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Ehrenwörtliche Erklärung
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Abstract

Material failure can be tackled by so-called nonlocal models, which introduce an intrinsic

length scale into the formulation and, in the case of material failure, restore the well-

posedness of the underlying boundary value problem or initial boundary value problem.

Among nonlocal models, peridynamics (PD) has attracted a lot of attention as it allows

the natural transition from continuum to discontinue and thus allows modeling of discrete

cracks without the need to describe and track the crack topology, which has been a

major obstacle in traditional discrete crack approaches. This is achieved by replacing

the divergence of the Cauchy stress tensor through an integral over so-called bond forces,

which account for the interaction of particles. A quasi-continuum approach is then used

to calibrate the material parameters of the bond forces, i.e., equating the PD energy

with the energy of a continuum. One major issue for the application of PD to general

complex problems is that they are limited to fairly simple material behavior and pure

mechanical problems based on explicit time integration. PD has been extended to other

applications but losing simultaneously its simplicity and ease in modeling material failure.

Furthermore, conventional PD suffers from instability and hourglass modes that require

stabilization. It also requires the use of constant horizon sizes, which drastically reduces

its computational efficiency. The latter issue was resolved by the so-called dual-horizon

peridynamics (DH-PD) formulation and the introduction of the duality of horizons.

Within the nonlocal operator method (NOM), the concept of nonlocality is further ex-

tended and can be considered a generalization of DH-PD. Combined with the energy

functionals of various physical models, the nonlocal forms based on the dual-support

concept can be derived. In addition, the variation of the energy functional allows implicit

formulations of the nonlocal theory. While traditional integral equations are formulated

in an integral domain, the dual-support approaches are based on dual integral domains.

One prominent feature of NOM is its compatibility with variational and weighted resid-

ual methods. The NOM yields a direct numerical implementation based on the weighted

residual method for many physical problems without the need for shape functions. Only

the definition of the energy or boundary value problem is needed to drastically facilitate

the implementation. The nonlocal operator plays an equivalent role to the derivatives of

the shape functions in meshless methods and finite element methods (FEM). Based on

the variational principle, the residual and the tangent stiffness matrix can be obtained

with ease by a series of matrix multiplications. In addition, NOM can be used to derive

many nonlocal models in strong form.



The principal contributions of this dissertation are the implementation and application

of NOM, and also the development of approaches for dealing with fractures within the

NOM, mostly for dynamic fractures. The primary coverage and results of the dissertation

are as follows:

• The first/higher-order implicit NOM and explicit NOM, including a detailed de-

scription of the implementation, are presented. The NOM is based on so-called

support, dual-support, nonlocal operators, and an operate energy functional ensur-

ing stability. The nonlocal operator is a generalization of the conventional differ-

ential operators. Combining with the method of weighted residuals and variational

principles, NOM establishes the residual and tangent stiffness matrix of operate

energy functional through some simple matrix without the need of shape functions

as in other classical computational methods such as FEM. NOM only requires the

definition of the energy drastically simplifying its implementation. For the sake of

conciseness, the implementation in this chapter is focused on linear elastic solids

only, though the NOM can handle more complex nonlinear problems. An explicit

nonlocal operator method for the dynamic analysis of elasticity solid problems is

also presented. The explicit NOM avoids the calculation of the tangent stiffness

matrix as in the implicit NOM model. The explicit scheme comprises the Verlet-

velocity algorithm. The NOM can be very flexible and efficient for solving partial

differential equations (PDEs). It’s also quite easy for readers to use the NOM and

extend it to solve other complicated physical phenomena described by one or a set

of PDEs. Several numerical examples are presented to show the capabilities of this

method.

• A nonlocal operator method for the dynamic analysis of (thin) Kirchhoff plates is

proposed. The nonlocal Hessian operator is derived from a second-order Taylor

series expansion. NOM is higher-order continuous, which is exploited for thin plate

analysis that requires C1 continuity. The nonlocal dynamic governing formulation

and operator energy functional for Kirchhoff plates are derived from a variational

principle. The Verlet-velocity algorithm is used for time discretization. After con-

firming the accuracy of the nonlocal Hessian operator, several numerical examples

are simulated by the nonlocal dynamic Kirchhoff plate formulation.

• A nonlocal fracture modeling is developed and applied to the simulation of quasi-

static and dynamic fractures using the NOM. The phase field’s nonlocal weak and

associated strong forms are derived from a variational principle. The NOM requires

only the definition of energy. We present both a nonlocal implicit phase field model

and a nonlocal explicit phase field model for fracture; the first approach is better

suited for quasi-static fracture problems, while the key application of the latter one

is dynamic fracture. To demonstrate the performance of the underlying approach,

several benchmark examples for quasi-static and dynamic fracture are solved.



Contents

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives and Methodologies . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Implicit implementation of nonlocal operator method 7

2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Nonlocal operator method (NOM) . . . . . . . . . . . . . . . . . . . . . 10

2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Derivation of the first-order implicit nonlocal differential operators 11

2.3.2 Derivation of the higher-order implicit nonlocal differential operators 13

2.3.3 Elastic material constitution . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 Construction of the first/higher-order operator energy functional 18

2.3.5 Numerical implementation with an open-source code . . . . . . . 24

2.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 A cantilever beam under shear load . . . . . . . . . . . . . . . . . 30

2.4.2 Problem of an infinite plate with a hole in tension . . . . . . . . . 32

2.4.3 3D gradient elasticity cantilever beam under shear load . . . . . . 39

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Explicit implementation of the nonlocal operator method 43

3.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Nonlocal dynamic governing equation of linear elasticity solid by NOM . 44

3.3 Operator energy functional of linear elasticity solid . . . . . . . . . . . . 47

3.4 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Convergence of explicit NOM: free vibration of slender beam . . . 50

3.5.2 Cantilever beam under shear load . . . . . . . . . . . . . . . . . 50

3.5.3 2D plate with holes subjected to uniform load . . . . . . . . . . . 54

3.5.4 Large deformation of 3D solid subjected to rectangle line load . . 54

ix



CONTENTS

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Nonlocal dynamic Kirchhoff plate formulation based on nonlocal oper-

ator method 59

4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Derivation of nonlocal Hessian operator for Kirchhoff plate . . . . . . . . 61

4.3 Derivation of nonlocal dynamic Kirchhoff plate formulation . . . . . . . 65

4.3.1 Classical elastic plate theory . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Nonlocal dynamic Kirchhoff plate formulation . . . . . . . . . . . 67

4.3.3 Operator energy functional . . . . . . . . . . . . . . . . . . . . . 69

4.3.4 Kirchhoff plate boundary conditions . . . . . . . . . . . . . . . . . 70

4.4 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Verification of nonlocal Hessian operator . . . . . . . . . . . . . . 73

4.5.2 Nonlocal dynamic Kirchhoff plate formulation with simply sup-

ported boundary condition . . . . . . . . . . . . . . . . . . . . . . 74

4.5.3 Nonlocal dynamic Kirchhoff plate formulation with clamped bound-

ary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.4 Transient test of nonlocal dynamic Kirchhoff plate formulation with

simply supported boundary condition . . . . . . . . . . . . . . . . 79

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Quasi-static and dynamic fracture modelling by the nonlocal operator

method 81

5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Outline of phase field model for fracture . . . . . . . . . . . . . . . . . . 84

5.2.1 Variational formulation and regularization of elastic brittle fracture 84

5.2.2 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Construction of the operator energy functional in implicit form and explicit

form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Implicit form operator energy functional . . . . . . . . . . . . . . 86

5.3.2 Explicit form operator energy functional . . . . . . . . . . . . . . 88

5.4 Numerical implementation of nonlocal phase field model by using NOM 89

5.4.1 Implicit nonlocal phase field model . . . . . . . . . . . . . . . . . 89

5.4.2 The staggered method . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4.3 Explicit nonlocal phase field model for solving dynamic problems 93

5.4.4 Sub-step phase field increment method . . . . . . . . . . . . . . . 95

5.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Square plate with a single notched edge test . . . . . . . . . . . . 97

5.5.2 Initial crack rectangular plate of dynamic crack branching test . 100

5.5.3 Prenotched composite structure . . . . . . . . . . . . . . . . . . . 103

x



CONTENTS

5.5.4 Kalthoff-Winkler experiment of dynamic shear loading . . . . . . 108

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Discussion and conclusions 115

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 119

A Mathematica code for higher-order nonlocal operator method 136

xi





List of Figures

2.1 (a) The deformed body’s configuration. (b) Schematic diagram for NOM,

Sx = {x2,x3,x5,x6,x7}, S ′x = {x2,x3,x6,x7}. . . . . . . . . . . . . . . . 10

2.2 NOM implementation procedure. . . . . . . . . . . . . . . . . . . . . . . 25

2.3 The displacement and stress for discretization at ∆x = H/50. (a) Dis-

placement of points y=H/2 in the x direction; (b) Displacement of points

x=L/2 in the y direction; (c) Stress of points x=L/2 in the y direction;

(d) Stress of points x=L/2 in the y direction. . . . . . . . . . . . . . . . 33

2.4 The displacement cloud diagram of the cantilever beam for discretization at

∆x = H/50. (a) Displacement in y direction by first-order NOM numerical

results;(b) Displacement in y direction analytical results;(c) Displacement

in x direction by first-order NOM numerical results;(d) Displacement in x

direction analytical results. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Setup of infinite plate with a circular hole. . . . . . . . . . . . . . . . . . 35

2.6 (a) The “model.inp” model shown in Mathematica;(b) Discretization of

the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7 Analytical and numerical results of the stress and displacement. (a) The

results of the stress (Nnodes=4575);(b) The results of the displacement

(Nnodes=4575). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 Analytical and numerical results of the stress and displacement. (a) The

results of the stress (Nnodes=8100);(b) The results of the displacement

(Nnodes=8100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.9 Displacement for various different gradient coefficients. . . . . . . . . . . 40

2.10 Displacement for points on the line (y = 10, z = 0). . . . . . . . . . . . . 41

3.1 Domain and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Displacement field in x direction evolution process of free vibration of

slender beam test at different discretizations and times. . . . . . . . . . . 51

3.3 Displacement field for points in y=0.05 at different discretizations and times. 52

3.4 (a). Set up of the cantilever beam; (b) The discretization of cantilever

beam(∆x = 0.01m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xiii



LIST OF FIGURES

3.5 Displacement fields of the cantilever beam: (a) ux of the ABAQUS model;

(b) ux of the NOM explicit model; (c)uy of the ABAQUS model; (d) uy of

the NOM explicit model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 (a). Set up of the plate with holes; (b) The discretization of plate with

holes (∆x = 1/150m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Displacement fields of the plate with holes; (a) ux of the ABAQUS model;

(b) ux of the NOM explicit model; (c)uy of the ABAQUS model; (d) uy of

the NOM explicit model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Displacement field in x and y directions evolution process of 3D solid at

different times in a cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Domain and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Deformed configuration of a Kirchhoff plate in bending. . . . . . . . . . . 66

4.3 The Kirchhoff plate bending problem’s boundary conditions. . . . . . . . 70

4.4 The L2-norm’s convergence for ∂2w
∂x2

. . . . . . . . . . . . . . . . . . . . . . 74

4.5 Deflection curve of analytical solutions and relative error(y=0).(a)Contour

of the deflection ∂2w
∂x2

for Υ=1; (b) Contour of the deflection ∂2w
∂x∂y

for

Υ=1;(c)Contour of the deflection ∂2w
∂y2

for Υ=1. . . . . . . . . . . . . . . . 75

4.6 Deflection curve of analytical solutions and relative error(y=0).(a)Contour

of the deflection ∂2w
∂x2

for Υ=3; (b) Contour of the deflection ∂2w
∂x∂y

for

Υ=3;(c)Contour of the deflection ∂2w
∂y2

for Υ=3. . . . . . . . . . . . . . . . 76

4.7 Comparison of the deflection contour under uniform pressure load (a)

ABAQUS (b)Nonlocal operator method. . . . . . . . . . . . . . . . . . . 77

4.8 Comparison of the deflection for nodes in y = 0.5 under uniform pressure

load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Comparison of the deflection contour under uniform pressure load (a)

ABAQUS (b)nonlocal operator method. . . . . . . . . . . . . . . . . . . 78

4.10 Comparison of the deflection for nodes in y = 0.5 under uniform pressure

load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.11 The evolution the deflection contour using ABAQUS and nonlocal operator

method at different time . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Phase field representation of fracture modeling . . . . . . . . . . . . . . . 84

5.2 Geometry and boundary conditions. . . . . . . . . . . . . . . . . . . . . . 97

5.3 Displacement field (a-c) and phase field (d-f) evolution process for l0 =

0.0375 mm in tension test. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Reaction force-displacement curves in tension test. . . . . . . . . . . . . . 99

5.5 Displacement field (a-c) and phase field (d-f) evolution process for l0 =

0.015 mm in shear test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Reaction force-displacement curves in shear test. . . . . . . . . . . . . . . 100

5.7 Geometry and boundary conditions. . . . . . . . . . . . . . . . . . . . . . 100

xiv



LIST OF FIGURES

5.8 Displacement field (a,d,g), velocity field (b,e,h) and phase field (c,f,i) evo-

lution process of dynamic crack branching tests at 90 µs for various time

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.9 Energy of the dynamic crack branching tests for various time steps. . . . 102

5.10 Crack tip velocity of dynamic crack branching tests for various time steps. 102

5.11 Phase field of dynamic crack branching tests for different Gc. . . . . . . 103

5.12 Crack tip velocity of dynamic crack branching tests for various Gc. . . . . 103

5.13 Energy of dynamic crack branching tests for various Gc. . . . . . . . . . . 104

5.14 Geometry and boundary conditions of the composites plate with inclusions. 104

5.15 The distribution of the inclusions of composite heterogeneous plates . . . 105

5.16 The crack patterns in composite heterogeneous plates. . . . . . . . . . . . 106

5.17 Energy and crack tip velocity of Case IV . . . . . . . . . . . . . . . . . . 107

5.18 Geometry and boundary conditions of the Kalthoff-Winkler plate. . . . . 107

5.19 Displacement field (a,d,g), velocity field (b,e,h) and phase field (c,f,i) of

dynamic shear Kalthoff experiment for time step ∆t = 0.04µs at various

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.20 Displacement field (a,d,g), velocity field (b,e,h) and phase field (c,f,i) of

dynamic shear Kalthoff experiment for time step ∆t = 0.02µs at various

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.21 Crack tip velocity of the dynamic shear Kalthoff experiment for various

time steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.22 Energy of the Kalthoff experiment for various time steps. . . . . . . . . . 111

5.23 Geometry and boundary symmetry conditions of the Kalthoff-Winkler plate.111

5.24 Displacement, velocity and phase field of the 3D Kalthoff experiment for

v = 16.5 m/s at various time. . . . . . . . . . . . . . . . . . . . . . . . . 112

xv



List of Tables

2.1 The statistical results of L2-norm and error for uxmax and uymax at different

discretizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 The statistical results of the stress concentration factor K at different L/a
ratios, where 525 and 2050 denotes the total number of points in the model. 37

2.3 The L2 norm of the displacement and stress at four different discretization

cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Outlook of NOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

xvi



Nomenclature

Symbols and abbreviations regularly used in the dissertation are listed. Symbols less

frequently used, or having different meanings in different contexts, are defined where

they are used.

Symbols Description

xi spatial coordinates in domain Ω

u displacement field

ξij relative position vector

w
(
ξij
)

the weight function

Si the support of particle xi
S ′i the dual-support of particle xi
∇̃ui nonlocal gradient operator of point xi
Fhgi operator energy functional of point xi
Ki the shape tensor

∂Ω the boundary of domain Ω

σ Cauchy stress tensor

L(u̇,u) Lagrange energy functional

ψ(σ, ε(∇u)) strain energy density

ρ the density of the material

b the body force density

f the external traction force

N the number of points in solid domain Ω

∆Vi the volume associated with point xi
ui(t) the ensemble of the position vector of point xi
P i the internal force vector of point xi
Mi the mass of point xi
Fi the deformation tensor of point xi
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Chapter 1

Introduction

1.1 Background and Motivation

Numerous physical problems can be modeled with the help of partial differential equations

(PDEs). Since the solution of PDEs is not possible analytically for complex geometries

and with increasing complexity, the development of numerical methods for obtaining ap-

proximate solutions to these PDEs is a critical challenge in computational mechanics.

Over the last several decades, various numerical methods categorized into mesh-based

and mesh-free ones, have been proposed and developed so far to solve PDEs based on

the classical local and nonlocal continuum mechanics theory. For mesh-based methods,

which include FEM [Zienkiewicz et al., 1977, Larsson and Thomée, 2003, Jiang and Ma,

2011, Grande and Reusken, 2016, Feng et al., 2017], extended finite-element method

(XFEM) [Hossain et al., 2013], Generalized Finite Difference Method (GFDM) [Liszka,

1984, Gavete et al., 2017, Ureña et al., 2020],Petrov-Galerkin Diffuse Element Method

(PG DEM) [Nayroles et al., 1992, Krongauz and Belytschko, 1997], Element-Free Galerkin

(EFG) method [Deb et al., 2001, Babuska et al., 2004, Antonietti et al., 2016], Reproduc-

ing Kernel Particle Method (RKPM) [Liu et al., 1995, Chen et al., 2017, Huang et al.,

2020], Partition of Unity Methods (PUM)[Babuška and Melenk, 1997, Safdari-Vaighani

et al., 2015, Larsson et al., 2017], isogeometric analysis (IGA)[De Falco et al., 2011,

Tagliabue et al., 2014, Dalcin et al., 2016, Garotta et al., 2020], the reproducing kernel

collocation method [Aluru, 2000, Hu et al., 2011, Cialenco et al., 2012, Fasshauer and Ye,

2013, Mohammadi and Mokhtari, 2014, Mohammadi et al., 2018, Mahdavi et al., 2019,

2020], etc. Among mesh-free methods, hp-Meshless clouds (HPC) [Duarte and Oden,

1996], Smoothed Particle Hydrodynamics (SPH) [Lucy, 1977, Liu and Liu, 2003, 2006],

for example, have been proposed and developed to solve PDEs. Among these numerical

methods, in FEM, the computational domain is discretized by elements, and the shape

functions are defined within an element to interpolate the primary variable for each el-
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ement. The most common element formulations are based on Lagrange polynomials.

These do not allow the formulation of discontinuities such as cracks within an element.

Also, higher-order PDEs are not easy to model with the FEM due to their C0 continu-

ity. The XFEM allows the modeling of discontinuities - like cracks - within an element.

For this purpose, the approximation space of the primary variable is modified using a

so-called partition-of-one concept and a corresponding enrichment function. However,

crack imaging still requires techniques to capture the crack topology. Likewise, crack

tracking algorithms are needed, which makes the implementation of XFEM extremely

difficult, especially for problems with complex crack geometries (crack branches or crack

interactions). Mesh-free methods avoid elements, which facilitates the modeling of large

deformations. In principle, discontinuities in mesh-free methods can be realized with

the same concepts as in FEM. Due to their higher-order continuity, they also simplify

the solution of higher-order PDEs. The main disadvantage of mesh-free methods is the

high computation time. The GFDM is an alternative to FEM and mesh-free methods.

In contrast to the FEM and most mesh-free methods, the GFDM is based on a strong

form, which makes it difficult to apply natural boundary conditions. Compared to the

FEM, the GFDM is not robust and stable. Crack propagation requires natural bound-

ary conditions on the crack surfaces, which cannot be effectively modeled with GFDM.

The so-called IGA is based on CAD shape functions, which are characterized by their

higher-order continuity. Thus, IGA is suitable for higher-order PDEs. For complex ge-

ometries, which are composed of so-called ’patches’, the IGA is only C0 continuous at

the transitions, which requires additional effort. Likewise, the IGA is not very suitable

for modeling crack propagation.

In summary, most numerical methods are based on so-called shape functions for field

interpolation, where the derivatives of the shape function represent differential operators.

For higher-order PDEs, there are correspondingly high requirements on the differentia-

bility of the shape functions. Furthermore, the differential operators are so-called ’local’

operators, which are specified at a point. Such numerical methods have difficulties in

numerically solving problems with moving boundaries/edges or discontinuities within the

domain. A classic example is crack propagation problems. When there is no definition

for problems involving strong or weak discontinuities, the conventional local differential

operator encounters difficulties. To address this issue, meshless methods or FEMs em-

ploy a particular treatment or an extra kinematics model to build the shape function and

compute its derivatives. However, this unique technique causes numerical instabilities,

such as improper stiffness matrix conditioning. Furthermore, the implementation of 3D

challenges becomes difficult and time-consuming.

To overcome these challenges, so-called nonlocal theories have been developed, in which

no particular handling of discontinuities is required, such as nonlocal linear elastic-

ity[Emmrich and Weckner, 2007, Bertoldi et al., 2007, Weckner et al., 2009, Di Paola

et al., 2009, 2010], nonlocal fluid dynamics [Eringen, 1972b, Caffarelli and Vasseur, 2012,

2
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El-Nabulsi, 2018], nonlocal electromagnetic theory [Eringen, 1973, Mikki, 2020a,b], nonlo-

cal continuum field theories [Eringen, 1992, 2002, Eringen and Wegner, 2003, Rafii-Tabar

et al., 2016], nonlocal damage mechanics [Bažant and Jirásek, 2002, Borino et al., 2003,

Jirásek, 2007, Samal et al., 2008], nonlocal calculus [Gunzburger and Lehoucq, 2010, Du

et al., 2013]. The nonlocal theory is founded on an integral form with a limited in-

trinsic length scale, whereas the definition of a local differential operator is founded on

an intrinsic length scale approaching infinitesimal. And it provides an improved predic-

tive capability to capture effects that classical differential equations fail to capture. In

comparison to the local theory, the nonlocal theory not only has a greater numerical well-

posedness, but also resembles the real physical process better due to its inherent length

scale. [Silling, 2000, Eringen, 2002, Bažant and Jirásek, 2002]. A recently emerged and

developed approach based on nonlocal theory, peridynamics (PD) [Silling, 2000, Silling

and Askari, 2005, Silling and Bobaru, 2005, Silling et al., 2007, Silling and Lehoucq, 2008,

2010, Silling et al., 2010], has received a great deal of interest because to its compara-

tively simple numerical implementation for fracture. To account for long-range forces, PD

reformulates the elasticity theory in integral form, overcoming the challenge of defining

the local derivatives for fractures. In PD theories, integrodifferential equations without

displacement derivatives perform as the governing equations of motion, in contrast to

numerical models based on classical local continuum mechanics, which enables the occur-

rence of discontinuities in deformation fields. PD theory provides the following benefits

over classical continuum mechanics (CCM): PD theory allows for the handling of dis-

continuous problems and the removal of spatial derivatives of displacements, and it also

allows for both meshless and mesh-based discretization; In addition, numerical models

based on PD theory can easily simulate complicated fracturing processes, such as crack

branching and coalescence. Various PD models, including bond-based peridynamics (BB-

PD) models [Ballarini et al., 2018, Gu et al., 2019, Wang et al., 2019b, Han et al., 2019,

Yu et al., 2020], state-based peridynamic (SB-PD) models[Amani et al., 2016, Zhou and

Wang, 2016, Wang et al., 2016, Gu et al., 2018, Madenci et al., 2019b, Hashim et al.,

2020], and hybrid models coupled classical continuum mechanics and PD [Macek and

Silling, 2007, Lubineau et al., 2012, Azdoud et al., 2013, 2014, Yaghoobi and Chorzepa,

2018, Wang et al., 2019a, Bode et al., 2020] have been developed during the last two

decades. In the idea of nonlocality, PD has been expanded in a variety of ways, including

dual-horizon PD [Ren et al., 2016, 2017, Rabczuk and Ren, 2017], peridynamic plate/shell

theory [O’Grady and Foster, 2014, Chowdhury et al., 2016, Dorduncu et al., 2020, Zhang

et al., 2021], mixed peridynamic Petrov-Galerkin method [Bode et al., 2020], phase-field

based peridynamic damage model [Roy et al., 2017, Mehrmashhadi et al., 2020, Roy et al.,

2021], wave dispersion analysis of PD [Wildman and Gazonas, 2014, Bažant et al., 2016,

Butt et al., 2017, Mutnuri and Gopalakrishnan, 2020, Chan and Chen, 2021], higher-

order PD models [Yaghoobi and Chorzepa, 2017, Chen and Chan, 2020, Yang et al.,

2021], to name a few. In general, PD is an elegant mesh-free numerical method to solve

crack propagation problems. PD is based on so-called non-locality. This non-locality
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makes PD fundamentally different from most ”ordinary” local methods, i.e., FEM. Both

FEM and many mesh-free methods are based on a variational principle and the weighted

residuals method. The usage of the variational principle would also be advantageous

for the aforementioned nonlocal theories mentioned above - such as PD - as it greatly

expands the scope of application. PD replaces the divergence term in the equation of

motion with an integrated form that is related to a bond force. Hence, it can treat the

continuum in the same way as a discontinued. One issue is the integration of complex

constitutive models, especially for coupled problems. However, PD is based on explicit

time integration, which limits its applicability to quasi-static/static problems.

