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Abstract
The derivation of nonlocal strong forms for many physical problems remains cumbersome in traditional methods. In this 
paper, we apply the variational principle/weighted residual method based on nonlocal operator method for the derivation of 
nonlocal forms for elasticity, thin plate, gradient elasticity, electro-magneto-elasticity and phase-field fracture method. The 
nonlocal governing equations are expressed as an integral form on support and dual-support. The first example shows that 
the nonlocal elasticity has the same form as dual-horizon non-ordinary state-based peridynamics. The derivation is simple 
and general and it can convert efficiently many local physical models into their corresponding nonlocal forms. In addition, a 
criterion based on the instability of the nonlocal gradient is proposed for the fracture modelling in linear elasticity. Several 
numerical examples are presented to validate nonlocal elasticity and the nonlocal thin plate.

Keywords  Energy form · Weak form · Variational principle · Peridynamics · Dual-support · Fracture · Explicit time 
integration

1  Introduction

Classical continuum mechanics has achieved great success 
in describing the macro-scale properties of solid material 
based on the continuous medium hypothesis that the mate-
rial is a continuous mass rather than as discrete particles. 
The assumption indicates that the substance of the object 

completely fills the space it occupies, without considering 
the inherent micro-structure of the material. Such a continu-
ous medium hypothesis is not always valid in solid medium. 
Over the years, researchers found that many phenomena, 
such as size effect [1], length scale effect [2], skin/edge 
effect [3], can not be well predicted by traditional contin-
uum mechanics. These phenomena may be attributed to the 
nonlocal effect in the solid. In contrast with local theory 
whose mathematical language is partial differential deriva-
tives defined at an infinitesimal point, nonlocal theory is 
formulated as integral form in a domain.

Classical continuum mechanics is regarded as a local the-
ory. For solid mediums of multiple materials with a material 
interface or discontinuity such as fracture, the partial differ-
ential operator is no longer well defined. Around the frac-
ture front tip, the stress singularity happens for local theory. 
To model fracture and its evolution, various local theories 
have been proposed, for example, finite element method 
(FEM) [4], extended finite element method [5], phase-field 
fracture method [6–8], cracking particle method [9, 10], 
extended finite element method [11], numerical manifold 
method [12], extended isogeometric analysis (XIGA) for 
three-dimensional crack [13], meshfree methods [14–16]. 
Another approach for fracture modeling is the nonlocal 
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method. Compared with classical continuum mechanics 
without length scale, nonlocal theory takes into account the 
length scale explicitly and it is less sensitive to the inhomo-
geneity/discontinuity encountered in the materials due to 
its integral form.

Two general theories to account for the length scale of 
solid material, are the gradient elasticity [1, 17–20] and the 
nonlocal elasticity [21–24]. The gradient elasticity theory 
can be traced back to Cosserat theory in 1909 [25]. It incor-
porates the length scale and higher order derivative of the 
displacement field. A variety of gradient elasticity theories 
have been proposed such as Mindlin solid theory [2, 17], 
couple stress theory [1, 26], modified couple stress [18, 
27] and second-grade materials [19]. In nonlocal elastic-
ity, the stress tensor is based on the integral of the “local” 
stress field in a domain, in contrast with the local elasticity 
defining the stress based on the strain field at a point. Under 
certain circumstances, the nonlocal elasticity can be trans-
formed into gradient elasticity [23, 28].

Among various nonlocal elasticity theories, peridynamics 
(PD) [29, 30] has attracted the attention of the researchers 
in the fracture mechanics field. PD is based on the inte-
gral form well defined in domain with/without discontinu-
ity. This salient feature enables PD a versatile method for 
fracture modeling [31–34]. The origin of PD is the bond-
based PD (BB-PD) with the Poisson ratio restriction. BB-PD 
can model 2D elasticity with Poisson ratio of 1/3 and 3D 
elasticity with Poisson ratio of 1/4. Many efforts have been 
dedicated to overcome this restriction, for example, PD with 
shear deformation [35], bond-rotation effect by [36], PD 
with micropolar deformation [37]. The further development 
of PD is the state-based PD [30, 38]. Several treatments are 
developed to overcome the instability issue in non-ordinary 
state-based PD (NOSBPD), including, bond-associated 
higher-order stabilized model [39], higher-order approxima-
tion [40], stabilized non-ordinary state-based PD [41, 42], 
sub-horizon scheme [43] and stress point method [44].

In the spirit of nonlocality, PD has been extended in 
many directions, for example, dual-horizon PD [45, 46], 
peridynamic plate/shell theory [47–50], mixed peridynamic 
Petrov-Galerkin method for compressible and incompress-
ible hyperelastic material [51, 52], phase-field-based peri-
dynamic damage model for composite structures [53], wave 
dispersion analysis of PD [54], damage mechanism in PD 
[55], coupling scheme for state-based PD and FEM [56, 57], 
higher-order peridynamic material models for elasticity [58] 
and Peridynamic differential operator (PDDO) [59–61] for 
solving partial differential equations, to name a few. PDDO 
has greatly extended the power of peridynamics and was 
applied to numerous challenging problems including fluid 
flow coupled with heat transfer [62] and fracture evolution 
in batteries [63] among others.

Dual-horizon PD overcomes the restriction of constant 
horizon in PD, without introducing side effects for variable 
horizons. Dual-horizon peridynamic formulation can be 
derived from the Euler–Lagrange equations [64]. Based on 
the concept in nonlocal theory, we developed the Nonlocal 
Operator Method (NOM) as the generalization of dual-hori-
zon PD. NOM uses the nonlocal operators of integral form 
to replace the local partial differential operators of different 
orders. There are three versions of NOM, first-order particle-
based NOM [65, 66], higher-order particle-based NOM [67] 
and higher-order NOM based on numerical integration [68]. 
The particle-based version can be viewed as a special case 
of NOM with numerical integration when nodal integration 
is employed. The nonlocal operators can be viewed as an 
alternative to the partial derivatives of shape functions in 
FEM. Combined with a variational principle or weighted 
residual method, NOM obtains the residual vector and tan-
gent stiffness matrix in the same way as in FEM. NOM has 
been applied to the solutions of the Poisson equation in high 
dimensional space, von-Karman thin plate equations, frac-
ture problems based on phase field [67], waveguide problem 
in electromagnetic field [66], gradient solid problem [68] 
and Cahn–Hilliard equation [69].

Although much progress in nonlocal methods has been 
achieved in the above mentioned literatures, the derivations 
for many physical problems remain cumbersome and com-
plicated, see for example [48, 58, 70, 71]. In local theory, 
the local differential operator is a fundamental element 
for describing physical problems. In analogy, the nonlocal 
operators would be very beneficial for developing nonlocal 
theoretical models. The power of NOM in deriving nonlo-
cal models remains largely unexplored. In addition, NOM 
based on implicit algorithms is relatively complicated in 
implementation and in this paper, we explore the explicit 
algorithm in solving the nonlocal models. Furthermore, 
we propose an instability criterion of the nonlocal gradient 
operator for the purpose of fracture modeling.

The remaining of the paper is outlined as follows. In 
Sect. 2, the second-order NOM in 2D/3D is formulated in 
detail. In Sect. 3, we apply the NOM scheme combined with 
variational principle/weighted residual method to derive the 
nonlocal governing equations for elasticity, thin plate, gra-
dient elasticity, electro-magneto-elasticity and phase-field 
fracture model. The correspondence between local form 
and nonlocal form for higher-order problems is discussed. 
In Sect. 4, an instability criterion of nonlocal gradient is 
presented in the fracture modeling of linear elastic solid. The 
implementation of nonlocal solid and nonlocal thin plate is 
discussed in Sect. 5. Several numerical examples for solid 
and thin plate are used to demonstrate the accuracy and effi-
ciency of the current method in Sect. 6. Last but not the 
least, some concluding remarks are presented.
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2 � Second‑order nonlocal operator method

NOM uses the integral form to replace the partial differential 
derivatives of different orders. Although NOM can solve 
higher order linear/nonlinear problems in 2D/3D, we restrict 
our discussion in second-order NOM, which is sufficient 
for the nonlocal derivation of the physical problems to be 
studied in Sect. 3.

