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Abstract
The aim of this study is controlling of spurious oscillations developing around dis-

continuous solutions of both linear and non-linear wave equations or hyperbolic partial
differential equations (PDEs). The equations include both first-order and second-order
(wave) hyperbolic systems. In these systems even smooth initial conditions, or smoothly
varying source (load) terms could lead to discontinuous propagating solutions (fronts).
For the first order hyperbolic PDEs, the concept of central high resolution schemes is
integrated with the multiresolution-based adaptation to capture properly both discon-
tinuous propagating fronts and effects of fine-scale responses on those of larger scales in
the multiscale manner. This integration leads to using central high resolution schemes
on non-uniform grids; however, such simulation is unstable, as the central schemes are
originally developed to work properly on uniform cells/grids. Hence, the main concern is
stable collaboration of central schemes and multiresoltion-based cell adapters. Regard-
ing central schemes, the considered approaches are: 1) Second order central and central-
upwind schemes; 2) Third order central schemes; 3) Third and fourth order central
weighted non-oscillatory schemes (central-WENO or CWENO); 4) Piece-wise parabolic
methods (PPMs) obtained with two different local stencils. For these methods, corre-
sponding (nonlinear) stability conditions are studied and modified, as well. Based on
these stability conditions several limiters are modified/developed as follows: 1) Several
second-order limiters with total variation diminishing (TVD) feature, 2) Second-order
uniformly high order accurate non-oscillatory (UNO) limiters, 3) Two third-order non-
linear scaling limiters, 4) Two new limiters for PPMs. Numerical results show that
adaptive solvers lead to cost-effective computations (e.g., in some 1-D problems, num-
ber of adapted grid points are less than 200 points during simulations, while in the
uniform-grid case, to have the same accuracy, using of 2049 points is essential). Also, in
some cases, it is confirmed that fine scale responses have considerable effects on higher
scales. In numerical simulation of nonlinear first order hyperbolic systems, the two main
concerns are: convergence and uniqueness. The former is important due to develop-
ing of the spurious oscillations, the numerical dispersion and the numerical dissipation.
Convergence in a numerical solution does not guarantee that it is the physical/real one
(the uniqueness feature). Indeed, a nonlinear systems can converge to several numerical
results (which mathematically all of them are true). In this work, the convergence and
uniqueness are directly studied on non-uniform grids/cells by the concepts of local nu-
merical truncation error and numerical entropy production, respectively. Also, both of
these concepts have been used for cell/grid adaptations. So, the performance of these

VI



concepts is also compared by the multiresolution-based method. Several 1-D and 2-D
numerical examples are examined to confirm the efficiency of the adaptive solver. Ex-
amples involve problems with convex and non-convex fluxes. In the latter case, due to
developing of complex waves, proper capturing of real answers needs more attention.
For this purpose, using of method-adaptation seems to be essential (in parallel to the
cell/grid adaptation). This new type of adaptation is also performed in the framework
of the multiresolution analysis.

Regarding second order hyperbolic PDEs (mechanical waves), the regularization con-
cept is used to cure artificial (numerical) oscillation effects, especially for high-gradient
or discontinuous solutions. There, oscillations are removed by the regularization concept
acting as a post-processor. Simulations will be performed directly on the second-order
form of wave equations. It should be mentioned that it is possible to rewrite second
order wave equations as a system of first-order waves, and then simulated the new sys-
tem by high resolution schemes. However, this approach ends to increasing of variable
numbers (especially for 3D problems). The numerical discretization is performed by
the compact finite difference (FD) formulation with desire features; e.g., methods with
spectral-like or optimized-error properties. These FD methods are developed to handle
high frequency waves (such as waves near earthquake sources). The performance of sev-
eral regularization approaches is studied (both theoretically and numerically); at last, a
proper regularization approach controlling the Gibbs phenomenon is recommended. At
the end, some numerical results are provided to confirm efficiency of numerical solvers
enhanced by the regularization concept. In this part, shock-like responses due to lo-
cal and abrupt changing of physical properties, and also stress wave propagation in
stochastic-like domains are studied.
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Chapter 1

Introduction

Many of physical phenomena are described by nonlinear hyperbolic PDEs (conservation
laws); some of which are: transport phenomena; stress waves in solids (including linear
or nonlinear waves); magneto-hydrodynamics (MHD); dam break; Maxwell’s equations;
gas dynamics; oil reservoir modeling (known as the Buckley-Leverett equations); ice
shield and glacier growth modeling; and polymer model. The transport phenomenon
can describe different physical phenomena, such as: vehicular flow, computer networks,
internet traffic, pedestrian dynamics, and transport (traffic) in biology of different scales,
including inside a cell-level, cell-level and organism level (e.g., tumor cells, organism
colonies, like bacteria & ants) [1, 2]. Even in biological systems the traffic phenomenon
can occur; it can happen in a cell or between cells and this may lead to different sick-
nesses; this makes such studying interesting to understand different illness sources. In
general, nonlinear conservation laws act as an universal tool to describe many physical
and industrial phenomena from the molecule (atomistic) level to the continuum scale,
as well as multiscale problems [3]

All of the above-mentioned systems have a common feature: the disturbance which is
observed in a certain place in space must propagate with a finite velocity to some other
place in this space; as a rule, the process must be close to oscillatory, if it is observed
in time [4]. This moving property (advection feature) is mainly due to presence of
hyperbolic characteristic in the systems. In contrast, the parabolic PDEs deal mainly
with diffusion problems and elliptic systems express steady state solutions of either
parabolic or hyperbolic PDEs [5].

In the hyperbolic systems, localized moving high-gradient fronts develop commonly
during propagation. In these problems, discontinuous propagating fronts can easily
develop even for smooth initial conditions or smoothly varying sources (loading terms).
This is mostly due to the non-linear feature of such systems.
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Chapter 1 Introduction

Another important issue in numerical simulation of nonlinear hyperbolic equations is
the length-scale effects. They may be summarized as follows:

1. A new source of uncertainty in numerical results can be the length-scale effect
which is inherent in the nature of nonlinear systems of conservation laws. For
instance, in manufacturing of aircraft engines, the length-scale effect in numerical
simulations may have the same order of error deduced by manufacturing [6]. To
cure these numerical errors, adaptive simulations would be helpful,

2. Another length-scale effects reveal itself in problems with different physical de-
scriptions in different scales, such as models including continuum-atomistic de-
scriptions. Re-expressing such multiscale models as systems of conservation laws
(for all scales), the time-scale coupling feature can properly be captured between
the continuum scale and the atomistic level [3]. This challenging problem exists
in many famous multiscale methods like the quasi-continuum (a coarse graining
approach) [7], the domain decomposing method (with the atomistic and contin-
uum regions and some interface matching methods) [8] and energy-based schemes
(with the drawback that free energy is not accessible by atomistic simulations)
[3]. Such proper multiple-scale computational methods pursue understanding the
process-structure-property relationships of materials specially those are developed
recently [9].

Developing of such localization and fine-scale effects motivates using of adaptive solvers;
and since most of the governing equations can be described as nonlinear hyperbolic/hyperbolic-
parabolic PDEs, using of high-order accuracy non-linear solvers are essential. These
approaches may be summarized as:

1. In the nonlinear solvers, stencil of numerical algorithms are changed based on
solutions; so the algorithm is solution dependent and nonlinear. This is in contrast
with commonly used finite difference, finite volume, or finite element method using
constant stencil everywhere.

2. Regarding adaptive solutions, either method or grid (mesh) adaptation is possible.
In the method adaptation, different schemes (or simulating parameters) are used
in different regions. For the grid (mesh) adaptation, different approaches have
been developed. One of them is based on multiscale approach: multirsolution-
based grid (mesh) adaptation. In these approaches, a problem is investigated at
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Chapter 1 Introduction

different resolutions, simultaneously. In this regard, overall and localized features
of solutions are distinguished and considered in numerical solutions.

In this work, the hyperbolic PDEs are simulated by central high resolution schemes
with proper integration of them with wavelet-based adaptation procedures. The accu-
racy and the effectiveness of numerical solutions can then be obtained by such incor-
poration. In numerical simulation of first order hyperbolic systems, several important
and challenging features exist, as: the lack of inherent (natural) dissipation [10], the
forming of artificial (numerical) dissipation and dispersion [11, 12]. Inherent dissipation
in a system improves both adaptation procedure and numerical stability. The numerical
dispersion leads to developing wiggles in the front and behind of propagating waves,
due to the distortion of different phases of propagating waves (fronts). The numerical
dissipation has a tendency to flat discontinuities in numerical solutions [11, 12]. Dis-
continuous solutions are commonly formed in non-linear first-order hyperbolic systems,
where controlling both the numerical dissipation and dispersion are challenging. Despite
of hyperbolic systems, the inherent dissipation exists in elliptic and parabolic PDEs [13].
These systems are not so sensitive to small perturbations in their numerical solutions.
The perturbations or errors dissipate during numerical simulations. Based on this fea-
ture, wavelet-based adaptive schemes have successfully been employed in the modeling
of the elliptic [14, 15], parabolic problems [16–18] and parabolic-hyperbolic systems [19].

To guarantee solution stability of high-resolution schemes on non-uniform grids, some
conditions must be satisfied. Such assurance can be obtained by using the normalized
variable and space formulation (NVSF) criterion [20]. In the NVSF criterion, the iden-
tifying of propagating directions is necessary which is a complex procedure, especially
for 2-D and 3-D problems [21]. To remedy this disadvantage, in this work, central
and central-upwind high resolution schemes are considered (like the Kurganov and Tad-
mor method) [22–24]. Central/central-upwind high resolution schemes have simple and
straightforward formulations and act as a black-box solver [25].

Central/central-upwind methods, however, are sensitive for cell irregularity; our in-
vestigations show that numerical instabilities appear rapidly in adaptive solutions. This
is because, these methods do not originally satisfy the NVSF condition. To guarantee
the numerical stability, two features should be studied: 1) The performance of slope/flux
limiters on non-uniform grids designed with different construction criteria; 2) The ef-
fects of grid density variation on numerical solutions and adaptation procedures. Most
of slope limiters have been developed for working properly on uniform grids. Using of
such limiters on irregular grids can lead to unstable solutions.

3
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Abrupt changing of grid densities can also lead to instability, due to ill-posedness
feature of irregular sampled data. To prevent this kind of instability, density variation
of adapted grids should be checked. For achieving this purpose, adapted grids are locally
rechecked/modified in different resolution levels in the vicinity of high-gradient zones in
the wavelet spaces.

Cell-adaptive central/central-upwind/CWENO high resolution schemes with second,
third and fourth order accuracy are restudied in this work. Corresponding accuracy,
stability conditions and corresponding limiters are provided over wavelet-based adapted
cells, as well.

Convergence analysis of numerical solutions of nonlinear conservation laws are also
studied directly over non-uniform cells by the concept of the local truncation error
[26, 27], re-evaluated on irregular 1-D and 2-D cells. The numerical results confirm that
the local truncation error can be used for the convergence studies of 1-D or 2-D systems
with convex or even with non-convex fluxes. The uniqueness of numerical solutions is
checked by the concept of numerical entropy production. Theoretically, the numerical
entropy production is zero in smooth regions while less than zero around shocks and dis-
continuities [28, 29]. This helps to study the quality of numerical results especially for
ones without exact solutions. All calculations will directly be performed on non-uniform
grids. The concepts of the local truncation error and numerical entropy production
have been used for both grid and method adaptation [30–32]. Different concepts could
lead to different adapted results, especially, some concepts may not capture some phe-
nomena. Hence, proper choosing of a adaptation approach would be crucial. In this
study, wavelets are used for grid/method adaptation. The adaptation performance of
this theory would be compared with the above-mentioned two concepts.

Hyperbolic systems with non-convex fluxes are also studied. In these systems, complex
waves develop and so numerical solutions can converge to non-physical results [30]. In
this work, wavelets are used to both grid and method adaptations to capture properly
physical solutions.

Hyperbolic (wave) problems can be divided into two general families: i) First order
waves; 2) Second order waves. Regarding the second order hyperbolic equations, it
is possible to simulate them by the high resolution schemes. However, it is essential
firstly to re-express them as a first-order hyperbolic system (that is the strain-velocity
or stress-velocity representations). This procedure, however, can introduce considerable
new degrees of freedom especially for 2-D and 3-D problems. In this regard, it is favor-
able to simulate second-order waves directly in their original forms. In this study, to
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control spurious oscillations in such waves, the regularization approach is used, (e.g., the
Tikhonov or total variation (TV) based regularization). In this approach, it is tried to
remove noise (spurious oscillations) by the regularization concept by a post-processing
stage. For this purpose, in this study, different regularization approaches with differ-
ent regularization constraints are studied and finally a proper regularization method is
suggested to control effectively non-physical oscillations resulted from discontinuities or
high-gradient solutions. The main advantageous of this approach is that it can directly
be utilized for higher-order waves in their original forms (such as the fourth-order waves
in beams) without re-expressing them as a first-order wave equations.

1.0.1 Outline of the thesis

In Chapter 2, several literature would be reviewed including: (1) different multiscale
simulation approaches of PDEs in the framework of multiresolution analysis; (2) For
non-linear conservation laws, the concept of central high resolution schemes on uniform
cells and extending of it to non-uniform cells; (3) Some challenging problems in numerical
simulation of nonlinear conservation laws, such as: convergence analysis, uniqueness
of solutions, problems with non-convex flux; (4) general information about high-order
central high resolution schemes; (5) a small review of high-resolution methods using non-
polynomial interpolations; (6) challenging problems for simulation second order waves
directly in their original form arising from discontinuous solutions or stochastic like
variation of properties of computational domain (e.g., heterogeneous materials).

In chapter 3, very briefly interpolating wavelet transform and grid adaptation are
presented. It is important to note that both centered and non-centered cells produce by
wavelet based grid adaptation. Afterward, it is shown to convert the adapted grids to
regularized adapted grids, again in the framework of multiresolution analysis.

In Section 4, firstly, the formulation of the second-order central high-resolution schemes
derived on wavelet-based cells for the first time. This formulation is for both centered
and non-centered non-uniform cells. For non-linear stability, the global total variation
diminishing (TVD) conditions are checked for non-uniform cell. Based on these con-
ditions, three local TVD conditions are restudied and one of them updated to handle
non-uniform non-centered cells.

In section 5, to study the convergence of numerical solutions, the truncation errors
are derived for non-uniform cells for 1-D and 2-D problems. The performance of the
numerical entropy production is checked over non-uniform cells to control uniqueness of
solutions.
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In section 6, some high-order central high resolution schemes are derived over wavelet-
based adapted cells:

1. Third order central high resolution scheme using average values of three successive
cells to produce piecewise parabolic polynomial. To preserve monotonicity feature
the same shape conditions are updated and proved mathematically over wavelet-
based adapted cells. To enforce the monotonicity feature at cell edges, the concept
of the nonlinear scaling limiters are used. One of them updated based on the same
shape features proved in this subsection,

2. Two new piecewise parabolic methods (PPMs) are introduced in this work for the
first time which only use information from only one cells. These can be obtained
based on introducing new state variables (obtained by new PDEs resulted from
spatial differentiation of original PDEs). To enforce the monotonicity condition
inside each cell, a new limiter and a new modification approach are presented as
well,

3. We mathematically prove the accuracy order of central WENO schemes with three
and five point stencils over non-uniform cells. We prove that regardless of weights,
over wavelet-based non-uniform cells, they have the same order of accuracy de-
signed to have on uniform cells,

In chapter 7 The stable simulation of second-order waves in their original form via
the Tikhonov-based regularization method is presented. we studied different constraints
used for Tikhonov regularization. Recently a new constraint was introduced. We numer-
ically prove its strength for simulation of second-order waves by different benchmarks
with discontinuous solutions. For this new constraint: (1) we mathematically prove the
convergence property of the corresponding Tikhonov regularization; (2) We present its
corresponding filter and compare it with other filters obtained with different constraints.
Final, we extend the Tikhonov regularization, so it preserve:

1. The conservation property after regularization,

2. The local regularization feature to locally solve the Tikhonov method in a consis-
tent way.

In chapter 8 we conclude the work presented in this study and some suggestions
provided for future studies.
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Chapter 2

Literature review and general
descriptions

In this section, numerical simulation of both the first and second order hyperbolic (wave)
equations are surveyed.

2.1 Multiresolution (wavelet) based simulation of partial
differential equations (PDEs)

Multiresolution-based studying has rapidly been developed in many branches of science;
one of methods having this powerful feature is the wavelet theory. Wavelet transforms
have multiresolution feature and act as a mathematical microscope: studying simulta-
neously a phenomenon with different accuracy [33]. This capability motivates differ-
ent area of researches, especially numerical simulation of PDEs [33]. Development of
this theory was simultaneously performed by scientists, mathematicians and engineers
[34]. Wavelets can detect different local features of data separated locally in different
resolutions. Wavelets can efficiently distinguish overall smooth variation of a solution
from locally high transient ones. These variations exhibit local deviation of the orig-
inal data from the overall smooth approximation (background data). These localized
details should be added to the smooth approximation to reconstruct the original data.
In the wavelet theory, the wavelet coefficients (known as detail coefficients) measure the
aforementioned localized variations; the magnitude of the detail values is in accordance
with variations in data [35]. Wavelet coefficients of large values, thereby, concentrate
automatically around high-gradient zones; this can be used as a criterion to identify such
zones. There is also a one-to-one correspondence between the wavelet coefficients and
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Figure 2.1: The projection of the operator d/dx into wavelet spaces by the wavelet Db-
12.

corresponding spatial locations. Wavelet coefficients of small values reveal the existence
of small variation in their corresponding spatial zones. Considering this fact and the
one-to-one correspondence feature, the small localized variations and also corresponding
grid points can be neglected with an acceptable accuracy and thereby an adaptive solver
can be obtained either on adapted grids or by omitting wavelet coefficients of small
values.

In general, there are two general approaches for PDE simulations by wavelets: 1) The
projection method, 2) The non-projection one.

In the wavelet-based projection schemes all calculations are performed completely in
wavelet spaces. For this case, operators (such as differential or integral ones) can be
projected into wavelet spaces [36]. The projection of the most operators are banded in
wavelet spaces. The width of the bands can be reduced by defining a threshold; the
coefficients with smaller values of the threshold are set to zero and so the adaptation
is performed in wavelet spaces [36]. For example, in Figure 2.1 the operator d/dx is
projected to wavelet space by the wavelet Daubechies 12 (Db-12) (in the non-standard
form [36]).

In the projection approach, also, wavelets (and corresponding scaling functions) can
be used as shape functions, for instance in wavelet-Galerkin formulations. As there is
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a one-to-one correspondence between wavelet functions and grid points, this projection
method can be performed on adapted grids, as well (small projection coefficients and
corresponding adapted grids are omitted from evaluations). The projection approach
were used for simulations of elliptic [37], parabolic and hyperbolic PDEs [33] 1. For
hyperbolic PDEs some projection-based adaptive studies may be summarized as: 1)
Adaptive discritization by projection into wavelet spaces in [38–42], 2) Adaptive Petrov-
Galerkin scheme using wavelet functions as shape functions [43].

The wavelet-based projection methods, however, have three major drawbacks [18, 44]:

1. Projection of non-linear operators into wavelet spaces,

2. Imposing of different boundary conditions; to handle this case, one approach is
developing of wavelets updating their function definition near boundaries based on
BCs (known as wavelets on intervals) [37],

3. Modeling the geometry of boundaries.

In non-projection approach, on the other hands, wavelets are used only to adapt
grids/cells. Afterward, numerical simulations are performed by other numerical meth-
ods. In particular, wavelet-based dynamic cell/grid adaptation methods have suc-
cessfully been integrated with different solvers of hyperbolic (hyperbolic-parabolic and
hyperbolic-elliptic) PDEs having steep moving fronts or sharp transitions in small zones.
This approach used for simulation of the elliptic [14, 15], parabolic [16, 18, 43, 45, 46]
and hyperbolic [21, 38, 39, 42, 47–54] systems.

In particular, for hyperbolic (hyperbolic-parabolic and hyperbolic-elliptic) PDEs, the
above-mentioned studies may be summarized as: integration of the normalized variable
and space formulation (NVSF) with MRA-based grid adaptation in [21, 47]; spatio-
temporal fully adaptive decompositions performed in the context of finite volume (FV)
schemes in [53]; adaptive finite difference methods [48, 49, 54, 55]; adaptive collocation
schemes [56, 57]; an adaptive ENO method [58]; an adaptive WENO scheme [59]; stencil
adaptations in [51]; integration of a MRA-based space-time adaptive procedure with the
AUSM+ FV scheme in [60]; radial basis function (RBF)-based central high resolution
schemes on MRA-based adapted grids/cells [61]; RBF-based WENO scheme over MRA-
based adapted cells [62]; and integration of multiwavelet-based grid adaptation with
discontinuous Galerkin schemes [63].

1Roughly, the moving property (advection feature) is mainly due to presence of hyperbolic charac-
teristic in the systems. In contrast, the parabolic PDEs deal mainly with diffusion problems and
elliptic systems express steady state solutions of either parabolic or hyperbolic PDEs [5].
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In these approaches, wavelets are used as a tool to detect and capture steep moving
fronts or localized transitions in narrow zones.

2.2 First-order nonlinear hyperbolic (wave) equations
Nonlinear conservation laws act as an universal tool to describe many physical and
industrial phenomena from the molecule (atomistic) level to the continuum scale, as
well as multiscale problems. Hence, to consider the scale-effects, one of the aims of this
study is multiresolution-based adaptive simulation of nonlinear wave (front) propagation
problems. The governing equation of these systems for 2-D problems can be expressed
as:

ut + F(u)x + G(u)y = Qx
x(u,ux,uy) + Qy

y(u,ux,uy) + S(u), x, y ∈ Ω, (2.1)

where: the vector u ≡ u(x, y, t) denotes the state variables; F(u), and G(u) are function
of flux vectors in the x and y directions, respectively; Qx(u,ux,uy) and Qy(u,ux,uy)
show diffusion terms in the x and y directions, respectively; S(u) is the source (load-
ing) term; Ω indicates the computational domain; ux := ∂u/∂x and uy := ∂u/∂y. In
Eq. (2.1), the initial conditions (ICs) are: u(x, y, t = 0) = u0(x, y) and the boundary
conditions (BCs) are u(xΓ, yΓ, t) = uΓ, where Γ denotes the boundary of the domain Ω.

Due to the nonlinearity, discontinuous propagating fronts appear in the approximate
solutions, which lead to some numerical drawbacks: the dispersion and dissipation phe-
nomena. To remedy these effects, from early years of 1950s (by profound work of Go-
dunov [64], especially for the Euler equation: gas systems) comprehensive works have
been done on numerical solutions of nonlinear hyperbolic systems.

To control dispersion and dissipation phenomena, several nonlinear methods have
been developed; also their accuracy and effectiveness have been improved by developing
their adaptive versions. Some of these approaches enriched by multiresolution-based
adaptations are: 1) Collaboration of point-wise multiresolution adaptation algorithms
with high resolution schemes [21, 38, 39, 42, 47, 50–54], 2) Integration of the finite
element method with adaptive multiresolution viscosity [65]; 3) Incorporation of the
finite volume (and also high-resolution) methods with mutiresolution-based adaptation
on triangles [66]; 4) Combination of spectral theory with adaptive viscosity approach
[67]. These efforts reveal importance of the adaptive solvers.

High resolution schemes use higher order approximations in smooth regions and a
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first order one around discontinuities [5, 68]. This procedure is done in a way that
spurious oscillations do not grow through time and thereby both numerical dispersion
and dissipation phenomena can be controlled effectively. Regarding high resolution
schemes two general and popular approaches2 have been developed, as:

1. The MUSCL (Monotone Upstream-Centered Schemes for Conservation Laws) schemes
using the concept of flux/slope limiters [70],

2. The essentially non-oscillatory (ENO) [71] and weighted ENO (WENO) [72, 73]
schemes.

The ENO and WENO methods need fundamentally the Riemann solver 3 which is an
expensive task. This is because the solver is based on (exact) mathematical evaluations
or at least approximating evaluations. To remedy this problem, the central high resolu-
tion schemes were developed: the first scheme is the Lax-Friedrich method [74] with the
first order accuracy. The higher order central schemes (a type of the MUSCL scheme)
have been developed, mainly by Tadmor et al. [22, 25, 75, 76].

Central high resolution schemes have been developed both on staggered and non-
staggered grids (meshes). In this central formulation, governing equations could have
the fully-discrete form (discrete in both time & space) and (or) the semi-discrete form
(continuous in time and discrete in space). In general, non-staggered formulations have
less numerical dissipation and semi-discrete forms can use larger time steps. So, in this
work, non-staggered central schemes with the semi-discrete formulation will be used.

In brief, non-staggered central (and also central-upwind) high resolution schemes of-
fer the following benefits: having a simple and straightforward concept; being easy to
implement; having less numerical dissipation than ones on the staggered cells, like the
Nessyahu and Tadmor (NT) method; offering both semi-discrete and fully-discrete forms;

2Another approach is using of solution-dependent artificial viscosity. In this approach, the artificial
viscosity has considerable value around a discontinuity to prevent spurious oscillations [68]. Since
the viscosity is solution-dependent, this nonlinear scheme has high-order accuracy in smooth areas,
and so the method is a high-resolution method. Recently this approach is integrated with entropy
solutions as detectors (to identify discontinuities) to reach a high resolution feature, e.g. [69].
Difficulty of this approach is a proper selection of viscosity intensity to preserve only monotonicity
without causing unnecessary smearing [68].

3A Riemann problem is an initial value problem including a conservation equation together with
a piecewise constant data having a single discontinuity. For a conservation equation it can be
represented as:

u(x, t)t + f(u(x, t))x = 0, where u(x, t = 0) :=
{

ul, for x ≤ 0,

ur, for x > 0,

where ul and ur are constants. The solver of the above-mentioned equation is the Riemann solver.
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being a Riemann-free solver; no requiring to staggered grid points (as needed in the NT
scheme [25]); having comparable second and higher order accuracy with other expensive
techniques.

Central/central-upwind schemes [22, 25, 75, 76] are basically developed for uniform
cells. Since high resolution schemes can be expensive (especially third and higher-order
ones), using of adaptive solvers seems to be necessary. On the other hand, central
schemes are sensitive for grid irregularity; hence, in this work, the main concern is
improving central schemes for working properly on non-uniform cells.

To have stable upwind, ENO and WENO schemes on non-uniform grids, these ap-
proaches are enriched with some stability conditions [21, 47]. One famous condition is
the normalized variable and space formulation (NVSF) (see Appendix B) [20, 21, 47, 50].
In these methods, however, the direction of propagation is essential for both the upwind
formulation and the stability condition. Such direction detection procedure is indeed
complex, cumbersome and expensive, especially in 2-D and higher dimension problems
[21]. Some researchers integrated other detection algorithms such as the level set method
with these high resolution methods [77]; and this introduces extra computing costs.

As mentioned, central high resolution schemes are also sensitive to grid irregularity.
This is because, they do not satisfy any stability criterion for grid irregularity; such as
the NVF or NVSF [20, 21, 47, 50].

2.2.1 A practical approach for using high resolution schemes on
non-uniform grids

As mentioned, central/central-upwind high resolution schemes have theoretically been
developed for uniform cells/grids; for such cells/grids, their performance, stability (non-
linear stability) and accuracy are studied, as well. In practical/engineering problems,
these methods are directly used on non-uniform (adaptive) grids without formulation
and/or definition modifications. To preserve numerical stability and accuracy, grid/cell
density is let vary gradually. For this purpose a growth factor (GF) is recommended.
One example of using such GF is illustrated in Figure 2.2 for simulation of flow around
a rectangle obstacle [78].

This GF control expanding/growing of grid/cell sizes away from an area with the finest
grid/cell size (this fine-scale discretization is essential in the vicinity of discontinuities
or zones with large solution gradients). Some recommended GF are 1.2 [79, 80] or
1.3 [81, 82] (smaller values of GF are even reported). One example of an open source
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finite volume code is: OpenFOAM. It uses the second order high resolution method
with several limiters, where the limiters were fundamentally designed on uniform cells.
With the grid adaptation approach, explained above, this code is widely used in many
practical and engineering problems.

In scientific works one of the popular approaches is the remapping technique, where
indeed all calculations are done on uniform cells, e.g. [83, 84]. And also in some works
limiters are directly used without definition modification, e.g. [85].

2.2.2 Central high resolution schemes and multiresolution analysis

The high resolution schemes also have successfully been incorporated with multiresolution-
based adaptive methods, [21, 38, 39, 42, 47, 50–54]. These adaptive solvers are mostly
based on upwind high resolution schemes [21, 38, 39, 47, 50–53].

As mentioned before, simulation on a non-uniform grid is indeed an ill-posed problem;
to guarantee stability of adaptive solution, two general approaches have been suggested:
1) Using of the level-depending thresholding, 2) Using a method satisfying a stability
criterion for irregular grids.

Following the first approach, Harten introduced the level-depending thresholding [51].
For data f(x) belonging to subspace VJmax (f(x) ∈ VJmax), the considered threshold for
resolution level j is: ϵj = 2j−Jmax−1.ϵ0 where j ∈ {Jmin, Jmin + 1, ..., Jmax − 1} and ϵ0

denotes a positive constant [38, 39, 51–53]. By this assumption, thresholds of larger
values would be used for coarser resolutions; therefore, it is acceptable to consider that
for an adapted point of resolution level j, there would be sufficient number of surrounding
adapted points of the successive coarser resolution level j − 1. And this will guarantee
gradual density-variation of adapted grids. However, our studies show that in numerical
simulation of nonlinear propagating fronts, this adapting method does not necessarily
lead to a completely stable procedure (for example, adapted results are sensitive for
temporal time steps; also long-time behavior can be affected). And so, it is always
necessary to be sure about proper distribution of adapted points. It seems, this is
due to the nonlinear feature of such problems. In this regard, here, a grid checking-
modifying procedure is done after each cell-adaptation by a post-processing stage. This
also is performed in the multiresolution framework.

The key idea is to have local and gradual variation of adapted points/cells without any
abrupt change of grid density (this can be used for both constant and level-dependent
thresholding methods). For this purpose, for a point of a distinct resolution level (say j
), it should be checked that there are enough number of surrounding points belonging
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to both same resolution (j) and all the coarser ones ({j − 1, j − 2, . . . , Jmin}).
Central/central-upwind methods, as mentioned, are sensitive for cell irregularities;

our investigations show that numerical instabilities appear rapidly in adaptive solutions.
This is because, these methods do not originally satisfy the NVSF condition (see Ap-
pendix B). To guarantee the numerical stability, two features should be studied: 1) The
performance of slope/flux limiters on non-uniform cells/grids; 2) The effects of grid den-
sity variation on numerical solutions and adaptation procedures. Most of slope limiters
have been developed for working properly on uniform grids. Using of such limiters on
irregular grids may lead to unstable solutions. In this study, it will be shown that:

1. How to use some limiters without modification of their definitions,

2. Modifying some other limiters for non-uniform grids.

Investigations reveal that the proposed methods lead to stable results comparable with
those of NVSF-based schemes.

The Dubuc-Deslauriers (D-D) interpolating wavelets [35, 45, 46] are used here for
grid adaptation. This family has simple and straightforward algorithms with physical
meaning. All calculations can then be performed in the physical domain. The D-D
wavelets use minimal spatial support for data reconstruction (approximation), and this
is important, since: larger inter-distance in two sampled data is, smaller correlation
between them exists [18, 45, 46].

Semi-discrete PDEs in the spatial domain are solved in time by an explicit TVD
integration method, such as the second or third order TVD Runge-Kutta scheme. As
all spatio-temporal calculations are done in the physical domain, the method is simple
and conceptually straightforward [18].

2.2.3 Numerical errors, numerical entropy and grid-adaptation

In nonlinear conservation laws, discontinuous solutions develop typically. Thereby, com-
mon error estimation concepts, mainly based on the Taylor expansion, can not be used.
For this reason, the concept of the local truncation error is used to assess convergence
of solutions to weak ones as a practical approach [26, 27]. Related formulations for such
error estimation would be provided for 1-D and 2-D non-uniform cells. This kind of error
has direct relationship with the locally defined L1 norm (the so-called Lip′-norm) intro-
duced by Tadmor [86, 87] for nonlinear 1-D scalar conservation laws with convex fluxes
(also see Sec. 5). The numerical results confirm that the local truncation error can also
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be used for convergence study of 1-D or 2-D conservation laws, even with non-convex
fluxes.

Uniqueness of numerical solutions is checked by the concept of the numerical entropy
production. Theoretically, the numerical entropy production is zero in smooth regions
while less than zero around shocks and discontinuities [28, 29]. This helps to study
quality of numerical results especially for those without exact solutions. All calculations
will directly be done on non-uniform grids.

The concepts of the local truncation error and the numerical entropy production have
been used for both grid and method adaptation [30–32]. Different concepts could lead to
different adapted results, especially, some concepts may not capture some phenomena.
Hence, proper choosing of an adaptation approach would be crucial. In this study,
wavelets are used for grid/method adaptation. Adaptation performance of the wavelet
theory would be compared with above-mentioned two other concepts.

2.2.4 Non-convex fluxes

Hyperbolic systems with non-convex fluxes would also be studied; these systems need
non-classical solvers due to developing of complex waves. These systems can explain
important phenomena, such as: Euler equations of gas dynamic with a non-convex
flux, polymer system used for simulation of polymer flooding processes in enhanced
oil recovery and mechanical wave equations with non-convex fluxes. This latter case,
for example, can occur in the stress wave propagation in sediment layers under water
[88, 89]. Another important phenomenon including the non-convex fluxes is the phase
transition; this phenomenon can develop in solid materials and flow of compressible
fluids (gas or liquid). Some examples are: i) In solid materials: shape memory alloys
[90]; ii) In gas-liquid materials: the evaporation phenomenon [91].

It will be shown that even though numerical solutions converge to the weak form
solutions (controlling by the local truncation error), they may not be physical (real) ones
due to the existence of complex waves in these problems [30]. In this work, wavelets are
used to both grid and method adaptations for capturing properly physical solutions.

2.2.5 High-order central high resolution schemes

In order to have a third-order accuracy for polynomial-based formulations, (in the spatial
domain) in central high resolution schemes, a quadratic polynomial should be used in
the reconstruction stage over each cell [92, 93]. This reconstruction was performed by
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three approaches:

1. Quadratic average-interpolating polynomials were evaluated directly by average
solutions of three successive cells with the central formulations [92, 93, 93]. The
same shape feature was enforced by a non-linear limiter acting as a scaling limiter
[93]. This limiter was later used for other types of high-order high resolution
schemes working on uniform cells/grids [94–96]. This type of scaling limiter was
successfully extended for unstructured cells [97, 98],

2. Piecewise parabolic polynomials (PPM) [99], determined only by information of
each cell could reduce the localized spurious oscillations around discontinuities
and the over-smoothing phenomenon over smooth solutions [92], generated by the
parabolic reconstruction over three successive cells (the first approach). These ef-
fects, however, can be reduced by using more localized information. In this method,
the reconstruction stage on the cell Ij was based on the cell average value ūj and
cell-edge values uj±1/2. For estimation of uj±1/2 values, the average-values of four
neighbor cells were employed. To avoid generated numerical dissipation Popov et
al. [100] improved the method by a local stencil: edge values uj±1/2 were estimated
by the concept of the characteristic lines from solutions of the previous time step
in cell Ij. This method improved numerical accuracy in the expense of using some
mathematical computations and information. To remedy the over-smoothing phe-
nomenon around the smooth extrema, new limiters [101–103], and hybrid methods
were also proposed [104].

3. A quadratic average interpolating polynomial, resulted from a convex and sym-
metric combination of left, central and right average-interpolating polynomials,
known as the central-WENO schemes [105, 106].

In the first and second approaches, the monotonic feature is enforced by slope/flux
limiters, while in the third approach, the monotonic property is obtained by proper
weighting effects of one-sided and central interpolations.

The central schemes mentioned above have the total variation bounded (TVB) feature,
which gives more flexibility in comparison to the total variation diminishing (TVD)
property. In the first and second approaches, the TVB feature results from satisfying
the local maximum principle and a non-oscillatory property [93]. The original TVB
third-order high resolution formulation [93] was integrated with the central formulation
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on staggered grids [93]. Then, a new nonlinear limiter was proposed to satisfy the TVB
feature, followed by 1-D and 2-D semi-discrete forms [92].

The mentioned TVB-based high resolution schemes ([92, 93, 93]) were developed for
uniform cells/grids. For the case of nonuniform cells/grids, most works were based on
the remapping technique: all calculations were performed on uniform cells/grids and
then remapped on the original irregular cells/grids [83, 84, 107].

Finally, it should be mentioned that the third-order CWENO reconstruction has been
studied on irregular cell-centered meshes [108–110]. Also errors in simulations for the
third order CWENO scheme were studied for uniform [111] and cell-centered non-uniform
cells [108]. In most of the aforementioned adaptive solvers, numerical entropy was used
as a tool for adaptive mesh refinement. A fourth order CWENO scheme with cell-
centered five-point stencil on uniform cells was proposed for multidimensional problems
[112]. Capdeville [113] developed the fifth-order CWENO reconstruction on constant
cell-centered non-uniform grids based on implicit and upwind formulations, where the
method has a five-point stencil.

2.2.6 Non-polynomial reconstruction over each cell

In this section, so far, it is assumed that variation of a state variable can be described
by a polynomial. Regarding central high resolution schemes, the constant variation over
each cell can lead to the first-order Lax-Friedrichs scheme. A linear reconstruction over
each cell can lead to the second-order NT (with staggered cells) or second-order KT
(with non-staggered cells) scheme. Using of the parabolic reconstruction leads to third-
order schemes. By increasing polynomial orders, higher-order schemes can be obtained,
especially by the concept of CWENO reconstruction procedure (i.e., using of lower order
polynomials to reproduce higher-order ones without oscillations).

Instead of polynomials, other type of variation (reconstructions) can be assumed over
each cell, such as: logarithmic [114, 115], hyperbola [116], rational [117], exponential
[118, 119], spectral [120], moving least squere (MLS)) [98] and radial-basis functions
[61, 121, 122].

2.2.7 Conclusion

Based on the aforementioned discussions, in brief, in this work, it will be shown that to
preserve numerical stability of cetral high resolution schemes on non-uniform cells, it is
necessary:
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1. To modify central schemes and recheck/update nonlinear stability conditions: here
for second and higher order central schemes, the TVD (total variation diminishing),
TVB (total variation bounded) and UNO (uniformly high order accurate non-
oscillatory) nonlinear stability conditions are studied; on uniform cells, for TVD
and TVB criteria see [5, 22, 68, 76, 92, 93], and for second and third-order accuracy
UNO definitions see [123, 124]. Here, the second-order adaptive UNO limiters are
also reformulated to handle MRA-based adapted cells. Regarding these conditions,
central formulations and the performance of limiters are restudied,

2. To adapt properly considering cells: The source of the numerical dissipation and
dispersion (as mentioned in the Introduction section) is the truncation error and it
introduces a new source of error with significant effect on non-uniform grids. This
is because, estimation on an irregular grid points is indeed an ill-posed problem. To
solve an ill-posed problem, there are two general approaches: 1) Solving directly the
ill-posed problem by a regularization method [48, 49] or a stabilization condition
[21, 47]; 2) Firstly replacing the ill-posed problem with a nearly well-posed one, and
then solving the new problem by common schemes. Here, the second approach is
used by a post-processing stage over adapted cells for simulation of the first-order
hyperbolic PDEs.

Employing these two steps, different central high resolution schemes will be studied
on nonuniform grids, in this work; they are:

1. The second-order central KT scheme (with the TVD, TVB and UNO stability
conditions),

2. Second-order central-upwind schemes (with the TVD stability condition),

3. Higher order central schemes: 1) Polynomial-based third-order solver (with the
TVB stability condition), enhanced with nonlinear updated scaling limiters to
enforce the max-min criterion; 2) The third-order accuracy piecewise parabolic
method (PPM)

4. Central weighted essentially non-oscillatory schemes (CWENO): third and fourth
order accuracy, respectively with three and five point stencils (both with the TVB
stability condition).

Furthermore:
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1. For cell-adaptive second-order central high resolution schemes, the formulation of
local truncation errors on MRA-based adapted cells are developed for 1-D and
2-D problems. Then, these formulations are used to control convergence in some
numerical simulations,

2. Some slope limiters are updated or introduced for handling MRA-based adapted
cells (cell-centered and non-centered ones),

3. Integration of wavelet-based parameter adaptation (for limiters) for proper simu-
lation of problems with non-convex fluxes,

4. Studying the performance of numerical entropy production on MRA-based adapted
cells.

Finally it should be mentioned that to have the non-oscillatory feature in the time
domain, the temporal integration schemes with the TVD property are used. In this
study, the TVD Runge-Kutta method with second-order or third-order accuracy is used
[22, 125].

2.3 Second order waves
An effective way for solving second order hyperbolic PDEs is to rewrite them as a
system of first order hyperbolic equations and then to simulate them with one of schemes
developed for first order wave equations. This will lead to oscillation free results with
small numerical dissipation [126]. The second order hyperbolic PDEs can also be solved
in their original second order form. For this purpose, several approaches have been
developed:

1. Using some artificial dissipation without modifying the governing equations. For
this case, dissipation is inherently added in evaluation procedures. In the time
domain, the algorithmic dissipative time integration methods have been developed
for removing spurious oscillations [127–130]. For the spatial domain, inherent
filtering concept is also developed in derivative estimations [131, 132],

2. Adding some artificial viscosity in the governing equations to stabilize the solution.
This can be done by using some local artificial viscosity around high-gradient
zones in the spatial domain [133, 134]. Hughes [135] showed that this approach
damps mainly the middle modes without affecting the lower and higher modes
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substantially. As artificial diffusion decreases accuracy of solutions considerably,
methods using the artificial diffusion only in high frequency ranges were developed;
such as, the spectral viscosity schemes [65, 136, 137]. This approach has been
employed for both first and second order hyperbolic systems,

3. Filtering spurious oscillations from numerical solutions in the spatial domain by
a post-processing stage [13, 138]. These schemes were successfully used in simu-
lation of hyperbolic systems on uniform grid points [139–141], and non-uniform
grids [48, 49, 55]. It should be mentioned that many smoothing schemes working
satisfactorily on uniform grids are not suitable for non-uniform ones: leading to
unstable or unreliable results [142].

The concept of the high-resolution treatment has recently been advised for handling
second-order hyperbolic systems [143]. The performance of this new concept will also
be compared with the regularization-based method (proposed in this work). The aim of
this work is to solve directly the second order hyperbolic systems. Such approach has
the following advantages:

1. Less degrees of freedom are needed (in case of elastodynamic problems, in second-
order form three dependent variables exist, while between nine and fifteen variables
are needed when they are re-formulated as first-order systems),

2. The solution of the first-order system also satisfies the second-order form: this can
be done by imposing/checking some constraints. This is because, the first order
form admits more acceptable solutions,

3. Possibility of using larger time-steps in second-order form compared to the first-
order one [144].

In this work, the spatially filtering approach is used. This will done by a post-
processing stage to remove properly spurious oscillations from solutions containing dis-
continuities. However, curing of the numerical dispersion effects is a crucial task. This
is because:

1. Estimation of a function and corresponding derivatives from its sampled points can
be considerable as a type of (semi) ill-posed problem. This would be more clear by
considering the fact that different estimated values (data and corresponding deriva-
tives) can be obtained for different interpolation methods. From mathematical
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point of view, this fact may be explainable as follows. Sampling procedure can be
considered as convolution of a continuous function f(x) with the Dirac delta δ(x)
as: fi = f(xi) =

∫
f(x)δ(xi − x) dx. This integral is known as the first-order

Fredholm integral, and corresponding inverse problem could be a (semi) ill-posed
problem [145, 146] i.e.: finding f(x) from corresponding sampled data {f(xi)},

2. For numerical simulations, it is necessary that derivatives of estimated functions
also are continuous. This means that the derivatives can be properly estimated up
to some order. This derivative estimation (from noisy data) is another ill-posed
problem. This is because, effects of small noise amplify considerably derivative
values,

3. Spatial adaptation will insert a new source of ill-posedness; most of filtering meth-
ods can not properly work on irregular points/meshes.

Different estimation approaches of functions and their derivatives have been developed;
such as: finite-difference methods [147], integral-based schemes [148–151], regularization
approaches [120, 152, 153], or interpolation methods [154]; for a general overview, the
reader is referred to [155, 156]. In this work, the regularization approach will be used,
where a variational functional is employed. The key challenge is proper handling of the
numerical dispersion (known as edge preserving in image processing problems). There-
fore, the total variation (TV) based regularization method was developed [157], for
preserving discontinuities. Such results, however, are not smooth enough for numerical
simulations. Hence, a proper selection of a functional with sufficient smoothness being
free from spurious oscillations (due to the numerical dispersion) is important.

In this study, several regularization approaches with different constraints will be stud-
ied. Furthermore, effects of imposing extra information containing extra local informa-
tion will be investigated (it is known as the model-base regularization). By using such
local extra information, it is tried to impose local features. This extra information is
different from the conventional constraints.

These regularization techniques have several advantages over most other denoising
schemes; for the Tikhonov method, they are:

1. It has a unique and stable closed-form solution with fast algorithms; this makes it
completely popular,

2. It leads to the smoothest possible results for a distinct value of estimation error
among all of the regularization schemes,
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3. Proper boundary value estimation can be obtained. Estimation errors around
boundaries are known as the Runge phenomenon. The Tikhonov regularization
method is one of the single-interval schemes that can effectively handle it (without
using an anti-Runge scheme) [158, 159],

4. Noise can directly be removed from irregularly spaced data where standard filtering
techniques used in time series analysis become awkward to implement,

5. By proper selection of prior information, derivatives up to some degree can be
estimated,

6. It can deal with many types of ill-posed problems such as data irregularity or
derivative estimation problems.

Since the Tikhonov method acts as a post processor, it can be integrated with differ-
ent explicit/implicit higher-order grid based methods, such as: compact finite difference
schemes [131, 132, 138]. For the Tikhonov-based regularization, other favorable features
can also be considered to improve estimated results; such as: conservative regulariza-
tion (even for non-Gaussian noise), adaptive and/or local (global) smoothing. These
extensions for common Tikhonov methods will also be presented in this work.

One difficulty in regularization methods is proper choosing of regularization parame-
ters. Indeed, most of the existing estimating methods lead to over or under smoothing
results [160, 161]. Current experiments reveal that even small amount of regularization
can considerably improve numerical results. In general, the trial-and-error method can
be recommended to find an optimum range of regularization parameters. Error bounds
and convergence rates are studied for commonly used constraints or regularization defi-
nitions; e.g., see: [162, 163]. For a recently proposed constraint of the Tikhonov method
(which one that can properly handle discontinuity effects), error bounds and convergence
rates will also be studied here.
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Figure 2.2: Non-uniform cells obtained by a GF (growth factor) for simulation of flow
around a rectangle obstacle [78].
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Chapter 3

Multiresolution analysis and grid
adaptation

3.1 Multiresolution representation of data
In this section, wavelet-based multiresolution analysis will be described for both 1-D
and 2-D data. For 2-D case, the algorithm is based on the 1-D one; this means the
dimension-by-dimension algorithm is used for 2-D data.

3.1.1 Multiresolution representation of 1-D grids

A dyadic grid on spatial interval [0, 1] is assumed as follows [46]:

Vj =
{
xj,k ∈ [0, 1] : xj,k = k

2j for all j ∈ Z, and k ∈ {0, 1, ..., 2j}
}
, (3.1)

where j and k are the resolution level (corresponding to spatial scale 1/2j) and spatial
position (k/2j), respectively. This definition of dyadic grid points Vj is ended to the
condition xj−1,k = xj,2k and the multiresolution representation core: i.e., Vj ⊂ Vj+1. The
points belonging to Vj+1 \ Vj are denoted by Wj; this subspace can be expressed as:

Wj =
{
xj+1,2k+1 ∈ (0, 1) : xj+1,2k+1 = 2k + 1

2j+1 for all j ∈ Z, and k ∈ {0, 1, ..., 2j − 1}
}
.

(3.2)

So it can intuitively be concluded that: Vj ⊕ Wj = Vj+1. This means the detail sub-
space Wj with the approximation subspace Vj can create (span) the next finer approx-
imation subspace Vj+1 with more details. By repeating this decomposition procedure
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on VJmax , it is obvious that:

VJmax = VJmin ⊕
Nd−1∑
i=0

WJmin+i, Nd = Jmax − Jmin, (3.3)

where, Jmax, Jmin andNd denote the finest resolution, the coarsest resolution and number
of decomposing levels, respectively [35].

A continuous function f(x), defined on VJmax , is assumed (i.e., x ∈ VJmax). Regarding
the multiresolution representation, the function can be decomposed as [35, 46]:

f(x) =
2Jmin∑
l=0

cJmin,lϕJmin,l(x) +
Jmax−1∑
j=Jmin

2j−1∑
n=0

dj,nψj,n(x)

= Pf Jmin
+

Jmax−1∑
j=Jmin

Qf j,
(3.4)

where ϕ(x) and ψ(x) are scaling and wavelet functions, respectively; the functions
ϕ(x) and ψ(x) measure overall behavior and local fluctuations of data, respectively;
sets {ϕj,k} := {ϕ(2jx − k)} and {ψj,l} := {ψ(2jx − l)} denote dilated and shifted ver-
sions of ϕ(x) and ψ(x), respectively (they used for measuring localized features of data
at different resolutions). Coefficients cj,l and dj,k are approximation and detail coeffi-
cients with resolution j. The operators Pf j and Qf j show the approximation and detail
information of f(x), defined on grid points Vj, and Wj, respectively. The approximation
on successive finer resolution j + 1, can then be obtained as: Pf j+1 = Pf j + Qf j [35].

In this study, the interpolating D-D wavelet of order 2M − 1 with support Supp(ϕ) =
[−2M + 1, 2M − 1] is used. It can be obtained by auto-correlations of Daubechies
scaling function of order M (having M vanishing moments) [35]. By using this family,
the transform coefficients in Eq. (3.4) can totally be evaluated in the physical space
with physical meanings. The approximation coefficients (cJmin,l) are equal to sampled
values of f(x) at points xJmin,l ∈ VJmin

, and the detail coefficients (dj,n) are differences
between f(xj+1,2n+1) and Pf j(xj+1,2n+1), or dj,n = f(xj+1,2n+1) − Pf j(xj+1,2n+1) (for the
D-D wavelets, Pf j(xj+1,2n+1) can be obtained by the local Lagrange interpolation on
points Vj); see Figure 3.1 [35, 45, 46].

Implementation of the D-D wavelet transform on 1-D grids can be summarized as
follows:

1. Let us assume the finest resolution level to be Jmax (with sampling step 1/2Jmax);
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Figure 3.1: Schematic illustration for calculation of the D-D wavelet transform.

the coarsest resolution level is chosen to be Jmin, so number of decomposition levels
is Nd = Jmax − Jmin,

2. The approximation coefficients: on the coarsest sub-space, due to interpolation
feature of ϕ, cJmin,k are equal to sampled values of f(x) ∈ VJmax at points xJmin,k ∈
VJmin

; i.e., cJmin,k = f(xJmin,k) for k =
{
0, 1, · · · , 2Jmin

}
,

3. The detail coefficients (see Figure 3.1): as mentioned before, at xj+1,2k+1, differ-
ences of projection and real values are the detail coefficients. For xj+1,2k+1 and for
the D-D wavelet of order 2M−1, local Lagrange interpolation using 2M neighbor
points of xj+1,2k+1 belonging to Vj are employed for estimation of Pfj (xj+1,2k+1).
For each point xj+1,2k+1 on an infinite signal, the selected grid points are located
in symmetric style around xj+1,2k+1; they are:
{{xj+1,2k+2n} : n ∈ {−M + 1,−M + 2, · · · ,M}}.
For a finite signal with sampled points

{
{xi} : i =

{
0, 1, · · · , 2Jmax

}}
and for the

case M = 2, it is easy to show that Pfj (xj+1,2k+1) would be:

Pfj (xj+1,2k+1) = 1
16

5f (xj+1,k) + 15f (xj+1,k+2) − 5f (xj+1,k+4) + f (xj+1,k+6) , for k = 0,

9f (xj+1,2k) − f (xj+1,2k−2) + 9f (xj+1,2k+2) − f (xj+1,2k+4) , for k = 1, · · · , Nj − 2,

f (xj+1,k−6) − 5f (xj+1,k−4) + 15f (xj+1,k−2) + 5f (xj+1,k) , for k = Nj − 1,

(3.5)
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where: Nj = 2j. Having Pfj (xj+1,2k+1) values the detail coefficients dj,k =
f(xj+1,2k+1)−Pf j(xj+1,2k+1) can be evaluated for levels j ∈ {Jmin, · · · , Jmax − 1}.

Having the dj,k values, uniform grids can be adapted, as below. In the interpolat-
ing wavelet theory, transform coefficients and grid points have one-to-one correspon-
dence. This feature leads to a simple 1-D grid adaptation algorithm. For f(x) ∈
VJmax , a predefined threshold ϵ is assumed, then, in each level of resolution j ∈
{Jmin, Jmin + 1, · · · , Jmax − 1}, points xj+1,2n+1 ∈ Wj are omitted from original cal-
culating grid points, if corresponding detail coefficients, dj,n satisfy the condition dj,n <
ϵ. This means that the function at the point xj+1,2n+1 is smooth enough, so that
its contribution in the approximation, dj,nψj,n(x), can be neglected (see Eq. 3.4).
Donoho [164] showed that such truncation error is in accordance with threshold val-
ues. Finally it should be mentioned that the predefined threshold can be either level-
dependent or not. One popular level-dependent threshold is ϵj = ϵ0/2Jmax−j−1 for
j ∈ {Jmin, Jmin + 1, · · · Jmax − 1}. This means a smaller threshold is assumed for finer
resolution. To use a constant threshold value for all resolution levels, it is better to
normalize the detail coefficient of resolution j as: dj,n = dj,n/f

ref
j . In this study constant

pre-defined threshold with normalized factor f refj = max{f(xj)} is used.
In the following, an example is presented containing both a discontinuity and smooth-

high-gradient response, Figure 3.2 (a). Schematic shape of grid distribution at different
resolution levels is also shown in Figure 3.2 (b). In figure (a), the solid line and solid
points show the original and adapted data, respectively. In figure (b), the solid points
and hollow circles represent distribution of multiresolution-base sampling points and
adapted points in different resolution levels, respectively. It is clear that: 1) there
is a one-to-one correspondence between wavelet coefficients and grid points; 2) points
belonging to Wj of larger resolution levels, concentrate more densely and thereby they
can detect finer details (fluctuations).

The presented adaptation procedure was shown to be efficient in the resolution of
scalar functions. For resolution of functions in vector system, the previous procedure
is modified to reflect the solutions’ behaviors of all equations. Namely, the resultant
adapted grid is simply superposition of all adapted grids; which each adapted grid cor-
responds to a functions of the vector system.
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Figure 3.2: Grid adaptation for a discontinuous and a smooth but high-gradient data
where ϵ = 10−5. a) the considered data (solid line) and adapted points (solid
points); b) distribution of adapted points in different resolution levels: solid
points are distribution of multiresolution-based sampled points, and hollow
circles denotes the adapted points.

3.1.2 Multiresolution representation of 2-D grids

Consider a uniform grid of spatial locations (x, y) ∈ [0, 1]×[0, 1]; a set of points belonging
to subspace Vj can be defined as [21]:

Vj =
{
(xj,k, yj,l) : xj,k = k2−j, yj,l = l2−j

}
for all j, k, l ∈ Z, (3.6)

where j denotes resolution level and Jmin ≤ j ≤ Jmax; coefficients k & l measure spatial
locations. Figure 3.3 illustrates a schematic representation of points belonging to Vj

(• ∈ Vj) and Vj+1 (• ∪ ◦ ∈ Vj+1) for case j = 2.
Regarding Eq. (3.6), it is clear that uj,(k,l) = uj+1,(2k,2l) where uj,(k,l) := u (xj,k, yj,l).

This is because: Vj+1 ⊂ Vj.
Same as the 1-D case, for 2-D information a detail subspace Wj belonging to sub-

space Vj+1 \Vj can be defined. These points are shown in Figure 3.3 with hollow circles;
i.e.: ◦ ∈ Wj. In this detail sub-space, three point types s1, s2 and s3 can be distin-
guished, as:

1. Points in even-numbered points in the x direction and odd-numbered in the y
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s2

s1s3

Figure 3.3: Spatial locations of points belonging to subspaces V2 and V3, where • ∈
V2 and • ∪◦ ∈ V3, for (xi, yj) ∈ [0, 1] × [0, 1].

direction; i.e., set s1 = {(xj+1,2k, yj+1,2l+1)},

2. Points in odd-numbered points in the x direction and even-numbered in the y

direction; i.e., set s2 = {(xj+1,2k+1, yj+1,2l)},

3. Odd-numbered grid points in both directions: s3 = {(xj+1,2k+1, yj+1,2l+1)}.

Based on sub-spaces Vj and Wj, a 2-D multiresolution analysis can be obtained as
the 1-D case. For point set {(xj,k, yj,l) ∈ si : i ∈ {1, 2, 3}}, four wavelet coefficients{
dij,{k,l} : i ∈ {1, 2, 3, 4}

}
can be defined as:

1. For points s1, wavelet coefficients are d1
j,{k,l}; they measure local variations in the

vertical (y) direction,

2. For points s2, wavelet coefficients are d2
j,{k,l}; they measure local variations in the

horizontal (x) direction,

3. For points s3, two sets of wavelet coefficients can be defined as d3
j,{k,l} and d4

j,{k,l};
they measure respectively local variations in the x and y directions.

Detail coefficients dij,{k,l} for i ∈ {1, 2, 3, 4} can be evaluated as:
{d1

j,{k,l} := u (xj+1,2k, yj+1,2l+1)−P y
j [u (xj+1,2k, yj+1,2l+1)] : k = 0 to 2j, & l = 0 to 2j−1},

{d2
j,{k,l} := u (xj+1,2k+1, yj+1,2l)−P x

j [u (xj+1,2k+1, yj+1,2l)] : k = 0 to 2j−1, & l = 0 to 2j},
{d3

j,{k,l} := u (xj+1,2k+1, yj+1,2l+1) − P x
j [u (xj+1,2k+1, yj+1,2l+1)] : k, l = 0 to 2j − 1} and

{d4
j,{k,l} := u (xj+1,2k+1, yj+1,2l+1) − P y

j [u (xj+1,2k+1, yj+1,2l+1)] : k, l = 0 to 2j − 1};
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where: k, l ∈ {0, 1, · · · , 2j − 1}, j ∈ {Jmin, Jmin + 1, · · · , Jmax − 1} [21]; operators P x
j

and P y
j denote the projection (the local Lagrange interpolation) operator in the x and y-

directions, respectively. Definition of these operators are the same as the 1-D case.
For 2-D adaptation of grids, a predefined threshold value ϵ is chosen (or a set of level-

dependent ones, ϵj). Points (xj+1,2k, yj+1,2l+1) or (xj+1,2k+1, yj+1,2l) would be eliminated
if corresponding detail coefficient, respectively d1

j,{k,l} or d2
j,{k,l}, is less than the threshold.

For adaptation of points (xj+1,2k+1, yj+1,2l+1), it is necessary both detail coefficients d3
j,{k,l}

and d4
j,{k,l} are less than the threshold [21].

3.2 Post-processing adapted grids based on the MRA
Once adapted grids are obtained via the aforementioned wavelet-based procedures, grids
are modified considering resolution level of each point; this is done to guarantee gradual
density variation of grid points.

3.2.1 1-D grid modification

The procedure for modification of 1-D adapted grids can be summarized as:

1. Setting the level resolution (j) equal to the finest resolution, i.e.: j = Jmax − 1,

2. Considering points belonging to the detail space of resolution j; i.e., points:
{xj+1,2k+1 = (2k + 1)/2j+1 ∈ Wj},

3. Existence controlling of Ns neighbor-points for each side of the point xj,k ∈ Wj at
the same level of resolution, i.e., points:{
xj+1,2(k+i)+1 : i ∈ {−Ns,−Ns + 1, · · · , Ns} , i ̸= 0

}
,

4. Existence controlling of Nc neighbor-points for each side of the point xj,k ∈ Wj

at the successive coarser resolution (subspace Wj−1). This step is only done for
levels j > Jmin,

5. Adding the extra points from steps 3 and 4 to the adapted grid (updating the
modified adapted grid),

6. If j > Jmin, set j = j − 1 and then following steps 2 through 6,

7. If j = Jmin, consider only steps 2 and 3. These points are added to the updated
adapted grid points, as the final stage.
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Figure 3.4: Modification of an adapted grid; solid points and hollow circles correspond
to adapted and extra added points, respectively. For grid modification stage,
we assume: Ns = Nc = 1.

The already-mentioned post processing procedure is illustrated in Figure 3.4; there,
distribution of adapted grid points is shown in different levels of resolution. Solid points
correspond to assumed (original) adapted points and the hollow ones associate with
points obtained after the post-processing procedure. This modification leads to locally
semi-uniform distributions.

3.2.2 2-D grid modifications

The 2-D grid modification will be done by controlling and adding new points in the same
and coarser resolution levels, as the 1-D grid case. For this purpose, for different points
s1, s2 or s3 (Figure 3.3), different adding procedures will be considered.