In recent years, several numerical approaches based on peridynamic differential operator

(PDDO) [Madenci et al., 2016, 2017, Bazazzadeh et al., 2018, Madenci et al., 2019a,

Dorduncu, 2019, Gao and Oterkus, 2019, Dorduncu, 2020, Dorduncu and Apalak, 2020,

Haghighat et al., 2021, Kan et al., 2021] have been proposed, which can be viewed as

an interesting extension to PD. The PDDO employs the concept of PD interactions, in

addition, it is based on the TSE of multi-variable scalar functions and the orthogonality

property of PD functions. The PDDO provides any order of derivatives to be derived

directly from the orthogonality requirement of the PD functions without any differenti-

ation. It does not use a kernel function or repeatability criteria for different derivative

orders. It permits the precise calculation of any arbitrary order of partial derivatives of

spatial and temporal functions. Directly determining the PD functions for the derivatives

is done by making them orthogonal to each term in the Taylor series expansion. When

finding the PD functions in the presence of a nonsymmetric family, both the lower and

higher-order derivatives affect each other. The PDDO is exempt from the symmetric

requirement. This feature eliminates the need for ghost points at the boundary. How-

ever, while the partial derivatives in PDDO rely on the orthogonality property of the PD

function, which requires some extra steps in their computation. Furthermore, PDDO is

only used to solve physical problems based on the strong form.

In this dissertation, the nonlocal theory is adopted for developing computationally ef-

ficient numerical approaches to solve the PDEs and phase field based quasi-static and

dynamic fracture problems.

1.2 Objectives and Methodologies

The primary objective of this dissertation was devoted to the implementation, develop-

ment, and application of the nonlocal operator method (NOM), which is based on the

method of weighted residuals and variational principles. NOM enables the solution of

static and quasi-static problems, especially for problems with material failure. For this

purpose, the following techniques are used:
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• The NOM is continuous in any order and provides for a straightforward description

of material failures. It does not require any shape functions, only the definition of

potential energy (or boundary value problem), and using the methods of weighted

residuals or variational principle, the inner and outer force vectors, as well as the

consistent tangent stiffness matrix, obtain automatically, which drastically simpli-

fies the implementation.

• The first and higher-order nonlocal operations are computed through a Taylor series

expansion. Within the support of a particle/node, the NOM achieves nonlocal

operations through a weighted sum of the Taylor series expansion.

• The NOM is implemented using the Mathematica platform.

• A second-order phase field model is utilized to model material failure within the

NOM.

1.3 Research Contribution

The contribution of this dissertation is summarized as follows:

• Conducting a comprehensive literature review of numerical methods for solving

PDEs, the difficulties and challenges of using traditional numerical methods to

solve PDEs are also analyzed in detail.

• Development and implementation of the implicit first-order and higher-order NOM

to solve different orders of PDEs in different dimensions (2D and 3D).

• Implementation of explicit particle-based NOM for dynamic problems.

• Extension of the NOM formulation for Kirchhoff (thin) plates using the higher-order

particle-based NOM.

• Application of NOM to quasi-static and dynamic fracture problems to demonstrate

the efficiency and accuracy of the method.

1.4 Organization

The dissertation is presented in six chapters, including this introductory chapter. The

principal goal is identified and the objectives and methodologies of this study are clarified

in this chapter. The remaining chapters of the dissertation are organized as follows:

Chapter 2 presents the open-source code for the first/higher-order implicit NOM, includ-

ing a detailed description of the implementation. Combined with the method of weighted
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residuals and variational principles, we establish the residual and tangent stiffness ma-

trix of operate energy functional through some simple matrix without the need of shape

functions as in other classical computational methods such as FEM. This chapter’s im-

plementation focuses on linear elastic solids for the sake of conciseness, though the NOM

can handle more complex nonlinear problems. Finally, several numerical examples are

presented to show the capabilities of this implicit method.

Chapter 3 elaborates on the implementation progress of explicit NOM in detail, and a

nonlocal dynamic elasticity solid formulation based on explicit NOM is also proposed.

Combined with the variational principle, the nonlocal governing equations and nonlocal

operator energy functional for linear elasticity solid are derived. The nonlocal governing

equations and nonlocal operator energy functionals are expressed as the integral forms

of support and dual-support. A detailed description of the explicit implementation is

presented. Finally, several numerical examples are presented to show the capabilities of

this explicit method.

Chapter 4 establishes a nonlocal dynamic Kirchhoff (thin) plate formulation based on

NOM. The nonlocal Hessian operator is derived from a second-order Taylor series ex-

pansion. The nonlocal dynamic governing formulation and operator energy functional

for Kirchhoff plates are derived from a variational principle. After confirming the accu-

racy of the nonlocal Hessian operator, several numerical examples are simulated by the

nonlocal dynamic Kirchhoff plate formulation.

Chapter 5 develops the quasi-static and dynamic fracture modeling using the NOM. The

phase field’s nonlocal weak and associated strong forms are derived from a variational

principle. We present both a nonlocal implicit phase-field model and a nonlocal explicit

phase-field model for fracture; the first approach is better suited for quasi-static fracture

problems, while the key application of the latter one is dynamic fracture. To demonstrate

the performance of the underlying approach, several benchmark examples for quasi-static

and dynamic fracture are solved.

Chapter 6 summarizes the research that has been presented in this dissertation. The

main contributions of this research are outlined. Finally, some possibilities for future

work are suggested.
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Chapter 2

Implicit implementation of nonlocal

operator method

This chapter is based on the journal paper ’Implicit implementation of the nonlocal opera-

tor method: an open source code’ published in EWCO by my first author. The contribution

of this paper is summarized as follows:

Yongzheng Zhang

• Conceptualization

• Research state of the art

• Investigation

• Formal analysis

• Methodology

• Software/Programming

• Data curation

• Data analysis

• Validation

• Visualization

• Writing original manuscript draft

Huilong Ren

• Conceptualization

• Methodology
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• Programming

• Writing review and editing

Timon Rabczuk

• Conceptualization

• Mentoring the research progress

2.1 General

The nonlocal theory of elasticity [Eringen, 1972a, Rogula, 1982, Eringen, 1984, Povstenko,

1999, Faghidian, 2018] primarily considers distant action forces between objects. Different

from the concept of local theory, an object can interact without physical interaction with

a different object. The theory is of great significance to solve many physical problems,

such as the law of universal gravitation. Some notable nonlocal numerical methods were

proposed according to nonlocal interaction in nonlocal continuum field theories.

PD[Silling, 2000, Silling et al., 2007, Silling, 2010] is a formulation of continuum me-

chanics on the basis of the concept of nonlocal integration, PD avoids the singularity of

the traditional local differential equations when solving discontinuous problems. One key

application of PD is fracture. It shares the same advantages as the Cracking Particles

Method (CPM) presented in [Rabczuk and Belytschko, 2004, 2007, Rabczuk et al., 2010].

In contrast to many other discrete crack approaches as presented in [Areias and Rabczuk,

2013, Areias et al., 2013, 2014, Amiri et al., 2014, Ghorashi et al., 2015, Areias et al.,

2016a,b, Areias and Rabczuk, 2017, Areias et al., 2018], PD does not require the repre-

sentation of the discrete crack surface and associated crack tracking algorithms. PD also

has been successfully applied to rock fracture and soil damage analysis, such as impact

fracture [Gerstle et al., 2007, Yin and Hai, 2013], composite material separation [Oterkus

et al., 2012, Shen et al., 2013] and beam and plate structures [Lindsay et al., 2016].

However, to eliminate erroneous wave reflection and ghost force among particles, all tra-

ditional PD formulas must use the same horizon size. In many applications, to enhance

calculating performance, its necessary to use different horizon sizes for the calculation of

particles with non-uniform spatial distribution, such as adaptive encryption, multi-scale

simulation, and multi-body analysis. In other words, in order to balance the calculation

efficiency and calculation accuracy, we hope that PD can be based on the distribution

characteristics of the particles, but if the size of the near field is used, it will result in

the generation of false stress waves and the problem cannot be solved correctly. To ad-

dress the aforementioned issue, dual-horizon PD [Ren et al., 2016, 2017] was developed

to improve computing efficiency and to allow for varying horizon sizes. The dual-horizon

is the dual term of the horizon when variable horizons are used in the inhomogeneous
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discretization. It separates the horizon that exerts forces and counter forces between the

particles, thereby solving the problem of false stress caused by the horizons. In addition,

other nonlocal models mainly include nonlocal linear elasticity [Emmrich and Weckner,

2007, Di Paola et al., 2009, 2010], dynamics of nonlocal fluid [El-Nabulsi, 2018, Lee and

Chang, 2008], electromagnetic nonlocal theory [Eringen, 1973, Van Mechelen and Jacob,

2019], nonlocal damage model [Pijaudier-Cabot and Bažant, 1987, Pijaudier-Cabot et al.,

2004, Lorentz, 2017] and nonlocal calculus [Du et al., 2013, Alali et al., 2015].

In recent years, several numerical approaches based on peridynamics operators have been

proposed, see e.g. the contributions in [Breitenfeld et al., 2014, Madenci et al., 2019a,b].

A new computational method based on nonlocal operators is the NOM first proposed

in [Rabczuk et al., 2019] for electromagnetic problems. The approach has been later on

extended to mechanical problems in [Ren et al., 2020a,b]. The NOM can be considered as

a generalization of non-ordinary state-based PD. It has been applied to numerous chal-

lenging problems in solid mechanics and can be a viable alternative to FEM or meshless

methods. In order to acquire the differential operators, FEM and meshless methods are

required to establish the shape functions as well as compute their derivatives, however,

NOM can acquire the differential operators easily without the use of shape functions.

The tangent stiffness is obtained naturally by simply defining an energy function thus

drastically simplifying its implementation. In combination with the weighted residual

method and variational principle, the residual and the tangent stiffness matrix can be es-

tablished by NOM with ease. NOM is enhanced here also with operator energy functional

to achieve the linear consistency of the field and avoid instabilities. Although the theoret-

ical framework of the NOM has been proposed, other benefits of this numerical method

have not been thoroughly discussed. Furthermore, the details of the derivation of the

first/higher-order nonlocal differential operators, construction of the first/higher-order

operator energy functional, the derivation of the residual and tangent stiffness matrix of

operate energy functional and the detailed implementation procedure of first/higher-order

NOM has not been shown before.

The purpose of this chapter is to describe in detail the method of implicitly implementing

for first/higher-order NOM, which mainly including the derivation of the first/higher-

order nonlocal differential operates, the detailed form of first/higher-order tangent stiff-

ness matrix for operate energy functional and elastic material constitutions in different

conditions. The Mathematica code of first/higher-order NOM is presented and explained

in detail, and it will be an effective tool for studying complicated physical problems.

The remainder of this chapter is outlined as follows: In Section 2.2, we briefly reviewed the

NOM and elaborated on the fundamental concept of support and dual-support. In Section

2.3, we derived the first/higher-order implicit nonlocal differential operators based on the

Taylor series expansion. Hereafter, to remove the zero energy mode, the first/higher-

order operator energy functional by the nonlocal operator is constructed, combined with
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The nonlocal gradient approximation [Yang and Chen, 2020, Yang and Lin, 2020] of a

vector field u for a point xi in support Si is defined by

∇̃ui :=

∫
Si
w(ξij)uij ⊗ ξijdVj ·

(∫
Si
w(ξij)ξij ⊗ ξijdVj

)−1

. (2.2)

where w(ξij) is the weight function for vector ξij in support Si. It can be shown [Ren

et al., 2020b] that the nonlocal gradient operator and it’s variation in discrete form is

given by

∇̃ui =
∑
j∈Si

w(ξij)uij ⊗ ξij∆Vj ·
(∑
j∈Si

w(ξij)ξij ⊗ ξij∆Vj
)−1

, (2.3)

∇̃δui =
∑
j∈Si

w(ξij)δuij ⊗ ξij∆Vj ·
(∑
j∈Si

w(ξij)ξij ⊗ ξij∆Vj
)−1

. (2.4)

In order to remove the zero-energy mode, a operator energy functional to achieve the

linear field of the vector field is proposed [Ren et al., 2020b]. The vector field’s operator

energy functional for a point is defined as

Fhgi =
phg

2mKi

∫
Si
w(ξij)(∇̃ui · ξij − uij)

T (∇̃ui · ξij − uij)dVj (2.5)

where phg

2mKi
is the operator energy functional coefficient, mKi

= tr[Ki], p
hg is the penalty

coefficient. The shape tensor Ki is defined as

Ki =

∫
Si
w(ξij)ξij ⊗ ξijdVj (2.6)

2.3 Implementation

2.3.1 Derivation of the first-order implicit nonlocal differential

operators

The displacement field at any point in the elastic body can be represented by three

displacement components u, v, w along the rectangular coordinate axis, and it’s three

dimension vector form is

u = (u, v, w)T (2.7)

The first-order Taylor series expansion at origin point for a displacement field u is given

as

u′ = u +∇u · ξ +O(ξ2) (2.8)
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where ∇ := ( ∂
∂x
, ∂
∂y
, ∂
∂z

); ξ :=(x, y, z)T denotes the initial bond vector, O(ξ2) represents

higher-order terms, and for linear field O(ξ2) = 0. (u′ − u) ⊗ ξ can be obtained from

Eq.2.8 and can be shown as

(u′ − u)⊗ ξ = ∇u · ξ ⊗ ξ

Integrate (u′ − u)⊗ ξ in the domain Si, one will obtain

∫
Si
w (ξ) (u′ − u)⊗ ξdV = ∇u

∫
Si
w (ξ) ξ ⊗ ξdV (2.9)

The gradient operate ∇u can be expressed as

∇u =

∫
Si
w (ξ) (u′ − u)⊗ ξdV ·

[∫
Si
w (ξ) ξ ⊗ ξdV

]−1

(2.10)

The discrete form of Eq.2.10 at point xi can be shown as

∇ui =
∑
j∈Si

w
(
ξij
)

(uj − ui)⊗ ξij∆Vj ·
[∑

j
w
(
ξij
)
ξij ⊗ ξij∆Vj

]−1

(2.11)

To simplify the equation more conveniently, in this section, letting Rj = w
(
ξij
)
ξTijVj ·[∑

j∈Si w
(
ξij
)
ξij ⊗ ξij∆Vj

]−1

= (ξxj , ξyj , ξzj), Si =
[
j1, j2, j3, · · · , jn

]
. The nonlocal

gradient operator ∇̃u at point xi can be rewritten as

∇̃ui =
∑
j∈Si

(uj − ui)
[
ξxj , ξyj , ξzj

]
(2.12)

According to Eq.2.12, the matrix form of nonlocal gradient operator ∇̃u at point xi for

vector field can be expressed as

∇̃ui =


∂ui
∂x

∂ui
∂y

∂ui
∂z

∂vi
∂x

∂vi
∂y

∂vi
∂z

∂wi

∂x
∂wi

∂y
∂wi

∂z

 =

−
∑

j∈Si ξxj ξxj1 · · · ξxjn
−
∑

j∈Si ξyj ξyj1 · · · ξyjn
−
∑

j∈Si ξzj ξzj1 · · · ξzjn



ui vi wi
uj1 vj1 wj1
· · · · · · · · ·
ujn vjn wjn

 (2.13)

For the convenience of calculations, we transform the matrix form of nonlocal gradient
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operator ∇̃ui for vector field into vector form and it can be rewritten as

∇̃ui =
[
∂ui
∂x
, ∂ui
∂y
, ∂ui
∂z
, ∂vi
∂x
, ∂vi
∂y
, ∂vi
∂z
, ∂wi

∂x
, ∂wi

∂y
, ∂wi

∂z

]T

=



−
∑

j∈Si ξxj 0 0 ξxj1 0 0 · · · ξxjn 0 0

0 −
∑

j∈Si ξyj 0 0 ξyj1 0 · · · 0 ξyjn 0

0 0 −
∑

j∈Si ξzj 0 0 ξzj1 · · · 0 0 ξzjn
−
∑

j∈Si ξxj 0 0 ξxj1 0 0 · · · ξxjn 0 0

0 −
∑

j∈Si ξyj 0 0 ξyj1 0 · · · 0 ξyjn 0

0 0 −
∑

j∈Si ξzj 0 0 ξzj1 · · · 0 0 ξzjn
−
∑

j∈Si ξxj 0 0 ξxj1 0 0 · · · ξxjn 0 0

0 −
∑

j∈Si ξyj 0 0 ξyj1 0 · · · 0 ξyjn 0

0 0 −
∑

j∈Si ξzj 0 0 ξzj1 · · · 0 0 ξzjn





ui
vi
wi
uj1
vj1
wj1
· · ·
ujn
vjn
wjn


(2.14)

= BiUi

Similarly, the nonlocal gradient operator ∇̃u at point xi for scalar field is written as

∇̃ui =

∂ui∂x
∂ui
∂y
∂ui
∂z

 =

−
∑

j∈Si ξxj ξxj1 · · · ξxjn
−
∑

j∈Si ξyj ξyj1 · · · ξyjn
−
∑

j∈Si ξzj ξzj1 · · · ξzjn



ui
uj1
· · ·
ujn

 = BiUi (2.15)

2.3.2 Derivation of the higher-order implicit nonlocal differen-

tial operators

The higher-order NOM is based on higher-order Taylor series expansion of a multi-variable

function. Consider a vector field u at point xj (xj ∈ Si). For convenience, we shorthand

u(xj) by uj, which can be estimated via a Taylor expansion based on ui in r dimensions

with the highest order of derivatives as n:

uj = ui +
∑

(n1,...,nr)∈αn
r

ξn1
1 ...ξnr

r

n1!...nr!
ui,n1...nr +O(ξ|α|+1) (2.16)

where

ξij = (xj1 − xi1, ...,xjd − xid) (2.17)

ui,n1...nr =
∂n1+...+nrui
∂xn1

i1 ...∂xnr

id

(2.18)

|α| = max (n1 + ...+ nr) (2.19)
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2.3. IMPLEMENTATION

where r represents the dimension and n denotes the highest order of derivatives. αn
r

is a

compilation of multi-indexes that have been flattened and it can be written as

αn
r

= {(n1, ...,nr)|1 ≤
r∑
i=1

ni ≤ n, ni ∈ N0, 1 ≤ i ≤ r} (2.20)

where N0 = {0, 1, 2, ...}.

Note that Eq.2.16 is very sensitive to the round-off error, we here include the characteristic

length scale li of support Si, and the modified Taylor series expansion can be rewritten

as

uj = ui +
∑

(n1,...,nr)∈αn
r

ξn1
1 ...ξnr

r

l
n1+...+nr

i

(
l
n1+...+nr

i

n1!...nr!
ui,n1...nr

)
+O(ξn+1)

= ui +
∑

(n1,...,nr)∈αn
r

ξn1
1 ...ξnr

r

l
n1+...+nr

i

ul

i,n1...nr
+O(ξn+1) (2.21)

For any multi-index (n1, ...,nr) ∈ αnr , ul

i,n1...nr
=

l
n1+...+nr
i

n1!...nr!
ui,n1...nr ,∀(n1, ...,nr) ∈ αnr . We

let plj, ∂
l

αui and ∂αui denotes the flattened polynomials, scaled partial derivatives, partial

derivatives, respectively, according to multi-index notation αn
r

and they can be shown as

plj = (
ξ
r

l
, ...,

ξn1
1 ...ξnr

r

ln1+...+nr
, ...,

ξn1
ln

)T

∂lαui = (ul

i,0...1, ...,u
l

i,n1...nr
, ...,ul

i,n...0)T

∂αui = (ui,0...1, ...,ui,n1...nr , ...,ui,n...0)T (2.22)

The l in the Eq.2.22 allows the terms of the same characteristic scale for length. The

current partial derivatives can be recovered by

∂αui = diag
[
li, ...,

l
n1+...+nr

i

n1!...nr!
, ...,

l
n

i

n!

]−1
∂lαui (2.23)

In which diag [X1, ...,Xn] signifies a diagonal matrix of X1, ...,Xn, whose diagonal entries

begin from the upper left corner. Hence, the expansion of the Taylor series with ui to

the left of the Eq.2.21 can be rewritten as

uij = (∂lαui)
Tplj,∀j ∈ Si (2.24)

where uij = uj − ui.

Integrate uij with weighted coefficient w(ξij)(p
l

j)
T in support Si, we obtain∫

Si
w(ξij)uij(p

l

j)
TdVj = (∂lαui)

T

∫
Si
w(ξij)p

l

j ⊗ (plj)
TdVj

= (∂αui)
T Li

∫
Si
w(ξij)p

l

j ⊗ (plj)
TdVj (2.25)
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where

Li = diag
[
li, ...,

l
n1+...+nr

i

n1!...nr!
, ...,

l
n

i

n!

]
(2.26)

Therefore, the nonlocal operator ∂̃αui and its variation can be obtained as


∂̃αui = Kαi ·

∫
Si
w(ξij)p

l

juijdVj

∂̃αδui = Kαi ·
∫
Si
w(ξij)p

l

j(δuj − δui)dVj
(2.27)

where

Kαi = L−1
i

(∫
Si
w(ξij)p

l

j ⊗ (plj)
TdVj

)−1

(2.28)

In this section, points of the domain Ω in Si be symbolized as

Si = {j1, ..., jk, ..., jn} (2.29)

where j1, ..., jk, ..., jn denote the global indices of neighbors for point xi, and n denotes

the quantity of i’s neighbors in Si.