2.1 � Support and dual‑support

Consider a domain as shown in Fig.1a, let xi be spatial coor-
dinates in the domain � ; rij ∶= xj − xi is a spatial vector 
starting from xi to xj ; vi ∶= v(xi, t) and vj ∶= v(xj, t) are the 
field values for xi and xj , respectively; vij ∶= vj − vi is the 
relative field vector for spatial vector rij.

Support Si is the neighbourhood of point xi . A point xj in 
support Si forms the spatial vector rij(= xj − xi) . The support 
in NOM can be a spherical domain, a cube, semi-spherical 
domain and so on.

Dual-support is defined as a union of points whose sup-
ports include xi , denoted by

Point xj forms the dual-vector rji(= xi − xj = −rij) in S′

i
 . On 

the other hand, rji is the spatial vector formed in Sj . It is 
worth mentioning that the size of the support of each point 
can be different. When the support sizes for all material 
points are the same, the dual-support is equal to the sup-
port. On the other hand, if the size of support varies for 
each point, the shape of dual-support can be quite irregular, 
even discontinuous for two adjacent points. One example to 
illustrate the support and dual-support is shown in Fig. 1b.

(1)S
�

i
= {xj|xi ∈ Sj}.

2.2 � Dual property of dual‑support

For point j ∈ Si , let fij be a physical quantity, work conju-
gate to field difference (uj − ui) , the dual property of dual-
support is

Proof: Let the domain Ω be divided into N non-overlapping 
particles, so that Ω =

∑N

i=1
ΔVi , where ΔVi is the volume 

assigned to particle i. Herein, N can be arbitrarily large so 
that the ΔVi is infinitesimal and the double summations of 
discrete form converge to the double integrals in continu-
ous form.

In the third step, the dual-support is considered as follows. 
The term fij with uj is the physical quantity from i’s support, 
but is added to particle j; since j ∈ Si , i belongs to the dual-
support S′

j
 of j; all terms fji with ui are collected from any 

material point j whose support contains i and hence form 
the dual-support of i. Therefore, the dual property of the 
dual-support is proved.

(2)
∫
Ω
∫
Si

fij(uj − ui) dVj dVi = ∫
Ω

(
∫
S
�
i

fji dVj − ∫
Si

fij dVj

)
ui dVi.

(3)

∫
Ω
∫
Si

fij(uj − ui) dVj dVi

≈
∑

ΔVi∈Ω

∑
ΔVj∈Si

fij(uj − ui)ΔVjΔVi

=
∑

ΔVi∈Ω

∑
ΔVj∈Si

fijujΔVjΔVi −
∑

ΔVi∈Ω

∑
ΔVj∈Si

fijuiΔVjΔVi

=
∑

ΔVi∈Ω

∑
ΔVj∈S

�
i

fjiuiΔVjΔVi −
∑

ΔVi∈Ω

∑
ΔVj∈Si

fijuiΔVjΔVi

≈ ∫
Ω

(
∫
S
�
i

fji dVj − ∫
Si

fij dVj

)
ui dVi

Fig. 1   a Domain and nota-
tion. b Schematic diagram 
for support and dual-support, 
all shapes above are sup-
ports, S

x
= {x1, x2, x4} , 

S
�

x
= {x1, x2, x3}
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When all points have the same size of support domains, 
i.e. j ∈ Si ↔ i ∈ Sj , we have Si = S

�

i
 for any point i and then 

the dual property of dual-support by Eq. 2 becomes

Above equation is widely used in the derivation of nonlo-
cal strong form from weak form. Such expression is valid 
in the continuum form as well as in discrete form. The dual 
property of dual-support is also proved in the dual-horizon 
peridynamics [46]. A simple example with N = 4 to illus-
trate this property is given in Appendix A.

2.3 � Nonlocal gradient and Hessian operator

The local gradient operator and Hessian operator for a sca-
lar-valued function u have the forms in 2D

and in 3D

where u,xx denotes the partial derivative of u with respect 
to x twice.

In the framework of NOM, the partial derivatives can 
be constructed as follows. The Taylor series expansion of 
scalar-valued field uj in 2D can be written as

where rij = (xij, yij)
T = xj − xi and O(|rij|3) denotes the 

higher order terms.
Let

The Taylor series expansion of Eq. 7 can be rewritten as

Tensor product with pT
ij
 on both sides of Eq. 11

(4)∫
Ω
∫
Si

fij(uj − ui) dVj dVi = ∫
Ω
∫
Si

(fji − fij)ui dVj dVi.

(5)∇u =

(
u,x, u,y

)T

, ∇2u =

(
u,xx u,xy
u,xy u,yy

)

(6)∇u =

�
u,x, u,y, u,z

�T

, ∇2u =

⎛⎜⎜⎝

u,xx u,xy u,xz
u,xy u,yy u,yz
u,xz u,yz u,zz

⎞⎟⎟⎠

(7)
uj = ui + (ui,x, ui,y, ui,xx, ui,xy, ui,yy) ⋅ (xij, yij, x

2
ij
∕2, xijyij, y

2
ij
∕2) + O(|rij|3)

(8)uij = uj − ui

(9)pij = (xij, yij, x
2
ij
∕2, xijyij, y

2
ij
∕2)T

(10)�ui = (ui,x, ui,y, ui,xx, ui,xy, ui,yy)
T

(11)uij = �uT
i
pij

(12)uijp
T
ij
= �uT

i
pijp

T
ij

Considering the weighted integration in the support Si , we 
obtain

where �(rij) is the weight function.
Then the nonlocal operators can be obtained as

where

Here, we use ◻̃ to denote the nonlocal form of the local 
operator 	�  ◻ since the definitions of the local 
operator and the nonlocal operator are distinct.

The Taylor series expansion of a vector field u can be 
obtained in the similar manner as

That is

For example, consider the displacement field u = (u, v)T in 
two dimensional space, the relative displacement vector and 
the nonlocal partial derivatives have the explicit forms

Let Ki ⋅ pij be denoted by

The gradient vector gij and Hessian matrix hij between points 
i and j in 2D are, respectively

(13)∫
Si

�(rij)uijp
T
ij
dVj = �uT

i ∫
Si

�(rij)pijp
T
ij
dVj

(14)𝜕ui ∶= ∫
Si

𝜔(rij)Ki ⋅ pijuij dVj

(15)Ki =

(
∫
Si

𝜔(rij)pij ⊗ pT
ij
dVj

)−1

(16)uT
ij
= pT

ij
⋅ �ui

(17)𝜔(rij)pij ⊗ uT
ij
= 𝜔(rij)pij ⊗ pT

ij
⋅ 𝜕ui

(18)∫
Si

𝜔(rij)pij ⊗ uT
ij
dVj = ∫

Si

𝜔(rij)pij ⊗ pT
ij
⋅ 𝜕ui dVj

(19)𝜕ui ∶= ∫
Si

𝜔(rij)Ki ⋅ pij ⊗ uT
ij
dVj

(20)uij =

�
uj − ui
vj − vi

�
, 𝜕ui = (𝜕ui, 𝜕vi) =

⎛
⎜⎜⎜⎜⎜⎝

ui,x vi,x
ui,y vi,y
ui,xx vi,xx
ui,xy vi,xy
ui,yy vi,yy

⎞
⎟⎟⎟⎟⎟⎠

,

(21)(g1j, g2j, h1j, h2j, h3j)
T = Ki ⋅ pij.

(22)gij = (g1j, g2j)
T , hij =

(
h1j h2j
h2j h3j

)
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In 3D case, the polynomial vector based on relative coordi-
nates rij = (xij, yij, zij)

T = xj − xi is given as

The shape tensor in 3D is constructed by Eq. 15 with pij in 
Eq. 23.

Let Ki ⋅ pij in 3D be denoted by

The gradient vector gij and Hessian matrix hij for two points 
i, j in support in 3D are, respectively

It is worth mentioning that for first order NOM or peridy-
namics, the gradient vector can be calculated as well by

Then the nonlocal gradient operator and Hessian operator 
for vector field can be defined as

In the case of 2-vector in 2 dimensional space, the explicit 
forms of ∇̃⊗ ui and ∇̃⊗ ∇̃⊗ ui are

For scalar-valued field, the nonlocal Laplace operator is the 
tensor contraction of ∇̃⊗ ∇̃ui , e.g. Δ̃ = ∇̃ ⋅ ∇̃ = tr (∇̃⊗ ∇̃) , 
where tr(⋅) denotes the trace of a matrix. More specifically, 
in 2D

and in 3D

(23)pij = (xij, yij, zij, x
2
ij
∕2, xijyij, xijzij, y

2
ij
∕2, yijzij, z

2
ij
)T .

