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Abstract
In this study, we propose a nonlocal operator method (NOM) for the dynamic analysis of (thin) Kirchhoff plates. The nonlocal 
Hessian operator is derived based on a second-order Taylor series expansion. The NOM does not require any shape functions 
and associated derivatives as ’classical’ approaches such as FEM, drastically facilitating the implementation. Furthermore, 
NOM is higher order continuous, which is exploited for thin plate analysis that requires C1 continuity. The nonlocal dynamic 
governing formulation and operator energy functional for Kirchhoff plates are derived from a variational principle. The 
Verlet-velocity algorithm is used for the time discretization. After confirming the accuracy of the nonlocal Hessian operator, 
several numerical examples are simulated by the nonlocal dynamic Kirchhoff plate formulation.

Keywords  Nonlocal operator method · Nonlocal Hessian operator · Operator energy functional · Dual-support · Variational 
principle · Verlet-velocity algorithm

1  Introduction

As a common engineering structure, plate/shell is widely 
used in civil engineering, aerospace and other fields. The 
mechanical analysis of rectangular thin plates has always 
been one of the research focuses of scholars and engineers. 
The governing equation of the Kirchhoff plate bending prob-
lem is a fourth-order partial differential equation whose 
deflection is an independent variable. The numerical method 
for developing this problem has a wide scientific significance 
for solving plate/shell problems.

The analysis of Kirchhoff plate bending problems poses 
challenges to ’classical’ finite element formulations [1–5], 
which are only C0 continuous. However, the Kirchhoff plate 
problem is a fourth-order partial differential equation which 
requires a C1 formulation if weak form based methods such 
as FEM are employed. An efficient alternative are so-called 
meshless methods as many of them are higher order continu-
ous. The approximation function of the meshless method 
[6–11] represented by the Element-free Galerkin method 
EFG [12–15] is highly smooth, that is, and the high-order 

continuity is satisfied, meantime the meshless method is 
easy to form high-order. The approximate function has sig-
nificant advantages to the numerical solutions for higher-
order partial-differential equations.

Rabczuk [16] devised a meshfree method for thin shell 
analysis for finite strains and arbitrary evolving cracks 
exploiting the higher order continuity of the EFG shape 
functions and avoiding any rotational degrees of freedom. 
Mohammed et al. [17, 18] presented a meshless method to 
analyze the mechanical response of elastic thin plates. How-
ever, since meshless shape functions are commonly rational 
functions, more integration points are needed to evaluate the 
weak form. For example, Brebbia [6] employed 6 × 6 quad-
rature points, which significantly reduces the computational 
efficiency. An interesting alternative to meshless methods is 
isogeometric analysis (IGA) [19, 20], which also fulfills the 
higher order continuity requirement needed for thin plate 
analysis. This method takes advantage of NURBS/B-Spline 
basis functions, which are commonly used in computer-
aided-design (CAD) to describe the geometries. IGA has 
been successfully applied to the analysis of plates and shells 
for instance in [21–25]. As CAD geometries are surface rep-
resentations, they are particularly suited for plates and shells.  *	 Yongzheng Zhang 
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One difficulty occurs for multi-patch geometries, which are 
still difficult to deal with.

In this study, we take advantage of nonlocal theories as 
suggested for instance in nonlocal continuum field theories 
with various physical fields [26], peridynamics (PD) [27], 
nonlocal plasticity, (nonlocal) damage mechanics [28] and 
nonlocal vector calculus [29]. Nonlocal operator method 
(NOM) [30, 31] is a nonlocal numerical method for solving 
partial differential equations. The method is based on so-
called differential operators. In contrast to finite elements, 
the NOM only needs neighboring points to develop nonlocal 
derivatives. Similar to the machine learning approach [32, 
33], it can solve PDEs directly instead of the need of shape 
functions, which plays an equivalent role as the derivatives 
of the shape functions in the meshless methods or the FEM. 
And, therefore, the complexity of the nonlocal operator 
method is significantly reduced. The nonlocal strong form 
can be derived by a variational derivation on the functional 
defined by nonlocal operators. This paper presents a non-
local operator method to predict the dynamic response of 
Kirchhoff plates exploiting the higher order continuity of 
the NOM.

The paper is organized as follows: We first briefly review 
the NOM and derive the nonlocal Hessian operator for 
Kirchhoff plates in Sect. 2. In Sect. 3, we derive the nonlo-
cal dynamic Kirchhoff plate formulation by a variational 
formulation. Section 4 presents details about the numeri-
cal implementation before we demonstrate the performance 
of the formulation through several benchmark problems in 
Sect. 5. We conclude the manuscript in Sect. 6.

2 � Outline of nonlocal operator method 
and derivation of nonlocal Hessian 
operator for Kirchhoff plate

2.1 � Outline of nonlocal operator method

We consider a Kirchhoff plate occupying a domain � as 
illustrated in Fig. 1. Let us denote the spatial coordinates 
with �i , �ij ∶= �j − �i is relative position vector from �i to �j ; 
wi ∶= w(�i, t) and wj ∶= w(�j, t) are the displacement value 
for �i and �j , respectively; the relative displacement area for 
the spatial vector �ij is wij ∶= wj − wi.