The discrete form of Eq.2.27 can be shown as

∂̃αui = Kαi ·
∑
j∈Si

uijw(ξij)p
l

j∆Vj = Kαip
l

wi∆ui (2.30)

∂̃αδui = Kαi ·
∑
j∈Si

δuijw(ξij)p
l

j∆Vj = Kαip
l

wiδ∆ui (2.31)

where

Kαi = L−1
i

(∑
j∈Si

w(ξij)p
l

j ⊗ (plj)
T∆Vj

)−1

pl
wi =

(
w(ξij1)p

l

j1
∆Vj1 , ...,w(ξijni

)pljni
∆Vjni

)
∆ui = (uij1 , ...,uijk , ...,uijn)T (2.32)

The nonlocal operator gives all partial derivatives with the highest order up to n. In

PDEs, the group of derivatives is a subgroup of the nonlocal operator. Each term in ∂̃αui
corresponds to a row of Kαip

l

wi multiplied by ∆ui. Eq.2.30 can be used to substitute the

differential operators in PDEs to generate a strong form of algebraic equations. Mean-

while, we can solve the linear (nonlinear) weak formulations using the weighted residual
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2.3. IMPLEMENTATION

methodology and the variational principle, hence the variation of ∂αui in Eq.2.31 is re-

quired in these circumstances. Eq.2.30 can also be shown more succinctly as

∂̃αui = Kαip
l

wi∆ui =
[
−(1, · · · , 1)nKαip

l

wi,Kαip
l

wi

]


ui
uj1
uj2
· · ·
ujn

 = BαiUi (2.33)

where Bαi is the nonlocal operator coefficient matrix of point xi, (1, · · · , 1)npKαip
l

wi is the

column sum of Kαip
l

wi. Using the nodal values in support, the operator matrix generates

all partial derivatives of maximal order smaller than |α|+ 1.

2.3.3 Elastic material constitution

For elastic material, the strain energy functional ψ is a function of the deformation

gradient F . According to the principles of traditional solid mechanics, the deformation

gradient F in 3D form expressed as

F = ∇u + I3×3 =


∂u
∂x

+ 1 ∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

+ 1 ∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

+ 1

 (2.34)

where I3×3 denotes the identity tensor.

The first Piola-Kirchhoff stress P can be derived from the directly derivative of strain

energy ψ(F ) in the context of total Lagrangian formulation, and it can be derived as

P =
∂ψ(F )

∂F
=

P11 P12 P13

P21 P22 P23

P31 P32 P33

 (2.35)

In addition, the fourth order elastic tensor D4 can be obtained using derivation of the

first Piola-Kirchhoff stress

D4 =
∂P

∂F
=
∂2ψ(F )

∂F T∂F
(2.36)

To obtain the elasticity matrix, based on the Voigt notation, D4 can be written as a

matrix form D9×9

D9×9 =


∂P11

∂F11

∂P11

∂F12
· · · ∂P11

∂F33
∂P12

∂F11

∂P12

∂F12
· · · ∂P12

∂F33
...

...
. . .

...
∂P33

∂F11

∂P33

∂F12
· · · ∂P33

∂F33

 =


∂2ψ(F)

∂F2
11

∂2ψ(F)
∂F11 ∂F12

· · · ∂2ψ(F)
∂F11 ∂F33

∂2ψ(F)
∂F12∂F11

∂2ψ(F)

∂F2
22

· · · ∂2ψ(F)
∂F12 ∂F33

...
...

. . .
...

∂2ψ(F)
∂F33∂F11

∂2ψ(F)
∂F33 ∂F12

· · · ∂2ψ(F)

∂F2
33

 , (2.37)
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CHAPTER 2. IMPLICIT IMPLEMENTATION OF NONLOCAL OPERATOR
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where F(= F11,F12, · · · ,F33),P(= ∂ψ(F)
∂F11

, ∂ψ(F)
∂F12

, · · · , ∂ψ(F)
∂F33

) donates the flattened deforma-

tion gradient and flattened first Piola-Kirchhoff stress.

In particular, for isotropic linear elastic material, regarding infinitesimal deformations of

a continuous linear elastic material with a tiny displacement gradient relative to unity

(i.e.∇u � 1), any of the strain tensors utilized in finite strain theory (such as the La-

grangian strain tensor) may be geometrically linearized. The non-linear or second-order

elements of the finite strain tensor are ignored in this linearization. Hence, we can obtain

the Lagrangian strain tensor ε = 1
2
(F + F T )− I and stress tensor σ = D : ε.

The internal functional energy for 3D linear elastic material can be expressed as

ψ(ε)3d =
1

2
σ : ε =

1

2
ε : D : ε =

1

2
dU T

3dD3ddU3d (2.38)

Likewise, the internal energy functional for plane stress and plane strain conditions can

be shown as follows

ψ(ε)plane stress =
1

2
dU T

2dDplane stressdU2d

ψ(ε)plane strain =
1

2
dU T

2dDplane straindU2d (2.39)

where

dU2d =

(
∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y

)T
(2.40)

dU3d =

(
∂u

∂x
,
∂u

∂y
,
∂u

∂z
,
∂v

∂x
,
∂v

∂y
,
∂v

∂z
,
∂w

∂x
,
∂w

∂y
,
∂w

∂z

)T
(2.41)

For linear elastic material, the elastic matrix D in plane stress, plane strain and 3D

conditions can be expressed as

Dplane stress =
E

1− ν2


1 0 0 ν

0 1−ν
2

1−ν
2

0

0 1−ν
2

1−ν
2

0

ν 0 0 1

 (2.42)

Dplane strain =
E

(1− 2ν)(1 + ν)


1− ν 0 0 ν

0 1/2− ν 1/2− ν 0

0 1/2− ν 1/2− ν 0

ν 0 0 1− ν

 (2.43)
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D3D =



λ+ 2µ 0 0 0 λ 0 0 0 λ

0 µ 0 µ 0 0 0 0 0

0 0 µ 0 0 0 µ 0 0

0 µ 0 µ 0 0 0 0 0

λ 0 0 0 λ+ 2µ 0 0 0 λ

0 0 0 0 0 µ 0 µ 0

0 0 µ 0 0 0 µ 0 0

0 0 0 0 0 µ 0 µ 0

λ 0 0 0 λ 0 0 0 λ+ 2µ


(2.44)

where λ, µ represent the Lamé constants, which are related to the Young’s modulus E

and Poisson’s ratio ν: 
λ =

Eν

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)

(2.45)

2.3.4 Construction of the first/higher-order operator energy

functional

As a particle-based method, when using node integration the first/higher-order NOM suf-

fer from a zero energy mode [Pian and Chen, 1983, Vignjevic et al., 2000], which results

in numerical instability. To eliminate the effect of the zero energy mode, traditional PD

and SPH introduce a penalty term to the force state [Breitenfeld et al., 2014]. Never-

theless, the approach described above is only applicable in the explicit time integration

formulation. NOM employs operator energy functional for nonlocal gradients to achieve

the linear field of the field and avoid numerical instabilities.

In first-order NOM, the operator energy functional at point xi can be construct according

to the first-order nonlocal operator ∇⊗ ui, it can be expressed in discretization form as

Fhgi =
phg

2mKi

∫
Si
w(ξij)

(
[(uj − ui)−∇ui · ξij]2 + [(vj − vi)−∇vi · ξij]2+

[(wj − wi)−∇wi · ξij]2
)

dVj

=
phg

2mKi

∑
j∈Si

w(ξij)
(

[(uj − ui)−∇ui · ξij]2 + [(vj − vi)−∇vi · ξij]2+

[(wj − wi)−∇wi · ξij]2
)

∆Vj

=
phg

2mKi

(∑
j∈Si

w(ξij)
(

(uj − ui)2 + (vj − vi)2 + (wj − wi)2
)

∆Vj −∇⊗ ui : ∇⊗ ui ·Ki

)
(2.46)
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where ∇ui = [∂ui
∂x
, ∂ui
∂y
, ∂ui
∂z

]T , ∇⊗ ui =


∂ui
∂x

∂ui
∂y

∂ui
∂z

∂vi
∂x

∂vi
∂y

∂vi
∂z

∂wi

∂x
∂wi

∂y
∂wi

∂z

, Ki =

k11 k12 k13

k12 k22 k23

k13 k23 k33

.

It should be noted that the shape tensor Ki is involved in ∇⊗ ui : ∇⊗ ui ·Ki and the

operator energy functional is valid in any dimension.

For convenience, we let Θ = 1
2
∇ ⊗ ui : ∇ ⊗ ui · Ki, Υ3d = 1

2
[(uj − ui)2 + (vj − vi)2 +

(wj − wi)2].

Θ3d =
1

2


∂ui
∂x

∂ui
∂y

∂ui
∂z

∂vi
∂x

∂vi
∂y

∂vi
∂z

∂wi

∂x
∂wi

∂y
∂wi

∂z

(

∂ui
∂x

∂ui
∂y

∂ui
∂z

∂vi
∂x

∂vi
∂y

∂vi
∂z

∂wi

∂x
∂wi

∂y
∂wi

∂z


k11 k12 k13

k21 k22 k23

k31 k32 k33

)

=
1

2

(
∂ui
∂x

[k11
∂ui
∂x

+ k12
∂ui
∂y

+ k13
∂ui
∂z

] +
∂ui
∂y

[k12
∂ui
∂x

+ k22
∂ui
∂y

+ k23
∂ui
∂z

]+

∂ui
∂z

[k13
∂ui
∂x

+ k23
∂ui
∂y

+ k33
∂vi
∂z

] +
∂vi
∂x

[k11
∂vi
∂x

+ k12
∂vi
∂y

+ k13
∂vi
∂z

]+

∂vi
∂y

[k12
∂vi
∂x

+ k22
∂vi
∂y

+ k23
∂vi
∂z

] +
∂vi
∂z

[k13
∂vi
∂x

+ k23
∂vi
∂y

+ k33
∂vi
∂z

]+

∂wi
∂x

[k11
∂wi
∂x

+ k12
∂wi
∂y

+ k13
∂wi
∂z

] +
∂wi
∂y

[k12
∂wi
∂x

+ k22
∂wi
∂y

+ k23 ·
∂wi
∂z

]+

∂wi
∂z

[k13
∂wi
∂x

+ k23
∂wi
∂y

+ k33
∂wi
∂z

]

)
(2.47)

To facilitate numerical implementation, we transform Eq.2.46 into a detailed form and

the point xi displacement vector and first-order differential of displacement vector in 3D

can be shown as

Ui = (ui, vi, wi, uj1, vj1, wj1 · · ·ujn, vjn, wjn)T

dUi = (
∂ui
∂x

,
∂ui
∂y

,
∂ui
∂z

,
∂vi
∂x

,
∂vi
∂y

,
∂vi
∂z

,
∂wi
∂x

,
∂wi
∂y

,
∂wi
∂z

)T (2.48)

In this chapter, the special variation δ̄F , δ̄2F and δF , δ2F are defined as

δ̄F := ∂dUF , δ̄2F := ∂dU dUF (2.49)

δF := ∂UF , δ2F := ∂U UF (2.50)
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Hence, the following relationships can be derived as

δ̄Θ3d =∂dU3d
Θ3d

=

 [k11
∂ui
∂x

+ k12
∂ui
∂y

+ k13
∂ui
∂z

] [k12
∂ui
∂x

+ k22
∂ui
∂y

+ k23
∂ui
∂z

] [k13
∂ui
∂x

+ k23
∂ui
∂y

+ k33
∂vi
∂z

]

[k11
∂vi
∂x

+ k12
∂vi
∂y

+ k13
∂vi
∂z

] [k12
∂vi
∂x

+ k22
∂vi
∂y

+ k23
∂vi
∂z

] [k13
∂vi
∂x

+ k23
∂vi
∂y

+ k33
∂vi
∂z

]

[k11
∂wi

∂x
+ k12

∂wi

∂y
+ k13

∂wi

∂z
] [k12

∂wi

∂x
+ k22

∂wi

∂y
+ k23

∂wi

∂z
] [k13

∂wi

∂x
+ k23

∂wi

∂y
+ k33

∂wi

∂z
]


(2.51)

δ̄2Θ3d =∂dU3ddU3d
Θ3d

=∂dU3d
δ̄Θ3d

=



k11 k12 k13 0 0 0 0 0 0

k12 k22 k23 0 0 0 0 0 0

k13 k23 k33 0 0 0 0 0 0

0 0 0 k11 k12 k13 0 0 0

0 0 0 k12 k22 k23 0 0 0

0 0 0 k13 k23 k33 0 0 0

0 0 0 0 0 0 k11 k12 k13

0 0 0 0 0 0 k12 k22 k23

0 0 0 0 0 0 k13 k23 k33


(2.52)

δΥ3d =∂U3d
Υ3d

=∂U3d
{1

2
[(uj − ui)2 + (vj − vi)2 + (wj − wi)2]}

=
[
(ui − uj), (vi − vj), (wi − wj), (−ui + uj), (−vi + vj), (−wi + wj)

]
(2.53)

δ2Υ3d =∂U3dU3d
Υ3d

=∂U3d
{(ui − uj), (vi − vj), (wi − wj), (−ui + uj), (−vi + vj), (−wi + wj)}

=



1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1


(2.54)
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According to Eqs.2.52 and 2.54, Eq.2.46 can be rewritten as

Fhgi =
phg

2mKi

(∑
j∈Si

w(ξij)
(

(uj − ui)2 + (vj − vi)2 + (wj − wi)2
)

∆Vj

−∇⊗ ui : ∇⊗ ui ·Ki

)

=
phg

2mKi

(
Ui

T


∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn

Ui − dUi
T

Ki 0 0

0 Ki 0

0 0 Ki

 dUi

)

=
phg

2mKi

(
Ui

T


∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn

Ui −Ui
TBi

T

Ki 0 0

0 Ki 0

0 0 Ki

BiUi

)

=
phg

2mKi

Ui
T
(
∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn

−Bi
T

Ki 0 0

0 Ki 0

0 0 Ki

Bi

)
Ui (2.55)

where Ij = w(ξij)∆Vj(1, 1, 1)⊗ (1, 1, 1)T .

K hg
i = ∂UiUi

Fhgi =
phg

mKi

(
∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn

−Bi
T

Ki 0 0

0 Ki 0

0 0 Ki

Bi

)

(2.56)

The global tangent stiffness matrix of operate energy functional, internal residual and

tangent stiffness matrix of physical energy functional in support Si can be obtained by

hg

Ki =
∑
j∈Si

∂UiUi
Fhgi ∆Vj =

∑
j∈Si

K hg
i ∆Vj (2.57)

Ri =
∑
j∈Si

∂Ui
ψ(ε)i∆Vj =

∑
j∈Si

Bi
T ·D ·∆Ui∆Vj (2.58)

Ki =
∑
j∈Si

∂Ui
Ri∆Vj =

∑
j∈Si

Bi
T ·D ·Bi∆Vj (2.59)

Finally, the summation of 3D form for the first-order global tangent stiffness matrix and
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hourglass tangent stiffness matrix in support Si can be obtained

Ki = Ki +
hg

Ki

=
∑
j∈Si

∆Vj

(
Bi

T ·D ·Bi +
phg

mKi

(
∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn


−Bi

T

Ki 0 0

0 Ki 0

0 0 Ki

Bi

))

=
∑
j∈Si

∆Vj

(
Bi

T
(
D − phg

mKi

Ki 0 0

0 Ki 0

0 0 Ki

)Bi +
phg

mKi


∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn


)

(2.60)

The operator energy functional for higher-order NOM at point xi can be construct ac-

cording to the higher-order nonlocal operator ∂lαui, it can be expressed as

Fhgαi =
phg

2mKi

∑
j∈Si

w(ξij)
(
uij − (plj)

T ∂̃lαui
)2

∆Vj

=
phg

2mKi

∑
j∈Si

w(ξij)
(
u2
ij + ∂lαu

T
i p

l

j ⊗ (plj)
T∂lαui − 2uij(p

l

j)
T∂lαui

)
∆Vj

=
phg

2mKi

(∑
j∈Si

w(ξij)u
2
ij∆Vj + ∂lαu

T
i

∑
j∈Si

w(ξij)p
l

j ⊗ (plj)
T∆Vj ∂

l

αui − 2∆uTi p
T
wi∂

l

αui

)
=

phg

2mKi

(∑
j∈Si

w(ξij)u
2
ij∆Vj + ∂̃αu

T
i Li

∑
j∈Si

w(ξij)p
l

j ⊗ (plj)
T∆Vj Li∂

l

αui

− 2∆uTi (pl
wi)

TLi∂̃αui
)

(2.61)
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By submitting the Eq.2.33 into the below Eq.2.61 and it can be rewritten as

Fhgαi =
phg

2mKi

(∑
j∈Si

w(ξij)u
2
ij∆Vj −∆uTi (pl

wi)
T
(∑
j∈Si

w(ξij)p
l

j ⊗ (plj)
T∆Vj

)−1
pl
wi∆ui

)
=

phg

2mKi

(
∆uTi diag

[
w(ξj1)∆Vj1 , ...,w(ξjni

)∆Vjni

]
∆ui −∆uTi (pl

wi)
TKαiLip

l

wi∆ui

)

=
phg

2mKi

∆uTi

(Ij1 0 0

0
. . . 0

0 0 Ijn

− (pl
wi)

TKαiLip
l

wi

)
∆ui

=
phg

2mKi

(K−1
αi p

l

wiBαiUi)
T
(Ij1 0 0

0
. . . 0

0 0 Ijn

− (pl
wi)

TKiLip
l

wi

)
K−1
αi p

l

wiBαiUi (2.62)

where Ij = w(ξij)∆Vj(1, 1, 1)⊗ (1, 1, 1)T .

The first and second derivative Fhgαi yield the higher-order residual and the tangent stiff-

ness matrix of operator energy functional and can be expressed as

Rhg
αi =

∂Fhgαi
∂Ui

=
phg

mKi

(K−1
αi p

l

wiBαi)
T
(Ij1 0 0

0
. . . 0

0 0 Ijn

− (pl
wi)

TKαiLip
l

wi

)
K−1
αi p

l

wiBαiUi (2.63)

K hg
αi =

∂Rhg
αi

∂UT
i

=
∂2Fhgαi
∂Ui∂UT

i

=
phg

mKi

(K−1
αi p

l

wiBαi)
T
(Ij1 0 0

0
. . . 0

0 0 Ijn

− (pl
wi)

TKαiLip
l

wi

)
K−1
αi p

l

wiBαi (2.64)

The higher-order global tangent stiffness matrix of operator energy functional in support

Si can be computed by

hg

Kαi =
∑
j∈Si

∂UiUi
Fhgαi ∆Vj =

∑
j∈Si

K hg
αi ∆Vj (2.65)
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Finally, the summation of the higher-order global tangent stiffness matrix and hourglass

tangent stiffness matrix in support Si can be obtained

Kαi = Kαi +
hg

Kαi

=
∑
j∈Si

(
Bαi

T ·D ·Bαi +
phg

mKi

(K−1
αi p

l

wiBαi)
T
(Ij1 0 0

0
. . . 0

0 0 Ijn


− (pl

wi)
TKαiLip

l

wi

)
K−1
αi p

l

wiBαi

)
∆Vj (2.66)

2.3.5 Numerical implementation with an open-source code

The numerical implementation of the first/higher-order NOM are summarized as the

following steps, and a flow chart of the NOM implementation procedure is depicted in

Fig.2.2.

Step 1. Discretization of the solution domain.

Consider the solution domain to be a discrete domain consisting of discrete points of

varying sizes and shapes that are linked to one another. There are two methods to

achieve the discretization of the solution domain. For the first method, a user-defined

subroutine GridDomain is customized, which can discretize the solution domain evenly.

This method is mainly used for the discretization of the rule solution domain. The

second method can be achieved as follows: initially, the model is created using finite

element software (such as ABAQUS), then the model is divided into grids of different

sizes according to the characteristics of the model and export the model information

into a inp format file. The model mesh and node information can be read through a

user-defined subroutine ParseAbaqusFile , therefore the discrete solution domain with

different densities can be achieved.

The Mathematica code for discretization of the solution domain is shown below. In

the user-defined subroutine GridDomain , where xmin , xmax are the minimum and

maximum values of solution domain and dx is the spacing between points.
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Step 2. Definition of the problem and solution domain.

Determine the overall attributes and geometric boundary conditions of the solution do-

main based on the real case, and assign values to the corresponding parameters.

Step 3. Specify and search for the number of neighbors for each point in

support and build index numbers for the specified neighbors.
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In this step, a user-defined subroutine NeiList is customized by the built-in command

Nearest of Mathematica to find the required number of neighbors, and the process of

building index number for the specified neighbor points can be achieved by the user-

defined subroutine NeiIIndex . The Mathematica code for finding the specified area

points and specified number neighbor points in the solution domain is shown below,

where coord is the coordinate of the points, numNei represents the number of specified

neighbors and ndim denotes the dimension of coordinate.

Step 4. Establish the nonlocal operator coefficient matrix, hourglass tangent

stiffness matrix, and the summation of global tangent stiffness matrix and

hourglass tangent stiffness matrix in first/higher-order form.

1© First-order nonlocal operator method.

As shown in below Mathematica code, three user-defined subroutines BHgmatrix ,

Dmatrix and Kmatrix are customized to calculate the nonlocal operator coefficient

matrix B, hourglass tangent stiffness matrix
hg

K , elastic material constitution matrix

D and the summation of hourglass tangent stiffness matrix and tangent stiffness ma-

trix K. In the user-defined subroutine BHgmatrix , initially the basic forms Bi,
hg

Ki

and shape tensor Ki at point xi are constructed, which are named as bmatrix , hg-

matrix and kmatrix , respectively. Subsequently by Eq.2.6, shape tensor can be cal-

culated; by the equation Ij = w(ξij)Vj(1, 1, 1) ⊗ (1, 1, 1)T and Eq.2.55, the matrix

Ij can be calculated and the
hg

Ki matrix can be assembled. Similarly, by equation

Rj = w
(
ξij
)
ξTijVj ·

[∑
j∈Si w

(
ξij
)
ξij ⊗ ξij∆Vj

]−1

and Eq.2.14, the intermediate vari-

ables Rj can be obtained and the Bi matrix is assembled. In the user-defined subroutine

Dmatrix , by Eqs.2.42, 2.43 and 2.44, the linear elastic solid elastic matrix D for plane

stress, plane strain and 3D conditions can be obtained. Where type=1,2,3 represent the

three constitutive models mentioned above. In the user-defined subroutine Kmatrix , by

Eq.2.66, the summation of global tangent stiffness matrix and hourglass tangent stiffness

matrix K can be established. In the below Mathematica code, where WeiF represents

the weight function, voli represents the volume of each point, Es, mu represents the

Young’s Modulus and Poisson’s ratio, respectively.
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2© Higher order nonlocal operator method.

The main codes for higher-order NOM are presented in AppendixA, which includes con-

structing the global higher-order nonlocal operator coefficient matrix Bα, global hourglass

tangent stiffness matrix
hg

Kα and the summation of global tangent stiffness matrix and

hourglass tangent stiffness matrix Kα. Initially, a user-defined subroutine MultiIndex is

customized to construct multi-index notation in Eq.2.20. where d denotes the dimension,
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sum denotes the maximal order of derivatives. Then, the customized user-defined sub-

routine GFD0CoeffHalf can obtain the factors of multi-index, polynomials and partial

derivatives in designated dimensions with maximal higher-order derivatives in Eq.2.22.