(24)(g1j, g2j, g3j, h1j, h2j, h3j, h4j, h5j, h6j)
T = Ki ⋅ pij.

(25)gij = (g1j, g2j, g3j)
T , hij =

⎛
⎜⎜⎝

h1j h2j h3j
h2j h4j h5j
h3j h5j h6j

⎞
⎟⎟⎠

(26)gij =

(
∫
Si

𝜔(rik)rik ⊗ rik dVk

)−1

⋅ rij.

(27)∇̃⊗ ui ∶= ∫
Si

𝜔(rij)uij ⊗ gij dVj

(28)∇̃⊗ ∇̃⊗ ui ∶= ∫
Si

𝜔(rij)uij ⊗ hij dVj.

(29)∇̃⊗ ui =

(
ui,x ui,y
vi,x vi,y

)

(30)

∇̃⊗ ∇̃⊗ ui =
(

𝜕(∇̃⊗ui)

𝜕x

𝜕(∇̃⊗ui)

𝜕y

)
=

((
ui,xx ui,yx
vi,xx vi,yx

) (
ui,xy ui,yy
vi,xy vi,yy

))

(31)Δ̃ui ∶= ∫
Si

𝜔(rij)(h1j + 2h2j + h3j)uij dVj

(32)

Δ̃ui ∶= ∫
Si

𝜔(rij)(h1j + 2h2j + 2h3j + h4j + 2h5j + h6j)uij dVj

And their local counterparts for scalar-valued field are

2.4 � Stability of the second‑order nonlocal operators

According to Ref. [67], the energy functional for second-
order nonlocal operator in discrete form can be written as

where phg is the penalty and mi = ∫
Si
�(rij) dVj . The operator 

in Eq. 14 corresponds to the minimum of Eq. 35. The first 
variation of Fi is

We can prove that

Therefore,

Consider integration of �Fi(u) in domain

(33)Δw = w,yy + 2w,xy + w,xx in 2D

(34)
Δw = w,xx + w,yy + w,zz + 2w,xy + 2w,xz + 2w,yz in 3D .

(35)Fi(u) =
1

2

phg

mi
∫
Si

𝜔(rij)
(
uij − pT

j
𝜕ui

)2
dVj

(36)

𝛿Fi(u) =
phg

mi
∫
Si

𝜔(rij)
(
uij − pT

j
𝜕ui

)
(𝛿uj − 𝛿ui − pT

j
𝜕𝛿ui) dVj

=
phg

mi
∫
Si

𝜔(rij)
(
uij − pT

j
𝜕ui

)
(𝛿uj − 𝛿ui) dVj

−
phg

mi
∫
Si

𝜔(rij)
(
uij − pT

j
𝜕ui

)
(pT

j
𝜕𝛿ui) dVj

−
phg

mi
∫
Si

𝜔(rij)
(
uij − pT

j
𝜕ui

)
(pT

j
𝜕𝛿ui) dVj

= −
phg

mi
∫j∈Si

𝜔(rij)
(
pjuij − pjp

T
j
𝜕ui

)
dVj ⋅ 𝜕𝛿ui

= −
phg

mi

(
∫
Si

𝜔(rij)pjuij dVj − ∫
Si

𝜔(r)pjp
T
j
dVj ⋅ 𝜕ui

�������������������������������������������������������������
=0 since Eq.13

)
⋅ 𝜕𝛿ui

=0.

𝛿Fi(u) =
phg

mi
∫
Si

𝜔(rij)
(
uij − pT

j
𝜕ui

)
(𝛿uj − 𝛿ui) dVj.
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For any �ui , ∫Ω �Fi dVi = 0 leads to the internal force due to 
the stability of the nonlocal operator

Equation 38 is the expression for a scalar-valued field. For 
vector-valued field, the internal force due to the stability of 
nonlocal operator is

3 � Nonlocal governing equations based 
on NOM

This section is devoted to the variational derivation of nonlo-
cal strong forms of solid mechanics, including hyperelastic-
ity, thin plate, gradient elasticity, electro-magnetic-elasticity 
theory and phase-field fracture method. The strong form is 
suitable for theoretical analysis as well as explicit time inte-
gration. For the fully implicit simulation of various PDEs, 
the reader is referred to NOM for PDEs [65–69, 72].

3.1 � Nonlocal form for hyperelasticity

Consider the energy density of a hyperelasticity as 
� ∶= �(F) , where F = ∇u + I . The balance equation for 
the hyperelastic solid is

with boundary conditions u = u0 on ΓD and P ⋅ n = t0 on ΓN , 
where u0 is the specified displacement and t0 is the 

(37)

∫
Ω

𝛿Fi dVi

= phg ∫
Ω
∫
Si

𝜔(rij)

mi

(
uij − pT

j
𝜕ui

)
(𝛿uj − 𝛿ui) dVj dVi

�������������������������������������������������������������������
by Eq.2

=∫
Ω

(
∫
S
�
i

𝜔(rij)
phg

mj

(
uji − pT

i
𝜕uj

)
dVj

− ∫
Si

𝜔(r)
phg

mi

(
uij − pT

j
𝜕ui

)
dVj

)
𝛿ui dVi.

(38)
∫
S
�
i

𝜔(rij)
phg

mj

(
uji − pT

i
𝜕uj

)
dVj

− ∫
Si

𝜔(r)
phg

mi

(
uij − pT

j
𝜕ui

)
dVj

(39)
∫
S
�
i

𝜔(rji)
phg

mj

(
uji − pT

i
𝜕uj

)
dVj

− ∫
Si

𝜔(rij)
phg

mi

(
uij − pT

j
𝜕ui

)
dVj.

(40)∇ ⋅ P + b = 0 on Ω

prescribed traction load, P =
��

�F
 , the first Piola-Kirchhoff 

stress, b is the body force density.

3.1.1 � Derivation based on variational principle

The variation of strain energy over the domain is

In above derivation, we replace the gradient operator with 
nonlocal gradient, e.g. ∇̃⊗ ui → ∫

Si
𝜔(rij)uij ⊗ gij dVj in 

Eq. 27, and the relation A ∶ a⊗ b = (A ⋅ b) ⋅ a for second-
order tensor A and vectors a, b is employed.

The variational of external body force energy

For any �ui , �F − �Fext = 0 leads to the nonlocal governing 
equations for elasticity

Considering the effect of inertial force 𝜌üi per unit volume, 
and replacing the dual-support with dual-horizon, we obtain 
the equations of motion for dual-horizon peridynamics

If the sizes of horizons for all material points are the same, 
the dual-horizon peridynamics degenerates to the conven-
tional constant horizon peridynamics.

For any specific strain energy density (for example, iso-
tropic/anisotropic linear/nonlinear elasticity), the explicit 
form of P can be derived straightforwardly. In the section 
of numerical examples, we consider the linear isotropic 

(41)

𝛿F = ∫
Ω

𝛿𝜓(F) dV = ∫
Ω

𝜕𝜓

𝜕F
∶ 𝛿F dV

= ∫
Ω

P ∶ ∇(𝛿u) dV

= ∫
Ω

Pi ∶ ∫
Si

𝜔(rij)𝛿uij ⊗ gij dVj dVi

= ∫
Ω
∫
Si

𝜔(rij)Pi ∶ 𝛿uij ⊗ gij dVj dVi

= ∫
Ω
∫
Si

𝜔(rij)(Pi ⋅ gij) ⋅ 𝛿uij dVj dVi

= ∫
Ω
∫
Si

𝜔(rij)(Pi ⋅ gij) ⋅ (𝛿uj − 𝛿ui) dVj dVi

�������������������������������������������������������������
by Eq.2

= ∫
Ω

(
∫
S
�
i

𝜔(rji)Pj ⋅ gji dVj − ∫
Si

𝜔(rij)Pi ⋅ gij dVj

)
⋅ 𝛿ui dVi

(42)�Fext = ∫
Ω

�u ⋅ b dV

(43)∫
Si

�(rij)Pi ⋅ gij dVj − ∫
S
�
i

�(rji)Pj ⋅ gji dVj + b = 0

(44)∫
Hi

𝜔(rij)Pi ⋅ gij dVj − ∫
H

�
i

𝜔(rji)Pj ⋅ gji dVj + bi = 𝜌üi
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elasticity, which can be viewed as a special case of the 
hyperelasticity.