The support and the dual-support are two fundamen-
tal principles in NOM. The domain, in which every spa-
tial point �j forms the spatial vector �ij from �i to �j is 
called the support Si of point �i , see Fig. 1b. We can write 
S� = {�

2
, �

3
, �

5
, �

6
} . The dual-support of �i is defined as a 

union of points which supports include � , i.e.

The dual-support of point �j forms the dual-vector 
��
ij
(= �i − �j) in S′

i
 and is denoted as S�

�
= {�3, �6} ; �′ij is the 

Sj relative position space vector. NOM requires fundamental 
nonlocal operators that replace the local operators in calcu-
lus. Thus, the functional designed to construct a residual and 
tangent stiffness matrix is formulated in terms of the nonlo-
cal differential operator. The higher order nonlocal operator 
𝜕𝛼wi for the scalar field w in support Si can be expressed as 
[34]

(1)S
�
i
= {�j|�i ∈ Sj}

Fig. 1   Schematic diagram of 
NOM
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where �(�ij) represents the weight function, �ij represents 
relative position vector. �ij represent the list of polynomials. 
For example, the polynomials and the higher order nonlocal 
operator in 2D with maximal second-order derivatives are 
�ij = (xij, yij, x

2

ij
∕2, xijyij, y

2

ij
∕2)T and 𝜕𝛼wi = (

𝜕wi

𝜕x
,
𝜕wi

𝜕y
,
𝜕2wi

𝜕x2
,
𝜕2wi

𝜕xy
,
𝜕2wi

𝜕y2
)T.

Using nodal integration, the higher order nonlocal opera-
tor and it’s variation for a vector field w in discrete forms are

We use a penalty energy functional to obtain the linear 
field of the scalar field to eliminate zero-energy modes. The 
higher order operator energy functional for a scalar field w 
at a point �i is defined as

where mi(= ∫
Si
𝜙(�ij)�ij ⊗ �ijdVj) is the normalization coef-

ficient and �w is the penalty coefficient. The nonuniform 
aspect of the deformation is defined as �T

ij
𝜕𝛼wi − wij , and the 

stability of the NOM is greatly enhanced while �T
ij
𝜕𝛼wi − wij 

is enforced explicitly.

2.2 � Derivation of nonlocal Hessian operator 
for Kirchhoff plate

In this part, we derive the second-order nonlocal Hessian 
operator and its variation. The second derivative and its vari-
ation in 1D is given as

To devise the nonlocal Hessian operator in 2D, let us 
define first the vector �ij = (xij, yij)

T . It can be shown that the 
second-order shape tensor for point �i is computed by [30]

(2)𝜕𝛼wi ∶= ∫
Si

𝜙(�ij)wij�ijdVj ⋅

(
∫
Si

𝜙(�ij)�ij�
T
ij
dVj

)−1

,

(3)𝜕𝛼wi =
∑
j∈Si

𝜙(�ij)wij�ijΔVj ⋅

(∑
j∈Si

𝜙(�ij)�ij�
T
ij
ΔVj

)−1

(4)

𝜕𝛼𝛿wi =
∑
j∈Si

𝜙(�ij)(𝛿wj − 𝛿wi)�ijΔVj ⋅

(∑
j∈Si

𝜙(�ij)�ij�
T
ij
ΔVj

)−1

.

(5)F
hg

i
=

𝛼w

2mi
∫
Si

𝜙(�ij)
(
�T
ij
𝜕𝛼wi − wij

)2
dVj,

(6)
d2wi

dx2
= 2∫

Si

�(�ij)wij

(
�2
ij
−

K3i

K2i

�ij

)
dVj ⋅ K

−1
4i

(7)∇̃T∇̃𝛿wi = 2∫
Si

𝜙
(
�ij
)
𝛿wij(�

2

ij
−

K3i

K2i

�ij)dVj ⋅ K
−1
4i
.

(8)

�2i = ∫
Si

𝜙(�ij)�ij ⊗ �ijdVj = ∫
Si

𝜙(�ij)

[
x2
ij

xijyij

xijyij y2
ij

]
dVj

and the third-order shape tensor for point �i by

with �n
ij
∶= �ij ⊗ �ij ⊗⋯⊗ �ij

�����������������������
n terms

.

which finally leads to

The fourth-order shape tensor for point �i is computed by

The second-order Taylor series extension for a scalar field 
w is given as

so that we obtain

which finally results in the following Hessian nonlocal 
operator

and

(9)

�3i = ∫
Si

�(�ij)�
3

ij
dVj

=
(
∫
Si

�(�ij)xij

[
x2
ij

xijyij

xijyij y2
ij

]
dVj,

∫
Si

�(�ij)yij

[
x2
ij

xijyij

xijyij y2
ij

]
dVj

)

=
(
∫
Si

�(�ij)

[
x3
ij

x2
ij
yij

x2
ij
yij xijy

2

ij

]
dVj,

∫
Si

�(�ij)

[
x2
ij
yij xijy

2

ij

xijy
2

ij
y3
ij

]
dVj

)
= (�x

3i
,�

y

3i
)

(10)�3i�
−1
2i
�ij = (�x

3i
�−1

2i
�ij,�

y

3i
�−1

2i
�ij).