For constructing the elastic material constitution matrix, according to Eqs.2.35-2.37, the

user-defined subroutine FuncRK is compiled to obtain elastic matrix D . For higher-

order global hourglass tangent stiffness matrix
hg

Kα and the summation of global tangent

stiffness matrix and hourglass tangent stiffness matrix Kα, according to Eqs.2.32, 2.33 and

2.66, two main user-defined subroutines NOMPwKhg and NOMRK are customized

to achieve the establishment of corresponding matrix.

Step 5. Search boundary points in discrete domain and impose corresponding

boundary conditions based on actual problems.

A user-defined subroutine FindPoints is customize for searching boundary points.

When using user-defined subroutine FindPoints , it’s need to call another customized

subroutine LessThancoord at the same time. Subsequently, to employ Dirichlet and

Neumann boundary conditions to the boundary points, two user-defined subroutines

DirichletBoundaryApply and NeumannBoundaryApply are customized. Where

the penalty method is used in the user-defined subroutine DirichletBoundaryApply .

The related Mathematica codes are shown as below, where Ksp represents the sum-

mation of global tangent stiffness matrix and hourglass tangent stiffness matrix K, Rsp

represents the global internal residual, pd represents the index of the points of applica-

tion of specified displacement, pc represents the penalty coefficient and pf represents the

index of the points of application of specified force.

Step 6. Solve the global displacement in the discrete domain.

According to step 1 to step 5, the summation of global tangent stiffness matrix and

hourglass tangent stiffness matrix K and global residual vector R can be calculated. And
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the global displacement matrix can be calculated by solving the following linear algebra

Eq.2.67.

(K +
hg

K )u = Ku = R (2.67)

we employ the built-in command LinearSolve of Mathematica to solve the global dis-

placement vector, then we use the user-defined subroutine UMatrix convert displace-

ment vector into displacement matrix form. The related Mathematica codes are shown

below.

2.4 Numerical examples

Several numerical examples in 2D or 3D are presented to validate the first/higher-order

NOM in this section. The numerical results are compared with the analytical solution or

that by FEM software to verify the feasibility.

2.4.1 A cantilever beam under shear load

In this section, a 2D cantilever beam loaded at the end with shear load is considered.

The beam with H = 3m in height, L = 8m in length. The cantilever beam parameters

are: E = 6 × 103MPa, ν = 0.33. The shear load is parabolic distributed. The beam

is discretized into 308,1155,2511,4428,6885 points respectively, which corresponding to

∆x ∈ {H/10,H/20,H/30,H/40,H/50}. Where ∆x denotes the spacing of the points.

Plane stress conditions are considered in this section. The analytical solution refers to

literature [Timoshenko and Goodier, 1970, Zhuang and Augarde, 2010].
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ux =
P(y −H/2)

6EI
[
(6L − 3x)x+ (2 + ν)((y −H/2)2 − H

2

4
)
]

(2.68)

uy = − P
6EI

[
3ν(y −H/2)2(L − x) + (4 + 5ν)

H2x

4
+ (3L − x)x2

]
(2.69)

σxx(x, y) =
P(L − x)(y −H/2)

I
, σyy(x, y) = 0, τxy(x, y) = − P

2I
(H2

4
− (y −H/2)2

)
,

(2.70)

where x ∈ [0,L], y ∈ [0,H], P=-5 kN, I = H3

12
. The discretized cantilever beam on

displacement boundary are constrained using the accurate displacements according to

Eqs.2.68 and 2.69, as well as the force boundary according to Eq.2.70.

To obtain the displacement of each point, we need to solve the Eq.2.67, which can be

shown in detail as Eq.2.71. In this work, we use the penalty approach to apply Dirichlet

boundary conditions. This method can be achieved through the following steps:

k11 k12 · · · · · · · · · k1n

k21 k22 · · · · · · · · · k2n

· · · · · · · · · · · · · · · · · ·
ki1 ki2 · · · kii · · · kin
· · · · · · · · · · · · · · · · · ·
kn1 kn2 · · · · · · · · · knn





u1

u2

...

ui
...

un


=



R1

R2

...

Ri

...

Rn


(2.71)

When the displacement of point i ui = ui, we modify the i-th equation as follows, multiply

it’s diagonal element Kii by a penalty factor η (In computations, η is set to 1010) and

replace Ri with ηkiiui to obtain:

k11 k12 · · · · · · · · · k1n

k21 k22 · · · · · · · · · k2n

· · · · · · · · · · · · · · · · · ·
ki1 ki2 · · · ηkii · · · kin
· · · · · · · · · · · · · · · · · ·
kn1 kn2 · · · · · · · · · knn





u1

u2

...

ui
...

un


=



R1

R2

...

ηkiiui
...

Rn


(2.72)

The modified i-th equation can be expressed as:

ki1u1 + ki2u2 + · · ·+ ηkiiui + · · ·+ kinun = ηkiiui (2.73)

Since ηkii � kij(i 6= j), the ηkiiui term at the left end of the equation is much larger

than the other terms, so it can be approximated ηkiiui ≈ ηkiiui. Then we can obtain
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ui ≈ ui. According to the Eq.2.72, we can obtain the displacement of each point. It

should be noted that this method is suitable for any given displacement of points, as the

order of the formula and the displacement order of the points remain unchanged during

the solution process.

The number of target point’s neighbors and the radius of support size in NOM can be

very flexible and unlimited. However, a large number of neighbors is expensive in the k-

nearest neighbor’s search. Based on our numerical experience, eight points closest to the

target point are selected to construct the target point’s support domain. The difference

between the numerical result and analytical solution is measured by the L2-norm, which

is calculated by

‖u‖L2 =

√∑
j(uj − uexactj ) · (uj − uexactj )∆Vj∑

j uexactj · uexactj ∆Vj
. (2.74)

Table.2.1 shows the statistical results of the L2-norm for displacement at various dis-

cretizations, Fig.2.3 depicts the displacement for discretization at ∆x = H/50. The

displacement cloud diagram of the cantilever beam for discretization at ∆x = H/50 us-

ing first-order NOM numerical results and analytical results can be seen in Fig.2.4. As

shown in Table 2.1, Figs.2.3 and 2.4, good agreements can be seen between the first-order

NOM numerical results and analytical results. It shows very close variations in L2-norm

and the displacement errors in different directions.

Table 2.1: The statistical results of L2-norm and error for uxmax and uymax at different

discretizations.

Npoint ∆x L2-norm uxNOM
max

uxexact
max
− 1

uyNOM
max

uyexact
max
− 1

308 H/10 0.0118 -0.2738 -0.2679

1155 H/20 0.0096 -0.0731 -0.0779

2511 H/30 0.0082 -0.0289 -0.0308

4428 H/40 0.0073 -0.0209 -0.0245

6885 H/50 0.0068 0.0150 0.0128

2.4.2 Problem of an infinite plate with a hole in tension

Consider a 2D infinite plate with a circular hole, as shown in Fig.2.5. The plate’s length

is L and there is a small circular hole with a radius of ρ = a in the plate. Because the

plate’s thickness is substantially smaller than its length, it can be considered a plane
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(a) (b)

(c) (d)

Figure 2.3: The displacement and stress for discretization at ∆x = H/50. (a) Displace-

ment of points y=H/2 in the x direction; (b) Displacement of points x=L/2 in the y

direction; (c) Stress of points x=L/2 in the y direction; (d) Stress of points x=L/2 in the

y direction.
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(a) (b)

(c) (d)

Figure 2.4: The displacement cloud diagram of the cantilever beam for discretization at

∆x = H/50. (a) Displacement in y direction by first-order NOM numerical results;(b)

Displacement in y direction analytical results;(c) Displacement in x direction by first-

order NOM numerical results;(d) Displacement in x direction analytical results.
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Cartesian coordinate system, it can be shown as

σxx(ρ, θ) = P − P a
2

ρ2

(
3 cos 2θ

2
+ cos 4θ

)
+ P 3a4

2ρ4
cos 4θ

σyy(ρ, θ) = −P a
2

ρ2

(
cos 2θ

2
− cos 4θ

)
− P 3a4

2ρ4
cos 4θ

τxy(ρ, θ) = −P a
2

ρ2

(
sin 2θ

2
+ sin 4θ

)
+ P 3a4

2ρ4
sin 4θ (2.76)

To validate the feasibility of the first-order NOM, we compare the numerical simulation

results with the analytical solutions. The analytical solution of the displacement under

plane stress conditions can be expressed as

ux(ρ, θ) =
Pa
8µ

(
ρ

a
(κ+ 1) cos θ +

2a

ρ
((1 + κ) cos θ + cos 3θ)− 2a3

ρ3
cos 3θ

)
uy(ρ, θ) =

Pa
8µ

(
ρ

a
(κ− 3) sin θ +

2a

ρ
((1− κ) sin θ + sin 3θ)− 2a3

ρ3
sin 3θ

)
(2.77)

where µ = E
2(1+ν)

, and κ = 3−ν
1+ν

.

For the displacement boundary conditions, we set ux = 0, uy = 0 at left and bottom

boundaries by penalty method, meanwhile, for the force boundary conditions, we applied

the traction force at right and top boundaries computed by Eq.2.76.

To obtain a good discrete result, initially, we build the model and meshes in ABAQUS,

then export it as an “model.inp” file, which includes the element and point coordinate

information. We read the exported “model.inp” file in the environment of Mathematica.

We can calculate the coordinates of each point in the model, the area of each element, and

assign parameters such as area and force to the relevant points of the element according

to the core principle. So as to realize the discreteness of the unit in the environment

of Mathematica. It should be noted that only the nodes are used and no interaction

between elements. The Mathematica software reads the “model.inp” model (L/a = 5)

and discretization of the model as shown in Fig.2.6. In this study, we use the built-in

command Nearest of Mathematica to find the required number of neighbor points, and

eight neighbors are selected.

We fix the diameter of the hole to 2m and change the L. Four cases of relative size of plate

width and hole radius with L/a=5,7,9,11 and four cases with total 525,2050,4575,8100

nodes are investigated. The plate is discretized according to ABAQUS mesh elements and

CPS3 elements are adopted in ABAQUS[Hibbett et al., 1998] to calculate the reference

results. At first we test the maximum value of stress in the x-direction (σxx)max, according

to the formulation K = (σxx)max

P , we can obtain the corresponding K and compared it

to the analytic solutions. According to the first-order NOM, ABAQUS standard, and
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(a)

(b)

Figure 2.7: Analytical and numerical results of the stress and displacement. (a) The

results of the stress (Nnodes=4575);(b) The results of the displacement (Nnodes=4575).

(a)

(b)

Figure 2.8: Analytical and numerical results of the stress and displacement. (a) The

results of the stress (Nnodes=8100);(b) The results of the displacement (Nnodes=8100).
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Table 2.3: The L2 norm of the displacement and stress at four different discretization

cases.

Nnodes L2 norm of displacement L2 norm of stress

525 0.0581 0.0908

2050 0.0276 0.0478

4575 0.0163 0.0428

8100 0.0118 0.0376

2.4.3 3D gradient elasticity cantilever beam under shear load

To illustrate the feasibility of higher-order NOM, we expand it to handle the gradient

elasticity beam issue. A 3D gradient elasticity cantilever beam under uniform shear load

is considered. The cantilever beam with dimensions of 25 × 10 × 3 m3. The mate-

rial parameters are considered: E = 6 × 104 MPa, ν = 0.33. The uniform shear force

Py = −1.0 × 10−3 MPa. The higher-order NOM based on numerical integration [Ren

et al., 2020c] is employed to investigate the effectiveness of the current method for gra-

dient elasticity cantilever beam. The cantilever beam is discretized into 3744 points and

hexahedral background meshes are generated for the numerical integration. We employ

40 Gauss neighbor points in the numerical test. For separate variables (u, v, w) in 3D

cantilever beam, the isotropic elasticity gradient material’s energy functional include the

differential operators ∇u, ∇v,∇w,∇2u,∇2v,∇2w,∇3u,∇3v,∇3w. The maximal order

of partial derivatives is three, hence we select the third order of nonlocal operators in

Eq.2.30. In addition, various gradient coefficients ` = 0, 1.5, 3.0, 4.5 are studied by cur-

rent method and the displacement field for various gradient coefficients is given in Fig.2.9.

Fig.2.10 presents the displacement for points on the line (y = 10, z = 0). The results

obtained by higher-order NOM correspond well with those obtained by ABAQUS and

with the gradient coefficient raising, the deform of the beam become more uniformly.

2.5 Conclusions

In this chapter, we presented the implementation procedure of first/higher-order NOM,

and an open-source Mathematica code is presented and explained in detail. The per-

formance of first-order NOM and higher-order NOM results are demonstrated compared

with the corresponding analytical solutions or the results of the FEM commercial soft-

ware. Concluding remarks can be stated as follows:

Similar to the FEM and meshless method, NOM can establish the operator energy func-

tional and tangent stiffness matrix by some matrix multiplications. However, unlike FEM
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(a) ` = 0, ux (b) ` = 0, uy

(c) ` = 0, ux (d) ` = 0, uy

(e) ` = 1.5, ux (f) ` = 1.5, uy

(g) ` = 3.0, ux (h) ` = 3.0, uy

Figure 2.9: Displacement for various different gradient coefficients.
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(a) (b)

Figure 2.10: Displacement for points on the line (y = 10, z = 0).

and the meshless method, NOM can derive differential operators directly without employ-

ing shape functions. Hence, the complexity of the NOM is significantly reduced. The

NOM requires only the definition of the energy, for a given energy functional, the nonlo-

cal operators can be established automatically by the highest order of partial derivative

and dimensions. Support, dual-support, nonlocal differential operators, and operator en-

ergy functional are the fundamental components of NOM. Several numerical examples

illustrate the method’s high performance and capabilities. In conclusion, NOM is an

easy-to-use, flexible, and efficient numerical method.
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Chapter 3

Explicit implementation of the

nonlocal operator method

This chapter is based on the journal paper ’Explicit implementation of the nonlocal oper-

ator method: A nonlocal dynamic formulation for elasticity solid’ published in IJHM by

my first author. The contribution of this paper is summarized as follows:

Yongzheng Zhang

• Conceptualization

• Research state of the art

• Investigation

• Formal analysis

• Methodology

• Software/Programming

• Data curation

• Data analysis

• Validation

• Visualization

• Writing original manuscript draft

Huilong Ren

• Conceptualization

• Methodology
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The nonlocal gradient operator and it’s variation at point xi in discrete form are

∇̃vi =
∑
j∈Si

w(ξij)vij ⊗ ξij∆Vj ·
(∑
j∈Si

w(ξij)ξij ⊗ ξij∆Vj
)−1

(3.2)

∇̃δvi =
∑
j∈Si

w(ξij)δvij ⊗ ξij∆Vj ·
(∑
j∈Si

w(ξij)ξij ⊗ ξij∆Vj
)−1

(3.3)

For vector field v with nonlocal gradient defined by Eq.3.1, we formulate a quadratic

functional to eliminated the inconsistency between the vij and ∇̃viξij, and the operator

energy functional for vector field v at a point can be shown as

Fhgi =
phg

2mKi

∫
Si
w(ξij)(∇̃vi · ξij − vij)T (∇̃vi · ξij − vij)dVj (3.4)

Ki =

∫
Si
w(ξij)ξij ⊗ ξijdVj (3.5)

It should be noted that the NOM can construct the nonlocal strong form by employing

the energy functional in the traditional local manner.

The total Lagrange energy functional for linear elastic solid of the overall system can be

expressed as

L(v̇,v) =

∫
Ω

1

2
ρv̇ · v̇dV −

∫
Ω

ψ(σ, ε(∇v))dV +

∫
Ω

b · vdV +

∫
∂Ω

f · vdS (3.6)

with v̇ = ∂v
∂t

, ψ(σ, ε(∇v)) denotes strain energy density, ρ denotes the density of the

solid, b denotes the body force density and f denotes the external traction force.

Replacing the local gradient operator ∇v with the nonlocal gradient operator ∇̃v in

Eq.3.6, we obtain

L(v̇,v) =

∫
Ω

1

2
ρv̇ · v̇dV −

∫
Ω

ψ(σ, ε(∇̃v))dV +

∫
Ω

b · vdV +

∫
∂Ω

f · vdS (3.7)

The external work in time [t1, t2] can be shown as W ext =
∫ t2
t1

∫
∂Ω

f · vdSdt. The integral

of the Lagrangian L between two instants of time t1 and t2 is L =
∫ t2
t1
L(v̇,v)dt. Applying
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the variation principle, we have

δL =

∫ t2

t1

∫
Ω

[ρv̇ · δv̇ − ∂ψ(σ, ε(∇̃v))

∂ε
: ∇̃δv + bδv]dV dt+

∫ t2

t1

∫
∂Ω

f · δvdSdt

=

∫ t2

t1

∫
Ω

[−ρiv̈i · δvi − σi : ∇̃δvi + biδvi]dVidt+

∫ t2

t1

∫
∂Ω

f · δvidSidt

=

∫ t2

t1

∫
Ω

(
− ρiv̈i · δvi − σi :

( ∫
Si
w(ξij)δvij ⊗ ξij + biδvi

)
dVidt

+

∫ t2

t1

∫
∂Ω

f · δvidSidt

=

∫ t2

t1

∫
Ω

(
− ρiv̈i · δvi −

∫
Si
w(ξij)σiK

−1
i ξij · δvijdVj

)
+ biδvi

)
dVidt

+

∫ t2

t1

∫
∂Ω

f · δvidSidt

=

∫ t2

t1

∫
Ω

(
− ρiv̈i · δvi −

( ∫
S′i
w(ξji)σjK

−1
j ξji · δvidVj −

∫
Si
w(ξij)σiK

−1
i ξij · δvidVj

)
+ biδvi

)
dVidt+

∫ t2

t1

∫
∂Ω

f · δvidSidt

with σ is the Cauchy stress, and the boundary condition δv(t1) = 0, δv(t2) = 0 is

considered in the above derivation.

For any δv, the first-order variation δL = 0 leads to

∫
Si
w(ξij)σiK

−1
i ξijdVj −

∫
S′i
w(ξji)σjK

−1
j ξjidVj + bi = ρiv̈i ∀xi ∈ Ω (3.8)

For linear elastic solid, the relationship between nonlocal and local form can be shown as

∇ · σi
Local - Nonlocal−−−−−−−−−⇀↽−−−−−−−−−
Nonlocal - Local

∫
Si
w(ξij)σiK

−1
i ξijdVj −

∫
S′i
w(ξji)σjK

−1
j ξjidVj (3.9)

The nonlocal dynamic formulation for linear elasticity solid is expressed in Eq.3.8. The

nonlocal formulation is variationally consistent, and dual-support follows naturally from

the variational principle. Nevertheless, Eq.3.8 suffers from the zero energy mode [Pian

and Chen, 1983, Vignjevic et al., 2000, Yaghoobi and Chorzepa, 2017], we introduce

the so-called operator energy functional to achieve the linear field of the field and avoid

numerical instabilities, which is described in the next section.
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3.3 Operator energy functional of linear elasticity

solid

The operator energy functional can be construct according to the nonlocal gradient op-

erator ∇̃v, it can be expressed as

F(v) =

∫
Ω

Fhgi dVi =
phg

2mKi

∫
Ω

∫
Si
w(ξij)(∇̃viξij − vij)T (∇̃viξij − vij)dVjdVi (3.10)

The first-order variation of F(v) leads to

δF(v) =
phg

mKi

∫
Ω

∫
Si
w(ξij)(∇̃viξij − vij)T (∇̃δviξij − δvij)dVjdVi

=
phg

mKi

∫
Ω

∫
Si

(
w(ξij)(∇̃viξij − vij)T ∇̃δviξij −w(ξij)(∇̃viξij − vij)T δvij

)
dVjdVi

=
phg

mKi

∫
Ω

∫
Si

(
w(ξij)(∇̃viξij − vij)⊗ ξijdVj : ∇̃δvi −w(ξij)(∇̃viξij − vij)T δvijdVj

)
dVi

=
phg

mKi

∫
Ω

(
∇̃vi

∫
Si
w(ξij)ξij ⊗ ξijdVj −

∫
Si
w(ξij)vij ⊗ ξijdVjdVi

)
: δ∇̃vidVi

− phg

mKi

∫
Ω

∫
Si
w(ξij)(∇̃viξij − vij)T δvijdVjdVi

=
phg

mKi

∫
Ω

∫
Si
w(ξij)(vij − ∇̃viξij)T (δvj − δvi)dVjdVi

=

∫
Ω

(∫
S′i

phg

mKj

w(ξji)(vji − ∇̃vjξji)dVj −
∫
Si

phg

mKi

w(ξij)(vij − ∇̃viξij)dVj
)
δvidVi

(3.11)

Hence, the bond internal force caused by operator energy functional can be shown as∫
S′i

phg

mKj

w(ξji)(vji − ∇̃vjξji)dVj −
∫
Si

phg

mKi

w(ξij)(vij − ∇̃viξij)dVj (3.12)

where phg

mKi
w(ξij)(vij − ∇̃viξij) is the zero energy internal force for vector ξij.

For linear elastic solid, the nonlocal form and local form enhanced by operator functional

can be rewritten as

∇ · σ Local - Nonlocal−−−−−−−−−⇀↽−−−−−−−−−
Nonlocal - Local

∫
Si

(w(ξij)σi ·K−1
i ξij +

phg

mKi

w(ξij)(vij − ∇̃viξij))dVj

−
∫
S′i

(w(ξji)σj ·K−1
j ξji +

phg

mKj

w(ξji)(vji − ∇̃vjξji))dVj (3.13)
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3.4 Numerical implementation

The solid domain Ω is discretized into N points occupying a volume ∆Vi:

Ω =
N∑
i=1

∆Vi, (3.14)

where N denotes the number of points, ∆Vi is the volume associated with point xi.

For each point, the support is denoted by

Si = {i, j1, j2, ..., jni
}, (3.15)

where j1, ..., jk, ..., jni
are the global indexes of neighbors of point xi, ni is the number of

neighbors in support Si. The bond force between points are computed by

Qij = [w(ξij)σi ·K−1
i ξij +

phg

mKi

w(ξij)(vij − ∇̃viξij)]∆Vi∆Vj

Qji = [w(ξji)σj ·K−1
j ξji +

phg

mKj

w(ξji)(vji − ∇̃vjξji)]∆Vi∆Vj (3.16)

with w(ξij) = 1/|ξij|2.

Finally, we get the force of point xi as

Pi =
∑
j∈Si

Qij −
∑
j∈S′i

Qji (3.17)

In discrete form, Newton’s equation of motion is expressed as

Fi − Pi = Miv̈i(t), (3.18)

where t denotes the time, vi(t) denotes the ensemble of the position vector of point xi,

Fi is the external force vector and Pi denotes the internal force vector; Mi refers to the

mass of the point.