3.1.2 � Derivation based on weighted residual method

Beside the derivation based on strain energy density, the 
nonlocal strong form can be derived by weighted residual 
method. Consider the governing equations for hyperelastic-
ity , the weak form of Eq. 40 for any trial vector becomes

Let us focus on the integral in Ω , the first term in above 
equation can be written as

For any vi , the weak form being zero leads to

which is identical to Eq. 43. As being more general than the 
energy method, the weighted residual method can be used 
to convert PDEs that have no energy functional to nonlocal 
integral forms.

3.2 � Nonlocal thin plate theory

The thin plate theory is widely used in engineering applica-
tions [73]. The basic assumption of thin plate include: (1) 
the thickness of the plate is much smaller than the length 
inside the mid-plane; (2) the deflection is much smaller 
than the thickness of the plate so that higher-order effect 
is neglectable; (3) the stress along the thickness direction 
is assumed as zero, e.g. �z ≈ 0 and the points in the mid-
plane have no displacement parallel to the midplane, e.g. 
u(x, y, 0) = v(x, y, 0) ≈ 0 ; (4) the normal of the mid-plane 
remains perpendicular to the mid-plane after deformation. 

(45)

0 = ∫
Ω

v ⋅ ∇ ⋅ P + v ⋅ b dV

= ∫
Ω

−∇v ∶ P + v ⋅ b dV + ∫
Γ

P ⋅ n ⋅ v dS

= ∫
Ω

−

(
∫
Si

𝜔(rij)vij ⊗ gij dVj

)
∶

Pi + vi ⋅ b dVi + ∫
Γ

P ⋅ n ⋅ v dS

(46)

∫
Ω

−

(
∫
Si

𝜔(rij)vij ⊗ gij dVj

)
∶ Pi dVi

= ∫
Ω

−

(
∫
Si

𝜔(rij)Pi ⋅ gij ⋅ (vj − vi) dVj

)
dVi

���������������������������������������������������������������
by Eq.2

= ∫
Ω

(
∫
Si

𝜔(rij)Pi ⋅ gij dVj − ∫
S
�
i

𝜔(rji)Pj ⋅ gji dVj

)
⋅ vi dVi

∫
Si

�(rij)Pi ⋅ gij dVj − ∫
S
�
i

�(rji)Pj ⋅ gji dVj + b = 0

Then the plate bending can be simplified into 2D problem 
and the displacements, strain and stress can be described by 
the deflection on the mid-plane

The generalized strain is the Hessian operator on the 
deflection

with nonlocal correspondence and its variation

The bending moment tensor M , the general stress for iso-
tropic thin plate, is given by

where D0 =
Et3

12(1−�2)
 and t is the thickness of the plate.

Based on the principle of minimum potential energy, the 
energy functional for the governing equation is

and for the boundary condition can be expressed as

where q is the external transverse load on the mid-plane, 
V̄n is the shear force load on boundary S3 and M̄n is the pre-
scribed moment on boundary S2 + S3 . For simplicity, we 
leave the integral on the boundary for later consideration. 
The variation of the internal energy functional is

(47)u(x, y, z) = −z
�w

�x

(48)v(x, y, z) = −z
�w

�y

(49)w(x, y, z) ≃ w(x, y, 0) ≅ w(x, y).

(50)� = ∇2w =

(
w,xx w,xy

w,xy w,yy

)

(51)� = ∇̃2w ∶= ∫
Si

𝜔(rij)hijwij dVj

(52)�� = ∫
Si

�(rij)hij�wij dVj

(53)M =

(
Mxx Mxy

Mxy Myy

)
= D0

(
� tr (�)I2×2 + (1 − �)�

)

(54)Fint = ∫
Ω

1

2
M ∶ � − qw dS

(55)Fext = ∫S3

V̄nw dΓ − ∫S2+S3

M̄n

𝜕w

𝜕n
dΓ
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The variation of the external energy function is

For any �wi , �Fint − �Fext = 0 leads to the nonlocal thin 
plate equation for material point in domain Ω

The additional nonlocal form for material point applied with 
the moment boundary condition is

Based on the D’Alembert’s principle, the equation of motion 
considering the effect of inertial force 𝜌tẅi per unit area is

(56)

�Fint = ∫
Ω

M ∶ �� − q�w dS

= ∫
Ω

Mi ∶ ∫
Si

�(rij)hij�wij dSj − qi�wi dSi

= ∫
Ω
∫
Si

�(rij)Mi ∶ hij(�wj − �wi) dSj

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
by Eq.2

−∫
Ω

qi�wi dSi

= ∫
Ω

(
∫
S
�
i

�(rij)Mj ∶ hji dSj

− ∫
Si

�(rij)Mi ∶ hij dSj − qi

)
�wi dSi

(57)

𝛿Fext = ∫S3

V̄n𝛿w dΓ − ∫S2+S3

M̄n

𝜕𝛿w

𝜕n
dΓ

= ∫S3

V̄n𝛿w dΓ − ∫S2+S3

M̄n∇𝛿w ⋅ n dΓ

= ∫S3

V̄n𝛿w dΓ − ∫S2+S3

M̄ni

∫
Si

𝜔(rij)𝛿wijgij dVj ⋅ ni dΓi

= ∫S3

V̄n𝛿w dΓ − ∫S2+S3
∫
Si

𝜔(rij)

M̄nigij ⋅ ni𝛿wij dVj dΓi

= ∫S3

V̄n𝛿w dΓ − ∫S2+S3

(
∫
S
�
i

𝜔(rji)M̄njgji ⋅ nj dVj

− ∫
Si

𝜔(rij)M̄nigij ⋅ ni dVj

)
𝛿wi dΓi

(58)
∫
Si

�(rij)Mi ∶ hij dVj

− ∫
S
�
i

�(rij)Mj ∶ hji dVj + qi = 0

(59)
∫
Si

𝜔(rij)M̄nigij ⋅ ni dVj

− ∫
S
�
i

𝜔(rji)M̄njgji ⋅ nj dVj = 0

For clamped boundary condition w,n = ∇w ⋅ n = 0 , the non-
local form is

Compared with the local governing equation for thin plate 
∇2 ∶ M + q = t𝜌ẅ , we can find the correspondence between 
local and nonlocal formulation

The nonlocal derivation for thin plate can be extended to 
composite plate and functional gradient plate theories.

3.3 � Nonlocal gradient elasticity

Gradient theories emerge from considerations of the micro-
structure in the material at micro-scale, where a mass point 
after homogenization is not the center of a micro-volume and 
the rotation of the micro-volume depends on the moment 
stress/couple stress as well as the Cauchy stress. Gradient 
elasticity generalizes the elasticity theory by employing 
higher order terms of the deformation gradient or the gradi-
ent of the strain tensor. Generally, the energy density func-
tional can be assumed as � ∶= �(F,∇F) = �(∇u,∇2u) , 
where F = ∇u + I . The total potential energy in domain is

The stress tensor and generalized stress tensor of first Piola-
Kirchhoff type are defined as

The variation of the total internal energy is

(60)
∫
S
�
i

𝜔(rij)Mj ∶ hji dVj

− ∫
Si

𝜔(rij)Mi ∶ hij dVj + qi = t𝜌ẅi

(61)∫
Si

�(rij)wijgij ⋅ ni dVj = 0

(62)

∇2 ∶ M → ∇̃2 ∶ Mi ∶= ∫
S
�
i

𝜔(rji)Mj ∶ hji dVj

− ∫
Si

𝜔(rij)Mi ∶ hij dVj

(63)F = ∫
Ω

� − b ⋅ u dV

(64)P =
��

�F

(65)� =
��

�∇F
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Based on the integration by parts, the local form can be 
derived by

Based on D’Alembert’s principle, the governing equations 
for dynamic gradient elasticity can be written as

O n  t h e  o t h e r  h a n d ,  d o  t h e  s u b s t i t u t i o n s 
∇𝛿u → ∫

Si
𝜔(rij)gij ⊗ 𝛿uij dVj, and ∇2𝛿u → ∫

Si
𝜔(rij)hij ⊗ 𝛿uij dVj

 , we 
get

In the above derivation, we used �∶̇u⊗ h = (� ∶ h) ⋅ u . 
For any �ui , �F = 0 leads to the nonlocal form of gradient 
elasticity

(66)

𝛿F = ∫
Ω

(𝜕𝜓
𝜕F

∶ ∇𝛿u

+
𝜕𝜓

𝜕∇F
∶̇∇2𝛿u − b ⋅ 𝛿u

)
dV

= ∫
Ω

(
P ∶ ∇𝛿u

+ �∶̇∇2𝛿u − b ⋅ 𝛿u
)
dV .