Adding extra new points by the multiresolution concept

1. Adding in the same resolution Depending on point type (s1, s2 or s3), different
inserting procedures will be considered; different neighbor points will be added for
each point s1, s2 or s3, see Figure 3.3. There, for an adapted point belonging to W2

, new neighbor points of W2 are locally added. In this figure, hollow squares are
the new extra points added around each point s1, s2 or s3. Here, only one row or
column of the nearest points is considered for modification stage. In general, more
surrounding points of W2 can be considered for each point s1, s2 or s3.
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s1

s2

s3

Figure 3.5: Adding procedure in the same resolution for point types s1, s2 or s3,
where • ∈ V2, • ∪ ◦ ∈ V3, ◦ ∈ W2 and bright gray solid points are the
added points belonging to W2.

s1

w v w

w w w

s2

w

w

w

w

v

w

s3

w

w

v

w

Figure 3.6: Adding procedure in the successive coarser resolution for point types s1, s2
or s3, where • ∈ V2, • ∪ ◦ ∈ V3, ◦ ∈ W2 and bright gray solid points are the
added points belonging to V2.

2. Adding in the successive coarser resolution In this case, for a point belong-
ing to Wj some new surrounding points including in Wj−1 are added. To guar-
antee symmetry and gradual concentration of modified adapted points, it may
also be necessary to consider some extra points from sub-space Vj−1. For differ-
ent points s1, s2 and s3, different neighbor points will be considered. Such grid
checking/adding procedures are shown in Figure 3.3. In each illustration, points
denoted by w belong to sub-space Wj−1 = W2−1 and points with name v belongs
to the sub-space Vj−1 = V2−1. In these figures, only one row or column of the
nearest distance is considered.
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3.2.3 Post-processing 2-D adapted grids

The modification algorithm for 2-D grids is generally similar to the 1-D case; it can be
reviewed as follows:

1. Set the level resolution j (where Jmin ≤ j ≤ Jmax−1) equal to the finest resolution
level; i.e., j = Jmax − 1 (with spatial sampling steps dx = dy = 1/2Jmax−1),

2. Consider the set of points corresponding to detail sub-space of resolution j; i.e.,
points {(xj,k, yj,l) ∈ Wj},

3. Control Ns neighbor-rows or columns of surrounding points for each side of the
point (xj,k, yj,l); this control is done at the same level of resolution,

4. Control Nc neighbor-rows or columns of points for each side of the point (xj,k, yj,l);
this is done at the successive coarser resolution (subspace Wj−1),

5. Regarding step 3, add the surrounding points in subspace Wj,

6. Considering step 4, add the surrounding points in subspace Wj−1; in this stage, it
may also be needed to add some new points in the sub-space Vj−1 (as explained
before),

7. If j > Jmin, set j = j − 1 and go back to step 2, else go to step 8,

8. If j = Jmin, consider only steps 2, 3 and 5.
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The KT central scheme on
non-uniform grids

Introduction Wave propagation problems are encountered in many domains of physics
and engineering: from gas dynamic problems to mechanical waves. A special class of
wave propagation problems are described mathematically by so-called hyperbolic sys-
tems of conservation laws. Most hyperbolic systems of conservation laws in physics are
non-linear and solving them analytically is often difficult, when not impossible. Be-
sides, such analytical solutions are limited for cases with simple boundary conditions
and boundary geometry. Using of numerical methods are essential to approximate these
equations. Their non-linear feature often leads to discontinuous solutions: often known
as shocks or shock waves. These type solutions trigger the failure and instability of most
of classical numerical methods.

The Godunov approach aims to provide a solution to this problem by including
the possible discontinuous character of the solution directly in the numerical method.
Godunov-type methods consider the numerical solution as being discontinuous in essence,
a continuous profile being a particular case of a discontinuous one. In these methods,
space is discretized into volume cells. The numerical solutions are not measured by their
values at a set of (discrete) points, but by their average values over the cells. And this
type of formulation leads to conservative numerical schemes in each cell by considering
the exchange of fluxes at its interfaces with all surrounding cells.

The concept of the piecewise solution with possible discontinuities can prevent spuri-
ous oscillations (see Appendix A) and yields to the concept of high-resolution schemes:
these methods use higher-order approximations in smooth domains and first or a lower
approximation around discontinuities to prevent non-physical oscillations.

In this chapter, the following concepts will be studied:
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1. The concept of Godunov approach is reviewed, at first. Based on it, two general
schemes, the upwind and central methods are explained,

2. Following the central formulation, the KT scheme is provided for non-uniform
cells/grids,

3. Non-linear stability conditions, here TVD, are surveyed for uniform cells at first,
and then are modified to include non-uniform cells.

Finally some 1-D and 2-D numerical examples are provided to confirm capability of the
adaptive KT solver.

4.1 The KT central scheme on non-uniform grids

4.1.1 Godunov-type schemes

The aim of this study is numerical simulation of the hyperbolic system of conservation
laws:

ut + f(u)x = 0, (4.1)

by Godunov-type schemes. For this, sliding average of u(., t) of Eq. (4.1) is computed
over the cell Ix of length ∆x, as:

1
∆x

∫ ∆x/2

−∆x/2
u(ζ, t)tdζ + 1

∆x

∫ ∆x/2

−∆x/2
f(u(ζ, t))ζdζ = 0, ⇒

ūt + 1
∆x

[
f

(
u(x+ ∆x

2 , t)
)

− f

(
u(x− ∆x

2 , t)
)]

= 0,
(4.2)

where Ix =
{
ζ | |ζ − x| ≤ ∆x

2

}
; ū(x, t) := 1

|Ix|
∫
Ix
u(ζ, t)dζ.

In the next step, Eq. (4.2) is integrated over time with sufficiently small time-step ∆t,
i.e. t ≤ τ ≤ t+ ∆t, as:

ū(x, t+ ∆t) = ū(x, t) − 1
∆x

[∫ t+∆t

t
f

(
u(x+ ∆x

2 , τ)
)
dτ −

∫ t+∆t

t
f

(
u(x− ∆x

2 , τ)
)
dτ

]
.

(4.3)

We assume that the solution of Eq. (4.1) at time t = tn is a piecewise polynomial in
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the form:

w(x, tn) =
∑
j

[pj(x)χj(x)] , χj(x) := 1Ij
, (4.4)

where pj(x) is a algebraic polynomial defined on the cell Ij(x). The set {pj(x)} forms a
piecewise polynomial. Evaluation of w(., tn) in time by Eq. (4.3) leads to:

w̄(x, t+ ∆tn) = w̄(x, tn) − 1
∆x

[∫ t+∆t

t
f

(
w(x+ ∆x

2 , τ)
)
dτ −

∫ t+∆t

t
f

(
w(x− ∆x

2 , τ)
)
dτ

]
.

(4.5)

This form of representation is known as the fully-discrete form, since Eq. (4.1) is dis-
cretized both in the time and space.

Based on sampling procedure of x in Eq. (4.5), two general methods can be provided:
Upwind and Central schemes.

Upwind schemes

Let us sample Eq. (4.5) at the mid-cells, x = xν ; then the evolved solution is:

w̄n+1
ν = w̄nν − 1

∆x

[∫ t+∆t

t
f
(
w(xν+ 1

2
, τ)

)
dτ −

∫ t+∆t

t
f
(
w(xν− 1

2
, τ)

)
dτ

]
, (4.6)

where w̄nν := 1
∆x
∫
Iν
w(ζ, tn)dζ and xν± 1

2
:= xν ± ∆x

2 . It is clear that, the above equation
gives the average solutions on non-staggered grids.

Based on aforementioned formulations/descriptions, for utilizing Eq. (4.6), the fol-
lowing steps should be followed:

1. For given cell averages w̄nν , reconstruct the point values w(., tn) as piecewise poly-
nomial approximation:

w(x, tn) =
∑
j

[pj(x)χj(x)] , p̄ν(xν) = w̄nν , (4.7)

2. Compute w̄n+1
ν by the evolution procedure, Eq. (4.6). There, w(xν+ 1

2
, τ ≥ tn) are

determined by the generalized Riemann problems:

wt + f(w)x = 0, t ≥ tn, w(x, tn) =

 pν(x), x < xν+ 1
2
,

pν+1(x), x > xν+ 1
2
.

(4.8)
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It should be mentioned that due to possible discontinuities at xν+ 1
2

at tn, a family of
nonlinear waves/shocks can be produced around xν+ 1

2
in cells Iν and Iν+1. To handle

such solutions, an exact Riemann solver or at least an approximating one is essential to
be used for solving such waves.

The original Godunov scheme uses a constant-piecewise reconstruction as: w(x, tn) =∑
j w̄

n
j χj by an exact Riemann solver.

Central schemes

In this approach, a piecewise polynomial, w(x, tn) = ∑
j pj(x)χ(x), is used to approxi-

mate numerical solutions satisfying the sliding average solution (4.5). Here again, in each
cell Iν , a polynomial is defined with possible jumps in cell-interfaces, xν±1/2 := xν ± ∆x

2 .
In the central schemes, the sampling points in Eq. (4.5) are cell interfaces, x = xν+ 1

2
,

which leads to the relationship:

w̄(xν+ 1
2
, tn+1) = w̄(xν+ 1

2
, tn) − 1

∆x

[∫ tn+1

tn
f (w(xν+1, τ)) dτ −

∫ tn+1

tn
f (w(xν , τ)) dτ

]
.

(4.9)

The evolved solutions (4.9) are obtained on staggered grids.
In brief, the solution procedure consists of:

1. Reconstruct the piecewise polynomial w(., tn) based on cell average values {w̄nν },
as:

w(x, tn) =
∑
j

pj(x)χ(x), p̄ν(xν) = w̄nν , (4.10)

and then compute staggered average values w̄n
ν+ 1

2
as:

w̄nν+ 1
2

= 1
∆x

∫ x
ν+ 1

2

xν

pν(x)dx+
∫ xν+1

x
ν+ 1

2

pν+1(x)dx
 , (4.11)

2. Evaluate the w̄n+1
ν+ 1

2
values from Eq. (4.9): the evolution stage. Let {ak(u)}k

denotes the eigenvalues of the Jacobian A(u) := ∂f
∂u

. Then possible jumps in inter-
faces xν+1/2 can not reach cell-centers xν for sufficiently small values of ∆t, if ∆t ≤
1
2∆x.maxk |ak(u)|; this condition is known as the CFL (Courant-Friedrichs-Lewy)
condition. With this condition, both flux functions f(xν , τ ≥ tn) and f(xν+1, τ ≥
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tn) remain smooth during time interval tn ≤ τ ≤ tn+1. And a high order quadra-
ture rule can be used for the time integration in Eq. (4.9).

4.1.2 Central high resolution schemes

As mentioned in the previous subsection, for utilizing central schemes, two steps are
followed for handling Eq. (4.9): 1) Reconstruction, and 2) Evolution. The resulted
average solutions, w̄n+1

ν+1/2, are obtained on staggered grids. On the other hand, staggered
schemes are more dissipative than non-staggered ones. For this reason, another step
can be used to project the solutions w̄n+1

ν+1/2 on non-staggered grids xν [75]. For such
projection, the evolved solutions w̄n+1

ν+1/2 are first reconstructed as [75]:

w(., tn+1) =
∑
j

pj+1/2(w)χj+1/2(x) (4.12)

and then the projected solution w̄n+1
ν is [75]:

w̄n+1
ν = 1

xν+1/2 − xν−1/2

{∫ xν

xν−1/2

pν−1/2dx+
∫ xν+1/2

xν

pν+1/2dx

}
. (4.13)

This projection for different methods is presented in Figures. A.4 (for LxF), A.6 (for
NT) and A.8 (for KT) in Appendix A.

Following the concept of the central schemes, different methods are developed, some
of the most important ones are:

1. Staggered and non-staggered Lax-Friedrichs (LxF) schemes (with first-order accu-
racy) [74, 75],

2. Staggered and non-staggered Nessyahu-Tadmor (NT) schemes (with second-order
accuracy) [25, 75],

3. The Kurganov-Tadmor (KT) scheme (with second-order accuracy) [22],

4. The Liu-Tadmor third-order scheme [76].

The details of deriving the LxF, NT and KT schemes are presented on uniform grids
in Appendix A.
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The KT central scheme on centered non-uniform grid points

Here, the semi-discretized form of a scalar first-order hyperbolic system, ut + F (u)x =
0, will be provided for the KT method [22] on centered non-uniform grids, with cell
centers xi = (xi−1/2 + xi+1/2)/2; where xi is cell center for cell Ii and xi±1/2 are ithcell
edges.

In this study, the semi-discrete form of hyperbolic systems ut+F (u)x = 0 will be con-
sidered. To derive this form, the Reconstruction/Evolution/Projection (REP) concept
is used, see Figure 4.1. For the KT method, these steps can be summarized as:

1. Reconstruction: In this stage, at time step t = tn, the solution u(x, tn) is re-
constructed over cells in a linear piecewise form based on cell average values at
cell-centers, u(xi, tn) = uni (In general, in each cell, the reconstructed values can
be constant, linear, or higher order one for providing first, second and higher-order
accuracy, respectively).

2. Evolution: After reconstruction, the average solution u(xi, tn) is evolved in time
to obtain solution u(xi+1/2, t

n+1) at the next time step (it should be mentioned
that since reconstruction is linear the cell-average values are equal to cell-center
values),

3. Projection: Evolved solutions are obtained on staggered grids xi+1/2. To project
these solutions on the previous original grid, the projection step is done by averag-
ing the new solution u(x, tn+1) on the previous original grid. In this stage, before
averaging, the solution u(x, tn+1) is again reconstructed in a piecewise form on
staggered grids (cells). For the reconstruction, smooth and non-smooth zones can
be distinguished from each other and different piecewise solution (with different
variations) can then be considered for different regions (this will be explained in
more detail).

Considering the REP procedure, for the ith cell with cell-centered middle point xi
(i.e., xi =

(
xi+1/2 − xi−1/2

)
/2), it is easy to show that the semi-discrete form of the 1-D

scalar hyperbolic equation is:

dui
dt

+
F
(
u∗
i+1/2

)
− F

(
u∗
i−1/2

)
∆xi

= 0, (4.14)

where: ūi ≡ ui =
{∫ xi+1/2

xi−1/2
u(x, t) dt

}
/∆xi denotes the cell center solution (estimated

state values) on ith cell; F (u∗
i±1/2) shows a proper combination of left and right recon-
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xi-1 xi- 12 xi xi+ 12 xi+1

ui-1n

uin

ui+1n

wi+ 12
n+1

wi- 12
n+1

win+1

wi+1n+1

wi-1n+1

uin+1

xi- 12 ,r xi+ 12 ,l xi+ 12 ,r xi+ 32 ,lxi- 12 ,lxi- 32 ,r xi- 12 ,r

Reconstruction

Evolution

Projection

Figure 4.1: The reconstruction/evolution/projection concept: the second order accuracy.
In this figure xi±k,m ≡ xni±k,m, for m ∈ {l, r}.

structed state values and corresponding fluxes at cell edges xi±1/2. The left and right
reconstructed state values are shown respectively by uLi+1/2 and uRi+1/2; for spatially sec-
ond order methods, these values can be evaluated as: uLi+1/2 = ui + (ux)i

(
xi+1/2 − xi

)
and uRi+1/2 = ui+1−(ux)i+1

(
xi+1 − xi+1/2

)
where (ux)i shows a limited slope at point xi; ∆xi =

xi+1/2 − xi−1/2 is the ith cell length. It should be mentioned that for deriving the semi-
discrete form, at first, the fully-discrete form is derived (for evolution from time tn

to tn+1 = tn + ∆t); the semi-discrete form can be obtained as ∆t → 0 (for details see
Appendix A). The resulted equation is continuous in the time but discrete in the spatial
domain.

For the KT scheme, the general assumptions are:

1. To estimate non-smooth zones around cell edges xi+1/2 (in the projection step),
maximum values of local propagation speeds ani+1/2 = a

(
u(xi+1/2, t

n)
)

are used
regardless of propagation directions; i.e., if eigenvalues of (∂F/∂u)i+1/2 are λ1 <

λ2 < · · · < λN , then ai+1/2 ≡ ani+1/2 = max
j∈{1,N}

(∣∣∣λj (uLi+1/2

)∣∣∣ , ∣∣∣λj (uRi+1/2

)∣∣∣). The es-

timated non-smooth zone belongs then to region
[
xni+1/2,l, x

n
i+1/2,r

]
, where: xni+1/2,l =

xi+1/2 − ani+1/2∆t and xni+1/2,r = xi+1/2 + ani+1/2∆t. This non-smooth zone is re-
constructed by a linear function. For sufficiently small values of ∆t (i.e., ∆t ≤
1
2a

n
i+1/2∆xi), the possible shock-like solutions do not reach the cell center. So a

smooth zone exists in each cell for x ∈
(
xni−1/2,r, x

n
i+1/2,l

)
; this solution is recon-

structed by a constant function, see Figure 4.1.
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2. In projection step, to estimate a limited slope (ux)n+1
i+1/2 at center of the non-

smooth zone, xi+1/2, distance of this point from middle of surrounding smooth
zones are considered; for point xi+1/2 the left (∆L) and right (∆R) distances

are: ∆L =

(
xn

i+1/2,r
−xn

i+1/2,l

)
2 +

(
xn

i+1/2,l
−xn

i−1/2,r

)
2 =

(
xn

i+1/2,r
−xn

i−1/2,r

)
2 and ∆R =(

xn
i+1/2,r

−xn
i+1/2,l

)
2 +

(
xn

i+3/2,l
−xn

i+1/2,r

)
2 =

(
xn

i+3/2,l
−xn

i+1/2,l

)
2 . Based on these distances,

the limited slope (ux)n+1
i+1/2 can be obtained. For example by the generalized MIN-

MOD limiter, the limited slope is:

(ux)n+1
i+1/2 = MINMOD

θwn+1
i+1 − wn+1

i+1/2

∆R

,
wn+1
i+1 − wn+1

i

∆R + ∆L

, θ
wn+1
i − wn+1

i−1/2

∆L

 ,
(4.15)

where: the MINMOD function itself is defined as:

MINMOD(z1, z2, · · · ) :=


mini(zi), if zi > 0 ∀i,
maxi(zi), if zi < 0 ∀i,
0, if zi = 0 ∀i.

(4.16)

In the generalized MINMOD limiter, the parameter θ controls the dissipation in
numerical solutions: θ = 1 and θ = 2 lead to the most and the least dissipated
results, respectively. In this regard, this parameter is chosen such that 1 ≤ θ ≤ 2
[22].

Regarding these assumptions, it can be shown that:

F
(
u∗
i+1/2

)
= 1

2
{[
F
(
uRi+1/2

)
+ F

(
uLi+1/2

)]
− ai+1/2

[
uRi+1/2 − uLi+1/2

]}
. (4.17)

In formulation of the central high resolution schemes, it is not necessary to know the
directions of propagating fronts. This makes these methods simple to implement with
straightforward algorithms. The first proposed central scheme is the LxF method with
one order spatial accuracy; to improve the accuracy, the LxF method was then modified
by Nessyahu and Tadmor (the NT scheme) to achieve a second order accuracy scheme.
The shortcoming of both the LxF and NT methods is that they use staggered grids.
This leads to more dissipative algorithms, generally. For this, Kurganov and Tadmor
modified the NT scheme to work on non-staggered grids, the KT scheme; the accuracy
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of this new scheme can be of second or higher order, depending of polynomial-order in
the construction stage.

4.1.3 Central high-resolution schemes on non-centered non-uniform
1-D cells

By using the cell-centered non-uniform cells, the TVD stability condition does not satisfy
without altering definition of slope/flux limiters. To preserve the TVD condition without
limiter modification, it will be shown that by shifting cell centers in some cells, the
TVD condition can be reached. These cells act as transmitting cells connecting two
surrounding uniform cells of different lengths. By such cell-center shifting, a new source
of the truncation error will be introduced. Effects of this new error will be discussed.

Considering the REP, the full-discrete and semi-discrete forms of the scaler hyper-
bolic equation ut + F (u)x = 0 will be provided on non-centered non-uniform cells. For
generality, it is assumed that cell centers xj are not located at cell centers; so, the left
and right cell-edge positions are: xj−1/2 := xj − (1 − pj)∆xj and xj+1/2 := xj + pj∆xj,
where 0 < pj < 1 (for pj = 1/2 the cell center xj is the middle point of jth cell).

The reconstruction and evolution stages In the reconstruction stage, the linear piece-
wise function is used, 4.1. For the evolution stage, the calculations are as follows:

1. The spatio-temporal volume ∆xj+1/2×∆t is considered, where ∆xj+1/2 := xnj+1/2,r−
xnj+1/2,l = 2∆tanj+1/2, and ∆t := tn+1 −tn. By averaging on this volume and consid-
ering the midpoint integration rule in time, the solution wn+1

j+1/2 := w(xj+1/2, t
n+1)

can be obtained as:

wn+1
j+1/2 = 1

∆xj+1/2

∫ xn
j+1/2,r

xn
j+1/2,l

u(x, tn+1) dx

= 1
∆xj+1/2

∫ xn
j+1/2,r

xn
j+1/2,l

u(x, tn) dx − 1
∆xj+1/2

∫ tn+1

tn

[
F (unj+1/2,r) − F (unj+1/2,l)

]
dt

= 1
4

(
−∆tan

j+ 1
2

(ux)nj + ∆tan
j+ 1

2
(ux)nj+1

+2∆xjpj (ux)nj + 2∆xj+1 (pj+1 − 1) (ux)nj+1 + 2uj + 2uj+1
)

− 1
2an

j+ 1
2

(
F
n+ 1

2
j+ 1

2 ,r
− F

n+ 1
2

j+ 1
2 ,l

)
,

(4.18)

where F n+ 1
2

j+ 1
2 ,r

:= F
(
u
(
xj+ 1

2 ,r
, tn+ 1

2
))

and F
n+ 1

2
j+ 1

2 ,l
:= F

(
u
(
xj+ 1

2 ,l
, tn+ 1

2
))

.
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2. The spatio-temporal volume ∆xl−rj × ∆t is considered, where ∆xl−rj := xnj+1/2,l −
xnj−1/2,r = ∆xj−∆t

(
anj−1/2 + anj+1/2

)
. By averaging on this volume and considering

the midpoint rule in time, the evolved solution wn+1
j := w(xj, tn+1) is:

wn+1
j = 1

∆xl−rj

∫ xn
j+1/2,l

xn
j−1/2,r

u(x, tn+1) dx

= 1
∆xl−rj

∫ xn
j+1/2,l

xn
j−1/2,r

u(x, tn) dx − 1
∆xl−rj

∫ tn+1

tn

[
F (unj+1/2,l) − F (unj−1/2,r)

]
dt

= 1
2

(
∆t
(

an
j− 1

2
− an

j+ 1
2

)
(ux)nj + ∆xj (2pj − 1) (ux)nj + 2uj

)
−

∆t
(

F
n+ 1

2
j+ 1

2 ,l
− F

n+ 1
2

j− 1
2 ,r

)
∆xj − ∆t

(
an
j− 1

2
+ an

j+ 1
2

) .

(4.19)

3. Regarding volume ∆xj−1/2 × ∆t, where ∆xj−1/2 := xnj−1/2,l − xnj−1/2,r, the evolved
solution wn+1

j−1/2 := w(xj−1/2, t
n+1) can be obtained with the similar procedure ex-

plained in Eq. (4.18); it is:

wn+1
j−1/2 = 1

∆xj−1/2

∫ xn
j−1/2,r

xn
j−1/2,l

u(x, tn+1) dx

= 1
∆xj−1/2

∫ xn
j−1/2,r

xn
j−1/2,l

u(x, tn) dx− 1
∆xj−1/2

∫ tn+1

tn

[
F (unj−1/2,r) − F (unj−1/2,l)

]
dt

= 1
4
(
−∆tanj− 1

2
(ux)nj−1 + ∆tanj− 1

2
(ux)nj + 2∆xj (pj − 1) (ux)nj

+2pj−1∆xj−1 (ux)nj−1 + 2uj−1 + 2uj
)

− 1
2an

j− 1
2

(
F
n+ 1

2
j− 1

2 ,r
− F

n+ 1
2

j− 1
2 ,l

)
.

(4.20)

Considering wn+1
j+1/2, w

n+1
j , and wn+1

j−1/2 definitions in Eqs. (4.18), (4.19) and (4.20), a
piecewise-linear approximation on the staggered grid in the evolution stage is (see Figure
(4.1)):

w̃(x, tn+1) :=
∑
j

wn+1
j+1/2 + (ux)n+1

j+1/2

(
x − xj+1/2

)
1[
xn

j+1/2,l
,xn

j+1/2,r

] + wn+1
j 1[

xn
j−1/2,r

,xn
j+1/2,l

] ,

where (ux)n+1
j±1/2 denote limited derivatives (calculated at time tn+1) and 1[a,b] shows the

unit (box) function having unit value on the spatial interval [a, b] and is zero elsewhere.
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The projection stage The fully discrete second-order central scheme can be obtained
by averaging w̃(x, tn+1) on the interval

[
xj−1/2, xj+1/2

]
, as:

ūn+1
j = 1

∆xj

∫ xj+1/2

xj−1/2

w̃(x, tn+1) dx

= 1
4∆xj

[
2
(

∆t
(

F
n+ 1

2
j− 1

2 ,l
− F

n+ 1
2

j+ 1
2 ,l

+ F
n+ 1

2
j− 1

2 ,r
− F

n+ 1
2

j+ 1
2 ,r

)
+ ∆xj

(
∆xj (2pj − 1) (ux)nj + 2uj

))
+ 2∆tan

j− 1
2

(
∆xj−1pj−1 (ux)nj−1 − ∆xj (pj − 1) (ux)nj + uj−1 − uj

)
+ 2∆tan

j+ 1
2

(
∆xj (−pj) (ux)nj + ∆xj+1 (pj+1 − 1) (ux)nj+1 − uj + uj+1

)
−∆t2

(
an
j− 1

2

)2 (
(ux)nj−1 + (ux)nj − 2 (ux)n+1

j−1/2

)
+∆t2

(
an
j+ 1

2

)2 (
(ux)nj + (ux)nj+1 − 2 (ux)n+1

j+1/2

)]
,

(4.21)

where ūn+1
j denotes average of solution u(x, tn+1) on the cell Ij ∈

[
xj−1/2, xj+1/2

]
.

The semi-discrete form Regarding the full discrete form (Eq. (4.21)), for small
enough ∆t values, the following approximations can be assumed: 1) ignoring of terms
corresponding to ∆t2; 2) F

n+ 1
2

j± 1
2 ,r

≈ F n
j± 1

2 ,r
= FR

j±1/2 and F
n+ 1

2
j± 1

2 ,l
≈ F n

j± 1
2 ,l

= FL
j±1/2 (due

to the Taylor expansion in smooth zones). By these approximations, Eq. (4.21) can be
rearranged and rewritten as:

ūn+1
j − unj

∆t ≈ 1
4∆xj

{
2
(

−Fn
j+ 1

2 ,l
− Fn

j+ 1
2 ,r

+ Fn
j− 1

2 ,l
+ Fn

j− 1
2 ,r

)
− 2

(
−uj−1an

j− 1
2

+ uja
n
j− 1

2
+ uja

n
j+ 1

2
− uj+1an

j+ 1
2

)
+ 2

(
∆xj−1pj−1an

j− 1
2

(ux)nj−1 + ∆xj
(

an
j− 1

2
− pj

(
an
j− 1

2
+ an

j+ 1
2

))
(ux)nj

)
+2
(

∆xj+1 (pj+1 − 1) an
j+ 1

2
(ux)nj+1

)}
−
(1

2 − pj

)
(ux)nj

∆xj
∆t .

(4.22)

Since uLj+1/2 := uj + pj∆xj (ux)nj and uRj−1/2 := uj − (1 − pj)∆xj (ux)nj , Eq. (4.22) can be
rewritten as:

ūn+1
j − unj

∆t +
F ∗
j+1/2 − F ∗

j−1/2

∆xj
≈ Qn

j , (4.23)
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where F ∗
j+1/2 := FR

j+1/2+FL
j+1/2

2 − aj+1/2
2

(
uRj+1/2 − uLj+1/2

)
and Q := −

(
1
2 − pj

)
(ux)nj

∆xj

∆t .
On the other hand, spatial distance between the midpoint x̄j and xj is: δj := xj − x̄j =[
xj+1/2 − pj∆xj

]
−
[
xj+1/2 − ∆xj

2

]
=
(

1
2 − pj

)
∆xj. So average solutions ūnj relate to

point value solutions, unj as: unj ≈ ūnj + δj × (ux)nj . In this regard, Eq. (4.23) can be
written as:

ūn+1
j − ūnj

∆t +
F ∗
j+1/2 − F ∗

j−1/2

∆xj
≈ 0. (4.24)

At the limit ∆t → 0, this equation becomes:

dūj
dt +

F ∗
j+1/2 − F ∗

j−1/2

∆xj
= 0. (4.25)

So, in the sense of average solutions, the semi-discrete form remains conservative. We
can rewrite Eq. (4.23) based on point value solutions, unj ; for this purpose, we approxi-
mate un+1

j as un+1
j = ūn+1

j + δj × (ux)n+1
j ; so we have:

un+1
j − unj

∆t +
F ∗
j+1/2 − F ∗

j−1/2

∆xj
≈ Qn

j −Qn+1
j , (4.26)

We conclude this section with the following remarks regarding (Eqs. (4.23) and (4.26)).

1. The term Q acts as a new source of the truncation error,

2. Effects of ∆t in Q can be controlled by small-enough spatial sampling steps ∆xj.
This can be done by a proper grid adaptation procedure around high-gradient
zones,

3. If xj is in the middle of the jth cell, i.e. p = 1/2, the truncation error Q van-
ishes: Q = 0,

4. Around discontinuities, since limited slopes (ux)nj are nearly zero, the error Q
approaches to zero,

5. Average solution on jth cell is ūnj :=
(
unj
)
ave

= unj +Q× ∆t.

Some remarks
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1. In this section, the generalized MINMOD limiter is used for estimation of slope (ux)i
as [22]:

(ux)i = MINMOD
(
θ
ui − ui−1

∆n
L

,
ui+1 − ui−1

∆n
L + ∆n

R

, θ
ui+1 − ui

∆n
R

)
, θ ∈ [1, 2], (4.27)

where ∆n
R := pi∆xi + (1 − pi+1)∆xi+1, and ∆n

L := pi−1∆xi−1 + (1 − pi)∆xi.

2. The semi-discrete form (Eq. (4.24) or (4.26)) can be evaluated in time by a stan-
dard time-integration method, such as the Runge-Kutta (RK), or Adams-Bashford
scheme. Here, the time integration is performed by the second-order RK solver
having the TVD property [22]; this algorithm is:

ū
(1)
i = ū

(0)
i + ∆t C[u(0)],

ū
(2)
i = ū

(1)
i + ∆t

2
(
C[u(1)] − C[u(0)]

)
,

(4.28)

where C[u] = − 1
∆xi

(F ∗
i+1/2 − F ∗

i−1/2), and ū
(0)
i := uni is the average solution on

the ith cell at t = tn.

4.1.4 Formulation for the 2-D semi-discrete form

Let us assume to have a solution at time tn. It is possible to reconstruct the 2-D solution
as a non-oscillatory piece-wise linear polynomial, as:

u(x, y, t) ≈
∑
j,k

[
uj,k(t) + (ux)j,k (x− xj) + (uy)j,k (y − yk)

]
1[xj−1/2,xj+1/2]×[yk−1/2,yk+1/2],

(4.29)

where: (ux)j,k denotes a limited approximation of the exact derivative in the x direc-
tion, as: (ux)j,k := ϕxj,k

[
∂
∂x
uj,k(t)

]
, wherein ϕxj,k shows a limiter at (xj, yk) working at

the x direction; in the same way, for the y direction, we have: (uy)j,k := ϕyj,k
[
∂
∂y
uj,k(t)

]
;

uj,k(t) := u(xj, yk, t). The piece-wise reconstruction (4.29) with the MINMOD limiters
guarantees the non-oscillatory feature in the frame work of the (local) maximum princi-
ple, see [165], Theorem 1.

For spatial discretization, since grid points are not in a tensor product style, the
simple concept of the dimension by dimension discretization is followed; in this regard,
the semi-discrete formulation for the scalar 2-D hyperbolic PDE, ut + Fx + Gy = 0,
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can be written in terms of average solutions at point (xj, yk), as:

∆ūj,k
∆t +

F ∗
j+1/2,k − F ∗

j−1/2,k

∆xj
+
G∗
j,k+1/2 −G∗

j,k−1/2

∆yk
= 0,

where: ūj,k := ū(xj, yk, t) is an average solution; reconstructed fluxes F ∗
j+1/2,k and G∗

j,k+1/2

are:

F ∗
j+1/2,k :=

FR
j+1/2,k + FL

j+1/2,k

2 −
axj+1/2,k

2
(
uRj+1/2,k − uLj+1/2,k

)
,

G∗
j,k+1/2 :=

GR
j,k+1/2 +GL

j,k+1/2

2 −
ayj,k+1/2

2
(
uRj,k+1/2 − uLj,k+1/2

)
,

where: xj−1/2 := xj − (1 − pxj )∆xj and xj+1/2 := xj + pxj∆xj; yk−1/2 := yk − (1 −
pyk)∆yk and yk+1/2 := yk + pyk∆yk; uRj+1/2,k := uj+1,k − (ux)nj+1,k

(
xj+1 − xj+1/2

)
and

uLj+1/2,k := uj,k + (ux)nj,k
(
xj+1/2 − xj

)
; uRj,k+1/2 := uj,k+1 − (uy)nj,k+1

(
yk+1 − yk+1/2

)
and

uLj,k+1/2 := uj,k + (uy)nj,k
(
yk+1/2 − yk

)
; the local speeds, axj+1/2,k and ayj,k+1/2, can be

evaluated as: axj+1/2,k := max ρ
[
∂F

(
uRj+1/2,k

)
/∂u, ∂F

(
uLj+1/2,k

)
/∂u

]
4 and ayj,k+1/2 :=

max ρ
[
∂G

(
uRj,k+1/2

)
/∂u, ∂G

(
uLj,k+1/2

)
/∂u

]
.

The maximum principle for 2-D central schemes It is well known that exact entropy
(physical) solution of a 2-D scalar conservation law satisfies a maximum principle [165];
this principle is:

max
j,k

{
ūj,k(tn+1)

}
≤ max

j,k
{ūj,k(tn)} .

This principle guarantees that a monotone solution remains monotone through time.
Based on the work by Kurganov and Tadmor, [22], theorem 5.1, with a proper CFL

condition and MINMOD limiters in the x and y directions, the resulting fully-discrete
central scheme satisfies the maximum principle. So, a monotone reconstructed solution
(based on Eq. (4.29)), will remain monotone through time.

4Operator ρ(A) (where A := ∂F (u) /∂u) shows the spectral radius of the matrix A, or: ρ(A) :=
maxi |λi(A)|, wherein {λi} are eigenvalues of A.
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4.1.5 Systems with source and diffusion terms

1-D systems If diffusion (Q(u, ux)) and source (S(u)) terms are included, then the
1-D convection equation can be rewritten as a convection-diffusion system:

ut + F (u)x = Q(u, ux)x + S(u) (4.30)

In this case, it is shown that the semi-discretized form of the central scheme is [22]:

dui
dt

+ 1
∆xi

(F ∗
i+1/2 − F ∗

i−1/2) = 1
∆xi

(Pi+1/2 − Pi−1/2) + Si, (4.31)

where Si = S(ui); F ∗
i±1/2 have the previous definitions and Pi±1/2 are:

Pi−1/2 = 1
2{Q(ui−1,

ui − ui−1

∆xi−1
) +Q(ui,

ui − ui−1

∆xi−1
)},

Pi+1/2 = 1
2{Q(ui,

ui+1 − ui
∆xi

) +Q(ui+1,
ui+1 − ui

∆xi
)}.

(4.32)

The semi-discrete form (4.31) can be evaluated in time by the TVD second-order RK
solver as [22]:

ū
(1)
i = ū

(0)
i + ∆t C[u(0)],

ū
(2)
i = ū

(1)
i + ∆t

2
(
C[u(1)] − C[u(0)]

)
,

(4.33)

where C[u] = − 1
∆xi

(F ∗
i+1/2 − F ∗

i−1/2) + 1
∆xi

(Pi+1/2 − Pi−1/2) + Si, and ū(0)
i := uni (denotes

average solutions on the cell i).

2-D systems Consider a 2-D convection-diffusion system having diffusion terms and a
source term as follows:

ut + F (u)x +G(u)y = Qx(u, ux, uy)x +Qy(u, ux, uy)y + S(u), (4.34)

where u = u(x, y, t); F (u) and G(u) denote fluxes in x and y directions, respectively;
Qx(u, ux, uy) andQy(u, ux, uy) are diffusion terms in x and y directions, respectively; S(u)
represents the source term.

Let us assume a cell-centered 2-D rectangle cell Ω ∈ [xi−1/2, xi+1/2] × [yk−1/2, yk+1/2]
with cell widths ∆x and ∆y. By following the REP stages and considering the bi-linear
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variation for the state variable through the rectangle cell (Eq. (4.29)), it is easy to show
that the semi-discrete form of the KT formulation is [22]:

dui,k
dt

+ 1
∆xi

(F ∗
i+1/2,k − F ∗

i−1/2,k) + 1
∆yk

(G∗
i,k+1/2 −G∗

i,k−1/2) =

1
∆xi

(P x
i+1/2,k − P x

i−1/2,k) + 1
∆yk

(P y
i,k+1/2 − P y

i,k−1/2) + Si,k,

(4.35)

where:

F ∗
i+1/2,k = {[F (uRi+1/2,k) + F (uLi+1/2,k)] − axi+1/2,k[uRi+1/2,k − uLi+1/2,k]}/2,

G∗
i,k+1/2 = {[G(uRi,k+1/2) +G(uLi,k+1/2)] − ayi,k+1/2[u

R
i,k+1/2 − uLi,k+1/2]}/2,

P x
i+1/2,k = {Qx(ui,k,

ui+1,k − ui,k
∆xi

, (uy)i,k) +Qx(ui+1,k,
ui+1,k − ui,k

∆xi
, (uy)i+1,k)}/2,

P y
i,k+1/2 = {Qy(ui,k, (ux)i,k,

ui,k+1 − ui,k
∆yk

) +Qy(ui,k+1, (ux)i,k+1,
ui,k+1 − ui,k

∆yk
)}/2,

Si,k = S(u(xi, yk)).
(4.36)

4.2 Nonlinear stability: the TVD condition
In this subsection, a nonlinear stability condition for nonlinear conservation laws will
be reviewed, which originally is developed for uniform grids. The criterion is the total
variation diminishing (TVD) condition to prevent developing of spurious oscillations in
numerical solutions of nonlinear hyperbolic systems.

The TVD condition leads to a set of global requirements, known as the positivy
conditions. Based on these general conditions, some local conditions can be derived.
These conditions are important for designing slope/flux limiters. Finally, performance
of flux/slope limiters will be studied for non-uniform non-centered grids (cells).

Before providing stability conditions, definitions of total variation (TV) and TVD are
presented.

The TV definition and the TVD condition Total Variation (TV) of a continuous
solution u(x) is defined as:

TV (u) :=
∫

|u′(x)| dx, (4.37)
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where u′(x) := du(x)/dx. For discrete solutions ui := u(xi) it becomes:

TV (u) :=
∑
i

|ui+1 − ui| , (4.38)

A solution is TVD if

∑
i

∣∣∣un+1
i+1 − un+1

i

∣∣∣ ≤
∑
i

∣∣∣uni+1 − uni
∣∣∣ , (4.39)

or TV (un+1) ≤ TV (un).
This TVD condition guarantees that a monotone solution, will remain monotone

through time and this prevent of forming spurious oscillations (this will be shown).

Global TVD conditions

To control the development of spurious oscillations in numerical simulation of hyperbolic
systems, it is necessary to show that a monotone (non-increasing or non-decreasing)
profile remains monotone during time evolution. To achieve high-order of accuracy, a
relaxed monotonicity condition — so called Total Variation Diminishing (TVD) is sought
[68, 166].

TVD conditions based on the fully-discrete form of nonlinear conservation laws
Based on the three-point-stencil formulations, the fully-discrete form of nonlinear con-
servation laws can be written as:

un+1
i = uni + C+

i+1/2(u
n
i+1 − uni ) − C−

i−1/2(u
n
i − uni−1), (4.40)

where: uni := u(xi, tn), C+
i+1/2 and C−

i−1/2 are some coefficients. Based on this general
form, the TVD condition which is necessary for numerical stability will be derived.

Theorem 1. In order to the fully-discrete form (4.40) is TVD, the following conditions
are sufficient:

C+
i+1/2 + C−

i+1/2 ≤ 1,

C−
i+1/2 ≥ 0,

C+
i+1/2 ≥ 0.

(4.41)
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TVD conditions based on the semi-discrete form of nonlinear conservation laws
Again for three point stencil, the semi-discrete-form can be presented as:

d

dt
ui(t) = C+

i+1/2(u
n
i+1 − uni ) − C−

i−1/2(u
n
i − uni−1). (4.42)

Theorem 2. In order to the semi-discrete form (4.42) is TVD, the following conditions
are sufficient:

C+
i+1/2 + C−

i+1/2 ≤ 1,

C−
i+1/2 ≥ 0,

C+
i+1/2 ≥ 0.

(4.43)

The proofs of Theorems 1 and 2 are presented in Appendix C.
Theorems 1 and 2 show that for both fully-discrete and semi-discrete forms the TVD

conditions are the same. A general (global) TVD condition derived in [166] and men-
tioned above is expressed in terms of the above-mentioned global positivity condition
[167–169].

Designing flux/slope limiters, based on the global positivity conditions

Flux limiters Based on the global TVD conditions, a proper flux limiter can be de-
signed. By a flux limiter, a higher-order numerical flux FH

i can be divided into two
parts:

1. A low-order flux, FL
i ; using of this flux leads to non-oscillatory results in expense

of low-order accuracy,

2. The residual flux, as: FH
i − FL

i . The higher-order flux can be recovered as: FH
i =

FL
i +ϕi

(
FH
i − FL

i

)
, where ϕi := ϕ(xi) is a flux limiter with values in the range: 0 ≤

ϕi ≤ 1. For smooth solutions ϕi approaches to the unit value and therefore a
higher-order solution is obtained, while around discontinuities it approaches zero,
to prevent spurious oscillations.

It is possible to show that a flux limiter ϕi satisfying the global TVD conditions yields
to the following relationships:
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0 ≤ ϕi(ri)
ri

≤ 2,

ϕ(ri) ≤ 2,
(4.44)

where ri is a smoothness detector (monitor) defined as: ri := ui−ui−1
ui+1−ui

. Also for ri ≤ 0,
we assume that ϕ(ri) = 0 to guarantee that solutions remain TVD; for details of this
requirement and deriving of Eq. (4.44), please see Appendix C.

Slope limiters The relationship between a slope limiter and a flux limiter is the next
question. It is possible to show that performance of a flux limiter is the same as a
slope limiter based on the above-mentioned relationships (see Appendix C), so a linear
reconstruction can be written as:

u(x, tn) = uni + (ux)i(x− xi), (4.45)

where (ux)i is a limited slope: (ux)i = ϕi
ui+1−ui

xi+1−xi
.

Finally it should be mentioned that to have solutions of second-order accuracy, it is
necessary that linear solutions are not limited, and this means: ϕ(r = 1) = 1.

4.2.1 Local TVD conditions

Local TVD conditions were studied in [170] where it was shown that for the TVD
property to hold, it suffice to verify the positivity condition Eq. (4.41) in the extreme
cells and their surrounding grid points. In the present context of Eq. (4.25) or Eq.
(4.31), these local TVD conditions amount to:

1. In extreme points, for both uniform and non-uniform cells, the numerical fluxes
F ∗
i±1/2 satisfy (see [170], Lemma 2.1) (also see Appendix C):

a) at maximum values ui : F ∗
i+1/2 ≥ F ∗

i−1/2,

b) at minimum values ui : F ∗
i+1/2 ≤ F ∗

i−1/2,

2. Osher [171] showed that in order to satisfy the positivity conditions, and therefore
the TVD property, we should have:
0 ≤ ∆x

∆−ui
(u,x)i ≤ 1 and 0 ≤ ∆x

∆+ui
(u,x)i ≤ 1,
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u j
n

u j
n+1

F j+1/2
* F j-1/2

*
u j
n

u j
n+1

F j+1/2
*

≤ F j-1/2
*

Figure 4.2: The first local TVD condition.

3. For neighbor points of an extreme ui (with estimated derivative (u,x)i = 0; this
is based on the condition 2), for uniform grids with width ∆x, the neighbor
derivatives meet conditions (see [170], example 2.4):
1
2 | ∆x

∆−ui
(u,x)i−1 |≤ 1 and 1

2 | ∆x
∆+ui

(u,x)i+1 |≤ 1.

In these conditions, we have: ui := u(xi); ∆xi := xi+1/2 − xi−1/2 denotes ith cell width;
in case of uniform grids: ∆x = ∆xi; F ∗

i±1/2 represent reconstructed fluxes at right and
left cell boundaries xi±1/2; ∆±ui := ±(ui±1 − ui); (u,x)i±1 are the estimated (limited)
first derivatives at points xi±1.

The conditions 1-3 have physical meaning:

1. The first condition states that:

a) An extreme solution with maximum value should decrease in time (i.e., un+1
i ≤

uni ), while an extreme solution with minimum value should increase through
time (i.e., un+1

i ≥ uni ); these conditions are presented in Figure 4.2

b) Also, a monotone solution remains monotone during time evolution, for this
see Appendix C, the proof of Lemma 1.

2. From the second condition, it is clear that at extreme points we must have: (u,x)i =
0. For instance, let us assume ui (at xi) is a maximum point, where ∆+ui < 0
and ∆−ui > 0; from the second condition we have:

0 ≥ (u,x)i ≥ ∆+ui
∆x = −C1,

0 ≤ (u,x)i ≤ ∆−ui
∆x = C2,

where C1 and C2 are positive constants. So it is clear these inequalities are satisfied,
if and only if: (u,x)i = 0. These conditions are presented in Figure 4.3
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Figure 4.3: The second local TVD condition.

u(x tn)

Figure 4.4: The third local TVD condition.

3. Due to the third condition, the reconstructed values in cell edges should satisfy
the monotonicity feature: magnitude of the reconstructed values should be less
than immediately neighbor cell center values. This means, for example, if uni−1 ≤
uni ≤ uni+1, then uni−1 ≤ uni−1/2 ≤ uni ≤ uni+1/2 ≤ uni+1. This condition is presented
in Figure 4.4

The third local TVD condition is for uniform cells. For providing corresponding
conditions over non-uniform cells, let us assume the linear advection equation ut+ux = 0.
For a E-scheme the following conditions should be satidfied (Appendix C):

Sign (ui+1 − ui) = Sign
(
f(u) − F ∗

i+1/2

)
,

Sign (ui − ui−1) = Sign
(
f(u) − F ∗

i−1/2

)
,

(4.46)

where f denotes the fulx function and F ∗ indicates the numerical flux. Let us assume
the numerical flux of the KT scheme as:

F ∗
i+1/2 := 1

2
[(
f ri+1/2 + f li+1/2

)
− ai+1/2

(
uri+1/2 − uli+1/2

)]
, (4.47)
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Also let us assume that ui is an extermum point where due to the TVD condi-
tion (ux)i = 0. Then the reconstructed values uri+1/2 and uli+1/2 are:

uri+1/2 = ui+1 − (ux)i+1
∆xi+1

2 ,

uli+1/2 = ui + (ux)i
∆xi

2 = ui.

(4.48)

Also the reconstructed values uri−1/2 and uli−1/2 read:

uri−1/2 = ui − (ux)i
∆xi

2 = ui,

uli−1/2 = ui−1 + (ux)i−1
∆xi−1

2 .

(4.49)

Regarding f(u) = u, the numerical fluxes read:

F ∗
i+1/2 = 1

2

[((
ui+1 − (ux)i+1

∆xi+1

2

)
+ (ui)

)
− 1 ×

((
ui+1 − (ux)i+1

∆xi+1

2

)
− (ui)

)]
= ui,

F ∗
i−1/2 = 1

2

[(
(ui) +

(
ui−1 + (ux)i−1

∆xi−1

2

))
− 1 ×

(
(ui) −

(
ui−1 + (ux)i−1

∆xi−1

2

))]

= ui−1 + (ux)i−1
∆xi−1

2 .

(4.50)

Then based on Eq. (4.46) for non-uniform cells (due to the E-condition (Appendix
C)) at extreme point xi, we have:

Sign (ui+1 − ui) = Sign
({(

ui+1 − ∆xi+1

2 (u,x)i+1

)
− (ui)

})
,

Sign (ui − ui−1) = Sign
({

(ui) −
(
ui−1 + ∆xi−1

2 (u,x)i−1

)})
.

(4.51)

Following Appendix C, from these relationships, TVD preserving derivatives should
satisfy:
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1
2 | ∆xi−1

∆−ui
(u,x)i−1 |≤ 1 and 1

2 | ∆xi+1

∆+ui
(u,x)i+1 |≤ 1. (4.52)

These two relationships confirm also as before necessity of the monotone reconstruction
in cell edges for non-uniform cells.

For deriving details of Eqs. (4.51) and (4.52), please see Appendix C.

4.2.2 Irregularity effects on slope limiters

The central/central-upwind schemes (e.g., the KT method) is originally developed for
uniform cells. Most of them satisfy the TVD and monotonicity preserving conditions. On
irregular cells, these methods do not completely meet these conditions and therefore do
not remain necessarily stable. In the following, effects of cell irregularities will be studied
by considering the monotonicity preserving necessity and the local TVD conditions. It
will be shown that only the grid modification (for gradual variation of grids) is not
generally enough to guarantee TVD results: this only-grid modification is a common
approach in most engineering works.

Slope limiters on uniform grids

Most of slope limiters meet some necessary conditions, as: 1) the TVD; 2) preserving
linear approximation; and 3) symmetric feature. These properties are explained in brief,
as follows.

The TVD property Considering physical meanings of the local TVD conditions 1-3,
the upper limit of a TVD limiter for ith cell is (for more details, one can see [172]):

u′
i = min

{
2 (∆+ui)

∆x ,
2 (∆−ui)

∆x

}
, (4.53)

where: ∆x = ∆xi, ui denotes cell center solution on the ith cell and the operator u′
i is the

upper limit of a discrete approximation of grad(ui) in a way that solutions remain TVD.
This can easily be obtained, since at exterma points u′

i = 0, also the first condition show
that a monotone solution remain monotone during time. Now, let us assume that xi
is located between two exterma; then based on the third condition, Eq. (4.52), we can
rewrite Eq. (4.52) for (u,x)i as:
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1
2

∆xi
∆−ui+1

(u,x)i ≤ 1,

1
2

∆xi
∆+ui−1

(u,x)i ≤ 1,

but, it is clear that: ∆−ui+1 = ∆+ui and ∆+ui−1 = ∆−ui. So, the above inequalities
become:

1
2

∆xi
∆+ui

(u,x)i ≤ 1,

1
2

∆xi
∆−ui

(u,x)i ≤ 1,

and so Eq. (4.53) can be obtained.
To have TVD solutions, estimated derivative (ux)i := du(xi, t)/dx should be limited

by a slope limiter ϕi := ϕ(Ri) as ϕi × (ux)i. The function ϕi is a slope limiter at xi,
where 0 ≤ ϕi ≤ 1. Parameter Ri measures smoothness by the relative of successive
gradients around point xi; for uniform grids its definition is: Ri = ∆+ui/∆+xi

∆−ui/∆−xi
= ∆+ui

∆−ui
(it

should be mentioned that ri = 1/Ri).
For all TVD slope limiters, it is necessary that: ϕi(ux)i ≤ u′

i (this upper TVD limiter
will be derived on non-uniform cells).

The linear approximation preserving For a linear function with slope s on a uniform
grid, it is clear: Ri = ∆+ui/∆−ui = {s. (∆+xi)} / {s. (∆−xi)} = 1. In this regard,
the linear preserving condition is: ϕ(1) = 1. This constraint can also be obtained by
considering the MINMOD limiter definition: the linear preserving feature is conserved
if the forward and backward derivatives are the same, i.e., Ri = 1.

The symmetric feature The condition is: ϕ(Ri) = ϕ(1/Ri). This condition assure
that slope limiter effects are the same for forward and backward propagating solutions.
To more clarify this feature, a new parameter f can be defined as:

f = ∆−ui
∆0ui

, (4.54)

where ∆0ui := ui+1 − ui−1. This new parameter is illustrated in Figure 4.5.
For monotone solutions, ui is always between ui−1 and ui+1, so f belongs always to

the range [0, 1]. The parameters R and f have then a relationship with each other, as:
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Δ0u j Δ u j

Δ-u j

f=
Δ- u j

Δ0 u j
=
u j-u j-1

u j+1-u j-1

0≤f≤1

Figure 4.5: The definition of the parameter f .

R = ui+1 − ui
ui − ui−1

=
ui+1−ui

ui+1−ui−1
ui−ui−1
ui+1−ui−1

=
ui+1−ui+(ui−1−ui−1)

ui+1−ui−1
ui−ui−1
ui+1−ui−1

=
ui+1−ui−1
ui+1−ui−1

− ui−ui−1
ui+1−ui−1

ui−ui−1
ui+1−ui−1

=
1 − ∆−ui

∆0ui

∆−ui

∆0ui

= 1 − f

f
.

(4.55)

The symmetric property is now clear, since:

ϕ(R) = ϕ((1 − f)/f) ≡ ϕ(f), (4.56)

and

ϕ(1/R) = ϕ

(
f

1 − f

)
= ϕ

(
− −f

1 − f

)
= ϕ

(
−−f + 1 − 1

1 − f

)
= ϕ

(
1 − (1 − f)

1 − f

)
≡ ϕ(1 − f).

(4.57)

And since ϕ(1 − f) ≡ ϕ(f), then:
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ϕ(f) = ϕ(1 − f) for 0 ≤ f ≤ 1. (4.58)

4.2.3 Slope limiters on cell-centered non-uniform grids

A grid with non-uniform cells is considered. The widths of successive cells can be related
to each other by coefficients: a = ∆xi−1/∆xi and b = ∆xi+1/∆xi. A possible jump in a
solution between points xj+1 and xj−1 is denoted by ∆0ui, where ∆0ui := ui+1 − ui−1.
The forward (D+ui), backward (D−ui) and centered (D0ui) differences can then be
written as:

D±ui :=∆±ui
∆±xi

,

D0ui := ∆0ui
∆−xi + ∆+xi

.

(4.59)

Considering the definition of f , these derivatives can be rewritten as:

D+ui =2(1 − f)∆0ui
(1 + b)∆xi

,

D−ui = 2f∆0ui
(1 + a)∆xi

,

D0ui = 2∆0ui
(2 + a+ b)∆xi

.

(4.60)

The TVD property This can be obtained by the local TVD conditions 1-3 (see [172]).
It has the same definition as the uniform case (Eq. (4.53)):

u′
i = min

{
2∆+ui
∆xi

,
2∆−ui
∆xi

}
. (4.61)

On the other hand, we have ∆−ui = f∆0ui and ∆+ui = (1 − f)∆0ui, so u′
i can be

written as:

u′
i = 2∆0ui

∆xi
min {f, 1 − f} . (4.62)

This TVD-limit is illustrated in Figure 4.6 for cell-centered nonuniform cells; figure
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(a) is for the uniform case where a = b = 1.

The linear approximation preserving For non-uniform grids, the linear preserving
condition for a slope limiter is [172]:

ϕiDi (f = fp) = 2∆0ui
(a+ b+ 2)∆xi

, (4.63)

where fp = a+1
a+b+2 and ϕiDi (fp) denotes the limited value of the first derivative at f = fp.

The condition in Eq. (4.63) can be acheived easly: the linear preserving feature is
conserved if the backward and forward derivatives are equal to each other: D+ui = D−ui;
from this equation, the value of f = fp can be calculated, as:

2(1 − f)∆0ui
(1 + b)∆xi

= 2f∆0ui
(1 + a)∆xi

,

⇒1 − f

1 + b
= f

1 + a
,

⇒(1 + b)f = (1 + a) − (1 + a)f,

⇒f = fp = 1 + a

2 + a+ b
.

(4.64)

By inserting this value in the definition of either D+ui or D−ui, Eq. (4.63) can be
obtained.

Let us assume the definition of the MINMOD limiter as:

(ϕiDi)MM := MINMOD (D−ui, D+ui) = MINMOD
(

2f∆0ui
(1 + a)∆xi

,
2(1 − f)∆0ui
(1 + b)∆xi

)
,

Then, the value of (ϕiDi)MM(f = fp) is the value of the MINMOD limiter at the fp.

The symmetric condition This feature is not fulfilled, in general.
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4.2.4 The performance of the generalized MINMOD limiter on
non-uniform grids

The generalized MINMOD (GMINMOD) limiter, can be rewritten as:

(ϕiDi)GMINMOD = GMINMOD {θD−ui, D0ui, θD+ui} , 1 ≤ θ ≤ 2, (4.65)

or equivalently:

(ϕiDi)GMINMOD = GMINMOD
{

θ
2f∆0ui

(1 + a)∆xi
,

2∆0ui
(2 + a + b)∆xi

, θ
2(1 − f)∆0ui
(1 + b)∆xi

}
, 1 ≤ θ ≤ 2,

(4.66)

In case of non-uniform grids, different definitions of D0ui can be considered. One is
based on the above-mentioned definition: D0ui = ∆0ui/(∆−xi + ∆+xi), and the other
one can be obtained by the first order least square based estimated slope 5, as [172]:

D0ui = DLsq.ui := ∆+x
2
i

∆−x2
i + ∆+x2

i

D+ui + ∆−x
2
i

∆−x2
i + ∆+x2

i

D−ui. (4.67)

On uniform grids, both definitions lead to the first order central difference equa-
tion: (ui+1 − ui−1)/(2∆xi). The performance of these two GMINMOD limiters will be
illustrated on non-uniform grids.

Regarding the definitions of f and ∆0ui, the function DLsq.ui (Eq. (4.67)) can be
rewritten as:

D0ui = DLsq.ui = (1 + b)(1 − f) + (1 + a)
(1 + b)2 + (1 + a)2

{
f.∆0ui

∆xi

}
,

The performance of the GMINMOD limiters on uniform and non-uniform grids are
shown in Figure 4.6. Figure 4.6(a) is for uniform case and Figures 4.6(b,c) are for
non-uniform cases. In all figures, center of each cell, xi, is in the middle of ith cell,

5Let xi−1, xi and xi+1 denote the centers of three adjacent cells on an irregular mesh with numerical
solutions ui−1, ui and ui+1, respectively. The least square problem is to find the slope DL in the
cell i to minimize the residual of [172]:(

xi+1 − xi

xi−1 − xi

)
.DLsq. =

(
ui+1 − ui

ui−1 − ui

)
Forming the normal equations and solving for DLsq. results to the above-mentioned equation.
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Figure 4.6: The performance of GMINMOD limiters on non-uniform grids. Regarding
the top row in each figure, the hollow circles and the solid points represent
the center of cells and the cell edges, respectively.

i.e.: xi = (xi+1/2+xi−1/2)/2. A gradual variation of cell lengths is considered for irregular
grids. In Figure 4.6(b) length of cells are: ∆xi−1 = 2dx, ∆xi = dx, and ∆xi+1 = 0.5dx;
and in Figure 4.6(c) the lengths are: ∆xi−1 = 2dx, ∆xi = 1.5dx, and ∆xi+1 = dx. The
results confirm that: 1) on gradually varying grids, limiters may not completely remain in
the TVD region; 2) the symmetry condition may not satisfy; 3) more gradual variation of
grids is, more stability exists; 4) the long-term numerical stability cannot be guaranteed;
and 5) the GMINMOD limiter by the direct-definition of central differencing, D0ui =
(∆0ui)/(∆−xi + ∆+xi), leads to more symmetric behaviors, so this definition will be
considered.

It will be shown that to have a TVD solution (defined on non-uniform grids) without
modifying limiter definitions (the GMINMOD limiter, here), the cell middle point, xi,
should be shifted slightly; and this is only necessary for transmitting cells (a cell between
two surrounding uniform cells with different cell lengths). In the following, at first, it will
be shown how to choose properly cell centers/edges by the adaptive wavelet transform.
It will then mathematically be proved that why such spatial configurations lead to stable
and TVD solutions without modifying the MINMOD and GMINMOD limiter definitions.

Choosing of cell centers and edges by the wavelet-based adaptation algorithm

In this work, at first, cell center positions, xj, are evaluated by the adaptive wavelet
transform, and then, cell edges are simply assumed to be the middle point of them,
as: xj+1/2 = (xj + xj+1)/2.
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The interpolating wavelet theory in Chapter 3 uses the pyramid algorithm. In this
formulation, distance between detail coefficients in the resolution j is twice those in
the resolution j + 1. Consider an adapted grid where for every adapted points of
resolution level j + 1, there exist always two surrounding adapted points of resolu-
tion level j. For such adapted grids, inter-distances of successive points increase or
decrease gradually by the dyadic pattern. Let us consider an adapted cell-centers
as {· · · , 2dx, 2dx, dx, dx, · · · }. This means, for grid points
{· · · , xj−2, xj−1, xj, xj+1, xj+2, · · · }, we have: xj−1 − xj−2 = xj − xj−1 = 2dx and
xj+1 − xj = xj+2 − xj+1 = dx. Such configuration is illustrated in Figure 4.7(a). For
these adapted points, it is assumed that there exists always three successive points with
equal distances from each other. In this figure, the cell edges are the middle points of
two successive cell centers, i.e.: xj+1/2 = (xj + xj+1)/2. By this, the length of created
cells are: {· · · ,∆xj−1 = 2dx,∆xj = 1.5dx,∆xj+1 = dx, · · · }. Note that jth cell acts as
a transiting cell with a shifted cell center (xj is no longer in the middle of cell j). In
all the surrounding cells, all cell centers remain in the middle of cells. In the next sub-
section, it will be proved that such cell configuration leads to stable and TVD results.
This cell configuration can obtain by the post-processing stage, Chapter 3.

