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Abstract
In this paper we present a theoretical background for a coupled analytical–numerical
approach to model a crack propagation process in two-dimensional bounded domains.
The goal of the coupled analytical–numerical approach is to obtain the correct solution
behaviour near the crack tip by help of the analytical solution constructed by using
tools of complex function theory and couple it continuously with the finite element
solution in the region far from the singularity. In this way, crack propagation could
be modelled without using remeshing. Possible directions of crack growth can be
calculated through the minimization of the total energy composed of the potential
energy and the dissipated energybasedon the energy release rate.Within this setting, an
analytical solution of a mixed boundary value problem based on complex analysis and
conformal mapping techniques is presented in a circular region containing an arbitrary
crack path. More precisely, the linear elastic problem is transformed into a Riemann–
Hilbert problem in the unit disk for holomorphic functions. Utilising advantages of the
analytical solution in the region near the crack tip, the total energy could be evaluated
within short computation times for various crack kink angles and lengths leading to
a potentially efficient way of computing the minimization procedure. To this end, the
paper presents a general strategy of the new coupled approach for crack propagation
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modelling. Additionally, we also discuss obstacles in the way of practical realisation
of this strategy.
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1 Introduction

Methods of complex function theory provide various tools to construct exact solutions
to differential equations, especially in the case of singularities, such as, e.g. crack
tip problems in linear elastic fracture mechanics. In particular, with the introduction
of the famous Kolosov–Muskhelishvili formulae, methods of complex function the-
ory became indispensable to handle problems of linear elasticity [23]. The classical
Kolosov–Muskhelishvili formulae enable us to represent displacements and stresses
of a two-dimensional elastic body in terms of two holomorphic functions Φ(z) and
Ψ (z), z ∈ C. Because of obvious advantages of the function-theoretic approach, such
as exact singular behaviour near the crack tip and preservation of all basic physi-
cal assumptions, methods of complex function theory constituted the foundation of
classical fracture mechanics [20,28].

A known disadvantage of function-theoretic methods is the fact that a complete
boundary value problem can be solved explicitly only for some elementary (simple)
domains, such as, e.g. the unit disk or half-plane. Considering that domains coming
from real-world engineering problems generally have more complicated geometry,
numerical methods, such as e.g. extended finite element method [21], are frequently
used to solve static and dynamic fracture mechanics problems nowadays. The idea of
modern numerical methods used in fracture mechanics applications is to enrich clas-
sical finite element shape functions with known analytical solution, e.g. Westergaard
solution and partition of unity [21], to obtain correct asymptotic behaviour near the
crack tip. The drawback of such methods is the lost continuity between enriched and
standard elements, since the modified shape functions do not satisfy the interpolation
conditions. Thus, the methods obtained in this way do not satisfy basic assumptions
of the classical theory of the finite element method [6], and therefore, it is difficult to
perform a rigorous convergence analysis.

In this context, utilising advantages of both function-theoretic methods and the
finite element method, coupled analytical–numerical methods could be alternative
approaches towards higher accuracy of solutions in the region near the singularity.
While a coupling between the analytical solution obtained by function-theoretic meth-
ods and the finite element solution can be introduced in several ways (see e.g. [25,26]),
we focus on a continuous coupling in this paper. The idea of a continuous analytical–
numerical coupling is to introduce a special interpolation operator preserving C0

continuity of the displacement field on the interface between the function-theoretic
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solution and the classical finite elements. Construction of such an interpolation opera-
tor has been presented in [12,13], and convergence analysis of the coupled method has
been performed in [14,18], where the coupling error has been also estimated explicitly.
However, only problems of fracturemechanics with static cracks have been considered
so far. Therefore, in this paper, we present an extension of the coupled approach to
crack propagation problems in two-dimensional domains.

The crack propagation approach presented in this paper is within the framework
of linear elastic fracture mechanics. The main result of this theory of fracture is that
linear elastic calculations are sufficient to estimate the fracture energy release rate, or
equivalently the stress intensity factor, to determine whether a crack propagates or not.
However, a prediction of the crack propagation path with bifurcation points cannot be
obtained only by considering the fracture energy release rate. Therefore, additional
bifurcation criteria have been introduced for computing the crack propagation path,
e.g. the maximum hoop stress criterion [9], the maximum-energy-release-rate crite-
rion [29] or an asymptotic expansion of the stress intensity factor [17]. Moreover, one
of the most elegant and physically consistent approaches is the variational formulation
proposed in [10]. In this approach, at each time, and for any boundary condition, the
crack propagation path is obtained by finding the global minimum of the total energy,
which is the sum of potential energy and dissipated energy, under the constraint of
the irreversibility of the crack growth. One of the main advantages of the energetic
formulation is its correspondence to a quasi-static evolution of the crack, implying that
a succession of stable states is simulated without referring to the detailed mechanisms
arising between two stable states. Thus, the energetic approach authorises discontinu-
ous evolutions, practically meaning that, for instance, the crack length increase is not
infinitesimal but may be finite between two time steps. However, the minimisation
procedure may be time-consuming as numerical methods (that should be sufficiently
refined to obtain acceptable accuracy) are repeatedly used tominimise the total energy.