(67)

�F = ∫�Ω

(
n ⋅ P ⋅ �u + n ⋅ �∶∇�u

)
dS

− ∫
Ω

(
∇ ⋅ P ⋅ �u + ∇ ⋅ �∶∇�u + b ⋅ u

)
dV

= ∫�Ω

(
n ⋅ P ⋅ �u + n ⋅ � ∶ ∇�u − n ⋅ ∇ ⋅ � ⋅ �u

)
dS

− ∫
Ω

(∇ ⋅ P − ∇2 ∶ � + b) ⋅ �u d.V

(68)∇ ⋅ P − ∇2 ∶ � + b = 𝜌ü in Ω.

(69)

𝛿F = ∫
Ω

P ∶ ∇𝛿u + �∶̇∇2𝛿u − b ⋅ 𝛿u dV

= ∫
Ω

(
Pi ∶ ∫

Si

𝜔(rij)gij ⊗ 𝛿uij dVj

+ �i∶̇∫
Si

𝜔(rij)hij ⊗ 𝛿uij dVj − b ⋅ 𝛿u
)
dVi

= ∫
Ω
∫
Si

𝜔(rij)Pi∶(𝛿uj − 𝛿ui)⊗ gij dVj dVi

�������������������������������������������������������������
by Eq.2

+ ∫
Ω
∫
Si

𝜔(rij)�i∶̇(𝛿uj − 𝛿uj)⊗ hij dVj dVi

�������������������������������������������������������������
by Eq.2

−∫
Ω

b ⋅ 𝛿ui dVi

= ∫
Ω

(
∫
S
�
i

𝜔(rji)Pj ⋅ gji dVj

− ∫
Si

𝜔(rij)Pi ⋅ gij dVj

)
⋅ 𝛿ui dVi

+ ∫
Ω

(
∫
S
�
i

𝜔(rji)�j ∶ hji dVj

− ∫
Si

𝜔(rij)�i ∶ hij dVj

)
⋅ 𝛿ui dVi

− ∫
Ω

b ⋅ 𝛿ui dVi.

The inertia force term is added based on D’Alembert’s 
principle.

Comparing Eqs. 67 and 69, the correspondence from 
local form to nonlocal form is

3.4 � Nonlocal form of magneto‑electro‑elasticity

In accordance with reference [74], let us postulate the fol-
lowing form of internal energy for the energy function 
� ∶= �(F,∇F, p,∇p,m,∇m) , a function depends on the 
displacement gradient F = ∇u + I and its second gradient 
∇F = ∇2u , polarization vector p and its gradient ∇p , mag-
netic field m and its gradient ∇m . The total potential energy 
in the domain can be written as

This model has a strong physical background, for example, 
the nonlinear electro-gradient elasticity for semiconductors 
[75] and flexoelectricity [76].

The first variation of F  is

where

(70)
∫
Si

𝜔(rij)(Pi ⋅ gij + �i ∶ hij) dVj

− ∫
S
�
i

𝜔(rji)(Pj ⋅ gji + �j ∶ hji) dVj + b = 𝜌üi.

(71)

∇2 ∶ �i → ∫
S
�
i

�(rji)�j ∶ hji dVj

− ∫
Si

�(rij)�i ∶ hij dVj

(72)F = ∫
Ω

�(F,∇F, p,∇p,m,∇m) dV

(73)

𝛿F =∫
Ω

𝛿𝜓 dV

=∫
Ω

𝜕𝜓

𝜕F
∶ ∇𝛿u +

𝜕𝜓

𝜕∇F
∶̇∇2𝛿u +

𝜕𝜓

𝜕p
⋅ 𝛿p+

𝜕𝜓

𝜕∇p
∶ ∇𝛿p +

𝜕𝜓

𝜕m
⋅ 𝛿m +

𝜕𝜓

𝜕∇m
∶ ∇𝛿m dV

=∫
Ω

P ∶ ∇𝛿u + �∶̇∇2𝛿u + e ⋅ 𝛿p

+ E ∶ ∇𝛿p + s ⋅ 𝛿m + S ∶ ∇𝛿m dV

(74)P =
��

�F
,� =

��

�∇F
, e =

��

�p

(75)E =
��

�∇p
, s =

��

�m
, S =

��

�∇m
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Doing subst i tu t ions  ∇𝛿ui → ∫
Si
𝜔(rij)𝛿uij ⊗ gij dVj  , 

∇2𝛿ui → ∫
Si
𝜔(rij)𝛿uij ⊗ hij dVj   , 

∇𝛿pi → ∫
Si
𝜔(rij)𝛿pij ⊗ gij dVj

,∇𝛿mi → ∫
Si
𝜔(rij)𝛿mij ⊗ gij dVj and following the same 

operations in prior sections, the functional becomes

For any �ui, �pi, �mi , �F = 0 leads to general nonlocal gov-
erning equation for mechanical field, electrical field and 
magnetic field, respectively

In the derivation, we did not specify the exact form of the 
energy density, whether it is of small deformation or of finite 
deformation. For the specified energy form, one only needs 
to derive the expression for P,�, e,E, s,S based on the mate-
rial constitutions. It can be seen that the nonlocal governing 
equations for the continuum magneto-electro-elasticity can 
be obtained with ease by using nonlocal operator method 
and variational principle. The same rule applies for many 
other physical problems.

(76)

�F = ∫
Ω

(
∫
S
�
i

�(rji)(Pj ⋅ gji + �j ∶ hji) dVj

− ∫
Si

�(rij)(Pi ⋅ gij + �i ∶ hij) dVj

)
⋅ �ui dVi

+ ∫
Ω

(
∫
S
�
i

�(rji)(Ej ⋅ gji) dVj

− ∫
Si

�(rij)Ei ⋅ gij dVj + ei

)
⋅ �pi dVi+

∫
Ω

(
∫
S
�
i

�(rji)(Sj ⋅ gji) dVj

− ∫
Si

�(rij)Si ⋅ gij dVj + si

)
⋅ �mi dVi

(77)
∫
Si

�(rij)(Pi ⋅ gij + �i ∶ hij) dVj

− ∫
S
�
i

�(rji)(Pj ⋅ gji + �j ∶ hji) dVj + bi = 0

(78)
∫
Si

�(rij)Ei ⋅ gij dVj

− ∫
S
�
i

�(rji)Ej ⋅ gji dVj − ei = 0

(79)
∫
Si

�(rij)Si ⋅ gij dVj

− ∫
S
�
i

�(rji)Sj ⋅ gji dVj − si = 0

3.5 � Nonlocal form of phase‑field fracture method

Phase-field fracture method is powerful in fracture model-
ling [77]. The difference in tensile and compressive strengths 
of the material can be considered by dividing the strain 
energy density into a tensile part affected by the phase field 
and a compressive part, which is independent of the phase 
field,

where �+
e

 ( �−
e

 ) denotes the strain energy density for ten-
sile (compressive) part, u is the displacement, s ∈ [0, 1] is 
the phase field, � denotes the strain and � is the phase-field 
intrinsic length scale.

The full potential functional of the phase-field fracture 
model reads

where t∗ denotes the surface traction at the boundary, b is the 
body force density and gc is the critical energy release rate.

For the sake of simplicity, we neglect the surface traction 
force and consider the first variation of F

�

(80)�e(�(∇u), s) = (1 − s)2�+
e
(�(∇u)) + �−

e
(�(∇u)).

