
increases the code’s extendability since more information can be accessed through

40



3.4 Data Structure

01|ZZ F ¥|S|9
I
)

1 2314 X

Figure 3.4: The schematic illustration of a 2D dynamic background grid with random
discretization of the random domain, and the rectangular neighborhood of Ng.

the Neighborhood connections than Node connections. The implementation details of
Neighborhood can be found under /source/configuration/Neighborhood.h on the RBS.

Moreover, defining bonds as a connection between two Neighborhoods has several
advantages,

- If the constitutive model requires access to the Neighborhood of the bond ends
(i.e., neighbors of its neighbors), it does not require performing any search.

- The border (faces, edges, or corners) of the domain can be quickly found by se-
lecting a random neighborhood and performing any tree or graph data structures
search.

- If the constitutive model applies any adoptive scheme (e.g., adoptive refinement
around or in front of the crack tip), it can search among the neighbor’s Neigh-
borhood instead of performing a global search on all the neighborhoods.

- It forms a network of neighborhoods, which eases the search algorithms to be
implemented within the RBS. For instance, one can implement an intersec-
tion neighborhood search by only accessing one of the Neighborhood and loop
through its neighbors, its neighbor’s neighbors, and beyond.

3.4.2.1 Coordinate Systems and Neighborhood Search

In any nonlocal node-based method implementation, the neighborhood search is con-
sidered the most expensive pre-processing procedure. A background grid can reduce
the search procedure by reducing the problem size exponentially. For instance, in a
3D neighborhood search with 1000000 uniform nodes, the problem’s size will reduce

41



to 3 x 100. However, a background grid is considered bad practice since it limits the
nodes to follow the background pattern and does not allow random generation. An
ideal dynamic background grid allows random generation while it does not increase
the neighborhood search costs. The proposed algorithm imports the nodes to the back-
ground grid coordinate system and decomposes them to the grid lines (in 3D grid
planes), then maps the node index to the node’s address on memory. A linear index
will then be assigned to each of the grid points, which can be computed as

In = lg + 9yNy +1:0,Ty 0 <y <ng, 0 <y < ny, (3.10)

where n,, and n, are the number of gridlines (grid planes) perpendicular to X and
Y axes, respectively. Figure 3.4 illustrates a random domain described with ten ran-
domly generated nodes. The CoordinateSystem is then only requires to store a map
of the points indexes to differentiate points from the grid point. The following map is
the point map required to define the Node’s initial position (i.e., CoordinateSystem’s
points) illustrated on Figure 3.4.

in, — Ng
1— N2
16 — Ny
24 — N7
33 — Ng
48 = N, G.11)
50 — Nj
62 — Nj
75 — NO
87 — N6
99 — M;

where i,, are the node linear indexes computed by the Eq. 3.10 and the S*h node added
to the background grid is noted by Ng.

Figure 3.5 illustrates the CoordinateSystem UML which is a singleton with a tree
structure that provides a Global coordinate system at the root of the tree while fi-
nite local coordinate systems (cartesian, spherical, and cylindrical) can be defining
under it. Simultaneously, each local coordinate system can have an infinite local
coordinate system of type cartesian, spherical, and cylindrical coordinate systems.
The implementation of the coordinate systems can be found under /source/coordi-
nate_system/CoordinateSystem.h.

As the implementation provides a thread-free singleton, the existence of only one
coordinate system tree in the software is guaranteed, and the points of one coordinate
system can then be transferred to any other coordinate system as follows:

42



3.4 Data Structure

—3“

#values: double[0..*]

+include(value: double)
+exclude(value: double)
+neighborsOf(value : double, radius : double) : values

1

CoordinateSystem

-global: CoordinateSystem
-children: CoordinateSystem[0..*]
-parent: CoordinateSystem

#axis: Axis[3]

#unitVectors: Vector([3]

#origin: Point

#pointMap: int
#forwardMapping: Mapping
#inverseMapping: Mapping

-CoordinateSystem()

+global(): global

+include(Point)

+include(<(Point) : bool>)

+axes() : Axis[3]

+append(CoordinateSystem)

+neighborsOf(center: Point, radius: double) : Point[0..*]
+neighborsOf(center: Point, radius: double) : int[0..*]

Figure 3.5: The coordinate_system::CoordinateSystem UML diagram.

43



using namespace rbs::coordinate_system;

const auto& localCartesianCoordinateSystem = CoordinateSystem::Global () .appendLocal (
CoordinateSystem::Cartesian, {1,0,0}, {0,1,0}, {0,0,1});
const auto& localCylindricalCoordinateSystem = CoordinateSystem::Global () .appendLocal

(CoordinateSystem: :Cylindrical, {1,0,0}, {1, grid::toRad(90) ,0}, {0,0,1});

const auto pointInLocalCylindricalCoordinateSystem = localCylindricalCoordinateSystem
.convert ({2, 3, 4}, localCartesianCoordinateSystem);

The above code converts the point at {2, 3, 4} inside a cartesian local coordinate
system to a cylindrical local coordinate system. Moreover, the utilities for meshing dif-
ferent coordinate systems (namely, cartesian, spherical, and cylindrical) are provided

IN rbs::coordinate_system: :grid: :generators.

Neighborhood search in the proposed architecture is as follows:

1. Extracting the grid indexes in each direction of the coordinate system,

2. combining the indexes to extract all the grid points’ linear indexes (using Eq.
3.10) inside the neighborhood,

3. remove those linear indexes that are not included in the point index map.

This approach will give a rectangular (cuboid in 3D) neighborhood around the point
where further evaluation can be done within the neighbors to form a circular (spherical
in 3D) or any other shape neighborhoods. The rectangular neighborhood domain for
node Ny is schematically illustrated in Figure 3.4. Where the included linear indexes
are 1, 2, 3,4, 11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 34, 41, 42, 43, 44, 51, 52, 53, 54,
61, 62, 63, and 64 where only 1, 24, and 62 can be found inside the map (Eq. 3.11).
Thus N5, N7, and N5 are belonging to the rectangular neighborhood of Ns.

The following remarks should be considered while implementing the background
grid and neighborhood search.

- The background grid coordinate system may not be cartesian and may not be
equivalent to the global coordinate system.

- The RBS implementation provides extra means to map the point to any external
data; this will allow the constitutive model to map their Nodes to the points for
defining their initial position.

- The neighborhood search can be altered by time and the position of its center.
If it is changing by time, the neighborhood search needs to be triggered at the
beginning of each time step.

RBS implements the proposed architecture. The following code needs to be done
to search neighborhoods inside a body, given that the body has already empty Neigh-
borhoods.

44



3.4 Data Structure

for (const auto& neighborhood : neighborhoods) {
const auto centrePosition = neighborhood->centre()->initialPosition () .value<space
::Point<3> >();
const auto neighborIndexes = p_localCoordinateSystem—>getNeighborPointIndices (
centrePosition, searchVector, function, centrePosition);

if ( neighborIndexes.size() ) {
auto& neighborhoodNeighbors = neighborhood->neighbors () ;
std::transform(neighborIndexes.begin(), neighborIndexes.end(), std::
back_inserter (neighborhoodNeighbors),
[localMapper] (const coordinate_system::CoordinateSystem: :LinearIndexé&
neighborCentrelinearindex) {
return localMapper.at (neighborCentrelinearindex);
}) i

where localMapper maps the linear index of the points of the local coordinate sys-
tem to the address of the neighborhoods on memory. Note that the Part (see subsub-
section 3.4.2.4) already includes a member function to perform the search; thus, the
researcher is not required to perform the search manually.

3.4.2.2 Geometry

The node’s location defines the geometry of the PD simulation. The importing node
location should be free of choice; however, by introducing a geometry data type to
the software, the process of working with multiple Parts will be simplified. Two dis-
tinct geometries, namely, primary- and combined-geometries, are recommended. The
primary geometry should contains a compulsory position vector, an optional unit vec-
tor, and a thickness, which allows us to define points, lines, planes, spheres, infinite-
cylindrical-bars, and infinite-plates in 3D space. Figure 3.6 illustrates the recom-
mended architecture for the primary geometry, where the distance, point status, in-
tersection, and projection are the key features of this class. Note that the intersection
and projection of two primary geometries may not be presentable by another primary
geometry, for example, the intersection of two spheres or projection of a sphere on a
plane; in such a situation, the class member should return empty .

The combined geometry is a combination of two other geometries with a unique set
operation (i.e., + operation or union; * operation or intersection; — operation or dif-
ference; and " operation or symmetric-difference) between them. As illustrated in Fig-
ure 3.7, a Geometry interface is required to make this possible. Thus the combined- and
primary-geometry should implement the Geometry interface. Then, the combined ge-
ometry will be able to store two or more geometries along with the set operation. Thus
a combined-geometry will be able to combine other combined- or primary-geometries
together to present a new shape in 3D. For example, the shape presented in Figure 3.8
can be created as follow:

45



PrimaryGeometry

-name : String
-position : Point
-unitVector : Vector
-thickness : double

+isEmpty() : bool

+distanceTo(point: Point) : double
+distanceTo(geometry : PrimaryGeometry) : double
+pointProjection(point: Point) : Point?
+pointStatus(point: Point) : PointStatus
+intersection (geometry: PrimaryGeometry) : PrimaryGeometry?
+move(vector: Vector)

+mirror(point: Point, planeNormal: Vector)
+rotate(point: Point, axis: Vector, angle: double)
+operator ==(otherPrimaryGeometry): bool
+operator !=(otherPrimaryGeometry): bool

1 1

<<ISN>>

<< enumeration >>

<<ISN>>

<< enumeration >>
Shape

PointStatus

Inside
On
Outside

Empty
Point
Line
Plane
Sphere
Bar
Plate

Figure 3.6: The geometry::Primary UML diagram.

using Operation = geometry::SetOperation;

const double innerRadius = 1.;

const double thickness = 0.1;

const auto innerBar = geometry::Primary::Bar({0,0,0}, {0,0,1}, innerRadius);
const auto outerBar = geometry::Primary::Bar({0,0,0}, {0,0,1}, innerRadius +

thickness);

const auto infinitePipe =
innerBar) ;

geometry: :Combined (outerBar, Operation::Difference,

const auto bottomCutter = geometry::Primary::HalfSpace({0,0,0}, {0,0,-1});

46



3.4 Data Structure

<< interface >> <<use>> R ETTTEE T
Geometry PointStatus

+isEmpty() : bool

+distanceTo(point: Point) : double
+distanceTo(geometry : PrimaryGeometry) : double
+pointProjection(point: Point) : Point?
+pointStatus(point: Point) : PointStatus
+intersection (geometry: PrimaryGeometry) : PrimaryGeometry?
+move(vector: Vector)

+mirror(point: Point, planeNormal: Vector)
+rotate(point: Point, axis: Vector, angle: double)
+operator ==(otherPrimaryGeometry): bool
+operator !=(otherPrimaryGeometry): bool

T A

CombinedGeometry

-name : String
-goemetries : Geometry(2]
-operation : SetOperation

PrimaryGeometry

+leftGeometry() : Geometry
+rightGeometry() : Geometry
+operation() : SetOperation
+setLeftGeometry(geometry : Geometry)
+setRightGeometry(geometry : Geometry)
+setOperation(operation : SetOperation)

<< enumeration >>
SetOperation

Union
Intersection
Difference

Symmetric Difference

Figure 3.7: The geometry::Combined UML diagram.

const auto upperCutter = geometry::Primary::HalfSpace({0,0,1}, {0,3,4});

const auto cutter = geometry::Combined (upperCutter,

const auto shape = geometry::Combined(infinitePipe,

Operation::Union, upperCutter);

Operation::Difference, cutter);

RBS implements the above suggested architecture in geometry::Primary and ge-
ometry::Combined classes. The geometry::Primary and geometry::Combined imple-
mentation in RBS provides easy to use static constructors to create different shapes.
Figure 3.9 illustrates six static constructors available for creating geometry::Primary.
Nine shapes illustrated in Figure 3.10 are the provided static constructors of geom-
etry::Combined. Since, RBS’s development is ongoing, more static constructors are
expected to be added in the future. The geometries’ implementation details can be
found under /source/geometry and the documentation under /documentation/geometry

on the RBS repository.