Stability and TVD conditions on wavelet-based adapted grids

In the proposed wavelet-based grid adaptation, as mentioned, cell center of transmit-
ting cells do not remain in the middle of cells, Figure 4.7(a). In Figure 4.7, three
pattern of successive cells are distinguishable: 1) {j − 2, j − 1, j}; 2) {j − 1, j, j + 1};
and 3) {j, j + 1, j + 2}. These sets are shown in Figures 4.7 (b) to (d). In the set (2),
the transmitting cell j is in the middle, while in the remaining groups, the transmitting
cell j is the first or the last cell.

In the following, the TVD local conditions are checked and modified for such spatially
non-centered cell centers. This will be done for the set (2) (see Figure 4.7(b)), and
then it will be checked for the groups (1) and (3). It should be mentioned that for
non-centered non-uniform grids, it is possible also to derive the TVD condition based
on the conditions 1 to 3, Section 4.2.1 (similar to the procedure leading to Eq. (4.53)).
However, in the following, an alternative procedure will be considered, based on solving
the advection equation with the upwind formulation.

i: The TVD condition when the transmitting cell is in the middle of surrounding
cells (the set (2)) To provide the TVD condition for the cell set {j − 1, j, j + 1} (see
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Figure 4.7: Wavelet based adaptive distribution of cell centers xj, corresponding edge lo-
cations and TVD feature of the GMINMOD limiter on resulted non-uniform
grids.
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Figure 4.7(b)), a right propagating scalar advection equation is considered as: ut+ āux =
0 for ā > 0. For simplicity, the forward Euler discretization in time will be used. The
upwind finite volume method with second order accuracy will be considered for the
spatial discretization. The resulted discretized system is:

un+1
j = unj − ā∆t

∆xj

(
uLj+ 1

2
− uLj− 1

2

)
. (4.68)

The symbol L represents the upwind flux and therefore the upwind-based recon-
structed value of uLj+1/2 is:

uLj+ 1
2

= uj + (p∆xj)Sj,

where Sj := ϕjDj is a limited slope at point xj. Let us assume in the transmitting cell j,
the cell center xj locates in a way that xj+1/2 −xj = p∆xj and xj −xj−1/2 = (1−p)∆xj.
For the wavelet based adapted grids, it is easy to show that p ∈ {1/3, 1/2, 2/3}.

To show that a method is TVD, it should be confirmed that: 1) a monotone increas-
ing (or decreasing) solution remains monotone increasing (or decreasing) in time (the
monotonicity preserving feature: resulted from the posivity condition [170]); 2) if unj is
a local maximum (or minimum), then at the next time step: un+1

j ≤ unj (or un+1
j ≥ unj )

(due to the first local TVD condition).

Controlling of the monotonicity preserving condition Assume a monotonically in-
creasing solution at time step t = tn as: unj−1 ≤ unj ≤ unj+1. This feature should satisfy
at the next time step, i.e.: un+1

j−1 ≤ un+1
j ≤ un+1

j+1 .
For the monotone increasing solution

{
unj
}
, slopes Sj−1 and Sj are positive, so due

to the upwind approximation: uLj−1/2 = unj−1 + (∆xj−1/2)Sj−1 ≤ unj and uLj+1/2 = unj +
(p∆xj)Sj ≥ unj (please note that Ij−1 and Ij are the the cell-centered and transmiting
cells, respectively). These inequalities are obtained due to the monotone reconstruction
constraint: the local TVD condition 3. Hence from Eq. (4.68), we have:

un+1
j ≤ unj − ā∆t

∆xj

(
unj − unj

)
= unj . (4.69)

To complete the proof, we need to estimate a lower bound for un+1
j . At first, due
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to the local TVD constraint on reconstruction edge values (the condition 3), it is clear
that: unj − (1 −p)∆xjSj ≥ unj−1, or: p∆xjSj ≥ −

(
−unj−1 + unj − ∆xjSj

)
. By considering

this relationship, and the conditions Sj ≥ 0 and Sj−1 ≥ 0, from Eq. (4.68), we have:

un+1
j = unj − λj

((
unj + (p∆xj)Sj

)
−
(
unj−1 +

(
∆xj−1

2

)
Sj−1

))
≥ unj − λj

((
unj +

[
unj − unj−1 − ∆xjSj

])
−
(
unj−1

))
≥ unj − λj

((
unj + unj − unj−1

)
− (unj−1)

)
= unj (1 − 2λj) + 2λjunj−1,

so:

un+1
j ≥ unj−1, (4.70)

where λj := ā∆t/∆xj. The relationship (4.70) is valid for λj ≤ 0.5. Eqs. (4.69) and
(4.70) lead to the condition un+1

j−1 ≤ unj−1 ≤ un+1
j ≤ unj ≤ · · · . This means a monotone

solution remains monotone through time.

Controlling of the extreme conditions (the first local TVD condition)

1. Local maximum: Let us assume a right propagating wave, that is: ā > 0 and unj+1

is a local maximum on the group cell (2) (Figure 4.7(b)). Due to the extreme
condition, we have: 1) Sj+1 = 0 (the second local TVD condition); 2) unj+1 ≥ unj

and unj+1 ≥ unj−1; and 3) Sj ≥ 0 (due to the monotone reconstruction feature).
Rewriting Eq. (4.68) for the maximum point, we have:

un+1
j+1 = unj+1 − ā∆t

∆xj+1

(
uLj+ 3

2
− uLj+ 1

2

)
= unj+1 − ā∆t

∆xj+1

([
unj+1 + 0.5∆xi+1Sj+1

]
−
[
unj + p∆xjSj

])
= unj+1 − ā∆t

∆xj+1

([
unj+1

]
−
[
unj + p∆xjSj

])
.

To guarantee that un+1
j+1 ≤ unj+1, the term in the parentheses should be non-negative;

hence:

0 ≤ Sj ≤
unj+1 − unj
p∆xj

=
∆+u

n
j

p∆xj
. (4.71)

66



Chapter 4 The KT central scheme on non-uniform grids

2. Local minimum Let us assume that the wave propagate to the left direction,
or: ā < 0 and unj−1 is a local minimum. This means: unj−1 ≤ unj , unj−1 ≤ unj−2, Sj−1 =
0 and Sj ≥ 0. By the downwind approximation, the spatio-temporal discretization
of equation ut + āux = 0 reads:

un+1
j = unj − ā∆t

∆xj

(
uRj+1/2 − uRj−1/2

)
.

Re-expressing this equation at xj−1, we get:

un+1
j−1 = unj−1 − ā∆t

∆xj−1

(
uRj− 1

2
− uRj− 3

2

)
= unj−1 − ā∆t

∆xj−1

([
unj − (1 − p)∆xjSj

]
−
[
unj−1 − 0.5∆xj−1Sj−1

])
= unj−1 − ā∆t

∆xj−1

([
unj − (1 − p)∆xjSj

]
−
[
unj−1

])
.

where we should note that Sj ≥ 0 and Sj−1 = 0 (xj−1 is a minimum point so TVD
slope is zero). Since ā < 0 and due to the constraint un+1

j−1 ≥ unj−1 (the local TVD
condition 3), we should have:

([
unj − (1 − p)∆xjSj

]
−
[
unj−1

])
≥ 0. This means:

0 ≤ Sj ≤
unj − unj−1

(1 − p)∆xj
=

∆−u
n
j

(1 − p)∆xj
. (4.72)

From Eqs. (4.71) and (4.72), the TVD constraint on non-uniform grids is:

Sj =
(
u′
j

)
TV D

= min
{

∆−u
n
j

(1 − p)∆xj
,
∆+u

n
j

p∆xj

}
. (4.73)

Or equivalently, based on the definition of f , the TVD constraints can be re-
expressed as:

Sj =
(
u′
j

)
TV D

= min
{

f

1 − p

∆0u
n
j

∆xj
,
1 − f

p

∆0u
n
j

∆xj

}
. (4.74)

ii: The TVD condition when the transmitting cell is the first or the last cell (the
set (1) or (3)) In this case, it is easy to show that the TVD limiter constraint, u′

j is
the same as cell-centered cells, see Eq. (4.61).
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Controlling of the TVD condition for slope limiters on wavelet-based adapted
grids

A modified wavelet-based adapted grid is considered; the modification is done with the
post-processing stage. It is assumed also there always exists at least three neighbor cell
centers of equal distances from each other, as explained in Section 4.2.4 and illustrated in
Figure 4.7(a). In this figure, we have: xj−1 −xj−2 = 2dx, xj−xj−1 = 2dx, xj+1 −xj = dx
and xj+2 − xj+1 = dx. This configuration of grid points leads to stable and TVD
solutions, which will be studied later. Depending of the transmitting cell location, three
cell sequences are detectable: 1) {j − 2, j − 1, j}; 2) {j − 1, j, j + 1}; 3) {j, j + 1, j + 2}
(Figure 4.7(a)).

The cell sequence {j − 1, j, j + 1}: Transmitting cell j (with a shifted cell center)
is the middle one In this case, we have ∆−xj = [a/2 + (1 − p)]∆xj and ∆+xj =
[p + b/2]∆xj. So, the backward, forward and central derivatives (in the GMINMOD
limiter, Eq. (4.65)) can be rewritten as:

D−uj = 2f∆0uj
[a+ 2(1 − p)]∆xj

, D+uj = 2(1 − f)∆0uj
[2p+ b]∆xj

, D0uj = 2∆0uj
(2 + a+ b)∆xj

, (4.75)

where a := ∆xj−1/∆xj = 4/3 and b := ∆xj+1/∆xj = 2/3; p measures cell-center shifting
and here p = 1/3 (see Figure 4.7(a)-(b)).

The TVD-based-bound u′
j (Eq. (4.73)) and GMINMOD (Eq. (4.65)) are illustrated

in Figure 4.7(b). The comparison offers: 1) the limiter remains completely in the TVD
region; 2) the linear preserving feature is satisfied; 3) at the expense of the symmetric
feature, the transmitting cell j acts properly for joining surrounding cells; and 4) shifting
of the cell center leads to a TVD result (Figure 4.7(b)), while cell-centered one does not
(Figure 4.6(c)).

The cell sequence {j − 2, j − 1, j} (see Figure 4.7(c)) In this case, we have: ∆−xj =
(1 + a)∆xj

2 and ∆+xj = [1 + 2b(1 − p)]∆xj

2 . Hence:

D−uj = 2f∆0uj
(1 + a)∆xj

, D+uj = 2(1 − f)∆0uj
[1 + 2b(1 − p)]∆xj

, D0uj = 2∆0uj
(2 + a+ 2(1 − p)b)∆xj

,

(4.76)

where a = 1, b = 3/4 and p = 1/3. Definition of the TVD-based-bound u′
j−1 is the

same as the uniform case, Eq. (4.61). Comparison of this limiter with the GMINMOD
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is shown in Figure 4.7(c). It is obvious, the GMINMOD limiter remains in the TVD
region.

The cell sequence {j, j + 1, j + 2} (see Figure 4.7(d)) Here we have: ∆−xj = (1+2ap)∆xj

2

and ∆+xj = (1+b)∆xj

2 . And so:

D−uj = 2f∆0uj
(1 + 2ap)∆xj

, D+uj = 2(1 − f)∆0uj
(1 + b)∆xj

, D0uj = 2∆0uj
(2 + 2ap+ b)∆xj

, (4.77)

where a = 3/2, b = 1 and p = 1/3. The TVD-limit for the first derivative at xj+1, u′
j+1

is the same as the uniform case. This function is compared with the GMINMOD limiter
in Figure 4.7(d), where stable and TVD results are attached.

In General, it can be concluded that on irregular grid points with typical grid config-
uration illustrated in Figure 4.7(a), numerical solutions will remain TVD and thereby
stable.

A constraint on the cell center adaptation in the wavelet-based algorithm

As mentioned before, it is always assumed that there exist at least three neighbor cell
centers of equal distance from each other in non-uniform adapted cell centers. Let
assume an adapted cell with a weaker cell-sequence condition: xj+1 −xj = 0.5(xj −xj−1)
or xj+1 − xj = 2(xj − xj−1). As an example let consider:
xj−1−xj−2 = 8dx, xj−xj−1 = 4dx, xj+1−xj = 2dx and xj+2−xj+1 = dx (Figure 4.8(a)).
For this case, if cell edges are assumed to be in the middle of cell centers, xj+1/2 =
0.5(xj + xj+1), then cell lengths are: ∆xj−1 = 6dx,∆xj = 3dx and ∆xj+1 = 1.5dx.
Hence: ∆−xj = [(1 − p) + ap]∆xj and ∆+xj = [p+ (1 − p)b], and so:

D−uj = f∆0uj
[(1 − p) + ap]∆xj

, D+uj = (1 − f)∆0uj
[p+ (1 − p)b]∆xj

, D0uj = ∆0uj
[1 + ap+ b(1 − p)]∆xj

,

(4.78)

where a = 2 and b = 0.5. For all cells, shifting coefficient is equal to p = 1/3 (see Figure
4.8(a)).

The GMINMOD (Eq. (4.65)) and u′
j (from non-uniform cases: Eq. (4.73)) are com-

pared in Figure 4.8(b). It is clear that the limiter is slightly outside the TVD domain.
For this reason, long term stability of numerical solutions could vanish. For cell-centered
cases, where xj = (xj+1/2 + xj−1/2)/2, the results are not also TVD, see Figure 4.6(b).

To have stable results, cell centers are located in a way that there always exists at

69



Chapter 4 The KT central scheme on non-uniform grids

Figure 4.8: Effects of a weaker restriction on wavelet-based grid variation. For this
figure, we assume xj+1 − xj = 0.5(xj − xj−1); a) cell configurations; b) the
GMINMOD limiter performance.

least three neighbor grids (cell centers) of equal distance from each other. For guarantee
this condition, in the grid modification stage (the post-processing stage), it is assumed,
at least, to have: Ns = Nc = 1.

4.3 Wavelet-based adaptive-grid method to solve PDEs
Assume the solution of a PDE is f(x, t). At time step t = tn, the procedure for the
solution of the PDE in adaptive wavelet-based framework is summarized as a sequence
of steps:

1. Determine the adaptive grid from f(x, tn−1) (time-step n − 1) by using the adap-
tive wavelet transform. For a point without f(x, tn−1) value, the local Lagrange
interpolation scheme is used to estimate the missed information. For adaptation,
normalized value of functions fi(x, tn−1) will be considered; i.e.:
{fi(x, tn−1)/Max

j
|fj(x, tn−1)|} < ϵ.

In most cases initial proposed values of pre-defined threshold value could be se-
lected from range ϵ ∈ {10−5, 10−4}. In general for each fi(x, tn−1) different thresh-
old values can be considered, as well; in this work, however, for all components fi(x, tn−1),
one threshold value is used, which leads to a simple algorithm.

2. Modify the adapted grid obtained from the previous step by the post-processing
stage; the initial proposed values for Ns and Nc would be: Ns = 2 and Nc = 1;
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however, one should at least consider Ns = 1 and Nc = 1.

3. Use the semi-discretize form of the KT central high resolution scheme. The TVD
based time-stepping method like the TVD-based Runge-Kutta method [22, 125]
by taking into account the CFL condition can be used to solve the ODEs at
time t = tn; here, the second order Runge-Kutta method is used.

4. Go back to step 1.

In practice, to have a cost-effective computation, the grid is not adapted at each time
step. In fact, depending on the velocity of moving fronts, it is adapted after several time
steps, for example every ten or twenty time steps.

4.4 Examples
The following 1-D and 2-D examples are to study the effectiveness of the proposed
method. The main assumptions are: 1- Applying D-D interpolating wavelet of order 3;
2-Using the generalized MINMOD flux limiter; 3- Using the semi-discrete form of the
KT scheme; 4- Integrating in time domain by the RK second-order solver having the
TVD feature.

In general, Figure 4.9 summarizes the MRA-based simulation by the central schemes
(for 1-D problems).

1-D first order hyperbolic PDEs

The linear advection equation The linear pure advection equation is:

ut + (au)x = 0, (4.79)

where a is the velocity. It is assumed this equation has the initial condition (IC) u(x, t =
0) = u0(x); then the exact solution of the Eq. (4.79) at time t is:

u(x, t) = u0(x− at). (4.80)

In this example, the IC is:

u0(x) = H(x− 0.2) −H(x− 0.4), (4.81)
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Figure 4.9: The MRA-based algorithm for the simulation of hyperbolic problems.
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Figure 4.10: Numerical solutions and corresponding adapted grid points represented in
different resolution levels; a,b) for t = 0.4; c,d) for t = 0.8.

where H(x) denotes the Heaviside function, which represents the unit step function,
equals to 0 for x < 0 and 1 for x ≥ 0. It is assumed that the boundary conditions
(BCs) at x = 0 and x = 1 both are periodic: u(x = 0, t) = u(x = 1, t). Eq. (4.79) is
simulated numerically with parameters: a = 1, ϵ = 10−3 (threshold), θ = 2 (the flux
limiter parameter), Nc = Ns = 2 (for post-processing stage), Jmax = 11, and Jmin =
5. Numerical results and corresponding adapted grids are presented in Figure 4.10 at
time t = 0.4 and t = 0.8. Variation of number of adapted grid points (Ng) during time
is shown in Figure 4.11, where number of uniform grid points at the finest resolution
is 2Jmax+1 = 2049. This confirms efficiency of the adaptation procedure. At time t = 0.75
and t = 0.85 discontinuous fronts reach the boundaries and this leads to jumping in Ng

values.

The Burgers’ equation This is the simplest model to simulate nonlinear advection.
It appears in different applied mathematics, for instance nonlinear acoustics, fluid me-
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Figure 4.11: Number of grids points, Ng during time; at times t = 0.75 and t = 0.85
discontinuous fronts reach the boundaries. In the finest resolution, number
of grid points is 2049.

chanics and traffic flow. The Burgers’ equation is defined as follows:

ut + 1
2
(
u2
)
x

= 0, (4.82)

where u is the conserved quantity and its flux is F (u) = u2/2. The system is nonlinear,
so that discontinuous fronts will develop during front propagation. Here it is assumed
that the initial and boundary conditions are:

BCs : u(x = 0, t) = u(1, t) = 0, ICs : u(x, t = 0) = sin(2πx) + 1
2sin(πx). (4.83)

For the above mentioned conditions, a discontinuity starts to appear around t ≈ 0.158.
This discontinuous front will propagate to the right side after this time. Assumptions
for the numerical simulations are: ϵ = 10−3 (threshold) and θ = 2 (the flux limiter
parameter), Nc = Ns = 2 (for post-processing stage), Jmax = 11, and Jmin = 5. The
numerical results are illustrated in Figure 4.12 at times 0.158, 0.5, and 1. This figure
contains numerical results, exact solutions and corresponding adapted grids in different
resolutions. The results confirm that adapted points are properly concentrated around
propagating fronts.

The number of grid points used during simulation, Ng is presented in Figure 4.13
where the uniform grid has 2Jmax+1 = 2049 points. This confirms the adaptation is
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Figure 4.12: Numerical results of the Burgers’ equation and corresponding adapted grid
points in different resolution levels; in figure (a), exact solutions are pre-
sented by the solid line and numerical solutions are illustrated by points
and hollow shapes. In the finest resolution, number of grid points is 2049.

75



Chapter 4 The KT central scheme on non-uniform grids

Figure 4.13: Number of grid points Ng used during the simulation; the uniform grid has
2049 points.
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Figure 4.14: Parameter effect of the generalized MINMOD slope limiter; a) result for θ =
2; b) solution for θ = 1.

effective and also the Figure 4.13 shows the adapting procedure is stable.
Effect of the flux limiter parameter θ is studied in Figure 4.14 at time 0.0158; there

two values are selected: θ = 1 and θ = 2. The former corresponds to the most dissipative
solution, and the later one associates with the least dissipative result (Figure 4.14).

Some comparisons with other MRA-based adaptive methods

In the following, the results of the adaptive KT scheme are compared with: i) The
adaptive NVSF method [46]; ii) The adaptive essentially nonoscillatory-Roe (ENO-Roe)
scheme [173, 174]; iii) The adaptive scheme proposed by Holmström [54] by the integra-
tion of central finite difference (FD) schemes with the sparse point representation (SPR)
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Figure 4.15: Comparison of the proposed adaptive central method and NVSF-based up-
wind scheme.

of solutions (SPR-FD) .

i) The adaptive NVSF The KT central scheme and NVSF-based method [46] (see
Appendix B for details) are compared on wavelet-based adapted grids (the NVSF-based
method is basically developed for non-uniform grid points). The values of the parameters
are: ϵ = 10−3, θ = 2 (for GMM in the KT scheme), Nc = Ns = 2, Jmax = 11 and Jmin =
5. The second order TVD Runge-Kutta method is used for the time integration. The
results are presented in Figure 4.15 at time 0.158. For the NVSF formulation, two types
of flux limiters are considered: the SMART and MINMOD limiters [46]. The results
offer that the proposed method is comparable with the schemes originally provided for
non-uniform grid points.

ii) The adaptive ENO-Roe scheme Both the adaptive KT and ENO-Roe methods
are simulated with the parameters: ϵ = 10−2, Nc = Ns = 1, Jmax = 12 and Jmin = 4.
For the KT scheme, it is assumed: θ = 2 (for the GMM). For both methods, the time
integration is performed by the third-order TVD Runge-Kutta method.

Adaptive and exact solutions are presented in Figure 4.16 at t = 0.158, 0.5 and 1; in
these illustrations, markers ◦ and ×, and the solid line show the solutions obtained by
the ENO-Roe, the KT and the exact method, respectively. It is obvious that results
from two adaptive methods have a good agreement (the KT method is slightly more
dissipative than the ENO-Roe scheme; see the solutions at t = 0.158).
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iii) The SPR-FD scheme proposed by Holmström [54] In this benchmark, a Burgers’
equation with a diffusion term is considered, as:

ut + 1
2
(
u2
)
x

= Qx (u, ux)x , (4.84)

where here Qx (u, ux) = µux is the diffusion term, in which ux := ∂u/∂x and µ is a
constant. The BCs and IC are assumed to be:

BCs : u(x = 0, t) = u(1, t) = 0, IC : u(x, t = 0) = sin(2πx). (4.85)

In this study, the assumed parameters are: µ = 10−4, ϵ = 10−5, θ = 2, Jmax = 14
and Jmin = 4 [54]. For the KT scheme, the third-order TVD Runge-Kutta method is
used for the time integration; for the SPR-FD method, the common fourth-order Runge-
Kutta method is used for the time integration and spatial derivatives are approximated
by the centered finite difference method stencil of order p = 4. A discontinuity develops
in the solution of Eqs. (4.84) at x = 0.5 which obtains its maximum at t = 0.25. The
adaptive solutions are presented in Figure 4.17 at t = 0.25. The zoomed in solutions
reveal that both solutions can properly resolve the discontinuity.

1-D Problems with non-convex fluxes Here, a relatively difficult and challenging
problem containing a high-order non-linear flux will be tested; the problem includes a
non-convex flux, i.e.:

F (u) = (u2 − 1)(u2 − 4)/4. (4.86)

Two cases are assumed for the initial condition:

Case 1 The considered Riemann initial condition is:

u(x, t = 0) = 3 Sign(x). (4.87)

In numerical simulations, it is assumed: the threshold, ϵ, values are: ϵ ∈ {10−3, 0.5 ×
10−4, 10−4}; Jmax = 11; θ = 2; number of decomposing level is Nd = Jmax − Jmin =
7; dt = 10−5. Number of grid points used during simulations, Ng for the above-mentioned
thresholds are presented in Figure 4.18. There, Figure 4.18(a) shows threshold effects
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Figure 4.16: The Comparison between the adaptive KT and ENO-Roe [173] schemes on
MRA-based adapted grids at t = 0.158, 0.5 and 1.
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Figure 4.17: The Comparison between the adaptive KT and SPR-FD [54] schemes on
MRA-based adapted grids at t = 0.25, where Jmax = 14 and Jmin = 4.

on number of adapted grids; in Figure 4.18(b) number of uniform grid points without
adaptation (with number Ng = 2Jmax+1) is compared with those after grid adaptation in
logarithmic scale; the compression capability of the wavelet-based adaptation is clear.

Adapted solutions for different threshold values are illustrated in Figure 4.19 at t =
0.04; there, exact and numerical results, as well as distribution of adapted points at
different resolutions are presented. The results indicate that: 1) Adapted points are
properly concentrated around high-gradient zones; 2) The discontinuity is successfully
captured and simulated; 3) By decreasing the ϵ values, more grid points are concentrated
around high gradient zones.

In this example, to investigate the multiresolution-based grid modification effects,
the problem is resolved without grid modification stage. Corresponding results are
presented in Figure 4.20. There, in figure (a) The solution and corresponding adapted
grid are shown for case Nc = Ns = 0. In figure (b), Ng values of solution with and
without modification stage are compared with each other; where for the solution with
grid modification it is assumed Nc = 1 and Ns = 2. The results confirm that without
employing grid modification stage, spurious oscillations develop quickly; this will lead to
instability. Due to this, thereby, number of adapted grid points increases rapidly (Figure
4.20 (b)).

Case 2 The initial condition is:

u(x, t = 0) = −2 Sign(x). (4.88)
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Figure 4.21: Ng values during simulations for different threshold values; it is as-
sumed ϵ0 = 5 × 10−4, θ = 2; Jmax = 11 and Nd = 6.

The threshold used for simulations are: ϵ = {ϵ0, 2ϵ0}, where ϵ0 = 5 × 10−4. Also,
it is assumed that: θ = 2; Jmax = 11 and number of decomposition levels is Nd = 6
(i.e., Jmin = 5). The grid points used during simulations, Ng is presented in Figure
4.21. It is clear that smaller values of thresholds lead to larger value of adapted points.
Numerical results obtained at t = 1.2 are illustrated in Figure 4.22. There, the exact [22]
and numerical results, as well as distribution of adapted points at different resolutions
are shown. The results indicate that: 1) Adapted points are properly concentrated
around high-gradient zones; 2) The discontinuity is successfully captured.
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Figure 4.22: The solution at t = 1.2 and corresponding adapted points for ϵ = ϵ0; the
solid line and hollow circle illustrate exact and numerical solutions, respec-
tively.

Euler system of equations The 1-D Euler system of equations appearing in gas dy-
namic problems can be expressed as:

∂

∂t


ρ

ρu

E

+ ∂

∂x


ρu

ρu2 + P

u(E + P )

 =


0
0
0

 , (4.89)

where ρ, u and E are gas density, velocity and total energy, respectively. The pressure P
is obtained as:

P = (γ − 1)
(
E − ρu2/2

)
, (4.90)

where γ is the ratio of specific heats, and here it is assumed to be γ = 1.4.

I: Interaction of two blast waves One of the challenging problems in the gas dynamic
is the two blast waves interaction. The initial conditions are assumed to be:

The Riemann initial condition is [174, 175]:

{ρ, u, P}|t=0 =


{1, 0, 1000}, if x < 0.1,
{1, 0, 0.01}, if 0.1 < x < 0.9,
{1, 0, 100}, if x > 0.9.

(4.91)
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The boundary conditions are reflecting walls, where the velocity u is an odd function
of distance from the wall, ρ and P are even functions respect to the wall in spatial
domain [174, 175]. In general, the boundary condition can be satisfied at time step n

by using r ghost cells for the reflecting wall,
ρ−j+1 = ρj,

P−j+1 = Pj, for j = 1, ..., r.
u−j+1 = −uj,

(4.92)

In numerical simulations, only one ghost cell is utilized for each reflecting wall, i.e.: r = 1.
The numerical simulation is performed with ϵ = 10−2, dt = 0.2×10−5, and θ = 2. The

results at times 0.01, 0.016, 0.026, 0.028, 0.03, 0.032, 0.034, and 0.038, are illustrated in
Figure 6.26. For each time, the numerical solution, the corresponding adapted grid and
corresponding distribution of adapted points in different resolution levels are presented.
It is clear that points are properly adapted in the vicinity of both high-gradient and
discontinuous zones.

II: The interaction of Mach 3 right-moving front and an entropy wave In this
example, the interaction of an entropy sine wave with a Mach 3 right-moving front will
be studied; this problem is also known as the Shu and Osher problem [174]. This prob-
lem is important due to the simulation of the shock-turbulence interactions. Amplified
high-frequency entropy waves develop after the shock. These high frequency waves can
be captured with numerical schemes with low numerical dissipation. Hence, this prob-
lem is a challenging benchmark to study the performance of numerical methods in: 1)
Simulation of shock-turbulence interactions, 2) Handling of high frequency waves. This
challenging problem was developed to reveal capabilities of high order schemes.

The Riemann initial condition is [174, 175]:

{ρ, u, P}|t=0 =

 {3.857143, 2.629369, 10.33333}, if x ≤ −4,
{1 + 0.2 sin(5x), 0, 1}, if x > −4.

(4.93)

The considered spatio-temporal computational domain is: Ω = (−5, 5) × (0, T ).
The numerical and exact solutions, and corresponding adapted points are illustrated

in Figure 4.24 at t = 1.8 for parameters: ϵ = ϵ0 = 5 × 10−4, Jmax = 13, Jmin =
5 (or Nd = 8), Nc = 1, Ns = 2, θ = 2, and dt = 0.0002. There, the solid line
and hollow circles denote reference [175] and numerical solutions, respectively. It is
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Figure 4.23: Numerical solutions and corresponding adapted grids of interaction of two
blast waves with parameters ϵ = 10−2, and θ = 2; a-b) t = 0.01; c-d) t =
0.016; e-f) t = 0.026; g-h) t = 0.028;
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Figure 4.23: (continued) i-j) t = 0.03; k-l) t = 0.032; m-n) t = 0.034; o-p) t = 0.038.
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Figure 4.24: Reference and numerical solutions of entropy and shock wave interaction
at t = 1.8. Solid lines and shapes are the reference and adaptive results,
respectively. In all calculations it is assumed that: Nc = 1 and Ns = 2.

obvious that the adapted points concentrate properly around both high-gradient zones
and discontinuities, and there are good agreements between numerical and reference
solutions.

To investigate threshold value effects, some other simulations are done for threshold
values: ϵ ∈ {8ϵ0, 2ϵ0, ϵ0, ϵ0/2}. In all simulations, it is assumed that the finest and
coarsest resolution levels are Jmax = 13 and Jmin = 5, respectively. The results and
corresponding adapted grid points are illustrated in Figures 4.25 and 4.26, respectively;
there, it is assumed: x ∈ [−3,−2.45], and Nc = 1 and Ns = 2. The results show that
for ϵ of large values dissipation phenomenon occurs (Figure 4.25 (a)); by decreasing ϵ

values, more adapted points concentrate around high-gradient regions (Figures 4.25 &
4.26) resulting in proper capturing of such zones. In this investigation, the number of
grid points used during simulations (Ng) is shown in Figure 4.27; in Figure 4.27(b) a
comparison between the number of uniform grid (with grid number Ng = 2Jmax + 1) and
the corresponding adapted grids is also presented to show the compression ratio.

Resolution effect is also investigated; for this, three different problems with differ-
ent Jmax values are considered. The considered finest resolution levels are: Jmax ∈
{13, 11, 9}; in all cases it is assumed that Jmin = 5 and ϵ = ϵ0. The solutions and
corresponding adapted points are illustrated in Figure 4.28 for Nc = 1 and Ns = 2. The
results indicate that accuracy of solutions is in accordance with the number of resolution
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and Ns = 2.
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Figure 4.27: Ng values during simulations for different ϵ values; it is assumed ϵ0 = 5 ×
10−4 and Jmax = 13; a) adapted grids, b) comparison of Ng values between
the uniform and the adapted grids.

levels.

The ideal magneto-hydrodynamics problem (MHD) The conservation form of the
MHD system for 1-D flow along x-direction is:

ut + Fx = 0, (4.94)

where vectors u and F denote vector of the state variable and the flux function, respec-
tively; they are defined as:

u = {ρ, ρvx, ρvy, ρvz, By, Bz}T ,

F = {ρvx, ρv2
x + p∗ −B2

x, ρvxvy −BxBy, ρvxvz −BxBz, Byvx −Bxvy,

Bzvx −Bxvz, (E + p∗)vx, Bx(Bxvx +Byvy +Bzvz)}T ,

(4.95)

where: vx, vy and vz are velocity components in the x, y and z directions, respectively; B
denotes the magnetic field with components Bx, By and Bz; and ρ is the density. The
parameters p∗ and E are the total (full) pressure and total energy, respectively; they
are:

p∗ = p+ 1
2(B2

x +B2
y +B2

z ),

E = 1
2(v2

x + v2
y + v2

z) + p

γ − 1 + 1
2(B2

x +B2
y +B2

z ),
(4.96)
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Figure 4.28: Threshold effects on solutions and adaptations; it is assumed that Jmin =
5, ϵ = ϵ0, Nc = 1, and Ns = 2.

where: p denotes pressure and γ is the ratio of specific heats. The initial condition is
considered to be a Riemann problem. The assumed case is the Brio and Wu shock tube
problem [176]:

{ρ, vx, vy, vz, By, Bz, E} =

 {1, 0, 0, 0, 1, 0, 1}, if x < 0.5,
{0.125, 0, 0, 0,−1, 0, 0.1}, if x > 0.5.

(4.97)

with parameters: Bx = 0.75 and γ = 2.
This system is a standard problem in the MHD analysis to control stability and

accuracy of numerical methods. In solution of this system, there are compound waves
which are combination of waves: 1) slow; 2) fast; 3) Alfvén 6. This reveals complexity
of the MHD systems in comparison with the hydrodynamic case: the latter problem has
only one type of wave; i.e., the sound wave.

In the numerical simulations, it is assumed that: Jmax ∈ {10, 11, 12, 13}, Jmin =
5, Nc = 1, Ns = 2, ϵ = 5 × 10−4 and θ = 2 (flux limiter parameter). For case Jmax = 11
(i.e., the finest sampling step is dx = 1/211) the temporal time step is dt = 0.0003 and

6In the MHD systems there are three types of waves: 1) fast magneto-sonic (or magneto-acoustic)
waves known as fast waves; 2) slow magneto-sonic waves known as slow waves; 3) Alfvén waves.
The fast and slow waves are compressive and the Alfvén waves are shear (transverse) waves.
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for other values of Jmax, the dt is chosen in a way that the CFL number remains equal
to those of case Jmax = 11.

The results are shown in Figure 4.29 for different Jmax values at t = 0.12; it is clear
that the adapted points concentrate properly around high gradient zones in different
resolutions.

In the Brio-Wu problem, the following components can be detected, from left to right
(see Figure 4.29): 1) A fast rarefaction (moving to the left); 2) A slow compound wave
including of a slow rarefaction and a slow shock (propagating to the left); 3) A contact
discontinuity (propagating to the right side); 4) A slow shock, and 5) a fast rarefaction
(the cases 4 & 5 move to the right)7.

To investigate these results in more detail, zoomed in solutions of Figure 4.29 are
presented in Figure 4.30; the results confirm that: 1) both the Gibb‘s (dispersion) and
dissipation phenomena decrease generally as the number of resolution level increases;
2), increasing of Jmax values leads to more localization of spurious oscillations (Figure
4.30(c)); 3) the numerical solutions remain stable despite of existing some non-physical
fluctuations and this is because of the TVD feature of the KT scheme.

The Ng values of adaptive simulations for different Jmax values and corresponding
number of uniform grids are presented in Figure 4.31; in Figure 4.31(b) scale of presen-
tation is logarithmic. Due to few numbers of localization, Ng values of adapted grids
alter slightly by increasing the Jmax values.

4.4.1 1-D second order hyperbolic PDEs

Wave propagation problems in nonlinear-elastic bars To solve second order hyper-
bolic PDEs by the high resolution schemes, it is necessary at first to rewrite them as a
first order hyperbolic system. In this context, the 1-D equation of stress wave can be

7Shock and rarefaction waves are two types of nonlinear waves arise from abrupt changing in the
pressure: a shock wave compresses a domain while a rarefaction wave expands a medium. A contact-
discontinuity is a surface separating two neighbor media with different densities and temperatures.
This surface, however, is in pressure equilibrium and so there is no flow across it
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Figure 4.29: Adaptive solutions and corresponding distribution of adapted points in dif-
ferent resolutions for various Jmax values at t = 0.12. In all calculations, it
is assumed that: Nc = 1 and Ns = 2.
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represented as [126]:

PDEs :

 ε̄t − ux = 0,
(ρ(x)u)t − σx = 0,

BCs : u(x = 0, t) =

 −0.2 (1 + cos(π(t− 30)/30)) , if t ≤ 60,
0, if t > 60,

σ(x = 0, t) = 0,

(4.98)

where u, ε̄, σ and ρ denote velocity, strain, stress and density, respectively. The relation-
ship of stress and strain is considered to be: σ ≡ σ(K(x), ε̄) = K(x)ε̄+βK(x)2ε̄2; wherein
K(x) denotes the bulk modulus of compressibility and β is a constant. In the numerical
simulations it is assumed that: ρ(x) = 2; K(x) = 2; Jmax = 11; Jmin = 5; Nc = 1; Ns = 2;
the threshold values are: ϵ ∈ {10−4, 10−5, 10−6}. To have an elastic-nonlinear wave prop-
agation problem, it is assumed that: β = 0.3.

For using the (KT) central scheme, it is essential to evaluate the maximum speed of
propagation at cell edges as:
aj+1/2 = max{|aRj+1/2|, |aLj+1/2|}, where aR/Lj+1/2 = ±

√
(dσ/dε̄)/ρ(x) and (dσ/dε̄)R/L =

K(x) + 2βK(x)2ε̄R/L. In these formulations, parameter ε̄R/L denotes the reconstructed
stain values at the left (ε̄L) or right (ε̄R) side of cell edges of spatial location xj + ∆x/2
(in uniform cell cases).

The Ng values for different threshold values are shown in Figure 4.32. Numerical and
reference solutions [126], and corresponding adapted grid points are presented in Figure
4.33 at t = 80, t = 160 and t = 240 for threshold value ϵ = 10−6. As the system is non-
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Figure 4.32: Number of grid points (Ng) used in the adaptation procedure for different
threshold values.

linear, a discontinuous front develops during propagation; it is evident that the adapted
points are concentrating in the vicinity of both discontinuities and high-gradient regions.

1-D first order advection-diffusion problems

In this subsection, some problems having advection-diffusion feature will be presented.

A Burgers’-type equation with saturating dissipation equation This system has the
following differential form [177]:

ut +
(
u2
)
x

=
 ux√

1 + u2
x


x

. (4.99)

In this example the Riemann initial condition is considered as:

u(x, t = 0) =

1/2, x < 0,

−1/2, x > 0.
(4.100)

In the numerical simulation, it is assumed that: Jmax = 11, Jmin = 5, Nc = 1, Ns =
2, ϵ = 6 × 10−2, θ = 2 and dt = 0.0001.

Due to the formation of a subshock, located at x = 0, it was shown that the numerical
solution of this system is quite a challenging problem.

The numerical results and corresponding number of grid points (Ng) during adaptive
simulation are shown in Figures 4.34 and 4.35, respectively. In Figure 4.34(a), the solid
line and circles are the asymptotic [177] and adaptive solutions, respectively. Figure
4.34(b) illustrates distribution of adapted grid points in different levels of resolution. In
Figure 4.35(b), Ng value of the uniform case is compared with those of adapted case in
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Figure 4.33: Numerical solutions of the non-linear wave propagation problem and cor-
responding adapted grids where ϵ = 10−6 and θ = 2; a-b) t = 80; c-
d) t = 160; e-f) t = 240. In the top row, solid lines are reference solutions,
and shapes are numerical ones. In all calculations it is assumed that: Nc = 1
and Ns = 2.

logarithmic scale. From Figures 4.34 and 4.35, it is clear that with a few number of grid
points (less than 70 points) an excellent accuracy is obtained; to achieve such accuracy
by uniform cells, more than 800 points are necessary [177].

The Buckley-Leverett equation without the diffusion term In this case, the govern-
ing equation is a hyperbolic PDE with the flux:

F (u) = u2

4u2 + (1 − u)2 , Ω ∈ [−1, 1] × [0, T ) , (4.101)

with the Riemann initial condition:

u(x, t = 0) =

1, −1/2 ≤ x ≤ 0,

0, elsewhere.
(4.102)

In numerical simulations, it is assumed: ϵ0 = 10−3, θ = 2, Jmax = 11, Jmin = 5,
and dt = 0.0002. The numerical result and corresponding adapted grid points are
illustrated in Figure 4.36 at t = 0.4. It is evident that adapted solution is successfully
done.
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Figure 4.36: The solution at t = 0.4 and corresponding adapted points; a) the exact and
numerical results, b) distribution of adapted points in different resolutions.
In (a), the solid line and hollow circle illustrate exact and numerical solu-
tions, respectively.
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The diffusive Buckley-Leverett equation with and without gravitational effects
The governing equation of the Buckley-Leverett system is [22]:

ut + F (u)x = αQ(u, ux)x,

where:

Q(u, ux) = (v(u)ux) ,

αv(u) ⩾ 0,

F (u) = u2

u2 + (1 − u)2 : for a system without gravitational effects,

F (u) = u2

u2 + (1 − u)2

(
1 − 5(1 − u)2

)
: for a system with gravitational effects.

(4.103)

Here it is assumed: v(u) = 4u(1 − u); this means that v(u) vanishes at u = 0 and
u = 1. The parameter α denotes a constant and in this example the considered value
is α = 0.01. The assumed initial condition is of the Riemann type, as:

u(x, t = 0) =

 0, 0 ≤ x < (1 − (1/
√

2)),
−1/2, (1 − (1/

√
2)) < x ≤ 1.

(4.104)

Numerical results are presented in Figure 4.37 at t = 0.2; in calculations it is as-
sumed: Jmax = 11, Jmin = 5, Nc = 1, Ns = 2, ϵ = 10−4, θ = 2 and dt = 0.00001. There,
in Fig 4.37(a), solid lines and hollow shapes correspond to reference solutions [22] and
adaptive results, respectively. Distribution of adapted points in different resolutions are
presented in Figures 4.37(b) and 4.37(c). There figures (b) and (c) are for cases with
and without gravity effects. It is obvious that adapted points concentrate around high
gradient zones as expected.

Variation of Ng values during adaptive simulations is shown in Figure 4.38; it is clear
that among 211+1 uniform points in the finest resolution, less than 150 points are needed
for the adaptive simulations (Figure 4.38(b)).

The glacier growth model In this example, the Glacier growth problem with two
different source terms will be presented (considering the source term ends to a non-
homogeneous equation). The governing convection-diffusion equation is [22]:

ht + F (h)x = α(v(h)h)x + S(x, t, h), (4.105)
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where h = h(x, t) denotes height of a glacier above a flat mountain. In this example,
it is assumed: F (h) = (h + 3h6)/4; v(h) = 3h6; α = 0.01; S(x, t, h) denotes the source
term with definition:

S(x, t, h) =

 S0(x, t), h(x, t) > 0,
max (S0(x, t), 0) , h(x, t) = 0.

(4.106)

In the following, this system with two different source functions, S0(x, t) will be pre-
sented.

Case 1 Let S0(x, t) and h(x, t = 0) be:

S0(x, t) =


0, x < −0.4,
0.5(x+ 4), −0.4 ≤ x ≤ 0.2,
−0.5x, x > 0.2,

& h(x, t = 0) =

 1, x < 0,
0, x > 0.

(4.107)

The adapted numerical solutions and corresponding distribution of adapted points
in different resolutions are presented in Figure 4.39. There, the shapes are the adapted
solutions and the solid lines are the reference ones obtained by the KT second-order semi-
discrete scheme, SD2, on 800 uniform cells [22]. The results confirm that the adapted
points concentrate properly around high gradient regions. In numerical computations,
it is assumed: Jmax = 11, Jmin = 5, Nc = 1, Ns = 2, ϵ = 10−4, θ = 2 and dt = 0.00003.
This simple problem describes a right propagating melting ice sheet without considering
seasonal variations [22].

Number of grid points used in adaptation procedure is presented in Figure 4.40; in
Figure 4.40(b) number of uniform grid and corresponding adapted one are presented. It
is clear that due to melting in time the number of adapted points reduces gradually.

Case 2 Here it is assumed:

S0(x, t) =

 0, x ≤ −5,
−0.01x+ 0.05 sin(2πt), x > −5,

h(x, t = 0) =0.
(4.108)

In this source definition, seasonal variations are considered by the term 0.05 sin(2πt).
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The numerical results and the corresponding distribution of adapted grid points in dif-
ferent resolutions are presented in Figure 4.41; for these results it is assumed: Jmax =
11, Jmin = 5, Nc = 1, Ns = 2, ϵ = 10−5, θ = 2 and dt = 0.001. In these figures, the
solid lines are the reference solutions obtained by SD2 method with 600 uniform cells
[22], and shapes are numerical results.

Comparison of solutions obtained by different thresholds ϵ ∈ {10−4, 10−5} are pre-
sented in Figure 4.42 at t = 15. It is obvious that by using smaller values of the thresh-
old, local behaviors of solutions are properly captured. This problem reveals importance
of very fine scale effects: the large scale responses are affected by fine scale features. This
is mainly due to multiscale feature of the operators in this example. In Figure 4.43, Ng

values during time are presented for different threshold values: ϵ ∈ {10−4, 10−5, 5×10−6};
they are compared with corresponding uniform grid in Figure 4.43(b). The results ex-
hibit that smaller threshold values lead to more adapted grid points.

The shallow water problem (small dam break) For a body of water with zero slope
angles and zero friction coefficient, the governing equation of motion is [5]:

∂

∂t

 h

hv

+ ∂

∂x

 hv

hv2 + 1
2gh

2

 =

 0
0

 , (4.109)

where h ≡ h(t, x) is the height of water, v ≡ v(t, x) denotes the velocity, and g is
the gravity acceleration. The problem is a Riemann problem with the following initial
conditions,

h(0, x) =

 2, x < 0,
1, x ≥ 0,

, v(0, x) =

 0, x < 0,
0, x ≥ 0.

(4.110)

It is also assumed that: dt = 5 × 10−5, θ = 2 and ϵ = {10−3, 2.5 × 10−4, 10−4}. The
results for three different threshold values at time 1 sec are illustrated in Figure 4.44.
The results indicate that by decreasing the threshold value, more points are concentrated
around the high gradient zones, and thereby dissipation effect is reduced. Variations of
adapted grid points for three different threshold values are illustrated in Figure 4.45. It
is clear that the number of grid points has an inverse proportion with threshold values.
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Figure 4.41: Glacier growth; the shapes are numerical solutions and the solid lines are
the reference ones; where Nc = 1 and Ns = 2.
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Figure 4.42: Threshold effects on the localized feature detection; hollow circles and solid
line are the adaptive and reference solutions, respectively.
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Figure 4.43: Number of grid points during adaptive solutions; a) adapted grids, b) com-
parison of Ng values between the uniform grid and corresponding adapted
ones.
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Figure 4.44: Effect of threshold values on adaptive solution and the corresponding grid;
a-b) ϵ = 10−4; c-d) ϵ = 2.5 × 10−4; e-f) ϵ = 10−3.

Figure 4.45: Number of grid points (Ng) used in the adaptation procedure for different
threshold values.

104



Chapter 4 The KT central scheme on non-uniform grids

2-D examples

In the following, numerical solution of some 2-D hyperbolic and hyperbolic-parabolic
systems will be presented.

The 2-D scalar convection-diffusion Burgers’ equation

Case 1 The first example is a 1-D hyperbolic-parabolic problem solved in a 2-D domain;
the 2-D scalar convection-diffusion Burgers’-type equation is [22]:

ut +
(
u2
)
x

+
(
u2
)
y

= ε′(v(u)ux)x + ε′(v(u)uy)y. (4.111)

In this example, it is assumed ε′ = 0.1 and

v(u) =

 0, |u| ≤ 0.25,
1, |u| > 0.25.

(4.112)

The discontinuous function v(u) implies that Eq. 4.111 has hyperbolic nature for the
range u ∈ [−0.25, 0.25]. The considered initial condition is:

u(x, y, t = 0) =


1, −(1/

√
2) − 0.4 < x < −(1/

√
2) + 0.4,

−1, +(1/
√

2) − 0.4 < x < +(1/
√

2) + 0.4,
0, otherwise.

(4.113)

The spatial square Ω ∈ [−2, 2]× [−2, 2] is considered as the computational domain. In
numerical calculations, it is assumed that: ϵ = 0.25×10−3 (threshold), dt = 0.0002, θ = 2
(the MINMOD smoothing parameter), Jmax = 7, Jmin = 5, Nc = 2 and Ns = 2. In the
numerical solution, an adapted grid is updated after each ten time steps.

A snapshot of the 2-D solution with corresponding adapted grid is illustrated in Figure
4.46 at t = 0.7. This 2-D result is compared with the 1-D solution [22] obtained on 200
uniform cells; see Figure 4.47. It is clear that the two results are in a good agreement.

Case 2 Here the previous 2-D Burgers’ equation is resolved with another initial condi-
tion having localized feature. The initial condition is equal to -1 and 1 inside two circles
with center locations (0.5, 0.5) and (−0.5,−0.5), respectively; radius of both circles are
0.4. In numerical calculations, it is assumed that: ϵ = 0.25 × 10−3 (threshold), dt =
0.0002, θ = 2, Jmax = 8, Jmin = 5, Nc = 2, Ns = 2 and Ω ∈ [−1.5, 1.5] × [−1.5, 1.5].
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HaL

Figure 4.46: 2-D adaptive solution of the Burgers’ type equation at t = 0.7; a) adapted
grid; b) numerical solution. In calculations it is assumed: Nc = 2, Ns =
2, ϵ = 0.25 × 10−3.
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Figure 4.47: Comparison of 2-D adapted solution with 1-D one; the 1-D solution is ob-
tained on a uniform grid of 200 cells.
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Figure 4.48: Adapted grid points for different ε′ values; a-c) ε′ = 0.1; d-f) ε′ = 0. In the
calculations it is assumed: ϵ = 0.25 × 10−3, Nc = 2, Ns = 2.

The results and corresponding adapted points are presented in Figures 4.48 and 4.49,
respectively, where ε′ ∈ {0, 0.1}. For ε′ = 0 and ε′ = 0.1, Eq. 4.111 turns to be the pure
hyperbolic and parabolic-hyperbolic systems, respectively.

It is clear that adapted points properly concentrated around high gradient zones.
The Ng values for different ε′ values are illustrated in Figure 4.50; they are also compared
with those in the uniform case with grid number Ng = 2Jmax+1 × 2Jmax+1. It is evident
that due to the diffusion term, more grid points are mobilized in the case ε′ = 0.1.

The shallow water problem In this example a vector form of a 2-D system will be
considered; it is the shallow water problem with governing equations:

ht + (hu)x + (hv)y = 0,
(hu)t + (hu2 + 0.5gh2)x + (huv)y = 0,
(hv)t + (huv)x + (hv2 + 0.5gh2)y = 0,

(4.114)

where h ≡ h(t, x, y) is height of the water; u ≡ u(t, x, y) and v ≡ v(t, x, y) denote veloc-
ities of water in the x and y directions, respectively; g is the gravitational acceleration.
The computational domain is inside the spatial square Ω ∈ [0, 200]× [0, 200]. The initial

107



Chapter 4 The KT central scheme on non-uniform grids

Figure 4.49: Solution of 2-D Burgers’ equation for different ε′ values; a-c) ε′ = 0.1;
d-f) ε′ = 0.
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Figure 4.50: Number of grid points used in adaptive solutions for different ε′ values.
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Figure 4.51: Solutions and corresponding adapted grid points of the shallow water prob-
lem, where: ϵ = 0.25 × 10−3, Nc = 1, Ns = 2.

conditions are:

h(t = 0, x, y) =

 10, (x− 100)2 + (y − 100)2 ⩽ 502,

1, (x− 100)2 + (y − 100)2 > 502,
and u(0, x, y) = v(0, x, y) = 0.

(4.115)

For numerical simulations, it is assumed that: ϵ = 0.25 × 10−3 (threshold), dt =
0.004, θ = 2, Jmax = 8, Jmin = 5, Nc = 1 and Ns = 2; adaptation procedure is repeated
after each 20 time steps. Snapshot of results and corresponding adapted grid points
are shown in Figure 4.51; it is evident that the points are concentrated around high
gradient zones and both solutions and corresponding adapted grids remain symmetric
during time.
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Special topics

Regarding second order central high resolution schemes, in this section, some special
topics are studied. They are:

1. Central-upwind schemes: for reduction of the numerical dissipation,

2. The concept of the numerical entropy production: for checking of numerical unique-
ness,

3. The local truncation errors: to control numerical convergence,

4. Providing other slope limiters for non-uniform grids,

5. The non-convex hyperbolic systems and their challenging problems in numerical
simulations.

5.1 Central and central-upwind second order schemes
Here, the semi-discretized form of a scalar first-order hyperbolic system, ut+F (u)x = 0,
will be provided for the KT method [22] and two other improvements of this scheme (to
have less numerical dissipation) [23, 24]. As mentioned before (in Eq. (4.14)), by the
REP procedure [22] for cell-centered non-uniform cells, the semi-discrete form is:

duj
dt

+
F ∗
j+1/2 − F ∗

j−1/2

∆xj
= 0, F ∗

j±1/2 := F
(
u∗
j±1/2

)
. (5.1)

Other two improvements of the central KT scheme are central-upwind methods, noting
here by M1 and M2. They use two different maximum local propagation speeds for right
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and left directions at cell edges xj+1/2. The speeds are shown by aRj+1/2 and aLj+1/2 for
right and left directions, respectively. Such speed distinguishing leads to a narrower
non-smooth zone around cell edge xj+1/2, and therefore less dissipative schemes. The
scheme M2 is an improvement of the M1 method using a narrower non-smooth zone
[23, 24].

The first less dissipative method: a central-upwind scheme This central-upwind
scheme is the first improvement of the KT central scheme to reduce its numerical dissi-
pation; we denote it by M1. In this method, propagation directions in cell edges xi+1/2

are important; the boundaries of the non-smooth zone around edge i+1/2 are: xni+1/2,l =
xi+1/2+aLi+1/2∆t and xni+1/2,r = xi+1/2+aRi+1/2∆t; where

∣∣∣aLi+1/2

∣∣∣ and
∣∣∣aRi+1/2

∣∣∣ are maximum
left and right propagating speeds at t = tn, respectively. They are defined as: aLi+1/2 =
min

{
λ1
(
uLi+1/2

)
, λ1

(
uRi+1/2

)
, 0
}

and aRi+1/2 = max
{
λN

(
uLi+1/2

)
, λN

(
uRi+1/2

)
, 0
}
; where

the set {λi} is eigenvalues of the Jacobean ∂F (u)/∂u at xi+1/2 in a way that λ1 < λ2 <

· · · < λN . This distinguishing of the left-right speeds leads to smaller smooth zones and
thereby a less dissipative method. The limited slope in the projection step is calculated
as the KT scheme; the left (∆L) and the right (∆R) distances are measured from center
of non-smooth zones to center of surrounding smooth regains, Figure 5.1. The limited
slope can then be estimated same as the KT scheme.

The second less dissipative method: a central-upwind scheme This method is an
improvement of the M1 scheme to have less numerical dissipation, referring by M2. In
this method, non-smooth zones are estimated same as the M1 scheme. For limited slope
calculations in the projection step, smaller spatial distance is assumed: distance from
mid point xj+1/2 from edges xj+1/2,l/xj+1/2,r (of the non-smooth zone); Figure 5.1 (com-
pare figure (a) with figure (b)). Edges of non-smooth zone from xj+1/2 are measured
and then averaged, as:
∆ =

{(
xnj+1/2,r − xj+1/2

)
+
(
xj+1/2 − xnj+1/2,l

)}
/2.

Since
(
xnj+1/2,r − xj+1/2

)
= aRj+1/2∆t and

(
xj+1/2 − xnj+1/2,l

)
= aLj+1/2∆t, then ∆ =

∆t
2

(
|aRj+1/2| + |aLj+1/2|

)
= ∆t

2

(
aRj+1/2 − aLj+1/2

)
. The limited slope is then estimated by:

(ux)n+1
i = MINMOD

(
θ
ũn+1

j+1/2,r
−wn+1

j+1/2
∆ ,

ũn+1
j+1/2,r

−ũn+1
j+1/2,l

2∆ , θ
wn+1

j+1/2−ũn+1
j+1/2,l

∆

)
;

where ũn+1 denotes an approximated solution by the Taylor expansion at next time
step n + 1 at edges of non-smooth solutions, xnj+1/2,r and xnj+1/2,l (5.1). Values of ũn+1

can be estimated as: ũn+1 = un+∆t×unt = un−∆t×F (un)x. This approximation (i.e.,
using of the Taylor expansion) is valid in smooth zones. Regarding the methods M1
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Figure 5.1: Estimation of the slope (ux)n+1 in different schemes; a) KT and M1, b) M2.

and M2, for more details see [23, 24].
Expressed in terms of the left and right states FL/R

i+1/2 := F (uL/Ri+1/2), the reconstructed
fluxes for the KT, M1 and M2 schemes are:

1. The central KT scheme:

F ∗
i+1/2 := 1

2
[
FR
i+1/2 + FL

i+1/2

]
−
ai+1/2

2
[
uRi+1/2 − uLi+1/2

]
. (5.2)

2. For the central-upwind method M1:

F ∗
i+1/2 :=

aRi+1/2F
L
i+1/2 − aLi+1/2F

R
i+1/2

aRi+1/2 − aLi+1/2
+ aLi+1/2a

R
i+1/2

uRi+1/2 − uLi+1/2

aRi+1/2 − aLi+1/2
. (5.3)

3. For the central-upwind method M2:

F ∗
i+1/2 :=

aRi+1/2F
L
i+1/2 − aLi+1/2F

R
i+1/2

aRi+1/2 − aLi+1/2
+
aLi+1/2a

R
i+1/2

2 ×
uRi+1/2 − uLi+1/2

aRi+1/2 − aLi+1/2
. (5.4)

5.2 Numerical entropy productions
Nonlinear hyperbolic systems (from conservation laws) can converge to several numeri-
cally converged solutions; while one of them is the physical (real) solution. Lax and Wen-
droff proved that if a sequence of numerical solutions converges to some function u(x, t)
as the computing grid is refined, by some sequence ∆x and ∆t → 0, then this function
will be a weak solution of the conservation law.

Theorem 3. (Lax and Wendroff [68]) Consider a sequence of grids indexed by l =
1, 2, . . . , with mesh parameters ∆xl,∆tl → 0 as l → ∞. Let ũl(x, t) denote the numeri-
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cal approximation computed with a consistent and conservative method on the lth grid.
Suppose that ũl converges to a function u as l → ∞, in the sense made precise below.
Then u(x, t) is a weak solution of the conservation law.

This theorem states that for the system ut + f(u)x = 0, the converged solution ũ only
satisfies the weak-form equation:

∫ ∞

0

∫ +∞

−∞
[ϕtu+ ϕxf(u)] dxdt = −

∫ +∞

−∞
ϕ(x, 0)u(x, 0)dx,

where ϕ(x, t) ∈ C1 is a test function. However, this does not mean a converged solution is
the physical solution. This proper convergence can be checked by the entropy condition.

Calculation of numerical entropy production helps one control quality/uniqueness of
numerical results especially for ones without exact solutions. This is because, theoret-
ically, the numerical entropy production is zero in smooth regions while less than zero
around shocks and discontinuities.

Puppo [28, 29] showed how to estimate the numerical entropy production for staggered
central high resolution schemes. After these works, Puppo et al. [31] improved the
previous works for non-staggered central/central-upwind schemes.

The entropy function η(u) with flux ψ(u) satisfies the relationship (for details see
Appendix C):

ηt + ψx(u) ≤ 0, η := η(x), ψ′ = η′.f ′.

Following works [28, 29], by integrating this relationship in the spatio-temporal vol-
ume

[
xj − ∆xj

2 , xj + ∆xj

2

]
× [tn, tn+1], and discretizing the inequality by considering the

REP concept (used in the KT, M1 or M2 method), we have:

ηn+1
j −

(
ηnj − 1

∆xj

∫ tn+1

tn

[
ψ∗
j+1/2 − ψ∗

j−1/2

])
≤ 0, ηnj := η(xj, tn). (5.5)

Based on this inequality, the density of numerical entropy production at xj, Snj , can
be defined as:

Snj = 1
∆t

{
ηn+1
j −

(
ηnj − 1

∆xj

∫ tn+1

tn

[
ψ∗
j+1/2 − ψ∗

j−1/2

])}
, Snj := S(xj, tn), (5.6)
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where ψ∗
j±1/2 := ψ∗

j±1/2

((
uLj±1/2

)n
,
(
uRj±1/2

)n)
.

In Eqs. (5.5) and (5.6), the terms in parentheses estimate the evolved values of the
entropy at the next time step (this can be done with the KT, M1 or M2 method).
Theoretically, as mentioned before and in Appendix C, the parameter Snj is zero in
smooth regions, however, in numerical solutions, it may be slightly less or more than
zero [31]. This kind of entropy definition cannot efficiently detect some phenomena like
contact discontinuities even by increasing number of resolution levels (see the Sod and
the Lax problems in the Euler gas dynamic system). To remedy this, other approaches
like the entropy viscosity scheme can be recommended [69].