In this chapter, the velocity and displacement is updated via the Verlet-Velocity scheme

[Verlet, 1967]and can be shown as follows

vi(t+ ∆t) = vi(t) + v̇i(t)∆t+
1

2Mi
[Fi(t)− Pi(t)]∆t2

v̇i(t+ ∆t) = v̇i(t) +
1

2Mi

(
[Fi(t)− Pi(t)] + [Fi(t+ ∆t)− Pi(t+ ∆t]

)
∆t (3.19)

The main implementation process of explicit NOM for the dynamic analysis of liner

elasticity solid can be summarized as follows:
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1. Discretization of the solution domain and initialization

(i) Create geometry and discrete the solution domain.

(ii) Initialize the bond force of P i = 0 and assign values to the corresponding

parameters: Young’s modulus E, Poisson’s ratio ν, Density ρ , Number of neighbors

for each point etc.

2. Calculate shape tensor

(i) For each point, calculate first-order shape tensor Ki.

(ii) For each point, calculate the inverse of the shape tensor K−1
i .

3. Calculate deformation tensor

For each point, calculate deformation tensor Fi =
∫
Si w(ξij)Yi(ξij)⊗ ξijdVj ·K−1

i .

with Yi(ξij) := v(xj, t)− v(xi, t) is the current bond vector for bond ξij.

4. Calculate the linear elasticity solid constitutive model

(i) For each point, calculate the linear elasticity solid strain εi by solving εi =
1
2
(Fi + Fi

T
)− I.

(ii) For each point, calculate the Cauchy stress tensor σi in terms of the linear strain

tensor assuming Hooke’s law at different conditions by solving follow equations:

1©. σi =
E

1− ν2

(
ν trεi I2×2 + (1− ν)εi

)
Plane stress

2©. σi =
E

(1 + ν)(1− 2ν)

(
ν trεi I2×2 + (1− 2ν)εi

)
Plane strain

3©. σi =
E

(1 + ν)(1− 2ν)

(
ν trεi I3×3 + (1− 2ν)εi

)
3D

(3.20)

5. Calculate the elasticity solid internal bond force between points

For each neighbor point j ∈ Si, calculate the nonlocal operate ∇̃vi, calculate inter-

nal bond forces between points Qij,Qji by solving Eq.3.16 and add Qij to P i and

add −Qij to P j.

6. Applying the boundary conditions to solution

(i) Apply the external force Fi and displacement boundary conditions to the spec-

ified points, according to Newton’s second law Fi − Pi = Miv̈i(t), calculate each

point’s acceleration v̈i.

(ii) Update each point’s velocity and displacement through the Verlet-Velocity

scheme.

3.5 Numerical examples

In this section, we explore the application of explicit NOM to solve dynamic elasticity

solid problems. The implementation of explicit NOM has been carried out using the
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environment of Mathematica [Wolfram, 1999]. Several numerical examples are provided

to show the explicit NOM’s capabilities.

3.5.1 Convergence of explicit NOM: free vibration of slender

beam

To demonstrate the convergence of explicit NOM, we consider the slender beam-free

vibration problem in this section. The slender beam with dimensions of 1× 0.1m2. The

parameters for slender beam are E = 30GPa, ν = 0, ρ = 3000 kg/m3. Plane stress

conditions are assumed in this test. The slender beam is discretized into 1111, 1764, and

4221 points with ∆x=0.01, 0.008, and 0.005 m, respective, where ∆x denotes the spacing

of the points. Based on our numerical experience, eight points closest to the target point

are selected to construct the target point’s support.

The initial displacement field applied to the slender beam is mathematical described by

the follows

u(x, y) = 0.001e[−100(x−0.5)2], v(x, y) = 0, x ∈ [0, 1], y ∈ [0, 0.1] (3.21)

where u and v denote the displacement in the x and y directions, respectively.

As shown in Fig.3.2 and 3.3, the displacement field evolves in the same way under different

discretizations. With the evolution of time, good agreements can be seen between the

different discretizations. The displacement is independent of the discretizations in explicit

NOM.

3.5.2 Cantilever beam under shear load

In order to demonstrate the correctness of explicit NOM, we consider a 2D cantilever

beam with pure shear traction force. Geometry and boundary conditions are shown in

Fig.3.4(a). The problem is solved by the explicit NOM and Abaqus standard. Plane

stress conditions are assumed in this test. The beam is discretized into 3131 points

with ∆x = 0.01m, as shown in Fig.3.4(b). Eight points closest to the target point are

selected to construct the target point’s support domain. The parameters for material are

E = 30GPa, ν = 0.33, ρ = 2400 kg/m3. The shear traction force F = 1 × 10−3MPa.

In order to obtain the static solution, a damping coefficient α is adopted. The damping

force for point xi is calculated by fdampi = −αv̇i.

As shown in Fig.3.5, good agreements can be seen between the explicit NOM method

numerical results and ABAQUS results.
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(a) ∆x = 0.01m, t = 6.32× 10−5s (b) ∆x = 0.01m, t = 1.26× 10−4s

(c) ∆x = 0.01m, t = 3.16× 10−4s (d) ∆x = 0.008m, t = 6.32× 10−5s

(e) ∆x = 0.008m, t = 1.26× 10−4s (f) ∆x = 0.008m, t = 3.16× 10−4s

(g) ∆x = 0.005m, t = 6.32× 10−5s (h) ∆x = 0.005m, t = 1.26× 10−4s

(i) ∆x = 0.005m, t = 3.16× 10−4s

Figure 3.2: Displacement field in x direction evolution process of free vibration of slender

beam test at different discretizations and times.
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(a) (b)

(c) (d)

Figure 3.5: Displacement fields of the cantilever beam: (a) ux of the ABAQUS model;

(b) ux of the NOM explicit model; (c)uy of the ABAQUS model; (d) uy of the NOM

explicit model.
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3.5.3 2D plate with holes subjected to uniform load

Consider a 2D plate with five holes subjected to the uniform load, as shown in Fig.3.6(a).

The material parameters are: E = 45GPa, ν = 0.33 and ρ = 3000 kg/m3. The problem

is solved by the explicit NOM and Abaqus standard. Plane strain conditions are assumed

in this test. The plate is discretized into 15249 points with ∆x = 1/150m, as shown in

Fig.3.6(b). Eight points closest to the target point are selected to construct the target

point’s support domain. The upper boundary of the plate is subjected to a vertical load

of P = 1MPa, while the bottom boundary remains stationary.

(a) (b)

Figure 3.6: (a). Set up of the plate with holes; (b) The discretization of plate with holes

(∆x = 1/150m).

As shown in Fig.3.7, good agreements can be seen between the explicit nonlocal operator

method numerical results and ABAQUS results.

3.5.4 Large deformation of 3D solid subjected to rectangle line

load

In the last example, we present the capability of explicit NOM to model 3D large defor-

mation problems. The solid with dimensions of 1× 0.1× 0.1m3 is discretized into 12221

points. The support of each point consists of 16 nearest neighbor points. A rectangle

line load P = 1MPa is applied to the right boundary of the solid while the left boundary

is total fixed. The solid material parameters are E = 30GPa, ν = 0.33 and ρ = 3000

kg/m3. The deformation of 3D solid at different times in a cycle is depicted in Fig.3.8.
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(a) (b)

(c) (d)

Figure 3.7: Displacement fields of the plate with holes; (a) ux of the ABAQUS model; (b)

ux of the NOM explicit model; (c)uy of the ABAQUS model; (d) uy of the NOM explicit

model.
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(a) ux, t = 2.5× 10−4s (b) uy, t = 2.5× 10−4s

(c) ux, t = 5.0× 10−4s (d) uy, t = 5.0× 10−5s

(e) ux, t = 7.5× 10−4s (f) uy, t = 7.5× 10−4s

(g) ux, t = 1.0× 10−3s (h) t = 1.0× 10−3s

Figure 3.8: Displacement field in x and y directions evolution process of 3D solid at

different times in a cycle.
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3.6 Conclusions

In this chapter, we elaborated on the implementation progress of explicit NOM and a

nonlocal dynamic elasticity solid formulation based on explicit NOM is also proposed.

The nonlocal dynamic governing equation for elasticity solid is derived. The nonlocal

operator energy functional is also derived and the relationship between local and nonlocal

formulations is interpreted. Based on the dual property of the dual-support in NOM, the

nonlocal dynamic governing equation is obtained with ease. We start from the energy

form of the problem, by inserting the nonlocal expression of the gradient operator into

the energy form. In the numerical simulation part, several numerical cases are presented

to verify the accurateness of the nonlocal dynamic elasticity solid formulation in different

conditions, and good agreement is observed between numerical simulation results and

ABAQUS results.
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Chapter 4

Nonlocal dynamic Kirchhoff plate

formulation based on nonlocal

operator method

This chapter is based on the journal paper ’Nonlocal dynamic Kirchhoff plate formula-

tion based on nonlocal operator method’ published in EWCO by my first author. The

contribution of this paper is summarized as follows:

Yongzheng Zhang

• Conceptualization

• Research state of the art

• Investigation

• Formal analysis

• Methodology

• Software/Programming

• Data curation

• Data analysis

• Validation

• Visualization

• Writing original manuscript draft

Huilong Ren

• Conceptualization
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• Writing review and editing

Timon Rabczuk

• Conceptualization

• Mentoring the research progress

• Writing review and editing

4.1 General

As a common engineering structure, plate/shell is widely used in civil engineering,

aerospace and other fields. The mechanical analysis of rectangular thin plates has al-

ways been one of the research focuses of scholars and engineers. The governing equation

of the Kirchhoff plate bending problem is a fourth-order partial differential equation

whose deflection is an independent variable. The numerical method for developing this

problem has a wide scientific significance for solving plate/shell problems.

The analysis of Kirchhoff plate bending problems poses challenges to ’classical’ finite

element formulations [Areias and Rabczuk, 2013, Amiri et al., 2014, Nguyen-Thanh et al.,

2015, Areias et al., 2016b, Nguyen-Thanh et al., 2017], which are only C0 continuous.

However, the Kirchhoff plate problem is a fourth-order partial differential equation which

requires a C1 formulation if weak form based methods such as FEM are employed. An

efficient alternative are so-called meshless methods as many of them are higher-order

continuous. The approximation function of the meshless method [CA, 1978, Zhang et al.,

2001, Chen et al., 2004, Roque et al., 2015, Roque and Martins, 2015, Greco et al., 2017]

represented by the Element-free Galerkin method EFG [Krysl and Belytschko, 1995, 1996,

Noguchi et al., 2000, Ivannikov et al., 2014] is highly smooth, that is, and the high-order

continuity is satisfied, meantime the meshless method is easy to form high-order. The

approximate function has significant advantages to the numerical solutions for higher-

order partial-differential equations.

Rabczuk [Rabczuk et al., 2007b] devised a meshfree method for thin shell analysis for

finite strains and arbitrary evolving cracks exploiting the higher-order continuity of the

EFG shape functions and avoiding any rotational degrees of freedom. Mohammed et

al.[Al-Tholaia and Al-Gahtani, 2015, Hussein Al-Tholaia and Al-Gahtani, 2016] presented

a meshless method to analyze the mechanical response of elastic thin plates. However,

since meshless shape functions are commonly rational functions, more integration points

are needed to evaluate the weak form. For example, Brebbia [CA, 1978] employed 6× 6

quadrature points, which significantly reduces the computational efficiency. An interest-

ing alternative to meshless methods is isogeometric analysis (IGA) [Hughes et al., 2005,

Cottrell et al., 2009], which also fulfills the higher-order continuity requirement needed for
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thin plate analysis. This method takes advantage of NURBS/B-Spline basis functions,

which are commonly used in computer-aided-design (CAD) to describe the geometries.

IGA has been successfully applied to the analysis of plates and shells for instance in

[Kiendl et al., 2009, Benson et al., 2010, Thai et al., 2015, Riffnaller-Schiefer et al., 2016,

Li et al., 2019]. As CAD geometries are surface representations, they are particularly

suited for plates and shells. One difficulty occurs for multi-patch geometries, which are

still difficult to deal with.

In this chapter, we take advantage of nonlocal theories as suggested for instance in non-

local continuum field theories with various physical fields [Eringen, 2002], peridynam-

ics (PD) [Silling, 2000], nonlocal plasticity, (nonlocal) damage mechanics [Bažant and

Jirásek, 2002] and nonlocal vector calculus [Gunzburger and Lehoucq, 2010]. Nonlocal

operator method (NOM) [Rabczuk et al., 2019, Ren et al., 2020b] is a nonlocal numerical

method for solving partial differential equations. The method is based on so-called differ-

ential operators. In contrast to finite elements, the NOM only needs neighboring points

to develop nonlocal derivatives. Similar to the machine learning approach [Samaniego

et al., 2020], it can solve PDEs directly instead of the need of shape functions, which

plays an equivalent role as the derivatives of the shape functions in the meshless methods

or the FEM. And therefore the complexity of the nonlocal operator method is signifi-

cantly reduced. The nonlocal strong form can be derived by a variational derivation on

the functional defined by nonlocal operators. This chapter presents a nonlocal operator

method to predict the dynamic response of Kirchhoff plates exploiting the higher-order

continuity of the NOM.

The remainder of this chapter is organized as follows: We derive the nonlocal Hessian op-

erator for Kirchhoff plates in Section 4.2. In Section 4.3, we derive the nonlocal dynamic

Kirchhoff plate formulation by a variational formulation. Section 4.4 presents details

about the numerical implementation before we demonstrate the performance of the for-

mulation through several benchmark problems in Section 4.5. We conclude the chapter

in Section 4.6.

4.2 Derivation of nonlocal Hessian operator for

Kirchhoff plate

We consider a Kirchhoff plate occupying a domain Ω as illustrated in Fig.4.1. Let us

denote the spatial coordinates with xi, ξij := xj − xi is relative position vector from

xi to xj; wi := w(xi, t) and wj := w(xj, t) are the displacement value for xi and xj,

respectively; the relative displacement area for the spatial vector ξij is wij := wj − wi.

The higher-order nonlocal operator ∂̃αwi for the scalar field w in support Si can be
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and the third order shape tensor for point xi by

K3i =

∫
Si
φ(ξij)ξ

3
ijdVj

=
(∫
Si
φ(ξij)xij

[
x2
ij xijyij

xijyij y2
ij

]
dVj,

∫
Si
φ(ξij)yij

[
x2
ij xijyij

xijyij y2
ij

]
dVj

)
=
(∫
Si
φ(ξij)

[
x3
ij x2

ijyij
x2
ijyij xijy

2
ij

]
dVj,

∫
Si
φ(ξij)

[
x2
ijyij xijy

2
ij

xijy
2
ij y3

ij

]
dVj

)
= (Kx

3i,K
y
3i) (4.6)

with ξnij := ξij ⊗ ξij ⊗ · · · ⊗ ξij︸ ︷︷ ︸
n terms

.

which finally leads to

K3iK
−1
2i ξij = (Kx

3iK
−1
2i ξij,K

y
3iK

−1
2i ξij). (4.7)

The fourth-order shape tensor for point xi is computed by

K4i =

∫
Si
φ(ξij)ξ

4
ijdVj

=

∫
Si
φ(ξij)


x2
ij

[
x2
ij xijyij

xijyij y2
ij

]
xijyij

[
x2
ij xijyij

xijyij y2
ij

]
yijxij

[
x2
ij xijyij

xijyij y2
ij

]
y2
ij

[
x2
ij xijyij

xijyij y2
ij

]
 dVj

=

∫
Si
φ(ξij)


[
x4
ij x3

ijyij
x3
ijyij x2

ijy
2
ij

] [
x3
ijyij x2

ijy
2
ij

x2
ijy

2
ij xijy

3
ij

]
[
x3
ijyij x2

ijy
2
ij

x2
ijy

2
ij xijy

3
ij

] [
x2
ijy

2
ij xijy

3
ij

xijy
3
ij y4

ij

]
 dVj =

[
Kxx

4i Kxy
4i

Kyx
4i Kyy

4i

]
(4.8)

The second-order Taylor series extension for a scalar field w is given as

wj = wi +∇wi · ξij +
1

2!
∇T∇wi : ξij ⊗ ξij +O(| ξij |3) (4.9)

so that we obtain

wij = ∇wi · ξij +
1

2
∇T∇wi : ξij ⊗ ξij +O(| ξij |3) (4.10)

which finally results in the following Hessian nonlocal operator

1

2
∇T∇wi : ξij ⊗ ξij = wij −∇wi · ξij (4.11)
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and

1

2
∇T∇wi :

∫
Si
φ(ξij)ξ

4
ijdVj =

∫
Si
φ(ξij)(wijξij ⊗ ξij −∇wi · ξ3

ij)dVj. (4.12)

The weighted tensor 1
2
∇T∇w : K4i can be simplified to

1

2
∇T∇wi : K4i =

∫
Si
φ(ξij)(wijξij ⊗ ξij −∇wi · ξ3

ij)dVj

=

∫
Si
φ(ξij)wijξij ⊗ ξijdVj −∇wi ·

∫
Si
φ(ξij)ξ

3
ijdVj

=

∫
Si
φ(ξij)wijξij ⊗ ξijdVj −

∫
Si
φ(ξij)wijξijdVj ·

(∫
Si
φ(ξij)ξij ⊗ ξijdVj

)−1

K3i

=

∫
Si
φ(ξij)wijξij ⊗ ξijdVj −

∫
Si
φ(ξij)wijξijdVj ·K−1

2i K3i

=

∫
Si
φ(ξij)wij(ξij ⊗ ξij −K3iK

−1
2i ξij)dVj. (4.13)

Note that the rank of K4i is 3 and the 2D nonlocal Hessian operator has only three

independent variables where ∂2δwi

∂x∂y
= ∂2δwi

∂y∂x
, let K−1

4i as the pseudo-inverse of K4i in this

study.

For the scalar field w, the 2D nonlocal Hessian operator for point xi can be written in

matrix form as

∇̃T ∇̃wi =

[
∂2wi

∂x2
∂2wi

∂x∂y
∂2wi

∂y∂x
∂2wi

∂y2
.

]
(4.14)

We let Kx
3iK

−1
2i ,K

y
3iK

−1
2i and the pseudo-inverse of K4i be explicitly written as

Kx
3iK

−1
2i =

[
a11 a12

a12 a22

]
; Ky

3iK
−1
2i =

[
b11 b12

b12 b22

]
(4.15)

K−1
4i =


[
c1 c2

c2 c3

] [
c2 c3

c3 c4

]
[
c2 c3

c3 c4

] [
c3 c4

c4 c5

]
 (4.16)

To facilitate the calculation K−1
4i , we convert K4i to a 3× 3 matrix yieldingc1 c2 c3

c2 c3 c4

c3 c4 c5

−1

=

∫
Si
φ(ξij)

 x4
ij x3

ijy x2
ijy

2
ij

x3
ijyij x2

ijy
2
ij xijy

3
ij

x2
ijy

2
ij xijy

3
ij y4

ij

 dVj (4.17)
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Since ξij ⊗ ξij − K3iK
−1
2i ξij is a matrix Q2×2 with the terms Q12 = Q21. Remove the

repeated terms in matrix Q, and the remain terms Q11, Q12, Q22 in matrix Q can be

reconstituted a vector L3×1 = (Q11, Q12, Q22)T . Then Eq.4.13 can be rewritten as

∫
Si
φ(ξij)

 x4
ij x3

ijy x2
ijy

2
ij

x3
ijyij x2

ijy
2
ij xijy

3
ij

x2
ijy

2
ij xijy

3
ij y4

ij

 dVj


∂2wi

∂x2
∂2wi

∂x∂y
∂2wi

∂y2

 =

∫
Si
φ(ξij)wijLidVj (4.18)

Finally,
(
ξij ⊗ ξij −K3iK

−1
2i ξij

)
: K−1

4i can be obtained by reconstituting terms in Eq.4.18

and can be expressed as

(
ξij ⊗ ξij −K3iK

−1
2i ξij

)
: K−1

4i =

[
ei11 ei12

ei21 ei22

]
(4.19)

where

ei11 = c1(x2
ij − a11xij − a12yij) + c2(xijyij − a12xij − a22yij) + c3(y2

ij − b12xij − b22yij)

ei12 = ei21 = c2(x2
ij − a11xij − a12yij) + c3(−a12xij − a22yij + xijyij) + c4(y2

ij − b12xij − b22yij)

ei22 = c3(x2
ij − a11xij − a12yij) + c4(−a12xij − a22yij + xijyij) + c5(y2

ij − b12xij − b22yij).

The explicit form of the nonlocal Hessian operator in 2D can finally be expressed by

∇̃T ∇̃wi = 2

∫
Si
φ(ξij)wij

[
ei11 ei12

ei21 ei22

]
dVj (4.20)

Note that ei11, ei12, ei22 are calculated for each neighbor in the support domain. As a

result, the variation of nonlocal Hessian operator can be obtained in explicit form as

∇̃T ∇̃δwi = 2

∫
Si
φ(ξij)(δwj − δwi)

[
ei11 ei12

ei21 ei22

]
dVj. (4.21)

4.3 Derivation of nonlocal dynamic Kirchhoff plate

formulation

4.3.1 Classical elastic plate theory

Kirchhoff plate theory assumes that the normal stress in the thickness direction can be

ignored and the normal of the midplane of the plate remains normal after deformation.

Hence, all stresses and strains can be expressed by the deflection w of the midplane of
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with

ε =

[
ε11 ε12

ε21 ε22

]

Finally, the constitutive model can be formulated in terms of the stress and strain resul-

tants by

M = Dplateκ (4.27)

where Dplate is the constitutive matrix defined as

Dplate =
Et3

12(1− ν2)

 1 ν 0

ν 1 0

0 0 1−ν
2

 = D0

 1 ν 0

ν 1 0

0 0 1−ν
2

 (4.28)

where D0 = Et3

12(1−ν2)
is the Kirchhoff plate’s bending stiffness, such that Eq.(4.27) can be

rewritten as

M =

[
Mx Mxy

Myx My

]
= D0

(
ν trκI2×2 + (1− ν)κ

)
(4.29)

κ = ∇T∇w =

[
∂2w
∂x2

∂2w
∂x∂y

∂2w
∂y∂x

∂2w
∂y2

]
(4.30)

4.3.2 Nonlocal dynamic Kirchhoff plate formulation

The total Lagrange energy functional for the Kirchhoff plate can be expressed as

L(ẇ, w) =

∫
Ω

1

2
ρẇ2dΩ−

∫
Ω

(
1

2
M : κ− qzw)dΩ−

∫
∂Ω

Mn
∂w

∂n
dS

=

∫
Ω

1

2
ρẇ2dΩ−

∫
Ω

(
1

2
M : ∇T∇w − qzw)dΩ−

∫
∂Ω

Mn
∂w

∂n
dS (4.31)

with ẇ = ∂w
∂t

; ρ is the density of the plate and qz a distributed load in the z-direction.

Replacing the local Hessian ∇T∇w with the nonlocal Hessian ∇̃T ∇̃w in Eq.4.31, we

obtain

L(ẇ, w) =

∫
Ω

1

2
ρẇ2dΩ−

∫
Ω

(
1

2
M : ∇̃T ∇̃w − qzw)dΩ−

∫
∂Ω

Mn
∂w

∂n
dS (4.32)

The integral of the Lagrangian L between two time steps t1 and t2 is z =
∫ t2
t1
L(ẇ, w)dt.