47



X

Figure 3.8: A cut of a pipe geometry created by geometry::Combined.

3.4.2.3 Complex Geometry

There are two possible ways to create complex geometries that cannot be presented by
the geometry::Primary or geometry::Combined.

- First, one can introduce a new geometry type (e.g., geometry::Complex class)
that inherits the geometry::Geometry interface and implements the new form of
geometries.

- Second, combining the geometry::Primary or geometry::Combined with the co-
ordinate systems.

The first approach should be considered if the new geometry::Complex class would
cover a wide range of well-known geometries that are likely to be used in engineering
applications. However, the second approach is more preferred if the geometry is unique
in terms of mathematical parameters. Here we create an ellipsoid and an elliptical
paraboloid to present the second approach.

Ellipsoid

First, we define a new custom local coordinate system by appending one to the
Global coordinate system. The new coordinate system is cartesian, where its X-axis
unit vector (i.e., 1 vector) has a length of 2.

using namespace coordinate_system;

auto& globalCS = CoordinateSystem::Global();

auto& localCS = globalCS.appendCustomLocal (
{0, 0, 0}, // origin

48



3.4 Data Structure

>

s, Radius

Figure 3.9: The provided static constructors for geometry::Primary.

{2z, 0, 0},

{0, 1, 0},

{o, 0, 1}, // i, 3j, k vectors
convertors::cartesian: :toCartesian(),

// mapping
convertors::cartesian: :toCartesianInverse ()

// inverse mapping

Next, we create a sphere that later we will use inside the local coordinate system.

auto sphere = geometry::Primary::Sphere ({0, 0, 0}, 2.5);

By meshing the local coordinate system and including the points inside the sphere
locally, we would have our ellipsoid in the global coordinate system.

49



ADNDTO /LS

Triangle  Trapezium Square  Regular Rhombus
Polygon
Rectangle Circle Cube Truncated Cylinder

AAOCAD

Tetrahedron Square Regular Regular

Pyramid Sphere Pyramid Prism
Pyramid Parallelepiped Eq. Triangle Cylinder Cuboid
Prism

Figure 3.10: The provided static constructors for geometry::Combined.

grid::cartesian::uniformAroundOrigin (space::consts::one3D * 0.05, space::consts::
one3D x sphere.thickness() + 0.05, localCS.axes());

localCS.include ([sphere] (const space::Point<3>& point) {
return sphere.pointStatus (point) != geometry::PointStatus::0Outside;
1) i

To present this, we can export the local and global coordinate systems as

const auto& localPoints = localCS.getAllPoints();

auto file_local = exporting::VTKFile (path, "local", "vtk");

file local.appendCell (exporting::vtk::Cell::PolyVertex, exporting::vtk::convertors::
convertToVertexes (localPoints));

file_local.assemble () ;

auto file_global = exporting::VIKFile (path, "global", "vtk");
for (const auto& localPoint : localPoints) {
const auto globalPoint = globalCS.convert (localPoint, localCs);
file_global.appendCell (exporting::vtk::Cell::Vertex, exporting::vtk::convertors::
convertToVertexes ({globalPoint}));
}
file_global.assemble () ;

which result to the configurations illustrated in Figure 3.11.

50



3.4 Data Structure

(a) (b)

Figure 3.11: The ellipsoid in (a) local and (b) global coordinate systems.

Elliptical Paraboloid

Unlike the ellipsoid, one cannot convert any geometry::Primary or geometry::Combined
to an elliptical paraboloid plate by changing the coordinate system unit vectors. Here
we need to create a new coordinate system by implementing required mapping and
inverse mapping functions.

First, we need to define the mapping and inverse mapping.

using Point = space::Point<3>;
using Vector = space::Vector<3>;
const auto mapping = [] (const Pointé& point, const Pointé& origin, const Vectoré& i,

const Vectoré& j, const Vectoré& k) {

const auto& positionVector = point.positionVector(); // The position vector of
the point in parent coordinate system.

return Point{
positionVector[0],
positionVector[1l],
0

i

}i

const auto inverseMapping = [] (const Pointé& point, const Point& origin, const Vectoré&
i, const Vector& j, const Vector& k) {
const auto& positionVector = point.positionVector(); // The position vector of
the point in child coordinate system.
return Point{
positionVector[0],
positionVector[1l],
(pow (positionVector[0], 2) + pow(positionVector[l] / 2, 2))
bi
bi

Next, we define a new custom local coordinate system by appending one to the
Global coordinate system. The new coordinate system is a custom coordinate system,

51



where its origin and unit vector are the same as the global coordinate system, while its
mapping and inverse mapping are the above functions.

using namespace coordinate_system;

auto& globalCS = CoordinateSystem::Global () ;

auto& localCS = globalCS.appendCustomLocal (space::consts::03D,
space: :consts::i3D,
space::consts::3j3D,
space::consts::k3D,
mapping,
inverseMapping) ;

Next, we create a plate that we will later use inside the local coordinate system.

const auto plateThickness = 0.04;
auto plate = geometry::Primary::Plate ({0, 0, -plateThickness / 2}, space::consts::k3D
, plateThickness);

By meshing the local coordinate system and including the points inside the sphere
locally, we will have our ellipsoid in the global coordinate system.

grid::cartesian::uniformAroundOrigin (space::consts::one3D = 0.02, {5, 10,
plateThickness}, localCS.axes());

localCS.include ([plate] (const space::Pointl<3>& point)
return plate.pointStatus (point) != geometry::PointStatus::0utside;
b

To present this, we can export the local and global coordinate systems as before
will result to the configurations illustrated in Figure 3.12.

3.4.2.4 Parts

A flexible computation method should allow simulations containing different constitu-
tive models and possibly rigid bodies where they may need to be analyzed parallelly or
while interacting with each other. Introducing the concept of “’Part,” where each Part
contains a local coordinate system, a geometry, neighborhoods of a body or part of
the problem domain, and neighborhoods containing neighbors from other Part reduces
the complexity of implementing any constitutive models by hiding the neighborhood
search algorithm following the Facade Design pattern. The material points inside the
Part have the same material behavior, same neighborhood geometry (same horizon
shape for PD problems), same neighborhood search function, and same discretization
routine. Each Part can have a unique time integration scheme and a constitutive model.
The parts may also overlap (e.g., simulating porous materials). Figure 3.13 illustrates
the Part UML diagram that satisfies the points mentioned above.

The RBS uses the Facade Design pattern to hide the complexity of the performing

52



3.4 Data Structure

Y Axis X Axis
o 0

45

40

35

30

Z Axis?5 25 avis

Global Configuration

5 ROV Axis

Local Configuration

Figure 3.12: The elliptical paraboloid in local and global coordinate systems.

neighborhood. Each Part comes with only one local coordinate system, one neigh-
borhood search algorithm, and one geometry. The parts then can be combined to
create a bigger domain if required. Although the Part’s implementation can be ig-
nored, it is highly recommended, not only because it simplifies the interface for using
the neighborhood search and local coordinate system, but also because it secures the
neighborhoods from unexpected alteration and eases the exportation of the part. The

implementation details of Part can be found under /source/configuration/Part.h on the
RBS.

53



Part <> - Interaction
#name : String —<> -ends : Part[2 2]
#geometry : Geometry 1 | -neighborhoods : Neighborhood [0..%]
#neighborhoods : Neighborhood[0..*] +add(part: Part)
#interaction : Interaction[0..¥] +remove(part: Part)
#localCoordinateSystem : CoordinateSystem

+name() : String
+geometry() : Geometry
+localCoordinateSystem() : CoordinateSystem
+intiateNeighborhoods()
+performNeighborhoodSearch()
+interactWith(part: Part,

search: NeighborhoodSearch)
+removelnteractionWith(part: Part) 1
+exportConfiguration(path: filePath)

1 1

PDPart

+minBondLenght() : double
+cleanDuplicatedDomins()
+addHorizon(Horizon)
+checkAllBondEndings()

: CoordinateSystem

Figure 3.13: The Part UML diagram. The Neighborhood, and Horizon UML diagrams
can be found in Figures 3.3.

54



3.5 Relations

3.5 Relations

The Relation allows changing data (Feedee) in the event of alternation of other or
even the same data (Feeder). The event can be handled with two distinct approaches.
First, by throwing a message from the Feeder whenever it receives a change, receiv-
ing the message by the Relation to alter the Feedee. Second, by looping through the
existing Relations at each time step. The first approach is preferable in terms of multi-
processing, but the order of the data structure alternation is not guaranteed. Although
it is possible to secure the process through switchers, the author preferred the second
approach because of its simplicity and guaranteed security on the order of Relations
execution. The RBS uses a singleton called Analyse to register the Relations in the
preferred order and execute them at each timestep. The Applicable interface is uti-
lized, which is realized by the Relation to make the connection between Relations and
Analyses possible.

Figure 3.14 illustrates the UML diagram for Relation. The solid transition and solid
rotation can simply be achieved by defining a Relation with its Feeder as the transition
vector and rotation center and vector, respectively. The Feedee will be a Part whose
local coordinate system will move or rotate at each execution. The constitutive models
(e.g., Bond-Based Peridynamic) are Relation between Time (i.e., Feeder) to Part (i.e.,
Feedee) where at each time step the Part’s Nodes’ forces changes based on the Analyse
Time. Note that the time integration is also a Relation between Time to Part with the
difference that the Part’s Nodes’ parameters will be updated. It is also possible to
include the time integrations within the constitutive models, but this approach is not
recommended since it increases the maintenance cost. The implementation details of
Relation and Applicable can be found under /source/relations/ on the RBS.

The provided relations by RBS are not intended to cover all situations and possi-
bilities but rather the most common ones. If one requires the creation of a new type
of Relation, specific to a problem, they should implement their Relation from scratch,
and by inheriting the relations::Relation. For instance, the following will introduce a
dynamic peridynamic contact model.

class DynamicSearch: public relations::Relation<Part, Part> {
public:
DynamicSearch (const Parté& neighborPart, Part& part, const double horizonRadius)
: Relation<Part, Part> (neighborPart, part, [horizonRadius] (const Parté&
neighborPart, Parté& part) {
part.searchNeighborsWith (neighborPart, horizonRadius, true);

55



<<interface>>

Applicable

+apply()

#feeder : Feeder
#ifeedee : Feedee
#relationship : <(Feeder, Feedee) : Feedee>

+getFeeder() : Feeder

+getFeedee() : Feedee

+getRelationship() : Relationship
+setFeeder(dataType: Feeder)
+setFeedee(datatype: Feedee)
+setRelationship(<(Feeder, Feedee) : Feedee>)

N\

#bondForceRelation:
<(center: Horizon, neighbor: Horizon) : Vector>
#volumeCurrection :
<(time: Double, center: Point, neighbor: Point) : Double>

Feedee : Part

m

-applicables : Applicable [0..*]

+append(Applicable)
+run(condition: <(time) : bool>)

Feeder : Vector
Feedee : Part

Feeder : {Point, Vector} E

BondBased(bondForceRelation, volumeCurrection, part: PDPart)

JAWAN

StateBasedPeridynamic

NonordinaryStateBasedPeridynamic

EulerTimelntegration
VelocityVerletAlgorithm

OrdinaryStateBasedPeridynamic

Figure 3.14: The Relation UML diagram. The Parameter UML diatgram can be found

in Figure 3.2.