5.3 Local truncation errors

5.3.1 One dimensional systems

The aim of this section is to estimate local truncation errors in hyperbolic systems of
conservation laws with the governing equation: ut + F (u)x = 0, u(x, t = 0) = u0(x).
This concept is important to check the convergence of numerical solutions.

It is easy to show that solution of this equation is also a weak solution satisfying the
relationship:

E(u, ϕ) = −
∫ ∞

t=0

∫
X

{u(x, t)ϕt(x, t) + F (u(x, t))ϕx(x, t)} dxdt

+
∫
X

{u(x, t)ϕt(x, t)} dx = 0,
(5.7)

where ϕ (x, t) is a test function that ϕ (x, t) ∈ C∞
0 (X×[0,∞)). One effective and practical

way to measure convergence of a numerical solution u(x, t) is to check how much it fails
to satisfy (5.7); this can be measured by evaluating E (u, ϕ) [26, 27]. For a convex scalar
hyperbolic system (d2F (u)/du2 ≥ α > 0), the function E (u, ϕ) measures point-wisely
real errors. In nonlinear conservation laws, discontinuous solutions develop typically;
in these cases standard methods of error estimation are not valid. Such approaches
consider the Taylor expansion which is based on the smoothness assumption.

The final point is the relationship of this local truncation error with the weak Lip
′-

norm theory studied for convex scalar one dimensional hyperbolic systems. Numerical
results confirm that it is also an effective tool for systems of one dimensional PDEs, 2-D
problems, and even non-convex systems.
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To be sure that E (u, ϕ) measures errors of u(x, t), some constraints should be met by
the test function ϕ(x, t): 1) The space spanned by the test functions should have a higher
order accuracy, so that the order of error E (u, ϕ) is affected by solutions u(x, t); 2) The
test function have continuous derivatives; 3) To estimate locally the error E (u, ϕ), the
test function has to be compact support in spatio-temporal domains.

We now consider the truncation error En
j := E(u∆, ϕ) for the piecewise constant

approximate solution u∆(x, t) as:

u∆(x, t) =
∑
j,n

[
unj .χCj×Tn(x, t)

]
, Cj × T n :=

[
xj−1/2, xj+1/2

]
×
[
tn−1/2, tn+1/2

]
,

(5.8)

wher χCj×Tn(x, t) denotes the unit function over the spatio-temporal domain Cj × T n;
it is zero elsewhere.

The compact test function ϕ(x, t) is assumed to be ϕnj (x, t) := Bj(x)Bn(t), whereBj(x)
and Bn(t) are the quadratic B-splines with center points x = xj and t = tn. In this case,
the supports of Bj(x) and Bn(t) belong to x ∈ [xj−3/2, xj+3/2] and t ∈ [tn−3/2, tn+3/2],
respectively.

Obtaining higher-order B-splines by the recurrence feature between higher-order
and lower-order B-splines Recalling that the B-spline of order k with centered posi-
tion j can be obtained as:

Bj,k = Bj,k−1wj,k +Bj+1,k−1 (1 − wj+1,k) , wj,k(x) :=


x−xj

xj+k−xj
, if xj ̸= xj+k−1,

0, otherwise.
(5.9)

where Bj,0 = 1 for j ≤ x < j + 1 and Bj,0 = 1 for x < j and x ≥ j + 1.
B-splines should also satisfy the partition of unity condition ∑j Bj,k(x) = 1. For the

second order spline, Eq. (5.9) leads to:

Bj,2 = Bj,1wj,2 +Bj+1,1(1 − wj+1,2). (5.10)

Let us consider three successive cells, with length ratios, a := ∆xj−1/∆xj and b :=
∆xj+1/∆xj, where ∆xj := xj+1/2 − xj−1/2 denotes jth cell length with cell middle
point x̄j. It is easy to show that Bj(x) is:
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Bj(x) =



(2x−2x̄j+∆x+2a∆x)2

4a(1+a)∆x2 , if xj−3/2 ≤ x ≤ xj−1/2,

−4(2+a+b)(x−x̄j)2−4(a−b)(x−x̄j)∆x+(2+3b+a(3+4b))∆x2

4(1+a)(1+b)∆x2 , if xj−1/2 ≤ x ≤ xj+1/2,

(−2x+2x̄j+∆x+2b∆x)2

4b(1+b)∆x2 , if xj+1/2 ≤ x ≤ xj+3/2,

0, otherwise,
(5.11)

where: ∆x := ∆xj; x̄j = (xj−1/2 + xj+1/2)/2; xj−3/2 := x̄j − ∆x(1/2 + a); xj−1/2 :=
x̄j − ∆x/2; xj+3/2 := x̄j + ∆x(1/2 + b); xj+1/2 := x̄j + ∆x/2.

It is easy to check that on uniform grids, where a = b = 1, the above-mentioned
B-spline definition leads to the B-spline on uniform grids. Since in time-domain, in this
study, a constant time-step is used, the definition of Bn(t) is the quadratic B-spline on
uniform grids with step ∆t, as:

Bn(x) =



(t−tn−3/2)2

2∆t2 , if tn− 3
2 ≤ t ≤ tn− 1

2 ,

3
4 − (t−tn)2

∆t2 , if tn− 1
2 ≤ t ≤ tn+ 1

2 ,

(t−tn+3/2)2

2∆t2 , if tn+ 1
2 ≤ t ≤ tn+ 3

2 ,

0, otherwise,

(5.12)

here: tn± 1
2 :=

(
tn ± ∆t

2

)
and tn± 3

2 :=
(
tn ± 3

2∆t
)
.

For spatially non-uniform grid points, it is straightforward to show that the local
truncation error can be expressed as:

En
j = ∆xjUn

j + ∆tFn
j , (5.13)

where Un
j is expressed in terms of the time differences ∆unα := 1/2 (un+1

α − un−1
α ),

Un
j = a2

3(a + 1)∆unj−1 + (a(3b + 2) + 2b + 1)
3(a + 1)(b + 1) ∆unj + b2

3(b + 1)∆unj+1,

and Fn
j is expressed in terms of the time averages µF n

α := 1/6 (F n−1
α + 4F n

α + F n+1
α ),

Fn
j = − (b − a)

(a + 1)(b + 1)µFn
j − a

a + 1µFn
j−1 + b

b + 1µFn
j+1.
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5.3.2 Two-dimensional problems

Let us consider a two dimensional scalar hyperbolic PDE as:

ut + F (u)x +G(u)y = 0, u0(x, y) := u(x, y, t = 0). (5.14)

As in the 1-D case, the weak solution of (5.14) satisfies

E(u, ϕ) =

−
∫ ∞

t=0

∫
Ω
u(x, y, t)ϕt(x, y, t) + F (u(x, y, t))ϕx(x, y, t) +G (u(x, y, t))ϕy(x, y, t) dxdydt

+
∫

Ω
u(x, y, t)ϕt(x, y, t) dxdy = 0.

(5.15)

We quantify the truncation error En
j,k := E(u∆, ϕ) for the piecewise constant approx-

imate solution, u∆(x, y, t),

u∆(x, y, t) :=
∑
j,k,n

unj,kχCj,k×Tn(x, y, t),

where Cj,k × T n :=
[
xj−1/2, xj+1/2

]
×
[
yk−1/2, yk+1/2

]
×
[
tn−1/2, tn+1/2

]
.

The test function ϕ(x, y, t) can also be defined as: ϕnj,k(x, y, t) := Bj(x)Bk(y)Bn(t).
Where all functions Bj(x), Bk(y) (from (5.11)), and Bn(t) (from (5.12)) denote quadratic
B-splines. Let us assume the successive cell length ratios in x and y directions to be:{
a = ∆xj−1

∆xj
, b = ∆xj+1

∆xj

}
and

{
c = ∆yk−1

∆yk
, d = ∆yk+1

∆yk

}
, where: ∆x = ∆xj := xj+1/2 −

xj−1/2 and ∆y = ∆yk := yk+1/2 − yk−1/2. By these assumptions, the local truncation
error En

j,k can be represented as:

En
j,k =

{
∆xj∆ykUn

j,k + ∆t∆ykFn
j,k + ∆t∆xjGn

j,k

}
, (5.16)

where Un
j,k is expressed in terms of the time differences ∆unα,β := 1/2

(
un+1
α,β − un−1

α,β

)
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Un
j,k = a2d3

9(a + 1)b(b + 1)∆unj−1,k+1 +
a2(a(3b + 2) + 2b + 1)un−1

j−1,k
9(a + 1)2(b + 1) ∆unj−1,k+

b2c3

9a(a + 1)(b + 1)∆unj+1,k−1 + b2(a(3b + 2) + 2b + 1)
9(a + 1)(b + 1)2 ∆unj+1,k+

c3(a(3b + 2) + 2b + 1)
9a(a + 1)2(b + 1) ∆unj,k−1 + d3(a(3b + 2) + 2b + 1)

9(a + 1)b(b + 1)2 ∆unj,k+1+

(a(3b + 2) + 2b + 1)2

9(a + 1)2(b + 1)2 ∆unj,k + ac3

9(a + 1)2 ∆unj−1,k−1 +
bd3un−1

j+1,k+1
9(b + 1)2 ∆unj+1,k+1,

and Fn
j,k and Gnj,k are expressed in terms of the time averages µZn

α,β := 1/6
(
Zn−1
α,β + 4Zn

α,β + Zn+1
α,β

)
,

Fn
j,k = − c3

3(a + 1)2 µFn
j−1,k−1 + (a − b)c3

3a(a + 1)2(b + 1)µFn
j,k−1 + bc3

3 (a2 + a) (b + 1)µFn
j+1,k−1

− a(2b + a(3b + 2) + 1)
3(a + 1)2(b + 1) µFn

j−1,k − ad3

3(a + 1) (b2 + b)µFn + (a − b)(2b + a(3b + 2) + 1)
3(a + 1)2(b + 1)2 µFn

j,k

+ (a − b)d3

3(a + 1)b(b + 1)2 µFn
j,k+1 + b(2b + a(3b + 2) + 1)

3(a + 1)(b + 1)2 µFn
j+1,k + d3

3(b + 1)2 µFn
j+1,k+1,

Gnj,k = − c2b2

3 (a2 + a) (b + 1)µGn
j+1,k−1 + (a − b)b2

3(a + 1)(b + 1)2 µGn
j+1,k + d2b

3(b + 1)2 µGn
j+1,k+1

− ac2

3(a + 1)2 µGn
j−1,k−1 + a2(a − b)

3(a + 1)2(b + 1)µGn
j−1,k + a2d2

3(a + 1) (b2 + b)µGn
j−1,k+1

− c2(2b + a(3b + 2) + 1)
3a(a + 1)2(b + 1) µGn

j,k−1 + (a − b)(2b + a(3b + 2) + 1)
3(a + 1)2(b + 1)2 µGn

j,k

+ d2(2b + a(3b + 2) + 1)
3(a + 1)(b + 1)2b

µGn
j,k+1.

5.4 Other second-order slope limiters
So far, it is shown that the families of the MINMOD limiters work well on non-uniform
grids. In the following, the performance of other families will be investigated.
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5.4.1 Slope limiters on uniform cells: the TVD ones

Let us consider uniform cell and the concept of the central formulation for approximation
of the first derivative. The edge valuse for the cell Ij can be evaluated as:

uLi+1/2 = ui + ∆x
2

(
ϕ (Ri)

∆0ui
2∆x

)
,

uRi−1/2 = ui − ∆x
2

(
ϕ (Ri)

∆0ui
2∆x

)
,

(5.17)

where ∆0ui := ui+1 − ui−1, ∆x = xi+1/2 − xi−1/2 denotes the length of the cell Ij
and R = Ri := ∆+ui

∆−ui
measures the subsequent gradients at xj, wherein ∆+ui = ui+1 −ui

and ∆−ui = ui − ui−1. In other words, the limited slope at xj is:

(ϕD)i = ϕ (Ri) ×D0ui, (5.18)

wherein D0ui := ∆0ui

∆0xi
. Using this limited slope, different limiters can be provided.

Regarding the definition of Ri, some of common limiters are:

(ϕi)BJ := min
{

1, 4
R + 1 ,

4R
R + 1

}
,

(ϕi)V L := 4R
(R + 1)2 ,

(ϕi)V A := 2R
R2 + 1 ,

(ϕi)MM := min
{ 2

1 +R
,

2R
1 +R

}
,

(5.19)

where BJ, VL, VA and MM stand for the Barth-Jespersen, van Leer, van Albada and
MINMOD limiters, respectively.

For instance, let us assume a monotonically increasing solution {ui} measured over the
cell set {Ij−1, Ij, Ij+1}, in which Ij is the transmitting cell, that is: xj+1/2 − xj = p∆xj
and xj−xj−1/2 = (1−p)∆xj wherein ∆xj = xj+1/2 −xj−1/2. Then the MINMOD limiter
can be re-expressed on xj as:
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MM
(
ui+1 − ui

∆x ,
ui − ui−1

∆x

)
= Min

(
ui+1 − ui

∆x ,
ui − ui−1

∆x

)
=Min

(
ui+1 − ui
ui − ui−1

, 1
)

× (ui+1 − ui)
∆x = Min

(
1, 1
R

)
× (ui+1 − ui)

∆x

=Min
(

1, 1
R

)
× 2 (ui+1 − ui)

2∆x × ui+1 − ui−1

ui+1 − ui−1

=Min
(

2, 2
R

)
× ui+1 − ui
ui+1 − ui−1

× ui+1 − ui−1

2∆x

=Min
(

2, 2
R

)
× ui+1 − ui
ui+1 − ui + ui − ui−1

×D0ui

=Min
(

2, 2
R

)
× 1

1 + 1
R

×D0ui

=Min
( 2R

1 +R
,

2
1 +R

)
×D0ui.

(5.20)

Regarding the definition of the parameter f := ∆−ui/∆0ui, the limiters presented in
Eq. (5.19) can be re-expressed as:

(ϕi)BJ := min {1, 4f, 4(1 − f)} ,

(ϕi)V L := 4f(1 − f),

(ϕi)V A := 2f(1 − f)
f 2 + (1 − f)2 ,

(ϕi)MM := min {2f, 2(1 − f)} .

(5.21)

Other TVD limiters can also be defined, such as:

(ϕi)sin := sin(πf), (5.22)

where (ϕi)sin denotes the sin limiter. Regarding the TVD constraint for uniform cells,
the above-mentioned limiters are presented in Figure 5.2. It is clear the limiters remain
in the TVD bound and satisfy the linearity preserving feature (presented by a black
point).
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Figure 5.2: The variation of some commonly used limiters in terms of the parameter f ;
the black point represent the linearity preserving location.

5.4.2 Slope limiters on non-uniform cells: the TVD ones

In general, the limited central first-derivative, (ux)j can be defined on a transmitting
(non-centered) cell as:

(ϕiDi) = (ϕi) × ∆0ui
∆0xi

= (ϕi) × ∆0ui
∆xj−1

2 + ∆xj + ∆xj+1
2

= (ϕi) × ∆0ui

a∆xj

2 + ∆xj + b∆xj

2

= (ϕi) × ∆0ui(
a
2 + 1 + b

2

)
∆xj

=

 1(
a
2 + 1 + b

2

) (ϕi)

× ∆0ui
∆xj

.

(5.23)

Regarding non-uniform grids, it is easy to show that the limiters presented in (5.21)
and (5.22) do not necessarily remain in the TVD region or pass through the linearity
preserving point.

To work properly on wavelet-based adapted grids, it is essential to re-define new
limiters or to modify the common ones satisfying the TVD conditions and the linearity
preserving feature. In general, such limiters should satisfy some conditions:

1. (ϕjDj) (f = 0) = 0,
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2. (ϕjDj) (f = 1) = 0,

3. Satisfying the linearity preserving condition: (ϕjDj) (f = fp) = 2
2+a+b

∆0uj

∆xj
, where fp =

2+a−2p
2+a+b ,

4. Advising to have zero value of the first-derivative at the peak point f = fp, that
is:
(
d
df
ϕjDj

)
(f = fp) = 0,

5. Remaining in the TVD region.

In the following, some limiters are updated/defined to handle multiresolution-based
adapted cells.

The van Leer limiter

For monotonic solutions, the original van Leer limiter can be assumed to be the harmonic
average of the first derivatives D−uj and D+uj, as:

1
(ϕV LD)j

=
(1

2

)( 1
D−uj

)
+
(1

2

)( 1
D+uj

)
. (5.24)

On uniform cells, since D−uj := f ∆0uj

∆xj
and D+uj := (1 − f)∆0uj

∆xj
, it is easy to show that

the relationship in Eq. (5.21) can be obtained.
Over non-uniform cells, using the harmonic averaging ofD−uj andD+uj, in whichD−uj :=

2f
1+a

∆0uj

∆xj
and D+uj := 2(1−f)

1+b
∆0uj

∆xj
, the limited slope reads:

(ϕNUV LD)j = 4(1 − f)f
(1 − f)(1 + a) + f(1 + b)

∆0uj
∆xj

, (5.25)

where a := ∆xj−1/∆xj and b := ∆xj+1/∆xj. For a transition (non-centered) cell
(e.g.: a = 4/3, b = 2/3 and p = 1/3) this limiter is presented in Figure 5.3(a). It is
obvious that it does not satisfy the linearity preserving feature.

To update the van Leer limiter for non-uniform cells, here, a weighted harmonic av-
eraging is proposed for monotonic solutions, as:

1
(ϕWNU

V L D)j
=
(

∆−xj
∆0xj

)(
1

D−uj

)
+
(

∆+xj
∆0xj

)(
1

D+uj

)
. (5.26)
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(a) Harmonic average (b) Weighted harmonic average

Figure 5.3: The modified van Leer limiters on a transmitting cell.

Re-expressing this equation based on the parameter f , it reads:

(ϕWNU
V L D)j =

−2f(1 − f)(a+ b+ 2)
−a2(1 − f) + a(1 − f)(2p− 3) − (b+ 2)f(b+ 2p− 1) − 2(1 − p) × ∆0uj

∆xj
(5.27)

This limiter is illustrated in Figure 5.3(b) on a transmitting cell; it is obvious that it
satisfies both the TVD and the linearity preserving properties.

The van Albada limiter

It is easy to show that the van Albada limiter on uniform cells can be obtained by a
proper weighted harmonic averaging of the forward (D+uj) and the backward (D−uj)
first derivatives, as:

1
(ϕV AD)j

=
(

f

(f) + (1 − f)

)(
1

D+uj

)
+
(

1 − f

(f) + (1 − f)

)(
1

D−uj

)
. (5.28)

Since, on uniform cells, a = b = 1, D−uj := f ∆0uj

∆xj
and D+uj := (1 − f)∆0uj

∆xj
, then:
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(ϕV AD)j = f(1 − f)
2f 2 − 2f + 1

∆0uj
∆xj

= 2f(1 − f)
f 2 + (1 − f)2

∆0uj
2∆xj

(5.29)

The symmetric feature with respect to f is clear in Eq. (5.29).
For non-uniform non-centered cell Ij let us re-express the weighted harmonic average

as:

1
(ϕWNU

V A D)j
=
(

αf

(αf) + (1 − αf)

)(
1

D+uj

)
+
(

(1 − αf)
(αf) + (1 − αf)

)(
1

D−uj

)
. (5.30)

where α is an unknown constant. The constraint is the linearity preserving feature, that
is: (ϕiDi) (fp) = 2

a+b+2
∆0ui

∆xi
, where fp = 2+a−2p

2+a+b . Then it is straightforward to show that
the coefficient α reads:

α = b+ 2p
2 + a− 2p, (5.31)

where xi+1/2 − xi = p∆xi, a := ∆xi−1/∆xi and b := ∆xi+1/∆xi.
Finally, based on the modified van Albada formulation, the limited slope reads:

(
ϕWNU
V A D

)
i

= 1

− (1+b)f(b+2p)
2(−1+f)(2+a−2p) − (1+a)(−1+ f(b+2p)

2+a−2p)
2f

× ∆0ui
∆xi

. (5.32)

The updated van Albada limiter on a transmitting cell is presented in Figure 5.4 with
the parameters a = 4/3, b = 2/3 and p = 1/3. Also, in this figure the TVD boundary
and the MM limiter are presented. It is clear the updated van Albada limiter remains
between the MM limiter and the TVD constraint, and

(
ϕWNU
V A D

)
i
preserves the linearity

preserving condition, as well.
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Figure 5.4: The modified van Albada limiter on a transmitting cell, derived from a
weighted harmonic average.

Modified van Albada limiters

On non-uniform con-centered cells, the van Albada limiter defined in Eq. (5.30) can be
re-expressed with new weights as:

1
(ϕWNU

mV A,nD)j
=
 α.f

1
n

(α.f 1
n ) + (1 − α.f

1
n )

( 1
D+uj

)
+
 (1 − α.f

1
n )

(α.f 1
n ) + (1 − α.f

1
n )

( 1
D−uj

)
,

(5.33)

where α and n are unknown constants.
To satisfy the linearity preserving feature, it is essential that:

α = f
− 1

n
p

(b+ 2p)
2

2
2 + a+ b

. (5.34)

It is straightforward to show that for n = 1, Eq. (5.34) is equal to Eq. (5.31).
For two values of n, n = 2 and n = 10, over a transmitting cell Ij with the parame-

ters a = 4/3, b = 2/3 and p = 1/3, the limiters (ϕWNU
mV A,nD)j are presented in Figure 5.5.

It is obvious both the TVD and linearity preserving features are satisfied.

The Superbee limiter

Another famous TVD slope limiter is the Superbee limiter introduced by Roe [178],
defined as:
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(a) The modified Albada limiter with n = 2 (b) The modified Albada limiter with n = 10

Figure 5.5: The modified van Albada limiters on a transmitting cell with different n
values.

(ϕi)SBDi = MAXMOD
{
δ

(1)
i , δ

(2)
i

}
, (5.35)

where:

δ
(1)
i = MINMOD

{
ui+1 − ui
xi+1 − xi

, 2ui − ui−1

xi − xi−1

}
,

δ
(2)
i = MINMOD

{
2ui+1 − ui
xi+1 − xi

,
ui − ui−1

xi − xi−1

}
,

(5.36)

and:

MAXMOD (a1, a2) =

 s.max (|a1| , |a2|) , if sign (a1) = sign (a2) = s,

0, otherwise.
(5.37)

Again, let us consider the cell set {Ij−1, Ij, Ij+1}, in which Ij is the transmitting cell,
that is: xj+1/2 −xj = p∆xj and xj −xj−1/2 = (1 − p)∆xj wherein ∆xj = xj+1/2 −xj−1/2.
And also the cells Ij−1 and Ij+1 are the cell-centered cells. In this case for a monotone
solution over {Ij−1, Ij, Ij+1}, Eq. (5.35) can be re-expressed as:
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Figure 5.6: The performance of the SuperBee limiter on non-uniform cells.

(ϕi)SBDi =(
max

{
min

[(
2 1 − f

2p+ b

)
, 2
(

2 f

2(1 − p) + a

)]
,min

[
2
(

2 1 − f

2p+ b

)
,

(
2 f

2(1 − p) + a

)]})

× ∆0ui
∆xi

(5.38)

Some other new TVD limiters

Let us assume a set of non-uniform cells; designing of some other second-order TVD
limiters can be performed by satisfying some conditions. For a transmitting cell, these
conditions are:

1. At f = fp = 2+a−2p
2+a+b , the limited derivative should be (ϕiDi) = 2

2+a+b
∆0ui

∆xj
,

2. For monotone data ϕi(f = 0) = 0,

3. For monotone data ϕi(f = 1) = 0,

4. For 0 ≤ f ≤ 1, a second-order limiter must be between the MM limiter and the
TVD upper bound, that is: (ϕi)MM ≤ (ϕi) ≤ (ϕi)TVD.

Also, it is recommended that at f = fp, the first derivative of a limiter with respect to f
is zero, i.e.: d(ϕ)i

df
= 0.
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Figure 5.7: The performance of (ϕjDj)1 and (ϕjDj)2 limiters; a) The limiter (ϕjDj)1; b)
The limiter (ϕjDj)2.

Two possible examples are as follows:

(ϕiDi)1 :=


f

1−p

[
1 − a

2+a−2p

(
f
fp

) 2(1−p)
a

]
× ∆0uj

∆xj
, for f ≤ fp,

(1−f)
p

[
1 − b

b+2p

(
1−f
1−fp

) 2p
b

]
× ∆0uj

∆xj
, for f > fp.

(5.39)

(ϕiDi)2 :=


2fp

a−2p+2

(
1 −

(
1 − f

fp

)a+(1+a( 1
2(1−p) −1))

)
× ∆0uj

∆xj
, for f ≤ fp,

2(1−fp)
b+2p

(
1 −

(
1 − 1−f

1−fp

)b+(1+b( 1
2p

−1))
)

× ∆0uj

∆xj
, for f > fp.

(5.40)

Over a transmitting cell (surrounded with two cell-centered cells), these limiters,
the TVD boundaries and the linearity preserving points are presented in Figure 5.7,
where a = 4/3, b = 2/3 and 1/3. It is obvious that (ϕjDj)1 and (ϕjDj)2 are second-
order TVD limiters.

On uniform grids (i.e.: a = b = 1 and p = 1/2), the limiters (ϕjDj)1 and (ϕiDi)2

recover the van Leer quadratic limiter [172].
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5.4.3 The UNO limiter on non-uniform cells: cell-centered and
non-cell-centered ones

Regarding flux/slope limiters in the central high resolution schemes, different construc-
tion criteria were developed. One of the most famous ones is the TVD limiters working
in a way that total variations (TVs) of numerical solutions do not increase through time.
And this guarantees solutions without spurious oscillations. Different TVD limiters were
successfully developed (on uniform cells); however, they have some drawbacks:

1. Most of the limiters were basically developed for uniform cells,

2. They lead to the first-order accuracy around extrema and so end to over-smoothed
results around them,

3. They have at most the first-order accuracy for 2-D/3-D problems,

4. The construction criteria for limiters are restrictive.

To remedy these shortcomings, different construction approaches were suggested for
limiters, such as the total variation bounded (TVB) [179] and UNO [123, 124] ones.
Especially to cure the over-smoothing phenomenon around extrema, the UNO limiters
were suggested. They try to preserve the same accuracy-order both over smooth and
discontinuities responses and at the same time they try to control non-physical oscilla-
tions.

The formula of the second-order UNO limiter on uniform grids can directly be derived
by the Taylor’s series. On non-uniform cells, a modified formula can be derived by using
interpolating parabolic polynomials. In the following, three sets of non-uniform cells are
studied to derive the UNO-limiter at xi.

The non-uniform grid {xi−2, xi−1, xi}

Let P (x) denotes the interpolating parabolic polynomial over the discrete data {fi−2, fi−1, fi}
defined on {xi−2, xi−1, xi}, where fi := f (xi) and f(x) is a differentiable function. The
first and the second derivatives of P (x) at xi can be evaluated as:

P ′ (xi) = − (xi−2 − xi−1) (xi−2 + xi−1 − 2xi) fi + (xi−2 − xi)2 fi−1 − (xi−1 − xi)2 fi−2

(xi−2 − xi−1) (xi−2 − xi) (xi−1 − xi)
.

(5.41)
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And:

P ′′ (xi) =
2
(
fi−fi−1
xi−xi−1

− fi−1−fi−2
xi−1−xi−2

)
xi − xi−2

. (5.42)

Let a differentiable function g(x) for x ∈ [a, b] is sampled on a non-uniform grid {xi}Ni=1,
as {gi}Ni=1; and a polynomial of order N , PN(x) interpolates the data. The first derivative
at xi can be estimated by P ′

N(xi) with the error (denoted by E(.)), as [180]:

E (g) = g′ (xi) − P ′
N (xi) = 1

N + 1g
(N+1) (ζ) .

N∏
j = 0
j ̸= i

(xi − xj) , for ζ ∈ [a, b] .
(5.43)

And so g′ (xi) = P ′
N (xi) + O

(
hN−1

)
, where h corresponds to the maximum local grid

spacing. In this regard, f ′
i := f ′(xi) can be estimated on {xi−2, xi−1, xi} as:

f ′
i = P ′ (xi) + O

(
h2
)
, (5.44)

where h denotes the maximum local grid spacing. Let us set z(x) = g′(x), then for the
second derivative f ′′

i := f ′′(xi), E(z) can be estimated as well by Eq. (5.43), and so:

f ′′
i = P ′′ (xi) + O (h) . (5.45)

By some calculations, P ′ (xi) presented in Eq. (5.41) can be re-expressed as:

P ′ (xi) = fi − fi−1

xi − xi−1
+ 1

2 (xi − xi−1)P ′′ (xi) . (5.46)

Hence, f ′
i with the second-order accuracy (defined in Eq. (5.44)) reads:

f ′
i = fi − fi−1

xi − xi−1
+ 1

2 (xi − xi−1)P ′′ (xi) + O
(
h2
)
, (5.47)

where fi−fi−1
xi−xi−1

=: D−fi denotes the first-order estimation of f ′
i obtained by a linear

interpolation (P2(x)) over the grid {xi−1, xi}, that is:

f ′
i = fi − fi−1

xi − xi−1
+ O (h) . (5.48)
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In terms of Eq. (5.48), f ′
i with the second-order accuracy, defined in Eq. (5.47), can be

re-expressed as:

f ′
i = D−fi + ∆−xi

2

D−fi −D−fi−1
∆0xi−1

2

+ O
(
h2
)
, (5.49)

where: ∆−xi := xi−xi−1; ∆0xi := xi+1 −xi−1; and D−fi := ∆−fi/∆−xi wherein ∆−fi :=
fi − fi−1.

The non-uniform grid {xi−1, xi, xi+1}

Let us assume irregular grid {xi−1, xi, xi+1} with corresponding sampled data {fi+j}1
j=−1;

using the interpolating parabolic polynomial P (x) over these data, it is easy to show
that:

P ′ (xi) = −(∆−xi+1)2 fi−1 + (−∆0xi) (∆−xi+1 − ∆−xi) fi − (∆−xi)2 fi+1

∆−xi+1.∆0xi.∆−xi
, (5.50)

and

P ′′ (xi) = D−fi+1 −D−fi
1
2 (∆0xi)

. (5.51)

Using the first-order backward formula for the first derivative, D−fi, P ′(xi) (Eq.
(5.50)) can be re-expressed as:

P ′ (xi) = D−fi + 1
2 (∆−xi)P ′′ (xi) = D−fi + (D−fi+1 −D−fi)

1
2 (∆0xi)

(∆−xi)
2 . (5.52)

Regarding the relationship for the error in the derivative estimation, Eq. (5.43), the
estimation of the first derivative reads:

f ′ (xi) = P ′ (xi) + O
(
h2
)

= D−fi + (D−fi+1 −D−fi)
1
2 (∆0xi)

(∆−xi)
2 + O

(
h2
)
. (5.53)

Now let us assume the definition of the first-order forward formula for the first deriva-
tive, D−fi+1. In this case P ′ (xi) (Eq. (5.50)) can also be re-expressed as:

P ′ (xi) = D−fi+1 − 1
2 (∆−xi+1)P ′′ (xi) = D−fi+1 − (D−fi+1 −D−fi)

1
2 (∆0xi)

(∆−xi+1)
2 . (5.54)
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And so:

f ′ (xi) = D−fi+1 − (D−fi+1 −D−fi)
1
2 (∆0xi)

(∆−xi+1)
2 + O

(
h2
)
. (5.55)

The non-uniform grid {xi, xi+1, xi+2}

Let us assume that the discrete data {f(xi+j)}2
j=0 are sampled on the grid points

{xi, xi+1, xi+2}. Now, the function P (x) denotes the interpolating parabolic polynomial
over these data. It is easy to show that:

P ′ (xi) = −∆−xi+2 (∆−xi+1 + ∆0xi+1) fi − (∆0xi+1)2 fi+1 + (∆−xi+1)2 fi+2

∆0xi+1.∆−xi+1.∆−xi+2
, (5.56)

and

P ′′ (xi) = D−fi+2 −D−fi+1
1
2 (∆0xi+1)

. (5.57)

Considering the definition of D−fi+1, it is straightforward to re-express Eq. (5.56) as:

P ′ (xi) = D−fi+1 − 1
2 (∆−xi+1)P ′′ (xi) = D−fi+1 − D−fi+2 −D−fi+1

1
2 (∆0xi+1)

∆−xi+1

2 , (5.58)

and regarding Eq. (5.43), f ′ (xi) reads:

f ′ (xi) = P ′ (xi) + O
(
h2
)

= D−fi+1 − D−fi+2 −D−fi+1
1
2 (∆0xi+1)

∆−xi+1

2 + O
(
h2
)
. (5.59)

The limited value of f ′ (xi)

In terms of Eqs. (5.49) and (5.53), f ′ (xi) may be approximated by the averaging of the
two candidates as:

f ′
i ≈ D−fi + 1

2 (∆−xi) MM
(
D−fi+1 −D−fi

1
2 (∆0xi)

,
D−fi −D−fi−1

1
2 (∆0xi−1)

)
, (5.60)

and from Eqs. (5.55) and (5.59), f ′ (xi) may also be estimated as:

f ′
i ≈ D−fi+1 − 1

2 (∆−xi+1) MM
(
D−fi+2 −D−fi+1

1
2 (∆0xi+1)

,
D−fi+1 −D−fi

1
2 (∆0xi)

)
. (5.61)
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Based on these two candidates, Eqs. (5.60) and (5.61), the limited value of f ′ (xi) may
be evaluated as:

f ′
i ≈ MM

{
D−fi + 1

2 (∆−xi) MM
(
D−fi+1 −D−fi

1
2 (∆0xi)

,
D−fi −D−fi−1

1
2 (∆0xi−1)

)
,

D−fi+1 − 1
2 (∆−xi+1) MM

(
D−fi+2 −D−fi+1

1
2 (∆0xi+1)

,
D−fi+1 −D−fi

1
2 (∆0xi)

)}
.

(5.62)

Some Remarks:

1. As mentioned the MM limiter satisfies the TVD condition on centered and non-
centered adapted cells Section 4.2; where for the MRA-based adapted cells, for
centered and non-centered cells we have respectively p = 1/2 and p = 1/3. In this
regard, the estimation of the first derivative in Eq. (5.62) with the MM limiter
would be stable and so have the UNO feature,

2. For uniform cells (i.e.: ∆−xi = ∆−xi+1 = h and ∆0xi+1 = ∆0xi = ∆0xi−1 = 2h),
the original UNO-limiter can be retrieved (especially when h = 1),

3. Other averaging functions may be used instead of the MM function, such as [181]:

m (x, y) =

 x, |x| ≤ |y| ,
y, |x| > |y| .

(5.63)

4. Some other averaging operators may also be recommended, such as harmonic
(known as the harmod function), power and ENO limiters [182].

Reconstruction errors by using the GMM (TVD) and UNO limiters

The performance of the MM, GMM and UNO limiters are studied on adapted grids by
measuring reconstruction error at cell edges. The norm at the cell interfaces can be
measured as [61, 183–185]:

Errp := 1
N

(∥∥∥∥u−
i+ 1

2
− f

(
x−
i+ 1

2

)∥∥∥∥
L

p0
∆x

+
∥∥∥∥u+

i+ 1
2

− f
(
x+
i+ 1

2

)∥∥∥∥
L

p0
∆x

)
, (5.64)

where N denotes the number of cell-interfaces
{
xi+1/2

}
; u−

i+1/2 = ui + u′
i ×

(
xi+1/2 − xi

)
and u+

i+1/2 = ui+1 − u′
i+1 ×

(
xi+1 − xi+1/2

)
indicate the left and right reconstructed

values at xi+1/2, respectively, in which u′
i is a proper estimation of the first derivative;
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Table 5.4.1: Reconstruction error for f1(x) at cell-interfaces for the norms with p0 = 1
Jmax MM limiter GMM limiter UNO limiter UNO limiter

(GMM: θ = 1) θ = 2 By MM By m(., .)
7 0.0462394 0.0323892 0.0326315 0.0424423
8 0.0267894 0.0152814 0.0147827 0.0153478
9 0.0140767 0.00721122 0.0070828 0.0070828
10 0.0075057 0.00386423 0.00383173 0.00383173
11 0.00604574 0.00306278 0.00310451 0.00310451

x±
i+1/2 := limδx→0

(
xi+1/2 ± δx

)
. The definition of the norm is:

∥(.)i∥Lp0
∆x

:=
(

N∑
i=1

|(.)i|p0

) 1
p0

, ∥(.)i∥L∞
∆x

:= maxi |(.)i| . (5.65)

In the following, two benchmark functions are studied on MRA-based adapted grids;
as: 1) A smooth function including a localized high-gradient variation; and 2) A smooth
function with a discontinuity.

The first test problem Let us consider a smooth function with localized high gradient
variation, defined as [183]:

f1 (x) := Sin (2πx) + Exp
(
−β̄ (x− 0.5)2

)
for x ∈ [0, 1] , (5.66)

where β̄ = 20000. Let us assume that the coarsest resolution level is Jmin = 5 (with sam-
pling step dx = 1/2Jmin) and the finest resolution levels belong to Jmax ∈ {7, 8, 9, 10, 11}.
For the cell adaptation, the threshold value is equal to ϵ = 0.5×10−4. The function f1(x)
and the distribution of adapted points in different resolution levels are presented in
Figure 5.8 for different Jmax values. In this figure, the solid line and solid points •
represent f1(x) and adapted points (in different resolutions), respectively; Wj denotes
the detail space of the resolution level j and Vi indicates the approximation space of
the resolution level i = 5. The reconstruction errors at interfaces are measured by L1

norm, that is p0 = 1 in Eqs. (5.64) and (5.65). The errors of reconstructions with the
MM, GMM and UNO limiters are presented in Table 5.4.1. The results confirm that the
performance of the UNO limiters is comparable with the GMM limiter (with the TVD
feature).
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Figure 5.8: The function f1(x) (the solid lines) and corresponding adapted grid points
(the plot markers •) in different resolution levels for different Jmax values;
in all illustrations, Jmin = 5 and ϵ = 0.5 × 10−4.

The second test problem In this problem, a smooth function including a discontinuity
is assumed, as [183]:

f2(x) = Sin(2πx) − H(x− 1/2) + 1/2, for x ∈ [0, 1] . (5.67)

In this problem, it is assumed that: Jmin = 5, Jmax ∈ {7, 8, 9, 10, 11, 12} and ϵ =
0.5 × 10−4. The function f2(x) and corresponding adapted grid points (at different
resolution levels) are presented in Figure 5.9 for different Jmax values. In this figure, the
solid line represents f2(x) and the plot markers • indicate the adapted points in different
resolution levels. The errors are presented in Table 5.4.2 for p0 = 1. The results confirm
the reasonable performance of the UNO limiter in comparison to the GMM limiter.

5.4.4 The Jameson slope limiter, a TVB limiter

There are some other limiters with different designing philosophies developed originally
for working on non-uniform grids. One example is the Jameson slope limiter, (ϕjDj)Ja;
the corresponding limited slope can be defined as:
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Figure 5.9: The function f2(x) (the solid lines) and corresponding adapted grid points
(the plot markers •) in different resolution levels for different Jmax values;
in all illustrations, Jmin = 5 and ϵ = 0.5 × 10−4.

Table 5.4.2: Reconstruction error for f2(x) at cell-interfaces for the norms with p0 = 1
Jmax MM limiter GMM limiter UNO limiter UNO limiter

(GMM: θ = 1) θ = 2 By MM By m(., .)
7 0.0399457 0.0362582 0.033061 0.033061
8 0.0367327 0.0326647 0.0305192 0.0305192
9 0.0339901 0.0299104 0.0283381 0.0283381
10 0.0316237 0.0276812 0.0264477 0.0264477
11 0.0295635 0.0258092 0.0247941 0.0247941
12 0.0277545 0.0241977 0.0233352 0.0233352
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(
ϕj+1/2Dj+1/2

)
Ja

:= R (∆−uj+2,∆−uj)
[

(∆−uj+2 + ∆−uj) /∆x
2

]
, (5.68)

where: ∆−uj+2 := uj+2 −uj+1; ∆x denotes an uniform sampling step; and the reduction
factor R is:

R (∆−uj+2,∆−uj) := 1 −
∣∣∣∣∣ ∆−uj+2 − ∆−uj
|∆−uj+2| + |∆−uj|

∣∣∣∣∣
q

, (5.69)

where q is a positive constant, wherein q ≥ 2. Reconstructed solutions uLj+1/2 and uRj+1/2

can be obtained as: uLj+1/2 = uj + (∆x/2)
(
ϕj+1/2Dj+1/2

)
Ja

and uRj+1/2 = uj+1 −
(∆x/2)

(
ϕj+1/2Dj+1/2

)
Ja

.
In the definition of

(
ϕj+1/2Dj+1/2

)
Ja

, indeed, slopes from left and right side of xj+1/2

are averaged (i.e., slopes (∆−uj+2/∆x) and (∆−uj/∆x)) and then it is limited by the
reduction coefficient R.

It is possible to use directly Eq. (5.68) for non-uniform grids, where in this case,
for ∆x, an average value of ∆xj can be used, as: ∆x = [∆−xj+2 + ∆−xj] /2. This directly
using will lead to a more dissipative but stable solutions. The limiter performance can
be improved by using real slope definitions in Eq. (5.68), as:

(
ϕj+1/2Dj+1/2

)m
Ja

:= R (D−uj+2, D−uj)
D−uj+2 +D−uj

2 , (5.70)

where D−uj+2 := ∆−uj+2/∆−xj+2. The reconstructed state values become: uLj+1/2 =
uj+

(
xj+1/2 − xj

) (
ϕj+1/2Dj+1/2

)m
Ja

and uRj+1/2 = uj+1−
(
xj+1 − xj+1/2

) (
ϕj+1/2Dj+1/2

)m
Ja

.
It is easy to show that both definitions (5.68) and (5.70), preserve the linearity con-

dition even on nonuniform grids; this means solutions will have second order accuracy.
Regarding simulations on adapted grids, both definitions

(
ϕj+1/2Dj+1/2

)m
Ja

and(
ϕj+1/2Dj+1/2

)
Ja

remain stable. For cases without the post-processing stage, however,
these limiters also lead to erroneous adapted grid points and non-monotone preserving
solutions. The post-processing stage of adapted grids can remedy this problem (this will
be studied numerically).
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5.5 Non-convex problems
In this section, difficulties encountered in numerical simulations of non-convex hyperbolic
problems will be reviewed [30]. For convex or concave fluxes, F ′′(u) := ∂2F/∂u2 has the
same sign everywhere. This feature is important since F ′(u) is varying monotonically
as u various. And this leads to developing of rarefaction and shock waves separately
in different locations. For the non-convex systems, solutions can be more complex and
can involve both shock and rarefaction in a specific location [178]. By some numerical
examples, it will be shown that even though solutions have convergence (to weak form
solutions), due to existence of complex waves in these problems, they are not physical
(real) solutions. This kind of systems can explain important phenomena, such as: Euler
equations of gas dynamic with a non-convex flux, polymer system used for simulation
of polymer flooding processes in enhanced oil recovery, mechanical wave equations with
non-convex fluxes and problems involving the phase-transition phenomenon.

In numerical simulation section, it will be illustrated that even spatial adaptation
does not guarantee convergence to real solutions. For remedy this problem, using of
adaptive limiters (adaptive schemes) are recommended [30]. In this case, most dissipative
limiters are used around sharp transitions (discontinuities) while less dissipative limiters
in remaining smooth regains. This idea can easily be integrated with the wavelet-
based adaptation algorithms: using most dissipative limiters around highly concentrated
adapted grid points.

5.6 Numerical examples
The following examples are to study the effectiveness of the proposed method concerning
nonlinear 1-D and 2-D first order hyperbolic systems. The main assumptions are: 1-
Applying the D-D interpolating wavelet of order 3; 2- Using the generalized MINMOD
flux/slope limiter in all problems; 3- Repeating re-adaptation processes every time step;
4- Using the semi-discrete form of central and central-upwind schemes; 5- Integrating in
time by the TVD Runge-Kutta second-order solver.

Performance of the TVD second-order limiters by the Burgers’ equation Let us
consider the Burgers’ equation, defined in the previous section defined on x ∈ [0, 1]
with IC: u(x, t = 0) = sin(2πx) + sin(πx)/2. For numerical simulations, it is assumed
that: Jmax = 11, Jmin = 4, ϵ = 0.5 × 10−3 a dt = 0.0002. For this problem, the
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performance of the VL, VA, modified VA with n = 2 and n = 10, MaxMod, (ϕjDj)1

and (ϕjDj)2 limiters are studied with the second-order central KT scheme. The solutions
are presented in Figure 5.10 at t = 0.159. The distribution of the corresponding adapted
grids in different resolution levels, W5 to W10 and V5, are presented in Figure 5.11. The
results confirm that: 1) the MaxMod limiter leads to the most dissipative result around
the discontinuity; 2) Adapted points concentrate properly around the discontinuity and
high-gradient zones.

Euler system of equations The governing system of equations for the Euler gas dy-
namic problem is presented in Eq. (6.73). In the following, three different problems
with different initial and boundary conditions will be studied. These diverse conditions
lead to different bench-mark problems, as: 1) the Sod problem [186]; 2) the Lax problem
[187]; 3) Interaction of an entropy sine wave with a Mach 3 right-moving front [71].

In the above mentioned system, the entropy funcion η(u) and the entropy flux ψ(u)
are defined as:

η(u) = −ρlog
(
ρ.e

ργ

)
,

ψ(u) = −vη(u),
(5.71)

where e denotes the internal energy per unit mass, defined as:

E = ρe+ 1
2ρv

2. (5.72)

The Sod Problem This problem was developed for studying the performance of
different numerical methods. It is a long gas tube divided into two equal parts with a
diaphragm; each part contains gas with different features. Its solution includes, from
right to left, a shock wave, a contact discontinuity (the second discontinuity in the ρ(t))
and an expansion zone or rarefaction wave. In which, the expansion gas is separated from
compressing gas by the contact discontinuity, and the rarefaction wave is a continuous
process that the high pressure gas flows to the low pressure domain.

Corresponding initial conditions are:
ρ

u

P


t=0

=

{0, 0, 1}T , x ≤ 0.5,

{0.125, 0, 0.1}T , x > 0.5.
(5.73)
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Figure 5.10: Numerical solutions of the Burgers’ equation with different TVD second-
order limiters at t = 0.159.
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Figure 5.11: Distribution of adapted cells in different resolution levels for the Burgers’
equation obtained with different TVD second-order limiters at t = 0.159.
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An unbounded 1-D domain is assumed: a Riemann problem. Assumptions for numerical
simulations are: Jmax = 11, Nd = 6, ϵ = 10−3, θ = 2, Nc = 2, Ns = 1 and dt = 10−5.
The numerical solutions and corresponding adapted grid points are illustrated in Figure
5.12 at time 0.2 with methods KT, M1 and M2. For the KT method, results are
presented in Figures 5.12(a)-(c); these figures contains numerical results, corresponding
entropy productions (Snj ), adapted grids and local truncation errors (En

j ). These results
for the M1 and M2 schemes are provided respectively in Figures 5.12(d-f) and Figures
5.12(g-i).

Figure 5.12 provides that: 1) Methods M1 and M2 have less numerical dissipation in
comparison with the KT scheme; 2) The M2 scheme leads to the smallest dissipation; 3)
Using a less dissipative method, more grid points concentrate automatically in different
resolutions. This is confirmed by comparing Ng values of these three methods during
simulations, see Figures 5.12(b,e,h) and Figure 5.13.

The numerical entropy production cannot detect the contact discontinuity in this
example (Figures 5.12(a),(d) and (g)), even by less dissipative methods with fine enough
resolutions. Entropy Snj has small values in the rarefaction zone (for 0.25 < x < 0.45),
but can properly detect shock waves. The local truncation error can capture both the
shock wave and contact discontinuity. The local errors En

j have considerable values in
rarefaction zones. This zone is not detected by the wavelet theory; as a result, grid
points do not adapted there. Considering the wavelet-based adapted points, results
of Snj , and En

j , different criteria lead to different adapted grids. In this example, it
seems that wavelet-based adaptation method leads to more realistic adapted grids.

Effects of the post-processing stage are investigated by some numerical simulations in
the following. At first, effect of considering the post-processing stage is studied. Two
simulations with and without the post-processing stage are done and results are pre-
sented in Figure 5.14. Figures 5.14(a-b) and Figures 5.14(c-d) include solutions with and
without the post-processing step, respectively. The results indicate that post-processing
adapted grids have significant effects on solution stability. The numerical instability
grows rapidly in absence of the post-processing step.

The post-processing stage contains both grid modification in the same resolution and
successive coarser resolution, see Section 3.2. To study effects of them, two types of
modifications are considered: full and partial grid modification (by a post-processing).
The modifications are: 1) Partial post processing: for a grid point having resolution j,
new points are only added at the corresponding resolution level; here we assume: Ns = 2
and Nc = 0; 2) Full post processing: both resolution level j and j + 1 are controlled;
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Figure 5.12: Numerical results, corresponding truncation errors, entropy productions,
and adapted points in different resolutions for the Sod problem with the
KT, M1 and M2 schemes at t = 0.2; a-c) the KT scheme; d-f) the M1
method; g-i) the M2 scheme.

0.00 0.05 0.10 0.15 0.20 0.25
50

100

150

200

250

t

N
g

Ε=10
-3

Jmax=11

Nd=6

KT scheme

M1

M2
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Figure 5.14: Post-processing effects on stability of solutions; a-b) with the post-
processing stage; c-d) without the post-processing step. In figures (a) and
(c), solid lines and hollow shapes are exact and numerical solutions, respec-
tively.

we choose: Ns = 2 and Nc = 1. The former, the semi-modification, is frequently used
in wavelet-based adaptation procedures. Numerical results are presented in Figure 5.15.
Figure 5.15(a) and Figure 5.15(b) correspond to methods using the full and partial
post-processing stages, respectively. This figure shows that long-term stability can be
obtained in case of having full-modification, 5.15(a).

The Lax Problem In the solution of this problem, from right to left, a shock wave,
a contact discontinuity and a rarefaction zone are developed. Amplitude of the shock
wave and the contact discontinuity are larger than those of the Sod problem. In brief,
the Sod and the Lax problems are used as benchmarks with the different values of shock
waves, contact discontinuities and rarefaction zones.

The initial conditions are:
ρ

u

P


t=0

=

{0.445, 0.69887, 3.5277} , x ≤ 0.5,

{0.5, 0, 0.571} , x > 0.5,
(5.74)

and the problem is a Riemann problem. For simulations, it is assumed: ϵ = 10−3, θ = 2,
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are exact and numerical solutions, respectively.

and dt = 10−5.
For the three methods KT, M1 and M2, solutions ρ, corresponding entropies Snj ,

adapted grids, and truncation errors En
j are presented in Figure 5.16 at time 0.16. Same

as the Sod problem, the results offer that: 1) Less dissipative methods mobilize more
adapted grid points of fine resolutions; 2) Numerical entropy production of these methods
cannot detect the contact discontinuity; 3) The local truncation errors En

j can detect
the contact discontinuity zones; 4) En

j can also detect rarefaction zones; 5) The wavelet
transform can properly capture all phenomena: shock waves, rarefaction and contact
discontinuity zones.

Interaction of an entropy sine wave with a Mach 3 right-moving front

i) The performance of the KT, M1 and M2 schemes on MRA-based adapted
cells
This challenging problem was developed to reveal high order scheme capabilities by Shu
and Osher [71]. Here, it is assumed the ratio of specific heats is γ = 1.4. The Riemann
initial conditions are presented in Eq. (4.93) [71, 175].

The considered computational domain is: Ω ∈ (−5, 5) × (0, T ); Assumed parameters
are: ϵ = ϵ0 = 5 × 10−3, Jmax = 11, Jmin = 5 (or Nd = 6), Nc = 1, Ns = 2, θ = 2, dt =
0.00025.

The numerical entropy production, numerical and exact solutions are illustrated in
Figure 6.23 at t = 1.8. There, the solid lines and hollow shapes are the reference [175]
and numerical solutions, respectively. Regarding numerical entropy productions, it is
clear that both the M1 and M2 methods lead to less numerical dissipation in comparison
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Figure 5.16: Numerical results, corresponding entropy production, truncation errors, and
adapted points of different resolutions for the Lax problem at t = 0.1; a-c)
the KT scheme; d-f) the M1 method; g-i) the M2 scheme.
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Figure 5.17: Numerical results, and entropy productions for the right propagating front
with the KT, M1 and M2 schemes at t = 1.8. In these figures, solid black
lines are the reference solutions, hollow shapes are numerical ones, and the
gray solid lines are numerical entropy productions.

to the KT scheme. The M2 scheme leads to the least dissipative results, since magnitude
of entropy S is larger than both the KT and M1 methods. Distribution of adapted points
at different resolution levels for these three schemes are shown in Figure 6.24 at t = 1.8.
The methods M1 and M2 lead to more adapted points of high resolutions. In Figure 5.19
local truncation errors for these three methods are presented, which confirm numerical
convergence.

ii) The performance of the KT scheme with the MM-based UNO limiter
on MRA-based adapted cells
This problem is re-simulated with the KT scheme with both GMM (with θ = 2) and the
second-order MM-based UNO limiters. The results are presented in Figure 5.20 for the
density ρ at t = 1.8 Section In this illustration the solid line and hollow circle markers
denote the reference and numerical solutions, respectively. The results confirm that the
UNO limiter behaves more smoothly while preserving accuracy. This feature leads to
the mobilizing of less adapted cells/grids.

2-D Euler equation of gas dynamics for ideal gases The governing equation for
the 2-D system is:
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Figure 5.18: Distribution of adapted grid points in different levels of resolution for the
KT, M1 and M2 schemes at t = 1.8.
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Figure 5.19: Local truncation errors for the right propagating front with the KT, M1
and M2 schemes at t = 1.8.

148



Chapter 5 Special topics

-3 -2 -1 0 1

3.6

3.7

3.8

3.9

4.0

4.1

Ex.

GMM- =2

-3 -2 -1 0 1

3.6

3.7

3.8

3.9

4.0

4.1

Ex.

UNO-MM

Figure 5.20: Adaptive numerical solutions (ρ) for the right propagating front obtained
with KT scheme using the GMM and the MM-based UNO limiters at t =
1.8.

149



Chapter 5 Special topics

ut + Fx + Gy = 0,

where state values are u = {ρ, ρu, ρv, E}T ; the flux vectors in the x and y directions
are F = {ρu, ρu2 + P, ρuv, u(E + P )}T and G = {ρv, ρuv, ρv2 + P, v(E + P )}T , respec-
tively.

In this example, radially symmetric initial conditions are assumed with respect to
the origin which it forms a dense localized high-pressure gas with zero initial velocity .
There exists initial higher density and higher pressure inside a circle with radios r = 0.4;
corresponding values are: {ρin = 1, ρout = 0.1} and {Pin = 1, Pout = 0.1}. Other initial
values are: uin = uout = vin = vout = 0 [30, 188]. The computation domain belongs to
Ω ∈ [−1.5, 1.5] × [−1.5, 1.5]. To control the symmetric of solutions and corresponding
adapted grids in simulations, total of the computing domain Ω is considered. Due to
the symmetric initial conditions, the exact solutions are symmetric with respect to the
origin. This feature can be used to control the performance of high resolution solvers.

The numerical results are presented in Figure 5.21 at t = 0.4. Figures 5.21(a) and
(b) are from the KT scheme and Figures 5.21(c) and (d) belong to the M1 method.
The results offer that: 1) All solutions and corresponding adapted grids are symmetric;
2) Due to numerical dissipation, the KT solver leads to slightly different result from
the M1 one. To clarify the numerical dissipation effects, cut of solutions are compared
along y = 0, Figure 5.22. This figure confirms that the KT scheme ends to more
dissipative results.

The local truncation errors En
j for the two schemes (KT and M1) and corresponding

adapted grids are presented in Figure 5.23 at t = 0.2. It is clear that the errors are
properly concentrated in high-gradient zones detected properly by the wavelet transform.

5.6.1 Non-convex example: a scalar system

We consider a scalar hyperbolic system with a non-convex flux as:

F (u) =


u(1−u)

4 , u < 1
2 ,

u2

2 − u
2 + 3

16 , u ≥ 1
2 .

(5.75)

Two different initial conditions will be considered.
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Figure 5.21: The 2-D Euler gas dynamic adaptive solutions with corresponding adapted
grids at t = 0.4.
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Figure 5.22: Comparison of numerical results obtained by the KT and M1 schemes
along y = 0 at t = 0.4.
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Figure 5.23: Local truncation errors for the KT and M1 schemes at t = 0.214.

u(I)(x, t = 0) =

0, x < 0.25,

1, x ≥ 0.25,
u(II)(x, t = 0) =

1, x < 0.25,

0, x ≥ 0.25.
(5.76)

In numerical simulations, it is assumed that: Jmax = 11, nd = 6 (number of decom-
position levels), ϵ = 10−3, dt = 0.0004 and Ns = Nc = 1 (for grid modification in the
post-processing stage).

For the initial condition u(I)(x, 0), the adaptive numerical results and correspond-
ing local truncation errors are shown in Figure 5.24. In Figure 5.24(a), the solution is
obtained by the KT scheme with the generalized MINMOD limiter with constant pa-
rameter θ = 2. It is clear that the adapted solution does not converge to real one; the
resulted local truncation errors are presented in Figure 5.24(b).

For Figures 5.24(c) and (d) an adaptive θ is assumed; it depends linearly on spatial
positions of cell centers xj, as:

In numerical simulations two types of θ are assumed: constant and adaptive. In
adaptive case, in this work, it is assumed θ depends linearly on spatial positions of cell
centers xj, as:

θ(xj) = 1 + {(∆xj + ∆xj+1) /2} − ∆xmin
∆xmax − ∆xmin

, θj := θ(xj),

where ∆xj := xj − xj−1, ∆xmin := min {∆xj}, and ∆xmax := max {∆xj}. So, around
high-gradient solutions θ → 1 and in smooth regions θ → 2.

From Figures 5.24(b) and (d), it is clear that the local truncation errors approach zero
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Figure 5.24: Numerical solution of the non-convex conservation law- case 1 with corre-
sponding local truncation error; a, b) constant parameter θ = 2 and cor-
responding local truncation error; c,d) with adaptive θ and corresponding
local truncation error; e) number of adapted grid points during simulations.

in smooth regains; around high gradient zones and discontinuities the local errors are
nearly significant. These figures confirm also that the both solutions are converged to
weak solutions; however, only the result in Figure 5.24(c) is the physical solution.

It is obvious that using of adaptive smoothing leads to a correct solution. Numbers
of adapted grid during time are presented in Figure 5.24(e) for two choice of the limiter
parameter.

For the initial condition u(II)(x, 0), the numerical results are presented in Figure 5.25;
there, Figures 5.25(a,b) and Figures 5.25 (c,d) are for constant and adaptive parameter θ,
respectively. Numbers of adapted grid points in time are presented in Figure 5.25 (e).
Same as the previous example, it is clear that by integrating the adaptive limiter with
spatially adaptive grids, an accurate solution can be obtained with small number of
grid points. And both solutions are the converged weak solutions, while Figure 5.25 (c)
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Figure 5.25: Numerical solution of the non-convex conservation law- case 2 with corre-
sponding local truncation error; a, b) constant parameter θ = 2 and cor-
responding local truncation error; c,d) with adaptive θ and corresponding
local truncation error; e) number of adapted grid points during simulations.

represents the physical solution.

A non-convex example: the polymer system The governing equation of the poly-
mer system is:

∂

∂t

 s

b

+ ∂

∂x

 f(s, c)
cf(s, c)

 =
 0

0

 , (5.77)

where s denotes water saturation; parameter c is the polymer concentration; func-
tion f := f(s, c) presents the fractional flow function of water; parameter b is function
of s and c where b := b(s, c). Functions b and f are assumed to be: b(s, c) = sc + a(c)
and f(s, c) = s2

s2+(0.5+c)(1−s)2 , where a(c) denotes the adsorption function and in this
example, it is: a(c) = c

5(1+c) . The exact solution of this problem is complex and contains
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Figure 5.26: Numerical solutions, corresponding adapted grids and local truncation er-
rors for the polymer system; a, b) with θ = 2; c,d) with adaptive θ; e,f)
adaptive θ.

both simple and composite waves which makes it challenging for numerical solvers [30].

The eigenvalues of the polymer system (Eq. (5.77)) are: λ1 = fs(s, c) and λ2 =
f(s, c)(s+ a′(c))−1.

For numerical simulations, we assume: Jmax = 11, Nd = 6, ϵ = 10−4, dt = 0.00025,
and Ns = Nc = 1 (for grid modification).

To study resolution effect, this example is also re-simulated for a fine resolution with
resolution number: Jmax = 13. In this case, number of decomposition levels is Nd = 8
and the time step is chosen in such a way that the CFL number does not change.

Numerical results and corresponding local truncation errors for the parameter s are
illustrated in Figure 5.26. The results provide that: 1) For case θ = 2, the numerical
solution does not converge to real one, even though it is a converged weak solution
(Figure 5.26(b)); 2) By using an adaptive scheme with adaptive θ, the result is nearly
in accordance with the real solution, Figure 5.26(c); 3) By increasing Jmax values (or
using finer resolutions), the numerical solution approaches to the reference one, Figure
5.26(e); 4) All results are the converged weak solutions due to errors En

j ; 5) using more
higher resolution level Jmax, smaller local truncation errors are.
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2-D scalar conservation laws with non-convex fluxes Let us assume a rotating
wave with non-convex fluxes, defined as:

ut + {sin(u)}x + {cos(u)}y = 0,

where u := u(x, y, t) and the initial condition is:

u(x, y, t = 0) =


14π

4 , x2 + y2 < 1,
π
4 , x2 + y2 ≥ 1.