(81)

F
𝓁
(u, s) = ∫

Ω

(
(1 − s)2�+

e
(�(∇u)) + �−

e
(�(∇u))

)
dV

− ∫�Ω

t∗ ⋅ u dA − ∫
Ω

b ⋅ u dV + ∫
Ω

gc(
s2

2𝓁
+

𝓁

2
∇s ⋅ ∇s) dV ,
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where

For any �ui, �si , �F�
= 0 leads to the nonlocal governing 

equations for the mechanical field and phase field

(82)

𝛿F
𝓁
= ∫

Ω

𝛿
(
(1 − s)2𝜓+

e
+ 𝜓−

e

)
dV − ∫

Ω

b ⋅ 𝛿u dV

+ ∫
Ω

gc𝛿(
s2

2𝓁
+

𝓁

2
∇s ⋅ ∇s) dV

= ∫
Ω

(
(1 − s)2

𝜕𝜓+
e

𝜕�
∶ ∇𝛿u

− 2𝜓+
e
(1 − s)𝛿s +

𝜕𝜓−
e

𝜕�
∶ ∇𝛿u

)
dV − ∫

Ω

b ⋅ 𝛿u dV

+ ∫
Ω

gc(
s

𝓁
𝛿s + 𝓁∇s ⋅ ∇𝛿s) dV

= ∫
Ω

(
((1 − s)2�+ + �

−) ∶ ∇𝛿u − b ⋅ 𝛿u
)
dV

+ ∫
Ω

gc(
s

𝓁
𝛿s − 2

𝜓+
e

gc
(1 − s)𝛿s + 𝓁∇s ⋅ ∇𝛿s) dV

= ∫
Ω

(
�i ∶ ∇𝛿ui − bi ⋅ 𝛿ui

)
dVi

+ ∫
Ω

gc(
si

𝓁
𝛿si − 2

𝜓+

ei

gc
(1 − si)𝛿si + 𝓁∇si ⋅ ∇𝛿si) dVi

= ∫
Ω

(
�i ∶ (∫

Si

𝜔(rij)𝛿uij ⊗ gij dVj)

− bi ⋅ 𝛿ui

)
dVi

+ ∫
Ω

gc(
si

𝓁
𝛿si − 2

𝜓+

ei

gc
(1 − si)𝛿si + 𝓁∇si⋅

∫
Si

𝜔(rij)𝛿sijgij dVj) dVi

= ∫
Ω

(
(∫

S
�
i

𝜔(rji)�j ⋅ gji dVj

− ∫
Si

𝜔(rij)�i ⋅ gij dVj) ⋅ 𝛿ui − bi ⋅ 𝛿ui

)
dVi

+ ∫
Ω

gc

(
si

𝓁
− 2

𝜓+

ei

gc
(1 − si) + ∫

S
�
i

𝜔(rji)𝓁∇sj ⋅ gji dVj

− ∫
Si

𝜔(rij)𝓁∇si ⋅ gij dVj

)
𝛿si dVi

(83)�
+ =

��+
e

��
,�− =

��−
e

��

(84)� = (1 − s)2�+ + �
−

The above examples aim at illustrating the power of nonlocal 
operator method combined with weighted residual method 
or variational principle in the derivation of nonlocal strong 
forms based on their local strong or energy forms. The 
derived nonlocal strong forms are variationally consistent 
and allow variable support sizes for each point in the model.

4 � Instability criterion for fracture modelling

Typical methods for fracture modelling are either based on 
diffusive crack domain in phase-field methods or on direct 
topological modification on meshes in XFEM or bonds in 
PD. Direct topological modification on meshes often leads 
to instability issues. For example, in NOSBPD, the break-
age of a bond based on the quantities derived from stress 
state or strain state often introduces too much perturbation 
to the scheme, which may abort the calculation because of 
the singularity in shape tensors. These criteria include criti-
cal stretch [29], energy based [31] or stress-based criterion 
[33, 34]. Another issue in NOSBPD is that the strain energy 
carried by a bond is closely related to other bonds. It also 
depends on the direction, the length of the bond, the choice 
of influence functions. Removing one neighbour often gives 
rise to catastrophic results on the calculation. A criterion on 
how to remove the neighbours safely from the neighbour list 
remains unclear.

Damage is a process deviated from the robust mathemati-
cal expression, where the transition happens in a very nar-
row zone, such as the crack tip front. It is observed that 
around the crack tip, the gradient or strain undergoes a 
sharp transition within a very small zone. Most conventional 
numerical methods for fracture modelling focus on accurate 
description of the singularity occurring around the crack tip, 
such a description is very hard to tackle and its evolution is 
inconvenient to update. This dilemma can be handled when 
something different from continuous function is introduced.

In NOM, the gradient operator is defined in a “redundant” 
way. Around the crack tip, the deformation is irregular and 
the part due to hourglass energy is comparable to the strain 
energy carried by a particle. More specifically, the operator 

(85)
∫
Si

�(rij)�i ⋅ gij dVj

− ∫
S
�
i

�(rji)�j ⋅ gji dVj + bi = 0

(86)

si

𝓁
− 2

�+

ei

gc
(1 − si) + ∫

S
�
i

�(rji)𝓁∇sj ⋅ gji dVj

− ∫
Si

�(rij)𝓁∇si ⋅ gij dVj = 0.
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energy in nonlocal operator method describes the irregular-
ity of a function around the crack tip. The irregularity is the 
part that cannot be described by the continuous function. For 
continuous domain, the strain energy density is much larger 
than the operator energy density. However, for particles 
around the crack tip, the operator energy density is far from 
zero and the irregularity due to the singularity around the 
crack tip increases comparably to the strain energy density. 
In this sense, the operator energy density can be viewed as 
an indicator for the crack tip.

Unlike the strain energy density, the hourglass energy 
density describes the irregular deformation around the crack 
tip. It depends on the penalty for the strain energy. Larger 
penalty improves the continuity of deformation, but the 
extent of hourglass energy compared with the strain energy 
density is hard to estimate. In this paper, we propose a spe-
cial manner to estimate the critical hourglass strain. Let the 
critical bond strain be denoted by smax , which may depend 
on the characteristic length scale of the support, critical 
energy release rate and the elastic modulus. When the maxi-
mal strain reached smax , the damage process is activated and 
the critical hourglass strain shgmax is set as the maximal hour-
glass strain shg

ij
 for all bonds in the computational model. In 

the sequential calculation, when the hourglass strain of a 
bond is larger than shgmax , the damage on that bond occurs, 
which is mathematically described as

where dij denotes the damage status between particle i and 
particle j.

The damage of a particle is calculated as

Every time one particle is removed from the neighbour list, 
the nonlocal gradient for the central particle should be recal-
culated based on the remaining “healthy” neighbour. We 
will apply this rule to model fractures in 2D and 3D linear 
elastic material.

5 � Numerical implementation

We have applied NOM to derive the nonlocal strong forms 
for the traditional continuum model in Sect. 3. Two repre-
sentative nonlocal theories, the dual-horizon peridynamics 
by Eq. 44 for fracture modeling and the nonlocal thin plate 
by Eq. 60, are selected for numerical test. For the DH-PD, 
the focus is on the test of instability criterion for quasi-static 

(87)dij =

{
0 if s

hg

ij
(t) > s

hg
max, t ∈ [0, T]

1 otherwise

(88)di =
∫
Si
dij dVj

∫
Si
dVj

.

fracture modeling by explicit time integration algorithm. 
The nonlocal thin plate is compared with the finite element 
method. The nonlocal derivatives can be viewed as a gen-
eralization of the local derivatives, and the nonlocal deriva-
tives recover the local derivatives when the size of the sup-
port degenerates to zero. The range of nonlocality depends 
on the choice of the weighting functions and the size of the 
supports. One obstacle of the nonlocal models is the verifi-
cation since the exact solutions of the nonlocal model is rare. 
For simplicity of verification, we aim at solving the local 
problems with nonlocal forms where the nonlocal effect is 
reduced by selecting certain weighting functions.

The primary step in the implementation is the calcula-
tion of internal force based on the governing equations. In 
the first step, the computational domain is discretized into 
particles.

where N is the number of particles in the domain. Then the 
support of each particle is represented by a list of particle 
indices,

where j is the global index of the particle and ni is the num-
ber of particles in Si.