3.5 Relations

3.5.1 RBS Architecture

Figure 3.15 gives an overall view of the RBS architecture and its extensible compo-
nents. A comparison between, Figure 3.1 and Figure 3.15 give a perspective on the
advancement and flexibility of the RBS compare to its protestors.

User Interface Discretization

Console Console

Text file Text file
H DataStructure
| Geomenty
| Node
i Neighborhood
: Part Logging
H 7'y
i Console
! Text file
: A 4 L
! Analyses < Plugins -~
i Applicables Solid movement i
i Constitutive model Console
i Time integration Text file
i Exporter CsV file
\ VTK file (ParaView)

Orange denotes extensible components

Figure 3.15: RBS architecture and its extendable areas.

57



58



Chapter 4

RBS in Practice

This chapter is dedicated to presenting the applications of the RBS in practice. The ex-
amples are provided in full detail at the GitHub repository !; here, we discuss the basic
principles and advantages of the RBS architecture in three examples. First, we will
examine the wave propagation inside a plate utilizing PD, and we discuss the basics
of PD as a plugin to RBS. Next, a fracture problem with preexisting crack is simu-
lated to demonstrate the flexibility of the RBS in terms of defining crack geometry and
customizing the bond-force relation of PD. Finally, a complex simulation of polymer
is presented where the complex Ordinary State-Based Peridynamic simulation takes
place to model the fracture initiation and growth in a mesoscale problem.

4.1 Wave Propagation

Dally et al.[39] reported the wave propagation inside a plate (see Figure 4.1) under
explosion at the plate’s top edge midpoint. Nishawala et al.[40] used a triangular
impulse load with a maximum amplitude of 20.7E3 at 10 psec and pulse width of 20
psec as it illustrated in Figure 4.2 to simulate the wave propagation. They modeled the
experiment with both Cellular Automata and Peridynamic. The reported distribution of
the displacement at 1.07 microseconds can be found in Figure 4.3. The full description,
RBS simulation results, and the completed code, ready to execute, are provided in the
GitHub repository 2.

The RBS adopts the same folder structure as the namespace structure. Each plugin
has a folder and a forward declaration file, which simplifies the use of the plugin. For
instance, the structure of the Peridynamic is as follows,

'https://github.com/alijenabi/RelationBasedSoftware/tree/master/
simulations/

2"https://github.com/alijenabi/RelationBasedSoftware/tree/master/
simulations/ElasticWavePropagationinPlate"

59


https://github.com/alijenabi/RelationBasedSoftware/tree/master/simulations/
https://github.com/alijenabi/RelationBasedSoftware/tree/master/simulations/

Explosion 6.655 mm

wso

Im
Figure 4.1: The wave propagation experiment geometry.

25

20

Force (KN)

0 10 20 30 40 50
Time (usec)

Figure 4.2: The triangular impulse load.

RBS
Lsource
l_ relations
|l _peridynamic
L _time_integrations
PDEuler
PDVelocityVerletAlgorithm
L BondBased
L _BoundaryDomain
L Exporter

L _OrdinaryStateBased

L_Property

where class” denotes both the header and the source files.

60

.......................
................................................
.........................................
....................................

L PeridynamicC cveiii it ittt it forward declaration



4.1 Wave Propagation

T=1.07E-04 sec

y-position (in)

0 1 2 3 4 5 6 7 8 9
x-position (in)

Figure 4.3: The PD displacement plot from [40].

Let us define the problem description first.

const std::string path = "/any-file-path/";

const double dencity = 1300; // kg / m"3
const double youngsModulus = 3.85e9; // GPa
const double poissonRasio = 1. / 3.;

const auto plateHeight = 0.5; // 0.5 m
const auto plateWidth = 1.0; // 1.0 m
const auto plateThickness = 0.006655; // 6.655 mm

const auto horizonRasio = 3.;
const auto gridSpacing = std::min({plateWidth / 1024, plateHeight / 512});
const auto horizonRadius = horizonRasio x gridSpacing;

Each plugin brings not only its own constitutive model but also the time-integration
schemes and its exporters. Thus, those researchers that develop a new constitutive
model must define how their method works with the core functionality of the RBS.
Other researchers can securely use the provided constitutive models without requiring
a deep understanding of its implementation details. For instance, since the Bond-Based
Peridynamic provides it the definition of the PDPart, researchers are not required to

61



adopt the Part defined by the RBS core to the Peridynamic. For defining PDPart, we
can write

using CS = coordinate_system::CoordinateSystem;

using BondBasedPeridynamic = rbs::relations::peridynamic::BondBased;

auto platePart = BondBasedPeridynamic::PDPart ("Plate", CS::Global () .appendLocal (CS::
Cartesian));

where the defined part can then be used as the Feedee of other Relations provided by
the peridynamic plugin.
Next, we need to define the geometry and assign it to the plate part.

const auto plateShape = geometry::Combined::Cuboid({-plateWidth / 2, -plateHeight,
plateThickness / 2},
space::vec3{plateWidth, 0, 0},
space::vec3{0, plateHeight, 0},
space::vec3{0, 0, plateThickness
}) i
platePart.setGeometry (plateShape) ;

where cuboid is one of the static Constructors of Combined geometry class.

Using the provided grid meshing functions in /source/coordinate_system/grid.h on
the RBS. One can mesh the coordinate system as follows. Note that for creating one
mesh in Z-direction, we can override the mesh as done in line 6 or change the distance-
vector third component to { gridSpacing, gridSpacing, plateThickness }.

const auto distanceVector = gridSpacing x space::consts::one3D;

const auto startPoint = space::Point<3>{-plateWidth / 2, -plateHeight,
plateThickness / 2} + distanceVector / 2;

const auto endPoint = space::Point<3>{plateWidth / 2, 0, plateThickness / 2} -
distanceVector / 2;

coordinate_system: :grid::cartesian::uniformDirectional (startPoint, endPoint,
distanceVector, platePart.local() .axes());
platePart.local() .axes () [2] = std::set<double>{0};

As explained in section 3.4.2.1, the grid points that are the Part’s Nodes’ location
should be marked by including them to the Node map. This is our first encounter
with functional programming benefits. The Part’s local coordinate system’s included
member function is capable of receiving an include function, which will be executed at
each grid point to include or exclude that point as Part’s Node. The included function
requires a specific signature. In the following code, it is defined as lambda function
between line 2 to 4. The include function should receive the grid point position as
input and return a boolean that defines whether the grid point is inside the part or not.

const auto& plateShape = platePart.geometry();
cosnt auto& includeFunction = [&plateShape] (const auto& localPoint) -> bool {
return plateShape.pointStatus(localPoint) == geometry::Inside;

62



4.1 Wave Propagation

bi

platePart.local () .include (includeFunction) ;

Since the plate Part in this simulation should include all of the grid points, the
above code can be simplified as following

platePart.local () .include([] (const auto&) { return true; });

Next, we initialize the neighborhoods, add density and volume, and search the
neighborhoods. The inheritance of object-oriented programming explained in section
3.2.1 becomes extremely useful here. Since the PDPart is a subclass of Part, one can
use all of the provided functionalities by Part class without considering whether the
PDPart overrides them or uses the same algorithm.

\\ Neighborhood initialization
platePart.initiateNeighborhoods () ;

\\ Adding volume and density
const double gridVolume = pow(gridSpacing, 2) =% plateThickness;
const auto& neighborhoods = platePart.neighborhoods () ;
std::for_each (neighborhoods.begin (), neighborhoods.end(), [gridVolume, dencity] (const
Part::NeighborhoodPtr& neighborhood) {
using Property = relations::peridynamic::Property;
auto& centre = xneighborhood->centre();
centre.at (Property::Volume) .setValue (gridVolume) ;
centre.at (Property: :Density) .setValue (dencity) ;
1)

\\ Neighborhood search
platePart.searchInnerNeighbors (horizonRadius) ;

Since the platePart is a PDPart, we can create other relations inside the PD. For in-
stance, we can creat a velocity Verlet algorithm and a elastic Bond-Based Peridynamic
Relations as

auto timeIntegration = relations::peridynamic::time_integration::
VelocityVerletAlgorithm(platePart) ;
auto platePDRelation = relations::peridynamic::BondBased::Elastic(materialConstant,

gridSpacing, horizonRadius, platePart, false);

RBS combines the above benefits of Object-Oriented Programming (OOP) with
functional programming to maximize the code’s extendability while benefiting OOP’s
simplicity. For instance, the BoundaryDomain Relation of peridynamic plugin allows
changing the PDPart’s Nodes’ properties in each timestep. This class provides a func-
tion called Conditioner, where it can be passed to the constructor to apply any boundary
domain to the peridynamic simulation. The Conditioner receives the time of the sim-

63



ulation and the nodes one by one. Nishawala et al.[40] applied the triangular impulse
load illustrated in Figure 4.2 to four Nodes at the top edge of the plate (see Figure 4.1).
To implement the same load in RBS, one can utilize the BoundaryDomain and its
Conditioner as follows

const auto maxForcePerNode = 4 x 20.7e3 / ( plateThickness x gridSpacing );

const auto conditioner = [gridSpacing, maxForcePerNode] (const double time,
configuration: :Node& node) {
using Property = relations::peridynamic::Property;
auto& postion = node.initialPosition () .value<space::Point<3> > () .positionVector ()

’

if (-gridSpacing <= postion[0] && postion[0] <= gridSpacing && -gridSpacing * 2.1
< postion[1l]) {
if (time <= 10e-6) {

node.at (Property: :Force) = -space::vec3{0, time * maxForcePerNode / 10e
-6, 0};
} else if(time <= 20e-6) {
node.at (Property: :Force) = -space::vec3{0, maxForcePerNode - (time - 1l0e
-6) % maxForcePerNode / 10e-6, 0};
} else {
node.at (Property: :Force) = space::vec3{0, 0, 0};
}
} else {
if (node.has (Property::Force))
node.at (Property: :Force) = space::vec3{0, 0, 0};

}
bi
auto load = relations::peridynamic::BoundaryDomain (conditioner, platePart);

To reduce the memory cost, we can change the else clause as follows

if (-gridSpacing <= postion[0] && postion[0] <= gridSpacing && -gridSpacing % 2.1 <
postion[1l]) {
same as above
} else {
if (node.has (Property::Force))
node.at (Property: :Force) = space::consts::03D;

This will also reduce the computation costs since the BondBased and Velocity Ver-
letAlgorithm will avoid computing if no parameter is stored on the Node.

For defining an elastic bond-based peridynamic constitutive model, we can use the
Elastic static member of the BondBased class.

const double bulkModulus = youngsModulus / ( 3 * (1 - 2 * poissonRasio));

const double materialConstant = 12 % bulkModulus / (M_PI % gridSpacing * pow (
horizonRadius, 3));

auto platePDRelation = relations::peridynamic::BondBased::Elastic(materialConstant,
gridSpacing, horizonRadius, platePart);

Finally, we can add the relations above to the Analyse and run it.