(11)

�
4i = ∫

Si

�(�ij)�
4

ij
dVj

= ∫
Si

�(�ij)

⎡⎢⎢⎢⎢⎢⎣

x2
ij

�
x2
ij

xijyij

xijyij y
2

ij

�
xijyij

�
x2
ij

xijyij

xijyij y
2

ij

�

yijxij

�
x2
ij

xijyij

xijyij y
2

ij

�
y2
ij

�
x2
ij

xijyij

xijyij y
2

ij

�
⎤⎥⎥⎥⎥⎥⎦

dVj

= ∫
Si

�(�ij)

⎡⎢⎢⎢⎢⎢⎣

�
x4
ij

x3
ij
yij

x3
ij
yij x

2

ij
y2
ij

� �
x3
ij
yij x

2

ij
y2
ij

x2
ij
y2
ij
xijy

3

ij

�

�
x3
ij
yij x

2

ij
y2
ij

x2
ij
y2
ij
xijy

3

ij

� �
x2
ij
y2
ij
xijy

3

ij

xijy
3

ij
y4
ij

�
⎤⎥⎥⎥⎥⎥⎦

dVj =

�
�xx

4i
�

xy

4i

�
yx

4i
�

yy

4i
.

�

(12)wj = wi + ∇wi ⋅ �ij +
1

2!
∇T∇wi ∶ �ij ⊗ �ij + O(∣ �ij ∣

3)

(13)wij = ∇wi ⋅ �ij +
1

2
∇T∇wi ∶ �ij ⊗ �ij + O(∣ �ij ∣

3)

(14)
1

2
∇T∇wi ∶ �ij ⊗ �ij = wij − ∇wi ⋅ �ij
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The weighted tensor 1
2
∇T∇w ∶ �

4i can be simplified to

Note that the rank of �4i is 3 and the 2D nonlocal Hessian 
operator has only three independent variables where 
�2�wi

�x�y
=

�2�wi

�y�x
 , let �−1

4i
 as the pseudo-inverse of �4i in this 

study.
For the scalar field w, the 2D nonlocal Hessian operator 

for point �i can be written in matrix form as

We let �x
3i
�−1

2i
,�

y

3i
�−1

2i
 and the pseudo-inverse of �4i be 

explicitly written as

To facilitate the calculation �−1
4i

 , we convert �4i to a 3 × 3 
matrix yielding

(15)

1

2
∇T∇wi ∶ ∫

Si

𝜙(�ij)�
4

ij
dVj = ∫

Si

𝜙(�ij)(wij�ij ⊗ �ij

− ∇wi ⋅ �
3

ij
)dVj.

(16)

1

2
∇T∇wi ∶ �4i = ∫

Si

𝜙(�ij)(wij�ij ⊗ �ij − ∇wi ⋅ �
3

ij
)dVj

= ∫
Si

𝜙(�ij)wij�ij ⊗ �ijdVj

− ∇wi ⋅ ∫
Si

𝜙(�ij)�
3

ij
dVj

= ∫
Si

𝜙(�ij)wij�ij ⊗ �ijdVj

− ∫
Si

𝜙(�ij)wij�ijdVj ⋅

(
∫
Si

𝜙(�ij)�ij ⊗ �ijdVj

)−1

�3i

= ∫
Si

𝜙(�ij)wij�ij ⊗ �ijdVj

− ∫
Si

𝜙(�ij)wij�ijdVj ⋅�
−1
2i
�3i

= ∫
Si

𝜙(�ij)wij(�ij ⊗ �ij −�3i�
−1
2i
�ij)dVj.

(17)∇̃T∇̃wi =

⎡⎢⎢⎣

𝜕2wi

𝜕x2

𝜕2wi

𝜕x𝜕y
𝜕2wi

𝜕y𝜕x

𝜕2wi

𝜕y2
.

⎤⎥⎥⎦

(18)�x
3i
�−1

2i
=

[
a11 a12
a12 a22

]
;�

y

3i
�−1

2i
=

[
b11 b12
b12 b22

]

(19)�−1
4i

=

⎡⎢⎢⎢⎣

�
c1 c2
c2 c3

� �
c2 c3
c3 c4

�

�
c2 c3
c3 c4

� �
c3 c4
c4 c5

�
⎤⎥⎥⎥⎦

(20)
⎡⎢⎢⎣

c1 c2 c3
c2 c3 c4
c3 c4 c5

⎤
⎥⎥⎦

−1

= ∫
Si

�(�ij)

⎡⎢⎢⎢⎣

x4
ij

x3
ij
yij x

2

ij
y2
ij

x3
ij
yij x

2

ij
y2
ij
xijy

3

ij

x2
ij
y2
ij
xijy

3

ij
y4
ij

⎤⎥⎥⎥⎦
dVj

Since �ij ⊗ �ij −�3i�
−1
2i
�ij is a matrix �2×2 with the terms 

Q12 = Q21 . Remove the repeated terms in matrix � , and the 
remain terms Q11,Q12,Q22 in matrix � can be reconstituted 
a vector �3×1 = (Q11,Q12,Q22)

T . Then Eq.16 can be rewrit-
ten as

Finally, 
(
�ij ⊗ �ij −�3i�

−1
2i
�ij
)
∶ �−1

4i
 can be obtained by 

reconstituting terms in Eq.21 and can be expressed as

where

The explicit form of the nonlocal Hessian operator in 2D 
can finally be expressed by