This benchmark test, originally proposed in [30], is a challenging 2-D problem for many
high resolution schemes due to the developing of 2-D composite waves in its solution.

For numerical simulations, we have: Jmax = 8, Jmin = 5 (or Nd = 3), ϵ = 10−4, dt =
0.5 × 10−3, and Ns = Nc = 1 (for modification of adapted grid ). For modeling, two
different choices of θ are assumed: 1) The constant one with value θ = 2; 2) The adaptive
implementation of θ. The latter is also based on the 1-D linear interpolation of θ on
adapted grid points, as:

θ(Zj) = 1 +
(∆Zave)j − ∆Zmin
∆Zmax − ∆Zmin

,

where (∆Zave)j := {(∆Zj + ∆Zj+1) /2}, ∆Zj := Zj − Zj−1, Zj ∈ {xj, yj}, ∆Zmax =
1/2Jmin , and ∆Zmin = 1/2Jmax . For each direction, θ(Zj) is calculated independently.

The numerical results and corresponding adapted grid points are shown in Figure 5.27
at t = 1. Figures (a, b) correspond to the θ-adaptive results and figures (c, d) are from
the constant θ. Again the θ-adaptive solver converges to proper and physical results
[30].
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Figure 5.27: Adaptive solutions of 2-D non-convex conservation law system at t = 1;
a, b) obtained with θ-adaptive KT scheme; c, d) based on the KT scheme
with θ = 2.
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Chapter 6

Higher order central and CWENO
schemes

Introduction The aim of this chapter is a stable integration of higher-order high reso-
lution schemes with multiresolution-based adapted grids. Such cooperation is important
since higher order high resolution schemes are computationally expensive and adaptive
solvers can improve both computing efficiency and numerical accuracy. The nonlinear
stability condition is the TVB condition [93]. This TVB feature results from satisfying
a local maximum principle and a non-oscillatory property.

This chapter contains:

1. Section 6.1 devotes to third-order central high resolution schemes based on average-
interpolating quadratic polynomials, originally developed for uniform cells in [93],
[76] and [92]. The TVB non-oscillatory property is enforced by considering a non-
linear limiter [76]. In this section, at the first, the fully-discrete and semi-discrete
forms of the third order high resolution schemes on non-uniform grids will be pro-
vided. Main features of the average-interpolating quadratic polynomials {qj(x)}
are explained. Local quadratic average interpolating polynomials (qj(x)) are em-
ployed to reconstruct a piecewise quadratic polynomial ({qj}); they satisfy the
conservation law. In this stage, to guarantee the non-oscillatory property in recon-
structed piecewise functions, the initial piecewise function {qj} is locally modified
by using a limiter. And in the projection stage, again, quadratic variation inter-
polation are assumed in non-smooth zones while constant variations are assumed
in smooth regions.

2. Section 6.2 presents the third and fourth order CWENO high resolution schemes
on non-uniform grids. In this section, formulations are based on Section 6.1 and

158



Chapter 6 Higher order central and CWENO schemes

the concept of the CWENO interpolation in the reconstruction stage: the recon-
struction is based on a convex combination (weighting) 8 of left-side, central and
right-side polynomials to have the TVB feature. There, both the three point stencil
and the five point stencil are re-formulated.

3. Section 6.3 describes piecewise parabolic reconstruction, based on parabolic poly-
nomials using local data. In Section 6.1, data of three successive cells Ij−1, Ij
and Ij+1 are used for the reconstruction stage. However, in this section local data
of cell Ij is used: they are cell average value (ūj) and two derivative values. Two
approaches are proposed based on local data: i) the first approach uses the cell
average value and the first (u′

j) and second (u′′
j ) derivative values at cell center of

cell Ij; ii) the second approach uses the cell average value and the first derivatives
at cell edges (u′

j±1/2).

Finally performances of these three approaches are demonstrated by some examples.

6.1 Central third order high resolution schemes on
non-uniform grids

6.1.1 The fully-discrete form

In this section, at first, based on a spatially third-order discretization, a fully-discrete
form is provided on non-uniform grids. Based on this formulation, in the limiting state
(∆t → 0), the semi-discrete form will be derived [189].

For deriving the fully-discrete form, three stages reconstruction-evolution-projection
(REP) will be followed [22]. The main concept of the REP procedure is presented in
Figure 6.1. To reconstruct the average-interpolating parabolic polynomial (qj(x)) over
cell Ij, three average information ūj−1, ūj and ūj+1 are used, as presented in Figure 6.2.

The reconstruction stage

A polynomial-based piecewise reconstruction is assumed on cells {Ij} at time tn; for the
cell Ij, we have:

8Let the set of vectors {x1, x2, · · · , xn} spans the subspace v: λ1x1 + λ2x2 + · · · + λnxn ∈ v for all
scalars λ1, λ2, · · · , λn ≥ 0 such that

∑
i λi = 1. With the above assumptions for λi, such combination

is called a convex combination of vectors x1, · · · , xn.
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Figure 6.1: The REP procedure for the third-order central scheme.

u j+1

u j-1

x j+1x j-1

q (x)

Figure 6.2: The three-average solutions used for evaluation of qj(x).

Pj(x, tn) = Aj +Bj(x− xj) + 1
2Cj(x− xj)2, x ∈ (xj−1/2, xj+1/2). (6.1)

The evolution stage

It is assumed that the cell center xj is not necessarily located in the middle of the cell Ij.
The location of xj can be determined from cell edges xj±1/2 as: xj+1/2 := xj + pj∆xj
and xj−1/2 := xj − (1 − pj) ∆xj. Spatial locations xnj±1/2,l and xnj±1/2,r are also defined
as: xnj±1/2,l := xnj±1/2−anj±1/2∆t and xnj±1/2,r := xnj±1/2+anj±1/2∆t. Parameter anj+1/2 shows
the upper bound of propagating speed of a possible discontinuity at cell edge xj+1/2, as:
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anj+1/2 := max
u∈C(uL

j+1/2,u
R
j+1/2)

ρ

(
∂F (u)
∂u

)
, (6.2)

where ρ(A) shows the spectral radius of the matrix A9, that is: ρ(A) := maxi |λi(A)|10

where λi(A) is ith eigenvalue of A; uLj+1/2 and uRj+1/2 denote respectively left and right im-
mediate values of uj+1/2, i.e.: uLj+1/2 := Pj(xj+1/2, t

n) and uRj+1/2 = Pj+1(xj+1/2, t
n); C(uLj+1/2, u

R
j+1/2)

represents a curve in phase space connecting uLj+1/2 and uRj+1/2 by the Riemann fan.
For genuinely nonlinear or linearly degenerate 11 case, anj+1/2 becomes simply:

anj+1/2 := max
{
ρ

(
∂F

∂u

(
uLj+1/2

))
, ρ

(
∂F

∂u

(
uRj+1/2

))}
. (6.3)

Computing the integral over the spatio-temporal intervals
[
xnj+1/2,l, x

n
j+1/2,r

]
×[tn, tn+1]

The result of integration is:

9The conservation laws ut + f(u)x = 0 can be rewritten as: ut + Aux = 0, where A = ∂f/∂u. This
form of the conservation laws is known as the quasilinear form of the hyperbolic equation and the
matrix A is the Jacobian matrix.

10Parameter ρ denotes the spectral radius; that is, the largest modulus of the eigenvalues of the Jacobian
matrix evaluated at cell edges

11Let assume a system of nonlinear conservation laws ut+f(u)x = 0. As mentioned, this system can also
be represented as the quasilinear form ut + Aux = 0 where A = f ′(u) := ∂f/∂u. Let λi := λi(A)
and ri := ri(A) denote the i-th eigenvalue and i-th eigenvector of A, respectively. λi defines a
characteristic field called λi-th or simply i-th characteristic field.
A i-th characteristic field is called linearly degenerate if:
∂λi

∂u .ri = 0 for all u.
For linear hyperbolic systems, as their eigenvalues are constant, their fields are linearly degenerate.
In the case of nonlinear hyperbolic systems, the contact discontinuity is a discontinuity in a linearly
degenerate field: the characteristics are all parallel across this type of discontinuity. This means the
characteristic speeds do not change across the discontinuity.
A i-th characteristic field is called genuinely nonlinear if:
∂λi

∂u .ri ̸= 0 for all u.
In this case, characteristic speeds can change across a discontinuity. Nonlinear shocks (converging
characteristics) and nonlinear expansions or rarefaction (diverging characteristics) are some examples
of genuinely nonlinear characteristic fields.
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ω̄n+1
j+ 1

2
=1

2 (Aj + Aj+1)

+ 1
4
[
∆tanj+ 1

2
(Bj+1 −Bj) + 2 (Bj∆xjpj +Bj+1 (∆xjpj + xj − xj+1))

]
+ 1

12

[
∆t2

(
anj+ 1

2

)2
(Cj + Cj+1) + 3∆tanj+ 1

2
(Cj+1 (∆xjpj + xj − xj+1) − Cj∆xjpj)

+ 3
(
Cj∆x2

jp
2
j + Cj+1 (∆xjpj + xj − xj+1) 2

)]
− 1

2anj+1/2∆t

[∫ tn+1

tn

{
F
(
u
(
xnj+1/2,r

))
− F

(
u
(
xnj+1/2,l

))}
dt

]
.

(6.4)

Computing the integral over the spatio-temporal intervals
[
xnj−1/2,r, x

n
j+1/2,l

]
×[tn, tn+1]

ω̄n+1
j =Aj + 1

2Bj

[
∆t

(
anj− 1

2
− anj+ 1

2

)
+ ∆xj (2pj − 1)

]
+ 1

6Cj
[
∆t2

((
anj− 1

2

)2
+
(
anj+ 1

2

)2
)

− ∆tanj− 1
2

(
∆tanj+ 1

2
+ ∆xj (2 − 3pj)

)
+anj+ 1

2
∆t∆xj (1 − 3pj) + ∆x2

j

(
3p2

j − 3pj + 1
)]

− 1
∆xj −

(
anj−1/2 + anj+1/2

)
∆t

[∫ tn+1

tn

{
F
(
u
(
xnj+1/2,l

))
− F

(
u
(
xnj−1/2,r

))}
dt

]
.

(6.5)

Computing the integral over the spatio-temporal intervals
[
xnj−1/2,l, x

n
j−1/2,r

]
×[tn, tn+1]

ω̄n+1
j− 1

2
= 1

2 (Aj−1 + Aj)

+ 1
4
[
∆tanj− 1

2
(Bj −Bj−1) + 2 (Bj−1∆xj−1pj−1 +Bj (∆xj−1pj−1 + xj−1 − xj))

]
+ 1

12

[
∆t2

(
anj− 1

2

)2
(Cj−1 + Cj) + 3∆tanj− 1

2
(Cj (∆xj−1pj−1 + xj−1 − xj) − Cj−1∆ xj−1pj−1)

+3
(
Cj−1∆x2

j−1p
2
j−1 + Cj (∆xj−1pj−1 + xj−1 − xj) 2

)]
− 1

2anj−1/2∆t

[∫ tn+1

tn

{
F
(
u
(
xnj−1/2,r

))
− F

(
u
(
xnj−1/2,l

))}
dt

]
.

(6.6)
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The projection stage

After evaluating the average evolved solutions ω̄n+1
j+ 1

2
, ω̄n+1

j and ω̄n+1
j− 1

2
(respectively from

Eqs. (6.4)-(6.6)), we can reconstruct a third order average interpolating piece-wise func-
tion with the non-oscillatory feature. Such piece-wise functions are denoted as: ω̃n+1

j (x)
and ω̃n+1

j+ 1
2
(x); they are defined as:

ω̃n+1
j+1/2(x) =Ãj+1/2 + B̃j+1/2(x− xj) + 1

2C̃j+1/2(x− xj)2, for x ∈ (xnj+1/2,l, x
n
j+1/2,r),

ω̃n+1
j (x) =ω̄n+1

j , for x ∈ (xnj−1/2,r, x
n
j+1/2,l).

(6.7)

The projected solution ūn+1
j at time tn+1 can be obtained by a projection step, as:

ūn+1
j = 1

∆xj

[∫ xj−1/2,r

xj−1/2

ω̃n+1
j−1/2(x)dx+

∫ xj+1/2,l

xj−1/2,r

ω̃n+1
j (x)dx+

∫ xj+1/2

xj+1/2,l

ω̃n+1
j+1/2(x)dx

]
=ω̄n+1

j

[
1 − λj

(
anj− 1

2
+ anj+ 1

2

)]
+ λj

[
Ãj− 1

2
anj− 1

2
+ Ãj+ 1

2
anj+ 1

2

]
+ 1

2∆tλj
[
B̃j− 1

2

(
anj− 1

2

)2
− B̃j+ 1

2

(
anj+ 1

2

)2
]

+ 1
6∆t2λj

[
C̃j− 1

2

(
anj− 1

2

)3
+ C̃j+ 1

2

(
anj+ 1

2

)3
]
,

(6.8)

where λj := ∆t
∆xj

.

6.1.2 The semi-discrete form

The limit of the following equation approximates the semi-discrete form:

d

dt
ūj(t) = lim

∆t→0

ūn+1
j − ūnj

∆t , (6.9)
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or:

d

dt
ūj(t) =

lim
∆t→0

{
1

∆t
(
ω̄n+1
j − ūnj

)
− 1

∆xj

(
anj− 1

2
+ anj+ 1

2

)
ω̄n+1
j + 1

∆xj

(
Ãj− 1

2
anj− 1

2
+ Ãj+ 1

2
anj+ 1

2

)
+1

2λj
[
B̃j− 1

2

(
a2
j− 1

n

)2
− B̃j+ 1

2

(
a2
j+ 1

n

)2
]

+ 1
6∆tλj

[
C̃j− 1

2

(
anj− 1

2

)3
+ C̃j+ 1

2

(
anj+ 1

2

)3
]}
.

(6.10)

Since as ∆t → 0, widths of all the Riemann fans approach zero, then:

Ãj− 1
2

→ ω̄n+1
j−1/2 & Ãj+ 1

2
→ ω̄n+1

j+1/2, (6.11)

and also regarding Eq. (6.1), we have:

u(xnj+1/2,r, t) →Pj+1(xj+1/2, t)

= Aj+1 −Bj+1 ((1 − pj+1)∆xj+1) + 1
2Cj+1((1 − pj+1)∆xj+1)2 := uRj+1/2,

u(xnj+1/2,l, t) →Pj(xj+1/2, t)

= Aj +Bj (pj∆xj) + 1
2Cj+1(pj∆xj)2 := uLj+1/2.

(6.12)

By substituting Eqs. (6.4)-(6.6),(6.11) and (6.12) in Eq. (6.10), we have:

d

dt
ūj(t) = − 1

2∆xj

[
F
(
uRj+1/2(t)

)
+ F

(
uLj+1/2(t)

)
− F

(
uRj−1/2(t)

)
− F

(
uLj−1/2(t)

)]
+
anj+1/2

2∆xj

[
uRj+1/2(t) − uLj+1/2(t)

]
−
anj−1/2

2∆xj

[
uRj−1/2(t) − uLj−1/2(t)

]
.

(6.13)

The semi-discrete form (6.13) then can be rewritten as:

d

dt
ūj(t) +

F ∗
j+1/2 − F ∗

j−1/2

∆xj
= 0, (6.14)
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where F ∗
j±1/2 := F ∗

(
uj±1/2

)
and

F ∗
j±1/2 :=

F
(
uRj±1/2(t)

)
+ F

(
uLj±1/2(t)

)
2 −

anj±1/2

2
[
uRj±1/2(t) − uLj±1/2(t)

]
. (6.15)

6.1.3 The preliminary construction

Three successive cells Ij−1, Ij and Ij+1 are considered with cell lengths ∆xj−1, ∆xj
and ∆xj+1. For these cells, cell-averages are denoted respectively by ūj−1, ūj and ūj+1.

Let qj(x) denotes a quadratic cell-average interpolating polynomial obtained with the
centered stencil on the cells {Ij−1, Ij, Ij+1}, where:

1
∆xi

∫
Ii

qj(x) dx = ūi, i = {j − 1, j, j + 1} . (6.16)

It is easy to show that if a := ∆xj−1/∆xj and b := ∆xj+1/∆xj, then qj(x) would be:

qj(x) = a0(x− x̄j)2 + b0(x− x̄j) + c0, (6.17)

where x̄j denotes the middle point of cell Ij, i.e.: x̄j =
(
xj−1/2 + xj+1/2

)
/2 and

a0 = −
3
[
(u′)−

j − (u′)+
j

]
2∆xj(a+ b+ 1) , b0 =

(2a+ 1) (u′)+
j + (2b+ 1) (u′)−

j

2(a+ b+ 1) ,

c0 = ūj +
∆xj

[
(u′)−

j − (u′)+
j

]
8(a+ b+ 1) = ūj −

∆x2
j

12 a0,

(6.18)

where (u′)−
j := ∆u−

j /
[

1
2(1 + a)∆xj

]
; (u′)+

j := ∆u+
j /
[

1
2(1 + b)∆xj

]
; ∆u−

j := ūj − ūj−1;
and ∆u+

j := ūj+1 − ūj. The piecewise reconstruction can be obtained as: q(x) =∑
j qj(x)χj, where χj has unit value on the Ij and is zero elsewhere.
In each cell Ij, the function q(x) satisfies the following updated features:

1. 1
∆xj

∫
Ij
qj(x) dx = ūj (the conservation property),

2. ∀x ∈ Ij, qj(x) − u(x, tn+1) = O(∆x3) (the third order accuracy),

3. The function qj(x) has the same shape of cell-averages,

4. a) A maximum cell: If Ij is a maximum cell, i.e.: ūj−1 < ūj > ūj+1, then qj(x)
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satisfies:

qj(xj+1/2) ≥ L(xj+1/2) and qj(xj−1/2) ≥ L(xj−1/2) (6.19)

where L denotes a linear interpolation operator between {{x̄i, ūi}} values. This
means that Eq. (6.19) can be expressed as:

qj(xj+1/2) ≥ ūj+1 + būj
1 + b

and qj(xj−1/2) ≥ ūj + aūj−1

1 + a
, (6.20)

where xj±1/2 denote cell edges.
b) A minimum cell: for a minimum cell, i.e.: ūj−1 > ūj < ūj+1, then qj(x) satisfies:

qj(xj+1/2) ≤ L(xj+1/2) and qj(xj−1/2) ≤ L(xj−1/2) (6.21)

or equivalently:

qj(xj+1/2) ≤ ūj+1 + būj
1 + b

and qj(xj−1/2) ≤ ūj + aūj−1

1 + a
. (6.22)

The conditions 1 to 3 are the same as those mentioned in [93] while the fourth condition
is updated here.

In the following, properties 1 through 4 are derived which are mentioned in Section
6.1.3. It is clear that features (1) and (2) are satisfied. Having the same shape means
if cell averages are locally monotone, qj(x) is also monotone in those cells; e.g.: if
ūj−1 ≤ ūj ≤ ūj+1 then qj(x) is increasing and vice-versa. Also, in an extremum cell,
the function qj(x) has an extremum. Aforementioned properties will be confirmed in the
following. In all calculations, it is assumed that 0.5 < a < 2 and 0.5 < b < 2. This is
because of the multiresolution-based grid-adaptation and also the post-processing stage
of grid adaptations.

The same shape feature

The first derivative of qj(x) (q′
j(x)) can be evaluated as:

q′
j(x) = [∆xj (2a+ 1) + 6 (x− x̄j)]

2∆xj(a+ b+ 1)
2∆u+

j

(1 + b) ∆xj
+ [∆xj (2b+ 1) − 6 (x− x̄j)]

2∆xj(a+ b+ 1)
2∆u−

j

(1 + a) ∆xj
.

(6.23)
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Figure 6.3: Different variation patterns over three successive cells {Ij}.

This equation can be written as:

q′
j(x) = (g1(x) + g2(x)) /

(
∆x2

j(a+ 1)(b+ 1)(a+ b+ 1)
)
, (6.24)

where

g1(x) = (a+ 1) [∆xj (2a+ 1) + 6 (x− x̄j)] ∆u+
j ,

g2(x) = (b+ 1) [∆xj (2b+ 1) − 6 (x− x̄j)] ∆u−
j .

(6.25)

In the following, qj(x) with monotone variations (increasing and decreasing cell aver-
ages) and the same shape feature around extremum points will be studied.

Case I: Increasing cell averages For the monotone increasing case, i.e.: ∆u±
j ≥ 0, two

variation patterns are considerable: convex (Figure 6.3(a)) and concave increasing cases
(Figure 6.3(b)):

1. The convex increasing: In this case (Figure 6.3(a)) a ≥ 1, b ≤ 1 and ∆u+
j > ∆u−

j :
due to a proper cell adaptation and convex variation of cell averages. It should
be shown that for x ∈ Ij, we have q′

j(x) > 0. Since both g1(x) and g2(x)
are linear, g1(x) + g2(x) is also linear. So, if q′

j(x) at points xi±1/2 are positive,
then q′

j(x) is also positive for x ∈ Ij:

a) Controlling of q′
j(xj−1/2): Since xj−1/2 − x̄j = −∆xj/2, a ≥ 1 and b ≤ 1,

then g1(xj−1/2) ≥ 0 and g2(xj−1/2) ≥ 0; therefore q′
j(xj−1/2) ≥ 0.

b) Controlling of q′
j(xj+1/2): Since xj+1/2 − x̄j = ∆xj/2, a ≥ 1 and b ≤ 1,

then g1(xj+1/2) ≥ 0, g2(xj+1/2) ≤ 0 and g1(xj+1/2) ≥
∣∣∣g2(xj+1/2)

∣∣∣; there-
fore q′

j(xj+1/2) ≥ 0.
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So, for the convex increasing of {ūi : i = j − 1, j, j + 1}, qj(x) will remain mono-
tone increasing.

2. The concave increasing: For this case (Figure 6.3(b)), we have: b ≥ 1, a ≤ 1
and ∆u+

j < ∆u−
j :

a) At the point xj−1/2, it is easy to show that: g1(xj−1/2) ≤ 0, g2(xj−1/2) ≥ 0
and |g2(xj−1/2)| ≥ |g1(xj−1/2)|; hence q′

j(xj−1/2) ≥ 0,

b) At the point xj+1/2: g1(xj+1/2) ≥ 0 and g2(xj+1/2) ≥ 0; so, q′
j(xj+1/2) ≥ 0.

Hence, q′
j(x) ≥ 0 for x ∈ Ij.

Case II: Decreasing cell averages In this case, for a monotone decreasing we have ∆u±
j ≤

0. And again convex (Figure 6.3(c)) and concave decreasing (Figure 6.3(d)) cases are
possible:

1. The convex decreasing: For this case (Figure 6.3(c)), we have: b ≥ 1, a ≤ 1
and

∣∣∣∆u−
j

∣∣∣ ≥
∣∣∣∆u+

j

∣∣∣:
a) At the point xj−1/2, it is easy to show that: g1(xj−1/2) ≥ 0, g2(xj−1/2) ≤ 0

and |g2(xj−1/2)| ≥ |g1(xj−1/2)|; hence q′
j(xj−1/2) ≤ 0.

b) At the point xj+1/2: g1(xj+1/2) ≤ 0 nd g2(xj+1/2) ≤ 0; so q′
j(xj+1/2) ≤ 0.

In this regard, q′
j(x) ≤ 0 for x ∈ Ij.

2. The concave decreasing: For this case (Figure 6.3(d)), we have: a ≥ 1, b ≤ 1
and

∣∣∣∆u−
j

∣∣∣ ≤
∣∣∣∆u+

j

∣∣∣; therefore:

a) At the point xj−1/2: g1(xj−1/2) ≤ 0 and g2(xj−1/2) ≤ 0; so: q′
j(xj−1/2) ≤ 0,

b) At the point xj+1/2: g1(xj+1/2) ≤ 0, g2(xj+1/2) ≥ 0 and |g1(xj+1/2)| ≥ |g2(xj+1/2)|;
hence: q′

j(xj+1/2) ≤ 0.

So, in general: q′
j(x) ≤ 0 for x ∈ Ij.

Case III: Extrema points In these points, due to the cell adaptation, a → 1 and b → 1;
therefor, it is easy to show that:

q′
j(x) =

(u′)−
j [∆xj − 2(x− xj)] + (u′)+

j [∆xj + 2(x− xj)]
2∆xj

. (6.26)
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Hence in the cell edges xj±1/2, the function q′
j(x) becomes: q′

j(xj−1/2) = (u′)−
j and q′

j(xj+1/2) =
(u′)+

j . Therefore q′
j(xj−1/2).q′

j(xj+1/2) = (ūj−ūj−1)(ūj+1−ūj)/
[

1
4(1 + a)(1 + b)∆x2

j

]
< 0.

Hence, qj(x) has the same shape of cell-averages {ūi}.

The fourth property

1. The maximum cell: At the two edges of Ij, the fourth property is controlled,
where a ≥ 1 and b ≥ 1:

a) Controlling at x = xj−1/2: The density of an adapted grid increases by ap-
proaching to the maximum point xj from the left side. As a result: a ≥ 1, b ≥
1, ∆u−

j ≥ 0 and ∆u+
j ≤ 0; therefore:

δ
(max)
j−1/2 := q(xj−1/2) − ūj + aūj−1

1 + a

=
(b+ 1) (a2 + (b+ 1)(a− 1)) ∆u−

j − a(a+ 1)∆u+
j

(a+ 1)(b+ 1)(a+ b+ 1) .

(6.27)

It is clear that δ(max)
j−1/2 > 0.

b) Controlling at x = xj+1/2: For this case, it is obvious that: a ≥ 1, b ≥
1, ∆u−

j ≥ 0 and ∆u+
j ≤ 0. So,

δ
(max)
j+1/2 := q(xj+1/2) − ūj+1 + būj

1 + b
=
b
(
−(a+ 1)∆u+

j + (b+ 1)∆u−
j

)
(a+ 1)(b+ 1)(a+ b+ 1) . (6.28)

It is clear that δ(max)
j+1/2 > 0.

2. The minimum cell: Controlling at x = xj−1/2 and x = xj+1/2. It is straightforward
to show that:

δ
(min)
j−1/2 := q(xj−1/2) − ūj + aūj−1

1 + a
= −δ(max)

j−1/2 ,

δ
(min)
j+1/2 := q(xj+1/2) − ūj+1 + būj

1 + b
= −δ(max)

j+1/2 .

(6.29)

It is clear that δ(min)
j−1/2 < 0 and δ

(min)
j+1/2 < 0.
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u j
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Figure 6.4: The fourth reconstruction feature at max and min cells.

Figure 6.5: Possible forming of non-physical extrema at cell-edges.

These two conditions at max and min cells are presented in Figure 6.4.

6.1.4 Designing of a limiter for the third-order central high
resolution scheme

In the previous section, the piecewise-parabolic reconstruction, q(x) = ∑
j qj(x)χj is

presented. It is shown that respect to average solutions {ūj}, q(x) has the same shape
feature. This feature guarantees that no new extrema develop through inside of each
cell Ij. So, it is possible new extrema appear at cell interfaces

{
xj+1/2

}
; for instance

see Figure 6.5. To prevent this, the piecewise-parabolic reconstruction is modified by a
limiting procedure. For adapted grids, two limiting approaches will be studied here.

The first approach For cell Ij, this modification can be done by a convex combination
of qj(x) and cell average ūj:
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Pj(x) = ūj + θ
(1)
j (qj(x) − ūj) , 0 ≤ θ

(1)
j ≤ 1, (6.30)

where:

θ
(1)
j :=


min

{
Mj+1/2−ūj

Mj−ūj
,
mj−1/2−ūj

mj−ūj
, 1
}
, if ūj−1 < ūj < ūj+1,

min
{
Mj−1/2−ūj

Mj−ūj
,
mj+1/2−ūj

mj−ūj
, 1
}
, if ūj−1 > ūj > ūj+1,

1, otherwise,

(6.31)

and:

Mj+1/2 = max
{
ūj+1 + būj

1 + b
, qj+1(xj+1/2)

}
, Mj−1/2 = max

{
ūj + aūj−1

1 + a
, qj−1(xj−1/2)

}
,

mj+1/2 = min
{
ūj+1 + būj

1 + b
, qj+1(xj+1/2)

}
, mj−1/2 = min

{
ūj + aūj−1

1 + a
, qj−1(xj−1/2)

}
,

(6.32)

and:

Mj = max
x∈Ij

qj(x), mj = min
x∈Ij

qj(x). (6.33)

Since qj(x) is monotone, parameters Mj and mj can simply be evaluated as:

Mj = max
{
qj(xj−1/2), qj(xj+1/2)

}
, mj = min

{
qj(xj−1/2), qj(xj+1/2)

}
. (6.34)

This limiting concept is presented in Figure 6.6.

The second approach This approach leads to less dissipative results. For cell Ij,
this limited reconstruction can be done by a convex combination of qj(x) and a linear
variation inside the cell:
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M
M j

1

Figure 6.6: Parameters used for scaling limiting at cell-edges for monotone increasing
data.

Pj(x) = Lj(x) + θ
(2)
j (qj(x) − Lj(x)) , 0 ≤ θ

(2)
j ≤ 1, (6.35)

where Lj(x) denotes the linear variation; it can be defined as:

Lj(x) = ūj + u′
j × (x− x̄j), (6.36)

where: ūj :=
∫ xj+1/2
xj−1/2

u(x)dx/∆xj, x̄j := (xj−1/2 + xj+1/2)/2, and u′
j denotes a proper

estimation of the first spatial derivative. u′
j is estimated here by the MINMOD limiter

(by the TVD feature):

u′
j = MINMOD

(
ūj − ūj−1

x̄j − x̄j−1
,
ūj+1 − ūj
x̄j+1 − x̄j

)
, (6.37)

where:

MINMOD (a, b) = Sign(a) + Sign(b)
2 min (|a|, |b|) . (6.38)

And the limiter θ(2)
j can be defined as:
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θ
(2)
j :=


min

{
Mj+1/2−Lj(xj+1/2)
Mj−Lj(xj+1/2) ,

mj−1/2−Lj(xj−1/2)
mj−Lj(xj−1/2) , 1

}
, if ūj−1 < ūj < ūj+1,

min
{
Mj−1/2−Lj(xj−1/2)
Mj−Lj(xj−1/2) ,

mj+1/2−Lj(xj+1/2)
mj−Lj(xj+1/2) , 1

}
, if ūj−1 > ūj > ūj+1,

1, otherwise,

(6.39)

where:

Mj±1/2 = max
{1

2
(
Lj(xj±1/2) + Lj±1(xj±1/2)

)
, qj±1(xj±1/2)

}
,

mj±1/2 = min
{1

2
(
Lj(xj±1/2) + Lj±1(xj±1/2)

)
, qj±1(xj±1/2)

}
.

(6.40)

6.2 CWENO schemes on non-uniform grids
In this section, grid-based adaptive central-WENO (CWENO) schemes will be pro-
vided. Here, reconstructions are assumed to be CWENO-based piecewise-parabolic
functions. Let assume un(x) is the exact solution at tn, and ūj denotes corresponding
average solution on the cell Ij. Using the set {ūj}, the reconstructed piecewise function
is Pj(x, tn) = ∑

j Rj(x)χj; where: χj is equal to unit on the interval
[
xj−1/2, xj+1/2

]
and

zero elsewhere; Rj(x) denotes a polynomial of order 2.
Functions Rj(x) and Pj(x) should satisfy the following features:

1. Conservation: 1
∆xj

∫
Ij
Rj(x) dx = ūj,

2. Accuracy:

a) Point-wise accuracy:

∀x ∈ Ij, Rj(x) − u(x, tn+1) = O(∆xr) : r − order accuracy, (6.41)

b) Average-based accuracy: since in the central formulation, in evolution stage,
solutions are obtained on staggered grids, so it is necessary that reconstructed
solutions have r order accuracy for half-cell averages, as well; for the cell Ij,
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this means:

1
xj+1/2 − x̄j

∫ xj+1/2

x̄j

Pj(x, tn)dx = 1
xj+1/2 − x̄j

∫ xj+1/2

x̄j

u(x, tn)dx+ O(∆xr),

1
x̄j − xj−1/2

∫ x̄j

xj−1/2

Pj(x, tn)dx = 1
x̄j − xj−1/2

∫ x̄j

xj−1/2

u(x, tn)dx+ O(∆xr),

(6.42)

where x̄j :=
(
xj−1/2 + xj+1/2

)
/2.

3. Non-oscillatory reconstruction: following Section 6.1.3 and WENO reconstruction
this will be achieved.

Based on the above mentioned properties, two CWENO schemes having three and
five points are provided. The three and five point stencils lead to third and (at least)
fourth order accuracy in the sense of average solutions, respectively.

6.2.1 The three point stencil on non-uniform grids

In Section 6.1.3, it is shown how to construct a parabolic polynomial qj(x) in a way that
it remains non-oscillatory on properly adapted grids. In Section 6.1.4, it is shown how
to control/prevent oscillations by using a limiter definition. Another approach is to use
the CWENO concept. In smooth regions, Pj(x) is a quadratic function (Pj(x) = qj(x)),
while around a discontinuity, a linear convex combination of the left-side, central, and
the right-side approximations can be used to prevent spurious oscillations. By using the
convex combination of different polynomials with different order and stencils, we have:

Pj(x) =
∑
i

W j
i P

j
i (x),

∑
i

W j
i = 1, i ∈ {L,C,R} , W j

i ≥ 0, (6.43)

where:
{
W j
i

}
are constants; P j

L(x) and P j
R(x) are left and right linear functions, respec-

tively. P j
L(x) and P j

R(x) interpolate average values on cell sets {Ij−1, Ij} and {Ij, Ij+1},
respectively (to have the conversation property). So we have: P j

L(x) = ūnj + ūn
j −ūn

j−1
x̄j−x̄j−1

(x−
x̄j) and P j

R(x) = ūnj + ūn
j+1−ūn

j

x̄j+1−x̄j
(x− x̄j), where x̄j := 1

2(xj−1/2 + xj+1/2). This three-point
stencil of CWENO scheme with three sub-stencils is presented in Figure 6.7.

As mentioned, in smooth regions, we desire to have Pj(x) = qj(x); that is:
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PL(x)
u j+1

x j+1

PC(x) PR(x)

u j-1

x j-1

Figure 6.7: CWENO scheme defined over three cells with three sub-stencils.

qj(x) = CLPL(x) + CCPC(x) + CRPR(x),
∑
i

Ci = 1, i ∈ {L,C,R} , x ∈ Ij,

(6.44)

where {Ci : i ∈ {L,C,R}} are constants. From this equation, central function PC(x)
can be obtained.

Following the WENO concept, the weight coefficientsW j
i in Eq. (6.43) can be obtained

as:

W j
i = αji∑

k α
j
k

, αji = Ci(
ϵ+ ISji

)β , i, k ∈ {L,C,R} , (6.45)

where: ISji denotes the smoothness indicator, designed for detecting discontinuities or
high gradients; β is a constant and is assumed to be equal to 2, in this study; ϵ is a small
constant. It is recommended to be around ϵ = 10−6.

Approximating the polynomial yIj
(x) = α0 + α1(x − xj) + α2(x − xj)2 by the re-

constructed function Pj(xj±1/2), for the case ϵ = 0, the truncated error in the sense of
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average approximations on non-uniform grids would be:

1
x̄j − xj−1/2

∫ x̄j

xj−1/2

[
yIj (x) − Pj(x)

]
dx = 1

96(a + b + 1)
(
IS2

CCRIS2
L + IS2

R

(
IS2

CCL + CCIS2
L

))
−
{

2(3b + 5)(a + b + 1)CRIS2
L (ISC − ISR) (ISC + ISR) +

IS2
R

(
(7a + b + 4)IS2

L − 2(3a + 1)(a + b + 1)CL (ISC − ISL) (ISC + ISL)
)}

α2∆x3
j + O(∆x4

j ),
1

xj+1/2 − x̄j

∫ xj+1/2

x̄j

[
yIj (x) − Pj(x)

]
dx = 1

96(a + b + 1)
(
IS2

CCRIS2
L + IS2

R

(
IS2

CCL + CCIS2
L

))
−
{

IS2
R

(
2(3a + 5)(a + b + 1)CL (ISC − ISL) (ISC + ISL) + (a + 7b + 4)IS2

L

)
+

2(3b + 1)(a + b + 1)CRIS2
L (ISC − ISR) (ISC + ISR)

}
α2∆x3

j + O(∆x4
j ),

(6.46)

where: a := ∆xj/∆xj−1 and b := ∆xj/∆xj+1. This means that order of approximation
in smooth zones is O(∆x3

j).
Based on works [105, 106], for each cell Ij, the smoothness indicators are defined as:

ISji =
2∑
l=1

∫ xj+1/2

xj−1/2

[∆xj]2l−1
[
P

(l)
i

]2
dx, i ∈ {L,C,R} , (6.47)

where P (l)
i := dlPi/dxl. It is straightforward to show that:

ISjL =
4
(
∆u−

j

)2

(a+ 1)2 =
(
∆xj (u′)−

j

)2
,

ISjR =
4
(
∆u+

j

)2

(b+ 1)2 =
(
∆xj (u′)+

j

)2
.

(6.48)

Parameter ISC can directly be determined by the definition (6.47).
Same as the uniform grid case, it is easy to show that for non-uniform grids, the

symmetric values of Ci values (CL = CR) leads to a third order of accuracy in the sense
of average values (from Eqs. (6.42)).

6.2.2 The five point stencil on non-uniform grids

In this approach, function Pj(x) (x ∈ Ij) is constructed by a convex combination of qk(x),
as:
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Figure 6.8: CWENO scheme defined over five cells with three sub-stencils.

Pj(x) = W j
j−1qj−1(x) +W j

j qj(x) +W j
j+1qj+1(x),

j+1∑
i=j−1

W j
i = 1, W j

i ≥ 0, x ∈ Ij.

(6.49)

Coefficients W j
i are defined as Eq. (6.45), i.e.: W j

i = αji/
(
αjj−1 + αjj + αjj+1

)
. Definitions

of αji and ISji are the same as ones in Eqs. (6.45) and (6.47).
This five-point stencil of CWENO scheme with three sub-stencils (using parabolic

polynomials for each sub-stencil) is presented in Figure 6.8.
Approximating the polynomial yIj

(x) = α0 + α1(x − xj) + α2(x − xj)2 + α3(x − xj)3

by the reconstructed function Pj(xj±1/2), the truncated error in the sense of average
approximations would be:

1
x̄j − xj−1/2

∫ x̄j

xj−1/2

[
yIj (x) − Rj(x)

]
dx = 1

64
(
IS2

CCRIS2
L + IS2

R

(
CCIS2

L + IS2
CCL

)){
(2a1 + 1) IS2

R

(
(2a1 + 2a2 + 1) IS2

CCL − (2b1 + 1) CCIS2
L

)
+ (2b1 + 1) (2b1 + 2b2 + 1) IS2

CCRIS2
L

}
α3∆x4

j + O(∆x5
j ),

1
xj+1/2 − x̄j

∫ xj+1/2

x̄j

[
yIj (x) − Rj(x)

]
dx = − 1

x̄j − xj−1/2

∫ x̄j

xj−1/2

[
yIj (x) − Rj(x)

]
dx,

(6.50)

where: ai := ∆xj−i/∆xj and bi := ∆xj+i/∆xj for i = {1, 2}.
Hence, if Rj(x)(Pj(x)) interpolates half-cell averages solutions, Eq. (6.42), on non-

uniform grids, the order of accuracy is: r = 4.
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6.3 The piecewise parabolic method (PPM)
The concept of the piecewise parabolic method (PPM) was firstly introduced in [99]; it
has third order accuracy in the spatial domain. In this method, for the reconstruction
stage on the cell Ij, the cell average value ūj and cell-edge values uj±1/2 are used. For
estimation of uj+1/2 values, four neighbor cell average values are employed. Using of this
neighbor information, however, can yield more numerical dissipation. Popov et al. [100]
improves the method by a local stencil: edge values uj±1/2 are estimated by the concept of
the characteristic lines from solutions of the previous time step in the cell Ij. This method
improves numerical accuracy in expense of using some mathematical computations and
information. One drawback of the original PPM [99] is that the limiter defined there, can
lead to over-smoothing phenomenon around smooth extrema; to remedy this drawback,
some improvements were proposed for the limiter [101, 102].

The aim of this section is to obtain a semi-discrete third order central high resolution
scheme by the piecewise parabolic reconstruction method via a local stencil. The previous
third order method (Section 6.1) uses three neighbor cells for reconstructions and this
yields: i) a type of averaging which leads to smoother numerical solutions for smooth
responses, ii) possibility of existence of local spurious oscillations around discontinuities.
To prevent these cases, local information will be integrated by two different approaches
in the reconstruction stage, as: in each cell Ij

1. using of the cell average value (ūj) and both the first derivative (u′
j) and second

(u′′
j ) derivative values: denoted here by the PPM-1

2. using of the cell average value (ūj) and the first derivatives values at cell-edges
(u′

j±1/2): denoted by PPM-2,

where u′
j := duj/dx and u′′

j := d2uj/dx
2.

6.3.1 Formulation for the first approach of PPM (PPM-1)

Let us consider the scalar conservation law:

ut + f(u)x = 0, x ∈ (−∞,∞) , t ∈ (0,∞) , (6.51)

where u(x, t = 0) = u0(x). The first spatial derivative of Eq. (6.51) can be represented
as:

178



Chapter 6 Higher order central and CWENO schemes

vt + h(u, v)x = 0, x ∈ (−∞,∞) , t ∈ (0,∞) ,

v(x, 0) = v0(x),
(6.52)

where v(x, t) := ∂u/∂x and h(u, v) := f(u)x. The flux h(u, v) can also be written
as: h(u, v) = f ′(u)ux = f ′(u)v (where f ′(u) := ∂f/∂u). Let us again evaluate the first
spatial derivative of Eq. (6.52), as:

at + g(u, v, a)x = 0, x ∈ (−∞,∞) , t ∈ (0,∞) ,

a(x, 0) = a0(x),
(6.53)

where: a(x) := ∂v/∂x and g(u, v, a) = h(u, v)x = h(u, v)uux + h(u, v)vvx = h(u, v)uv +
h(u, v)va.

Let assume non-uniform cells {Ij}, where Ij =
[
xj−1/2, xj+1/2

]
. Cell centers xj locate

in a way that xj+1/2 − xj = ∆xrj and xj−1/2 − xj = ∆xlj. For the cell Ij, the cell-
average is ūj = (1/∆xj)

∫ xj+1/2
xj−1/2

u(x)dx; the first and second derivatives at xj are denoted
by: (u′)j := ∂u(xj, t)/∂x and (u′′)j := ∂2u(xj, t)/∂x2. Regarding {ūj, vj, aj} values, a
parabolic function qj(x) can be interpolated for the region

[
xj−1/2, xj+1/2

]
, as:

qj(x) = āj + b̄j (x− xj) + 1
2 c̄j (x− xj)2 , (6.54)

where:

āj = ūj −

[
∆xlj

]2 [
−
(
∆xlju′′

j + 3u′
j

)]
+
[
∆xrj

]3
u′′
j + 3

[
∆xrj

]2
u′
j

6∆xj
,

b̄j = u′
j,

c̄j = u′′
j ,

(6.55)

where u′
j := vj and u′′

j := aj.
Having the parabolic reconstructions {qj}, a piecewise average interpolating func-

tion P (x) can be obtained as:

P (x) =
∑
j

[
qj(x)χIj

]
, Ij ∈

[
xj−1/2, xj+1/2

]
, (6.56)
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ut+f(u)x=0

d

dx
(ut+f(u)x=0)⇒

vt+h(u,v)x=0

d2

dx2
(ut+f(u)x=0)⇒

at+g(u,v,a)x=0

Figure 6.9: Using local stencil for the first PPM method.

where χIj
denotes the unit box function: it has unit value inside Ij and is zero elsewhere.

This type of interpolation is presented in Figure 6.9.
The next step is to guarantee that P (x) will remain monotone by some modifications.

This can be done directly by two approaches:

The first approach By using the limiter defined in the Section 6.1, Eq. (6.30) with
the limier in Eq. (6.31) and the parameters defined in Eqs. (6.32) and (6.33).

The second approach At first, monotonization the piecewise parabolic reconstruction
in each cell, and then controlling/modification for satisfying the maximum principle at
cell-edges (by the limiter defined in Eq. (6.31)). Following this approach, we have:

1. Inside each cell Ij: to guarantee the monotonicity feature inside each cell, the con-
cept of monotonization will be used by updating qj polynomials by utilizing new
limiters. Since solutions u, v and a are independent parameters, this monotoniza-
tion can be done simply, based on these values.

2. At cell edges
{
xj+1/2

}
: this will be done by the concept of geometric rescaling,

performed in Eq. (6.30) by the limiter and corresponding parameters from Eqs.
(6.31)-(6.32) and (6.34) (derived for monotone solutions).
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As mentioned, the monotonization procedure is done by defining a limiter to guarantee
that a non-decreasing (non-increasing) solution remains non-decreasing (non-increasing).
The updated qj(x) after limiting is:

qj(x) = âj + b̂j (x− xj) + 1
2 ĉj (x− xj)2 , (6.57)

where â, b̂ and ĉ have the same definitions of Eq. (6.55), except that u′′
j is replaced

with
(
ϕju

′′
j

)
. Parameter ϕj denotes a limiter; it tides solutions uj, vj and aj (from Eqs.

(6.51),(6.52) and (6.53)) together. The limiter definition is:

ϕj =



min
(

1, |u′
j|

|u′′
j |.|∆xl

j|

)
, if Sign(u′

j) = Sign(u′′
j ), u′′

j ̸= 0 & u′
j ̸= 0,

min
(

1, |u′
j|

|u′′
j |.|∆xr

j |

)
, if Sign(u′

j) ̸= Sign(u′′
j ), u′′

j ̸= 0 & u′
j ̸= 0,

1, if u′′
j = 0 & u′

j = 0,

min
(

1, |ϵ|
|u′′

j |.|∆xl
j|

)
, if u′′

j ̸= 0 & u′
j = 0,

(6.58)

where: u′
j := vj, u′′

j := aj and ϵ ≪ 1 denotes a small constant. The case
{
u′′
j ̸= 0, u′

j = 0
}

shows a local extremum; to cure over-smoothing only at extremum points, the last
definition in the limiter (6.58) is done. With this modification, the extrema inside cells
are pushed to the edges of cells. In these extremum points, also, the first derivatives are
updated as: u′

j = Sign(u′′
j ) |ϵ|.

After this slope limiting of vj(x) = u′
j(x) by limiting the aj(x) = u′′

j (x), the modi-
fied vj(x) does not change its sign over cell Ij, and so uj(x) becomes monotone. This type
of modification by limiting approach is presented in Figure 6.10, where the dashed (red)
and solid (blue) lines represent the original vj(x) and the limited vj(x), respectively.

It is easy to show that after limiting of u′′
j and modifying of u′

j, the updated qj(x) in
Eq. (6.57) remains conservative; this means:

∫ xi+1/2
xi−1/2

qj(x)dx/(∆xj) = ūj.
The system of Eqs. (6.51)-(6.53) can be rewritten as a system of semi-discrete form:
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x j

Δx j

Δx j
rΔx j

l

u′ j

sign u′ j sign u″ j

u″ j
1 u″ j

u′ j

u″ j Δx jl1 Unlimited

Limited

Figure 6.10: Modification of u′
j(x) = vj(x) by limiting u′′(j), to prevent sign changing

of vj(x). The original data and the limited one are denoted by the red
dashed the solid blue lines, respectively.

duj
dt

= − 1
∆xj

(
F ∗
j+1/2 − F ∗

j−1/2

)
,

dvj
dt

= − 1
∆xj

(
H∗
j+1/2 −H∗

j−1/2

)
,

daj
dt

= − 1
∆xj

(
G∗
j+1/2 −G∗

j−1/2

)
,

(6.59)

where F ∗, H∗ and G∗ are numerical fluxes. The system of Eqs. (6.59) has rth order
accuracy if:

1
∆xj

(
F ∗
j+1/2 − F ∗

j−1/2

)
= f(u)x|x=xj

+ O(∆xr), (6.60a)

1
∆xj

(
H∗
j+1/2 −H∗

j−1/2

)
= h(u, v)x|x=xj

+ O(∆xr−1), (6.60b)

1
∆xj

(
G∗
j+1/2 −G∗

j−1/2

)
= g(u, v, a)x|x=xj

+ O(∆xr−2). (6.60c)

Following the concept of central high resolution schemes, for Eq. (6.60a), the third
order formulation presented in Eq. (6.15) can be used. For (6.60b), the second-order
central/central-upwind schemes can also be used. The performance of second-order
central schemes on adapted grids is studied in Sections 4 and 5. In this work, Eq.
(6.60c) is discretized by second-order central/central-upwind schemes, as well (a first
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v j+1/2

ut+f(u)x=0

d
dx
(ut+f(u)x=0)⇒

vt+h(u,v)x=0

Figure 6.11: Using local stencil for the second PPM method.

order central scheme can also be used, e.g., the Lax-Friedrichs central scheme).

6.3.2 Formulation for the second approach of PPM (PPM-2)
The conservation law (6.51) is considered again. Corresponding first spatial derivative
can be expressed as (6.52). Based on these equations, a local parabolic reconstruction
will be developed by ūj and vj±1/2. It is necessary that solvers of Eq. (6.51) and
Eq. (6.52) have third and second accuracy orders, respectively. Let the local parabolic
polynomial qj(x) for x ∈ Ij is represented by Eq. (6.54). The coefficients āj, b̄j and c̄j

can be evaluated as:

āj = ūj −
2
(
u′
j−1/2 − u′

j+1/2

)
∆xlj∆xrj + (∆xlj)2

(
−u′

j−1/2 − 2u′
j+1/2

)
+ (∆xrj)2

(
2u′

j−1/2 + u′
j+1/2

)
6∆xj

,

b̄j = −
∆xlju

′
j+1/2 − ∆xrju

′
j−1/2

∆xj
,

c̄j =
u′
j+1/2 − u′

j−1/2
∆xj

,

(6.61)

where u′
j := vj . This type of interpolation is presented in Figure 6.11.

It is necessary to monotonize the local polynomial qj(x) with coefficients (6.61). For
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x j

Δx j

Δx j
rΔx j

l

u′ j

sign u′ j sign u″ j

u′ j
Δx j

Δx jl
Unmodified

Modified

Figure 6.12: Modification of vj(x), the red dashed line, to prevent sign changing of vj(x)
as the solid blue line.

this, u′
j±1/2 values are updated as û′

j±1/2:

û′
j−1/2 = u′

j−1/2, û′
j+1/2 = u′

j+1/2, if Sign(u′
j−1/2) = Sign(u′

j) = Sign(u′
j+1/2),

û′
j−1/2 = 0, û′

j+1/2 = u′
j

∆xj∣∣∣∆xlj∣∣∣ , if Sign(u′
j−1/2) ̸= Sign(u′

j) & Sign(u′
j+1/2) = Sign(u′

j),

û′
j−1/2 = u′

j

∆xj∣∣∣∆xrj ∣∣∣ , û′
j+1/2 = 0, if Sign(u′

j−1/2) = Sign(u′
j) & Sign(u′

j+1/2) ̸= Sign(u′
j).

(6.62)

After this modification, the modified vj(x) = u′
j(x) does not change its sign over

cell Ij, and so uj(x) becomes monotone. This type of modification is presented in Figure
6.12, where the dashed (red) and solid (blue) lines represent the original vj(x) and the
modified vj(x), respectively.

These updating are performed in a way that cell values vj := u′
j do not alter. It should

be mentioned that as vj should have second order accuracy, a linear reconstruction is
used in each cell. So by the above mentioned modifications, u′

j = vj does not alter, and
the updated piecewise polynomial satisfies the conservation feature.

6.4 Complexity
In numerical simulations by high resolution schemes, the computational complexity is
directly controlled by cell numbers and the cost can be controlled by effective adaptation
procedures. For this purpose, the fast MRA-based cell/grid adaptation is used in this
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work. For 1-D data of length M , wavelet transforms (with the pyramidal algorithm)
use M operations and so they are fast and effective. Hence, the main computational
cost is due to the central schemes. In the following, the computational complexity of
the proposed central schemes is estimated by some numerical simulations (the numerical
approach) [38].

6.4.1 The complexity of high-order central high resolution schemes

Following the references [38], the complexity of different high-order central high resolu-
tion schemes are evaluated by the numerical approach (by some simulations). Let us
assume the Burgers’ equation u,t + (1/2u2),x = 0, for x ∈ [0, 1] where u := u(x, t); the
boundary conditions (BCs) and the initial condition (IC) are: BCs: u(0, t) = u(1, t) = 0
and IC: u(x, 0) = Sin(2πx) + 1/2 × Sin(πx). The parameters used in numerical simula-
tions are:

1. Levels Jmax and Jmin denote the finest and coarsest resolution levels, respectively,

2. The parameter NJmax = 2Jmax + 1 is the number of uniform cells in the finest
resolution level (where the sampling step is dx = 1/2Jmax),

3. The parameter Ndt is the number of time-steps,

4. The ratio rJmax
N,ϵ = max (Ng) /NJmax denotes the minimum reduction (compression)

factor in grid numbers during numerical simulations by the MRA-based grid adap-
tation method with the finest resolution level Jmax and the pre-defined threshold ϵ,

5. The parameter CMS denotes the computational time.

The complexities of the high-order central high resolution schemes are investigated
separately without and with the adaptive solver.

Complexities of the third-order central high resolution schemes on uniform
grids/cells

The main source of computational complexity is the number of cells/grids in the spatial
domain, denoted here by M . In this study, different resolution levels j = Jmax are
used for simulations with location numbers M = NJmax = 2Jmax + 1. The time step dt

is assumed to be constant for different uniform grids/cells of different cell-lengths. For
the methods M1, M2, CWENO− 3P ,CWENO− 5P ,PPM − 1 and PPM − 2, results

185



Chapter 6 Higher order central and CWENO schemes

are presented in Table 6.4.1 after 395 time steps at t = 0.158, when a right propagating
shock wave is developed for the first time. Theoretically, the computational time CMS

decreases asymptotically by a factor rc = (CMS)Jmax
/ (CMS)Jmax−1. Regarding Table

6.4.1, this ratio is about 2 for all central schemes and so the computational complexity
is asymptotically O(M) operations.

6.4.2 Complexities of the different third-order central high
resolution schemes on adapted grids/cells

For numerical estimation of the computational complexity of adaptive simulations, the
Burgers’ equation is re-considered. Assumptions in the simulations are: ϵ = 0.75 ×
10−3 (the wavelet threshold); the CFL value for all simulations is constant and equal
to ∆t

(mini(∆xi))maxj |λj| = 0.25; the coarsest level Jmin is kept constant and equals to 5
for all simulations (with the sampling step ∆x = 1/2Jmin); to capture the fine resolution
effects, Jmax is increased one-by-one from 9 to 12; the MRA-based grid adaptation is
performed after each time step. Results are presented in Table 6.4.2 at t = 0.158 (the
time of developing the first discontinuity in solutions).

The relative number rJmax

(N,ϵ) decreases asymptotically by a factor rj := rJmax−1
(N,ϵ) /rJmax

(N,ϵ) of
about 2. The total number of adapted cells increases by a factor ql := [max(Ng)]Jmax−1

[max(Ng)]Jmax

≈
2rj. The ratio rj is around 0.5 and so ql ≈ 1. This means that the computational
complexity in the spatial domain does not vary considerably by adding an extra finer
resolution level for capturing fine responses. This reveals the importance of adaptive
solvers in the spatial-domain. On the other hand, by adding an additional refinement,
the time step decreases by a factor 0.5 due to the CFL condition. Hence, the total
computational complexity in the spatio-temporal domains would increase by 2 × ql.
This can be confirmed by the ratio of rc := (CMS)Jmax

/ (CMS)Jmax−1 which is around 2
for each scheme.

Table 6.4.1: The computation cost of different high-order central schemes on uniform
cells; for all cases Jmin = 5.

Jmax NJmax M1 M2 CWENO − 3P CWENO − 5P PPM-1 PPM-2
CMS CMS CMS CMS CMS CMS

6 65 0.64 0.87 0.69 0.87 1.13 1.04
7 129 1.22 1.72 1.29 1.73 2.13 2.03
8 257 2.44 3.38 2.57 3.39 3.90 3.91
9 513 4.73 6.69 4.97 4.76 7.52 7.43
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Table 6.4.2: The computation cost of different high-order central schemes on adaptive cells. The parameter CMS is measured
in Minutes and Jmin = 5 for all cases.

Jmax NJmax Ndt M1 M2 CWENO − 3P CWENO − 5P PPM-1 PPM-2(
rJmax

(N,ϵ)(%), CMS

) (
rJmax

(N,ϵ)(%), CMS

) (
rJmax

(N,ϵ)(%), CMS

) (
rJmax

(N,ϵ)(%), CMS

) (
rJmax

(N,ϵ)(%), CMS

) (
rJmax

(N,ϵ)(%), CMS

)
9 513 485 (16.29, 0.60) (19.18, 0.77) (22.47, 0.75) (25.15, 0.76) (18.97, 1.06) (17.53, 0.84)
10 1025 970 (8.04, 1.29) (9.59, 1.76) (10.31, 1.54) (11.75, 1.51) (9.48, 2.20) (9.59, 1.95)
11 2049 1940 (4.69, 2.91) (4.58, 3.96) (6.34, 3.09) (6.23, 3.23) (5.51, 5.4) (5.46, 4.29)
12 4097 3880 (2.34, 6.80) (2.24, 9.47) (3.10, 7.04) (3.20, 7.69) (2.97, 13.19) (2.68, 10.26)
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6.5 Reconstruction Error
In this study, the performance of different reconstruction schemes is measured by con-
sidering reconstruction errors at cell-interfaces [184, 185]. The error norm proposed in
[184, 185] is considered in this study:

Errp := 1
N

(
∥ u−

i+1/2 − f
(
xi+1/2

)
∥Lp

∆x
+ ∥ u+

i+1/2 − f
(
xi+1/2

)
∥Lp

∆x

)
, (6.63)

with the norm definition:

∥ (.)i ∥Lp
∆x

:=
(

N∑
i=1

| (.)i |p
)1/p

and ∥ (.)i ∥L∞
∆x

:= maxi | (.)i |, (6.64)

where N denotes the number of interfaces
{
xi+1/2

}
and u−

i+1/2 and u+
i+1/2 are the left

and right reconstructed values at xi+1/2, respectively.
All of the test problems are one dimensional because the dimension-by-dimension

method is used for high-dimensional problems. For different reconstruction schemes,
errors are evaluated on multiresolution-based adapted grids to study the scale effects.
Two test problems are selected; the first one has a smooth-high gradient response and
the second one includes a discontinuity. These test problems were proposed by [139] for
studying the performance of multiscale (adaptive) solvers.

It should be mentioned that the reconstruction procedure in PPMs include the M1

scheme for state variables and linear reconstruction by the GMM for the velocity and
acceleration of the state variables. So, in the following, the reconstruction performance
of the M1, M2, linear reconstruction, CWENO − 3P and CWENO − 5P schemes are
studied.

6.5.1 The first test problem: the smooth-high gradient function

The test function is defined as [139]:

f1(x) := Sin (2πx) + Exp
(
−20000 (x− 0.5)2

)
. (6.65)

In numerical evaluations, the parameters are: ϵ = 0.5 × 10−4 (the wavelet thresh-
old); Jmin = 5 (the coarsest resolution level) and Jmax = {7, 8, 9, 10, 11} (the finest
resolution level). The function f1(x) and corresponding adapted grids for different Jmax
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Figure 6.13: The first test function f1(x) and distribution of adapted grids in different
resolution levels for different Jmax values.

values are illustrated in Fig. 6.13. It is clear that by increasing Jmax values, more
adapted points with finer scales concentrate around the high gradient zone. For these
adapted grids, the reconstruction errors with p = 1 with different Jmax values are pre-
sented in Tables 6.5.1 and 6.5.2. Table 6.5.1 includes methods M1, M2 and the linear
reconstruction by the generalized MINMOD limiter with the parameter θ = 2. In Table
6.5.2, the performance of the methods CWENO− 3P and CWENO− 5P are provided
for different CL, CR and CC values, where CL = CR and CC = 1 − CL − CR.

Table 6.5.1: Reconstruction error at interfaces with p = 1 for the first test function.
Jmax M1 M2 L−GMM

7 0.021833 0.0203572 0.031139
8 0.010856 0.0088252 0.0183609
9 0.005245 0.0032685 0.0109897
10 0.0032004 0.0016517 0.0072496
11 0.0047077 0.0022905 0.00957725
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Table 6.5.2: Reconstruction error at interfaces with p = 1 for the first test function.
Jmax CWENO − 3P CWENO − 5P

CL,R = 0.15 CL,R = 0.25 CL,R = 0.35 CL,R = 0.15 CL,R = 0.25 CL,R = 0.35
7 0.028974 0.0308683 0.0317729 0.0207154 0.0213235 0.021617
8 0.016985 0.01898 0.019901 0.00667118 0.00636655 0.00583898
9 0.00775609 0.00893157 0.00963636 0.000830034 0.00084366 0.00161227
10 0.00329951 0.00397226 0.00444691 0.000173458 0.000296736 0.000591564
11 0.00240646 0.0029527 0.00333988 0.000137795 0.00024083 0.000464516

6.5.2 The second test problem: a function including a discontinuity

This test function is defined as [139]:

f2(x) := Sin (2πx) − H
(
x− 1

2

)
+ 1

2 ,
(6.66)

where the function H(x) denotes the Heaviside (the unite step) function. The assumed
parameters are: ϵ = 0.5×10−4 (the wavelet threshold); Jmin = 5 (the coarsest resolution
level) and Jmax = {7, 8, 9, 10, 11, 12} (the finest resolution level). The function f2(x)
and corresponding adapted grids for different Jmax values are illustrated in Fig. 6.14.
Reconstruction errors for p = 1 for different central schemes are presented in Tables
6.5.3 and 6.5.4. Schemes M1, M2 and the linear reconstruction are presented in Table
6.5.3 and different CWENO schemes with different symmetric weights are compared in
Tables 6.5.4.