The gradient gij and Hessian hij for two particles i, j can 
be assembled by collecting terms in Ki ⋅ pij according to 
Eqs. 21 or 23, where

with weight function �(rij) = 1∕|rij|2.
The nonlocal differential derivatives at point i can be cal-

culated as

The nonlocal operators in 𝜕ui can be used to define the strain 
tensor, stress tensor, bending moment and others.

In discrete form, Eqs. 44 and 58 become

(89)Ω =

N∑
i=1

ΔVi

(90)Si = {j1, j2,… , jni}

(91)Ki =

(∑
Si

𝜔(rij)pij ⊗ pT
ij
ΔVj

)−1

(92)𝜕ui =
∑
j∈Si

𝜔(rij)Ki ⋅ pijuijΔVj

(93)

∑
Hi

𝜔(rij)Pi ⋅ gijΔVjΔVi

−
∑
H

�
i

𝜔(rji)Pj ⋅ gjiΔVjΔVi + biΔVi = 𝜌ΔViüi
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In Eqs. 93 and 94, the volume of particle i is multiplied on 
both sides of the equations. It is not required to calculate the 
internal forces from the dual-support. Let f i = 0, 1 ≤ i ≤ N 
denote the initial internal force on particle i. For each par-
ticle, one only needs to focus on the support, calculating 
the forces and adding the force to the particle internal force

where a → b denotes the addition of a to b. The process 
of adding force −�(rij1 )Pi ⋅ gijΔVjΔVi to f j is equiva-
lent to accumulating the internal forces from particle j’s 
dual-support.

For the calculating of internal force of thin plate, the same 
applies

To maintain the stability of the nonlocal operator, the dis-
crete form of Eq. 39 is

For particle i with support Si , the hourglass force is calcu-
lated as follows

(94)

∑
Si

𝜔(rij)Mi ∶ hijΔVjΔVi

−
∑
S
�
i

𝜔(rij)Mj ∶ hjiΔVjΔVi + qiΔVi = t𝜌ΔViẅi

(95)

∑
j∈Si

�(rij)Pi ⋅ gijΔVjΔVi → f i

−�(rij1 )Pi ⋅ gij1ΔVj1
ΔVi → f j1

−�(rij2 )Pi ⋅ gij2ΔVj2
ΔVi → f j2

⋯

−�(rijni
)Pi ⋅ gijni

ΔVjni
ΔVi → f jni

(96)

∑
j∈Si

�(rij)Mi ∶ hijΔVjΔVi → f i

−�(rij1 )Mi ∶ hij1ΔVj1
ΔVi → f j1

−�(rij2 )Mi ∶ hij2ΔVj2
ΔVi → f j2

⋯

−�(rijni
)Mi ∶ hijni

ΔVjni
ΔVi → f jni

(97)

∑
S
�
i

𝜔(r)
phg

mj

(
uji − pT

i
𝜕uj

)
ΔVjΔVi

−
∑
Si

𝜔(r)
phg

mi

(
uij − pT

j
𝜕ui

)
ΔVjΔVi.

When the internal force is attained and the contribution of 
the external force boundary condition or body force is accu-
mulated, the basic Verlet algorithm [78] outlined as follows 
is used to update the displacement

where ui denotes the displacement or deflection, vi the veloc-
ity and ai =

f i

mi

 the acceleration for particle i with mass mi 
subject to net force f i . For the detailed implementation and 
the numerical examples, the reader can find the open source 
code on Github https://​github.​com/​hl-​ren/​Nonlo​cal_​elast​
icity, and https://​github.​com/​hl-​ren/​Nonlo​cal_​thin_​plate.

6 � Numerical examples

6.1 � Accuracy of nonlocal Hessian operator

We first test the accuracy of the nonlocal Hessian operator. 
Thus, consider the analytical derivatives of the field

The domain [−1, 1]2 is discretized with different numbers of 
particles, N ∈ {202,402,602,802,1002 , 1602,1802,2002} . The 
number of neighbours in support is selected as n = 14 . The 
L2 norm of the nonlocal Hessian operator is calculated as

For different discretizations, the L2 norm is plotted in Fig. 2a 
with a convergence rate of 0.835. We also tested the influ-
ence of the support size. For fixed discretization N = 1802 , 

(98)

∑
j∈Si

𝜔(rij)
phg

mi

(
uij − pT

j
𝜕ui

)
ΔVjΔVi → f i

−𝜔(rij1 )
phg

mi

(
uij1 − pT

j1
𝜕ui

)
ΔVj1

ΔVi → f j1

−𝜔(rij2 )
phg

mi

(
uij2 − pT

j2
𝜕ui

)
ΔVj2

ΔVi → f j2

⋯

−𝜔(rijni
)
phg

mi

(
uijni

− pT
jni
𝜕ui

)
ΔVjni

ΔVi → f jni

(99)ui(t + Δt) = ui(t) + vi(t)Δt +
1

2
ai(t)Δt

2

(100)vi(t + Δt) = vi(t) +
1

2

(
ai(t) + ai(t + Δt)

)
Δt

(101)
w(x, y) = e

xy
(
sin 3(x − y) − cos 2(x + y)

)
,

with x ∈ [−1, 1], y ∈ [−1, 1].

(102)

L2(∇
2w) =

����
∑N

i=1
(∇2wi − ∇̃2wi) ∶ (∇2wi − ∇̃2wi)ΔVi∑N

i=1
(∇2wi) ∶ (∇2wi)ΔVi

https://github.com/hl-ren/Nonlocal_elasticity
https://github.com/hl-ren/Nonlocal_elasticity
https://github.com/hl-ren/Nonlocal_thin_plate
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the nonlocal effect increases with the number of neighbours 
in the support, as shown in Fig. 2b.

6.2 � Square thin plate subject to pressure

The dimensions of the plate are 0.5 × 0.5 m2 with a thick-
ness of 0.01 m. The material parameters are elastic modulus 
E = 210 GPa, Poisson ratio � = 0.3 . The plate is applied 
with a static pressure load of p = 103 Pa. Two different 
boundary conditions are taken into account: (a) four sides 
are all simply supported and (b) four sides are all clamped. 
The case of clamped boundary constrains the rotation as 
well as the deflection. The reference result is calculated by 
64 × 64 S4R elements in ABAQUS without considering the 
geometrical nonlinearity. For the simply supported bound-
ary conditions, the particles on the boundaries of the plate 
are fixed. The enforcement of clamped boundary conditions 
requires some special treatment. As shown in Fig. 3, the 
actual physical model of the plate is denoted by the black 

rectangular particles and a fictitious domain of two layers of 
particles outside the physical domain is generated where the 
particle’s deflections are set to zero. the particles outside of 
the blue rectangle are applied with penalty phg = 400E while 
the particles inside the blue rectangle with penalty phg = 0 . 
The deflection for a simply supported plate at different times 
are plotted in Fig. 4. The deflections for a clamped plate at 
different times are depicted in Fig. 5. The deflection of the 
central point of the plate is monitored and compared with 
the result by ABAQUS, as shown in Fig. 6a, b), where good 
agreement with FEM model is observed.

For the simply supported plate, the deflection of the 
central point for four different weight functions is shown 
in Fig. 7. It can be seen that the weight functions barely 
influence the results.

6.3 � Single‑edge notched tension test

In this example, we tested the nonlocal elasticity by Eq. 43 
for single-edge notched tension in 2D under plane stress 
condition. For the case of linear elasticity, the first Piola-
Kirchhoff stress is the same as Cauchy stress. The geometry 
setup is given in Fig. 8. The bottom is fixed while the top of 
the plate is applied with velocity boundary condition v = 1 
m/s, which can achieve the quasi-static condition. The mate-
rial parameters are E = 210 GPa, � = 0.3 and critical strain 
is set as smax = 0.02 . The plate is discretized into 100 × 100 
particles. Each particle’s support consists of 33 nearest 
neighbours. The initial crack is created by modifying the 
neighbour list when searching the nearest neighbours. The 
support for each particle is constructed by finding the k-near-
est neighbours and the size of the support is determined 
by the farthest particle in the support. Obviously, the size 
of the support can be different from each other. The fixed 
number of neighbours in support results in particles near the 

Fig. 2   L2 norm of the nonlocal Hessian operator a for N, the number of particles with n = 14 and b for n, the number of particles in support with 
N = 1802

Fig. 3   The implementation of clamped boundary condition. The par-
ticles in black rectangle represent the physical model and particles 
outside of the blue rectangle are applied with penalty phg = 400E
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boundary with relatively large support sizes and particles at 
the centre of the plate with small support sizes. A duration of 
T = 6.5 × 10−6 seconds is integrated by approximately 4500 
steps at a time increment of Δt = 1.5418 × 10−9 s. Fixed 
velocity and displacement boundary conditions are applied 
to one layer of particles.