64



4.1 Wave Propagation

auto& analysis = Analyse::current ();

analysis.
analysis.
analysis.
analysis.
.appendRelation (timeIntegration);

analysis

setTimeSpan (0.125e-6) ;
setMaxTime (208e-6) ;
appendRelation (load) ;
appendRelation (platePDRelation) ;

return analysis.run();

Thanks to the procedural programming approach on modeling steps, the researchers
can follow the sequence of the simulation and their connection. The full CPP code of

this example can be found in Appendix A.

The illustrated PD displacement and velocity plots in Figure 4.4 and Figure 4.5
respectively were achieved. The similarity of the pattern and wave speed inside the do-
main was observed to be the same as those reported by Dally et al.[39] and Nishawala

et al.[40].

-0.2032-

-0.2286-

0 0.0254 0.0508 0.0762 0.1016 0.127 0.1524 0.1778 0.2032 0.2286

Figure 4.4: The PD displacement plot.

65

5.8e-06
5.5e-6

5e-6

— 4.5e-6

— 4e-6

3.5e-6

3e-6

2.5e-6

2e-6

1.5e-6

le-6

S5e-7

—0.0



-0.2032-

-0.2286-

0

0.0254 0.0508 0.0762 0.1016 0.127 0.1524 0.1778 0.2032 0.2286

Figure 4.5: The PD velocity plot.

66

0.95
0.9
0.85
0.8
0.75
—0.7
0.65
0.6
0.55
0.5
0.45
04
0.35
0.3
0.25
0.2
0.15
0.1
0.05
-0



4.2 Fracture in plate with Pre-existing Crack

4.2 Fracture in plate with Pre-existing Crack

A squared plate under tension from both sides with a pre-existing crack is simulated
and presented in this section. The loading is applied as constant velocity with a steady
rate of 207+ and 507 at the plate’s top and bottom edge. The plate has a pre-existing
crack at the center and perpendicular to the boundary condition, as illustrated in Fig-
ure 4.6. The plate’s material properties can be found in Table 4.1 and peridyanmic
parameters in Table 4.2.

Constant Velocity

LTy, e

5cm

lcm

WL

Constant Velocity

5cm

Figure 4.6: The plate under tensile loading.

Although one can manually add the Nodes and Neighborhoods to the Part’s local
coordinate and the Parts, the RBS provides ”geometry” and constitutive” namespaces
to ease the assembly. Establishing a pre-existing crack becomes cumbersome if the
horizon’s radius is greater than the pre-existing crack’s thickness because the neigh-
borhood search will include the nodes on the other side of the crack to the Nodes’
Horizons. RBS open data structure allows the researcher to manipulate the neighbor-
hood as it suits them. We can remove the Neighborhoods that one end is above the
pre-existing crack while another end is below it. Utilizing the halfspace primary ge-
ometry, we can define the space above and below the pre-existing crack. We can then
use the neighborhood centers’ position status to see if they match the condition of be-
ing cut by the pre-existing crack. The following code illustrates the above steps for all
of the plate part’s Nodes.

const auto halfSpace = geometry::Primary::HalfSpace (space::Point<3>{0, 0, 0}, space::
consts::j3D);

const auto& neighborhoods = platePart.neighborhoods () ;

std::for_each (neighborhoods.begin (), neighborhoods.end(), [&halfSpace, preCrackLength
, horizonRadius] (const Part::NeighborhoodPtré& neighborhood) {

67



Table 4.1: The material properties of plate with pre-existing crack.

elastic modulus  Poisson’s ratio density
192GPa 1 800025

Table 4.2: The peridynamic simulation parameters.

grid spacing A horizon radius 6 critical stretch

0.1mm 3.015 x A 0.04472
const auto& centerPos = neighborhood->centre()->initialPosition() .value<space::
Point<3> >();
const auto& centerPosVec = centerPos.positionVector();

if (-preCrackLength / 2 < centerPosVec[0] && centerPosVec[0] < preCrackLength / 2
&& —-horizonRadius x 2 < centerPosVec[l] && centerPosVec[l] < horizonRadius =

2) |
const auto centerStatus = halfSpace.pointStatus (centerPos) ;
auto& neighbors = neighborhood->neighbors () ;

neighbors.erase(

std: :remove_if (neighbors.begin(), neighbors.end(), [&halfSpace,
centerStatus] (const Part::NeighborhoodPtr& neighbor) -> bool({
const auto neighborStatus = halfSpace.pointStatus (neighbor—>centre ()
—>initialPosition() .value<space::Point<3> >());
return neighborStatus != centerStatus || (neighborStatus ==
centerStatus && neighborStatus == geometry::0n) ;
by
neighbors.end());

The bond force-stretch is a linear function with a cut-off at the negative and positive
critical stretch (see Figure 4.7). The adaptation of functional programming by RBS
becomes handy when such bond force-stretch is required to be implemented. The
researcher can create a bond-based or ordinary state-based peridynamic and passing
a bond force-stretch and volume correction method to the constitutive model. The
following code presents the implementation of the bond force-stretch illustrated in
Figure 4.7.

using BondBasedPeridynamic = relations::peridynamic::BondBased;
const auto bondForceStretch =
[materialConstant, criticalStretch] (
const double,
const Vector& initial, const Vector& deformation,
const HorizonPtré& centerHorizon, const HorizonPtr& neighborHorizon) -> Vector
{
if (deformation.isZero() || initial.isZero())
return space::consts::03D;

if (centerHorizon->hasStatus (neighborHorizon, Property::Damage))
return space::consts::03D;

68



4.2 Fracture in plate with Pre-existing Crack

const auto initiallLength = initial.length();

const auto currentBondVec = initial + deformation;

const auto bondStretch = (currentBondVec.length() - initialLength) /
initialLength;

if ( —-criticalStretch <= bondStretch && bondStretch <= criticalStretch )

return materialConstant » bondStretch x (initial + deformation) .unit();
centerHorizon->setStatus (neighborHorizon, Property::Damage, int (1l));
return space::consts::03D;

b

const auto constitutiveModel = BondBasedPeridynamic (
bondForceStretch,
BondBasedPeridynamic: :VolumeCorrection,
platePart, true);

Force

A p——

cr

Scr Stretch

—— - —— —

Figure 4.7: The bond force-stretch relation for the plate at Figure 4.6.

The same process as the example in the section 4.1 is employed to simulate the
boundary condition and time integration scheme. Figures 4.8 and 4.9 illustrate the
wave propagation and fracture growth for 207+ and 507 constant velocity as boundary
conditions, respectively.

RBS logger is off by default. One can turn it on to store the process of the simula-
tion in a LOG file.

auto& logger = report::Logger::centre();
logger.setFileLevel (logger.Debug, path + "logs/", "Debug");

Part of the simulation log file can be found in Appendix B.

69



(a) t = 450ns (b) t = 720ns () t = 900ns

160 -0.025 -0.02 -0.015 -0.01 -0005 O 0.005 0.01 0015 002 0.025
0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
04
0.35
0.3
0.25
—02
—0.15
—0.1
—0.05
-0

150
140
130
120

— 110

(d) t = 1800ns

Figure 4.8: The wave propagation (left half) and fracture growth (right half) for 207
constant velocity as boundary conditions applied to the plate illustrated in Figure 4.6.

70



4.2 Fracture in plate with Pre-existing Crack

(a) t = 450ns (b) t = 720ns () t = 900ns

-0.025 -0.02 -0.015 -0.01 -0.005 O 0.005 001 0.015 002 0.025

(d) t = 1800ns

Figure 4.9: The wave propagation (left half) and fracture growth (right half) for 50
constant velocity as boundary conditions applied to the plate illustrated in Figure 4.6.

71



4.3 Polymer Fracture

A polymer matrix cube with a size-length of 10 000 nm (volume of 10'? nm?) is sim-
ulated. The polymer particles with a diameter of 800 nm are randomly distributed
within the matrix. Figure 4.10 illustrates a polymer matrix composite’s initial con-
figuration with 500 randomly located particles and boundary domains at the top and
the bottom. The particles, the matrix, and the boundaries are assumed to have no im-
perfection. As explained in chapter 2, it is often the case to select the horizon radius
three times bigger than the grid spacing. The polymer is under tension with the veloc-
ity of 25 nm/s from top and bottom. Thus we need to impose boundary conditions
(BC) by extending the domain over at least one horizon radius and then applying the
equivalent BC to all nodes within this horizon (see [13]). Previously, in chapter 3,
we called those domains ’boundary domains’ (BD). For implementing the boundary
domains, two PDParts called boundary domains (BD) were created with the three lay-
ers of Nodes (i.e., horizon radius of the matrix). The BDs’ Neighborhoods are then
included in the matrix neighborhood and vice versa.

Upper Boundary Domain

Matrix

' A Particles

Lower Boundary Domain

Figure 4.10: Initial configuration of a polymer matrix composite, 500 particles, and
the boundary condition domains at two ends.

According to [41, 42], we assume a Poisson’s ratio of 0.42, the density of 955
gr/cm?, and elastic modulus equal to 1.035 N/mm?. To be able to examine RBS

72



4.3 Polymer Fracture

performance, different elastic modulus and volume fractions (V' p) for particles is con-
sidered. The Epgticie/ Epoyethylene = 2, 3, 4, 5, 10, 100, and 1000 are selected and
the Vp varied in a range from 0.2%, 1.0%, 2.5%, 15%, 35%, up to 50% which will
be correspond to 10, 50, 100, 500, 1000, and 1350 particles inside the matrix volume.
Since the particles can be partially outside of the matrix cube, and since their position
is random, most likely, we do not achieve the exact Vps as above.

=25 nm, . Xn
% [
/ n Zn
xko
. Xn dn
xto =) yn
" —Zn
vto &
xto ™,
UV~
772/3 f n

(a) b)

Figure 4.11: Schematic presentation of a) the applied velocity on the boundary do-
mains and an example of counterpart nodes of the boundary domains, b) the displace-
ment vectors between counterpart nodes of the boundary domains, and their reaction
forces at initial configuration ¢, and after ¢ seconds.

A Schematic presentation of the problem state can be found in Figure 4.11a. We
are interested in predicting the macroscopic uniaxial stress-strain curve, which can be
extracted from measuring the boundary domain nodes’ reaction forces and displace-
ments. To achieve this, each upper domain node’s displacements and reaction forces,
along with their counterpart Node, should be computed in each time step. See node n
and its counterpart n’ in Figure 4.11a, which are located at )Z'fl and )?Z,, respectively.
The stresses should be computed from the reaction forces at the end of each time step
as

_ alat fu

o “ (4.1)

where the cross-sectional area A is in our case equal to 108nm?, and the reaction forces
/! and their counterpart f*, are schematically illustrated in Figure 4.11b for node n and
its counterpart n’. The strain can be obtained by the quotient of the average change in

73



length of counterpart nodes difference vector (cﬁ) in the z-direction as

ZN (‘ffljjn)'es
n dn-€e3

e 4.2)
The particles elastic modulus assume to be 100 times the matrix elastic modulus.
The material properties of the particle and matrix used in the simulations can be found
in Table 4.3. The particle-particle bond and particle-boundary domain bonds have the
same force-stretch relation as well as the matrix-matrix and matrix-boundary domain
bonds. However, the particle-matrix bonds have a cut off force-stretch relation at the
critical tensile stretch while it is elastic in compression. A Schematic presentation of
the bond force-stretch relations can be found in Figure 4.12. A similar approach to
the example presented in Section 4.2 has been taken to implement the ordinary state-
based peridynamic constitutive model. It is worth mentioning that both BondBased
and OrdinaryStateBased classes provide easy-to-use static constructors for defining

linear bond force-stretch relations with and without cut-offs.