The results from these two test problems offer that:

1. For smooth high gradient cases, the best performance is for the CWENO − 5P ;
however, around a discontinuity its performance reduces due to stencil length in
comparison to other schemes,

2. For smooth high gradient solutions, performance of all central schemes is better
than the linear reconstruction,

3. The MRA-based adaptation can reduce the reconstruction error in all schemes;
indeed, by including an extra finer resolution level, reconstruction errors decrease,

4. All CWENO schemes with different weight values work properly,

5. Presence of a discontinuity considerably reduces the convergence rate.
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Figure 6.14: The second test function f2(x) and distribution of adapted grids in different
resolution levels for different Jmax values.
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Table 6.5.3: Reconstruction error at interfaces with p = 1 for the second test function.
Jmax M1 M2 L−GMM

7 0.035328 0.036003 0.0504697
8 0.0326298 0.0334207 0.0464694
9 0.0303033 0.0311699 0.0431562
10 0.02831257 0.0291939 0.0403336
11 0.0265889 0.0274487 0.0378817
12 0.0250701 0.0258981 0.0357224

Table 6.5.4: Reconstruction error at interfaces with p = 1 for the second test function.
Jmax CWENO − 3P CWENO − 5P

CL,R = 0.15 CL,R = 0.25 CL,R = 0.35 CL,R = 0.15 CL,R = 0.25 CL,R = 0.35
7 0.0305937 0.0315606 0.0321786 0.0792499 0.0793677 0.0796173
8 0.0283527 0.0292479 0.0298207 0.0734487 0.0735584 0.0737891
9 0.0264191 0.0272533 0.027787 0.0684397 0.0685418 0.0687567
10 0.0247328 0.0255137 0.0260133 0.0640524 0.064148 0.0643492
11 0.0232488 0.0239828 0.0244525 0.0600356 0.0601255 0.0603146
12 0.0219328 0.0226253 0.0230684 0.0554995 0.0555843 0.0557627

6.6 Numerical examples
The following 1-D and 2-D examples are adopted to study and compare the effectiveness
of the proposed methods for simulation of nonlinear first order hyperbolic systems. The
main assumptions are:

1. Applying the D-D interpolating wavelet of order 3,

2. Repeating re-adaptation processes every time step for 1-D problems and every
twenty step for 2-D examples,

3. Using the semi-discrete form of central high resolution schemes,

4. Temporal integration is performed by the TVD Runge-Kutta solvers. The third-
order Runge-Kutta method is used for the third and fourth order central schemes
and the second-order Runge-Kutta scheme for the second-order central schemes.

For the PPMs, for original (Eq. (6.51)) and newly added hyperbolic equations (Eqs.
(6.52) and (6.53)), different central solvers with different accuracy are used:

1. The original system by the third-order solver using PPM concepts,
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2. For additional equations, the second-order Kurganov-Tadmor (KT) central high
resolution scheme (using the generalized MINMOD limiter) [22] is adopted. It
should be mentioned that theoretically the first order scheme is sufficient for a;
however, second order solvers using TVD limiters have first order accuracy around
extrema and zero slope at extrema. Also in case of multidimensional problems,
TVD-based solvers lead to at most first order accuracy. These conditions lead to
the over-smoothing phenomenon. In this regard, to control numerical dissipation,
for both velocities and accelerations the second order solvers are used.

The semi-discrete form of the KT method for the scalar conservation law ut+F (u)x = 0
(on uniform and non-uniform cells) is [22]:

dūi
dt

+
F ∗
i+1/2 − F ∗

i−1/2

∆xi
= 0, (6.67)

where ∆xi := xi+1/2 − xi−1/2; ūi is the average solution on cell Ij and since variation
of u(x) on Ij is linear, the average solution ūi and ui are equal to each other, that
is ūi = ui ; F ∗

i±1/2 denotes the numerical flux at cell edges xi±1/2, defined as:

F ∗
i±1/2 :=

FR
i±1/2 + FL

i±1/2

2 + ai±1/2
uRi±1/2 − uLi±1/2

2 , (6.68)

where FR
i+1/2 and FL

i+1/2 are the right and left reconstructed fluxes at the edge xi+1/2,
respectively; ai+1/2 denotes the absolute value of maximum velocity at xi+1/2.

For the above-mentioned nonlinear conservation law, the Riemann problem can be
described by the following initial condition (IC):

u(x, t = 0) =

uL, x ≤ x0,

uR, x > x0.
(6.69)

For the PPM methods, it is also essential to evaluate initial conditions (ICs) for v(x, t =
0) := ∂u(x, 0)/∂x and a(x, t = 0) := ∂2u(x, 0)/∂x2, based on u(x, t = 0). These ICs can
be obtained as:

v(x, t = 0) = (uR − uL)δ(x− x0), a(x, t = 0) = 0, (6.70)
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where δ(x) is the Dirac delta function. This function can be approximated as:

δ(x− x0) ≈


1
∆ , for x0 − ∆

2 ≤ x ≤ x0 + ∆
2 ,

0, elsewhere.
(6.71)

In numerical simulations, a proper choice for ∆ may be ∆/2 = 2 × (1/2Jmax).
In results presented in the following, different methods are denoted by:

1. M1 and M2: the third order limited solvers on three successive cells defined re-
spectively in Eqs. (6.30) and (6.35),

2. PPM-1 and PPM-2: the piecewise parabolic methods respectively with extra in-
formation {vj, aj} and {vj±1/2},

3. CWENO-3P and CWENO-5P: central-WENO schemes respectively with three and
five-points stencils .

6.6.1 The 1-D Burgers’ equation

The Burgers’ equation is defined as:

ut + 1
2
(
u2
)
x

= 0, x ∈ [0, 1] ,

where u is the conserved quantity and its flux is F (u) = u2/2. The system is nonlinear, so
discontinuous fronts will develop during propagation. A smooth IC with fixed boundary
conditions (BCs) are assumed as:

BCs : u(x = 0, t) = u(1, t) = 0, IC : u(x, t = 0) = sin(2πx) + 1
2sin(πx).

For this IC, a right-moving discontinuity develops around t ≈ 0.158. Numerical as-
sumptions are: ϵ = 10−3 (threshold), Nc = Ns = 2 (for grid modification in the post-
processing stage), Jmax = 10, Jmin = 5 and θ = 2 (for the generalized MINMOD limiter
in PPM schemes).

The numerical results are illustrated in Fig. 6.15 at times 0.158, 0.5 and 1. This figure
contains numerical results, exact solutions and corresponding adapted grids in different
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resolutions. The solid lines and shapes denote the exact and numerical solutions, re-
spectively.

Variations of both the number of grid points (Ng) and TV (total variation) in time
are presented in Fig. 6.16 for different methods.

The results confirm that:

1. High-order high-resolution methods are properly integrated with the adaptive
solver;

2. The adaptation procedure is effective; since, instead of 1025 points (in the finest
resolution level) nearly less than 80 adapted points are used for all methods;

3. Adapted points are properly concentrated around the propagating fronts;

4. Solutions are TVB (having bounded TV);

5. Localized spurious oscillations develop around the discontinuity for M1, M2, PPM-
1 and PPM-2 schemes; the PPM schemes, however, can decrease such localized
oscillations;

6. The CWENO-5P method leads to more precise results than CWENO-3P (compare
solutions at t = 0.158);

7. Performance of both PPM-1 and PPM-2 methods are nearly the same.

6.6.2 Euler system of equations

In the following, four different problems with different initial and boundary conditions
will be studied. The examples are: 1) The Sod problem [186], 2) The Lax problem [187],
3) Interaction of an entropy sine wave with a Mach 3 right-moving front [71, 174], 4)
Interaction of two blasts [174, 175, 190].

The Sod Problem

For this benchmark, the initial conditions are:
ρ

u

P


t=0

=

{0, 0, 1}T , x ≤ 0.5,

{0.125, 0, 0.1}T , x > 0.5.
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Figure 6.15: Numerical results and corresponding adapted points in different resolutions
for the Burgers’ problem with different approaches.
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Figure 6.16: Number of adapted grid points Ng and corresponding TV during simula-
tions with different approaches. In the finest resolution, the number of grid
points is 210 + 1.

An unbounded 1-D domain is assumed: a Riemann problem. Assumptions for numerical
simulations are: Jmax = 11, Nd = 6, ϵ = 10−4, Nc = 2, Ns = 1, dt = 0.0000244 and θ = 2
(in the generalized MINMOD limiter).

The numerical solutions for ρ and corresponding adapted grid points at time 0.2 are
illustrated in Fig. 6.17. The solid lines and shapes denote the exact and numerical
solutions, respectively. Variations of both the grid point number (Ng) and TV of ρ in
time are presented in Fig. 6.18 for different methods.

Error in the adaptive simulations measured by L1 and L∞ norms are presented in
Table 6.6.1 at t = 0.2. The definitions of these norms are:

∥ (.) ∥L1 := 1
Ng

Ng∑
i=1

| (.)i |, ∥ (.) ∥L∞
∆x

:= maxi | (.)i |, (6.72)

where Ng denotes the number of adapted points.
The L1 norm of the error as a function of the run-time for M1, M2, CWENO −

3P , CWENO − 5P , PPM − 1 and PPM − 2 are presented in Fig. 6.19, evaluated
for the interval 0 ≤ t ≤ 0.2. The assumed parameters are: Jmax = 11, Nd = 6 (the
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number of decomposition levels), Nc = 2, Ns = 1, dt = 0.0000244, CL = CR = 0.25
and the adaptation procedure is performed at each time step (which is expensive). In
Fig. 6.19, in each curve, the plot-markers correspond from left to right, respectively, to
threshold values ϵ ∈ {5 × 10−3, 10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5, 10−6}. All codes are
written in Mathematica 10 and nearly all functions are compiled in the Mathematica
(by the Compile function). The results illustrate that the PPMs are the most expensive
approach and the CWENO − 5P is the most accurate method.

Table 6.6.1: The accuracy of different schemes for solving the Sod problem at t = 0.2.
Error M1 M2 CWENO − 3P CWENO − 5P PPM − 1 PPM − 2
L1 3.380e-03 3.319e-03 2.759e-03 2.229e-03 3.345e-03 2.821e-03
L∞ 8.326e-02 7.914e-02 8.877e-02 9.061e-02 6.171e-02 6.773e-02

The Lax problem

For this case, ICs are:
ρ

u

P


t=0

=

{0.445, 0.69887, 3.5277} , x ≤ 0.5,

{0.5, 0, 0.571} , x > 0.5.

For numerical simulations, it is assumed: ϵ = 5 × 10−4, Jmax = 11, Jmin = 5 (or Nd =
6), dt = 2 × 10−5 and θ = 2 (in the generalized MINMOD limiter).

Adaptive solutions of ρ and corresponding adapted grids at different resolution levels
at time 0.16 are presented in Fig. 6.20 for different methods. The solid lines and shapes
represent the exact and numerical solutions, respectively. Variations of Ng and TV
of ρ in time are presented in Fig. 6.21 for different methods. Error in the adaptive
simulations measured by the L1 norm is also provided in Table 6.6.2 at t = 0.2.

The L1 norm of the error as a function of the run-time for different schemes are
presented in Fig. 6.22, evaluated for 0 ≤ t ≤ 0.16. The assumed parameters are the
same as the Sod problem, except for dt = 2 × 10−5. The results offer again that the
PPMs are the most expensive approach and the CWENO − 5P is the most accurate
method.

Regarding the Sod and the Lax problems, the results offer that:

1. The wavelet transform can properly capture all phenomena: shock waves, rarefac-
tion and contact discontinuity zones,
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Figure 6.17: Numerical results of ρ (u ≡ ρ) and corresponding adapted points in different
resolutions for the Sod problem with different approaches at t = 0.2. Solid
lines and shapes denote exact and numerical solutions, respectively.
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Figure 6.18: Number of adapted grid points Ng and corresponding total variations TV
of ρ for the Sod problem during simulations with different approaches. In
the finest resolution, number of grid points is 211 + 1.

Figure 6.19: L1 error as a function of run-time for different schemes for the Sod problem,
evaluated for 0 ≤ t ≤ 0.2.
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Figure 6.20: Numerical results of ρ (u ≡ ρ) and corresponding adapted points in different
resolutions for the Lax problem with different approaches at t = 0.16.
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Figure 6.21: Number of adapted grid points Ng and corresponding TV of ρ during sim-
ulations for the Lax problem with different approaches. In the finest reso-
lution, the number of grid points is 211 + 1.

Figure 6.22: L1 error as a function of run-time for different schemes for the Lax problem,
evaluated for 0 ≤ t ≤ 0.16.
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Table 6.6.2: Accuracy for different schemes for solving the Lax problem at t = 0.16.
Error M1 M2 CWENO − 3P CWENO − 5P PPM − 1 PPM − 2
L1 2.907e-02 2.145e-02 3.199e-02 1.637e-02 2.237e-02 3.624e-02

2. Grid points are properly adapted for all schemes,

3. Number of grid points used by adaptation procedures are considerably smaller
than corresponding uniform grid in the finest resolution (of size 211 + 1),

4. The M2 method leads to less dissipation around discontinuities (this may increase
spurious oscillations),

5. Total variations of all solutions are bounded through time: the TVB feature,

6. Schemes M1 and M2 use smaller number of Ng through time in comparison to
other methods,

7. CWENO schemes can completely control developing of spurious oscillations and
so have the smoothest TV in time,

8. The CWENO-5P method mobilizes more adapted points than the CWENO-3P
scheme,

9. The PPM-2 scheme leads smoother results than the PPM-1.

The Shu and Osher problem

In this example, the interaction of an entropy sine wave with a Mach 3 right-moving
front (known as the Shu and Osher problem) [73, 174] are studied. This challenging
problem was developed to reveal capabilities of high order schemes.

The Riemann initial condition is [174, 175]:

{ρ, u, P}|t=0 =

 {3.857143, 2.629369, 10.33333} if x ≤ −4,
{1 + 0.2 sin(5x), 0, 1} if x > −4..

(6.73)

The considered spatio-temporal computational domain is: Ω = (−5, 5) × (0, T ). In
numerica simulations, the assumed parameters are: ϵ = 10−3, Jmax = 12, Jmin = 5
(or Nd = 6), Nc = 1, Ns = 2, θ = 2 (for the GMM limiter) and dt = 0.000976563.

The numerical and exact solutions and corresponding adapted points are illustrated
in Figs. 6.23 and 6.24 for the spatial range x ∈ [−3, 2.5] at t = 1.8. In these figures, the
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solid line and hollow-circle markers denote the reference [175] and numerical solutions,
respectively. In the PPM methods, for simulation of newly added PDEs (including
velocities and accelerations), the KT formulation and two central-upwind schemes with
less numerical dissipation are used [23, 24]. The numerical fluxes for the central-upwind
schemes are defined as:

1. The first approach, denoted by C1:

F ∗
i+1/2 :=

a+
i+1/2F

−
i+1/2 − a−

i+1/2F
+
i+1/2

a+
i+1/2 − a−

i+1/2
+ a−

i+1/2a
+
i+1/2

u+
i+1/2 − u−

i+1/2

a+
i+1/2 − a−

i+1/2
, (6.74)

2. The second approach, denoted by C2:

F ∗
i+1/2 :=

a+
i+1/2F

−
i+1/2 − a−

i+1/2F
+
i+1/2

a+
i+1/2 − a−

i+1/2
+
a−
i+1/2a

+
i+1/2

2
u+
i+1/2 − u−

i+1/2

a+
i+1/2 − a−

i+1/2
, (6.75)

where F−
i+1/2 and F+

i+1/2 denote fluxes just before and after the interface xi+1/2, respec-
tively; u−

i+1/2 and u+
i+1/2 denote the reconstructed values just before and after xi+1/2, re-

spectively; and a−
i+1/2 and a+

i+1/2 denote the maximum left and right propagation speeds,
respectively.

The results offer that:

1. For all schemes, adapted points concentrate properly around both high-gradient
zones and discontinuities,

2. For the M1, M2, CWENO − 3P and CWENO − 5P , there are good agreements
between numerical and reference solutions,

3. For the PPM − 1 and PPM − 2 schemes, all responses (obtained by the KT, C1

and C2 schemes) include the over-smoothing phenomenon around extrema. How-
ever, the C1 and C2 central-upwind schemes can generally reduce numerical dis-
sipation. It seems that the main reason is the performance of the GMM limiter
around the local extrema: around these points the TVD-limiters have first order
accuracy and the estimated slopes at the extrema points are zero [191].

The L1 norm of the error as a function of the run-time for different schemes are
illustrated in Fig. 6.25, evaluated for the interval 0 ≤ t ≤ 1.8. The assumed parameters
are the same as the Sod problem, except for: Jmax = 12, and dt = 0.0000244. The
plot-markers in each curve correspond from left to right, respectively, to the threshold

204



Chapter 6 Higher order central and CWENO schemes

Figure 6.23: Numerical results from adaptive solvers for the entropy and shock wave
interaction with M1, M2 and CWENO methods at t = 1.8.

values ϵ ∈ {5 × 10−3, 10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5, 10−6}. The solution of this
problem includes several local extrema and due to the TVD limiters used in the PPMs,
these schemes have more numerical dissipation (as explained before). This is clear in
the error-runtime cures of the PPMs. The results show that the PPMs are the most
expensive approach and again the CWENO − 5P is the most accurate method.

Interaction of two blast waves

One of the challenging problems in the gas dynamic problem is the two blast waves
interaction [190]. For this problem, the Riemann initial condition is [174, 175, 190]:

{ρ, u, P}|t=0 =


{1, 0, 1000}, if x < 0.1,
{1, 0, 0.01}, if 0.1 ≤ x < 0.9,
{1, 0, 100}, if x ≥ 0.9.

(6.76)

The boundary conditions are reflecting walls, where the velocity u is an odd function
of distance from the wall, ρ and P are even functions with respect to the wall in the
spatial domain [174, 175].
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Figure 6.24: Numerical results from adaptive solvers for the entropy and shock wave
interaction with PPM − 1 and PPM − 2 methods at t = 1.8; the KT, C1
and C2 second order central high resolution schemes with the GMM limiter
(with θ = 2) are used for the evaluations of velocities and accelerations.
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Figure 6.25: L1 error as a function of run-time for different schemes for the Shu-Osher
problem, evaluated for 0 ≤ t ≤ 1.8.

The numerical simulations are performed with the parameters ϵ = 10−2, dt = 0.2×10−5

and θ = 2. The results are illustrated in Fig. 6.26; in each row, solutions are at times
0.016, 0.028 and 0.032, respectively, from left to right. In each illustration, the exact
(reference) and numerical solutions are presented by solid lines and hollow-circle markers,
respectively. It is clear that points are properly adapted in the vicinity of both high-
gradient and discontinuous zones.

6.6.3 The 2-D scalar Burgers’ equation

The 2-D scalar Burgers’ equation is assumed as follows:

ut +
(
u2
)
x

+
(
u2
)
y

= 0, Ω ∈ [−2, 2] × [−2, 2], (6.77)

where u := u(x, y, t) and fluxes in the x and y directions are u2.
The IC, u(x, y, t = 0), is equal to -1 and 1 inside two circles with center loca-

tions (0.5, 0.5) and (−0.5,−0.5), respectively; radius of both circles are 0.4. For both
PPM-1 and PPM-2 schemes, ICs of vx := ∂u/∂x and vy := ∂u/∂y can be obtained by
the concept of the Dirac delta function, Eq. (6.70) and corresponding approximation in
Eq. (6.70).

In numerical calculations, it is assumed that: ϵ = 0.25 × 10−3 (threshold), dt =
0.0002, θ = 2, Jmax = 8, Jmin = 5, Nc = 2, Ns = 1 and θ = 2.
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Figure 6.26: Numerical results from adaptive different solvers for the interaction of two
shock waves; in each row, solutions are for times 0.016, 0.028 and 0.032
respectively from left to right.
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Figure 6.26 (cont.): Numerical results from adaptive different solvers for the interaction of
two shock waves; in each row, solutions are for times 0.016, 0.028 and 0.032 respectively
from left to right.
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Figure 6.27: Numerical results for the 2-D Burgers’ problem with different schemes
for Ω ∈ [−1, 1] × [−1, 1] at t = 0.5.

For different schemes, contour-plot of numerical results are presented in Fig. 6.27
at t = 0.5 for Ω ∈ [−1, 1] × [−1, 1]. Their 3-D representations are also illustrated in
Fig. 6.28. Adapted grid points are shown at times 0.02, 0.2 and 0.5 in Fig. 6.29
for Ω ∈ [−2, 2] × [−2, 2].

Based on results, it is clear that:

1. All schemes can capture the discontinuity,

2. Localized spurious oscillations develop in M1, M2, PPM-1 and PPM-2 schemes,

3. PPMs can reduce such oscillations,

4. Central-WENO schemes can effectively control the localized spurious oscillations.

6.6.4 2-D Euler systems

The governing equations for the 2-D Euler system are [192]:
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Figure 6.28: The 3-D representations of numerical results for the 2-D Burgers’ problem
with different schemes for Ω ∈ [−1, 1] × [−1, 1] at t = 0.5.

Figure 6.29: Adapted grids for the 2-D Burgers’ problem at different times for the M1
scheme where Ω ∈ [−2, 2] × [−2, 2]. For adaptation, we have: Jmax =
8, Jmin = 5 and ϵ = 0.25 × 10−3.

211



Chapter 6 Higher order central and CWENO schemes

Ut + F(U)x + G(U)y = 0, Ω = [0, 4] × [0, 1], (6.78)

where

U = [ρ, ρu, ρv, E]T ,

F =
[
ρu, ρu2 + p, ρuv, u(E + p)

]T
,

G =
[
ρv, ρuv + p, ρv2 + p, v(E + p)

]T
.

(6.79)

Here, u and v denote the velocity components in the x and y directions, respectively; ρ
is the density; E denotes the total energy; and p is the pressure. Parameter E is defined
as:

E = p

γ − 1 + 1
2ρ
(
u2 + v2

)
, (6.80)

with the adiabatic index γ = 1.4.

Double Mach reflection of a strong shock

This problem was originally introduced by Woodward and Colella [193] as a benchmark
for simulation of shock waves in the form of 2-D Euler equations. For the initial condi-
tions, a planar shock is considered having a 60◦ angle with respect to the x-axis. The
pre- and post-shock conditions are [192, 193]:


ρ = 1.4, u = 0, v = 0, p = 1, if x > 1

6 + y

tanπ3
,

ρ = 8.0, u = 8.25sinπ3 , v = −8.25cosπ3 , p = 116.5, otherwise.
(6.81)

The boundary conditions of the domain are: the left and right boundaries are con-
tinuous; the lower boundary is wall (reflecting) for 1/6 ≤ x ≤ 4 and has the post-shock
conditions for 0 ≤ x < 1/6; the upper boundary has a time-dependent feature, describ-
ing the incoming inclined planar shock wave. The challenging problem is the proper
imposing of the upper boundary condition as the grid adaptation method is nearly sen-
sitive. In this study, instead of the Dirichlet BCs at the upper boundary, an oblique
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first-order extrapolation is used [194]. As the angle of the planar shock to the horizontal
axis is 60◦, for uniform cells (∆x = ∆y), and one ghost cell, this condition becomes
[194, 195]:

Ui,m+1 = Ui−1,m−1, (6.82)

where m is the number of grid cells in the y-direction.
The assumed parameters in numerical simulations are: ϵ = 10−3 (the wavelet thresh-

old); Jmax = 6; Jmin = 3; dt = 2 × 10−6. For PPM methods extra simulations are
performed with Jmax = 7 and Jmin = 3 to consider the effect of finer resolution effects.

Numerical results for the M1, M2, CWENO − 3P and CWENO − 5P schemes are
presented in Fig. 6.30 at t = 0.2 sec.; thirty contours are used for presenting the contour
plots. The corresponding MRA-based adapted grids are illustrated in Fig 6.31.

Contour plots of numerical results (with 30 contours) for the PPM −1 and PPM −2
methods and their adapted grids are presented in Figs. 6.32 and 6.33, respectively. These
results are for two cases: Jmax = 6 and Jmax = 7. From Fig. 6.32, it is obvious that the
solution is dissipative; however, by adding a finer resolution level, the performance is
improved. The main reason is that the TVD limiters have at most first-order accuracy
in the 2D/3D problems and this leads to dissipative results.

In general, the results offer that:

1. As the central schemes are TVB, each method leads to different adapted grids
(due to presence of some localized spurious oscillations; and this leads to different
contour plots),

2. The PPM schemes lead to dissipative responses due to performance of TVD-
limiters on multidimensional problems: having at most first-order accuracy. In-
creasing the resolution levels can improve the performance of the PPM schemes.
Also it is possible to use other type of limiters (e.g., TVB); for a review of different
limiters, see end of the Introduction section.

A Mach three wind tunnel with a step

This problem was introduced in [193] to investigate the performance of different methods
in handling singular solutions developed around the edge of a step [192]. The Euler
equations (6.78) are solved in a wind tunnel with a unit length wide and 3 length units
long which it includes a step with 0.2 units high, started from 0.6 length units from the
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Figure 6.30: Numerical results obtained by the M1, M2, CWENO−3P and CWENO−
5P schemes at t = 0.2; the number of contours is 30.
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Figure 6.31: Adapted grids for the numerical simulations of the M1, M2, CWENO−3P
and CWENO − 5P schemes at t = 0.2.
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Figure 6.32: Numerical results obtained by the PPM − 1 and PPM − 2 schemes at t =
0.2; the number of contours is 30.
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Figure 6.33: Adapted grids for the numerical simulations of the PPM−1 and PPM−2
schemes at t = 0.2.
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left boundary. The left and the right boundaries are inflow (entrance) and outflow (exit)
boundaries, respectively. The remaining boundaries at the top and bottom are wall.

Initially, the wind tunnel is filled everywhere with a inviscid gas (where γ = 1.4) with
density ρ = 1.4, pressure p = 1.0, horizontal velocity u = 3 and vertical velocity v = 0.
These conditions mean that the gas continuously enters from the inflow (left) boundary.

In numerical simulations, the parameters are: ϵ = 10−3 (the wavelet threshold), Jmax =
6, Jmin = 3, dt = 2 × 10−5 and θ = 2 (for the GMM).

For the M1, M2, CWENO − 3P and CWENO − 5P schemes, contour plots with
30 contours are illustrated in Fig. 6.34 at t = 3 sec. The corresponding MRA-based
adapted grids are presented in Fig 6.35.

Development of adaptive solutions in time and the corresponding adapted grids are
presented in Fig. 6.36 (by the CWENO − 3P scheme).

Results from PPMs are presented in Fig. 6.37; it is obvious that the solutions are
dissipative (due to the behavior of TVD limiters for multidimensional problems) and
solution accuracy is in accordance to number of resolution levels.
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Figure 6.34: Numerical results obtained by the M1, M2, CWENO−3P and CWENO−
5P schemes at t = 3; the number of contours is 30.
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Figure 6.35: Adapted grids for the numerical simulations of the M1, M2, CWENO−3P
and CWENO − 5P schemes at t = 3.
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Figure 6.36: Adapted solutions (with 30 contours) and their grids at times 0.04, 0.17,
0.35 and 0.60 obtained with the CWENO − 3P scheme.
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Figure 6.37: Adapted solutions obtained with the PPM schemes with different resolution
levels at t = 1.8 with 30 contours.
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Chapter 7

Discontinous solutions of second-order
wave equations and the regularization
concept

Introduction In this chapter, numerical simulation of second-order hyperboilc PDEs
(mechanical waves) is studied for cases having discontinuous solutions or propagating
fronts. The concept of regularization is used for removing spurious oscillations from
numerical solutions as a post-processing stage. There are different regularization ap-
proaches with different modified/improved versions; they are designed for different prob-
lems, hence proper utilization of them for numerical simulations is essential. Regarding
numerical method for numerical simulations, here, the compact finite difference method
and optimized ones are used. These methods were designed to capture high-frequency
waves (those are near earthquake sources), where common FD and FE methods can not
handle properly such waves.

This chapter is organized as follows. Section 7.1 describes the main concept of reg-
ularization. Regularization-based numerical solutions of 1-D stress wave propagation
problems containing discontinuities are studied in Section 7.2. In Section 7.3, the ex-
plicit/implicit higher order finite difference methods, developed for high-frequency waves,
are explained with corresponding filtering algorithms. In this section, the Tikhonov-
based smoothing will be integrated with such higher-order methods. The performance
of this collaboration will be studied by both smooth and discontinuous solutions. In
Section 7.4, by using the singular value decomposition (SVD) and the generalized one
(GSVD), effects of different constraints for the Tikhonov method are studied. The imple-
mentation of the Tikhonov method with different constraints are presented in Section
7.5. In Section 7.6, error estimations and convergence rates are investigated. These
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concepts are then studied by a benchmark having a discontinuity; there, both of the
numerical dispersion and Runge phenomenon are investigated. Section 7.7 devotes to
the conservative filtering feature in the Tikhonov method. In Section 7.8, it will be
shown how to have a local smoothing with Tikhonov methods by considering extra
constraints. Relationship between Tikhonov-based smoothing methods and classical fil-
tering concepts in signal processing schemes will be explained in Section 7.9. Section
7.10 discusses general algorithms for the numerical simulation of second-order hyperbolic
systems. Some examples in finite and infinite-periodic domains with fixed and absorbing
boundary conditions are tested in Section 7.11; here, effects of the numerical dispersion
and artificial dissipation are studied.

7.1 Regularization approaches
Thikhonov regularization method with different constraints

The aim of regularization is to replace an ill-posed problem with a nearly well posed
one. Let assume uniformly sampled (noisy) data {{yi}; i ∈ {1, 2, · · · , n}}; to have
a stable estimation of smoothed (denoised) data {{fj}; j ∈ {1, · · · , n}} from {yi}, a
functionalQ resulted from a linear combination of the residual norm ρ(y−f) = ∥y−f∥2 =√∑n

i=1 (yi − fi)2 and prior information Ω(f) is considered, as [145, 146]:

Q(f) = ρ(y − f)2 + λ× Ω(f)2, (7.1)

where λ (0 ≤ λ < ∞) is a penalization factor. The solution {fj} minimize this func-
tional. Parameter λ controls trade-off between error in estimations and smoothness. The
cases λ → 0 and λ → ∞ lead to the linear fit and interpolation problems, respectively.
Taking advantage of the remapping relation λ = (1−p)/p, the range of λ can be changed
to [0, 1]; p = 1 results in an interpolation problem, and lower values yield more smoother
estimations. It should be mentioned that the commonly used Tikhonov formulation can
slightly be modified, for example as: Q(f) = ρ(y− f)2 +(

∫
f(x)dx)2 +λ×(∥f∥2 +∥f ′∥2 )

(where f ′ := df/dx) [196].
The stationary point of Q(f) is the minimizing solution: fmin = argmin

f
(Q(f)). Some

constraints Ω2(f) with corresponding features are briefly reviewed in Table 7.1.1. There,
constraints with and without models (prior extra information) are presented.

The model-based Tikhonov regularization was introduced by Barakat et al. [197].
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It introduces extra information fmodel (containing generally localized information) to
improve regularization. The modified constraint (measured usually by a (semi) norm)
is: Ω2

model = ∥D(m)(f − fmodel)∥2
2 (where D(m) denotes an operator for mth derivative).

If the model fmodel is properly chosen, this modification will lead to a good estimation.
For example, if fmodel has some discontinuities, this local information of signal can be
used in regularization procedures. Even though, the Tikhonov method leads to unique
and stable solutions, prior general information like bounded smoothness is not often
enough to obtain a suitable solution due to a global character. It will be shown that
model-based regularized solutions are also sensitive to the model, itself. This sensitivity
is due to existence of high-frequency components in systems. This will be confirmed by
the GSVD in Sec. 7.4.

The Tikhonov regularization method leads to a closed form solution. However, the
main disadvantage of the Tikhonov method is that it cannot properly handle disconti-
nuities in a considered system.

All of the above mentioned constraints are defined in the L2 space; there exists
some other effective constraints which measure prior information in L1 space (e.g., with
(semi) norm

∫
(|f (m)(x)|dx, m ≥ 0; where f (m) := d(m)f/dx(m)). They are developed to

handle special problems, like the edge preserving restoration (preserving discontinuity).
In this case, the functional Q can generally be defined as: Q(f) = ρ(y − f)2 + λ× Ω(f).
Some of such constraint definitions are: 1) the Total Variations (TV) [157]; 2) the
incompressibility; 3) local rigidity [198]. For these regularization methods, closed-form
solutions can not be provided; they are mainly solved by iterative algorithms.

As mentioned, the main shortcoming of the Tikhonov method is proper handling of
discontinuities. The TV-based regularization is originally developed to preserve image
edges or data discontinuities. Corresponding constraint can be defined as: ΩTV (f) =∫+∞

−∞

∣∣∣f (m)(x)
∣∣∣ dx, m ∈ {0, 1}. Regarding numerical simulations, however, the authors

experience shows that this approach does not have enough smoothness; this makes it
unsuitable for PDE solutions (this will be studied).

Some remarks: considering above mentioned methods, it should be noted that:

1. In the above-mentioned regularization methods, it is assumed that the noise has
the white Gaussian feature. This means, the discrete values yi := y(xi) can be
written as: yi = fi + ϵi; where i ∈ {1, 2, · · · , n}; x1 ≤ x2 ≤ · · · ≤ xn; {ϵi} are
random, uncorrelated errors with zero mean and variance σ2; f(x) is the denoised
(smooth) function which should be estimated.
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Constraint Feature
Ω2

0(x) =
∫+∞

−∞ (f ′(x))2dx, Using a smoothness constraint: having first
order continuity [199],

Ω2
1(x) =

∫+∞
−∞ (f ′′(x))2dx, Using a smoothness constraint: having second

order continuity and a physical meaning. It
measures flexural energy in a beam [145, 146],

Ω2
2(x) =

∫+∞
−∞ (f ′′(x) +

αf ′(x))2dx,
Using a smoothness constraint: regularized
solutions have second order continuity. This
definition was recently proposed [200]. It leads
to smoothing splines in tension,

Ω2
3(x) =

∫+∞
−∞ (f ′′(x)2 +

α2f ′(x)2)dx ,
Using a smoothness constraint: regularized
solutions have second order continuity. This
leads to smoothing splines in tension. This
definition has a physical meaning: it measures
energies of flexural and axial deformations in
a beam [201–204],

Ω2
model(x) = ∥D(m)(f−fmodel)∥2

2;
m ∈ {0, 1, 2},

The model-based regularization by using extra
prior information fmodel; it can include several
locally imposed features [197],

Ω2
4(x) =

∫+∞
−∞ (|f ′(x) + 1| −

1)2dx,
Area (or volume) preserving constraint [205].

Table 7.1.1: Different constraint definitions in the L2 space for the Tikhonov method.

2. For other types of noise, different modified definitions should be used. For the
Poisson noise see , e.g. [206], and for general cases, see [207, 208].

3. Regarding several regularization constraints, it has been noted that their effects
can be viewed as a high-pass filter [209, 210]. This will be shown in Sec. 7.9.

Curing discontinuity effects: the numerical dispersion around discontinuities

To handle properly discontinuities in regularization problems, several approaches are
proposed; some of which are:

1. The common Tikhonov method (using common smoothness constraints, e.g.: Ω2
1)

with adaptive weight coefficients [211]. In this approach, The aim is to estimate a
function with different smoothness in different spatial locations. However, discon-
tinuity types and corresponding locations should be known, as prior information.
This makes this approach, in general, unfeasible.
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2. Using a smoothness constraint having a tension term (i.e., Ω2
2 and Ω2

3) in the
Tikhonov approach,

3. The TV-based regularization,

4. The model-based Tikhonov regularization.

The first, second and fourth approaches have closed-form solutions with fast algo-
rithms; this makes such methods appealing for numerical simulation of boundary value
problems. The third approach can effectively handle discontinuities. However, it suffers
from lack of smoothness and utilizing of iterative solvers.

2D regularization methods

Extension of 1D regularization definitions to higher-dimension problems are straightfor-
ward: the same concepts and measurements can be used, as well. For example, for the
Tikhonov method with a smoothness constraint (if the smoothness is measured by the
gradient constraint, like Ω2

0 in the 1D case), the corresponding functional can be written
as: Q =

∫
Ω(z(x, y) − f)2 dΩ+λ

∫
Ω|∇f |22 dΩ (where |∇f |22 := {Dx(f)2 +Dy(f)2}, where

the operator Di is the first derivative definition in the ith direction and i ∈ {x, y}).
In this work, to have a cost-effective algorithm, higher-order problems are solved

based on 1D algorithms. For this purpose, firstly, in each direction, 1D algoritms are
independently implemented, and then average of results are considered as a regularized
solution. This means, for spatial point (xi, yj), the approximated solution is: f(xi, yj) =
0.5(f1(xi)+f2(yj)), where f1 and f2 are the regularized solutions obtained independently
in the x and y directions, respectively.

7.2 Numerical simulation of 1-D wave problems via
regularization methods

In this section, 1D wave propagation problems including (semi) discontinuity will be
studied to reveal effectiveness of different regularization approaches. The problem is
longitudinal wave propagation in a bar with a constant cross section area. The governing
equation is: ∂2u(x, t)/∂t2 = c2∂2u(x, t)/∂x2 : 0 ≤ x ≤ 1; the initial (ICs) and boundary
(BCs) conditions are {u(x, t = 0) = u0 & u̇(x, t = 0) = v0} and {u(0, t) = u(1, t) = 0},
respectively (where u̇ := du/dt). Here u denotes the axial deformation and c is the wave
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propagation speed. The velocity c is assumed to be c =
√
E/ρ = 1; where E and ρ

are the module of elasticity and density of the bar, respectively.
For numerical simulations, in spatial domain, the higher-order finite difference method

is used: the fourth-order explicit central difference approximation for the second deriva-
tive. The temporal integration is done with the Runge-Kutta 4th order method, see Ap-
pendix D. For spatio-temporal discretizations, it is assumed: dx = 1/29 and dt = 10−8.
After each five time steps, numerical solutions are regularized (denoised) with different
regularization approaches (as a post-processor).

Different imposed initial displacements will be considered; both smooth but high gra-
dient deformations and those having discontinuities. The considered ICs for u0 are:

1. u(1)(x, t = 0) = u
(1)
0 =

√
max

(
1 −

(
x−xc

0.5×Supp

)2
, 0
)

, where xc and supp are center
point and support length of the function, respectively. Here, it is assumed: xc = 0.5
and supp = 0.2,

2. A dilated unit box with definition: u(2)(x, t = 0) = u
(2)
0 = UnitBox (4(x− 0.5)),

where UnitBox(x) = H(x+ 0.5) −H(x− 0.5); the function H(x) is the Heaviside
function,

3. A compact sawtooth wave function: u(3)(x, t = 0) = u
(3)
0 = UnitBox

(
(x−xc)
supp

)
(x−xc+0.5)

supp
,

where xc = 0.5 and supp = 0.2.

In all cases, it is assumed v0 = 0.
In the following, numerical results of the wave propagation problem will be studied;

they are resulted from different regularization/constraint definitions.
Numerical results from the Tikhonov method with different constraints

and without a model
For regularization stage, penalizing (smoothing) parameter is assumed to be: p = 0.875

and α = 1. Numerical results, denoised by the Tikhonov method with constraints Ω2
1, Ω2

2

and Ω2
3, are shown in Fig. 7.1. The constraint Ω2

1 is a commonly used smoothness-based
regularization, and the Ω2

2 and Ω2
3 are those improved by considering a tension term

(see Table 7.1.1). Adding this term helps reduce undesirable fluctuations from fitted
curves. The constraint Ω2

3 are widely used, and the Ω2
2 is recently recommended (see

Table 7.1.1). Based on the results, it is clear that, even though both of constraints Ω2
2

and Ω2
3 use the concept of tensioned curves, in all cases the constraint Ω2

2 can effectively
control the numerical dispersion.

The model-based Tikhonov regularization
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Figure 7.1: Numerical solutions with different Tikhonov methods with parameters p =
0.875 and α = 1 at t = 0.2. The numerical dispersion appears in solutions
obtained by the constraints Ω2

1 and Ω2
3.
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Figure 7.2: Numerical solutions of the wave propagation problem, denoised with the
model-based Tikhonov scheme with constraints Ω2

1, Ω2
2 and Ω2

3 at t = 0.2;
for each figure, for pair {fmodel, fmin}, corresponding the constraint pairs
are: a) {Ω2

1,Ω2
1}; b) {Ω2

2,Ω2
2}, c) {Ω2

3,Ω2
3}, d) {ΩTV ,Ω2

1}, e) {ΩTV ,Ω2
2},

f) {ΩTV ,Ω2
3}.

In the following, the effects of the model-based Tikhonov regularization approach will
be studied by some numerical simulations. The considered constraints for obtaining fmin
are: Ω2

1, Ω2
2 and Ω2

3. To estimate fmodel, a regularization problem is firstly solved at each
denoising stage; for this reason, the Tikhonov method with the constraints Ω2

1, Ω2
2,

and Ω2
3 are used. The fmodel is also estimated with the TV regularization approach.

Regarding the wave propagation problem, the results are presented in Fig. 7.2 with IC
u(1)(x, t = 0) at t = 0.2 (simulation of smooth but high-gradient solutions). There, in
figures (a) to (f), for fmodel and fmin, the following constraints are considered: {figure
(a): for fmodel: Ω2

1 & for fmin: Ω2
1}; {figure (b): for fmodel: Ω2

2 & for fmin: Ω2
2};

{figure (c): for fmodel: Ω2
3 & for fmin: Ω2

3}; {figure (d): for fmodel: ΩTV & for fmin:
Ω2

1}; {figure (e): for fmodel: ΩTV & for fmin: Ω2
2}; {figure (f): for fmodel: ΩTV & for

fmin: Ω2
3}.

It is clear that in all cases spurious oscillations exist, and the model-based regulariza-
tion can not effectively control the numerical dispersion. This is due to amplification
of high-frequency components in the system (this will be shown). This shortcoming is
more highlighted in discontinuous cases. To study this, the wave propagation problem
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Figure 7.3: Numerical solutions of the wave propagation problem having discontin-
uous fronts, denoised with the model-based Tikhonov scheme with con-
straints Ω2

1, Ω2
2 and Ω2

3 at t = 0.2; for each figure, for the pair {fmodel, fmin},
corresponding constraints are: a) {Ω2

1,Ω2
1}; b) {Ω2

2,Ω2
2}, c) {Ω2

3,Ω2
3},

d) {ΩTV ,Ω2
1}, e) {ΩTV ,Ω2

2}, f) {ΩTV ,Ω2
3}.

with initial condition u(2)(x, t = 0) is considered. The corresponding results are rep-
resented in Fig. 7.3 with the same assumptions of Fig. 7.2. It is obvious that the
effects of spurious oscillations are considerable in this case. This is due to existence of
more high frequency components in this system in comparison to the previous smooth
high-gradient solutions.

To study the estimation of errors in different regularization approaches, the L-curves
of solutions are also presented. The L-curve is a graphical log-log representation of
a constraint Ω2 (or ΩTV ) against the estimation error ρ2

2. Regarding the 1D wave
propagation problem, for the smooth-high gradient IC (u(1)(x, t = 0)), corresponding L-
curves are presented in Fig 7.4. In the simulations, different regularization parameters
are assumed, as: p ∈ {0.65, 0.7, 0.73, 0.75, 0.8, 0.85, 0.9, 0.92, 0.94, 0.96, 0.98, 0.99}. The
results are for time t = 0.2.

In figure (a), the L-curve of numerical solutions obtained by the Tikhonov-based
filtering are compared with each other; the considered constraints are: Ω2

1, Ω2
2, and Ω2

3

. It is clear that the common Tikhonov method (using Ω2
1) leads to the smoothest

possible result. By using the two other constraints, at the expense of error in estimations,

231



Chapter 7 Discontinous solutions of second-order wave equations and the regularization concept

0.10 0.200.15

10000

20000

15000

Ρ2
2

W
i2

HaL

0.65£ p£0.99
ë W1

2

å W2
2

• W32

0.10 1.000.500.20 0.300.15 0.70

10000

5000

2000

20000

3000

1500

15000

7000

Ρ2
2

W
TV
È
W
i2

HbL

0.65£ p£0.99
ë W1

2

• WTV2

0.08 0.09 0.1 0.11 0.12 0.13

10000

20000

15000

Ρ2
2

W
i2

HcL

0.65£ p£0.99
ë W1

2

• Wmodel2

Figure 7.4: The L-curves for numerical solutions of the 1D wave propagation problem
at t = 0.2, denoised with different regularization approaches.

smoother results can be obtained. Also Ω2
2 constraint leads to slightly smoother results

than those of Ω2
3. In figure (b) TV-based results are compared with those obtained

by the common Tikhonov scheme; it is obvious, the TV-based results lead to worse
results (this is due to lack of enough-smoothness). Finally, in figure (c), the common
Tikhonov method with and without the model are compared with each other; for the
model-based filtering, the constraint pair {fmodel, fmin} = {Ω2

1,Ω2
1} is used. In the model-

based Tikhonov regularization, smooth solutions are only obtained for small p values;
this is due to presence of small high-frequency oscillations in over-smoothed regularized
solutions (as seen before).

7.3 Higher order finite difference methods and different
filtering approaches

Considering linear wave propagation problems, two general higher-order differencing ap-
proaches will be reviewed in this section. The approaches are: 1) those using inherent
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filtering; 2) ones utilizing filters by a post-processing stage. In the former case, spa-
tial filtering can inherently be considered in corresponding formulations. Performance
of these two approaches would then be studied for both smooth-high gradient and dis-
continuous solutions. Below, above-mentioned approaches and corresponding filters are
reviewed.

Approach 1: Inherent filtering

Here, filtering effects are inserted in definition of spatial derivatives. This inserting
can be done to have either a maximum order of accuracy or some optimized quantities
[131, 132].

1. Maximum order schemes In this approach, order of accuracy is maximized by
considering error terms. For a uniform grid xj := j ∆x, at point xj, the first
spatial derivative can be approximated as:

(δxu)j = 1
∆x {(d3 − a3)uj−3 + (d2 − a2)uj−2 + (d1 − a1)uj−1 + d0uj+

(d1 + a1)uj+1 + (d2 + a2)uj+2 + (d3 + a3)uj+3} ,
(7.2)

where: uj := u(xj); (δxu)j := d (u (xj)) /dx; ai and di are coefficients of anti-
symmetric ((δaxu)j) and symmetric ((δsxu)j) parts, respectively. The symmetric
part, (δsxu)j acts as a spatial filter. The maximum order of accuracy for (δxu)j
without and with filtering effects ((δsxu)j) are six and five, respectively. For the six-
order accuracy, the coefficients are: a1 = 3/4, a2 = −3/20, a3 = 1/60, d1 = d2 =
d3 = 0; and for the five-order one, the set {di} becomes: d1 = −3d0/4, d2 = 3d0/10,
and d3 = −d0/20. In our study, it is assumed: d0 = 0.1 [131].

Regarding a system of pure advection, ut + (Au)x = 0 (where, ut := du/dt
and (Au)x := d (Au) /dx), the spatial first derivative of the flux (Au) can be
approximated as:

(Au)x ≈ δaxAu + δsx |A| u, (7.3)

where: |A| = X |Λ| X−1. Matrices X and Λ denote right eigenvectors and eigen-
values of A, respectively.
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Temporal integration of the advection equation can be done by the six stage explicit
method mentioned in [131], as:

u
(i)
n+αi

= un + ∆tαif (i−1)
n+αi−1 , for i = {1, 2, · · · , 6} , (7.4)

where: i denotes integration stage; α0 = 0, and α6 = 1; f (0)
n = fn; u(6)

n+α6 = un+1;
un:=u (tn); f (k):=du(k)/dt. To have a six-order temporal accuracy, in case of linear
homogeneous ordinary differential equations (ODEs), the set {αi} should be: α1 =
1/6, α2 = 1/5, α3 = 1/4, α4 = 1/3, α5 = 1/2.

2. The optimized method Definition of (δxu)j (from Eq. (7.2)) with filtering effects
and six-stage temporal integration (Eq. (7.4)) can be optimized for some desire
error behavior or requirements. To resolve more waves of larger wave numbers (or
short waves), corresponding optimized solution can be obtained in spatio-temporal
domains by coefficients: a1 = 0.7599613, a2 = −0.1581220, a3 = 0.01876090,
d1 = −0.07638461, d2 = 0.03228961, d3 = −0.005904994, α1 = 0.168850, α2 =
0.197348, α3 = 0.250038, α4 = 0.333306, α5 = 0.5 [131, 132].

Approach 2: Post-processing based filtering

In this approach, at first, derivatives or solutions are obtained and then by a post-
processing stage, non-physical oscillations are removed from numerical solutions. In the
following, generalized compact finite difference schemes with different features and a
general filtering method are reviewed.

Compact finite difference schemes In this approach, a linear combination of data
values {ui} are locally used for estimation of derivatives values in each grid point. This
combination for the first and second derivatives can be written as [138]:

βmu
(m)
i−2 + αmu

(m)
i−1 + u

(m)
i + αmu

(m)
i+1 + βmu

(m)
i+2 = cmZ

(m)
i,3 + bmZ

(m)
i,2 + amZ

(m)
i,1 , for m ∈ {1, 2} ,

(7.5)

where: Z(1)
i,j :=ui+j−ui−j

2(j∆x) ; Z(2)
i,j :=ui+j−2ui+ui−j

(j∆x)2 ; and u
(m)
i :=dmui/dxm. Eq. (7.5) is also

known as the generalized Padé scheme. Relationships between coefficients {am, bm, cm}
and {αm, βm} can be obtained by matching the Taylor series coefficients. The truncation
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Name Method/order β2 α2 a2 b2 c2
4-C Central/4th 0 0 4

3 (1 − α2) 1
3 (−1 + 10α2) 0

4-P Padé /4th 0 1/10 4
3 (1 − α2) 1

3 (−1 + 10α2) 0
6-T Tridiagonal scheme/6th 0 2/11 4

3 (1 − α2) 1
3 (−1 + 10α2) 0

8-C Collatz/8th 38α2−9
214

344
1179

696−1191α2
428

2454α2−294
535 0

10 10th 43
1798

334
899

1065
1798

1038
899

79
1798

4-S Spectral-like/4th 0.05569169 0.50209266 0.21564935 1.7233220 0.17659730

Table 7.3.1: Coefficients of generalized Padé approximations for the second derivative
with different accuracy and periodic boundary conditions [138].

Name Method /order β̂ α̂ â b̂ ĉ d̂
F-6-E Explicit/6th 3/10 0 1/2 3/4 3/10 1/20

F-4-T-1 Tridiagonal /4th 0 0.4
(

5+6α̂−6β̂+16d̂
)

8

(
1+2α̂+2β̂−2d̂

)
2

(
1−2α̂−14β̂+16d̂

)
−8 0

F-4-T-2 Tridiagonal /4th 0 0.475
(

5+6α̂−6β̂+16d̂
)

8

(
1+2α̂+2β̂−2d̂

)
2

(
1−2α̂−14β̂+16d̂

)
−8 0

F-4-P-1 Pentadiagonal/ 4th 0.2265509 0.4627507 0.8470630 1.166845 0.3422386 0.02245659
F-4-P-2 Pentadiagonal/ 4th 0.1702929 0.6522474 0.9891856 1.321180 0.3333548 0.001359850

Table 7.3.2: Filter coefficient values used for filtering the generalized Padé approxima-
tions by a post-processing stage for the periodic boundary condition [138].

error can be obtained by the first un-matched coefficient. The coefficients {am, bm, cm}
and {αm, βm} for case m = 2 (i.e., the second derivative) with periodic boundary condi-
tions are presented in Table 7.3.1 for different spatial accuracy [138]. For estimation of
first and second derivatives on a domain with general boundary conditions, please see
[138].

Noise can be filtered by a post-processing stage in the spatial domain; following the
idea of local differencing, filtered data can be estimated as [138]:

β̂ûi−2 + α̂ûi−1 + ûi + α̂ûi+1 + β̂ûi+2 = d̂Ẑi,3 + ĉẐi,2 + b̂Ẑi,1 + âẐi,0, (7.6)

where: Ẑi,j:=ui+j+ui−j

2 ; and {ûi} denotes the filtered data at grid points {xi}. The
coefficients {â, b̂, ĉ, d̂} and {α̂, β̂} are presented in Table 7.3.2 for the periodic boundary
condition and for different accuracy.

Performance of two approaches for smooth and discontinuous solutions

Below, performance of two approaches (1) and (2) will be studied for both smooth and
discontinuous solutions by a 1D scalar stress wave propagation problem. There, effects of
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different filtering methods, inherent and post-processing ones, will be considered. In case
of the post-processing approach, effects of Tikhonov-based smoothing (regularization)
will also be studied.
The example is a wave propagation problem in an elastic bar with unit length, unit
wave-propagation velocity (c = 1) and periodic boundaries. The problem is only sub-
jected to an imposed initial displacement u0(x) (v0(x) = 0). Two different smooth and
discontinuous initial displacements are considered respectively, as:
u0 (x) :=Exp

(
−500(x− 0.5)2

)
, and u0 (x) :=Unitbox (4 (x− 0.5)) for 0 ≤ x ≤ 1.

In numerical simulations, it is assumed:

1. Both the l2 and l1 norms are used to measure errors; error definitions for l2 and l1
norms are ∥e∥2:= 1

Ng

{∑Ng

i=1 (ui − uexi )2
}1/2

and ∥e∥1 := 1
Ng

∑Ng

i=1 |ui − uexi |, respec-
tively; where ui:=u (xi); uex denotes the exact solution; and Ng shows number
of grid points,

2. For the time integration, the Runge-kutta 4th order is used for the explicit 4th order
(4-C) and the Padé differencing schemes (4-P) (see Table 7.3.1); the 6th order, six
stage temporal integration (Eq. (7.4)) is used for remaining spatial differencing
operators [132],

3. In all simulations, a fixed Courant number, CCFL:= c ∆t
∆x (known as the CFL con-

dition) is used, as: CCFL = 1/3,

4. Smoothing is done at each time step (for both inherent and post-processing ap-
proaches).

Convergence rates are studied in Fig. 7.5 for both smooth and discontinuous solutions
at t = 0.2; slope of lines are measured as 1 : (−v) (i.e.: 1 and (−v) units in the horizontal
and vertical directions, respectively). In this figure, the top and bottom rows belong
to the smooth and discontinuous solutions, respectively. Fig. 7.5(a) corresponds to
the generalized Padé schemes without filtering stage. The filtered results (by a post-
processor) are represented in Fig. 7.5(b) for two different filters: the 6th order explicit
(“f-6-E”) and 4th order implicit pentadiagonal (“f-4-p-1”) methods (see Table 7.3.2). In
Fig. 7.5(c), the results belong to the inherent filtering approach; here, the 6th order
method (Max order-6th) does not use any filters. Fig. 7.5(d) is for the generalized
Padé schemes using the Tikhonov-based smoothing with constraints Ω2

1 and Ω2
2 (with

parameters: p = 0.99 and α = 0.99). For the discontinuous solution, all of the results are
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re-presented in Figs. 7.5(e)- 7.5(g). The post-processing (Eq. (7.6)), inherent (Eq. (7.2))
and Tikhonov-based filtering are used for denoising compact difference schemes and their
results are presented respectively in Figs. 7.5(e), 7.5(f) and 7.5(g). The results offer
that: 1) in smooth solutions (Fig. 7.5(a)), predicted convergence rates can be obtained
(except for the 10th order one where it seems that a more accurate time integration
method should be used); 2) filtering changes convergence rates and this is considerable
for discontinuous solutions; in this case, the rates are generally less than one; 3) regarding
discontinuous solutions, for the inherent filtering approach, performance of optimized
methods is better than those of the maximum order schemes; this is because, optimized
methods can detect more waves of large wave numbers (this will be clarified); 3) in
smooth solutions, performance of the Tikhonov method with the constraint Ω2

1 is better
than those with the constraint Ω2

2; however in discontinuous solutions, the Ω2
2 constraint

can control the numerical dispersion more effectively and can prevent the numerical
dispersion (will be studied).
Convergence rates in the l1 norm is also presented for the discontinuous solutions in
Fig. 7.6. It is clear that convergence rates are less than one for the all cases.
To clarify filtering effectiveness (for controlling the numerical dispersion and dissipation
phenomena), solutions u (x, t = 0.2) are presented in Fig. 7.7 for different FD methods
and filtering approaches. It is clear that the Tikhonov method with constraint Ω2

2 can
properly be integrated with other differencing schemes to control the numerical disper-
sion.

7.4 Studying the Thikhonov regularization with different
constraints by the SVD and GSVD decompositions

In this section, at first, the definitions of singular value decomposition (SVD) and gener-
alized SVD (GSVD) methods [146] are briefly reviewed. Thereafter, with these methods,
the effects of the constraints Ω2

1, Ω2
2, and Ω2

3 with and without a model-solution (fmodel)
will be studied.

The SVD decomposition The SVD decomposition of a rectangular matrix A ∈ Rm×n

is: A = UΣVT =
n∑
i=1

uiσivTi . Matrices U = {u1, ...,um} ∈ Rm×m and V = {v1, ...,vn} ∈
Rn×n are unitary matrices containing respectively the left singular(ui ∈ Rm) and right
singular (vi ∈ Rn) vectors. The matrix Σm×n = diag(σ1, ..., σn) is diagonal and contains
singular values σi, where σi ≥ σi+1 and σi ≥ 0.
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Figure 7.5: Convergence rates in the l2 norm for different FD methods for smooth (top
row) and discontinuous (bottom row) solutions; a) different compact FDs
without filtering; b, e) different compact FDs with filtering; c,f) the inherent
filtering approach; d,g) Tikhonov based smoothing by a post-processor stage.

Figure 7.6: Convergence rates in the l1 norm for different FD methods for discontinuous
solutions.
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Figure 7.7: Discontinuous solutions u(x, t = 0.2) for different FD schemes and different
filtering approaches.
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The GSVD decomposition Let us assume: A ∈ Rm×n and L ∈ Rp×n, where: m ≥ n ≥
p and N (A)∩N (L) = {0} (symbol N shows the null space). Then the GSVD of (A,L)
is [146]:

A = U

Σ 0
0 In−p

X−1, L = V (M,0) X−1, (7.7)

where: U ∈ Rm×n; V ∈ Rp×p; X ∈ Rn×n. Matrices U and V have the unitary feature;
and X is a non-singular matrix. Matrices Σ and M are non-negative diagonal matrices
as: Σ = diag{σ1, σ2, · · · , σp} and M = diag{µ1, µ2, · · · , µp}. The singular values have
following properties: 1) 1 ≥ σp ≥ σp−1 ≥ · · · ≥ σ1 > 0; 2) 1 ≥ µ1 ≥ µ2 ≥ · · · ≥ µp > 0;
3) σ2

i + µ2
i = 1. The generalized singular values γi of (A,L) is then equal to: γi = σi/µi.

The Tikhonov method without a model (extra information)

Regarding the linear system Ax = b, functional of the Tikhonov regularization with
constraint operator L is : Q = ∥Ax − b∥2

2 + λ∥Lx∥2
2. It is easy to show that, the

minimizing solution of Q is: xmin = (AT .A + λLT .L)−1(AT .b). By substituting the
SVD/GSVD decomposed forms of the operators, the xmin can be rewritten as [146]:

xmin =
n∑
i=1

uTi .b
σi

vi, for λ = 0 (without any regularization),

xmin =
n∑
i=1

Fi
uTi .b
σi

vi : Fi = σ2
i

σ2
i + λ

, for L = I,

xmin =
p∑
i=1

Fi
uTi .b
σi

xi +
n∑

i=p+1
(vTi .b)xi : Fi = γ2

i

γ2
i + λ

for L ̸= I.

(7.8)

In the above equations, Fi acts as a filter; it damps effects of singular values with small
values. For solutions obtained without regularization (i.e.: λ = 0), the solution xmin
would be sensitive for σi values of small (or nearly zero) values. They amplify corre-
sponding vi vector effects: the vectors with high fluctuations. Hence a proper inverse
solution xmin is not obtainable.

In the following, performance of Fi values for the Tikhonov regularization method with
different constraints will be studied. The constraints are: 1) Ω2

1(x) =
∫+∞

−∞ (f ′′(x))2dx;
2) Ω2

2(x) =
∫+∞

−∞ (f ′′(x) + αf ′(x))2dx; 3) Ω2
3(x) =

∫+∞
−∞ (f ′′(x)2 + α2f ′(x)2)dx.

For numerical study, the Heaviside function, H(x) is considered for spatial domain:
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Figure 7.8: Filter coefficients for different constraints in the Tikhonov method, where p =
0.8 & α = 1.
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Figure 7.9: Regularized solutions with different constraints, where p = 0.8 & α = 1.