Figure 9a is the displacement field uy at full damage, 
where the interaction of internal force between the two 
half planes is cut and rigid body displacement dominates. 
Figure 9b is the distribution of hourglass energy. We can 
observe that the hourglass energy is concentrated on the 
crack surface and crack tip. Figure 9c, d are the snapshots 
of damage field, which confirms that the instability criterion 
in Sect. 4 is stable for fracture modelling.

Although the plate is solved by an explicit dynamic 
method, the kinetic energy is much lower than the strain 
energy as shown by Fig. 10a. The dynamic load curve agrees 
well with that by the finite element method in Ref [77], as 
shown by Fig. 10b. One possible reason for the difference 

in reaction force increment is due to explicit algorithm and 
nonlocal effect of the current formulation.

6.4 � Out‑of‑plane shear fracture in 3D

For brittle fracture, the basic modes of fracture are tensile 
fracture, in-plane shear fracture and out-of-plane shear frac-
ture. In this section, we apply the instability damage crite-
rion to the out-of-plane shear fracture, as shown in Fig. 11. 
The dimensions of the specimen are 5 × 2.5 × 1 mm3 , as 
shown in Fig. 12. The size of the initial crack surface is 
2.5 × 1 mm2 . The velocity boundary conditions uz = 1 m/s 
are applied. The model is discretized into 86,961 particles 
with particle size Δx = 0.05 mm. Each particle has 102 
neighbours in its support. Material parameters include elas-
tic modulus E = 210 × 109 Pa and Poisson’s ratio � = 0.3 
and density � = 7800 kg/m3 . The time step is selected as 
Δt = 7.7 × 10−9 s. A total of 3000 steps are calculated. The 

Fig. 4   Deflection of simply supported plate at a t = 0.97 ms, b t = 2.9 ms, c t = 4.87 ms and d t = 6.77 ms
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Fig. 5   Deflection of clamped plate at a t = 0.966 ms, b t = 1.44 ms, c t = 2.42 ms and d t = 2.90 ms

2 4 6 8
Time ms

0.005

0.010

0.015

0.020

0.025

Deflection mm FEM by ABAQUS

Nonlocal Model

(a)

1 2 3 4

Time ms
0.002

0.004

0.006

0.008

Deflection mm FEM by ABAQUS

Nonlocal Model

(b)

Fig. 6   Deflection of central point for a simply support plate and b clamped plate
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crack surface starts to propagate at step 1550. The crack 
surface at different steps are depicted in Fig. 13.

7 � Conclusion

In this paper, we employ the recently proposed NOM to 
derive the nonlocal strong forms for various physical mod-
els, including elasticity, thin plate, gradient elasticity, elec-
tro-magneto-elastic coupled model and phase-field fracture 
model. These models require a second-order partial deriva-
tive at most and we make use of the second-order NOM 
scheme, which contains the nonlocal gradient and nonlo-
cal Hessian operator. Considering the fact that most physi-
cal models are compatible with the variational principle/
weighted residual method, we start from the energy form/
weak form of the problem, by inserting the nonlocal expres-
sion of the gradient/Hessian operator into the weak form, 
based on the dual property of the dual-support in NOM, 
the nonlocal strong form is obtained with ease. Such a 
process can be extended to many other physical problems 
in other fields. The derived strong forms are variationally 
consistent and allow elegant description for inhomogene-
ous nonlocality in both theoretical derivation and numerical 
implementation.

We also propose an instability criterion in nonlocal 
elasticity or dual-horizon state-based peridynamics for the 

fracture modeling. The criterion is formulated as the func-
tional of nonlocal gradient in support, which minimizes the 
zero-energy deformation that cannot be described by the 
nonlocal gradient. Such an operator functional approaches 
zero for continuous fields but has comparable value to the 
strain energy density for the deformation around the crack 
tip. During the fracture modeling by removing particles 
from the neighbor list, it is safer to delete the particle with 
larger zero-energy deformation. The numerical examples for 
2D/3D fracture modeling confirm the feasibility and robust-
ness of this criterion. The instability criterion is applicable 
for anisotropic elastic material and hyperelastic materials.

Appendix A: A simple example to illustrate 
dual‑support

In order to facilitate the comprehension of dual-support, let 
us consider 4 particles in Fig. 14, each with particle volume 
ΔVi, i = {1, 2, 3, 4} and Ω =

∑4

i=1
ΔVi . Obviously, the sup-

port and dual-support can be listed as follows.

Here we neglect whether the shape tensor is invertible or not.
The most common formula in the derivation based on 

NOM and variational principle is the double integrations in 
support and whole domain. Consider the double integrations

Expand the double summations

S1 = {2, 3, 4},S�

1
= {3, 4}

S2 = {3},S�

2
= {1, 3}

S3 = {1, 2},S�

3
= {1, 2, 4}

S4 = {1, 3},S�

4
= {1}

∫
Ω
∫
Si

fij(uj − ui) dVj dVi

≈

4∑
i=1

(∑
j∈Si

fij(uj − ui)ΔVj

)
ΔVi

=

4∑
i=1

(∑
j∈Si

fijujΔVj

)
ΔVi −

4∑
i=1

(∑
j∈Si

fijuiΔVj

)
ΔVi

Fig. 7   Deflection of central point for simply support plate under 4 
weight functions

Fig. 8   Setup of the plate
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Fig. 9   a Displacement uy at full damage, b operator energy at uy = 5.5 × 10−3 mm, c damage field at uy = 5.5 × 10−3 mm and d damage field at 
uy = 6.2 × 10−3 mm

Fig. 10   a Energy curve on displacement; b load curve on displacement
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Fig. 11   Illustration of out-of-plane shear fracture

Fig. 12   Setup of the specimen

Fig. 13   Crack surfaces at a step 
1550, b step 2050, c step 2950 
and d step 3000

(103)

4∑
i=1

(∑
j∈Si

fijujΔVj

)
ΔVi

=

(
f12ΔV2ΔV1u2 + f13ΔV3ΔV1u3 + f14ΔV4ΔV1u4

)

+

(
f23ΔV2ΔV3u3

)

+

(
f31ΔV1ΔV3u1 + f32ΔV2ΔV3u2

)

+

(
f41ΔV1ΔV4u1 + f43ΔV3ΔV4u3

)

=

(
f31ΔV3 + f41ΔV4

)
u1ΔV1

+

(
f12ΔV1 + f32ΔV3

)
u2ΔV2

+

(
f13ΔV1 + f23ΔV2 + f43ΔV4

)
u3ΔV3

+

(
f14ΔV1

)
u4ΔV4

=
∑
j∈S�

1

fj1ΔVjΔV1u1 +
∑
j∈S�

2

fj2ΔVjΔV2u2

+
∑
j∈S�

3

fj3ΔVjΔV3u3 +
∑
j∈S�

4

fj4ΔVjΔV4u4

=

4∑
i=1

(∑
j∈S�

i

fjiΔVj

)
uiΔVi.
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Therefore

At last, we obtain

Above equation is widely used in the derivation of nonlocal 
strong form from weak form. Such expression is valid in the 
continuum form as well as in discrete form.
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(104)

4∑
i=1
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j∈Si

fijujΔVj

)
ΔVi

−
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i=1

(∑
j∈Si

fijuiΔVj

)
ΔVi

=
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j∈S�

i

fjiΔVj

)
uiΔVi

−
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i=1
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ΔVi
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fjiΔVj
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∑
j∈Si
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uiΔVi
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Ω
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S
�
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fji dVj − ∫
Si

fij dVj
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ui dVi.

(105)
∫
Ω
∫
Si

fij(uj − ui) dVj dVi = ∫
Ω(

∫
S
�
i

fji dVj − ∫
Si

fij dVj

)
ui dVi.
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