Table 4.3: All material parameters used in the polymer simulations

Material Polyethylene (Matrix) Particles
Poisson’s ratio v 0.42 0.42

density p 0.955 gr/cm? QO Prnatriz

Young’s modulus £ 1.035 N/mm? a Eoatriz

a=2,3,4,5,10, 100, 1000

The required displacement and the reaction forces for evaluating the Eq. 4.1 and
Eq. 4.2 have been done by searching a neighborhood centered at each node of the
bottom BD containing one bond that, at another end, is a Node in the top BD (see
Figure 4.13). Then, at the end of each time step, we computed the Eq. 4.1 and Eq. 4.2
and reported them in a CSV file. This procedure is particularly chosen to emphasize
the flexibility of the RBS in implementing the complicated processes. The following
steps have been taken.

1. Introducing a new subclass called StressStrainPart of Part and override its neigh-
borhood search() method to fit the neighborhood search requirement and use it
at initial configuration to find all of the Neighborhoods.

2. Introducing a new subclass of Relation with Time as Feeder and StressStrainPart

as Feedee that evaluates the Eq. 4.1 and Eq. 4.2 and stores the stress-strain values
of each pair inside the center Node of the bottom BD Neighborhoods.

74



4.3 Polymer Fracture

[}
et
2 a
©
c I
o 1
@ I
b
L
2 o—b =
P Bond Stretch
1 1
1
C 1
I

Figure 4.12: Schematic presentation of different force-stretch behavior of the bonds. a)
particle-particle and particle-boundary bonds, b) matrix-matrix, and matrix-boundary
bonds, ¢) particle-matrix bonds

Selected Bond End

PR

Found Bond Ends /
Y

L.,

Neighborhood|
Dimension|

wu T

wu 00T
wu 10T

Neighborhood Center\
oood:

Figure 4.13: Schematic presentation of neighborhood search for computing the stress-
strain diagram of the polymer specimen.

3. Introducing a new subclass of Relation with StressStrainPart as Feeder and CSV-
File as Feedee to average the stresses and strains at each center Node of the
bottom BD Neighborhoods and export them to the CSVFile.

4. Use the new defined Relations at each time step in the same sequence and after

75



the constitutive model’s Relation and time integration scheme’s Relation.

After the implementation of the above steps, the code provided the series of text
files (with CSV format) exported, which was then added to Microsoft Excel to produce
the diagram illustrated in Figure 4.14. The extracted curves show the influence of the
particle density on polymer behavior. For particle densities below 2.5%, the stiffness
barely influences the stress-strain curve. At a volume fraction of 15%, the influence
gets more irrational while the stress-strain response for a volume fraction of 50% looks

quite erratic and unrealistic.

£ [~Vp=0.2%, Ep= 1000Em —Vp= 0.2%, Ep= 100Em
60 g Vp=0.2%, Ep= 10Em  —Vp=0.2%, Ep=5Em
ﬁ —Vp=0.2%, Ep= 4Em —Vp=0.2%, Ep=3Em
; —Vp=0.2%, Ep= 2Em
40

——————————>

STRAIN,
>

0,0% 0,5% 1,0% 1,5% 2,0% 2,5%

(a) volume fraction around 0.2%

15 —Vp= 2.5%, Ep= 1000Em —Vp= 2.5%, Ep= 100Em
= Vp=2.5%, Ep= 10Em —Vp=2.5%, Ep= 5Em

14 —Vp=2.5%, Ep= 4Em
| &
1 'l;)
1
1
1
1
1

—Vp=2.5%, Ep= 3Em
—Vp=2.5%, Ep= 2Em

0,0% 0,5% 1,0% 1,5% 2,0% 2,5%

(c) volume fraction around 2.5%

-]
S

A
| £ [~Vp=35%, Ep= 1000Em —Vp= 35%, Ep= 100Em
60 12 Vp=35%, Ep= 10Em  —Vp=35%, Ep=5Em
13 | —Vp=35%, Ep=4Em —Vp=35%, Ep=3Em 1
b
1 = —Vp=35%, Ep=2Em /
[R%)
40
1
1
20!
1
1

STRAIN

0,0% 0,5% 1,0% 1,5% 2,0% 2,5%

(e) volume fraction around 35%

80
A
£ Vp=1.0%, Ep= 1000Em —Vp= 1.0%, Ep= 100Em
12 Vp=1.0%, Ep= 10Em  —Vp=1.0%, Ep= 5Em
03 —Vp=1.0% Ep=4Em  —Vp= 1.0%, Ep= 3Em
1 = —Vp=1.0%, Ep= 2Em
0 '
1
1
20!
1
1
o STRAI
1
1
20 1
0,0% 0,5% 1,0% 1,5% 2,0% 2,5%
(b) volume fraction around 1.0%
80

Vp= 15%, Ep= 1000Em —Vp= 15%, Ep= 100Em

Vp=15%, Ep=10Em  —Vp=15%, Ep= 5Em
—Vp=15%, Ep=4Em —Vp=15%, Ep=3Em
—Vp=15%, Ep= 2Em

P
3

———m—— - >

STRESS(MPA)

40
20
0
20 1
0,0% 0,5% 1,0% 1,5% 2,0% 2,5%
(d) volume fraction around 15%
80
£ [~Vp=50%, Ep= 1000Em —Vp= 50%, Ep= 100Em
60 = Vp=50%, Ep=10Em  —Vp=50%, Ep= 5Em
@ |-Vp=50%, Ep=4Em  —Vp=50%, Ep=3Em
e —Vp=50%, Ep= 2Em
2 '

0,0% 0,5% 1,0% 1,5% 2,0% 2,5%

(f) volume fraction around 50%

Figure 4.14: The stress-strain curves for simulations with similar volume fraction but

different particle-matrix stiffness ratios.

Though the response of each specimen is assumed to be linear, the illustrated
macroscopic stress-strain behavior in Figure 4.14 is nonlinear. The nonlinear behavior



4.3 Polymer Fracture

is caused by the fractured bonds, reducing the cross-sectional area, which finally yields
to a reduced stiffness. Initially, the matrix fractures rapidly, causing a long plateau in
the stress-strain curve. Once nearly all the matrix-bonds in a specific cross-section
are broken, the stiffer particles carry the load resulting in the hardening behavior at
strain levels around 2%. As long as the particles are not completely separated from
the matrix, they absorb the load that cannot be carried by the matrix due to the broken
bonds. The interface fracture separating the particles from the matrix finally causes
the strain-softening observed in the latter part of the curve. This behavior is nearly
independent of the volume fraction (and particle stiffness) since we did not vary the
interface strength. Since the properties of the particle-matrix interface are identical for
all simulations and since the interface bonds break before the particle-particle bonds,
the stress-strain response for all simulations (with the same V/,) exhibit a similar be-
havior.

Table 4.4: Configurations of Computers hosting the polymer simulation.

Operating system macOS openSUSE  Ubuntu

OS Version 10.14 13.2 16.4
Memory 16 GB 32 GB 32 GB
Hard Drive SSD HDD HDD

Processor 1.6 GHz 32GHz 3.2GHz

A grid spacing of 100 nm utilized for the simulation, produced a total of 1 100
000 nodes and over 900 000 000 bonds in each model. Note that, due to the change
of the stiffness of the system, the sound speed within the material differs between
simulations, and so does the critical time step. The simulations are performed in three
computer sets. The configuration of the computers and their operating system can be
found in Table 4.4.

Table 4.5: RBS performance on different computer sets.

Operating system

Unit macOS openSUSE Ubuntu
Number of simulations - 8 17 17
Discritation time milliseconds 992 630 768
Neighborhood search seconds 26 32 32
Contact search seconds per particle 49 38 39
Initial configuration minutes 89 74 72
Time step seconds 194 188 190
Exporting seconds 77 92 98

77



RBS produces a logging file during the simulation. The sole purpose of the log-
ging files is to give the user a sense of what is currently under progress. An example of
the logging files can be found in Appendix B. Note that the polymer simulation pro-
vides a relatively long logging section on each time iteration since there are more than
2000 OrdinaryStateBased Relations and 2000 TimeIntegration Relations. Each parti-
cle requires one OrdinaryStateBased Relation, one Timelntegration Relation, and two
OrdinaryStateBased Relations for interactions (i.e., matrix-particle and particle-matrix
Relations), plus, two OrdinaryStateBased Relations for particle-boundary domain in-
teractions for particles close to the boundary domains. One OrdinaryStateBased Rela-
tion and one Timelntegration Relation for the matrix are required too. The logging files
also provide us with the timing of the simulation. The times of each part of simulations
are recorded, and the average of them on each computer can be found in Table 4.5. The
RBS PD plugin can also export the configuration of each Part to the simulation to a
text file, which can then be used to read the exported information of each Node and
perform desired post-processing on them. RBS is also capable of exporting the config-
uration of the simulation to VTK format, which is a convenient format for ParaView
software !.

Figure 4.15: Effect of particle-matrix interface on the crack propagation

Because the particles have a higher stiffness than the matrix, the bonds between
particles have a higher fracture critical stretch (compare Figures 4.12a and 4.12b).
Consequently, in all the simulations, the crack path should not cross through the par-
ticles. Instead, the cracks must propagate around the particles. Figure 4.15 Illustrates
the crack path in the z — y and y — 2 plane around three random particles for a simu-
lation with V,, ~ 35% and Epgticie/ Eratriz = 2. The increase of the particle-particle

'ttps://www.paraview.org

78


https://www.paraview.org

4.3 Polymer Fracture

bond stiffness did not affect the fracture propagation. A similar behavior is found in
the experimental studies by Haque and Ali [43]. The particle-matrix interface forces
the crack propagation to follow its path (i.e., the particles face), thus, by increasing the
V. the particle-matrix interface failure causes random alternations in the plateau part
of stress-strain responses. The observed erratic stress-strain behavior of the simulation
with V}, ~ 50% is a testament to this fact.

In the second half of the plateau of the stress-strain curve (see Figure 4.14), the
cracks start to appear around the mid-cross-section. Subsequently, the cracks continue
to propagate through the matrix. The second hardening of the stress-strain curve begins
when the majority of the matrix-matrix bonds around the mid-cross-section are broken;
the load is mainly carried by a combination of particle-particle and particle-matrix
bonds. The simulation with V), ~ 15% and Epurticie/ Eratriz = 100 is selected to
present the damage distribution and crack propagation (see Figure 4.16).

79



damage
0 01 02 03 04 05 06 07 08 09 1

Figure 4.16: The crack distribution at the A-A cross-section (left side), and the B-B
cross-section (middel), and 3D view (right side). The cross-sections are illustrated in
Figure 4.10.

80



Chapter 5

Concluding Remarks and Future
Prospects

The nature of physical problems are often nonlocal; the local methods that are tra-
ditionally developed simplifies those physical phenomena to reduce the problem to
the less complex formulation. This simplification was necessitated due to our limited
power of computation before computers became personal devices. The early works
on implementing the computational methods clearly show the authors’ concern about
reducing the memory and computation cost as much as possible so that they can ex-
tend the size of their models. One of the approaches to reduce the computation costs
was to refine the domain in the area of interest, which led to the introduction of the
multiscale simulation. The refinement and multiscaling are still an open area of re-
search. Several revolutions in computer hardware engineering during the 80s and early
90s introduced the new possibility to the programmers, which lead to the introduction
of new software development methods and architecture. Those methods were gradu-
ally employed by researchers to model even more complex problems and to develop
more expensive computational methods. The use of nonlocal models like molecular
dynamics has been widely reported by researchers in the last three decades. The con-
sideration of nonlocal methods in continuum problem has led to the introduction of
Peridynamic, but by nature, it has also inherited high computational costs. The idea
of refinement is also applicable to peridynamic, but due to the special integration form
of the governing equation, refining PD in its natural way causes higher computation
costs. The initial approaches of refining the peridynamic domain while using a smaller
integration domain for its governing equation failed, due to the creation of so-called
ghost forces. Ghost forces are responsible for introducing an artificial wave on the
refinement bound. Several successful studies can be found in the literature. While
some of those methods require changes to the constitutive model, others demand extra
computational costs.