Note that ei11, ei12, ei22 are calculated for each neighbor 
in the support domain. As a result, the variation of nonlocal 
Hessian operator can be obtained in explicit form as

3 � Derivation of nonlocal dynamic Kirchhoff 
plate formulation

3.1 � Classical elastic plate theory

Kirchhoff plate theory assumes that the normal stress in 
the thickness direction can be ignored and the normal of 
the midplane of the plate remains normal after deforma-
tion. Hence, all stresses and strains can be expressed by the 

(21)
∫
Si

�(�ij)

⎡
⎢⎢⎢⎣

x4
ij

x3
ij
yij x

2

ij
y2
ij

x3
ij
yij x

2

ij
y2
ij
xijy

3

ij

x2
ij
y2
ij
xijy

3

ij
y4
ij

⎤
⎥⎥⎥⎦
dVj

⎡
⎢⎢⎢⎣

�2wi

�x2
�2wi

�x�y
�2wi

�y2

⎤
⎥⎥⎥⎦

= ∫
Si

�(�ij)wij�idVj

(22)
(
�ij ⊗ �ij −�

3i�
−1
2i
�ij
)
∶ �−1

4i
=

[
ei11 ei12
ei21 ei22

]

ei11 = c1(x
2

ij
− a11xij − a12yij) + c2(xijyij − a12xij − a22yij)

+ c3(y
2

ij
− b12xij − b22yij)

ei12 = ei21 = c2(x
2

ij
− a11xij − a12yij) + c3(−a12xij − a22yij

+ xijyij) + c4(y
2

ij
− b12xij − b22yij)

ei22 = c3(x
2

ij
− a11xij − a12yij) + c4(−a12xij − a22yij

+ xijyij) + c5(y
2

ij
− b12xij − b22yij).

(23)∇̃T∇̃wi = 2∫
Si

𝜙(�ij)wij

[
ei11 ei12
ei21 ei22

]
dVj.

(24)∇̃T∇̃𝛿wi = 2∫
Si

𝜙(�ij)(𝛿wj − 𝛿wi)

[
ei11 ei12
ei21 ei22

]
dVj.
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deflection w of the midplane of the plate. Considering the 
plate element shown in Fig. 2, the in-plane displacements 
u and v can, therefore, be expressed in terms of the first 
derivatives of w, i.e.

The strain resultant � can be obtained by

where �x and �y indicates the curvature of the midplane of 
the plate in the x- and y- direction while �xy refers to the 
torsion, respectively.

The stress resultants of the Kirchhoff plate are given by

where Mx and My are the bending moment per unit length 
around the y- and negative x-axes, respectively, while 
Mxy(= Myx) is the torque per unit length.

With a linear stress distribution in the z-direction and 
assuming a thickness of t, the stresses can be computed by

The Cauchy stress tensor can also be expressed in terms 
of the linear strain tensor assuming Hooke’s law:

(25)
u(x, y, z) = −z

�w

�x
; v(x, y, z)

= −z
�w

�y
; w(x, y, z) ≃ w(x, y, 0) ≅ w(x, y).

(26)� =
[
�x, �y, �xy

]T
=
[
−

�2w

�x2
,−

�2w

�y2
,−

2�2w

�x�y

]T
,

(27)� =
[
Mx,My,Mxy

]T
,

(28)�x =
12Mx

t3
z;�y =

12My

t3
z;�xy = �yx =

12Mxy

t3
z.

with

Finally, the constitutive model can be formulated in terms 
of the stress and strain resultants by

where �plate is the constitutive matrix defined as

where D0 =
Et3

12(1−�2)
 is the Kirchhoff plate’s bending stiffness, 

such that Eq.(30) can be rewritten as

3.2 � Nonlocal dynamic Kirchhoff plate formulation

The total Lagrange energy functional for the Kirchhoff plate 
can be expressed as

with ẇ =
𝜕w

𝜕t
 ; � is the density of the plate and qz a distributed 

load in the z-direction. Replacing the local Hessian ∇T∇w 
with the nonlocal Hessian ∇̃T∇̃w in Eq.34, we obtain

(29)� =
E

1 − �2

(
� tr � �2×2 + (1 − �)�

)

� =

[
�11 �12
�21 �22.

]

(30)� = �plate�,

(31)�plate =
Et3

12(1 − �2)

⎡
⎢⎢⎣

1 � 0

� 1 0

0 0
1−�

2

⎤
⎥⎥⎦
= D0

⎡
⎢⎢⎢⎢⎣

1 � 0

� 1 0

0 0
1−�

2

,

⎤
⎥⎥⎥⎥⎦

(32)� =

[
Mx Mxy

Myx My

]
= D0

(
� tr � I2×2 + (1 − �)�

)

(33)� = ∇T∇w =

[
�2w

�x2
�2w

�x�y
�2w

�y�x

�2w

�y2
.