According to the principle of least action, we can write
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z =

∫ t2

t1

∫
Ω

1

2
ρẇ2dΩdt−

∫ t2

t1

∫
Ω

(
1

2
M : ∇̃T ∇̃w − qzw)dΩdt−

∫ t2

t1

∫
∂Ω

Mn
∂w

∂n
dSdt

(4.33)

Omitting the external work term
∫ t2
t1

∫
∂Ω
Mn

∂w
∂n
dSdt, the first variation of δz leads to

δz =

∫ t2

t1

∫
Ω

(ρẇ · δẇ −M : ∇̃T ∇̃δw + qzδw)dΩdt

=

∫ t2

t1

∫
Ω

(−ρiẅi · δwi −Mi : ∇̃T ∇̃δwi + qzδwi)dΩidt

=

∫ t2

t1

∫
Ω

(
− ρiẅi · δwi −Mi : [2

∫
Si
φ(ξij)(δwij(ξij ⊗ ξij −K3iK

−1
2i ξij)dVj : K−1

4i ]

+ qzδwi
)
dΩidt

=

∫ t2

t1

∫
Ω

(
− ρiẅi · δwi − 2

∫
Si

Miφ(ξij)(δwj − δwi)(ξij ⊗ ξij −K3iK
−1
2i ξij)dVj : K−1

4i

+ qzδwi
)
dΩidt

=

∫ t2

t1

∫
Ω

(
− ρiẅi · δwi − 2{

∫
S′i

[Mjφ(ξji)δwi(ξji ⊗ ξji −K3iK
−1
2i ξji) : K−1

4i ]dVj−∫
Si

[Miφ(ξij)δwi(ξij ⊗ ξij −K3jK
−1
2j ξij) : K−1

4j ]dVj}+ qzδwi

)
dΩidt

where the boundary condition δw(t1) = 0, δw(t2) = 0 is considered in the above deriva-

tion. According to Hamilton’s principle, for any δwi, the first variation of the functional

z should be zero, which leads to

2

∫
Si

Miφ(ξij)(ξij ⊗ ξij −K3iK
−1
2i ξij) : K−1

4i dVj−

2

∫
S′i

Mjφ(ξji)(ξji ⊗ ξji −K3jK
−1
2j ξji) : K−1

4j dVj + qz = ρiẅi ∀xi ∈ Ω (4.34)

The nonlocal form is correlated to the local form by

∇T∇ : Mi
Local→Nonlocal−−−−−−−−−⇀↽−−−−−−−−−
Nonlocal→Local

2

∫
Si

Miφ(ξij)(ξij ⊗ ξij −K3iK
−1
2i ξij) : K−1

4i dVj−

2

∫
S′i

Mjφ(ξji)(ξji ⊗ ξji −K3jK
−1
2j ξji) : K−1

4j dVj (4.35)

According to Eq.4.20, we devise the explicit form of ∇̃T ∇̃ : Mi

∇̃T ∇̃ : Mi = 2

∫
Si
φ(ξij)Mi ·

[
ei11 ei12

ei21 ei22

]
dVj − 2

∫
S′i
φ(ξji)Mj ·

[
ej11 ej12

ej21 ej22

]
dVj (4.36)
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As Eq.4.34 suffers from zero energy modes, we introduce the so-called nonlocal operator

energy functional, which is described in the next section.

4.3.3 Operator energy functional

For the Kirchhoff plate, the maximal order of partial derivatives in Eq.4.34 is two, hence

we select the second order of nonlocal operators in Eq.4.4. The operator energy functional

for second order nonlocal operators of a scalar field w for point xi can be expressed as

Fhgi =
αw
2mi

∫
Si
φ(ξij)

(
sTij ∂̃αwi − wij

)2
dVj (4.37)

where sij = (xij, yij, x
2
ij/2, xijyij, y

2
ij/2)T , ∂̃αwi = (∂wi

∂x
, ∂wi

∂y
, ∂

2wi

∂x2
, ∂

2wi

∂xy
, ∂

2wi

∂y2
)T .

The first variation of Fhgi is

δFhgi =
αw
mi

∫
Si
φ(ξij)

(
sTij ∂̃αwi − wij

)T (
∂̃αδwis

T
ij − δwij

)
dVj

=
αw
mi

∫
Si
φ(ξij)

(
sTij ∂̃αwi − wij

)T
∂̃αδwis

T
ijdVj −

αw
mi

∫
Si
φ(ξij)

(
sTij ∂̃αwi − wij

)T
δwijdVj

=
αw
mi

∫
Si
φ(ξij)

(
sTij ∂̃αwi − wij

)
sTijdVj · ∂̃αδwi −

αw
mi

∫
Si
φ(ξij)

(
sTij ∂̃αwi − wij

)T
δwijdVj

=
αw
mi

(
∂̃αwi

∫
Si
φ(ξij)sijs

T
ijdVj −

∫
Si
φ(ξij)wijs

T
ijdVj

)
· ∂̃αδwi−

αw
mi

∫
Si
φ(ξij)

(
sTij ∂̃αwi − wij

)T
δwijdVj

=
αw
mi

(∫
Si
φ(ξij)wijs

T
ijdVj −

∫
Si
φ(ξij)wijs

T
ijdVj

)
· ∂̃αδwi−

αw
mi

∫
Si
φ(ξij)

(
sTij ∂̃αwi − wij

)T
δwijdVj

=
αw
mi

∫
Si
φ(ξij)

(
wij − sTij ∂̃αwi

)T
(δwj − δwi)dVj (4.38)

Taking the variation of
∫

Ω
Fhgi dVi yields∫

Ω

Fhgi dVi =

∫
Ω

αw
mi

∫
Si
φ(ξij)

(
wij − sTij ∂̃αwi

)T
(δwj − δwi)dVjdVi

=

∫
Ω

(∫
S′i

αw
mj

φ(ξji)(wji − ∂̃αwjsTji)dVj −
∫
Si

αw
mi

φ(ξij)(wij − ∂̃αwisTij)dVj
)
δwidVi

(4.39)
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w|x=0 = 0;
∂w

∂x
|x=0 = 0 (4.43)

Parallel to the x-axes (as y = 0 clamped boundary), the Kirchhoff plate boundary con-

ditions is

w|y=0 = 0;
∂w

∂y
|y=0 = 0 (4.44)

2. Simply supported Kirchhoff plate boundary conditions where the plate is free to rotate

about a line but prevented from deflecting. The positioning shift w and moment Mn value

is zero: parallel to the y− axes (as x = a simply supported boundary), the boundary

conditions is

w|x=a = 0; Mx|x=a = −D0(
∂2w

∂x2
+ ν

∂2w

∂y2
)x=a = 0 (4.45)

and Eq.4.45 can be written as

w|x=a = 0; Mx|x=a = −D0
∂2w

∂x2
|x=a = 0 (4.46)

Similarly, parallel to the x− axes (as y = b simply supported boundary), the boundary

conditions is

w|y=b = 0; My|y=b = −D0(ν
∂2w

∂x2
+
∂2w

∂y2
)y=b = −D0

∂2w

∂y2
|y=b = 0 (4.47)

4.4 Numerical implementation

The domain Ω is decomposed into N points occupying a volume ∆Vi:

Ω =
N∑
i=1

∆Vi, (4.48)

For each point, the support is denoted by

Si = {i, j1, j2, ..., jni
}, (4.49)

where j1, ..., jk, ..., jni
are the global indices of the neighbors of point xi and ni represents

the number of neighbors in support domain Si. The out-of-plane transversal force between
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points are computed by

T ij =
(
2Miφ(ξij)(ξij ⊗ ξij −K3iK

−1
2i ξij) : K−1

4i + f ij
)
∆Vi∆Vj

=
(

2φ(ξij)Mi ·
[
ei11 ei12

ei21 ei22

]
+
αw
mi

φ(ξij)(wij − ∂̃αwi sTij)
)

∆Vi∆Vj

T ji =
(
2Mjφ(ξji)(ξji ⊗ ξji −K3jK

−1
2j ξji) : K−1

4j + f ji
)
∆Vi∆Vj

=
(

2φ(ξji)Mj ·
[
ej11 ej12

ej21 ej22

]
+
αw
mj

φ(ξji)(wji − ∂̃αwjsTji)
)

∆Vi∆Vj (4.50)

Finally, we get the internal force Pij between points as

Pij =
∑
j∈Si

T ij −
∑
j∈S′i

T ji (4.51)

So that in discrete form, Newton’s equation of motion is expressed as

Fi − Pi = Miẅi(t), (4.52)

where t is the time, wi(t) =
(
w1(t), . . . , wN(t)

)
is the ensemble of the position vector of N

points, Fi is the external force vector and Pi denotes the internal force vector; Mi refers

to the mass of the point. In this chapter, the velocity and displacement is updated via

the Verlet-Velocity scheme [Verlet, 1967]:

wi(t+ ∆t) = wi(t) + ẇi(t)∆t+
1

2Mi
[Fi(t)− Pi(t)]∆t2

ẇi(t+ ∆t) = ẇi(t) +
1

2Mi

(
[Fi(t)− Pi(t)] + [Fi(t+ ∆t)− Pi(t+ ∆t]

)
∆t (4.53)

For reasons of stability, we applied a damping term to each point

F s
i = −cẇi (4.54)

F s
i representing the damping force for each point, ẇi represents the velocity (vector) of

the point, and c is a damping coefficient.

The main implementation process of higher-order explicit NOM for the dynamic analysis

of Kirchhoff plate can be summarized as follows :

1. Discretization of the solution domain and initialization

(i) Create geometry and discretize the solution domain.

(ii) Initialize the bond force of P i = 0 and assign values to the corresponding

parameters: Young’s modulus E, Poisson’s ratio ν, Density ρ , Number of neighbors

for each point etc.
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2. Calculate shape tensor

(i) For each point, calculate second, third and forth order shape tensor K2i,K3i,K4i

by solving problem Eqs.4.5-4.8.

(ii) Calculate the inverse (pseudo-inverse) of the shape tensor K−1
2i , Ky

3iK
−1
2i ,

Ky
3iK

−1
2i ,K−1

4i .

3. Calculate the nonlocal Hessian operator

For each point, calculate the nonlocal Hessian operator ∇̃T ∇̃wi by solving Eqs.4.14-

4.20.

4. Calculate the Kirchhoff plate constitutive model

(i) Calculate Kirchhoff plate’s bending stiffness and strain resultant D0,κ by solving

Eq.4.28 and Eq.4.30.

(ii) Calculate Kirchhoff plate constitutive model by solving Eq.4.29.

5. Calculate the Kirchhoff plate internal bond force between points

For each neighbor point j ∈ Si, calculate T ij,T ji,P ij by solving Eqs.4.50 - 4.51

and add P ij to P i and add −P ij to P j.

6. Applying the boundary conditions to solution

(i) Apply the external force Fi, damping force F s
i and displacement boundary con-

ditions to the specified points, according to Newton’s second law Fi − Pi + F s
i =

Miẅi(t), calculate each point’s acceleration ẅi.

(ii) Update each point’s velocity and displacement through the Verlet-Velocity

scheme.

4.5 Numerical examples

The proposed nonlocal dynamic Kirchhoff plate formulation is implemented in Wolfram

Mathematica. After verifying the accuracy of the nonlocal Hessian operator, several

benchmark problems are studied and compared to results obtained by ABAQUS using

the S4R plate/shell element [Hibbett et al., 1998].

4.5.1 Verification of nonlocal Hessian operator

Let us consider a simply supported square Kirchhoff plate with a width of a0 = 10m

and thickness t=0.01m. The plate is subjected to a uniform pressure of qz = 100N/m2.

Young’s modulus and Poisson’s ratio are E=30GPa and ν=0.3, respectively. The number

of neighbors of each point is set to n = 24. To test the accuracy of the nonlocal Hessian

operator, we assume Υ = 1, 3 (see Eq.4.55). The analytical solution of this problem is
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given in [Timoshenko and Woinowsky-Krieger, 1959], i.e.

w =
4q0a0

4

π5D0

∞∑
Υ=1,3,...

1

Υ5

(
1− αΥ tanhαΥ + 2

2 coshαΥ

cosh
2αΥy

a0

+
αΥ

2 coshαΥ

2y

a0

sinh
2αΥy

a0

)
sin

Υπx

a0

(4.55)

with αΥ = Υπ
2

.

We employ the quintic spline function as weight function

φ(ξ) = αd

(
(1− ξ/h)5

+ − 6(
2

3
− ξ/h)5

+ + 15(
1

3
− ξ/h)5

+

)
(4.56)

with ξ = ‖ξ‖, h is the maximum length of support, αd= (35/40, 377/478π, 37/40π) with

different dimensional space d and x+ = max(0, x).

To accurately represent the relative error of the operator, we consider points at y =

0. Figs.4.5-4.6 show the deflection curve of the numerical simulation ( ∂2w
∂x2

, ∂
2w

∂x∂y
, ∂

2w
∂y2

)

compared to the analytical solution. We also check the error in the L2-norm given by

‖w‖L2 =

√∑
j(wj − wexactj ) · (wj − wexactj )∆Vj∑

j w
exact
j · wexactj ∆Vj

(4.57)

which is shown in Fig.4.4.

Figure 4.4: The L2-norm’s convergence for ∂2w
∂x2

.

4.5.2 Nonlocal dynamic Kirchhoff plate formulation with sim-

ply supported boundary condition

We now focus on a simply supported square Kirchhoff plate with a width of a0 = 1m

and thickness t=0.01m. Young’s modulus and Poisson’s ratio are E=200GPa and ν=0.3,
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(a)

(b)

(c)

Figure 4.5: Deflection curve of analytical solutions and relative error(y=0).(a)Contour of

the deflection ∂2w
∂x2

for Υ=1; (b) Contour of the deflection ∂2w
∂x∂y

for Υ=1;(c)Contour of the

deflection ∂2w
∂y2

for Υ=1.
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(a)

(b)

(c)

Figure 4.6: Deflection curve of analytical solutions and relative error(y=0).(a)Contour of

the deflection ∂2w
∂x2

for Υ=3; (b) Contour of the deflection ∂2w
∂x∂y

for Υ=3;(c)Contour of the

deflection ∂2w
∂y2

for Υ=3.
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respectively. The plate density ρ =3000 Kg/m3. A uniform pressure of qz = 100N/m2

is applied to the plate. The number of neighbors in the domain of influence of each

point is set to n = 24. The distance between points is selected as ∆x=0.01 m leading to

10201 points. For the ABAQUS model - as a comparison - we discretized the plate into

100× 100 elements using the same input parameters.

Simply supported boundary conditions are assumed:

w(x, 0) = w(x, 1) = w(0, y) = w(1, y) = 0 x, y ∈ [0, 1] (4.58)

Contour plots of the deflection can be found in Figs.4.7 and Fig.4.8, respectively. The

figures show good agreement between the ABAQUS results and NOM results.

(a) (b)

Figure 4.7: Comparison of the deflection contour under uniform pressure load (a)

ABAQUS (b)Nonlocal operator method.

4.5.3 Nonlocal dynamic Kirchhoff plate formulation with

clamped boundary condition

Next, a plate using clamped boundary conditions is studied. The geometry and the

parameters of the previous section are adopted. The clamped boundary conditions are

given by

w(x, 0) = w(x, 1) = w(0, y) = w(1, y) = 0

∂w(0, y)

∂x
=
∂w(1, y)

∂x
=
∂w(x, 0)

∂y
=
∂w(x, 1)

∂y
= 0 x, y ∈ [0, 1] (4.59)

Contour plots of the deflection are illustrated in Figs.4.9 and 4.10, respectively. The

figures show good agreement between the ABAQUS results and NOM results.
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Figure 4.8: Comparison of the deflection for nodes in y = 0.5 under uniform pressure

load.

(a) (b)

Figure 4.9: Comparison of the deflection contour under uniform pressure load (a)

ABAQUS (b)nonlocal operator method.
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(a) ABAQUS t=0.0001s (b) NOM t=0.0001s (c) ABAQUS t=0.0005s (d) NOM t=0.0005s

(e) ABAQUS t=0.001s (f) NOM t=0.001s (g) ABAQUS t=0.0015s (h) NOM t=0.0015s

(i) ABAQUS at t=0.002s (j) NOM at t=0.002s (k) ABAQUS t=0.0025s (l) NOM t=0.0025s

Figure 4.11: The evolution the deflection contour using ABAQUS and nonlocal operator

method at different time
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Chapter 5

Quasi-static and dynamic fracture

modelling by the nonlocal operator

method

This chapter is based on the journal paper ’Quasi-static and dynamic fracture modeling

by the nonlocal operator method’ published in EABE by my first author. The contribution

of this paper is summarized as follows:

Yongzheng Zhang

• Conceptualization

• Research state of the art

• Investigation

• Formal analysis

• Methodology

• Software/Programming

• Data curation

• Data analysis

• Validation

• Visualization

• Writing original manuscript draft

Huilong Ren

• Conceptualization
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• Methodology

• Programming

• Writing review and editing

Pedro Areias

• Writing review and editing

Xiaoying Zhuang

• Conceptualization

• Writing review and editing

Timon Rabczuk

• Conceptualization

• Mentoring the research progress

• Writing review and editing

5.1 General

Modeling and predicting of material failure is of major importance in engineering appli-

cations [Anderson, 2017]. Numerical methods play an important role for such problems.

They can be categorized into discrete and continuous approaches to fracture. In the

discrete approach, discontinuities in the displacement field are introduced. Among the

typical discrete approaches are the extended finite element method (XFEM) [Moës et al.,

1999, Belytschko et al., 2001], phantom node method [Song et al., 2006], cracking particles

method (CPM) [Rabczuk and Belytschko, 2004], cohesive elements [Ortiz and Pandolfi,

1999, Zhou and Molinari, 2004], peridynamics (PD) [Silling et al., 2007] or dual-horzon

peridynamics (DH-PD) [Ren et al., 2016, 2017], element erosion methods [Belytschko

and Lin, 1987, Johnson and Stryk, 1987] and certain meshless approaches such as the

weighted reproducing kernel collocation method (RKCM) [Yang et al., 2017, Yang and

Hsin, 2019]. XFEM is based on a so-called local partition of unity method and intro-

duces additional degrees of freedom in order to allow crack growth without (or minimal)

remeshing. It models the crack as continuous surface and therefore requires crack tracking

algorithms and specific criteria to introduce the discontinuity in the displacement field.

It is well suited for problems with a moderate number of cracks but becomes increasingly

tedious for applications with a large amount of cracks and complex crack patterns such

as crack interactions or crack branching. The phantom node method [Song et al., 2006]

shares some similarities with XFEM but avoids additional degrees of freedom. Instead
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it is based on overlapping elements which facilitates the implementation but narrows its

application. There are also a few discrete crack approaches which avoid a representation

of the crack surface and associated crack tracking algorithms. Classical representatives

are PD and the CPM. PD replaces the divergence term in the equation of motion with

an integral form that is related to a bond force. Hence, it can treat the continuum in

the same way as a discontinuum. One issue is the integration of complex constitutive

models, especially for coupled problems.

Continuous approaches to fracture smear the crack over a certain region without introduc-

ing strong discontinuities in the displacement field. In addition, continuous approaches

to fracture do not require complex track cracking algorithms and are much easier to

implement compared to discrete approaches. A classical representatives of continuous

approaches to fracture is the phase field approach [Karma et al., 2001, Miehe et al.,

2010b]. The phase field model can be considered as an extension of the classical Griffith

fracture principle, which has meanwhile been applied to countless problems. In recent

years, many scholars have developed phase field models and successfully solve many multi-

physical field problems. Miehe et al.[Miehe et al., 2010a] developed a phase model for

structural reliability analyses of piezoelectric solids. Hesch et al.[Hesch and Weinberg,

2014] introduced a phase field method for finite deformations based on a multiplicative

split to account for the different behavior of fracture in tension and compression. Miehe

et al.[Miehe et al., 2015] presented a phase field model for finite strain thermo-plasticity.

Mauthe et al. [Mauthe and Miehe, 2017] proposed a phase field approach for fracture

in porous media. Samaniego et al. [Samaniego et al., 2021] modelled shear bands with

phase fields.

In this chapter, we present a phase field model for fracture within the NOM. We provide

two different implementations, i.e. a nonlocal implicit phase field model and nonlocal

explicit phase field model; the former is suited for static while the latter one for dynamic

fracture. A staggered algorithm is employed where the displacement field and phase field

are solved separately. Decoupling the phase field from the mechanical field guarantees

the convexity of the underlying potentials. Compared with the implicit algorithms, ex-

plicit algorithms can be easier parallelized, which has not been pursued though in this

manuscript. A sub-step scheme is employed to model dynamic fracture by an explicit

NOM, which reduces the phase field residual adaptively and achieves a rate-independent

nonlocal explicit phase field model.

The remainder of this chapter is structured as follows: In Section 5.2, we review the

NOM. Section 5.3 provides a brief overview of the phase field model. In Section 5.4, we

construct the operator energy functionals for the displacement and phase field in implicit

and explicit form. Subsequently, we describe the numerical implementation of the phase

field model using the nonlocal operator method in Section 5.5. Section 5.6 presents several

benchmark problems before we conclude the chapter in Section 5.7.
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5.2 Outline of phase field model for fracture

Let us consider an isotropic elastic solid Ω ⊂ Rd(d ∈ {1, 2, 3}) as shown in Fig.5.1, which is

subjected to body forces b(x, t) : Ω× [0, T ]→ Rd and traction f(x, t) : ∂Ωf × [0, T ]→ Rd

with external boundary ∂Ω ⊂ Rd−1 and prescribed displacement boundary condition

u(x, t) : ∂Ωu × [0, T ] → Rd, where ∂Ωf , ∂Ωu denotes the traction and displacement

boundaries, respectively and with ∂Ωf ⊆ ∂Ω, ∂Ωu ⊆ ∂Ω, ∂Ωf∩∂Ωu = ∅, ∂Ωf∪∂Ωu = ∂Ω;

d represents the dimension.

(a) (b)

Figure 5.1: Phase field representation of fracture modeling

5.2.1 Variational formulation and regularization of elastic brit-

tle fracture

According to Bourdin and Miehe [Bourdin et al., 2008, Miehe et al., 2010b], the energy

functional for a phase field approach to fracture can be expressed by

Π(u, φ,Λ) =

∫
Ω

GcΛ(φ,∇φ)dΩ +

∫
Ω

ψe(ε(u), φ)dΩ−
∫

Ω

b · udΩ−
∫
∂Ωf

f · udS

Λ(φ,∇φ) =
φ2

2l0
+
l0
2
∇φ · ∇φ (5.1)

where Gc represent critical energy release rate. The crack surface density per unit volume

of the solid is denoted by Λ(φ); l0 is a length scale parameter that is related to the crack

width. When l0 → 0, then Γ approaches to a strong discontinuity. The displacement field

and elastic energy density are denoted by u and ψe, respectively; φ(x, t) ∈ [0, 1] is the

phase field which smears out the crack surface over a certain domain. In [Miehe et al.,

2010b], φ(x, t) = 0 refers to an intact material while φ(x, t) = 1 indicates a completely

cracked body.
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To guarantee that fracture only occurs under tension, the elastic energy is decomposed

into tensile and compressive components [Bourdin et al., 2008]. The strain tensor ε can

be split by the following eigen-decomposition

ε+ =
b∑

a=1

〈εa〉+na ⊗ na, ε− =
b∑

a=1

〈εa〉−na ⊗ na (5.2)

where the tensile and compressive parts of the strain tensor are ε+ and ε−, respectively.