The reduction of the costs of the peridynamic simulation is the main focus of the

81



current study. Three main areas are addressed to achieve this goal. First, a new re-
finement method is proposed for reducing the computational costs by allowing smaller
node spacing in some part of the problem domain while preserving the horizon-node
spacing ratio. Second, a new software architecture developed to reduce the PD com-
putation cost by considering the new programming paradigms and methods. Third,
an opensource code called RBS is developed using the proposed architecture and by
following agile development manifesto. RBS reduces the cost of implementing new
constitutive methods or modification of the PD by separating the modules from each
other. Consequently, the researcher can simply develop or modify an individual part of
the code while utilizing the rest of the provided functionality securely. While accom-
plishing the above goals, the following achievements have also been obtained:

- The proposed refinement method eliminated the existence of so-called ghost
forces.

- In the search for expanding the new refinement method to a higher dimension,
the mesh sensitivity of the PD obtained is shown to be extremely effective. These
effects are studied and reported.

- A simple approach for reducing the mesh sensitivity of the PD is proposed, and
its effectiveness tested by applying them to to a crack propagation problem.

- The proposed approach for reducing the mesh sensitivity proved to have less
computation cost than those available in the literature.

- The PD extended for simulating mesoscale problems using RBS’s new features.

5.1 Future Research Prospects

The present thesis establishes a new approach to refinement of the PD and introduces
new possibilities for further development of nonlocal nodal based simulations. A few
possible extensions to the current work can be suggested as follows:

- Utilizing the new refinement method in a higher dimension requires complex
geometrical solver. Such solvers are opensource and can be combined with the
proposed scheme.

- The developed opensource software (RBS) does not support complex geometri-
cal functionalies; extending it will allow implementation of the Multi-Horizon
Peridynamic to higher dimensions.

82



5.1 Future Research Prospects

- The smooth horizon method can address other reported areas where mesh sensi-
tivity of PD dominates the simulations.

- The Relations in RBS provide a new opportunity to create a parallel time in-
tegration scheme since Relation can become the Feedee and Feeder of other
Relations.

83



84



References

[1]

[4]

[8]

Stewart A Silling. Reformulation of elasticity theory for discontinuities and long-
range forces. Journal of the Mechanics and Physics of Solids, 48(1):175-209,
2000. 1, 5,6, 14

Stewart A Silling, M Epton, O Weckner, J Xu, and E Askari. Peridynamic states
and constitutive modeling. Journal of Elasticity, 88(2):151-184, 2007. 1, 8, 21,
38, 39

Stewart A Silling and Ebrahim Askari. A meshfree method based on the peri-
dynamic model of solid mechanics. Computers and structures, 83(17-18):1526—
1535, 2005. 3, 8,9, 37

E Askari, F Bobaru, RB Lehoucq, ML Parks, SA Silling, and O Weckner. Peri-
dynamics for multiscale materials modeling. In Journal of Physics: Conference
Series, volume 125,1, page 012078. IOP Publishing, 2008. 3

Florin Bobaru and Wenke Hu. The meaning, selection, and use of the peridy-
namic horizon and its relation to crack branching in brittle materials. Interna-
tional journal of fracture, 176(2):215-222,2012. 3

Florin Bobaru, Mijia Yang, Leonardo Frota Alves, Stewart A Silling, Ebrahim
Askari, and Jifeng Xu. Convergence, adaptive refinement, and scaling in 1d
peridynamics. [International Journal for Numerical Methods in Engineering,
77(6):852-8717, 2009. 3

Huilong Ren, Xiaoying Zhuang, Yongchang Cai, and Timon Rabczuk. Dual-
horizon peridynamics. [International Journal for Numerical Methods in Engi-
neering, 108(12):1451-1476, 2016. 3, 13, 22

Florin Bobaru and Youn Doh Ha. Adaptive refinement and multiscale modeling
in 2d peridynamics. Mechanical and Materials Engineering Faculty Publica-
tions, 2011. 3,9

85



[9]

[11]

[16]

[18]

SW Han, C Diyaroglu, S Oterkus, Erdogan Madenci, E Oterkus, Y Hwang, and
H Seol. Peridynamic direct concentration approach by using ansys. In 2016
IEEE 66th Electronic Components and Technology Conference (ECTC), pages
544-549. IEEE, 2016. 3, 32

Erdogan Madenci, Cagan Diyaroglu, and Nam D Phan. Ansys implementation of
peridynamics for deformation of orthotropic materials. In 2018 AIAA/ASCE/AH-
S/ASC Structures, Structural Dynamics, and Materials Conference, page 1463,
2018. 3

R Beckmann, R Mella, and MR Wenman. Mesh and timestep sensitivity of frac-
ture from thermal strains using peridynamics implemented in abaqus. Computer
methods in applied mechanics and engineering, 263:71-80, 2013. 3

Xiaohua Huang, Zhiwu Bie, Lifeng Wang, Yanli Jin, Xuefeng Liu, Guoshao Su,
and Xiaoqgiao He. Finite element method of bond-based peridynamics and its
abaqus implementation. Engineering Fracture Mechanics, 206:408-426, 2019.
3,32

Erdogan Madenci and Erkan Oterkus. Peridynamic theory and its applications,
volume 17. Springer, 2014. 3, 33, 72

David John Littlewood, Michael L Parks, John Anthony Mitchell, and Stew-
art Andrew Silling. The peridigm framework for peridynamic simulations. Tech-
nical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States),
2013. 3,31

Michael L Parks, Pablo Seleson, Steven J Plimpton, Stewart A Silling, and
Richard B Lehoucq. Peridynamics with lammps: a user guide, v0. 3 beta. Sandia
Report (2011-8253), page 3532, 2011. 4, 31

Selda Oterkus, Erdogan Madenci, and Abigail Agwai. Fully coupled peridynamic
thermomechanics. Journal of the Mechanics and Physics of Solids, 64:1-23,
2014. 6

Florin Bobaru and Monchai Duangpanya. A peridynamic formulation for tran-
sient heat conduction in bodies with evolving discontinuities. Journal of Compu-
tational Physics, 231(7):2764-2785, 2012.

C Diyaroglu, E Oterkus, S Oterkus, and Erdogan Madenci. Peridynamics for

bending of beams and plates with transverse shear deformation. International
Journal of Solids and Structures, 69:152—-168, 2015. 6

86



REFERENCES

[19] Steven F Henke and Sachin Shanbhag. Mesh sensitivity in peridynamic simula-
tions. Computer Physics Communications, 185(1):181-193, 2014. 7, 20

[20] John T Foster, Stewart A Silling, and Weinong Chen. An energy based failure
criterion for use with peridynamic states. International Journal for Multiscale
Computational Engineering, 9(6), 2011. 8

[21] Pablo Seleson. Improved one-point quadrature algorithms for two-dimensional
peridynamic models based on analytical calculations. Computer Methods in Ap-
plied Mechanics and Engineering, 282:184-217, 2014. 9

[22] Pablo Seleson and David J Littlewood. Convergence studies in meshfree peridy-
namic simulations. Computers & Mathematics with Applications, 71(11):2432—
2448, 2016. 9

[23] Stewart A Silling. Linearized theory of peridynamic states. Journal of Elasticity,
99(1):85-111, 2010. 9

[24] David J Littlewood. Simulation of dynamic fracture using peridynamics, finite
element modeling, and contact. In ASME 2010 International Mechanical Engi-
neering Congress and Exposition, pages 209-217. American Society of Mechan-
ical Engineers Digital Collection, 2010. 9

[25] Sheng-Wei Chi, Chung-Hao Lee, Jiun-Shyan Chen, and Pai-Chen Guan. A level
set enhanced natural kernel contact algorithm for impact and penetration model-

ing. International Journal for Numerical Methods in Engineering, 102(3-4):839—
866, 2015. 10

[26] Ted Belytschko, Wing Kam Liu, Brian Moran, and Khalil Elkhodary. Nonlinear
finite elements for continua and structures. John wiley & sons, 2013. 10

[27] Thomas JR Hughes. The finite element method: linear static and dynamic finite
element analysis. Courier Corporation, 2012. 10

[28] David John Littlewood, Timothy Shelton, and Jesse David Thomas. Estimation of
the critical time step for peridynamic models. Technical report, Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States), 2013. 11

[29] Daniele Dipasquale, Mirco Zaccariotto, and Ugo Galvanetto. Crack propaga-
tion with adaptive grid refinement in 2d peridynamics. International Journal of
Fracture, 190(1-2):1-22, 2014. 13

[30] Marco Pasetto, Yu Leng, Jiun-Shyan Chen, John T Foster, and Pablo Seleson.

A reproducing kernel enhanced approach for peridynamic solutions. Computer
Methods in Applied Mechanics and Engineering, 340:1044—-1078, 2018. 13

87



[31]

[32]

[36]

[37]

[41]

P Lindsay, ML Parks, and A Prakash. Enabling fast, stable and accurate peri-
dynamic computations using multi-time-step integration. Computer Methods in
Applied Mechanics and Engineering, 306:382-405, 2016. 13

Huilong Ren, Xiaoying Zhuang, and Timon Rabczuk. Dual-horizon peridynam-
ics: A stable solution to varying horizons. Computer Methods in Applied Me-
chanics and Engineering, 318:762-782, 2017. 13

Andris Freimanis and Ainars Paeglitis. Mesh sensitivity in peridynamic quasi-
static simulations. Procedia Engineering, 172:284-291, 2017. 20

Daniele Dipasquale, Giulia Sarego, Mirco Zaccariotto, and Ugo Galvanetto. De-
pendence of crack paths on the orientation of regular 2d peridynamic grids. En-
gineering Fracture Mechanics, 160:248-263, 2016. 20, 24, 29

Paul Demmie and Stewart Silling. An approach to modeling extreme loading of

structures using peridynamics. Journal of Mechanics of Materials and Structures,
2(10):1921-1945, 2007. 31

Sierra Solid Mechanics Team.  Sierra/solid mechanics 4.22 user’s guide.
SAND2011-7597, Sandia National Laboratories, 2011. 31

Georg C Ganzenmiiller, Martin O Steinhauser, Paul Van Liedekerke, and
Katholieke Universtiteit Leuven. The implementation of smooth particle hy-
drodynamics in lammps. Paul Van Liedekerke Katholieke Universiteit Leuven,
1:1-26, 2011. 31

Michael L Parks, David J Littlewood, John A Mitchell, and Stewart A Silling.
Peridigm users’ guide v1. 0.0. SAND Report, 7800, 2012. 31

JW Dally and SA Thau. Observations of stress wave propagation in a half-plane
with boundary loading. International Journal of Solids and Structures, 3(3):293—
308, 1967. 59, 65

Vinesh V Nishawala, Martin Ostoja-Starzewski, Michael J Leamy, and Paul N
Demmie. Simulation of elastic wave propagation using cellular automata and

peridynamics, and comparison with experiments. Wave Motion, 60:73-83, 2016.
59, 61, 64, 65

Werner Mueller and Ines Jakob. Oxidative resistance of high-density polyethy-

lene geomembranes. Polymer Degradation and Stability, 79(1):161-172, 2003.
72

88



REFERENCES

[42] N Kiass, R Khelif, L Boulanouar, and K Chaoui. Experimental approach to me-
chanical property variability through a high-density polyethylene gas pipe wall.
Journal of applied polymer science, 97(1):272-281, 2005. 72

[43] A Haque and M Ali. High strain rate responses and failure analysis in polymer
matrix composites—an experimental and finite element study. Journal of compos-
ite materials, 39(5):423-450, 2005. 79

89



90



)

Appendix A

RBS Codes

A.1 Wave Propagation Simulation Code

The following is the main function for simulating the wave propagation example ex-

plained in detail in section 4.1.