]

(34)

L(ẇ,w) = ∫Ω

1

2
𝜌tẇ2dΩ

− ∫Ω

(
1

2
� ∶ � − qzw

)
dΩ − ∫𝜕Ω

Mn

𝜕w

𝜕n
dS

= ∫Ω

1

2
𝜌tẇ2dΩ − ∫Ω

(
1

2
� ∶ ∇T∇w − qzw

)
dΩ

− ∫𝜕Ω

Mn

𝜕w

𝜕n
dS

(35)

L(ẇ,w) = ∫Ω

1

2
𝜌tẇ2dΩ − ∫Ω

(
1

2
� ∶ ∇̃T∇̃w − qzw

)
dΩ

− ∫𝜕Ω

Mn

𝜕w

𝜕n
dS

x

z

z P

P'

w-∂w/∂x

u=-z∂w/∂x

Undeformed

Deformed

Fig. 2   Deformed configuration of a Kirchhoff plate in bending
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The integral of the Lagrangian L between two time steps 
t1 and t2 is � = ∫ t2

t1
L(ẇ,w)dt . According to the principle of 

least action, we can write

Omitting the external work term ∫ t2
t1
∫
�Ω

Mn
�w

�n
dSdt , the 

first variation of �ϝ leads to

where the boundary condition �w(t1) = 0, �w(t2) = 0 is con-
sidered in the above derivation. According to Hamilton’s 
principle, for any �wi , the first variation of the functional ϝ 
should be zero, which leads to

The nonlocal form is correlated to the local form by

(36)

ϝ =∫
t2

t1
∫Ω

1

2
𝜌tẇ2dΩdt − ∫

t2

t1
∫Ω

(
1

2
� ∶ ∇̃T∇̃w − qzw

)
dΩdt

− ∫
t2

t1
∫𝜕Ω

Mn

𝜕w

𝜕n
dSdt.

𝛿ϝ =∫
t2

t1
∫Ω

(𝜌tẇ ⋅ 𝛿ẇ −� ∶ ∇̃T∇̃𝛿w + qz𝛿w)dΩdt

=∫
t2

t1
∫Ω

(−𝜌itẅi ⋅ 𝛿wi −�i ∶ ∇̃T∇̃𝛿wi + qz𝛿wi)dΩdt

=∫
t2

t1
∫Ω

(
− 𝜌itẅi ⋅ 𝛿wi −�i ∶ [2∫

Si

𝜙(�ij)(𝛿wij(�ij ⊗ �ij

−�3i�
−1
2i
�ij)dVj ∶ �−1

4i
] + qz𝛿wi

)
dΩdt

=∫
t2

t1
∫Ω

(
− 𝜌itẅi ⋅ 𝛿wi − 2∫

Si

�i

𝜙(�ij)(𝛿wj − 𝛿wi)(�ij ⊗ �ij −�3i�
−1
2i
�ij)dVj ∶ �−1

4i
+ qz𝛿wi

)
dΩdt

=∫
t2

t1
∫Ω

(
− 𝜌itẅi ⋅ 𝛿wi − 2{∫

S
�
i

[�j𝜙(�ji)𝛿wi

(�ji ⊗ �ji −�3i�
−1
2i
�ji) ∶ �−1

4i
]dVj−

∫
Si

[�i𝜙(�ij)𝛿wi(�ij ⊗ �ij −�3j�
−1
2j
�ij) ∶ �−1

4j
]dVj} + qz𝛿wi

)
dΩdt,

(37)

2∫
Si

�i𝜙(�ij)(�ij ⊗ �ij −�
3i�

−1
2i
�ij) ∶ �−1

4i
dVj

− 2∫
S
�
i

�j𝜙(�ji)(�ji ⊗ �ji −�
3j�

−1
2j
�ji) ∶ �−1

4j
dVj

+ qz = 𝜌itẅi ∀�i ∈ Ω.

According to Eq.23, we devise the explicit form of 
∇̃T∇̃ ∶ �i

As Eq. 37 suffers from zero-energy modes, we introduce 
the so-called nonlocal operator energy functional, which is 
described in the next section.

3.3 � Operator energy functional

For the Kirchhoff plate, the maximal order of partial deriva-
tives in Eq.37 is two, hence we select the second order of 
nonlocal operators in Eq.5. The operator energy functional 
for second order nonlocal operators of a scalar field w for 
point �i can be expressed as

(39)

∇̃T∇̃ ∶ �i = 2∫
Si

𝜙(�ij)�i ⋅

[
ei11 ei12
ei21 ei22

]
dVj

− 2∫
S
�
i

𝜙(�ji)�j ⋅

[
ej11 ej12
ej21 ej22

]
dVj.

(40)F
hg

i
=

𝛼w

2mi
∫
Si

𝜙(�ij)
(
�T
ij
𝜕𝛼wi − wij

)2
dVj,

∇̃T ∇̃ : Mi
Local→Nonlocal−−−−−−−−−⇀↽−−−−−−−−−
Nonlocal→Local

2
∫

Si

Miφ(ξij)(ξij ⊗ ξij −K3iK−1
2i ξij) : K

−1
4i dVj−

2
∫

S′
i

Mjφ(ξji)(ξji ⊗ ξji −K3jK−1
2j ξji) : K

−1
4j dVj (38)
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where  
�ij = (xij, yij, x

2

ij
∕2, xijyij, y

2

ij
∕2)T , 

 𝜕𝛼wi = (
𝜕wi

𝜕x
,
𝜕wi

𝜕y
,
𝜕2wi

𝜕x2
,
𝜕2wi

𝜕xy
,
𝜕2wi

𝜕y2
)T.