−1.5 ≤ x ≤ 1.5. The function is uniformly sampled at 76 points. In Fig. 7.8, Fi values
are presented for these three constraints with parameter p = 0.8 and α = 1. The figure
offers that filters due to the constraint Ω2

1 and Ω2
3 have the same trend, but the latter

leads to smaller filter coefficients. The constraint Ω2
2 has a different trend and has larger

filter values for small i values.
Regularized solutions according to Eq. (7.8) are presented in Fig. 7.9; it is clear that

the Tikhonov method with Ω2 constraint can effectively control the numerical dispersion.
The final stage for this problem is checking the discrete Picard condition; this condition

states that to be sure that a regularization scheme works properly, corresponding |ui.b|
values should on average decay toward zero faster than corresponding generalized sin-
gular values γi. This comparison is done in Fig. 7.10 for the three constraints. It is
clear that results from constraints Ω1 and Ω2 satisfy completely the condition and the
constraint Ω3, on average meets the discrete Picard condition.

The Tikhonov method with a model (extra information)

If it is assumed that we have a model for a solution, like (bmodel)p×1, and L ̸= I, then the
corresponding functional is: Q = ∥Ax − b∥2

2 + λ∥L(x − bmodel)∥2
2 . It is straightforward
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Figure 7.10: Control of the discrete Picard condition for regularized solutions with dif-
ferent constraints, where p = 0.8 & α = 1.

to show that the solution is: xmin = (AT .A + λLT .L)−1
{
AT .b + λLT .L.bmodel

}
. If we

set L.bmodel = bLmodel (this setting helps more clarifying behavior of regularized solutions)
and using the GSVD, it is easy to show that the solution xmin can be written as:

xmin =


p∑
i=1

Fi
uTi .b
σi

xi +
n∑

i=p+1
(uTi .b)xi

+
{ p∑
i=1

αi
vTi .bLmodel

µi
xi
}
, (7.9)

where: Fi = γ2
i

γ2
i +λ and αi = λ

γ2
i +λ .

Depending on λ values, two extreme conditions can be happened: 1) if λ ≫ 0,
then αi → 1; 2) if λ → 0 then {Fi → 1 & αi → 0}. For the case (1), µi coefficients
of small values cause oscillations in regularized solutions and in the case (2), filter co-
efficients Fi do not filter out oscillations. Hence, it is clear that why oscillation effects
always remain in the regulated solutions. This effect will be amplified in discontinuous
solutions (as numerically shown in numerical simulation of the 1D stress wave propaga-
tion problem, Sec. 7.2).

7.5 Implementation algorithms
In this section, implementation algorithms of Tikhonov-based regularization schemes
will be presented.

Regarding sampled data {yi} for i ∈ {1, 2, · · · , n}, the functional Q of the Tikhonov
method is:
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Q =
n∑
i=1

(yi − fi) 2 + λ× Ω(f)2
2. (7.10)

In a more general form, in case of continuous functions y := y(x), the functional Q can
be rewritten as:

Q =
∫ +∞

−∞
(y − f) 2 dx+ λ× Ω(f)2

2. (7.11)

The solution f is the stationary point (extreme) of functional Q. For different Ω(f)
definitions, corresponding implementation algorithms will be provided.

Using the finite difference approximation for discrete values {f(xi) : i = 1, 2, · · · , n},
the order-m derivative can be approximated as: f (m) ≈ D(m).f . Derivative Matrices D(1)

and D(2) can be approximated for uniform grids as:

D(1) = 1
∆x


−1 1
−1 1

. . . . . .
−1 1


n×n

, D(2) = 1
∆x2



1 −2 1
1 −2 1

. . . . . . . . .
1 −2 1
1 −2 1


n×n

, (7.12)

where ∆x = xi+1 −xi is the uniform sampling step in spatial domain. The D(1) and D(2)

matrices, both have first-order spatial accuracy.
For numerically discretization of an integral (e.g., the integral in Eq. (7.11)), it can

be approximated as:

xn∫
x1

|f(x)|2 dx ≈ fT .B.f , (7.13)

where B denotes the integration rule matrix; for the midpoint integration rule, we have:

xn∫
x1

|f(x)|2 dx ≈ 1
2(−x1 + x2)f 2

1 +
n−1∑
i=2

{1
2(−xi−1 + xi+1)f 2

i

}
+ 1

2(−xn−1 + xn)f 2
n, (7.14)
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or
xn∫
x1

|f(x)|2 dx ≈ 1
2f1(−x1 + x2)f1 +

n−1∑
i=2

{1
2fi(−xi−1 + xi+1)fi

}
+ 1

2fn(−xn−1 + xn)fn.

(7.15)

So, the matric B can be obtained as:

xn∫
x1

|f(x)|2 dx ≈ fT .
{1

2diag (−x1 + x2,−x1 + x3, · · · ,−xn−2 + xn,−xn−1 + xn)
}
.f

= fT .B.f ,
(7.16)

where: diag{a1, · · · , an} shows a n × n diagonal matrix with diagonal elements ai; the
vector f denotes f = {f1, · · · , fn}T .

Considering above-mentioned derivative and integral approximations, the minimizing
solution, fmin, for the Tikhonov regularization with different constraints will be presented
in the following.

Tikhonov regularization with constraint: Ω2
2 =

∫+∞
−∞ (f ′′(x) +αf ′(x))2dx. Firstly, the

functional Q(f) is rewritten as:

Q(f) =
∫

(y − f) 2 dx+ λ×
{∫ (

f ′′2 + α2f ′2 + 2αf ′f ′′
)

dx
}
. (7.17)

The discrtized form of the functional Q is:

Q(f) = (y − f)T .B. (y − f) + λ×{(
D(2)f

)T
.B.

(
D(2)f

)
+ α2

(
D(1)f

)T
.B.

(
D(1)f

)
+ 2α

(
D(1)f

)T
.B.

(
D(2)f

)}
.

(7.18)

To find minimizing solution, the functional Q is minimized with respect to f as:
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∂Q(f)
∂f

= −2B. (y − f) + λ×{
2
(
D(2)

)T
.B.

(
D(2).f

)
+ 2α2

(
D(1)

)T
.B.

(
D(1).f

)
+ 2α

(
D(2)

)T
.B.

(
D(1).f

)
+2α

(
D(1)

)T
.B.

(
D(2).f

)}
= 0.

(7.19)

Please note that ∂Q(f)
∂f =

(
∂Q(f)
∂f

)T
(since it is scalar) and B = BT (since B is diagonal

matrix). Hence, the minimizing solution fmin is:

fmin =
{

B + λ
(
D(2)

)T
.B.D(2) + λα2

(
D(1)

)T
.B.D(1)+

λα
(
D(2)

)T
.B.D(1) + λα

(
D(1)

)T
.B.D(2)

}−1
. (B.y) .

(7.20)

Tikhonov regularization with constraint: Ω2
3 =

∫+∞
−∞ (f ′′(x)2 + α2f ′(x)2) dx. In this

case, by following the previous procedure for finding fmin for Ω2
2, it is easy to show that

the solution is the same as Eq. (7.20), but this time without the first and the second
derivative interaction terms; i.e.:

fmin =
{

B + λ
(
D(2)

)T
.B.D(2) + λα2

(
D(1)

)T
.B.D(1)

}−1
. (B.y) . (7.21)

Some remarks

1. Minimizing solution fmin(x) for the commonly used Tikhonov regularization method
with constraint Ω2

1 =
∫+∞

−∞ f ′′(x)2dx can simply be obtainable by setting α = 0 in
Eq. (7.20) or (7.21) (without any tension effect).

2. For weighted residual norm, i.e.: ∥Wi(yi−fi)∥2
2, with weights Wi, variable smooth-

ing (λ = λ(x)) and variable tension (α = α(x)) parameters, it is easy to show that
Eq. (7.20) can be written as:

fmin =
{

W.B + λ.
(
D(2)

)T
.B.D(2) +

(
λ.α.αT

)
.
(
D(1)

)T
.B.D(1)+

(λ.α) .
(
D(2)

)T
.B.D(1) + (λ.α) .

(
D(1)

)T
.B.D(2)

}−1
. (W.B.y) ,

(7.22)
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where: W = diag {W1,W2, · · · ,Wn}; λ = diag {λ1, λ2, · · · , λn}; α =
diag {α1, α2, · · · , αn}. Corresponding algorithm for constraint Ω2

3 can easily be
obtained by canceling the first and the second derivative interaction effects in Eq.
(7.22). For the common Tikhonov method (with Ω2

1 constraint) by setting the
tension term to zero, corresponding algorithm is obtainable.

3. For the model-based Tikhonov regularization with the general constraint Ω2
2 =∫+∞

−∞ (f ′′(x) + αf ′(x))2dx, it is easy to show that the corresponding numerical al-
gorithm is:

fmin = {B + λΓ}−1 {B.y + λΓ.fmodel} , (7.23)

where:

Γ =
{(

D(2)
)T
.B.D(2) + α2

(
D(1)

)T
.B.D(1) + α

(
D(2)

)T
.B.D(1) + α

(
D(1)

)T
.B.D(2)

}
.

(7.24)

4. According to the aforementioned numerical implementation algorithms, since all
matrices are sparse and banded, the algorithms are fast and cost-effective.

5. It should be mentioned that regularized results can have grid dependency feature;
this means to have the same regularized results on finer or coarser grids, different
regularization parameters should be used (i.e., p and α). To prevent this grid
dependency, here, the sampled data are remapped in a way that the new sampling
step becomes unit, i.e.: ∆x = 1.

7.6 Errors and convergence rates
Convergence rate for the Tikhonov method with different constraints

The Tikhonov method with constraints Ω2
1 and Ω2

3 are special cases of (m, s)-splines (for
case s = 0, this family becomes Dm-splines [163]) and (m, l, s)-splines (also known as
Lm,l,s-splines), respectively [212]. The (m, s)-splines are a special case of (m, l, s)-splines
for l = 0 [212]. To be exact, (2, 0)-splines and (1, 1, 0)-splines are solutions of the 1-D
Tikhonov method with constraints Ω2

1 and Ω2
3, respectively. For these two general spline

families, the error bounds and convergence rates are studied even in presence of noise
[162, 163, 212].
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The aim of this sub-section is to show roughly that the Tikhonov method with constraint
Ω2

2 is also bounded and has the convergence property.
Functional of Tikhonov methods with constraints Ω2

2 and Ω2
3 are respectively denoted

by Q2 and Q3; on finite domain x ∈
[
x1, xNg

]
, it is easy to show that Q2 relates to Q3

as:

Q2 = Q3 + 2αλ
∫ xNg

x1
f

′′
f

′
dx, (7.25)

where Ng denotes number of grid points, f ′ := df/dx and f
′′ := d2f/dx2. Minimizing

solution of both Q2 and Q3 are L-splines; these splines can be written as bellow on
spatial domain xi ≤ x ≤ xi+1 = xi + ∆x, [200, 202]:

fi (x) = ai + bi (x− xi) + cie
α(x−xi) + die

−α(x−xi), (7.26)

where, ∆x is an uniform sampling step, and coefficients {ai, bi, ci, di} are unknown, real
and bounded values. Using Eq. (7.26), functional

∫
f

′′
f

′
dx on xi ≤ x ≤ xi + ∆x leads

to:

γi :=
∫ xi+∆x

xi

f
′′
f

′
dx

=1
2αe

−2α∆x
(
−1 + eα∆x

) (
di + cie

α∆x
) (

2bieα∆x +
(
1 + eα∆x

) (
−di + cie

α∆x
)
α
)
.

(7.27)

Using the Taylor series, γi can be expanded as:

γi =
[
biciα

2 + bidiα
2 + c2

iα
3 − d2

iα
3
]

∆x+
[1
2biciα

3 − 1
2bidiα

3 + c2
iα

4 + d2
iα

4
]

∆x2 +O
[
∆x3

]
,

(7.28)

or:

γi =
[
bi (ci + di) +

(
c2
i − d2

i

)
α
]
α2∆x+O[∆x2]. (7.29)
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Figure 7.11: The test function y(x).

Since coefficients {ai, bi, ci, di} are real and bounded values, so there exists a real and
positive value such Ci where: γi ≤ Ciα

2∆x. By integration of γi on domain x ∈
[
x1, xNg

]
,

the following inequality can be obtained between Q2 and Q3:

Q3 − 2α3λ∆x
Ng−1∑

i=1
Ci

 ≤ Q2 ≤ Q3 + 2α3λ∆x
Ng−1∑

i=1
Ci

 . (7.30)

It is clear that, lim∆x→0 Q2 = Q3 . Hence, Q2 is bounded and has the convergence
property; its convergence rate also approaches to the functional Q3 as the sampling step
approaching zero.

A benchmark problem

As studied before, the constraint Ω2
2 in the Tikhonov method can control the numerical

dispersion. In this section, the error in estimation and convergence rate will numerically
be studied by a benchmark problem. The problem has both smooth and discontinuous
features. By this example, both the numerical dispersion and Runge phenomena
are investigated. The function is:

y(x) = 1
2 + Sin(2πx) −H(x− 0.5), (7.31)

where H(x) denotes the Heaviside function; the function y(x) is illustrated in Fig. 7.11.
In Fig. 7.12, the regulated results obtained by constraints Ω2

1 (the common Tikhonov
method) and Ω2

2 are compared with each other. Considered parameters are: 1) for the
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Figure 7.12: Error in estimations, the numerical dispersion and Runge phenomena re-
sulted from the Tikhonov method with different constraints; (a) & (b) reg-
ularization with constraint Ω2

1; (c) & (d) regularization with constraint Ω2
2;

case Ω2
1: p = 0.9; 2) for the case Ω2

2: p = 0.9 & α = 1. From this figure, it is
clear that using the constraint Ω2

2 leads to: 1) developing of more localized errors (of
large magnitudes) around discontinuous solutions; 2) rising of larger errors in smooth
regions; 3) controlling of the numerical dispersion more effectively; 4) increasing of the
Runge phenomenon around boundaries. Fig. 7.13 presents convergence rates of different
solutions for the two constraints. It is obvious that: 1) convergence rates are near to
each other and for all of them, corresponding rates are near to 0.6; 2) with the same p
values, the Ω2

2 constraint leads to less numerical errors in L1 and L2 senses (even though
the errors resulted from the Ω2

2 are more than those of Ω2
1 in smooth regions). The

difference of two estimated errors, resulted from two different constaints Ω2
1 and Ω2

2,
increases considerably as p values approach to one.

As mentioned before, the constraint Ω2
2 leads to both: 1) larger the Runge phenomenon

(around boundaries); 2) larger estimated errors in smooth regions. To cure these draw-
backs, one effective way is to use variable tension (α) values. The values can be close to
zero in smooth regions; it can locally be increased around high gradient or discontinuous
zones. Regarding the test function y(x) (Eq. (7.31)), a Gaussian function for α(x) is
assumed: it is centered around the discontinuity (with spatial location x = 0.5). The
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Figure 7.13: Convergence rates for Tikhonov regularization in L1 and L2 norms with the
constraints Ω2

1 and Ω2
2 for different p and α values.

estimated solution, corresponding estimation errors and convergence rates are presented
in Fig. 7.14 for p = 0.9. Figs. 7.14(a), (b) and (c) present the estimated solution, esti-
mation error, and convergence rate, respectively. The results offer that the non-uniform
estimation both improves accuracy of estimations in smooth areas and decreases the
Runge phenomenon around boundaries. In this case, the numerical dispersion is suc-
cessfully controlled, as well.

7.7 Conservation in Tikhonov-based smoothing
For sampled data {yi} with Gaussian noise, Tikhonov-based regularization finds smoothed
data {fi} in such a way that: yi = fi + εi; where: the set {εi} denotes the noise
with zero mean, i.e.: ∑i εi = 0 [211]. In this case, filtered data remain conservative,
since: ∑i yi = ∑

i fi. In numerical simulations, however, such assumption for noise type
is not true and thereby smoothed data do not remain conservative.
Conservative smoothing, however, can be obtained by imposing an extra constraint in
the Tikhonov method, as:
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Figure 7.14: Variable α parameter in Tikhonov-based regularization with the con-
straint Ω2

2; a) regularized results (f) and α(x); b) estimation errors; c)
convergence rates.
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Q =
n∑
i=1

(yi − fi)2 + λ Ω2 (f) ,

subjected to : 1
n

(I.y) = 1
n

(I.f) ,
(

i.e. :
∑
i

yi =
∑
i

fi

) (7.32)

where: I1×n denotes a single row matrix with unit elements, as: I1×n=[1, · · · , 1]1×n;
vectors f and y are: f = [f1, · · · , fn]T and y = [y1, · · · , yn]T . Using the Lagrange
multiplier method, the modified functional, QL becomes:

QL =
n∑
i=1

(yi − fi)2 + λ Ω2 (f) + λL
{ 1
n

(I. (f−y))T
}
, (7.33)

where λL is the Lagrange coefficient. For case Ω2 (f) = Ω2
1 (f) =

∫ (
f

′′(x)
)2
dx, extremes

of the functional QL with respect to f and λL are:

∂QL

∂f
= 0 ⇒ 2

[
B + λ

{(
D(2)

)T
.B.D(2)

}]
︸ ︷︷ ︸

Γ

.f+λ
L

n
IT = 2B.y,

∂QL

∂λL
= 0 ⇒ 1

n
(I.y) = 1

n
(I.f) .

(7.34)

These equations lead to the following linear system:

 Γ IT

n
I
n

0

 f
λL

 =
 2B.y

(I.y) /n

 . (7.35)

Obtaining of such linear systems for other Ω2 (f) definitions are straightforward.
Example: Linear data {{(xi, yi)} = {(i, i)} ; i = 1, ..., 7} is perturbed as:
{(xi, yi)} = {{1, 1}, {2, 2.01}, {3, 2.97}, {4, 3.99}, {5, 5.03}, {6, 6}, {7, 7}}.
Using the conservative Tikhonov regularization with parameter p = 0.9, smoothed data
will be:
{fi} = {1.005100307, 2.000351, 2.9790275, 3.99291, 5.0189070, 6.005833, 6.9978714}.
In this case, we have:∑i yi −∑

i fi = 2.07 × 10−12 (∑i yi = 28 & ∑
i fi = 28).

For the common Tikhonov regularization (without the constraint of the conservative
smoothing), the smoothed result is:
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{fi} = {1.0054894578, 2.979230914, 3.993112981, 5.01911043, 6.006076, 6.9982605};
where: ∑i fi = 28.0019. It is clear the smoothing is not conservative.
The constraint of conservative smoothing can also be imposed by the penalty method in
the functional Q, as:

QP =
n∑
i=1

(yi − fi)2 + λ Ω2 (f) + CP
{[ 1
n

(I. (f−y))T
]
.
[ 1
n

(I. (f−y))
]}
, (7.36)

where CP is a predefined penalty coefficient.

7.8 Global and local smoothing
The common Tikhonov method leads to global smoothing. Two approaches can be fol-
lowed to have local smoothing (regularization): i) Local regularization (with consistency
with surrounding data); ii) Global regularization with variable weights and/or smoothing
parameters. Below the first approach will be discussed.

Local regularization

The main idea is to smooth only some local zones of data. At the boundary points of
the local zones, the continuity of both smoothed data and corresponding derivatives (up
to some order) should be preserved with surrounding information. To have such local
Tikhonov regularization, the concept of smoothing with constraints can be used for local
zones of data. These extra constraints guarantee continuity at boundary points. The
functional Q subjected to some new extra constraints can be expressed as:

Q =
∑
i

(yi − fi)2 + λ× Ω2 (f) ,

subjected to:
{
Aj.f (j) = y0

(j) : j ∈ {0, 1, · · · ,m} & f ∈ Cm
}
,

(7.37)

where:
(
Aj

)
r×n

,
(
f (j)

)
n×1

,
(
y0

(j)
)
r×1

, f (0): =f ; y0
(0)=y0; f (j): =djf/dxj and y0

(j): =djy0/dx
j,

for j ≥ 1; fi:=f(xi);
{f= {fi} : i ∈ {1, · · · , n}} denotes the smooth function needed to be estimated at dis-
tinct n spatial points; y0

(j)=
{(
yj0
)
i

}
for i = {1, 2, · · · , r} is a vector of data values

needed to be interpolated at some predefined points (like the boundary points). For a
predefined point xk then it is needed to have:

{
f (j) (xk) =y0

(j) (xk) : j ∈ {0, 1, · · · ,m}
}
;
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Matrix Aj denotes a connection matrix of size r × n, where n and r are vector lengths
of f and y0, respectively. At the spatial location xk (where k ∈ {1, 2, · · · , n}), for lth

element (where k ∈ {1, 2, · · · , r}) of y0
(j) (i.e.:

(
y0

(j) (xk)
)
l,1

), element
(
Aj

)
l,k

is equal
to one and remaining elements of the lth row are zero.

For example let us assume information f = {f1, f2, f3, f4} defined at points {x1, x2, x3, x4}.
If we want to locally smooth data over x2 to x3, with only one boundary point at each
side of local information (then the left boundary point is x2 and the right one is x3),
then we can conclude that n = 4 and r = 2. Then the matrix Aj is

Aj =
 0 1 0 0

0 0 1 0

 ,
and so Aj.f = {f2, f3} = y0.
Using the Lagrange multiplier to impose the extra constraints, the new functional QL

is:

QL =
∑
i

(yi − fi)2 + λ× Ω2 (f) +
m∑
j=0

λLj
(
Aj.f (j) − y0

(j)
)T
, (7.38)

where λLj denotes a Lagrange multiplier vector.
By finding extreme values of QLwith respect to f and vectors

{
λLj
}
, one can find both f

and
{
λLj
}
. Let assumef(x) ∈ C2, and Ω2 (f) = Ω2

1 (f) =
∫ (
f

′′(x)
)2
dx; then it is easy

to obtain a discretized form of QL, as:

QL =(y − f)T .B. (y − f) + λ
(
D(2).f

)T
.B.

(
D(2).f

)
+

λL0
(
A0.f − y0

)T
+ λL1

(
A1.

(
D(1).f

)
− y0

′)T + λL2
(
A2.

(
D(2).f

)
− y0

′′)T
,

(7.39)

where f (1) and f (2) are respectively approximated as, D(1).f and D(2).f .
Extreme values of QL can be obtained, as:
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∂QL

∂f
= 0 ⇒ 2

[
B + λ

{(
D(2)

)T
.B.D(2)

}]
︸ ︷︷ ︸

Γ

.f+λL0 .A0
T + λL1 .

(
A1.D(1)

)T
+ λL2 .

(
A2.D(2)

)T
= 2B.y,

∂QL

∂λL0
= 0 ⇒ A0. f=y0,

∂QL

∂λL1
= 0 ⇒

(
A1.D(1)

)
. f=y0

′
,

∂QL

∂λL2
= 0 ⇒

(
A2.D(2)

)
. f=y0

′′
.

(7.40)

These equations can be represented in a matrix form, as:


Γ AT

0

(
A1.D(1)

)T (
A2.D(2)

)T
A0 0 0 0(

A1.D(1)
)

0 0 0(
A2.D(2)

)
0 0 0

 .


f
λL0

λL1

λL2

 =


2B.y

y0

y0
′

y0
′′

 . (7.41)

The above left-hand side matrix can be ill-posed, in general. For such cases, the extra
constraints can be imposed by the penalty method. In this case, the functional Q can
be modified as:

QP =
∑
i

(yi − fi)2 + λ Ω2 (f) +
m∑
j=0

CP
j

(
Aj.f (j) − y0

(j)
)T (

Aj.f (j) − y0
(j)
)
, (7.42)

where CP
j denotes predefined penalty coefficients.

For an example, an exponential function is assumed, as: y (x) = Exp
(
−40(x− 0.5)2

)
.

The aim is the local smoothing on spatial range 0.30 ≤ x ≤ 0.98 in such a way that
the smoothed data have C2 continuity with surrounding data. Edge constraints (on y,
y

′ and y
′′) are only imposed for two boundary end points x = 0.30 and x = 0.98 (more

boundary points can be assumed for each edge). Smoothed results are presented in Fig.
7.15, where the smoothing parameter is p = 0.7. In this figure, discrete values of f ′

and f ′′ are computed with the same operators used in the regularization procedure, i.e.:
f ′ = D(1).f and f ′′ = D(2).f . It is clear that the local smoothed data and corresponding
derivatives have consistency with neighbor data.
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Figure 7.15: Local smoothing with C2 continuity with surrounding data; value of
smoothing parameter is p = 0.7.

7.9 Tikhonov regularization and correspondence with
filtering

It is mentioned that the regularization effect is similar to a low-pass filtering [211].
Constraints of the Tikhonov method measure high-frequency components of data; these
components are then enforced to approach zero. This filtering feature will be studied in
more detail in this section.
Regarding functionalQ =

∫
F
(
x, y, y

′
, y

′′
)
dx, where y:=y (x), y′ :=dy/dx and y′′ :=d2y/dx2,

it is easy to show that corresponding Euler-Lagrange differential equation is: Fy −
d
dx

(
Fy′

)
+ d2

dx2

(
Fy′′

)
= 0, where: Fy:=dF/dy, Fy′ :=dF/dy′ and Fy′′ :=dF/dy′′ .

For the Tikhonov regularization with constraint Ω2
2 (x) =

∫ (
f

′′ + αf
′
)2
dx, the function

F is: F
(
x, f, f

′
, f

′′
)

= (y − f)2 + λ
(
f

′′ + αf
′
)2

. It is straightforward to show that
equivalent Euler-Lagrange equation for constant λ and α is:

− (y − f) − λα2f
′′ + λf (iv) = 0. (7.43)

Rewriting this equation in the Fourier space, we have:

F (f) − F (y) − λα2(iω)2F (f) + λ(iω)4F (f) = 0, (7.44)

or,
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F (f) = 1
1 + λα2ω2 + λω4 F (y) , (7.45)

where: F (f) denotes the Fourier transform of the function f(x) belonging to the
Hilbert space L2 (i.e.:

∫
f(x)2dx < ∞); i2 = −1; and ω ∈ [0, π]. So using the constraint

Ω2
2 (x) leads to the filter function H2 (ω) as:

H2 (ω) = 1/
(
1 + λα2ω2 + λω4

)
. (7.46)

For constraints Ω2
1 (x) and Ω2

3 (x), it is easy to show that corresponding filter functions
are:

H1 (ω) =1/
(
1 + λω4

)
,

H3 (ω) =1/
(
1 + λαω2 + λω4

)
.

(7.47)

It is clear that: 1) Hj (0) = 1 and Hj (π) = 0 for j ∈ {1, 2, 3}; 2) thereby, func-
tions {Hj (ω)} act as low-pass filters. In fact, they are a type of Butterworth low pass
filters [211].

7.10 Solution algorithm for stress wave equations
The main idea is to use the regularization stage as a post-processing step in the commonly
used finite-difference (or collocation) method with higher-order accuracy. For this reason,
consider the solution of a second order hyperbolic system to be f(t). At time step tn,
the solution procedure can be summarized as the following steps:

1. Approximate spatial derivatives with finite difference discritizations; this can be
done by the generalized Padé approximations, compact differencing equations (see
Sec. 7.3) [131, 138] or the fast and iterative algorithm proposed by Fornberg [213].
In this work, explicit fourth order spatial accuracy is used for derivative estimations
(to have a higher-order solver),

2. Discretize PDEs in the spatial domain and solve resulted semi-discrete systems,
i.e., discrete in space and continuous in time. A standard time-stepping method
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like the Runge-Kutta method of 4th order (see Appendix D) or the explicit six-
stage method [131] can be used to solve the resulted ODEs at time t = tn to obtain
solution at the next time step t = tn+1,

3. Denoise spurious oscillations (this step can be done directly on non-uniform grid
points, as well); for this purpose the Tikhonov method with constraint Ω2

2 is recom-
mended. Either variable or constant p or α values can be considered. In this work,
constant values are used. The recommended values for p and α are: 0.9 ≤ p ≤ 0.99,
and α ≈ 1. For the Tikhonov method other extra conditions can also be consider-
able; such as: conservative (Sec. 7.7) or local (Sec. 7.8) smoothing.

4. Go back to step 1,

In practice, to have a cost-effective computation, the solution is not denoised at each
time step. This can be done after some time steps (depending on the wave velocity), for
example following ten time steps.

7.11 Numerical examples
In this section, one 1-D and several 2-D examples are presented to show effectiveness of
the proposed approach. The 2-D examples are: 1) a membrane subjected to an imposed
initial discontinuous deformation (to simulate propagating discontinuous fronts); 2) an
infinite-periodic domain containing sharp and localized variation of physical property (a
narrow fluid-filled crack with finite dimension); 3) wave propagation in a medium with
several fluid-filled cavities with stochastic locations (to have stochastic-like simulations)
[214, 215].

In simulations, for Tikhonov methods it is assumed: 1) they are not enhanced to be
conservative; 2) the global smoothing approach is used.

Example 1:
In this example, the wave propagation in a 1-D linear bar with the box-shaped ini-

tial imposed deformation is re-simulated (see Sec. 7.2) with other commonly-used ap-
proaches. They are basically developed to remedy discontinuity effects in elasto-dynamic
problems. The methods are:

1. The finite element method with linear spatial shape functions using numerically
dissipative time integration scheme (α-NDTI) [130]. The assumed parameters
are: γ = 0.6; β = 0.25(0.5 + γ)2; α = −0.0683 ; dt = 0.003; number of elements
is Ne = 256.
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Figure 7.16: Numerical results for wave propagation in a bar due to the box-shaped
imposed initial condition at t = 0.2.

2. Common Taylor-Galerkin method (TG-C) (second order) and higher order one
(TG-HO) (third order) [216]; for the TG-C case, assumed parameters are: γ = 0.5
and α = 0.5; dt = 0.002; Ne = 256. For the TG-HO method, two set of parameters
are considered as: i) for TG-HO-1: γ = 0.5; α = 0.5; Ne = 256; dt = 0.002; ii) for
TG-HO-2: γ = 0.5; α = 1.5; Ne = 256; dt = 0.002.

3. Discontinuous time Galerkin method (DTG) [217] (piece-wise linear approxima-
tions in the time and linear approximations in the space). The considered param-
eters are: dt = 0.01 and Ne = 256.

In each scheme, the considered parameters are the suggested values in the corre-
sponding references, to have a good estimation of the exact solution. In Appendix D,
the above-mentioned methods are briefly reviewed. For numerical simulations, proper-
ties of the bar are: E = 1 (module of elasticity), A = 0.01 (cross section area), and ρ = 1
(density of the bar). The results are presented in Fig. 7.16. Although these methods
lead to stable solutions, they can not effectively control the numerical dispersion.

As mentioned in the Introduction section, the idea of high-resolution schemes is re-
cently extended to second order hyperbolic systems [143]. Bellow the aim is to compare
such results with those of our proposed method. For this reason, this example is re-
solved on spatial domain x ∈ [−1, 1] with new initial conditions: u0 (x) = Unitbox (2x)
and v0 (x) = 0. For the Tikhonov method it is assumed: 1) smoothing is done at each
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time step; 2) The functional Ω2
2 is used as the constraint; 3) smoothing parameters

are: p = 0.99 & α = 1.
Numerical results are presented in Fig. 7.17 at t = 0.2; symbols P −4, UW2, UW4, and
HR2 denote the 4th order Padé, second order upwind, fourth order upwind and second-
order high resolution approximations, respectively. For details of UW2, UW4, and HR2
methods, please see [143]. The results offer that: 1) smoothed P − 4 method (using the
Tikhonov smoothing method) prevents forming of spurious oscillations in both u and
v solutions; 2) numerical dissipation of smoothed P − 4 is less than those of HR2 and
coincides with those of UW2 (Fig. 7.17(b)); 3) numerical dispersion in smoothed P − 4
is the least one (Fig. 7.17(a,c)). The results of UW2, UW4, and HR2 are from [143].

Example 2: Consider vibration of a rectangular membrane with four fixed sides
subjected to an initial imposed displacement; the governing equations are:

PDE : c2
(
∂2u/∂x2 + ∂2u/∂z2

)
= ∂2u/∂t2; Ω ∈ [0, 1] × [0, 1],

ICs : u(x, y, t = 0) = U(x, y) & ∂u/∂t(x, y, t = 0) = 0,

BCs : u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0.

(7.48)

The initial condition has discontinuities; it is: U(x, y) = H
((

x−0.5
0.2

)2
+
(
y−0.5

0.2

)2
)

(where H denotes the Heaviside function). The finite difference scheme is used for
spatial discretization; the second derivative is approximated with the fourth-order ex-
plicit central scheme; number of grid points is: (28+1)×(28+1) . The time-integration is
done by the Runge-Kutta scheme of 4th order (see Appendix D). For the post-processing
stage, the Tikhonov method with three different constraints are considered: 1) Ω2

1 with
the parameter p = 0.99; 2) the constraint Ω2

2 with parameters p = 0.99 & α = 1;
3) p = 1, i.e.: without considering any regularization. Other parameters are assumed
to be: c = 1 (wave velocity); dt = 0.0015 (the time integration step). The denoising
(regularization) procedure is repeated after each five time steps. The IC (U(x, y)) and
numerical results are presented in Fig. 7.18 at t = 0.24. According to the results, it is
clear that: 1) without regularization, the solution becomes unstable; 2) small amount
of the regularization leads to stable solutions; 3) results obtained by Ω2

2 constraint can
control more effectively spurious oscillations around propagating discontinuous fronts.

The numerical result obtained by the post-processing stage with constraint Ω2
2 and

the solution obtained from the modal analysis will also be compared. For the square
membrane with dimensions (x, y) ∈ [a × b], and with four fixed boundaries, the mode
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Figure 7.17: Direct simulation of the second order scalar wave propagation problem
at t = 0.2; symbols P −4, UW2, UW4 and HR2 denote the 4th order Padé,
second order upwind, fourth order upwind and second-order high resolution
approximations, respectively. The results of UW2, UW4 and HR2 are from
[143].
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Figure 7.18: Numerical results with different assumptions of regularization constraints
at t = 0.24; a)the IC condition (U(x, y)); b) the solution based on using
the constraint Ω2

2; c) the solution based on using the constraint Ω2
1; d) the

solution without any regularization.
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Figure 7.19: Comparison of the numerical method having the post-processing stage with
constraint Ω2

2, and the modal analysis based solution (with 60 × 60 first
modes) at spatial position (x, y) = (0.5, 0.5).

shapes are:

Mn,m(x, y) = sin
(
mπx

a

)
× sin

(
nπy

b

)
. (7.49)

The results are compared in Fig. 7.19 at spatial location (x, y) = (0.5, 0.5) for time
duration t ∈ [0, 1.2]. For the modal analysis, it is assumed: (n,m) = (60, 60) (i.e., 60×60
first modes are considered). Due to discontinuities, the numerical dispersion exists in the
modal analysis. Therefor, a stable and oscillation free numerical result can be obtained
by considering the post-processing stage (the constraint is: Ω2

2).
Example 3:
In this example, the stress wave propagation problem is studied in a medium includ-

ing high and abrupt variations in its physical parameters. In such systems, numerical
methods which can not handle (semi) discontinuous solutions (caused by the material
variation) have stability and accuracy problems around contact zones (e.g., the fluid-
solid contact zone). Due to this material variation, speeds of elastic waves are largely
different around the contact zone. The incident waves, P or S, can be reflected from
interface in the form of P and S waves. The incident P wave is reflected as P (denotes
by PPr) and S (shown by PSr) waves; for the incident SV wave the reflected P and S
waves are shown by SPr and SSr, respectively. If the second material is water, since only
P waves can be transmitted to the fluid layer, the transmitted P wave due to incident
P and S waves are denoted by PPt and SPt, respectively. Another phenomenon due to
existence of a sharp corner is the diffraction. The P wave is diffracted from crack edges
into the solid medium as diffracted P (PPd) and diffracted S (PSd) waves.
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Figure 7.20: Schematic shape of an infinite-periodic medium including a fluid-filled nar-
row crack.

It is assumed that the medium has infinite-periodic boundaries, and it contains a
narrow fluid-filled crack of finite length. Due to this crack, each P or S (SV) incident
waves are reflected and transmitted. Also due to edge of the crack, the diffraction
phenomenon will be happened.

The schematic shape of the medium along with the description of the crack configu-
ration is illustrated in Fig. 7.20. There, position of periodic and absorbing boundary
conditions are also illustrated.

Here, to consider infinite boundaries the absorbing boundary concept is used. This
boundary is explicitly considered in the governing P-SV equations, as:

{(λ+ 2µ)ux,xx + µux,zz} + {(λ+ µ)uz,xz} = ρ {ux,tt +Q(x, z)ux,t} ,

{(λ+ 2µ)uz,zz + µuz,xx} + {(λ+ µ)ux,xz} = ρ {uz,tt +Q(x, z)uz,t} .
(7.50)

The absorbing boundaries are commonly used for simulation of infinite boundaries.
In this system, absorbing boundary condition is considered explicitly; or equivalently
the wave equations are modified by damping term Q(x, z). This acts as an attenuation
factor. This factor is nearly zero in the computation domain and increases gradually
when approaches to the artificial boundaries. This causes incoming waves towards these
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Figure 7.21: Snapshots of solutions ux and uz.

kind of boundaries to diminish gradually [218]. In general, there is not any absorbing
boundary that could absorb all of the incoming energies, so, some small long-period
reflections always remain. In this problem, the attenuation function is:
Q(x, z) = az (Exp(bz.z2) + Exp(bz.(1 − z)2)), where az = 120 and bz = −100.

In the numerical simulation, it is assumed that: 1) the post-processing stage is
done by the Tikhonov method with constraint Ω2

2; 2) the incident wave is a plane P
wave, produced by an initial imposed deformation with equation: uz(x, z, t = 0) =
Exp(−700(z − 0.25)2); 3) the regularization is performed after each five time steps with
parameters p = 0.97 and α = 1; 4) time step is: dt = 0.001; 5) number of grid points
in each direction is: 28 + 1; 5) time-integration is done by the Runge-Kutta 4th order
method.

The snapshots of ux and uz are illustrated in Fig. 7.21. There, the reflected, trans-
mitted and diffracted waves are shown. The zoomed-in solution uz at incident time, t =
0.067 is illustrated in Fig. 7.22; it is clear that formation of spurious oscillations are
prevented due to discontinuous solutions formed around cantact zone.

Example 4:
Our concern in this example is controlling of artificial dispersion developing in stochas-

tic like solutions. So, a wave propagation problem in a stochastic medium will be studied.
In such systems, propagating fronts can not develop due to the diffraction phenomenon.
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Figure 7.22: Snapshot of solutions uz at t = 0.067.

Figure 7.23: A homogeneous medium with stochastic fluid-filled small cavities.

The challenging problem is developing of dominate non-physical dispersive waves.
One practical approach for stochastic media simulation is to consider several stochastic

fluid-filled small cavities in homogeneous media [214, 215]. The considered medium is
illustrated in Fig. 7.23, where the black disks show the cavities. It is assumed that: 1)
the medium has infinite-periodic boundary conditions; 2) a plane P wave propagates in
the z direction.

In the numerical simulations, we have: 1) spatial discretization is done with the explicit
central finite difference method of fourth order accuracy; 2) the time integration method
is the Runge-Kutta scheme of fourth order with time step dt = 0.001; 3) post-processing
stage is performed using the Tikhonov method with constraint Ω2

2 and parameters p =
0.99 and α = 1; and 4) the regularization repeats after each five time steps; 4) number
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Figure 7.24: Formation of stochastic-like solutions ux and uz from the fluid-filled cavities
due to diffraction of the incident plane P wave.

of grid points is: (29 + 1, 28 + 1).
Snapshots of results for ux and uz are presented at Fig. 7.24 for different times.

According to the ux solutions, it is clear that the diffracted waves propagate and prop-
agating fronts can not be formed in the domain due to stochastic nature of solutions.

Fig. 7.25 illustrates an investigation on the regularization effects. It compares two
solutions of ux with and without the regularization-stage (with the constraint Ω2

2) at t =
0.0805. It is shown that even marginal regularization can prevent occurrence of the
artificial dispersion (commonly occurred in stochastic-like numerical solutions).
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Figure 7.25: Snapshots of the P-SV wave propagation in a medium having fluid-filled
cavities with stochastic locations; a) the solution with the regularization
step with the constraint Ω2

2; b) the solution without the regularization step.
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Conclusion and future works

8.1 Conclusion
In this study, numerical simulation of first and second order wave (hyperbolic) equations
are studied. For each one, the following results have obtained.

8.1.1 First order nonlinear hyperbolic (wave) systems

In this study, a wavelet-based adaptation procedure is properly integrated with central,
central-upwind, PPM and CWENO high resolution schemes for simulation of first or-
der hyperbolic PDEs. It is shown that central high-resolution schemes become unstable
on non-uniform cells even those have gradual variations of grid densities. This is be-
cause, the NVSF criterion is not satisfied by central schemes. Since their slope/flux
limiters do not remain TVD/TVB on irregular cell-centered cells. Two key ideas are
followed to remedy the instability problem: 1) Replacing local irregular grids (resulted
from the wavelet-based adaptation) with abrupt changing with grids having gradual
variations (replacing an ill-posed problem with a nearly well-posed one); 2) Updating
nonlinear stability conditions and restudying the performance of slope limiters on irreg-
ular cells. The grid modification stage is also done in the framework of multiresolution
analysis; there, proper pattern of density variation of adapted grids is provided and its
performance is studied both theoretically and numerically. The TVD, TVB and UNO
conditions are reviewed and provided for non-uniform cells. It is shown that on cell-
centered non-uniform cells: i) For numerical stability, slope limiter definitions may be
modified; ii) The long-term stability feature does not meet. To overcome these challeng-
ing problems, non-cell-centered cells are used. These cells act as transmitting cells (cells
that connecting surrounding cells locally having uniform sizes); they are located only
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at transmitting zones. In this case, we show that: 1) Some of the common limiters can
be used without modification (the MINMOD and the Generalized MINMOD limiters);
2) It is possible to modify other limiters in a way that they also preserve the stability
conditions. The TVD conditions are derived for both cell-centered and non-cell-centered
cells. The proper cell centers in the transmitting cells are derived based on the stability
conditions.

The local truncation errors for 1-D and 2-D problems are provided on non-uniform
cells for convergence studying. Also the concept of the numerical entropy production
is investigated for uniqueness insurance. These two concepts have also been used as
possible criteria for grid adaptation. In this regard, the performance of these concepts
are compared with the wavelet-based algorithm. Numerically, it is shown that: 1)
The numerical entropy production can not detect some phenomena such as contact
discontinuities; 2) These concepts can also have sufficient values in rarefaction domains.
This can lead to unnecessary concentration of grid points in such regions (this can also
be seen in [31, 32]); 3) It seems that the performance of the local truncation errors
as a detector may be better than the numerical entropy production; 4) It seems that
wavelets can properly detect all of the shock waves, rarefaction regions, and contact
discontinuities.

Non-linear hyperbolic systems with non-convex fluxes are studied, as well. In these
systems, for capturing physical responses, method-adaptation is also performed again
by the multiresolution analysis. It is shown that for both physical and non-physical
solutions, local truncation errors of weak solutions have the convergence feature. And
so, using of the method-adaptation is essential (e.g., using of different slope limiter in
different zones in the spatial domain).

In brief, the studied schemes, slope/flux limiters and stability conditions are as follows:

1. Providing the fully-discrete and semi-discrete formulations of second-order and
third-order central high resolution schemes over non-uniform centered and non-
centered cells (based on polynomial based reconstruction on each cell),

2. Updating the TVD stability conditions for centered and non-centered cells,

3. For second-order central schemes, studying/providing second order limiters with
TVD, TVB and UNO feature,

4. Updating the definition of two non-linear scaling limiters to preserve the conser-
vation, the monotonicity and the same shape properties,
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5. Proposing two PPM central high resolution schemes with corresponding limiters,

6. Studying CWENO schemes with three and five point stencils and correspond-
ing accuracy-order on non-uniform cells (that is the third-order and fourth-order
schemes).

8.1.2 Second order nonlinear wave (hyperbolic) systems

We have presented an approach including a post-processing stage to control the numer-
ical dispersion around discontinuities for numerical simulation of the mechanical wave
propagation problems (known as the second order hyperbolic PDEs). Several com-
pact high-order finite-difference methods are successfully integrated with the Tikhonov
method as a post-processor. This is performed to control spurious oscillations formed
around discontinuities due to the numerical dispersion. For this controlling, the crucial
point is a proper choice of a constraint for the Tikhonov-based regularization. Differ-
ent types of regularization with different constraints are studied. And finally a proper
constraint with some possible extensions is advised.

Regarding the Tikhonov method, two general approaches are studied: regularization
with and without a model. A model contains extra almost local information (such as
discontinuity locations) to improve regulated results. However, it is shown (by numerical
studies and GSVD decomposition method), the model-based results are sensitive to the
model; if the model is exact, the regulated solution can properly handle discontinuity
effects, otherwise results are sensitive and the numerical dispersion affects them. It is
shown that the constraint resulted from proper combination of smoothness and the ten-
sion concept can properly control the numerical dispersion around discontinuities. This
definition is different from the classical one, described as: Ω2

3 =
∫
f ′′(x)2 + α2f ′(x)2 dx.

The recently proposed definition is: Ω2
2 =

∫
(f ′′(x) + αf ′(x))2dx [200]. For this con-

straint, corresponding error bounds and convergence rates are qualitatively studied in
this work. It is shown for the Tikhonov method with Ω2

2 constraint, the regularization
concept can effectively control the numerical dispersion around discontinuities. To im-
prove smoothing performance resulted from the Tikhonov methods, it is shown how to
add some other favorable features, such as conservative and local smoothing. To clarify
smoothing effects of the Tikhonov method, its relationship with the filtering concept is
also studied.

The proposed method can easily be extended to higher dimensions and systems of
PDEs; since it is totally based on 1-D algorithms. Finally to confirm efficiency of the
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proposed method, some 1-D and 2-D examples are presented. In one 1-D example, the
performance is compared with those of other commonly used methods developed for
stress wave propagation problems. This example confirms that the performance is good
and acceptable. According to another 1-D benchmark, by using spatially varying reg-
ularization parameters (the adaptive regularization concept), accuracy of solutions can
be improved while the Runge phenomenon can be controlled. This can be achieved, for
example, by employing non-constant weights, smoothing (p) or tension (α) coefficients
in the Tikhonov method.

Some 2-D examples containing propagating discontinuous fronts are studied. Also,
wave propagation in media with localized sharp transition of material properties are
considered; e.g., a medium with fluid-filled crack of finite length and a medium with
fluid-filled cavities with stochastic spatial locations. The results confirm that existence
of even marginal regularization effects can considerably improve stability and accuracy
of solutions.

Finally, it should be mentioned that one drawback of the regularization approach is
proper estimation of corresponding parameters (here p and α); it seems that the trial
and error method is useful to adjust proper values.

8.2 Future works

8.2.1 First order waves

1. In this study, polynomial-based reconstructions are used in formulation of central,
central-upwind and CWENO schemes. Some other possible alternatives could
be: Hermite-based reconstructions [219, 220]; exponential polynomials [221]; and
spectral-based reconstructions [222],

2. Central/central-upwind high resolution schemes on unstructured finite volumes
were developed, e.g. [223, 224]. For unstructured meshing, an important point
is proper detection of edges/discontinuities on piecewise information (for proper
triangulation of computing domains to preserve sharp edges). Some powerful mul-
tiscale/multiresolution based algorithms can be integrated by the central schemes.
A powerful multiscale method is presented in [225], and another multiresolution-
based one is provided in [226],

3. The concept of constraint minimization to preserve TVD solutions in nonlinear
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hyperbolic PDEs is another interesting approach [227]. Its performance on multi-
dimensional and irregular grids can be studied.

8.2.2 Second order waves

1. So far, in our study, the Tikhonov method is used on structured grids for denosing
of spurious oscillations; this concept can be implemented on unstructured meshes
by the multivariate splines, the approach mentioned in [228],

2. The Tikhonov method leads to the smoothing splines or splines-in-tension. For
data with high frequency contents, spectral-like accuracy of approximations is
favorable by the Tikhonov method. In this regard, the idea of the trigonometric
splines may be used [229, 230].
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Central schemes on uniform grids

A.1 Central High Resolution Schemes
In this section, the concept of central high resolution schemes will be studied on uniform
cells. The considered system is the hyperbolic equation of the general form:

ut + f(u)x = 0, (A.1)

where u := u(x, t) is the state variable and f(u) denotes the flux. The discretiza-
tion will be done by the finite volume method. For this, the spatio-temporal vol-
ume [xi−1/2, xi+1/2]×[tn, tn+1] is assumed, where ∆x = xi+1/2 −xi−1/2 and ∆t = tn+1 −tn.
Integration of this equation over this volume leads to:

∫ tn+1

tn

∫ xi+1/2

xi−1/2

[ut + f(u)x]dxdt = 0, (A.2)

or:

∫ xi+1/2

xi−1/2

[u(x, tn+1) − u(x, tn)]dx+
∫ tn+1

tn
[f(u(xi+1/2, t)) − f(u(xi−1/2, t))]dt = 0. (A.3)

On the other hand:
∫ xi+1/2
xi−1/2

u(x, tn)dx = uni ∆x and
∫ tn+1

tn f(u(xi+1/2, t))dt = F
n+1/2
i+1/2 ∆t,

where uni is the average of u(x, t) on the domain [xi−1/2, xi+1/2], and F
n+1/2
i+1/2 denotes

average of the flux through tn to tn+1 at xi+1/2; Fi+1/2 is also known as the numerical
flux. By these relationships, Eq. (A.3) can be written as:
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Figure A.1: Continuous variation of the state variable and flux through cells.

un+1
i = uni − ∆t

∆x
(
F
n+1/2
i+1/2 − F

n+1/2
i−1/2

)
.

This discrete representation is known as the fully-discrete form. Different assumptions
can be considered for variation of u (and so for f(u)) through cell edges: continuous
or discontinuous. In the following, at first, effects and drawbacks of the continuity
assumption for the parameter u will be studied. Then by relaxing this constraint, several
central schemes will be derived without such continuity constraint.

A.1.1 Continuous assumption for the state variable and flux

In this case, a continuous variation is assumed through cell edges (Figure A.1). With
this assumption, the average flux (F ) can be approximated over time [tn, tn+1] as:

F n
i−1/2 = 1

∆t

∫ tn+1

tn
f
(
u(xi−1/2, t)

)
dt ≈ 1

∆t(F
n
i−1/2 × ∆t). (A.4)

Let also assume linear variation of F through cells; then:

F n
i−1/2 = 1

2(F n
i−1 + F n

i ),

F n
i+1/2 = 1

2(F n
i + F n

i+1).
(A.5)

275



Appendix A Central schemes on uniform grids

Figure A.2: Simulation of the Burgers’ equation with numerical solution using continu-
ous variable and flux.

So the fully-discrete form can be written as:

un+1
i = uni − ∆t

∆x(F n
i+1/2 − F n

i−1/2). (A.6)

Using the two approximations of the fluxes F s, Eq. (A.5), Eq. (A.6) can be rewritten
as:

un+1
i = uni − ∆t

2∆x(F n
i+1 + F n

i − F n
i − F n

i−1) = uni − ∆t
2∆x(F n

i+1 − F n
i−1). (A.7)

This method is generally unstable for non-linear hyperbolic problems; it can not be used,
even by using a very small time steps.

Example: The Burgers’ equation (∂u
∂t

+ 0.5 ∂
∂x

(u2) = 0) with the smooth IC u(x, t =
0) = sin(2πx) + sin(πx)

2 and BCs u(0, t) = u(1, t) = 0, is considered. This equation
is a non-linear system and so discontinuous propagating fronts will develop even for
smooth initial conditions. The numerical results are presented in Figure A.2. It is clear
that spurious (non-physical) oscillations develop through time (and instability occurs
around t = 0.225): this is a direct consequence of continuous variation of the state
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Figure A.3: Piecewise linear variation of the state variable and flux on cells.

variable and flux.

A.1.2 Discontinuous variation of state variables and fluxes

To have a stable solution, the continuity constraint can be relaxed at cell edges, as
shown in Figure A.3. Based on such variations, the Lax-Friedrich (LxF), NT [25] and
KT [22] schemes have been developed; for the LxF and NT schemes both staggered and
non-staggered formulations are provided [75]. they will be described in the following.

The LxF Method

The LxF method is the first scheme allowing existence of possible discontinuities at cell
edges. In this method, a piecewise constant variation is assumed on cells with possible
discontinuities at cell edges, see Figure A.4. Due to constant values of state variables,
the LxF method leads to a first-order accuracy scheme: a dissipative method. In the
following, formulations of the LxF method on staggered and non-staggered grids (cells)
will be provided.

The LxF method - staggered formulation The following hyperbolic equation is con-
sidered:

ut + fx = 0. (A.8)

Variation of the state variable in LxF method is show in Figure A.4a. Based on this illus-
tration, the hyperbolic equation is integrated on the spatio-temporal volume [xi, xi+1] ×
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(a) (b)

Figure A.4: Variation of solutions over cells (reconstructed and evolved ones) for the LxF
scheme; (a) Staggered formulation, (b) Non-staggered one. {xi} and {xi±1/2}
denote cell-centers and cell-edges, respectively.

[tn, tn+1], as:

∫ xi+1

xi

∫ tn+1

tn
(u,t + f,x)dtdx = 0, (A.9)

or:

∫ xi+1

xi

(un+1 − un)dx+
∫ tn+1

tn
(f(xi+1) − f(xi))dt = 0. (A.10)

Also, the integrals over the spatial domain can be approximated as:
∫ xi+1

xi

un+1dx ≈ ∆xun+1
i+ 1

2
, (A.11)

and ∫ xi+1

xi

undx =
∫ x

i+ 1
2

xi

undx+
∫ xi+1

x
i+ 1

2

undx ≈ ∆x
2 (uni + uni+1), (A.12)

The integral of fluxes over time can also be approximated as:

∫ tn+1

tn
f(xi)dt ≈ F n(xi)∆t, (A.13)

and ∫ tn+1

tn
f(xi+1)dt ≈ F n(xi+1)∆t. (A.14)
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By replacing Eqs. (A.11)-(A.14) in Eq. (A.10), the final form of the LxF method can
be obtained on staggered cells, as:

un+1
i+ 1

2
= 1

2(uni + uni+1) − ∆t
∆x(F n(xi+1) − F n(xi)). (A.15)

This formulation is called a staggered scheme, since at the next time step n + 1, the
solutions are obtained at edge points xi+1/2, Figure A.4a.

This form of formulation has more artificial dissipation than non-staggered one; so
the latter is always preferable. In the non-staggered form, the spatial location of the
solution in time step n+ 1 will be the same as that of time step n.

The LxF scheme - non staggered The non-staggered form of the LxF method can
be obtained by the projection step. This can simply be done by evaluating an average
of the staggered solutions (from two neighbor staggered cells, Figure A.4b), as: [75]:

un+1
i =

un+1
i− 1

2
+ un+1

i+ 1
2

2 . (A.16)

This relationship can simply be obtained, since:
∫ x

i+ 1
2

x
i− 1

2

un+1
i dx =

∫ xi

x
i− 1

2

un+1
i− 1

2
dx+

∫ x
i+ 1

2

xi

un+1
i+ 1

2
dx ≈ ∆x

2 (un+1
i− 1

2
+ un+1

i+ 1
2
),

and also: ∫ x
i+ 1

2

x
i− 1

2

un+1
i dx ≈ ∆x.un+1

i ,

and so that Eq. (A.16) can be obtained. For staggered solution at point xi−1/2, Eq.
(A.15) yields:

un+1
i− 1

2
= 1

2(uni + uni−1) − ∆t
∆x(F n(xi) − F n(xi−1)). (A.17)

By averaging Eqs. (A.15) and (A.17), the final non-staggered form of the LxF scheme
becomes [75]:

un+1
i = 1

4(uni−1 + 2uni + uni+1) − ∆t
2∆x(F n(xi+1) − F n(xi−1)). (A.18)

This formulation has a fully-discrete form.
Example: The previous Burgers’ equation is considered again in order to study the

performance of the LxF method. The numerical results are shown in Figure A.5 (with
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Figure A.5: Numerical results for the Burgers’ equation obtained by the LxF scheme at
t=0.158, t=0.5 and t=1; solid lines and hollow circles denote the exact and
numerical solutions, respectively.

the same CFL condition of Figure A.2). It is clear that the numerical dissipation is
considerable in the LxF method, even-though the results are stable.

The truncation error due to the LxF scheme In this part, the truncation error will be
provided for the LxF scheme. Let subtract un

i+ 1
2

from both sides of Eq. (A.15) at xi+1/2:

un+1
i+ 1

2
− uni+ 1

2
= 1

2(uni − 2uni+ 1
2

+ uni+1) − ∆t
∆x(F n(xi+1) − F n(xi)). (A.19)
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Dividing Eq. (A.19) by ∆t leads to:

un+1
i+ 1

2
− un

i+ 1
2

∆t = 1
2∆t(u

n
i − 2uni+ 1

2
+ uni+1) − 1

∆x(F n(xi+1) − F n(xi))

= 1
2∆t

(∆x
2 )2[(uni+1 − un

i+ 1
2
) − (un

i+ 1
2

− uni )]
(∆x

2 )2 − 1
∆x(F n(xi+1) − F n(xi)).

(A.20)

According to approximation of the second derivative of u with the central difference
definition ((uxx)i ≈ ui+1−2ui+ui−1

∆x2 ) 12, Eq. (A.20) becomes:

un+1
i+ 1

2
− un

i+ 1
2

∆t = ∆x2

8∆t (uxx)i+
1
2

− 1
∆x(F n(xi+1) − F n(xi)) + ∆x2O(∆x2). (A.21)

Based on the Taylor expansion, (uxx)i+ 1
2

can be expanded as:

(uxx)i+ 1
2

= (uxx)i + ∆x
2 (uxxx)i + O(∆x2). (A.22)

Replacing Eq. (A.22) in Eq. (A.21) results as:

un+1
i+ 1

2
− un

i+ 1
2

∆t = ∆x2

23∆t(uxx)i + ∆x3

24∆t(uxxx)i − 1
∆x(F n(xi+1) − F n(xi)) + O(∆x4).

(A.23)

The RHS of Eq. (A.23) contains two types of derivatives: odd and even. The smallest
order of odd and even derivatives control the numerical dissipation and numerical dis-
persion, respectively. Also as ∆t is in the denominator of the coefficients, it can not be
chosen to be so small, since: 1

∆t → ∞ as ∆t → 0.

The NT scheme

The NT method is an improvement of the LxF method with the same assumption for
the variation of state variable at edges: existence of possible discontinuities at cell-
edges. In this method, a linear piecewise variation is considered through cells, Figure
A.6. In the NT method, the solution has a second-order accuracy as a linear variation

12This central difference approximation of the second derivative has second order accuracy; this
means (uxx)i = ui+1−2ui+ui−1

∆x2 + O(∆x2).
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Figure A.6: Illustration of the NT scheme.

is assumed in each cell. The formulation for this scheme can be followed with the same
procedure denoted in the LxF scheme. The NT formulation can also have staggered or
non-staggered form. For studying the numerical dissipation phenomenon, the truncation
error due to applying the NT method will be evaluated and compared with that of the
LxF scheme.

The NT scheme - Staggered Again based on Figure A.6, the hyperbolic equation is
integrated over the spatio-temporal volume [xi, xi+1] × [tn, tn+1] as:

∫ xi+1

xi

∫ tn+1

tn
(ut + fx)dtdx = 0,

∫ xi+1

xi

(un+1 − un)dx+
∫ tn+1

tn
(f(xi+1) − f(xi))dt = 0.

(A.24)

Due to a possible discontinuity at xi+ 1
2
, the integration on the spatial domain is divided

into two parts:
I =

∫ xi+1

xi

undx =
∫ x

i+ 1
2

xi

undx+
∫ xi+1

x
i+ 1

2

undx. (A.25)

Due to the linear variations in cells, the state variable un(x) can be reconstructed as:
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i On the interval xi− 1
2

≤ x ≤ xi+ 1
2
:

un(x) = ūi + (ux)i(x− xi), (A.26)

ii On the interval xi+ 1
2

≤ x ≤ xi+ 3
2
,

un(x) = ui+1 + (ux)i+1(x− xi+1), (A.27)

where: (ux)i and (ux)i+1 are proper approximations of the first derivative (approximated
by slope limiters); and the cell averages ūni and ūni+1 can be obtained as:

uni = 1
∆x

∫ x
i+ 1

2

x
i− 1

2

undx, (A.28)

uni+1 = 1
∆x

∫ x
i+ 3

2

x
i+ 1

2

undx. (A.29)

It should be mentioned that since variations are linear then: uni = ūni . By inserting the
linear variations in Eq. (A.25), we have:

I = ui
∆x
2 +(ux)i (−xi

∆x
2 + 1

2(x2
i+ 1

2
− x2

i ))︸ ︷︷ ︸
J1

+ui+1
∆x
2 +(ux)i+1 (−xi+1

∆x
2 + 1

2(x2
i+1 − x2

i+ 1
2
))︸ ︷︷ ︸

J2

.

(A.30)
So, it is easy to see that:

J1 = (−xi
∆x
2 + 1

2(x2
i+ 1

2
− x2

i )) = −xi
∆x
2 + 1

2(xi+ 1
2

− xi)(xi+ 1
2

+ xi)

= −xi
∆x
2 + 1

2
∆x
2 (2xi + ∆x

2 ) = ∆x2

8 ,

(A.31)

and

J2 = −xi+1
∆x
2 + 1

2(x2
i+1 − x2

i+ 1
2
) = −xi+1

∆x
2 + 1

2(xi+1 − xi+ 1
2
)(xi+1 + xi+ 1

2
)

= −xi+1
∆x
2 + 1

2(∆x
2 )(2xi+1 − ∆x

2 ) = −∆x2

8 .