The principal strain is εa and its direction is na. The associated elastic energy density

ψε(ε) is expressed as

ψe(ε, φ) = [(1− φ)2 + κ0]ψ+
e

(ε) + ψ−
e

(ε)

ψ+
e

(ε) =
λ

2
〈tr(ε)〉2+ + µtr(ε+)2

ψ−
e

(ε, φ) =
λ

2
〈tr(ε)〉2− + µtr(ε−)2 (5.3)

where κ0 (κ0 > 0 and κ0 � 1) is a small positive factor that circumvents full degradation

of the positive projection of the elastic energy density, λ, µ are the Lamé parameters.

5.2.2 Governing equations

Now, the potential functional can be expressed as

Π(u, φ) =

∫
Ω

Gc

2
(
φ2

l0
+ l0∇φ · ∇φ)dΩ +

∫
Ω

[(1− φ)2 + κ0]ψ+
e

(ε) + ψ−
e

(ε)dΩ︸ ︷︷ ︸
Wint

−
∫

Ω

b · udΩ−
∫
∂Ωf

f · udS︸ ︷︷ ︸
Wext

(5.4)

where Wint is the internal energy and Wext the external work. The Lagrange energy

functional is written as

L =
1

2

∫
Ω

ρu̇ · u̇dΩ− Π(u, φ) (5.5)

According to Hamilton’s principle, the first-order variation of the energy functional L

should be zero, i.e. δL = 0 yielding

∇ · σ + b = ρü in Ω

[2l0ψ
+
e

+Gc]φ−Gcl
2
0∇2φ = 2l0ψ

+
e

in Ω

σ · n∗ = f on ∂Ωf

∇φ · n∗ = 0 on ∂Ωf (5.6)
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where n∗ is outward pointing normal on ∂Ωf and σ indicates the Cauchy stress tensor.

The strong form can then be derived easily from the weak form yielding

σ =
∂ψe(ε, φ)

∂ε
= [(1− φ)2 + κ0]

∂ψ+
e

(ε)

∂ε
+
∂ψ−

e
(ε)

∂ε

= [(1− φ)2 + κ0][λ〈tr(ε)〉+I + 2µε+] + λ〈tr(ε)〉−I + 2µε− (5.7)

where I is the second-order identity tensor. To ensure the phase field increases mono-

tonically [Miehe et al., 2010b], the local history field of the strain H(x, t) is employed:

H(x, t) = max
s∈[0,t]

ψ+
e

(ε(x, s)) (5.8)

Replacing ψ+
e

with H(x, t) in Eq.5.6 leads to

∇ · σ + b = ρü in Ω

[2l0H +Gc]φ−Gcl
2
0∇2φ = 2l0H in Ω

σ · n∗ = f on ∂Ωf

∇φ · n∗ = 0 on ∂Ωf (5.9)

5.3 Construction of the operator energy functional

in implicit form and explicit form

The nonlocal operator method (NOM) will suffer from zero energy modes when using

nodal integration. Therefore, we add a penalty energy functional.

5.3.1 Implicit form operator energy functional

Using nodal integration in Eq.3.4 results in

Fhgi =
µ

2mKi

∫
Si
w(ξij)

(
[(uj − ui)−∇ui · ξij]2 + [(vj − vi)−∇vi · ξij]2

+ [(wj − wi)−∇wi · ξij]2
)

dVj

=
µ

2mKi

(∑
j∈Si

w(ξij)
(

(uj − ui)2 + (vj − vi)2 + (wj − wi)2
)

∆Vj −∇⊗ ui : ∇⊗ ui ·Ki

)
(5.10)

with ∇ui = [∂u
∂x
, ∂u
∂y
, ∂u
∂z

]T , ∇⊗ ui =


∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

, Ki =

k11 k12 k13

k12 k22 k23

k13 k23 k33

.
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It should be noted that the shape tensor Ki is involved in ∇⊗ ui : ∇⊗ ui ·Ki and the

zero energy functional is valid in any dimension. Denoting

dUi = (
∂ui
∂x

,
∂ui
∂y

,
∂ui
∂z

,
∂vi
∂x

,
∂vi
∂y

,
∂vi
∂z

,
∂wi
∂x

,
∂wi
∂y

,
∂wi
∂z

)T

Ui = (ui, vi, wi, uj1, vj1, wj1 · · ·ujn, vjn, wjn)T (5.11)

Eq.5.10 can be rewritten as

Fhgi =
µ

2mKi

(∑
j∈Si

w(ξij)
(

(uj − ui)2 + (vj − vi)2 + (wj − wi)2
)

∆Vj

−∇⊗ ui : ∇⊗ ui ·Ki

)

=
µ

2mKi

(
Ui

T


∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn

Ui − dUi
T

Ki 0 0

0 Ki 0

0 0 Ki

 dUi

)

=
µ

2mKi

(
Ui

T


∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn

Ui −Ui
TBi

T

Ki 0 0

0 Ki 0

0 0 Ki

BiUi

)

=
µ

2mKi

Ui
T
(
∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn

−Bi
T

Ki 0 0

0 Ki 0

0 0 Ki

Bi

)
Ui (5.12)

with Ij = w(ξij)∆Vj(1, 1, 1)⊗ (1, 1, 1)T .

K hg
i = ∂UiUi

Fhgi =
µ

mKi

(
∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn

−Bi
T

Ki 0 0

0 Ki 0

0 0 Ki

Bi

)

(5.13)

The hourglass tangent stiffness matrix can be computed accordingly by

hg

Ki =
∑
j∈Si

∂UiUi
Fhgi ∆Vj =

∑
j∈Si

K hg
i ∆Vj (5.14)
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5.3.2 Explicit form operator energy functional

Taking advantage of the first variation
∫

Ω
Fu
i dVi, the operator energy functional in Eq.3.4

can be written as∫
Ω

δFu
i dVi =

µ

mKi

∫
Ω

∫
Si
w(ξij)(∇̃uiξij − uij)

T (∇̃δuiξij − δuij)dVjdVi

=
µ

mKi

∫
Ω

∫
Si
w(ξij)(∇̃uiξij − uij)

T ∇̃δuiξijdVj −
µ

mKi

∫
Si
w(ξij)(∇̃uiξij − uij)

T δuijdVjdVi

=
µ

mKi

(
∇̃ui

∫
Ω

∫
Si
w(xij)ξij ⊗ ξijdVj −

∫
Si
w(ξij)uij ⊗ ξijdVjdVi

)
: δ∇̃ui

− µ

mKi

∫
Ω

∫
Si
w(ξij)(∇̃uiξij − uij)

T δuijdVjdVi

=
µ

mKi

∫
Ω

∫
Si
w(ξij)(uij − ∇̃uiξij)

T (δuj − δui)dVjdVi

=

∫
Ω

∫
S′i

µ

mKj

w(ξji)(uji − ∇̃ujξji)dVjdVi −
∫
Si

µ

mKi

w(ξij)(uij − ∇̃uiξij)δuidVjdVi

(5.15)

The arbitrariness of the test functions, δui,
∫

Ω
δFu

i dVi = 0, leads to∫
S′i

µ

mKj

w(ξji)(uji − ∇̃ujξji)dVj −
∫
Si

µ

mKi

w(ξij)(uij − ∇̃uiξij)δuidVj = 0 ∀ui ∈ Ω

(5.16)

and it can be shown that ∫
S′i
hu
jidVj −

∫
Si
hu
ijdVj (5.17)

where hu
ij = µ

mKi
w(ξij)(uij − ∇̃uiξij) is the zero energy internal force for vector uij.

Similarly, we obtain the internal force caused by the operator energy functional for the

phase field: ∫
S′i
hφjidVj −

∫
Si
hφijdVj (5.18)

where hφij = µ
mKi

w(ξij)(φij − ∇̃φiξij) is the zero energy internal force for φi.
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5.4 Numerical implementation of nonlocal phase

field model by using NOM

5.4.1 Implicit nonlocal phase field model

It can be shown that the weak form of Eq.5.9 is given by∫
Ω

Gc(
1

l0
φδφ+ l0∇φ · ∇δφ)dΩ +

∫
Ω

−2(1− φ)δφHdΩ = 0∫
Ω

−σ : δεdΩ +

∫
Ω

b · δudΩ +

∫
∂Ωf

f · δudS = 0 (5.19)

which is the basis for the implicit NOM. The continuous support Si at point i is defined

by

Ni = {j1, .., jk, .., jn} (5.20)

where j1, .., jk, .., jn are the global indices of particle i’s neighbors. The nonlocal operator

for displacement ∇̃ui, ∇̃δui and phase field ∇̃φi, ∇̃δφi in discrete form can be written

as

∇̃ui '
∑
j∈Si

w(ξij)(uj − ui)⊗ (K−1
i ξij)∆Vj = Bu

i · ũi (5.21)

∇̃δui '
∑
j∈Si

w(ξij)(δuj − δui)⊗ (K−1
i ξij)∆Vj = Bu

i · δũi (5.22)

∇̃φi '
∑
j∈Si

w(ξij)(φj − φi)(K−1
i ξij)∆Vj = Bφ

i · φ̃i (5.23)

∇̃δφi '
∑
j∈Si

w(ξij)(δφj − δφi)(K−1
i ξij)∆Vj = Bφ

i · δφ̃i (5.24)

ũi(= ui,uj1 , ..,ujk , ..,ujn) representing the variation of the displacement in the i’s support

Si, φ̃i(= φi, φj1 , .., φjk , .., φjn) contains all the variations of the phase field in support Si.
∆Vj is the volume of neighbor point j, Bu

i and Bφ
i refer to the coefficient matrices:
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Bu
i =



−
∑

j∈Si ξxj 0 0 ξxj1 0 0 · · · ξxjn 0 0

0 −
∑

j∈Si ξyj 0 0 ξyj1 0 · · · 0 ξyjn 0

0 0 −
∑

j∈Si ξzj 0 0 ξzj1 · · · 0 0 ξzjn
−
∑

j∈Si ξxj 0 0 ξxj1 0 0 · · · ξxjn 0 0

0 −
∑

j∈Si ξyj 0 0 ξyj1 0 · · · 0 ξyjn 0

0 0 −
∑

j∈Si ξzj 0 0 ξzj1 · · · 0 0 ξzjn
−
∑

j∈Si ξxj 0 0 ξxj1 0 0 · · · ξxjn 0 0

0 −
∑

j∈Si ξyj 0 0 ξyj1 0 · · · 0 ξyjn 0

0 0 −
∑

j∈Si ξzj 0 0 ξzj1 · · · 0 0 ξzjn


,

Bφ
i =

−
∑Ni

j=1 ξxj ξxj1 · · · ξxjn
−
∑Ni

j=1 ξyj ξyj1 · · · ξyjn
−
∑Ni

j=1 ξzj ξzj1 · · · ξzjn

 (5.25)

In order to obtain the elasticity matrix, we need to transform the matrix form of σ and

ε into vector form. In Voigt notation, they read

σij =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 V oigt−→ {σij} =



σ11

σ22

σ33

σ23

σ31

σ12


, εkl =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 V oigt−→ {εkl} =



ε11

ε22

ε33

2ε23

2ε31

2ε12


(5.26)

{σij} = Dijkl{εkl}−→



σ11

σ22

σ33

σ23

σ31

σ12


=



D1111 D1122 D1133 D1112 D1123 D1113

D2211 D2222 D2233 D2212 D2223 D2213

D3311 D3322 D3333 D3312 D3323 D3313

D1211 D1222 D1233 D1212 D1223 D1213

D2311 D2322 D2333 D2312 D2323 D2313

D1311 D1322 D1333 D1312 D1323 D1313





ε11

ε22

ε33

2ε23

2ε31

2ε12


(5.27)

{εkl} = [
∂ui
∂x

,
∂vi
∂y

,
∂wi

∂z
,
∂wi

∂y
+
∂vi
∂z

,
∂wi

∂x
+
∂ui
∂z

,
∂ui
∂y

+
∂vi
∂x

]T = B̃u
i · {ũi}

δ{εkl} = B̃u
i · δ{ũi} (5.28)
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B̃u
i =



−
∑

j∈Si ξxj 0 0 ξxj1 0 0 · · · ξxjn 0 0

0 −
∑

j∈Si ξyj 0 0 ξyj1 0 · · · 0 ξyjn 0

0 0 −
∑

j∈Si ξzj 0 0 ξzj1 · · · 0 0 ξzjn
0 −

∑
j∈Si ξyj −

∑
j∈Si ξzj 0 ξyj1 ξzj1 · · · 0 ξyjn ξzjn

−
∑

j∈Si ξxj 0 −
∑

j∈Si ξzj ξxj1 0 ξzj1 · · · ξxjn 0 ξzjn
−
∑

j∈Si ξxj −
∑

j∈Si ξyj 0 ξxj1 ξyj1 0 · · · ξxjn ξyjn 0


(5.29)

such that Eq.5.19 becomes∑
j∈Si

(
Gcl0[Bφ

i ]T ·Bφ
i · φ̃i + [Gc

1

l0
φ̃i − 2(1− φ̃i)H]

)
∆Vj = 0∑

j∈Si

−[B̃u
i ]TDijkl{εi}∆Vj +

∑
j∈Si

bi1∆Vj +
∑
j∈∂Ωfi

fi1∆Sj = 0 (5.30)

where 1 = [1, 0, · · · , 0, 0]T is a (ni+ 1)-dimensional column vector. Finally, we obtain the

i-th point residual of the overall systems

Ru
i = F u,exti − F u,inti

=
∑
j∈Si

fi∆Sj +
∑
j∈Si

bi∆Vj︸ ︷︷ ︸
Fu,ext
i

−
∑
j∈Si

[B̃u
i ]TDijkl{εi}∆Vj (5.31)

Rφ
i = −F φ,int

i

=
∑
j∈Si

(
Gcl0[Bφ

i ]T ·Bφ
i · φ̃i + [Gc

1

l0
φ̃i − 2(1− φ̃i)H]

)
∆Vj (5.32)

where F u,inti and F u,exti are the internal force and external force, respectively; F φ,int
i is the

internal force corresponding to the phase field. The asscoiated tangent stiffness matrices

can be obtained from the internal forces:

K u
i =

∂F u,inti

∂ũi
=
∑
j∈Si

[B̃u
i ]TDijklB̃u

i ∆Vj (5.33)

K φ
i =

∂F φ,int
i

∂φ̃i
=
∑
j∈Si

(
[Bφ

i ]TGcl0B
φ
i + (

Gc

l0
+ 2H)1⊗ 1T

)
∆Vj (5.34)

where Dijkl is the elasticity matrix obtained by an eigen-decomposition algorithm for the

fourth-order isotropic tensor [Miehe et al., 2010b]

Dijkl =
∂{σij}
∂{εkl}

=
∂

∂{εkl}

(
[(1− φ)2 + κ0]σ+

ij + σ−ij

)
= [(1− φ)2 + κ0]D+

ijkl + D−ijkl

(5.35)
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The strain energy and the Cauchy stress based on this eigen-decomposition method is

expressed as

ψ±
e

(ε) = λ〈ε̂1 + ε̂2 + ε̂3〉2±/2 + µ(〈ε̂1〉2± + 〈ε̂2〉2± + 〈ε̂3〉2±) (5.36)

σ± =
∂ψ±

e

∂ε

= λ〈ε̂1 + ε̂2 + ε̂3〉±I3×3 + 2µ(〈ε̂1〉±n̂1 ⊗ n̂1 + 〈ε̂2〉±n̂2 ⊗ n̂2 + 〈ε̂3〉±n̂3 ⊗ n̂3)

(5.37)

where ε = 1
2
(∇̃u + ∇̃uT ), 〈ε̂〉± := (ε̂± |ε̂|)/2, I3×3 is the identity matrix, n̂1, n̂2, n̂3 are

eigenvectors of the principal strains ε̂1, ε̂2, ε̂3 of ε(=
∑3

i=1 ε̂in̂i ⊗ n̂i), λ, µ represent the

Lamé constants, which are related to the Young’s modulus and Poisson’s ratio:
λ =

Eν

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)

(5.38)

Finally, we can transform Eq.5.33 to

K u
i =

∑
j∈Si

[B̃u
i ]T
(

[(1− φ)2 + κ0]D+
ijkl + D−ijkl

)
B̃u
i ∆Vj (5.39)

However, Eq.5.19 suffers from zero energy modes. Therefore, a penalty force should be

added yielding

Kui =
∑
j∈Si

(
[B̃u

i ]T
(

[(1− φ)2 + κ0]D+
ijkl + D−ijkl

)
B̃u
i +

µ

mKi

(


∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn


− [Bu

i ]T ·

Ki 0 0

0 Ki 0

0 0 Ki

 · [Bu
i ]T )

)
∆Vj (5.40)

Kφi =
∑
j∈Si

(
[Bφ

i ]TGcl0B
φ
i +

(
Gc

l0
+ 2H

)
1⊗ 1T +

µ

mKi

(


∑

j∈Si Ij −Ij1 · · · −Ijn
−Ij1 Ij1 0 0

... 0
. . . 0

−Ijn 0 0 Ijn


− [Bφ

i ]T ·

Ki 0 0

0 Ki 0

0 0 Ki

 · [Bφ
i ]T )

)
∆Vj (5.41)
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5.4.2 The staggered method

For the implicit nonlocal phase field model, a staggered update scheme is adopted [Bour-

din et al., 2000, Bourdin, 2007, Liu et al., 2016], where the displacement, strain history

functional and phase field are updated separately. We use the Newton-Raphson method

to iteratively obtain the solution between different load steps. First, the phase field is

solved for a fixed displacement field. The key steps of the staggered scheme can be

summarized as follows:

1©. Initialization

Initialize the displacement u0 = 0, phase field φ0 = 0, and the local history field of strain

H0 = 0. For each field, the solution is obtained for increments of the primary fields from

the iteration number i to i + 1.

2©. Calculate maximum strain-history functional.

Calculate the history field according to the maximum reference energy

H =

{
ψ+

0 (∇u) if ψ+
0 (∇u) > Hn

Hn else
(5.42)

3©. Phase field problem: update the phase field

Calculate the phase field φi+1 = φi − (Kφi )−1F φ,int
i by solving Eq.5.32 and Eq.5.41.

When ‖∆φi+1‖
‖
∑i+1

k=1 ∆φi‖
≤ Tol (Tol = 10−6), the iteration is stopped.

4©. Displacement field problem: update the displacement field

(i) Calculate Dijkl according to an eigen-decomposition algorithm for fourth-order

isotropic tensor by solving Eq.5.35.

(ii) Calculate the displacement field ui+1 = ui − (Ku
i )−1Fu,int

i by solving Eq.5.31 and

Eq.5.40.

(iii) When ‖∆ui+1‖
‖
∑i+1

k=1 ∆ui‖
≤ Tol (Tol = 10−6),the iteration is stopped.

5.4.3 Explicit nonlocal phase field model for solving dynamic

problems

The explicit NOM depends on the strong form of the governing equations given by

∇ · σ + b = ρü (5.43)

φ− l20∇2φ = 0 (5.44)

For the i-th particle’s support and dual-support, we can easily to obtain the relationships
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in discrete form

∇̃ · σi =
∑
j∈Si

w(ξij)σiK
−1
i ξij∆Vj −

∑
j∈S′i

w(ξji)σjK
−1
j ξji∆Vj (5.45)

∇̃2φi =
∑
j∈Si

w(ξij)∇̃φiK−1
i ξij∆Vj −

∑
j∈S′i

w(ξji)∇̃φjK−1
j ξji∆Vj (5.46)

∇̃ui =
∑
j∈Si

w(ξij)uiK
−1
i ξij∆Vj −

∑
j∈S′i

w(ξji)ujK
−1
j ξji∆Vj (5.47)

∇̃φi =
∑
j∈Si

w(ξij)φiK
−1
i ξij∆Vj −

∑
j∈S′i

w(ξji)φjK
−1
j ξji∆Vj (5.48)

Hence, Eq.5.44 can be transformed into nonlocal form as follows∑
j∈Si

w(ξij)σiK
−1
i ξij∆Vj −

∑
j∈S′i

w(ξji)σjK
−1
j ξji∆Vj + bi = ρiüi (5.49)

φi − l20
(∑
j∈Si

w(ξij)∇̃φiK−1
i ξij∆Vj +

∑
j∈S′i

w(ξji)∇̃φjK−1
j ξji∆Vj

)
= 0 (5.50)

As Eq.5.49 and Eq.5.50 suffer from zero energy modes, a penalty force from the nonlocal

operator functional is added leading to∑
j∈Si

(w(ξij)σiK
−1
i ξij + hu

ij)∆Vj −
∑
j∈S′i

(w(ξji)σjK
−1
j ξji + hu

ij)∆Vj + bi = ρiüi (5.51)

φi − l20
(∑
j∈Si

(w(ξij)∇̃φiK−1
i ξij + hφij)∆Vj +

∑
j∈S′i

(w(ξji)∇̃φjK−1
j ξji + hφij)∆Vj

)
= 0

(5.52)

Comparing Eq.5.44 with Eq.5.52, the modified correspondence between the local and

nonlocal form is

∇̃2φi
Local→Nonlocal−−−−−−−−−⇀↽−−−−−−−−−
Nonlocal→Local

∑
j∈Si

(w(ξij)∇̃φiK−1
i ξij + hφij)∆Vj +

∑
j∈S′i

(w(ξji)∇̃φjK−1
j ξji + hφij)∆Vj

(5.53)

The bond force for displacement uij, phase field φij at the i-th particle’s support and

dual-support can be calculated by follows

fu
ij =

(
w(ξij)σi ·K−1

i ξij + (1− φi)
µ

mKi

w(ξij)(uij − ∇̃uiξij)
)

∆Vi∆Vj (5.54)

fφij =
(
w(ξij)∇̃φi ·K−1

i ξij +
µ

mKi

w(ξij)(φij − ∇̃φiξij)
)

∆Vi∆Vj (5.55)

with σi = [(1−φ)2+κ0]σ+
i +σ−i , which can be calculated by εi eigenvalue decomposition,

as shown in Eq.5.37. According to Newton’s third law, fu
ij has a direct action on the i’s

particle and −fu
ij to the j’s particle, Similarly, fφij has a direct action on the i’s particle

and −fφij to the j’s particle.
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5.4.4 Sub-step phase field increment method

For the evolution of the phase field φ(X̄, t), we took advantage of a generalized formula

[Miehe et al., 2015]:

η̃φ̇(X̄, t)︸ ︷︷ ︸
evolution

= (1− φ(X̄, t))H(X̄, t)︸ ︷︷ ︸
driving force

− (φ(X̄, t)− l2∆φ(X̄, t))︸ ︷︷ ︸
geometric resistance

, (5.56)

H(X̄, t) = max
s∈[0,t]

D̃(state(X̄, s)) (5.57)

where η̃ ≥ 0 is the crack propagation viscosity. When η̃ = 0, we obtain a rate inde-

pendent model. The local crack driving force is represented by H(X̄, t) and depends

on the complete history at 0 ≤ s ≤ t of the state variables (X̄, t) which are correlated

to the solid’s bulk reaction. D̃(state(X̄, t)) is the crack state function, at crack state

D̃|unbrokenstate = 0 and D̃|brokenstate =∞. Miehe et al.[Miehe et al., 2015] suggested three failure

criteria:

1©. Strain criterion with and without threshold

D̃ =


2ψ̃(ε)

Gc/l0
without threshold

〈 ψ̃(ε)

ψc
− 1〉 with threshold

(5.58)

where ψ̃(ε)(= E
2
ε2) denotes the effective part of the energy of the undamaged material,

ψc denotes the specific crack energy per unit volume, ψc = E
2
ε2
c with εc =

√
Gc/l0

3E
.