The first variation of Fhg

i
 is

Taking the variation of ∫
Ω
F

hg

i
dVi yields

For the scalar field w, the internal force due to the opera-
tor energy functional is given by

(41)

𝛿F
hg

i
=
𝛼w

mi
∫
Si

𝜙(�ij)
(
�T
ij
𝜕𝛼wi − wij

)T(
𝜕𝛼𝛿wi�

T
ij
− 𝛿wij

)
dVj

=
𝛼w

mi
∫
Si

𝜙(�ij)
(
�T
ij
𝜕𝛼wi − wij

)T
𝜕𝛼𝛿wi�

T
ij
dVj

−
𝛼w

mi
∫
Si

𝜙(�ij)
(
�T
ij
𝜕𝛼wi − wij

)T
𝛿wijdVj

=
𝛼w

mi
∫
Si

𝜙(�ij)
(
�T
ij
𝜕𝛼wi − wij

)
�T
ij
dVj ⋅ 𝜕𝛼𝛿wi

−
𝛼w

mi
∫
Si

𝜙(�ij)
(
�T
ij
𝜕𝛼wi − wij

)T
𝛿wijdVj

=
𝛼w

mi

(
𝜕𝛼wi ∫

Si

𝜙(�ij)�ij�
T
ij
dVj − ∫

Si

𝜙(�ij)wij�
T
ij
dVj

)
⋅ 𝜕𝛼𝛿wi−

𝛼w

mi
∫
Si

𝜙(�ij)
(
�T
ij
𝜕𝛼wi − wij

)T
𝛿wijdVj

=
𝛼w

mi

(
∫
Si

𝜙(�ij)wij�
T
ij
dVj − ∫

Si

𝜙(�ij)wij�
T
ij
dVj

)
⋅ 𝜕𝛼𝛿wi−

𝛼w

mi
∫
Si

𝜙(�ij)
(
�T
ij
𝜕𝛼wi − wij

)T
𝛿wijdVj

=
𝛼w

mi
∫
Si

𝜙(�ij)
(
wij − �T

ij
𝜕𝛼wi

)T
(𝛿wj − 𝛿wi)dVj.

(42)

∫Ω

F
hg

i
dVi = ∫Ω

𝛼w

mi
∫
Si

𝜙(�ij)
(
wij − �T

ij
𝜕𝛼wi

)T

(𝛿wj − 𝛿wi)dVjdVi

= ∫Ω

(
∫
S
�
i

𝛼w

mj

𝜙(�ji)(wji − 𝜕𝛼wj�
T
ji
)dVj

−∫
Si

𝛼w

mi

𝜙(�ij)(wij − 𝜕𝛼wi�
T
ij
)dVj

)
𝛿widVi.

q(x,y)

a

b

x

y

z

0Clamped conditions

Simply supported conditions

Fig. 3   The Kirchhoff plate bending problem’s boundary conditions

Fig. 4   The L2-norm’s convergence for �
2w

�x2

where f ij =
𝛼w

mi

𝜙(�ij)(wij − 𝜕𝛼wi �
T
ij
) indicates the zero-energy 

internal force. Finally, the correspondence between local and 
nonlocal formulation and the operator functional enhanced 
governing equation of Kirchhoff plate can be expressed as

(43)∫
S
�
i

f jidVj − ∫
Si

f ijdVj,
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Similarly, parallel to the x− axis (as y = b simply sup-
ported boundary), the boundary conditions is

4 � Numerical implementation

The domain Ω is decomposed into N points occupying a 
volume ΔVi:

For each point, the support is denoted by

where j1, ..., jk, ..., jni are the global indices of the neighbors 
of point �i and ni represents the number of neighbors in sup-
port domain Si . The out-of-plane transversal force between 
points are computed by

(49)w|x=a = 0; Mx|x=a = −D0

�2w

�x2
|x=a = 0

(50)

w|y=b = 0; My|y=b = −D0(�
�2w

�x2
+

�2w

�y2
)y=b

= −D0

�2w

�y2
|y=b = 0.

(51)Ω =

N∑
i=1

ΔVi.

(52)Si = {i, j1, j2, ..., jni},

(53)

Tij =
(
2�i𝜙(�ij)(�ij ⊗ �ij −�3i�

−1
2i
�ij) ∶ �−1

4i
+ f ij

)

ΔViΔVj

=
(
2𝜙(�ij)�i ⋅

[
ei11 ei12
ei21 ei22

]
+

𝛼w

mi

𝜙(�ij)(wij − 𝜕𝛼wi �
T
ij
)
)

ΔViΔVj

Tji =
(
2�j𝜙(�ji)(�ji ⊗ �ji −�3j�

−1
2j
�ji) ∶ �−1

4j
+ f ji

)
ΔViΔVj

=
(
2𝜙(�ji)�j ⋅

[
ej11 ej12
ej21 ej22

]
+

𝛼w

mj

𝜙(�ji)(wji − 𝜕𝛼wj�
T
ji
)
)

ΔViΔVj.