In this paper, an approach combining a coupled analytical–numerical method and
an energetic approach in order to model crack propagation is proposed. The expected
advantage of such an approach is a reduced computation time on the finite element
side, since the analytical solution near the crack tip is used. However, since the original
coupled analytical–numerical method is limited to cracks without bifurcation points
[14], the analytical solution at first must be extended to the case of kinked cracks.
This extension is done by using a conformal mapping approach, and therefore, the
linear elastic problem in the region near the crack tip is reduced to a Riemann–Hilbert
problem for holomorphic functions in the unit disk. Therefore, our aimhere is to extend
the conformal mapping approach to the case of the coupled analytical–numerical
method. As will be discussed in the paper, practical (numerical) realisation of this
approach still needs to be addressed properly due to known difficulties with numerical
conformal mappings. Therefore, this paper aims at presenting a general strategy for
modelling crack propagation based on a continuous coupling of function-theoretic
methods and the finite element method. Moreover, we present an explicit solution of
the Riemann–Hilbert problem and provide a detailed discussion on future steps for
practical realisation of the proposed method along with first numerical calculations
for the Riemann–Hilbert problem.
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2 Modelling Crack Propagation Via the Coupling of
Function-Theoretic and Finite Element Methods

In this section we present a general description of the method to model crack prop-
agation via a continuous coupling of complex function theory and the finite element
method. To support the reader, we start with a general overview of the coupled method
underlying only the essential steps relevant for the crack propagation modelling. After
that, we discuss the mechanical point of view on the propagation process and out-
line the idea using a conformal mapping approach leading to the formulation of a
Riemann–Hilbert problem, which is discussed in detail in the upcoming sections.

2.1 Continuous Analytical–Numerical Coupling for Static Cracks

Let G ⊂ C be a simply connected bounded domain containing a crack. Further, let
Γ be a boundary of G, which is assumed to be sufficiently smooth except for the
turning point given by a crack tip, which causes a well-known crack-tip singularity.
We consider now the classical boundary value problem of linear elasticity formulated
as follows

⎧
⎨

⎩

−μΔu − (λ + μ) grad div u = f in G,

u = g0 on Γ0,

σ · n = g1 on Γ1,

(1)

where λ and μ are classical Lamé constants, and f is the density of volume forces, u
is the unknown displacement vector, σ is the Cauchy stress tensor, n is the unit outer
normal vector, and Γ0 and Γ1 are parts of the boundary with Dirichlet and Neumann
boundary conditions (g0 and g1), respectively.

To provide an exact description of the solution behaviour near the singularity, we
introduce a local coupling region surrounding the crack tip (see Fig. 1, left). The
right side of Fig. 1 illustrates the coupling region with more details. In particular, the
coupling region is further subdivided into analytical domain ΩA circled by curved
triangular elements Ti (8 in Fig. 1), which are called coupling elements. The inter-
face ΓAD between ΩA and coupling elements is called the coupling interface. The
remaining part of the domain G is triangulated by standard finite elements.

Introducing the coupling region enables us to couple continuously the exact solution
to the differential equation of linear elasticity in ΩA with the finite element solution
in the remaining part of the domain. This continuous coupling is provided by help of
a special interpolation operator, which is based on the analytical solution. A detailed
construction of such an interpolation operator and its invariance property have been
discussed in [12,13]. Because of the continuous coupling, a variational problem as in
the classical finite element method (FEM) theory, see [6] for details, can be formu-
lated in our case. Since the goal of this paper is not to discuss finite element aspects
of the coupled method, but rather focus on function-theoretic tools to model crack
propagation, we omit all further technical details on the FEM part of the method and
refer to [19] for a complete construction.
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Fig. 1 Left: domainG containing a crack and the coupling region. Right: further subdivision of the coupling
region into analytical domain ΩA and coupling elements Ti , i = 1, . . . , 8

An analytical solution to the differential equation in ΩA is constructed by the
Kolosov–Muskhelishvili formulae [23]; in polar coordinates these formulae allow us
to represent components of the displacement field and stress tensor in the following
form

2μ(ur + i uϕ) = e−iϕ
(
κ Φ(z) − z Φ ′(z) − Ψ (z)

)
,

σrr + σϕϕ = 2
[
Φ ′(z) + Φ ′(z)

]
,

σϕϕ − σrr + 2i σrϕ = 2e2i ϕ
[
z̄ Φ ′′(z) + Ψ ′(z)

]
,

where Φ(z) and Ψ (z) are two holomorphic functions, and κ ∈ (1, 3) is the Kolosov’s
constant. For static cracks, the holomorphic functionΦ(z) andΨ (z) have been written
in terms of a power series expansion [12]

Φ(z) =
∞∑

k=0

akz
λk , Ψ (z) =

∞∑

k=0

bkz
λk , with ak, bk ∈ C, λk ∈ R.