/1

/!l WaveDispersionAndPropagation . cpp

// Relation -Based Simulator (RBS)

/1

// Created by Ali Jenabidehkordi on 10.10.2020.
// Copyright 2020 Ali Jenabidehkordi. All rights
/1

#include “coordinate_system/grid.h”

#include “configuration/Part.h”

#include “relations/peridynamic.h”

#include <iostream>

#include <time.h>

using namespace rbs;

using namespace rbs::configuration;

using namespace std;

@brief Presents the construction process

”Simulation of Elastic Wave Propagation

Experiments.”

% @details: Find more information and step by

of work done by

step

reserved .

using Cellular

Nishawal

description on

et.al. on their paper:

Automata and Peridynamics, and Comparison

https :// github .com/alijenabi/

with

RelationBasedShttps :// github.com/alijenabi/RelationBasedSoftware/blob/ master/simulations/Elastic%20Wave%20

91



Propagation%20in%20Plate / Elastic %20Wave%20Propagation%20in%20Plate .md

)
<@
%

@note Examples are suitable for clang compiler. Running them suing other compilers may require modification.

24 # @note Examples are suitable for mac file —system. Running them on other operating systems may require
modification .

25 # @return EXIT_SUCCESS if all examples are build successfuly , EXIT_FAILURE otherwise.

26 #/

27 int main() {

28

29 const std::string path = ”/<An existing folder path>/";

30 auto& logger = report::Logger::centre();

31

32 /% — Uncomment the code below if you like to log the simulation.— =/

33 /1 logger.setFileLevel (logger.Debug, path + “logs/”, “Debug”);

34 /1 logger.setFileLevel (logger.Timing, path + "logs/”, "Timing”);

35 /1 logger.setFileLevel (logger.Process, path + “logs/”, "Process”);

36 /1 logger.setFileLevel (logger. Warning, path + “logs/”, “Warning”);

37

38 using BC = report::Logger:: Broadcast;

39 logger.log (BC::Block, "Problem definition”);

40

41 const double dencity = 1300; // kg / m"3

42 const double youngsModulus = 3.85e9; /1 GPa

43 const double poissonRasio = 1. / 3.;

44

45 const auto plateHeight = 0.5; /1 0.5 m

46 const auto plateWidth = 1.0; // 1.0 m

47 const auto plateThickness = 0.006655; // 6.655 mm

48

49 const auto horizonRasio = 3.; // m=3

50 const auto gridSpacing = std::min({plateWidth / 1024, plateHeight / 512});

51 const auto horizonRadius = horizonRasio * gridSpacing;

52

53 logger.log (BC:: Process, “Initiating the plate’s Part.\n”);

54 using CS = coordinate_system :: CoordinateSystem ;

55 auto platePart = Part(”Plate”, CS::Global().appendLocal (CS:: Cartesian));

56

57 logger.log (BC:: Process , "Creating the part geometry.”);

58 {

59 const auto plateShape = geometry :: Combined:: Cuboid({—plateWidth / 2, —plateHeight, —plateThickness / 2},
60 space :: vec3{plateWidth, 0, 0},
61 space :: vec3 {0, plateHeight, 0},
62 space ::vec3{0, 0, plateThickness});
63 platePart.setGeometry (plateShape);

64 }

65

66 logger.log (BC::Block, “Meshing the part’s coordinate system.”);

67 {

68 const auto distanceVector = gridSpacing # space::consts::one3D;

69 const auto startPoint = space::Point<3>{-plateWidth / 2, —-plateHeight, —plateThickness / 2} +

distanceVector / 2;

92



A.1 Wave Propagation Simulation Code

70 const auto endPoint = space :: Point<3>{plateWidth / 2, 0, plateThickness / 2} - distanceVector / 2;
71
72 coordinate_system :: grid :: cartesian :: uniformDirectional (startPoint , endPoint,distanceVector, platePart.

local ().axes());

73 platePart.local () .axes () [2] = std::set<double >{0};

74 }

75

76 logger.log(BC::Block, “Including the points to the coordiante system.”);

77 logger.log (BC:: Process, "Including the grid points that are inside the part shape.\n”);
78 {

79 const auto& plateShape = platePart.geometry () ;

80 platePart.local ().include([&plateShape J(const auto& localPoint) {

81 return plateShape.pointStatus(localPoint) == geometry :: Inside;

82 )8

83 }

84

85 logger.log (BC:: Block, “Neighborhood search”);

86

87 platePart.initiateNeighborhoods () ;

88

89 logger.log(BC:: Process, ”"Adding the volume and the density.”);

90 const double gridVolume = pow(gridSpacing, 2) % plateThickness;

91 const auto& neighborhoods = platePart.neighborhoods () ;

92 std :: for_each (neighborhoods.begin (), neighborhoods.end (), [gridVolume, dencity](const Part:: NeighborhoodPtr&

neighborhood) {

93 using Property = relations :: peridynamic:: Property;

94 auto& centre = sneighborhood—>centre () ;

95 centre . at(Property :: Volume) .setValue (gridVolume) ;

96 centre.at(Property :: Density).setValue (dencity);

97 b

98

99 platePart.searchInnerNeighbors (horizonRadius);

100

101 /% — Uncomment the code below to check the configuration and neighborhood search checkpoints. —

102 /1 logger.log (BC:: Block, “Exporting to VIK”);

103 1/ logger.log (BC:: ProcessStart, ”7);

104 /1 platePart.exportConfiguration (path + "vtks/”);

105 /1 platePart.exportCheckpointNeighborhoods (path + “vtks/”);

106 /1 logger.log (BC:: ProcessEnd, 77);

107

108 logger.log(BC::Block, "Defining the relations.”);

109 const auto maxForcePerNode = 20.7e3 / ( plateThickness * gridSpacing );

110 const auto boundaryConditioner = [gridSpacing , maxForcePerNode](const double time, configuration ::Node& node)
{

111 using Property = relations ::peridynamic:: Property ;

112 auto& postion = node.initialPosition ().value<space::Point<3> >().positionVector();

113

114 if (—gridSpacing <= postion[0] && postion[0] <= gridSpacing && —gridSpacing * 2.1 < postion[1]) {

115 if (time <= 10e-6) {

116 node. at (Property :: Force) = —space ::vec3{0, time * maxForcePerNode / 10e-6, 0};

93



142
143
144
145
146
147
148

149

} else if(time <= 20e-6) {

node. at (Property :: Force) = —space ::vec3 {0, maxForcePerNode — (time - 10e-6) = maxForcePerNode / 10
e-6, 0};
} else {
node. at (Property :: Force) = space::consts::03D;
}
} else {
if (node.has(Property :: Force))
node. at (Property :: Force) = space::consts::03D;
}
B
auto load = relations ::peridynamic :: BoundaryDomain(boundaryConditioner , platePart);
auto timelntegration = relations ::peridynamic::time-integration :: VelocityVerletAlgorithm (platePart);

const double bulkModulus = youngsModulus / (3 * (1 - 2 * poissonRasio));
const double materialConstant = 12 % bulkModulus / (M_PI % pow(horizonRadius, 3) = plateThickness);
logger.log (BC:: Process , "Bulk Modulus = 7 + to.string (bulkModulus));

logger.log (BC:: Process, "Material Constant = + to.string (materialConstant));
auto platePDRelation = relations :: peridynamic ::BondBased:: Elastic (materialConstant , gridSpacing, horizonRadius

, platePart, false);

using P = relations ::peridynamic :: Property ;
using On = relations ::peridynamic :: Exporter :: Target;

const std::set properties = {P::Displacement, P::Velocity, P:: Acceleration, P::Force};

auto plateExporterCC = relations :: peridynamic:: Exporter (properties , On:: CurrentConfiguration , platePart, path
+ "vtks/”, "PlatePartOnCurrentConfig”);

plateExporterCC.setCondition ([]( const double, const size_t timeStep) {

return timeStep % 10 == 0;
)8
const auto exportationCondition = [](const double, const size_-t timeStep) {
return timeStep == 857;
hE
auto plateExporterAtl07ms = relations :: peridynamic :: Exporter (properties , On:: InitialConfiguration , platePart,
path + “vtks/”, ”plateExporterAt107ms”);
auto plateExporterAt107msCurrent = relations ::peridynamic:: Exporter(properties , On:: InitialConfiguration ,

platePart , path + ”vtks/”, ”plateExporterAt107msCurrent”);
plateExporterAt107ms.setCondition (exportationCondition);

plateExporterAt107msCurrent.setCondition (exportationCondition);

const auto maxSondSpeed = sqrt(youngsModulus / dencity);
const auto maxTimeSpan = std::min({0.125¢—-6, gridSpacing / maxSondSpeed * 0.8}); // .5 Safty Factor.

logger.log (BC:: Process, "Maximum Sound Speed = + to.-string (maxSondSpeed)):;

logger.log(BC:: Process , "Maximum Time Span = ” + report::date_time :: duration :: formated (maxTimeSpan, 3));
auto& analysis = Analyse::current();

analysis.setTimeSpan (maxTimeSpan) ;

analysis.setMaxTime (308e—-6);

94



162
163
164
165
166
167
168
169

170

A.1 Wave Propagation Simulation Code

analysis .
analysis .
analysis.
analysis .
analysis .

analysis .

appendRelation (load);

appendRelation (platePDRelation);
appendRelation(timelntegration);
appendRelation (plateExporterCC);
appendRelation (plateExporterAt107ms);

appendRelation (plateExporterAt107msCurrent) ;

return analysis.run();

95



96



Appendix B

RBS Progress Reports

B.1 Fracture in Plate with Pre-existing Crack

The following is a part of the logging file with Debug RecieverLevel, which is saved on
a file while simulating the fracture propagation on a plate with a pre-existing crack in
section 4.2. The computer set is a mac whose characteristics can be found in Table 4.4.

Relation -Based Simulator (RBS)

Version: 1.0.0
Date: 12 February 2021, Friday
Time: 21:45:37 PM +0100

I
| * The broadcasted information with a higher or equal level to Debug will be writing to
| the /documents/RBSExampels/fracture_in_plate_with_precrack_20/logs/Debug.log.

| o e | 327 microseconds

Problem_definition

| o e | 363 microseconds

Meshing_the_part *s_coordinate_system.

97



66
67
68
69
70
71

| 3 milliseconds and 192 microseconds

.................................................... Including_the_points_to_the_coordiante

system .