Fig. 5   Deflection curve of analytical solutions and relative 
error(y=0). a Contour of the deflection �

2w

�x2
 for Υ=1; b Contour of the 

deflection �
2w

�x�y
 for Υ=1; c Contour of the deflection �

2w

�y2
 for Υ=1

◂

∇̃T ∇̃ : Mi
Local→Nonlocal−−−−−−−−−⇀↽−−−−−−−−−
Nonlocal→Local

∫

Si

(
2φ(ξij)Mi ·

[
ei11 ei12

ei21 ei22

]
+ fij

)
dVj−

∫

S′
i

(
2φ(ξji)Mj ·

[
ej11 ej12

ej21 ej22

]
+ fji

)
dVj (44)

3.4 � Kirchhoff plate boundary conditions

Let us consider the boundary conditions shown in Fig. 3, 
which can be classified into:

1. Clamped boundary conditions, where the deflection 
and the slope of the mid-plane is zero. The positioning shift 
w and the section rotation � are both zero. The boundary 
conditions are in the direction parallel to the y-axis (as x = 0 
clamped boundary):

Parallel to the x−axis (as y = 0 clamped boundary), the 
Kirchhoff plate boundary conditions is

2. Simply supported Kirchhoff plate boundary conditions 
where the plate is free to rotate about a line but prevented 
from deflecting. The positioning shift w and moment Mn 
value is zero: parallel to the y−axis (as x = a simply sup-
ported boundary), the boundary conditions is

and Eq.46 can be written as

(45)

∫
Si

(
2𝜙(�ij)�i ⋅

[
ei11 ei12
ei21 ei22

]
+

𝛼w

mi

𝜙(�ij)(wij − 𝜕𝛼wi �
T
ij
)
)
dVj−

∫
S
�
i

(
2𝜙(�ji)�j ⋅

[
ej11 ej12
ej21 ej22

]
+

𝛼w

mj

𝜙(�ji)(wji − 𝜕𝛼wj�
T
ji
)
)

dVj + qz = 𝜌itẅi ∀�i ∈ Ω.

(46)w|x=0 = 0;
�w

�x
|x=0 = 0.

(47)w|y=0 = 0;
�w

�y
|y=0 = 0.

(48)w|x=a = 0; Mx|x=a = −D0(
�2w

�x2
+ �

�2w

�y2
)x=a = 0
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Fig. 6   Deflection curve of analytical solutions and relative error(y=0). a Contour of the deflection �
2w

�x2
 for Υ=3; b Contour of the deflection �

2w

�x�y
 

for Υ=3; c Contour of the deflection �
2w

�y2
 for Υ=3
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Finally, we get the internal force Pij between points as

So that in discrete form, Newton’s equation of motion is 
expressed as

where t is the time, wi(t) =
(
w
1
(t),… ,wN(t)

)
 is the ensemble 

of the position vector of N points, Fi is the external force 
vector and Pi denotes the internal force vector; �i refers to 
the mass of the point. In this paper, the velocity and dis-
placement is updated via the Verlet-Velocity scheme [35]:

For reasons of stability, we applied a damping term to 
each point

Fs
i
 representing the damping force for each point, ẇi repre-

sents the velocity (vector) of the point, and c is a damping 
coefficient.

The main implementation process of higher order explicit 
NOM for the dynamic analysis of Kirchhoff plate can be 
summarized as follows: 

(54)Pij =
∑
j∈Si

Tij −
∑
j∈S�

i

Tji.

(55)Fi − Pi = �iẅi(t),

(56)

wi(t + Δt) = wi(t) + ẇi(t)Δt +
1

2�i

[Fi(t) − Pi(t)]Δt
2

ẇi(t + Δt) = ẇi(t) +
1

2�i

(
[Fi(t) − Pi(t)] + [Fi(t + Δt)

− Pi(t + Δt]
)
Δt.

(57)Fs
i
= −cẇi

1. Discretization of the solution domain and initialization
   (i) Create geometry and discretize the solution domain.
   (ii) Initialize the internal force of Pi = 0 and assign values 

to the corresponding parameters: Young’s modulus E, 
Poisson’s ratio � , Density � , Number of neighbors for each 
point etc.

2. Calculate shape tensor
      (i) For each point, calculate second, third and forth order 

shape tensor �
2i,�3i,�4i by solving problem Eqs.8–11.

      (ii) Calculate the inverse (pseudo-inverse) of the shape 
tensor �−1

2i
 , �y

3i
�−1

2i
 , �y

3i
�−1

2i
,�−1

4i
.

3.Calculate the nonlocal Hessian operator
      For each point, calculate the nonlocal Hessian operator 

∇̃T ∇̃wi by solving Eqs.17-23.
4.Calculate the Kirchhoff plate constitutive model

      (i) Calculate Kirchhoff plate’s bending stiffness and strain 
resultant D

0
,� by solving Eqs.31 and 33.

      (ii) Calculate Kirchhoff plate constitutive model by solv-
ing Eq.32.

5.Calculate the Kirchhoff plate internal force between points
      For each neighbor point j ∈ Si , calculate Tij,Tji,Pij by 

solving Eqs.51 - 52 and add Pij to Pi and add −Pij to Pj.
6. Applying the boundary conditions to solution

      (i) Apply the external force Fi , damping force Fs
i
 and 

displacement boundary conditions to the specified points, 
according to Newton’s second law Fi − Pi + F

s
i
= �iẅi(t) , 

calculate each point’s acceleration ẅi.
      (ii) Update each point’s velocity and displacement through 

the Verlet-Velocity scheme.