(A.32)
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Substituting Eqs. (A.31) and (A.32) in Eq. (A.30), yields:

I = ∆x
2 (ui + ui+1) + ∆x2

8 ((ux)i − (ux)i+1) . (A.33)

Considering Eq. (A.33), Eq. (A.24) can be rewritten as:

∫ xi+1

xi

un+1dx− I +
∫ tn+1

tn
(f(xi+1) − f(xi))dt = 0. (A.34)

Using the mid-point approximation for the time integration (which has second order
accuracy), ∫ tn+1

tn
f(xi)dt ≈ F (xn+ 1

2
i )∆t, (A.35)

and based on linear variations on the spatial domain, it is clear:
∫ xi+1

xi

un+1dx ≈ un+1
i+ 1

2
∆x. (A.36)

So Eq. (A.34) can be rewritten as:

∆xun+1
i+ 1

2
− ∆x

2 (unj + uni+1) − ∆x2

8 ((ux)ni − (ux)ni+1) + ∆t(F (xn+ 1
2

i+1 ) − F (xn+ 1
2

i )). (A.37)

Finally, the final form of the staggered NT scheme becomes:

un+1
i+ 1

2
= 1

2(uni + uni+1) + ∆x
8 ((ux)ni − (ux)ni+1) − ∆t

∆x(F (xn+ 1
2

i+1 ) − F (xn+ 1
2

i )). (A.38)

This is a fully-discrete form. Based on the Taylor expansion, the mid-values can be
approximated in time as:

u
n+ 1

2
i = uni − ∆t

2 (F,x)ni , (A.39)

and
u
n+ 1

2
i+1 = uni+1 − ∆t

2 (F,x)ni+1. (A.40)

It should be mentioned that for this formulation, the two first steps of the Gondunov-
type central scheme (the reconstruction and evolution stages) are used.

The NT method - non staggered In order to project the staggered form of the
NT method to the non-staggered form, the staggered solution un+1

i+1/2 is averaged to
obtain un+1

i . It is assume the evolved staggered solutions un+1 have linear variation on
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staggered cells (a linear piecewise interpolation, but this time on the staggered grid):

un+1
i+ 1

2
= un+1

i+ 1
2

+ (ux)i+ 1
2
(x− xi+ 1

2
), (A.41)

and
un+1
i− 1

2
= un+1

i− 1
2

+ (ux)i− 1
2
(x− xi− 1

2
). (A.42)

Based on Figure A.6, the integral of un+1
i is divided into two parts due to possible

discontinuity at xi as [75]:

un+1
i = 1

∆x(
∫ xi

x
i− 1

2

un+1
i− 1

2
+
∫ x

i+ 1
2

xi

un+1
i+ 1

2
) =

un+1
i− 1

2
+ un+1

i+ 1
2

2 − ∆x
8 ((ux)i+ 1

2
− (ux)i− 1

2
). (A.43)

The final formulation of non-staggered scheme of the NT method can be represented as:

un+1
i = 1

4(uni−1 + 2uni + uni+1) − ∆x
16 ((ux)i+1 − (ux)i−1)

− ∆t
2∆x(F (un+ 1

2
i+1 ) − F (un+ 1

2
i−1 )) − ∆x

8 (ux)i+ 1
2

− (ux)i− 1
2
).

(A.44)

The truncation error for the NT method In this part, the truncation error for the
NT scheme will be provided: the source of the numerical dissipation and dispersion.
By subtracting un

j+ 1
2

from both sides of the fully-discrete form of the NT scheme, Eq.
(A.38), this equation can be rewritten as:

un+1
j+ 1

2
− unj+ 1

2
= 1

2(unj − 2unj+ 1
2

+ unj+1) + ∆x
8 ((ux)nj + (ux)nj+1) − ∆t

∆x(F (xn+ 1
2

j+1 ) − F (xn+ 1
2

j )).

(A.45)

Dividing Eq. (A.45) by ∆t, yields:

un+1
j+ 1

2
− un

j+ 1
2

∆t = 1
2∆t(u

n
j − 2unj+ 1

2
+ unj+1) + ∆x

8∆t((ux)
n
j − (ux)nj+1)

− 1
∆x(F (xn+ 1

2
j+1 ) − F (xn+ 1

2
j ))

= 1
2∆t [(u

n
j+1 − unj+ 1

2
) − (unj+ 1

2
− unj )] + ∆x

8∆t((ux)
n
j − (ux)nj+1)

− 1
∆x(F (xn+ 1

2
j+1 ) − F (xn+ 1

2
j ).

(A.46)
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According to the definition of the central second derivative of u with second order accu-
racy (i.e.: (uxx)i = ui+1−2ui+ui−1

∆x2 + O(∆x2)), Eq. (A.46) can be rewritten as:

un+1
j+ 1

2
− un

j+ 1
2

∆t = 1
2∆t

(∆x
2 )2[(unj+1 − un

j+ 1
2
) − (un

j+ 1
2

− unj )]
(∆x

2 )2 + ∆x∆x
8∆t

((ux)nj − (ux)nj+1)
∆x

− 1
∆x(F (xn+ 1

2
j+1 ) − F (xn+ 1

2
j ))

= (∆x)2

8∆t (uxx)j+ 1
2

− (∆x)2

8∆t (uxx)j − 1
∆x(F (xn+ 1

2
j+1 ) − F (xn+ 1

2
j )) + O(∆x4).

(A.47)

Based on the Taylor expansion, (uxx)j+ 1
2

can be expanded as:

(uxx)j+ 1
2

= (uxx)j + ∆x
2 (uxxx)j + O(∆x2). (A.48)

Replacing Eq. (A.48) in Eq. (A.47), results:

un+1
j+ 1

2
− un

j+ 1
2

∆t = ∆x2

8∆t

(
(uxx)j + ∆x

2 (uxxx)j + O(∆x2)
)

− ∆x2

8∆t (uxx)j − 1
∆x

(
F (xn+ 1

2
j+1 ) − F (xn+ 1

2
j )

)
+ O(∆x4)

= ∆x3

24∆t(uxxx)j − 1
∆x

(
F (xn+ 1

2
j+1 ) − F (xn+ 1

2
j )

)
+ O(∆x4).

(A.49)

From Eq. (A.49) it is clear that:

1. The smallest coefficients in the truncation error is for the odd derivative, showing
the numerical dissipation effects,

2. ∆t is in the denominator of the coefficients; so the truncation error approach
infinity as ∆t → 0 (since 1

∆t → ∞). As a result, the fully-discrete form of the NT
scheme can not be converted to the semi-discrete form,

3. The truncation error of the second order NT scheme is much less that those of the
first-order LxF method.

Example: The previous Burgers’ equation is studied for reveal numerical feature
of the NT scheme with the previous CFL condition. The numerical results are shown
in Figure A.7. It is clear that numerical dissipation is considerably less than the LxF
scheme.
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Figure A.7: Numerical results for the Burgers’ equation by using the NT method at
t=0.158, t=0.5 and t=1; solid lines and hollow circles denote the exact and
numerical solutions, respectively.

The Kurganov and Tadmor (KT) method

The last method which will be derived in this section is the KT method. In this subsec-
tion, the KT formulation in fully-discrete and semi-discrete forms will be provided.

The KT scheme - the fully discrete second-order central form The main idea behind
the introduction of the KT method is to use more precise information about the local
speed of propagating waves for distinguishing smooth and non-smooth solutions from
each other. Non-smooth solutions can develop due to possible discontinuities around
cell edges xi+1/2. By this distinguishing, the non-smooth solutions are averaged over
narrower zones and this leads to the smaller numerical dissipation. In comparison to the
NT scheme, in the KT method, the maximum local speeds around cell edges are needed
as additional information [22].

In the KT scheme, in the reconstruction step, the linear piecewise interpolation is
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Figure A.8: Illustration of the KT scheme.

used over each cell; so, the state variable u(x) can be approximated as:

u(x) = unj + (x− xj)(ux)j, x ∈ [xnj− 1
2
, xnj+ 1

2
]. (A.50)

Since in each cell, the variation is linear, the method has second order accuracy in
the spatial domain. As mentioned before due to possible discontinuities around cell-
edges, solutions can be classified as smooth and non-smooth solutions. The left and
right borders of the non-smooth zone around xj+1/2 are denoted by xj+1/2,l and xj+1/2,r,
respectively. The locations can be obtained as:

xj+ 1
2 ,r

= xj+ 1
2

+ aj+ 1
2
.∆t,

xj+ 1
2 ,l

= xj+ 1
2

− aj+ 1
2
.∆t,

(A.51)

where aj+ 1
2

is the maximum of absolute local propagation speed at xj+ 1
2
.

After the reconstruction step, the evaluation step will be done. For this purpose,
according to Figure A.8, the evolution stage is done separately for smooth and non-
smooth parts as:

i Evolution on the non-smooth volume: [xn
j+ 1

2 ,l
, xn

j+ 1
2 ,r

] × [tn, tn+1],

ii Evolution on the smooth volume: [xn
j− 1

2 ,r
, xn

j+ 1
2 ,l

] × [tn, tn+1].
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i The non-smooth interval [xn
j+ 1

2 ,l
, xn

j+ 1
2 ,r

] × [tn, tn+1]:

We begin by the spatio-temporal integration as:

∫ tn+1

tn

∫ x
j+ 1

2 ,r

x
j+ 1

2 ,l

(∂u
∂t

+ ∂F

∂x
)dxdt = 0,

∫ x
j+ 1

2 ,r

x
j+ 1

2 ,l

[u(x, tn+1) − u(x, tn)]dx+
∫ tn+1

tn
[F (xj+ 1

2 ,r
, t) − F (xj+ 1

2 ,l
, t)]dt = 0,

∫ x
j+ 1

2 ,r

x
j+ 1

2 ,l

u(x, tn+1)dx−
∫ x

j+ 1
2 ,r

x
j+ 1

2 ,l

u(x, tn)dx+
∫ tn+1

tn
[F (xj+ 1

2 ,r
, t) − F (xj+ 1

2 ,l
, t)]dt = 0.

(A.52)

Let
∫ xj+ 1

2 ,r

x
j+ 1

2 ,l
u(x, tn)dx be referred as I. Due to possible discontinuity at xi+1/2, we

have:

I =
∫ x

j+ 1
2 ,r

x
j+ 1

2 ,l

u(x, tn)dx

=
∫ x

j+ 1
2

x
j+ 1

2 ,l

[uj + (x− xj)(ux)j]dx+
∫ x

j+ 1
2 ,r

x
j+ 1

2

[uj+1 + (x− xj+1)(ux)j+1]dx

= uj(xj+ 1
2

− xj+ 1
2 ,l

) + (ux)j(
xj+ 1

2

2

2 −
xj+ 1

2 ,l
2

2 − (xj.xj+ 1
2

− xj.xj+ 1
2 ,l

))

+ uj+1(xj+ 1
2 ,r

− xj+ 1
2
)

+ (ux)j+1(
xj+ 1

2 ,r
2

2 −
xj+ 1

2

2

2 − (xj+1.xj+ 1
2 ,r

− xj+1.xj+ 1
2
)).

(A.53)

However: xj+ 1
2 ,r

= xj+ 1
2

+ aj+ 1
2
.∆t, xj+ 1

2 ,l
= xj+ 1

2
− aj+ 1

2
.∆t and xj+ 1

2
− xj+ 1

2 ,l
=

aj+ 1
2
∆t; therefore xj+ 1

2 ,r
− xj+ 1

2
= aj+ 1

2
∆t. Inserting these relationships in Eq.

(A.53), we have:

I =
∫ x

j+ 1
2 ,r

x
j+ 1

2 ,l

u(x, tn)dx = uj(aj+ 1
2
∆t) + (ux)j(xj+ 1

2
.aj+ 1

2
∆t− xj.aj+ 1

2
∆t−

aj+ 1
2

2.∆t2

2 )

+ uj+1(aj+ 1
2
∆t) + (ux)j+1(xj+ 1

2
.aj+ 1

2
∆t− xj+1.aj+ 1

2
∆t+

aj+ 1
2

2.∆t2

2 ).

(A.54)
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Since xj+ 1
2
.aj+ 1

2
∆t − xj.aj+ 1

2
∆t = ∆x

2 aj+ 1
2
∆t and xj+ 1

2
.aj+ 1

2
∆t − xj+1.aj+ 1

2
∆t =

−∆x
2 aj+ 1

2
∆t, Eq. (A.54) will be simplified as:

I =
∫ x

j+ 1
2 ,r

x
j+ 1

2 ,l

u(x, tn)dx

= (uj + uj+1)(aj+ 1
2
∆t) + ((ux)j − (ux)j+1)

∆x
2 .aj+ 1

2
.∆t

+ ((ux)j+1 − (ux)j)
aj+ 1

2

2∆t2

2

= (aj+ 1
2
∆t)[(uj + uj+1) +

∆x− aj+ 1
2
∆t

2 ((ux)j − (ux)j+1)].

(A.55)

Let ∆xj+ 1
2

:= xj+ 1
2 ,r

− xj+ 1
2 ,l

= 2(aj+ 1
2
∆t), so aj+ 1

2
∆t =

∆x
j+ 1

2
2 . Then I can be

written as:

I = ∆xj+ 1
2
(uj + uj+1

2 +
∆x− aj+ 1

2
∆t

4 ((ux)j − (ux)j+1)). (A.56)

So the solution at tn+1 can be obtained by replacing I in Eq. (A.52), as:

∫ x
j+ 1

2 ,r

x
j+ 1

2 ,l

u(x, tn+1)dx = ∆xj+ 1
2
(uj + uj+1

2 +
∆x− aj+ 1

2
∆t

4 ((ux)j − (ux)j+1))

−
∫ tn+1

tn
[F (xj+ 1

2 ,r
, t) − F (xj+ 1

2 ,l
, t)]dt.

(A.57)

The flux integrals can be approximated by the the midpoint rule. Let the average
solution at tn+1 is denoted as:

wn+1
j+ 1

2
= 1

∆xj+ 1
2

∫ x
j+ 1

2 ,r

x
j+ 1

2 ,l

u(x, tn+1)dx. (A.58)

Then the evolved average solution on non-smooth zone is [22]:

wn+1
j+ 1

2
= uj + uj+1

2 +
∆x− an

j+ 1
2
∆t

4 ((ux)nj −(ux)nj+1)− 1
2an

j+ 1
2

[F (un+ 1
2

j+ 1
2 ,r

)−F (un+ 1
2

j+ 1
2 ,l

)].

(A.59)

ii The smooth interval [xn
j− 1

2 ,r
, xn

j+ 1
2 ,l

] × [tn, tn+1]: We follow the previous steps
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again, beginning by integration on the smooth spatio-temporal volume.

∫ tn+1

tn

∫ x
j+ 1

2 ,l

x
j− 1

2 ,r

(∂u
∂t

+ ∂F

∂x
)dxdt = 0,

∫ x
j+ 1

2 ,l

x
j− 1

2 ,r

[u(x, tn+1) − u(x, tn)]dx+
∫ tn+1

tn
[F (xj+ 1

2 ,l
, t) − F (xj− 1

2 ,r
, t)]dt = 0,

∫ x
j+ 1

2 ,l

x
j− 1

2 ,r

u(x, tn+1)dx−
∫ x

j+ 1
2 ,l

x
j− 1

2 ,r

u(x, tn)dx+
∫ tn+1

tn
[F (xj+ 1

2 ,l
, t) − F (xj− 1

2 ,r
, t)]dt = 0.

(A.60)

Let
∫ xj+ 1

2 ,l

x
j− 1

2 ,r
u(x, tn)dx is referred as J . The calculation of the cell averages at tn on

the spatial interval [xn
j− 1

2 ,r
, xn

j+ 1
2 ,l

] is:

J =
∫ x

j+ 1
2 ,l

x
j− 1

2 ,r

u(x, tn)dx =
∫ x

j+ 1
2 ,l

x
j− 1

2 ,r

[unj + (x− xj)(ux)j]dx

= unj (xj+ 1
2 ,l

− xj− 1
2 ,r

) + (ux)j(
xj+ 1

2 ,l
2

2 −
xj− 1

2 ,r
2

2 − (xjxj+ 1
2 ,l

− xjxj− 1
2 ,r

)).

(A.61)

For simplicity, the following relationships are considered:

xj+ 1
2 ,l

:= xj+ 1
2

− aj+ 1
2
.∆t, xj− 1

2 ,r
:= xj− 1

2
+ aj− 1

2
.∆t,

xj+ 1
2

:= xj + ∆x
2 , xj− 1

2
:= xj − ∆x

2 ,

xj =
x

j+ 1
2

+x
j− 1

2
2 , ∆x := xj+ 1

2
− xj− 1

2
.

Also the width of the smooth zone around xj is ∆xj = xn
j+ 1

2 ,l
− xn

j− 1
2 ,r

= ∆x −
∆t(an

j− 1
2

+ an
j+ 1

2
). Considering the above mentioned equations, the simplified form

of Eq. (A.61) is:

∫ x
j+ 1

2 ,l

x
j− 1

2 ,r

u(x, tn)dx = ∆xj[unj + (ux)j
∆t
2 (aj− 1

2
− aj+ 1

2
)]. (A.62)

By substituting Eq. (A.62) in (A.60), the average of the evolved solution(at tn+1)
is:
∫ x

j+ 1
2 ,l

x
j− 1

2 ,r

u(x, tn+1)dx = ∆xj[unj+(ux)j
∆t
2 (aj− 1

2
−aj+ 1

2
)]−

∫ tn+1

tn
[F (xj+ 1

2 ,l
, t)−F (xj+ 1

2 ,r
, t)]dt.

(A.63)
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The average evolved solution u(x, tn+1) on the strip [xn
j− 1

2 ,r
, xn

j+ 1
2 ,l

] is denoted as:

wn+1
j = 1

∆xj

∫ x
j+ 1

2 ,l

x
j− 1

2 ,r

u(x, tn+1)dx. (A.64)

Using the mid-point rule for the time integration, Eq. (A.63), wn+1
j can be written

as [22]:

wn+1
j = unj + (ux)j

∆t
2 (anj− 1

2
− anj+ 1

2
) − λ

1 − λ(an
j− 1

2
+ an

j+ 1
2
) [F (un+ 1

2
j+ 1

2 ,l
) − F (un+ 1

2
j− 1

2 ,r
)],

(A.65)
where λ := ∆t

∆x .

In the above formulation, the midpoint values un+ 1
2 can be obtained by the Taylor

expansion as:

u
n+ 1

2
j+ 1

2 ,l
= unj+ 1

2 ,l
− ∆t

2 F (unj+ 1
2 ,l

)x, u
n+ 1

2
j+ 1

2 ,r
= unj+ 1

2 ,r
− ∆t

2 F (unj+ 1
2 ,r

)x,

unj+ 1
2 ,l

= unj + ∆x(ux)nj (1
2 − λanj+ 1

2
), unj+ 1

2 ,r
= unj+1 − ∆x(ux)nj+1(

1
2 − λanj+ 1

2
).

(A.66)

To have a non-staggered formulation, the projection step is used (projection of solu-
tions on the original grid). For this, at first, a piecewise interpolation is done on the
results obtained in the evolution step. The piecewise interpolation contains both linear
variations (in non-smooth zones) and constant values (in smooth areas). The piecewise
interpolation is:

w̃(x, tn+1) =
∑
j

([wn+1
j+ 1

2
+ (ux)n+1

j+ 1
2
(x− xj+ 1

2
)]1[xn

j+ 1
2 ,l
,xn

j+ 1
2 ,r

] + wn+1
j 1[xn

j− 1
2 ,r

,xn

j+ 1
2 ,l

]), (A.67)

where 1[a,b](x) = 1 for a ≤ x ≤ b and 1[a,b](x) = 0 elsewhere. Here, the exact spatial
derivatives ux(xj+ 1

2
, tn+1) are approximated by using the MINMOD limiter:

(ux)n+1
j+ 1

2
= MINMOD

 wn+1
j+1 − wn+1

j+ 1
2

∆xj+1
2 + an

j+ 1
2
∆t
,
wn+1
j+ 1

2
− wn+1

j

∆xj

2 + an
j+ 1

2
∆t

 , (A.68)
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or:

(ux)n+1
j+ 1

2
= 2

∆x.MINMOD

 wn+1
j+1 − wn+1

j+ 1
2

1 + λ(an
j+ 1

2
− an

j+ 3
2
) ,

wn+1
j+ 1

2
− wn+1

j

1 + λ(an
j+ 1

2
− an

j− 1
2
)

 . (A.69)

Let us define:
∆xR = ∆xj+1

2 + anj+1/2∆t and ∆xL = ∆xj

2 + anj+1/2∆t.

Then it is easy to show that:
∆xL = ∆x

2 − ∆t
2 (an

j− 1
2
+an

j+ 1
2
)+an

j+ 1
2
∆t = ∆x

2 + ∆t
2 (an

j+ 1
2
−an

j− 1
2
) = 2

∆x(1+λ(an
j+ 1

2
−an

j− 1
2
)),

∆xR = ∆x
2 − ∆t

2 (an
j+ 1

2
+an

j+ 3
2
)+an

j+ 1
2
∆t = ∆x

2 + ∆t
2 (an

j+ 1
2
−an

j+ 3
2
) = 2

∆x(1+λ(an
j+ 1

2
−an

j+ 3
2
)).

Finally, by averaging w̃(x, tn) over [xj− 1
2
, xj+ 1

2
], the fully-discrete form of the second-

order central KT scheme can be obtained as [22]:

ūn+1
j = un+1

j = 1
∆x

∫ x
j+ 1

2

x
j− 1

2

w̃(x, tn+1)dx = λanj− 1
2
wn+1
j− 1

2
+ [1 − λ(anj− 1

2
+ anj+ 1

2
)]wn+1

j

+λanj+ 1
2
wn+1
j+ 1

2
+ ∆x

2 [(λanj− 1
2
)2(ux)n+1

j− 1
2

− (λanj+ 1
2
)2(ux)n+1

j+ 1
2
].

(A.70)

The KT scheme - reduction to semi-discrete formulation The KT scheme is the
first central high-resolution scheme admiting the semi-discrete form. This is because its
truncation error is independent of the term O(1/∆t) [22]. A benefit of the semi-discrete
form is that it lets one using of traditional time-stepping methods, developed for ODEs,
such as the TVD Runge-Kutta method.

The fully-discrete central scheme shown in Eq. (A.70) is used to provide corresponding
semi-discrete form. For this, Eq. (A.70) is rewritten as:

un+1
j − unj

∆t =
an
j− 1

2

∆x w
n+1
j− 1

2
+
 1

∆x −
an
j− 1

2
+ an

j+ 1
2

∆x

wn+1
j +

an
j+ 1

2

∆x w
n+1
j+ 1

2
− 1

∆tu
n
j + O(λ).

(A.71)
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By substituting Eq. (A.59) in Eq. (A.72), we have:

un+1
j − unj

∆t =
an
j− 1

2

2∆x (unj−1 − unj ) + 1
4a

n
j− 1

2
((ux)nj−1 − (ux)nj ) − 1

2∆x [F (un+ 1
2

j− 1
2 ,r

) − F (un+ 1
2

j− 1
2 ,l

)]

−
an
j− 1

2
+ an

j+ 1
2

∆x unj + 1
2(anj− 1

2
− anj+ 1

2
)(ux)nj − 1

∆x [F (un+ 1
2

j+ 1
2 ,l

) − F (un+ 1
2

j− 1
2 ,r

)]

+
an
j+ 1

2

2∆x (un+1
j + unj ) + 1

4a
n
j+ 1

2
((ux)nj − (ux)nj+1) − 1

2∆x [F (un+ 1
2

j+ 1
2 ,r

) − F (un+ 1
2

j+ 1
2 ,l

)] + O(λ)

= 1
2∆x

(
−[(F (un+ 1

2
j+ 1

2 ,r
) + F (un+ 1

2
j+ 1

2 ,l
)) − (F (un+ 1

2
j− 1

2 ,r
) + F (un+ 1

2
j− 1

2 ,l
))]

+
an
j+ 1

2

∆x [(unj+1 − ∆x
2 (ux)nj+1) − (unj + ∆x

2 (ux)nj )]

−
an
j− 1

2

∆x [(unj − ∆x
2 (ux)nj ) − (unj−1 + ∆x

2 (ux)nj−1)]
+ O(λ).

(A.72)

By using the Taylor expansion in time and linear variation in the spatial domain, in the
case ∆t → 0, the mid values can be approximated as (as ∆t → 0, then un+1/2 ≈ un):

u
n+ 1

2
j+ 1

2 ,r
→ uj+1(t) − ∆x

2 (ux)j+1(t) = urj+ 1
2
(t),

u
n+ 1

2
j+ 1

2 ,l
→ uj(t) + ∆x

2 (ux)j(t) = ulj+ 1
2
(t).

(A.73)

The semi-discrete formulation can be obtained if in Eq. (A.72), ∆t → 0. Regarding Eq.
(A.72) and the above-mentioned simplifications, the semi-discrete form is:

d

dt
uj(t) = −

[F (ur
j+ 1

2
(t)) + F (ul

j+ 1
2
(t))] − [F (ur

j− 1
2
(t)) + F (ul

j− 1
2
(t))]

2∆x
+ 1

2∆x
(
anj+ 1

2
(t)[urj+ 1

2
(t) − ulj+ 1

2
(t)] − anj− 1

2
(t)[urj− 1

2
(t) − ulj− 1

2
(t)]

)
,

(A.74)

or:
d

dt
uj(t) = −

F ∗
j+ 1

2
(t) − F ∗

j− 1
2
(t)

∆x , (A.75)

where:

F ∗
j+ 1

2
(t) =

F (ur
j+ 1

2
(t)) + F (ul

j+ 1
2
(t))

2 −
an
j+ 1

2
(t)

2
[
urj+ 1

2
(t) − ulj+ 1

2
(t)
]
, (A.76)

F ∗
j+ 1

2
denotes the corrected flux obtained by a proper combination of the estimated
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solutions at the right (ur
j+ 1

2
(t)) and left (ul

j+ 1
2
(t)) sides of jth cell at the edge xj+1/2.

These reconstructed solutions can be obtained as:

urj+ 1
2

= uj+1(t) − ∆x
2 (ux)j+1(t),

ulj+ 1
2

= uj(t) + ∆x
2 (ux)j(t).

(A.77)

In order to approximate the derivatives (ux)nj , a limited slope such as the general-
ized MINMOD-based one will be used; its definition is:

(ux)nj = MINMOD

(
θ
unj − unj−1

∆x ,
unj+1 − unj−1

2∆x , θ
unj+1 − unj

∆x

)
, 1 ≤ θ ≤ 2, (A.78)

where θ = 1 and θ = 2 lead to the most and the least dissipative results, respectively.
Example: Numerical simulation of the Burgers’ equation with the KT scheme is

presented here, Figure A.9; the CFL condition is the same as the LxF and NT schemes.
It is clear that numerical dissipation is reduced considerably.
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Figure A.9: Numerical results of the Burgers’ equation by the KT method at t=0.158,
t=0.5 and t=1; solid lines and hollow circles denote the exact and numerical
solutions, respectively.
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Appendix B

The NVSF upwind scheme

In this appendix the upwind-based NVSF formulation is reviewed. Let us assume the
hyperbolic equation u(x, t)t + f(u(x, t))x = 0 with propagating velocity a(x) := ∂f/∂u.
To preserve the monotone reconstruction of cell-interface flux, fi+1/2, this flux is obtained
by the following interpolation function [20, 50]:

fi+1/2 = fU +
⌢
f i+1/2 (fD − fU) , (B.1)

where: fi+1/2 denotes the flux at the edge point xi+1/2; fU and fD denote upstream and
downstream fluxes, respectively. These fluxes are determined by ai as (see Figure B.1):

1. If ai+1/2 > 0: fU = fi−1, fD = fi+1 with central cell center xP := xi (for the cell Ii),

2. If ai+1/2 < 0: fU = fi+2 and fD = fi with central cell center xP := xi+1 (for the
cell Ii+1),

where ai+1/2 := ai+ai+1
2 . And, the parameter

⌢
f i+1/2 shows a limited flux (obtained by a

nonlinear limiter).

For the MINMOD limiter,
⌢
f i+1/2 can be estimated as [50]:

⌢
f i+1/2 = Max

⌢
fP ,Min

⌢
xi+1/2

⌢
xP

⌢
fP ,

1 − ⌢
xi+1/2

1 − ⌢
xP

⌢
fP +

⌢
xi+1/2 − ⌢

xP

1 − ⌢
xP

 , (B.2)
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Figure B.1: Definition of the upstream and downstream cells based on the veloc-
ity ai+1/2 = af .

and for the SMART limiter 13 ,
⌢
f i+1/2 is [50]:

⌢
f i+1/2 =Max

⌢
fP ,Min


⌢
xi+1/2

(
1 − 3⌢

xP + 2⌢
xi+1/2

)
⌢
xP

(
1 − ⌢

xP

) ⌢
fP ,

⌢
xi+1/2

(
1 − ⌢

xi+1/2

)
⌢
xp

(
1 − ⌢

xP

) ⌢
fP

+

⌢
xi+1/2

(
⌢
xi+1/2 − ⌢

xP

)
1 − ⌢

xP
, 1


 ,

(B.3)

where the normalized variables
⌢
fP , ⌢

xP and ⌢
xi+1/2 are defined as:

⌢
fP := fP − fU

fD − fU
,

⌢
xP := xP − xU

xD − xU
,

⌢
xi+1/2 := xi+1/2 − xU

xD − xU
.

(B.4)

Using the upwind formulation (Eq. (4.6)), the evolved solution un+1 can be obtained
based on un and edge fluex fi±1/2.

13The SMART limiter, itself, is defined as [231]:
ϕsmart := Max

[
0, Min

[
2r,
( 1+3r

4
)]]

,
where ri := r(xi) = ui−ui−1

ui+1−ui
denotes the ratio of successive gradients.

298



Appendix C

The TVD condition, Entropy functions
and E-schemes

In this appendix, the following concepts are reviewed:

1. The TVD conditions and limiters,

2. Entropy functions and entropy conditions,

3. E-schemes and slope limiters.

C.1 The TVD conditions and limiters
This subsection contains:

1. Deriving of the global TVD (positivity) conditions,

2. Some local TVD conditions based on the positivity relationships,

3. Essential constraints for designing of flux limiters satisfying the TVD conditions,

4. Relationship between flux and slope limiters,

C.1.1 Global TVD conditions

Theorem 4. In order to the fully-discrete form (4.40) is TVD, the following conditions
are sufficient:

C+
i+1/2 + C−

i+1/2 ≤ 1,

C−
i+1/2 ≥ 0,

C+
i+1/2 ≥ 0.

(C.1)
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Proof. Using Eq. (4.40) for both un+1
i and uni , the difference un+1

i+1 − un+1
i can be

written as:

un+1
i+1 − un+1

i =(uni+1 − uni ) + C+
i+3/2(u

n
i+2 − uni+1) − C+

i+1/2(u
n
i+1 − uni )

− C−
i+1/2(u

n
i+1 − uni ) + C−

i−1/2(u
n
i − uni−1)

=(uni+1 − uni )
[
1 − C+

i+1/2 − C−
i+1/2

]
+ (uni − uni−1)C−

i−1/2 + (uni+2 − uni+1)C+
i+3/2.

(C.2)

By summation the both sides of the above equation over i, we have:

∑
i

(un+1
i+1 − un+1

i ) =

∑
i

(
(uni+1 − uni )

[
1 − C+

i+1/2 − C−
i+1/2

])
+
∑
i

(
(uni − uni−1)C−

i−1/2

)
+
∑
i

(
(uni+2 − uni+1)C+

i+3/2)
)

=
∑
i

(
(uni+1 − uni )

[
1 − C+

i+1/2 − C−
i+1/2

])
+
∑
i

(
(uni+1 − uni )C−

i+1/2

)
+
∑
i

(
(uni+1 − uni )C+

i+1/2

)
.

(C.3)

So it is clear, if the conditions (C.1) are met, then

∑
i

∣∣∣un+1
i+1 − un+1

i

∣∣∣ ≤
∑
i

(∣∣∣uni+1 − uni
∣∣∣ [1 − C+

i+1/2 − C−
i+1/2

])
+
∑
i

(∣∣∣uni+1 − uni
∣∣∣C−

i+1/2

)
+
∑
i

(∣∣∣uni+1 − uni
∣∣∣C+

i+1/2

)
,

(C.4)

or:

∑
i

∣∣∣un+1
i+1 − un+1

i

∣∣∣ ≤
∑
i

∣∣∣uni+1 − uni
∣∣∣ , (C.5)

and the solution is TVD. ■

Theorem 5. In order to the semi-discrete form Eq. (4.42) is TVD, the following con-
ditions are sufficient:

C+
i+1/2 + C−

i+1/2 ≤ 1,

C−
i+1/2 ≥ 0,

C+
i+1/2 ≥ 0.

(C.6)
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Proof: Let us rewrite the semi-discrete form Eq. (4.42) as:

d

dt
ui(t) = C+

i+1/2∆ui+1/2 − C−
i−1/2∆ui−1/2, ∆ui+1/2 := ui+1(t) − ui(t). (C.7)

Forward differencing of Eq. (C.7) leads:

d

dt
∆ui+1/2 =

(
C+
i+3/2∆ui+3/2 − C−

i+1/2∆ui+1/2
)

−
(
C+
i+1/2∆ui+1/2 − C−

i−1/2∆ui−1/2
)
.

(C.8)

Multiplying Eq. (C.8) by the Sign function si+1/2 := Sign(∆ui+1/2) and then by sum-
ming by parts, we have:

d

dt

∑
i

∣∣∣∆ui+1/2

∣∣∣ =
∑
i

d

dt
si+1/2∆ui+1/2

=
∑
i

(
C+
i+3/2si+1/2∆ui+3/2 − C−

i+1/2si+1/2∆ui+1/2
)

−
∑
i

(
C+
i+1/2si+1/2∆ui+1/2 − C−

i−1/2si+1/2∆ui−1/2
)

=
∑
i

(
C+
i+1/2si−1/2∆ui+1/2 − C−

i+1/2si+1/2∆ui+1/2
)

−
∑
i

(
C+
i+1/2si+1/2∆ui+1/2 − C−

i+1/2si+3/2∆ui+1/2
)
,

(C.9)

or:

d

dt

∑
i

∣∣∣∆ui+1/2

∣∣∣ =
∑
i

d

dt
si+1/2∆ui+1/2

= −
∑
i

[(
si+1/2 − si−1/2

)
C+
i+1/2 +

(
si+1/2 − si+3/2

)
C−
i+1/2

]
∆ui+1/2,

(C.10)

and it is clear that: ∆ui+1/2 = si+1/2

∣∣∣∆ui+1/2

∣∣∣ and s2
i+1/2 = 1 14. So, Eq. (C.10) becomes:

d

dt
TV [u(t)] = −

∑
i

[(
1 − si+1/2si−1/2

)
C+
i+1/2 +

(
1 − si+1/2si+3/2

)
C−
i+1/2

] ∣∣∣∆ui+1/2

∣∣∣ .
(C.11)

Coefficients
(
1 − si+1/2si−1/2

)
and

(
1 − si+1/2si+3/2

)
are either 0 or 2. So the summation

in RHS is positive if C+
i+1/2 ≥ 0 and C−

i+1/2 ≥ 0. In this case the method remains TVD.
14The signum function at zero is defined to be ±1, so that its square equals 1.
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■

C.1.2 Local TVD conditions

In the following, for the following semi-discrete form

d

dt
ui(t) = − 1

∆xi

[
Fi+1/2 − Fi−1/2

]
, ∆xi = xi+1/2 − xi−1/2, (C.12)

some local TVD conditions are provided.

Lemma 1. The semi-discrete scheme (C.12) is TVD if, the numerical fluxes Fi+1/2

satisfy:

Fi+1/2 ≥ Fi−1/2 ui is a maximum value,

Fi+1/2 ≤ Fi−1/2 ui is a minimum value.
(C.13)

Proof: At first, we forward-difference (C.12) as:

d

dt
∆ui+1/2 = − 1

∆xi+1

[
Fi+3/2 − Fi+1/2

]
+ 1

∆xi

[
Fi+1/2 − Fi−1/2

]
, (C.14)

multiplying by si+1/2 := Sign(∆ui+1/2) and then summing by parts, we have:

∑
i

d

dt
∆ui+1/2 =

∑
i

(
− 1

∆xi+1

[
Fi+3/2 − Fi+1/2

]
si+1/2 + 1

∆xi

[
Fi+1/2 − Fi−1/2

]
si+1/2

)
,

=
∑
i

(
− 1

∆xi

[
Fi+1/2 − Fi−1/2

]
si−1/2 + 1

∆xi

[
Fi+1/2 − Fi−1/2

]
si+1/2

)
,

(C.15)

or:

d

dt
TV [u(t)] =

∑
i

1
∆xi

[
si+1/2 − si−1/2

] [
Fi+1/2 − Fi−1/2

]
. (C.16)

To have a TVD solution, RHS of the above-equation should be zero or negative. Now,
for different possible solutions, we check these possibilities.

1. Monotone solution: in this case we have: si+1/2 = si−1/2, and so RHS is zero,

2. ui is maximum: then si+1/2 < 0 and si−1/2 > 0; so it is necessary that:[
Fi+1/2 − Fi−1/2

]
≥ 0, or Fi+1/2 ≥ Fi−1/2,

302



Appendix C The TVD condition, Entropy functions and E-schemes

3. ui is minimum: then si+1/2 > 0 and si−1/2 < 0; so it is necessary that:[
Fi+1/2 − Fi−1/2

]
≤ 0, or Fi+1/2 ≤ Fi−1/2.

■

The above-mentioned proof shows that the TVD condition is satisfied automatically
in monotone regions. And so we need to check the TVD condition around some isolated
points (extrema points).

C.1.3 Designing of flux/slope limiters based on the global TVD
conditions

For satisfying the TVD condition, the concept of flux/slope limiters can be used. Here,
fluxes (in the vicinity of high gradient solutions) are limited in a way that forming
of spurious oscillations are prevented. In this regard, a high-order flux FH can be
decomposed to a low-order FL and a correction (residual) term as [68]:

FH
i = FL

i + (FH
i − FL

i ). (C.17)

The high-order flux is used in smooth regions while FL is utilized around discontinuities.
For such switching, a flux limiter function can be used, as:

FH
i = FL

i + ϕi
[
FH
i − FL

i

]
, (C.18)

where ϕi := ϕ(uj;xi) denotes a limiter and is defined for all points xj where |j − i| ≤ c

(for the three point stencil, c is 1). In smooth regions, the limiter ϕi approaches 1, and
around discontinuities, it is near to zero.

For deriving TVD conditions for the limiters ϕi, a linear advection equation, ut +
(au)x = 0, is assumed, where a is a constant velocity and here we assume: a > 0. Using
the Lax-Wendroff 15 discretization with second-order-accuracy, the advection equation

15The Lax-Wendroff method: Let us assume the linear advection equation ut + aux = 0, where a is a
constant. Using the Taylor expansion, un+1 := u(x, tn + ∆t) can be written as: un+1 = un + ∆tu̇n +
∆t2

2 ün; but: u̇(t) = −aux and ü = −autx = −a(ut)x = −a(−aux)x = a2uxx. Using the central
approximations for the spatial derivatives, we have: (un

j )x = un
j+1−un

j−1
2∆x and (un

j )xx = un
j+1−2un

j +un
j−1

∆x2 ,
where un

j := u(xj , tn). By substituting u̇ and ü in the Taylor expansion, we have:
un+1

j = un
j − a∆t

2∆x (un
j+1 − un

j−1) + a2∆t2

2∆x2

(
un

j+1 − 2un
j + un

j−1
)
.
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becomes:

un+1
i = uni − ν

2(uni+1 − uni−1) + ν2

2 (uni+1 − 2uni + uni−1), (C.19)

where ν := a∆t
∆x .

The next step is to rewrite Eq. (C.19) in the conservative 16 fully-discrete form. It is
easy to show that on the spatio-temporal cell

[
xi−1/2, xi+1/2

]
× [tn, tn+1], the conservative

fully-discrete form of the equation ut + f(u)x = 0 is: un+1
i = uni − ∆t

∆x

[
F n
i+1/2 − F n

i−1/2

]
,

where uni =
∫ xi+1/2
xi−1/2

u(x, tn)dx/∆x, and F n
i+1/2 =

∫ tn+1

tn f(xi+1/2, t)dt/∆t; F n
i+1/2 is known

as the numerical flux.
By adding and subtracting the term

(
−νuni + νuni−1

)
to Eq. (C.19) and some simpli-

fications, Eq. (C.19) can be written as:

un+1
i = uni − ν(uni − uni−1) − ν

2(1 − ν)(uni+1 − 2uni + uni−1). (C.20)

Regarding the conservative fully-discrete form, in Eq. (C.20), the numerical flux is:

F n
i+1/2 = auni + a

2(1 − ν)(uni+1 − uni ), (C.21)

where, the term auni is the first order upwind approximation of the flux, or FL = auni .
So, the concept of flux limiter can be inserted in Eq. (C.21) as:

F n
i+1/2 = auni + ϕi

{
a

2(1 − ν)(uni+1 − uni )
}
. (C.22)

By substituting Eq. (C.22) in the conservative fully-discrete form and some simplifi-

16Regarding the conservation law ut+f(u)x = 0, the total quantity of a conserved variable in any region
changes only due to flux through the boundaries. This leads to the integral form of the conservation
law as:

∫ b

a
u(x, t2)dx =

∫ b

a
u(x, t1)dx −

(∫ t2
t1

f(u(b, t))dt −
∫ t2

t1
f(u(a, t))dt

)
for every a, b, t1 and t2

values. Let u has constant values outside the finite interval a ≤ x ≤ b during t1 ≤ t ≤ t2;
say u(x < a) ≡ u−∞ and u(x > b) ≡ u+∞, then the conserved equation becomes:

∫ b

a
u(x, t2)dx =∫ b

a
u(x, t1)dx − (t2 − t1) [f(u+∞) − f(u−∞)]. If u+∞ = u−∞, then the integral

∫ b

a
u(x, t)dx remains

constant in time. Discretizing the conservation law for the case a = xi−1/2 and b = xi+1/2, leads
to un+1

i = un
i − ∆t

∆x (Fi+1/2 − Fi−1/2). This conservative method has also a global conservation form.
By summation over cells Ii, we have: ∆x

∑
i un+1

i = ∆x
∑

i un
i −∆t

∑
i(Fi+1/2 −Fi−1/2). The fluxes

in the summation drop out each other except those at the extreme edges, say xJ−1/2 and xK+1/2,
then we have: ∆x

∑K
i=J un+1

i = ∆x
∑K

i=J un
i − ∆t(FK+1/2 − FJ−1/2). And if FK+1/2 = FJ−1/2,

then
∑K

i=J un+1
i =

∑K
i=J un

i ; or equivalently
∫ xK+1/2

xJ−1/2
u(x, tn+1)dx =

∫ xK+1/2
xJ−1/2

u(x, tn)dx, and so the
discrete method is conservative.
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cations we have:

un+1
i = uni −

(
ν − ν

2(1 − ν)ϕi−1

)
(uni − uni−1) +

(
−ν

2(1 − ν)ϕi
)

(uni+1 − uni ). (C.23)

Regarding Eq. (4.40), one possible choice for C+
i+1/2 and C−

i−1/2 is:

C−
i−1/2 =

(
ν − ν

2(1 − ν)ϕi−1

)
,

C+
i+1/2 = −ν

2(1 − ν)ϕi.
(C.24)

But for ϕ ≈ 1, C+
i+1/2 < 0, and this is not correct based on Theorem 1. Another

possible choice is:

C−
i−1/2 = ν + ν

2(1 − ν)
(
ϕi × (uni+1 − uni ) − ϕi−1 × (uni − uni−1)

uni − uni−1

)
,

C+
i+1/2 = 0.

(C.25)

Since 0 ≤ ν ≤ 1, then 0 ≤ C−
i−1/2 ≤ 1.

If we define the ratio of successive gradients as ri = ∆−ui/∆+ui, where ∆−ui :=
ui−ui−1 and ∆+ui := ui+1 −ui, and notice that ϕi = ϕ(ri), then C−

i−1/2 can be simplified
as:

C−
i−1/2 = ν + ν

2(1 − ν)
(
ϕ(ri)
ri

− ϕ(ri−1)
)
. (C.26)

In the above equation, ri acts as a smoothness monitor or smoothness indicator. Due to
the positivity condition (0 ≤ C−

i−1/2 ≤ 1), it is straitforward to show that:

− 2
1 − ν

≤
(
ϕ(ri)
ri

− ϕ(ri−1)
)

≤ 2
ν

(C.27)

Since ν ≤ 1 (due to the numerical stability), from Eq. (C.27), we must have:

∣∣∣∣∣ϕ(ri)
ri

− ϕ(ri−1)
∣∣∣∣∣ ≤ 2. (C.28)

For ri ≤ 0, neighbor gradients have opposite signs, and this means near xi an ex-
tremum point exists. To guarantee the TVD condition around such points, it is safer
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to set ϕ(ri) = 0 for ri ≤ 0. By considering this new setting, Eq. (C.28) leads to two
conditions for TVD-limiters, as:

0 ≤ ϕ(ri)
ri

≤ 2,

ϕ(ri) ≤ 2.
(C.29)

C.1.4 Relationship between slope and flux limiters

The linear convection equation, ut+aux = 0 where a > 0, is assumed. For this equation
the REP concept is used for deriving the relationship between slope and flux limiter
concepts. For this equation, the REP procedure can be summarized as:

1. The reconstruction step: for each cell Ij, the reconstructed linear solution is: u(x, tn) =
unj +(ux)nj (x−xj), where xj−1/2 ≤ x ≤ xj+1/2, (ux)nj denotes a limited slope, and unj
is the average solution,

2. The evolution step: here u(x, tn+1) can be obtained exactly, since u(x, tn+1) =
u(x − a∆t, tn); then the linear function u(x, tn) on x ∈

[
xj−1/2, xj+/2

]
becomes a

linear function u(x, tn+1) on x ∈
[
xj−1/2 + a∆t, xj+/2 + a∆t

]
,

3. The projection step: un+1
j can be obtained as:

un+1
j = 1

∆x

[∫ xj+1/2

xj−1/2

u(x, tn+1)
]

= 1
∆x

[∫ xj−1/2+a∆t

xj−1/2

(
unj−1 + (ux)nj−1(x− xj−1 − a∆t)dx

)
+
∫ xj+1/2

xj−1/2+a∆t

(
unj + (ux)nj (x− xj − a∆t)dx

)]

= unj − ν(unj − unj−1) − 1
2ν(1 − ν)(∆x(ux)nj − ∆x(ux)nj−1),

(C.30)

where ν = a∆t/∆x. So corresponding numerical flux for Eq. (C.30) is:

F n
j = aunj + 1

2a(1 − ν)∆x(ux)nj . (C.31)

If (ux)nj = (u
n
j+1−un

j

∆x )ϕj, the numerical flux from Eq. (C.31) is the same as Eq. (C.22).
In this regard, flux limiters can act as slope limiters, as well.
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C.2 Entropy functions and entropy conditions
Let η(u) denotes an entropy function satisfying a conservation law for smooth solutions,
as [68]:

η(u)t + ψ(u)x = 0, (C.32)

for some unknown flux ψ(u). This equation can be rewritten as:

η′(u)ut + ψ′(u)ux = 0, (C.33)

where η′(u) = ∂η
∂u

and ψ′(u) = ∂ψ
∂u

.
A general conservation law ut+f(u)x = 0 is considered; this equation can be rewritten

as: ut + f ′(u)ux = 0. By multiplying this equation with η′(u), the following updated
conservation law will be obtained:

η′(u)ut + η′(u)f ′(u)ux = 0, (C.34)

and from this, ψ′(u) has the following relationship with f and η:

ψ′(u) = η′(u)f ′(u). (C.35)

An additional condition is assumed for the general entropy function η(u); it is assumed
that the flux function is convex : η′′(u) > 0 where η′′(u) := ∂2η/∂u2. The reason of such
assumption will be explained soon.

The conservation property of the entropy function is only valid on smooth solutions.
The aim is to study the entropy behavior around discontinuities. For this reason, the
following viscous problem is considered:

ut + f(u)x = ϵuxx. (C.36)

For this equation, corresponding vanishing viscosity case is studied to capture behavior
of corresponding conservation law, as ϵ → 0. It should be mentioned that, the viscous
problem admits only the smooth solutions and its weak solution is a physical and unique
solution.
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Both sides of Eq. (C.36) are multiplied by η′(u) as:

η′(u)ut + η′(u)f(u)x = ϵη′(u)uxx, or

η(u)t + ψ(u)x = ϵη′(u)uxx.
(C.37)

The RHS of the above equation can be expanded as:

η(u)t + ψ(u)x = ϵ (η′(u)ux)x − ϵη′′(u)u2
x. (C.38)

Integrating this equation over the spatio-temporal rectangle [x1, x2] × [t1, t2], we have:
∫ t2

t1

∫ x2

x1
η(u)t + ψ(u)xdxdt =ϵ

∫ t2

t1
[η′(u(x2, t))ux(x2, t) − η′(u(x1, t))ux(x1, t)] dt

− ϵ
∫ t2

t1

∫ x2

x1
η′′(u)u2

xdxdt.
(C.39)

If the solution u is smooth at x1 and x2, then the first term in RHS approaches zero
as ϵ → 0 (since it is bounded). However this discussion is not true for the second term
in RHS, especially if u has a discontinuity between x1 and x2; this is clear since this
term includes u2

x. However, as u2
x > 0, ϵ > 0 and η′′ > 0, at the limit ϵ → 0, we have:

∫ t2

t1

∫ x2

x1
[η(u)t + ψ(u)x] dxdt ≤ 0, (C.40)

for all possible x1 & x2, and t1 & t2. And this shows that the solution u(x, t) is the
entropy solution for all convex entropy functions and corresponding entropy fluxes, if:

η(u)t + ψ(u)x ≤ 0. (C.41)

C.3 E-schemes and slope limiters
Considering a scalar conservation law ut + f(u)x = 0 with the semi-discrete form d

dt
u+

F ∗
i+1/2−F ∗

i−1/2
∆xi

= 0. A simple class of numerical flux functions, F ∗ can be introduced which
resulted solutions converge to unique entropy ones as ∆xi → 0. Such schemes is known
as the E − schemes [168].
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Definition 1. A consistent scheme 17 whose numerical flux satisfies

Sign(ui − ui−1)
(
F ∗
i−1/2 − f(u)

)
≤ 0, (C.42)

is called a E-scheme, for all u between ui−1 and ui.

It is easy to show that the three point stencil monotone schemes (where F ∗
i−1/2 =

F ∗(ui, ui−1)) are E-schemes.

Deriving an extra condition for limiters

To guarantee Eq. (C.42), it is sufficient that:

Sign(ui − ui−1) = Sign
(
f(u) − F ∗

i−1/2

)
. (C.43)

Let us consider the linear advection equation ut + a.ux = 0, where the flux is: f(u) = u.
We assume u(xi, tn) = ui is an extremum point; at this point, the TVD condition leads
to zero slope: (ux)i = 0. Considering this condition, for two set {ui−1, ui} and {ui+1, ui},
the E-condition, Eq. (C.43) leads to following two equations:

Sign(ui+1 − ui) = Sign
[
(f(u)) − (F ∗

i+1/2)
]
, (C.44a)

Sign(ui − ui−1) = Sign
[
(f(u)) − (F ∗

i−1/2)
]
. (C.44b)

Let us use the numerical flux from the KT formulation:
F ∗
i+1/2 := 1

2

[(
f ri+1/2 + f li+1/2

)
− ai+1/2

(
uri+1/2 − uli+1/2

)]
, where aj+1/2 = a, uri+1/2 :=

ui+1 − (ux)i+1∆x/2, uli+1/2 := ui + (ux)i∆x/2, f ri+1/2 = auri+1/2 and f li+1/2 = aui

(since (ux)i = 0).
As mentioned, in our example, it is assumed that ui is an extremum point (i.e. (ux)i =

0); for the KT scheme 18 this means: F ∗
i+1/2 = ui and F ∗

i−1/2 = (ui−1 + ∆x
2 (ux)i−1). In

Eqs. (C.44a) and (C.44b), we set u = uri+1/2 and u = ui, respectively. Hence, Eqs.

17A numerical method is consistent with the original conservation law (ut + fx = 0), if the numerical
flux F reduces to the true flux f for the case of constant state variable (flow); this means for u(x, t) ≡
ū, we have: F (ū, ū) = f(ū).

18For the KT scheme the numerical flux at xi+1/2 reads: F ∗
i+1/2 = 1

2

(
fr

i+1/2 + f l
i+1/2

)
−

ai+1/2
2

(
ur

i+/2 − ul
i+1/2

)
.
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(C.44) become:

Sign(ui+1 − ui) = Sign

[(
ui+1 − ∆x

2 (ux)i+1

)
− (ui)

]
, (C.45a)

Sign(ui − ui−1) = Sign

[
(ui) −

(
ui−1 + ∆x

2 (ux)i−1

)]
. (C.45b)

RHS of these equations can be rewritten as:

Sign(ui+1 − ui) = Sign

[
(ui+1 − ui) −

(
∆x
2 (ux)i+1

)]
(C.46a)

= Sign

[
∆ui+1/2 − ∆x

2 (ux)i+1

]
= Sign

[
∆ui+1/2

(
1 − 1

2
∆x(ux)i+1

∆ui+1/2

)]
,

Sign(ui − ui−1) = Sign

[
(ui − ui−1) −

(
∆x
2 (ux)i−1

)]
(C.46b)

= Sign

[
∆ui−1/2 − ∆x

2 (ux)i−1

]
= Sign

[
∆ui−1/2

(
1 − 1

2
∆x(ux)i−1

∆ui−1/2

)]
.

So, it is necessary that:

1
2

∣∣∣∣∣ ∆x
∆ui+1/2

(ux)i+1

∣∣∣∣∣ ≤ 1, (C.47a)

1
2

∣∣∣∣∣ ∆x
∆ui−1/2

(ux)i−1

∣∣∣∣∣ ≤ 1. (C.47b)
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Numerical methods for stress waves

D.1 The Runge-Kutta 4th order for stress wave
problems: second order systems

Let us assume that values of displacement (u (t)), velocity (v (t) :=du/dt) and acceler-
ation (a (t) :=d2u/dt2) of a particle in motion (with spatial position xj) are known at
time tn:=n∆t; the response at the next time step, tn+1 = (n+ 1) ∆t can be estimated
by the Runge-Kutta 4th order time integration as [232]:

{
u (t+ ∆t) = u (t) + ∆t

6

[
v (t) + 2ṽ2

(
t+ ∆t

2

)
+ 2ṽ3

(
t+ ∆t

2

)
+ ṽ4 (t+ ∆t)

]}
,

{
v (t+ ∆t) = v (t) + ∆t

6

[
a (t) + 2ã2

(
t+ ∆t

2

)
+ 2ã3

(
t+ ∆t

2

)
+ ã4 (t+ ∆t)

]}
,

where ṽi and ãi denote guess (intermediate) velocity and acceleration at ith stage, re-
spectively; intermediate displacements, ũi can also be defined. These guess values can
be obtained as:{

ũ2

(
t+ ∆t

2

)
= u (t) + ∆t

2 v (t)
}
,

{
ṽ2

(
t+ ∆t

2

)
= v (t) + ∆t

2 a (t)
}
,

{
ũ3

(
t+ ∆t

2

)
= u (t) + ∆t

2 ṽ2

(
t+ ∆t

2

) }
,

{
ṽ3

(
t+ ∆t

2

)
= v (t) + ∆t

2 ã2

(
t+ ∆t

2

) }
,

{
ũ4 (t+ ∆t) = u (t) + ∆tṽ3

(
t+ ∆t

2

) }
,

{
ṽ4 (t+ ∆t) = v (t) + ∆tã3

(
t+ ∆t

2

) }
.

Regarding the scalar wave equation c2∂2u/∂x2 = ∂2u/∂t2, the equation is rewritten in
a semi-discrete form: discrete in spatial domain and continuous in time. The resulted
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system of ODEs can then be solved by the method of lines scheme; for this, the time
integration can be done by the Runge-Kutta 4th order method. Let us assume the
spatial discretization is done by a finite difference method at spatial location xj; the
Runge-Kutta 4th order method can be implemented by considering: uj (t) :=u (xj, t),
vj (t) :=duj/dt and aj (t) :=∂2uj/∂t

2 = c2∂2uj/∂x
2.

D.2 The generalized α-dissipative time integration
method

To use this scheme, a semi-discrete form of wave equations is considered: discrete in the
spatial domain and continuous in time; the spatial discretization is done with the finite
element method. The semi-discrete form can then be represent as: Mü + Ku = F.

Having solution values at time step n, corresponding values at the time step n+1 can
be obtained by the generalized α-time integration algorithm as [130]:

Fn+1 =Man+1 − αKun + (α + 1)Kun+1,

un+1 =un + ∆tvn + ∆t2 [(0.5 − β)an + βan+1] ,

vn+1 =vn + ∆t [(1 − γ)an + γan+1] ,

(D.1)

where α, β and γ are free parameters controlling the stability and numerical dissipation
of the algorithm. At the initial step, we have u0 = u, v0 = v, and a0 = M−1 (F0 − Kd0).
For case γ > 0.5 numerical dissipation exists and for β ≥ 0.25 (γ + 0.5)2 the mentioned
algorithm is unconditionally stable [130].

D.3 The time discontinuous Galerkin method
For second order dynamical systems, the time discontinuous Galerkin method formula-
tion can be obtained by considering the following assumptions: 1) employing the concept
of the finite element method in the time domain; 2) possible existence of a discontinuity
(jump) at each time step; 3) rewriting the second-order equations as first-order ones.

To account possible discontinuities, the following notations are introduced:
Z±
n := limϵ±→0 Z(tn ± ϵ) and t±n := limϵ±→0(tn ± ϵ); where Z ∈ {u,v,wi}, in which: wi:=wi(t)

denotes a weight function and v:=u̇. By considering the new variable v, the second or-
der (semi-discrete) equation Mü+Cu̇+Ku = F can be written as: Mv̇+Cv+Ku = F
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& K (u̇ − v) = 0. The weighted residual form of these first order equations on time
interval t ∈

[
t−n , t

−
n+1

]
is [233]:

Rn =
∫ t−n+1

t−n

wT
1 (Mv̇ + Cv + Ku − F) dt +

∫ t−n+1

t−n

wT
2 (K (u̇ − v)) dt = 0, for n ∈ {1, · · · , N} ,

(D.2)

where: t1 = 0, tN+1 = T and tn ≤ tn+1. It should be mentioned that solutions u & v,
and weight functions wi can have discontinuities in time interval t ∈ [t−n , t+n ].

By considering linear shape functions and linear weight functions (in time domain),
the following matrix form equation can be obtained from Eq. (D.2) for t ∈

[
t−n , t

−
n+1

]
[217]:


K
2

K
2 −∆tnK

3 −∆tnK
6

−K
2

K
2 −∆tnK

6 −∆tnK
3

∆t nK
3

∆tnK
6

∆tnC
3 + M

2
∆tnC

6 + M
2

∆tnK
6

∆tnK
3

∆tnC
6 − M

2
∆tnC

3 + M
2

 .


u+
n

u−
n+1

v+
n

v−
n+1

 =


Ku−

n

0
F1 + Mv−

n

F2

 , (D.3)

where: F1 =
∫ tn+1
tn

tn+1−t
∆tn

Fdt and F2 =
∫ tn+1
tn

t−tn
∆tn

Fdt.

D.4 Taylor-Galerkin discretizations
The second order equation of motion is again rewritten as a first order system, like:
∂U
∂t

+ ∂E
∂x

= H; in this equation we have: U = [u, ρv]T , E = [0,−σ]T and H = [v,−ρF]T ;
where: σ and F are the stress and load vectors, respectively; and v:=u̇. The momen-
tum V = ρv is expanded by the Taylor series in time t = tn, as: Vn+1 = Vn + ∆tV̇n +
(∆t2/2)V̈n + O(∆t3) (where Vn := V(tn)). Inserting this expansion in the first-order
system, and then using the Galerkin discretization in space, the conventional (second-
order) Taylor-Galerkin method can be obtained as [216]:

Mvn+1 = Mvn + ∆t {Hn − Kun} + ∆t2

2
{
Ḣn − Kvn

}
, (D.4)

where M and K are the mass and stiffness matrices. Displacement un+1 can be obtained
as:
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Appendix D Numerical methods for stress waves

un+1 = un + ∆t
{
(1 − γ) vn + γvn+1

}
, (D.5)

where for γ = 0.5, the method is stable with maximum time step.
If a higher order Taylor expansion is used for momentum V, a higher order Taylor

Galerkin scheme can be obtained. For the third order expansion, vn+1 can be obtained
as [216]:

vn+1 = vn +
(

M + α
∆t2

6 K
)−1 [

∆tHn + ∆t2

2 Ḣn + α
∆t2

6
(
Ḣn−1 − Ḣn

)
− K

(
∆t2

2 vn + ∆tun
)]

,

(D.6)

where it is needed α ≥ 1/2; for accurate solutions α near to 1/2 should be used. For
unconditional stability, it is necessary α = 3/2 and γ = 1/2. Displacement un+1 can be
obtained from Eq. (D.5).
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