1 second and 779 milliseconds

....................................................................... Neighborhood_search

|+- Initiating “Plate” neighborhoods.

|[+—— 253000 neighborhoods initiated.

|+- Adding the volume and the density.
|+- Searching for inner neighbors of “Plate” Part.

|+-- 7300820 neighhors found.

|+--= 23 CPU Clock per neighhor.

|+--- Done in 2 minutes, 48 seconds, and 778 milliseconds.

|+——— 23 microseconds and 117 nanoseconds per neighhor.

|+- Removeing the bonds that are passing through the notch.

|+- 3600 bonds removed.

|+-—— Done in 4 seconds, 284 milliseconds , and 464 microseconds.
|+-—— 16 CPU Clock per neighborhood.
|+--=- 16 microseconds and 934 nanoseconds per neighborhood.

| oo C L e | 2 minutes and 54 seconds

|+-= Young’s Modulus = 192000000000.000000

|+-— Material Constant = 401385714496010320317775872.000000

|+— Maximum Sound Speed = 4898.979486

|+-— Maximum Time Span = 9 nanoseconds

Defining_-the_relations .

| oo e | 500 microseconds

..................................................................... Starting_the_Analyses

| o e | 47 microseconds

_________________________________________________________________________ Time_Iteration_#0

|+- Analyse time: zero
|+- Applying boundary condition to the “Plate” Part.
|[+—— 253000 Nodes updated.

|+——— Done in 81 milliseconds and 440 microseconds.
|+-—== 0 CPU clock per Node.

|+--= 321 nanoseconds per Node.

|+— Applying bond-based peridynamic to “Plate” Part.
|[+-- 253000 Nodes exported.

|+--== 52 CPU clock per Node.

|+——— 52 microseconds and 359 nanoseconds per Node.

98

|+-—— Done in 13 seconds, 247 milliseconds , and 19 microseconds.



B.1 Fracture in Plate with Pre-existing Crack

73 |+- Applying Euler Time-Integration to “Plate” Part.

74 |+-- 6000 node’s properties updated.

75 |+--— Done in 849 milliseconds and 599 microseconds.
76 |+-—— 141 CPU Clock per neighborhood.
77 |+——— or 141 microseconds and 599 nanoseconds per node’s property.

78 |+- 253000 neighborhood updated.

79 |+-— Done in 849 milliseconds and 812 microseconds.

80  |+—= 3 CPU Clock per neighborhood.

81 |[+-— or 3 microseconds and 358 nanoseconds per neighborhood.

82 |+- Exporting "Plate” Part neighbors.

83 |+-= to: /documents/RBSExampels/fracture_in_plate_with_precrack-20/vtks/CurrentConfig_0. vtk

84 |+-— 253000 Nodes exported.

85  |+-—— Done in 43 seconds, 734 milliseconds , and 397 microseconds.

86 |+-—— 172 CPU clock per Node.

87 |+-== 172 microseconds and 863 nanoseconds per Node.

88 | o m o f o deeeeooo | 57 seconds and 913 milliseconds
89

LU . oo o0 0000000 00000000000 000 000 000 SEOOEE0EE0E 008000 OoEEEEOoEO0 SO0 SO0 o0 Time._Iteration_#1
91 |

92 |+- Analyse time: 13 nanoseconds

93 |+— Applying boundary condition to the “Plate” Part.

94 |+-— 253000 Nodes updated.

95 |+-—— Done in 69 milliseconds and 575 microseconds.

96 |+--- 0 CPU clock per Node.

97 |+——— 275 nanoseconds per Node.

98 |+- Applying bond-based peridynamic to “Plate” Part.

99 |+--— 253000 Nodes exported.

100 |+--— Done in 12 seconds, 907 milliseconds , and 168 microseconds.
101 |+=== 51 CPU clock per Node.

102 |+--- 51 microseconds and 16 nanoseconds per Node.

103 |+- Applying Euler Time-Integration to “Plate” Part.

104 |+-— 18000 node’s properties updated.

105 |+-—— Done in 848 milliseconds and 538 microseconds.

106 |+——— 47 CPU Clock per neighborhood.

107 |+-—— or 47 microseconds and 141 nanoseconds per node’s property.
108 |+- 253000 neighborhood updated.

109 |+-— Done in 848 milliseconds and 792 microseconds.

110 |+== 3 CPU Clock per neighborhood.

111 |[+-— or 3 microseconds and 354 nanoseconds per neighborhood.

112 | e e | 13 seconds and 826 milliseconds

99



126
127
128
129

130

160
161
162
163
164
165
166
167
168
169

170

|+- Analyse time: 26 microseconds and 707 nanoseconds

|+— Applying boundary condition to the “Plate” Part.
|+-- 253000 Nodes updated.

|+--— Done in 68 milliseconds and 257 microseconds.
|+-== 0 CPU clock per Node.

|+-——— 269 nanoseconds per Node.

|+— Applying bond-based peridynamic to “Plate” Part.
|[+-- 253000 Nodes exported.

|+--— Done in 27 seconds, 755 milliseconds , and 228 microseconds.
|+-== 109 CPU clock per Node.

|+-—— 109 microseconds and 704 nanoseconds per Node.
|+- Applying Euler Time-Integration to “Plate” Part.

|+== 759000 node’s properties updated.

|+--— Done in 1 second and 435 milliseconds.
|+-—— 1 CPU Clock per neighborhood.
|+-—— or 1 microsecond and 891 nanoseconds per

|+- 253000 neighborhood updated.
|+-— Done in 1 second, 436 milliseconds, and 1
|[+—— 5 CPU Clock per neighborhood.

|[+—— or 5 microseconds and 675 nanoseconds per

node’s property .

microsecond .

neighborhood.

Time_ITteration_#1998

.......... | 29 seconds and 260 milliseconds

|+- Analyse time: 26 microseconds and 720 nanoseconds

|+- Applying boundary condition to the “Plate”
|+-= 253000 Nodes updated.
|+——— Done in 65 milliseconds , 878 microseconds ,

|+-—— 0 CPU clock per Node.

|+--— 260 nanoseconds per Node.

|+- Applying bond-based peridynamic to “Plate” Part.

|+== 253000 Nodes exported.

|+-—— Done in 26 seconds, 879 milliseconds , and 912 microseconds.
|+--= 106 CPU clock per Node.

|+--— 106 microseconds and 244 nanoseconds per Node.

|+— Applying Euler Time-Integration to “Plate” Part.

|+—— 759000 node’s properties updated.

|+--— Done in 1 second and 535 milliseconds.
|+--== 2 CPU Clock per neighborhood.

|+——— or 2 microseconds and 23 nanoseconds per

|+- 253000 neighborhood updated.

Part .

node’s property .

|+-— Done in 1 second, 536 milliseconds, and 70 microseconds.

|+-- 6 CPU Clock per neighborhood.

|+== or 6 microseconds and 71 nanoseconds per neighborhood.

100

and 999 nanoseconds.

Time_Iteration_#1999



B.1 Fracture in Plate with Pre-existing Crack

| o e | 28 seconds and 482 milliseconds

...................................................................... Time_Iteration_#2000

|+- Analyse time: 26 microseconds and 733 nanoseconds
|+- Applying boundary condition to the “Plate” Part.
|+-- 253000 Nodes updated.

|+——— Done in 78 milliseconds and 799 microseconds.

|+-—— 0 CPU clock per Node.

|+--— 311 nanoseconds per Node.

|+- Applying bond-based peridynamic to “Plate” Part.

|[+—— 253000 Nodes exported.

|+-—— Done in 29 seconds, 96 milliseconds, and 631 microseconds.
|+-—— 115 CPU clock per Node.

|+--= 115 microseconds and 6 nanoseconds per Node.

|+— Applying Euler Time-Integration to “Plate” Part.

|+== 759000 node’s properties updated.

|+-—— Done in 1 second and 429 milliseconds.
|+-== 1 CPU Clock per neighborhood.
|+=== or 1 microsecond and 883 nanoseconds per node’s property.

|+- 253000 neighborhood updated.

|+-— Done in 1 second, 429 milliseconds , and 870 microseconds.

|+-= 5 CPU Clock per neighborhood.

|+== or 5 microseconds and 651 nanoseconds per neighborhood.

|+— Exporting “Plate” Part neighbors.

|[+-— to:

| /documents/RBSExampels/ fracture_in_-plate-with_precrack-20/vtks/CurrentConfig-200. vtk
|+=- 253000 Nodes exported.

|+-—— Done in 52 seconds, 286 milliseconds , and 431 microseconds.

|+-—— 206 CPU clock per Node.

|+--— 206 microseconds and 665 nanoseconds per Node.
| oo | 1 minute and 23 seconds
Relation -Based Simulator (RBS)
Version: 1.0.0
Date: 13 February 2021, Saturday
Time: 23:08:22 PM +0100
| Finished after 18 hours, 52 minutes, and 2 seconds

101



Academic Curriculum Vitae

Ali Jenabidehkordi

Institute of Structural Mechanics
Bauhaus-University Weimar

Marienstrasse 15, 99423 Weimar, Germany
Email: ali.Jenabidehkordi @uni-weimar.de

Education

* Ph.D : Computational Mechanics, Institute of Structural Mechanics,
Bauhaus-University Weimar, Germany, 2013-2021.

* M.Sc: Structural Engineering, Urmia University, Iran, 2008-2012.
* B.Sc: Civil Engineering, Azad University, Iran, 2003-2008.

Publications

1. A. Jenabidehkordi, R. Abadi, T. Rabczuk. Computational modeling
of meso-scale fracture in polymer matrix composites employing peri-
dynamics. Composite  Structures, 253 (2020).
doi:10.1016/j.compstruct.2020.112740.

2. A. Jenabidehkordi, T. Rabczuk, The Multi-Horizon Peridynamics.
CMES-Computer Modeling in Engineering & Sciences, 121 (2019)
493-500. doi:10.32604/cmes.2019.07942.

3. A. Jenabidehkordi, Computational methods for fracture in rock: a

review and recent advances. Frontiers of Structural and Civil Engi-
neering, 13 (2019) 273-287. doi:10.1007/s11709-018-0459-5.



	1 Introduction
	1.1 Motivation
	1.2 Peridynamic
	1.2.1 Discretizations
	1.2.2 Horizon
	1.2.3 Damage
	1.2.4 Neighborhood search
	1.2.5 Contacts
	1.2.6 Time integration

	1.3 Organization of Dissertation

	2 Peridynamics Refinement
	2.1 The Multi-Horizon Peridynamics
	2.2 Absence of Ghost Forces
	2.3 Numerical Examples
	2.4 Computer Implementation
	2.5 Mesh Sensitivity Affects on Refinement
	2.6 Smoothed Horizon
	2.6.1 Horizon Enlargement
	2.6.2 Horizon Refining
	2.6.3 Adaptive Horizon Refining

	2.7 Reduced Sensitivity of Smoothed Horizon

	3 Software Architecture and Peridynamic Computer Implementation
	3.1 Modern Programming Paradigms
	3.2 Procedural Programming
	3.2.1 Object Oriented Programming
	3.2.2 Functional programming
	3.2.3 Microkernel (Plugin) Architecture
	3.2.4 RBS Architecture

	3.3 Agile Development For Scientific Purposes
	3.4 Data Structure
	3.4.1 Co-location Approach and Nodes
	3.4.2 Bonds and Neighborhood

	3.5 Relations
	3.5.1 RBS Architecture


	4 RBS in Practice
	4.1 Wave Propagation
	4.2 Fracture in plate with Pre-existing Crack
	4.3 Polymer Fracture

	5 Concluding Remarks and Future Prospects 
	5.1 Future Research Prospects

	References
	A RBS Codes
	A.1 Wave Propagation Simulation Code

	B RBS Progress Reports
	B.1 Fracture in Plate with Pre-existing Crack

	Curriculum Vitae