Fig. 7   Comparison of the deflection contour under uniform pressure load a ABAQUS, b nonlocal operator method
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5 � Numerical examples

The proposed nonlocal dynamic Kirchhoff plate formula-
tion is implemented in Wolfram Mathematica. After verify-
ing the accuracy of the nonlocal Hessian operator, several 
benchmark problems are studied and compared to results 
obtained by ABAQUS using the S4R plate/shell element 
[36].

5.1 � Verification of nonlocal Hessian operator

Let us consider a simply supported square Kirchhoff plate 
with a width of a0 = 10 m and thickness t=0.01m. The 

plate is subjected to a uniform pressure of qz = 100N∕m2 . 
Young’s modulus and Poisson’s ratio are E=30GPa and �
=0.3, respectively. The number of neighbors of each point 
is set to n = 24 . To test the accuracy of the nonlocal Hessian 
operator, we assume Υ = 1, 3 (see Eq.58). The analytical 
solution of this problem is given in [37], i.e.

with �Υ =
Υ�

2
.

We employ the quintic spline function as weight function

with � = ‖�‖ , h is the maximum length of support, �d = 
(35∕40, 377∕478�, 37∕40�) with different dimensional space 
d and x+ = max (0, x).

To accurately represent the relative error of the operator, 
we consider points at y = 0 . Figs. 5, 6 show the deflection 
curve of the numerical simulation ( �

2w

�x2
,
�2w

�x�y
,
�2w

�y2
 ) compared 

to the analytical solution. We also check the error in the 
L2-norm given by

(58)

w =
4q0a0

4

�5D0

∞∑
Υ=1,3,...

1

Υ5

(
1 −

�Υ tanh �Υ + 2

2 cosh �Υ
cosh

2�Υy

a0
+

�Υ

2 cosh �Υ

2y

a0
sinh

2�Υy

a0

)

sin
Υ�x

a0

(59)

�(�) = �d

(
(1 − �∕h)5

+
− 6(

2

3
− �∕h)5

+
+ 15(

1

3
− �∕h)5

+

)

(60)‖w‖L2 =
����

∑
j(wj − wexact

j
) ⋅ (wj − wexact

j
)ΔVj∑

j w
exact
j

⋅ wexact
j

ΔVj

Fig. 8   Comparison of the deflection for nodes in y = 0.5 under uni-
form pressure load

Fig. 9   Comparison of the deflection contour under uniform pressure load a ABAQUS, bnonlocal operator method
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which is shown in Fig. 4.

5.2 � Nonlocal dynamic Kirchhoff plate formulation 
with simply supported boundary condition

We now focus on a simply supported square Kirchhoff plate 
with a width of a0 = 1 m and thickness t=0.01m. Young’s 
modulus and Poisson’s ratio are E=200GPa and �=0.3, 
respectively. A uniform pressure of qz = 100N∕m2 is applied 
to the plate. The number of neighbors in the domain of influ-
ence of each point is set to n = 24 . The distance between 
points is selected as Δx=0.01 m leading to 10201 points. 
For the ABAQUS model—as a comparison—we discre-
tized the plate into 100 × 100 elements using the same input 
parameters.

Simply supported boundary conditions are assumed:

(61)
w(x, 0) = w(x, 1) = w(0, y) = w(1, y) = 0 x, y ∈ [0, 1].
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Fig. 10   Comparison of the deflection for nodes in y = 0.5 under uni-
form pressure load

Fig. 11   The evolution the deflection contour using ABAQUS and nonlocal operator method at different time
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Contour plots of the deflection can be found in Figs. 7 and 
8, respectively.

5.3 � Nonlocal dynamic Kirchhoff plate formulation 
with clamped boundary condition

Next, a plate using clamped boundary conditions is studied. 
The geometry and the parameters of the previous section 
are adopted. The clamped boundary conditions are given by

Contour plots of the deflection are illustrated in Figs. 9 
and 10, respectively.

5.4 � Transient test of nonlocal dynamic Kirchhoff 
plate formulation with simply supported 
boundary condition

The last example is a simply supported plate where the 
damping is omitted. A uniform pressure of qz = 100N∕m2 
is applied to the plate and the neighbors assigned to each 
point is set to n = 30 . All other parameters are adopted from 
the previous example. Figure 11 shows the deflection field 
at different times.

6 � Conclusions

In this paper, a nonlocal dynamic Kirchhoff plate formu-
lation based on a nonlocal operator method is proposed. 
Therefore, we derived the explicit form of the nonlocal 
Hessian operator taking advantage of a second order Taylor 
series expansion. The nonlocal operator energy functional is 
also derived and the relationship between local and nonlo-
cal formulations is interpreted. In the numerical simulation 
section, we first verify the accuracy of the nonlocal Hessian 
operator for the Kirchhoff plate and compare it to analyti-
cal solutions. Subsequently, the nonlocal dynamic Kirchhoff 
plate formulation with different type boundary conditions 
(clamped and simply supported) is studied and compared to 
simulations obtained by ABAQUS. In the future, we intend 
to extend the formulation for nonlinear dynamic fracture 
exploiting the advantages and flexibility of NOM in this 
direction.
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w(x, 0) = w(x, 1) = w(0, y) = w(1, y) = 0

�w(0, y)

�x
=
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�x
=
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=

�w(x, 1)

�y
= 0 x, y ∈ [0, 1].
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