2©. Stress criteria with and without threshold

D̃ =


2ψ̃∗(σ∗)

Gc/l0
without threshold

〈 ψ̃
∗(σ∗)

ψ∗c
− 1〉 with threshold

(5.59)

where ψ̃∗(σ∗)(= σ̃2

2E
) refers to the effective energy of the undamaged material, σ∗(=

σ/(1 − φ)2) denotes the effective part of the Cauchy stress tensor and ψ∗c = σ2
c

2E
with

σc = 9
16
Eεc.

3©. A principal tensile stress criterion with threshold

D̃ = ζ〈
3∑
i=1

(
〈σ∗i 〉
σc

)2 − 1〉 (5.60)

where ζ(ζ > 0, ζ 6= 1) is a dimensionless parameter. σc is the critical fracture stress,

σ̃ = σ̃+ +σ̃−, σ̃+ :=
∑3

i=1〈σi〉+ni⊗ni. This criterion can be applied to general nonlinear

and potentially anisotropic elasticity.
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For all criteria, we can conveniently obtain the yielding driving forces independent of the

length scale l0. However, Eq. 5.56 is associated with the material viscosity η̃. A sub-step

phase field increment method is used in this analysis. The key term is to replace the

phase field rate in Eq.5.56 with a phase field increment. The modified formulation can

be written in discrete form as

∆φi =
1

nφ
〈�i〉+

�i = (1− φi)Hi − (φi − l20∇̃2φi)

(5.61)

where �i is the phase field residual, nφ indicates the phase field mobility to control the

increment of φi, ∆φi is the phase field increment at each sub-step. Eq.5.61 is robust

and provides flexibility in the solution algorithm. The sub-step scheme can also reduce

adaptively the residual �i. By substituting Eq.5.53 and Eq.5.55 into Eq.5.61, the phase

field residual �i can be rewritten as

�i = (1− φi)Hi − φi + l20

(∑
j∈Si

(w(ξij)∇̃φiK−1
i ξij + hφij)∆Vj

+
∑
j∈S′i

(w(ξji)∇̃φjK−1
j ξji + hφij)∆Vj

)
= (1− φi)Hi − φi + l20

fφi
∆Vi

(5.62)

The main steps of the sub-step update scheme procedure can be summarized as follows:

1©. Initialization

Initialize the bond force of the displacement field fu
ij = 0, the bond force of phase field

fφij = 0 and the local crack driving force H0 = 0 .

2©. Compute crack driving force

For each particle, compute H(X̄, t) by solving problem Eq.5.57 - Eq.5.60.

3©. Phase field problem: update the phase field with sub-steps

(i) For each particle, compute ∇̃φi, phase field residual �i and phase field increment at

each sub-step ∆φi by solving Eq.5.48, Eq.5.61 and Eq.5.62.

(ii) Update φi = φi + ∆φi until L∞(�i) < 1.0× 10−3.

4©. Displacement field problem: update the displacement field

(i) For each particle, compute ∇̃ui, strain energy ψ±
e

and Cauchy stresses σi by solving

Eq.5.36, Eq.5.37 and Eq.5.47.

(ii) For each neighbor particle j ∈ Si, compute fu
ij and add fu

ij to fu
i and add −fu

ij to

fu
j .
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Let us consider a single notched square plate subjected to static tensile and shear loading.

Fig.5.2 depicts the setup including boundary conditions. The plate parameters are: E =

2.1 × 105MPa , ν = 0.3, the strain energy release rate is Gc = 2.7 × 10−3 kN/mm and

we assume plane strain conditions. In order to produce the initial crack, we deleted the

particles closest to the initial crack and selected the eight points closest to the target point

to construct the target point’s support domain. The single-edge notched square plate is

discretized with 40401 and 10201 particles, respectively. The phase field length scale

parameter is set to l0 = 0.015 mm and l0 = 0.0375 mm, respectively. In the shear test,

the single edge notched square plate is discretized into 40401 particles and the phase field

length scale parameter is set to l0 = 0.015 mm. To prevent the singularity, κ0 = 1× 10−6

is chosen. A small vertical displacement increment ∆u = 1× 10−5 mm is applied to the

upper boundary of the plate while the bottom boundary is fixed.

(a) u = 5.6× 10−3mm (b) u = 6.1× 10−3mm (c) u = 6.6× 10−3mm

(d) u = 5.6× 10−3mm (e) u = 6.1× 10−3mm (f) u = 6.6× 10−3mm

Figure 5.3: Displacement field (a-c) and phase field (d-f) evolution process for l0 = 0.0375

mm in tension test.

Fig.5.3 shows the crack patterns at various displacements for l0 = 0.0375 mm and Fig.5.4

depicts the reaction force-displacement curves in tension test. Fig.5.5 shows the crack

patterns at various displacements for l0 = 0.0375 mm and Fig.5.6 depicts the reaction

force-displacement curves in shear test. When using a staggered scheme, the rate at which

the crack evolves is delayed in comparison to a completely monolithic scheme, which

agrees well with the literature [Miehe et al., 2010a]. As expected, with a smaller length

scale parameter l0, the crack becomes less diffused. The load-deflection curves of the
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Figure 5.4: Reaction force-displacement curves in tension test.

(a) u = 1.0× 10−2mm (b) u = 1.2× 10−2mm (c) u = 1.4× 10−2mm

(d) u = 1.0× 10−2mm (e) u = 1.2× 10−2mm (f) u = 1.4× 10−2mm

Figure 5.5: Displacement field (a-c) and phase field (d-f) evolution process for l0 = 0.015

mm in shear test.
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particles with ∆x = 0.25 mm. Note that we received nearly indistinguishable results when

further refining the discretization. The length scale parameter is l = 0.5mm(l = 2∆x).

We tested three different time steps 0.01 µs, 0.025 µs and 0.05 µs, respectively.

(a) ∆t = 0.01µs (b) ∆t = 0.01µs (c) ∆t = 0.01µs

(d) ∆t = 0.025µs (e) ∆t = 0.025µs (f) ∆t = 0.025µs

(g) ∆t = 0.05µs (h) ∆t = 0.05µs (i) ∆t = 0.05µs

Figure 5.8: Displacement field (a,d,g), velocity field (b,e,h) and phase field (c,f,i) evolution

process of dynamic crack branching tests at 90 µs for various time steps.

The displacement field, velocity field and crack propagation evolution process for different

time steps at 90 µs is shown in Fig.5.8. The branching angle is in good agreement with

reported results from the literature [Borden et al., 2012, Schlüter et al., 2014, Nguyen

and Wu, 2018]. The potential reason for crack propagation doesn’t look symmetrical with

respect to the horizontal central axis is the nonlocal effect. The elastic strain energy and

phase field energy curves for various time steps are shown in Fig.5.9. The phase field

energy, strain energy and kinetic energy are computed by

Eφ =

∫
Ω

(
φ2

2l
+
l

2
∇φ · ∇φ)dΩ, (5.64)

Eε =

∫
Ω

[(1− φ)2 + κ0]ψ+
e

(ε(∇u)) + ψ−
e

(ε(∇u))dΩ, (5.65)

K(v) =

∫
Ω

1

2
ρv · vdΩ, (5.66)

where v denotes the velocity, ρ denotes the density.

Fig.5.10 shows the crack tip velocity for different time steps. The velocities are less than

0.6vR, which agrees well with experimental findings [Sharon and Fineberg, 1999] and

other phase field simulations [Borden et al., 2012].
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Figure 5.9: Energy of the dynamic crack branching tests for various time steps.

Figure 5.10: Crack tip velocity of dynamic crack branching tests for various time steps.
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Let us show the effect of Gc next. We adopted a time step of 0.05 µs. Fig.5.11 shows that

similar crack patterns occur. For the smallest value of Gc (such as Gc = 5J/m2), multiple

crack branching occurs, which seems reasonable as it is known that crack starts to branch

when a certain crack speed is reached and the crack speed is inverse proportional to the

critical energy release rate, which is confirmed in Fig. 5.12.

(a) Gc = 0.5J/m2, t = 52.5µs (b) Gc = 1.5J/m2, t = 67.5µs (c) Gc = 3J/m2, t = 90.0µs

Figure 5.11: Phase field of dynamic crack branching tests for different Gc.

Fig.5.13 shows the elastic strain energy and phase field energy curves of the dynamic

crack branching tests for various Gc. For smaller values of Gc, the elastic strain energy

has a decreasing tendency as the time passes while for larger Gc values, the elastic strain

energy grows more rapidly over time. The phase field energy increases more than the

elastic strain energy as time passes.

Figure 5.12: Crack tip velocity of dynamic crack branching tests for various Gc.

5.5.3 Prenotched composite structure

Let us now consider a composite plate subjected to constant velocity boundary condi-

tions at the upper edge while the bottom boundary is fixed, see Fig.5.14. We randomly

generated inclusions in the matrix according to a normal distribution and avoiding over-

lapping. All inclusions have the same material parameters. For the matrix we assume
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the following material parameters : E = 72 × 103MPa , ν = 0.33, ρ = 2400 kg/mm3,

Gc = 60 J/m2 and for the inclusions: E = 144 × 103MPa , ν = 0.33, ρ = 2400 kg/mm3,

Gc = 120 J/m2. We assume plane stress conditions and employ 40401 material points

with point spacing of ∆x = 1 × 10−5 m to discretize the specimen; finer discretizations

yield very similar results. In order to produce the initial crack, we search the particles

closest to the initial crack and assign a value of 1 to the phase field degrees of freedom

for these particles. The phase field length scale parameter is set to l0 = 1.25∆x. Eight

neighbors are employed to construct the support domain. Four cases are studied to test

the influence of the loading velocity on the crack patterns. Therefore, three different

plates with N= 60, 90 and 120 inclusions, respectively, are tested; the distribution of the

inclusions are shown in Fig.5.15. Velocity boundary conditions are: v = 1.0 m/s for Case

I, II and Case III – associated to the three different microstructures – and v = 3 m/s for

Case IV for the ’third’ microstructure (Figure 5.15(c)), which is the same microstructure

as for Case III.

(a) N=60 (b) N=90 (c) N=120

Figure 5.15: The distribution of the inclusions of composite heterogeneous plates

The crack patterns for the four cases can be found in Fig.5.16. For cases I - III, the crack

patterns are quite similar. One major crack propagates mainly around the inclusions.

Crack branching is observed only for Case II. When increasing the crack speed, crack

branching becomes more pronounced which agrees well with experimental observations,

crack branching is also observed in Case IV and the crack propagates through the inclu-

sions more easier. Fig.5.17 shows the elastic strain energy, kinetic energy and phase field

energy curves of the dynamic crack branching tests for Case IV. The slope of phase field

energy at time t =1.0-1.25 µs is larger than that in t = 0.75-1 µs, which is consistent

with the propagation speed of the crack.

105



5.5. NUMERICAL EXAMPLES

(a) Initial crack of N=60 (b) Case I : N=60, v = 1.0 m/s

(c) Initial crack of N=90 (d) Case II : N=90, v = 1.0 m/s

(e) Initial crack of N=120 (f) Case III : N=120, v = 1.0

m/s

(g) Case IV : N=120, v = 3.0

m/s

Figure 5.16: The crack patterns in composite heterogeneous plates.
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5.5.4 Kalthoff-Winkler experiment of dynamic shear loading

Finally, we apply NOM to the classical Kalthoff-Winkler experiment [Kalthoff and Win-

kler, 1988, Li et al., 2002, Belytschko et al., 2003, Song et al., 2006, Rabczuk et al.,

2007a, Nguyen and Wu, 2018]. The geometrical setup and the loading conditions are

depicted in Fig.5.18. The material parameters are: E = 1.9 × 105 MPa, ν = 0.30, ρ =

8000 kg/mm3, Gc = 2.213 × 104 J/m2, which yields a Rayleigh wave speed of vR= 2803

m/s. Kalthoff et al. [Kalthoff and Winkler, 1988] found that the failure is brittle for

low impact velocities while it turns into a ductile failure at a certain impact velocity is

exceeded. Here, we focus only on brittle fracture and low impact velocities as a more

complicated constitutive model is required to capture the failure transition from brittle-

to-ductile, which is out of the scope of this manuscript. Instead of modeling the impactor

and the associated contact, the impact is –commonly– modelled through the following

boundary conditions:

v =


t

t1
vy if t ≤ t1

vy else
(5.67)

with t1 = 1µs. We furthermore assume the initial crack is traction-free. The plate is dis-

cretized with 321201 particles with ∆x=0.25 mm, and each particle has eight neighbors.

The length scale parameter is set to l0 = 0.375mm(l0 = 1.5∆x). In order to model the

initial crack, the neighbor list in the support of associated particles is modified. We test

two different time steps, i.e. ∆t = 0.02µs and ∆t = 0.04µs. Fig.5.19 and Fig.5.20 depict

the displacement field, velocity field and phase field for these cases. The crack angle with

respect to the vertical axis is around 68◦, which matches well the experiments [Kalthoff,

2000]. The crack speed – illustrated in Fig. 5.21 – does not depend on the time step and

agrees well with other results from the literature [Borden et al., 2012]. The same applies

to the different energy time histories, see Figure 5.22.

We also simulated the Kalthoff Winkler experiment in 3D; the thickness of the plate is

0.02 m. For sake of reducing the computational cost, we exploited symmetry condition

as shown in Fig.5.23. The plate is discretized with 1447209 paiticles and the initial crack

is again tractionfree. The same material parameters are employed. Fig.5.24 depicts the

evolution of the crack path and displacement at an impact velocity of v = 16.5 m/s. The

agreement to the Kalthoff Winkler experiment is excellent.

5.6 Conclusions

This chapter presents an implicit and explicit phase field model within the framework

of the NOM. The coupled system for the implicit phase field model is solved using a

staggered method and the Newton Raphson method. The explicit phase field model
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(a) vy = 16.5m/s, t = 24µs (b) vy = 16.5m/s, t = 24µs (c) vy = 16.5m/s, t = 24µs

(d) vy = 16.5m/s, t = 54µs (e) vy = 16.5m/s, t = 54µs (f) vy = 16.5m/s, t = 54µs

(g) vy = 16.5m/s, t = 90µs (h) vy = 16.5m/s, t = 90µs (i) vy = 16.5m/s, t = 90µs

Figure 5.19: Displacement field (a,d,g), velocity field (b,e,h) and phase field (c,f,i) of

dynamic shear Kalthoff experiment for time step ∆t = 0.04µs at various time.
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(a) vy = 16.5m/s, t = 24µs (b) vy = 16.5m/s, t = 24µs (c) vy = 16.5m/s, t = 24µs

(d) vy = 16.5m/s, t = 54µs (e) vy = 16.5m/s, t = 54µs (f) vy = 16.5m/s, t = 54µs

(g) vy = 16.5m/s, t = 90µs (h) vy = 16.5m/s, t = 90µs (i) vy = 16.5m/s, t = 90µs

Figure 5.20: Displacement field (a,d,g), velocity field (b,e,h) and phase field (c,f,i) of

dynamic shear Kalthoff experiment for time step ∆t = 0.02µs at various time.

Figure 5.21: Crack tip velocity of the dynamic shear Kalthoff experiment for various time

steps.
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(a) t = 24µs (b) t = 24µs (c) t = 24µs

(d) t = 36µs (e) t = 36µs (f) t = 36µs

(g) t = 48µs (h) t = 48µs (i) t = 48µs

(j) t = 60µs (k) t = 60µs (l) t = 60µs

Figure 5.24: Displacement, velocity and phase field of the 3D Kalthoff experiment for

v = 16.5 m/s at various time.
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THE NONLOCAL OPERATOR METHOD

employs an explicit time integration algorithm for the mechanical field and an adaptive

sub-step scheme is adopted. The phase field sub-step scheme based on different damage

criteria can reduce the phase field residual adaptively and achieve a rate-independent

phase field model. The advantage of the presented approach is its ease in implementation.

Several numerical examples demonstrate the performance of the approach. They include

a prenotched specimen under shear and tensile loading and two classical dynamic fracture

benchmark problems. In the first case, we show the influence of several factors including

the critical energy release rate on the final fracture pattern. The smaller the critical

energy release rate, the more crack branches occur which agrees well with experimental

data and also intuition as the critical energy release rate is inverse proportional to the

crack speed, which in turn drives the crack branching.
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Chapter 6

Discussion and conclusions

In this chapter, we present a discussion of the results and general conclusions of this

dissertation. We also outline future research directions that continue the NOM that

developed in this dissertation.

6.1 Discussion

In the second chapter, we presented the implementation procedure of first/higher-order

implicit NOM. The performance of first/higher-order NOM results is demonstrated com-

pared with the corresponding analytical solutions or the results of the FEM commercial

software. Similar to the FEM and messless method, NOM can establish the operator

energy functional and tangent stiffness matrix by some matrix multiplications. However,

unlike FEM and the messless method, NOM can derive differential operators directly

without employing shape functions. Hence, the complexity of the NOM is significantly

reduced. The NOM requires only the definition of the energy, for a given energy func-

tional, the nonlocal operators can be established automatically by the highest order of

partial derivative and dimensions. Support, dual-support, nonlocal differential opera-

tors, and operator energy functional are the fundamental components of NOM. Several

numerical examples illustrate the method’s high performance and capabilities.

In the third chapter, we elaborated on the implementation progress of explicit NOM.

Based on the dual property of the dual-support in NOM, the nonlocal dynamic governing

equation is obtained with ease. We start from the energy form of the problem, by inserting

the nonlocal expression of the gradient operator into the energy form. In the numerical

simulation section, several numerical cases are presented to verify the accuracy of the

nonlocal dynamic elasticity solid formulation in different conditions, and good agreement

is observed between numerical simulation results and ABAQUS results.
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In the fourth chapter, we proposed a nonlocal dynamic Kirchhoff plate formulation based

on NOM. In the numerical simulation section, we first verify the accuracy of the non-

local Hessian operator for the Kirchhoff plate and compare it to analytical solutions.

Subsequently, the nonlocal dynamic Kirchhoff plate formulation with different types of

boundary conditions (clamped and simply supported) is studied and compared to simula-

tions obtained by ABAQUS. Good agreement is observed between numerical simulation

results and ABAQUS results.

In the last chapter, we presented a quasi-static and dynamic fracture modeling within

the framework of the NOM. The coupled system for the implicit phase field model is

solved using a staggered method and the Newton Raphson method. The explicit phase

field model employs an explicit time integration algorithm for the mechanical field and

an adaptive sub-step scheme is adopted. The phase field sub-step scheme based on

different damage criteria can reduce the phase field residual adaptively and achieve a

rate-independent phase field model. The advantage of the presented approach is its ease

in implementation as – in contrast to many other methods such as FEM – it does not

require any shape functions. Several numerical examples demonstrate the performance

of the approach. They include a pre-notched specimen under shear and tensile loading

and two classical dynamic fracture benchmark problems, i.e., a crack branching problem

and the Kalthoff-Winkler impact problem. In the first case, we show the influence of

several factors including the critical energy release rate on the final fracture pattern. The

smaller the critical energy release rate, the more crack branches occur which agrees well

with experimental data and also intuition as the critical energy release rate is inverse

proportional to the crack speed, which in turn drives the crack branching.

Nevertheless, there are still some limitations in nonlocal quasi-static and dynamic fracture

modeling. For example, this modeling might not capture local behavior detailed enough,

due to the nonlocal effects, it also makes a method computationally more expensive, and

this modeling can’t model fluid flow through the crack explicitly. These drawbacks will

be fully studied and improved in future work.

6.2 Conclusions

The primary contribution of this dissertation was devoted to the implementation, devel-

opment, and application of NOM. NOM is based on nonlocal theory and employs the

nonlocal operators of integral form to replace the local partial differential operators of

different orders. Thus nonlocal operator method applies a uniform model to the me-

chanical behaviors from continuity to non-continuity and microscopic to macroscopic.

In this disseration, NOM can be classified as first-order NOM and higher-order NOM.

The first-order NOM is based on common nonlocal operators such as gradient, curl, and
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divergence. These nonlocal operators employ the first-order of TSE and can be used

directly to solve many problems using the usual FEM. The operator energy function is

also introduced to eliminate the zero-energy model. The first-order NOM is appropri-

ate for C0 continuity problems such as solid mechanics and phase-field fracture models.

The higher-order NOM generalizes the first-order NOM by employing a higher-order TSE.

Higher-order TSE can provide arbitrary order partial derivatives in any dimension. These

higher-order derivatives are appropriate for higher-order partial derivative physical issues

such as plate theory and strain gradient solid mechanics. Higher-order NOM considerably

improves NOM’s capacity to solve more complex issues.

6.3 Outlook

Although NOM has been used to solve various PDEs issues, the majority of the problems

that have been addressed are limited to continuous problems. NOM is a generic numerical

method with a robust theoretical foundation. NOM’s implementation is somewhat similar

to that of FEM. As a result, NOM has the ability to solve a wide range of engineering

problems. Other potential NOM applications still remain, future NOM applications can

be suggested as shown in Table 6.1.

Table 6.1: Outlook of NOM

Future NOM applications

• Material nonlinearities including plasticity, viscoelasticity and viscoplasticity.

• Multi-physics problems (coupled thermo-mechanical, electro-mechanical, electro-

chemical problems to name a few) exploiting the ease in implementation.

• Plate and shell problems, especially higher-order theories or theories of thin

plate/shell analysis exploiting the higher-order continuity of NOM. When NOM is

applied to a curvilinear coordinate system, it is also viable to handle shell problems.

• Higher order gradient (elastoplasticity) problems exploiting the higher-order conti-

nuity of NOM

• Finite strain and/or large deformation problems exploiting the ’meshfree character’

of NOM.

• The wave propagation analysis of gradient elasticity problems and studying – in this

context – interesting phenomena like size, surface and nonlocal effects.

• Modeling of discontinuities as they occur in fracture/crack propagation in solids,

fluid-structure interaction or fluid mechanics such as two-phase flow.

• Higher-order PDEs on stationary and evolving surface exploiting the higher-order

continuity of NOM including its ease in implementation.
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Z. P. Bažant, W. Luo, V. T. Chau, and M. A. Bessa. Wave dispersion and basic concepts

of peridynamics compared to classical nonlocal damage models. Journal of Applied

Mechanics, 83(11), 2016.

S. Bazazzadeh, A. Shojaei, M. Zaccariotto, and U. Galvanetto. Application of the peridy-

namic differential operator to the solution of sloshing problems in tanks. Engineering

Computations, 2018.

120



BIBLIOGRAPHY

T. Belytschko and J. I. Lin. A three-dimensional impact-penetration algorithm with

erosion. International Journal of Impact Engineering, 5(1-4):111–127, 1987.
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