Using these series expansions in the Kolosov–Muskhelishvili formulae and apply-
ing traction free boundary conditions on the crack faces, exponents λk = k/2, k =
1, 2, . . ., are found, which correspond to the classical crack tip singularity, see [20] for
details.Moreover, relations between complex coefficients ak and bk are also identified,
and therefore, the displacement field can be written now as follows

2μ(u1 + i u2) =
∞∑

n=0,2,...

rn/2
[
an

(
κ eiϕn/2 + e−iϕn/2

)

+ n

2
ān

(
e−iϕn/2 − e−iϕ(n/2−2)

)]
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+
∞∑

n=1,3,...

rn/2
[
an

(
κ eiϕn/2 − e−iϕn/2

)

+n

2
ān

(
e−iϕn/2 − e−iϕ(n/2−2)

)]
, (2)

where unknown coefficients an are still to be identified by solving the global boundary
value problem (1) via the coupled finite element procedure.

Finally, the continuity of the displacement field through the entire coupling interface
ΓAD in the finite element procedure is preserved by constructing finite element basis
functions based on the truncated exact solution (2). Let us consider n nodes on the
interface ΓAD belonging to the interval [−π, π ], then the interpolation function fn(ϕ)

restricted to ΓAD, i.e. r = rA, has the following form

fn(ϕ) =
N1∑

k=0,2,...

rk/2A

[

ak
(
κ eiϕk/2 + e−iϕk/2

)
+ k

2
āk

(
e−iϕk/2 − e−iϕ(k/2−2)

)]

+
N2∑

k=1,3,...

rk/2A

[

ak
(
κ eiϕk/2 − e−iϕk/2

)
+ k

2
āk

(
e−iϕk/2 − e−iϕ(k/2−2)

)]

,

(3)

where the numbers of basis functions N1 and N2 are related to n as follows:

N1 =
{
n − 2 for even n,

n − 1 for odd n,
N2 =

{
n − 1 for even n,

n − 2 for odd n.

The basis functions for finite element approximation are then obtained by interpolating
the unknown displacements U j , j = 0, . . . , n − 1, on the coupling interface ΓAD, see
[14,18,19] for all further details.

In summary, this paper aims at extending this coupling strategy to crackpropagation,
which allows us to consider more complex crack paths and therefore to develop an
adapted analytical solution in the analytical domain ΩA.

2.2 Strategy to Model Crack Propagation

A typical approach to model crack propagation by help of the finite element method is
based on the idea of a local or global remeshing at each step of the crack propagation.
Although this approach can be immediately adapted to our setting, it is well-known
that remeshing is computationally costly and inefficient. Alternatively, we prefer to
utilise the advantage of the coupled method enabling us to work with a fixed size of the
analytical domain ΩA without involving a global refinement. In this case, we allow
the crack to propagate only inside the analytical domain that should be taken as large
as possible, while performing refinement on the mesh around ΩA.

Let us nowconsidermore precisely the analytical domainΩA.At the initialmoment,
the crack tip is located inside ΩA, and the crack faces are going along the negative
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Fig. 2 Development of the crack inside the analytical domain ΩA for first few loading steps

direction of the x1-axis of a Cartesian coordinate system. After the first loading step,
the crack is allowed to propagate inside the analytical domain. We assume that the
crack propagates with a finite length at one loading step, i.e. the crack tip moves along
the propagation direction defined by the angle θi for a finite length di with i = 1, 2, . . .,
denoting the loading step, see Fig. 2. To evaluate the angle θi and the length di we
have to solve a minimisation problem according to [10], and therefore, to construct an
analytical solution to the crack tip problem in ΩA.

As already mentioned, the analytical solution (2) cannot be used to calculate the
displacement field for the next loading steps, since the basic assumptions of the model
are no longer satisfied due to the presence of a kinked crack. This problemcan be solved
by application of a conformal mapping, which allows us to map the analytical domain
after several loading steps (see Fig. 2) to the unit disk. The solution of a boundary
value problem in the unit disk can be obtained again by the Kolosov–Muskhelishvili
formulae. According to [23], these the Kolosov–Muskhelishvili formulae under a
conformal mapping are written as follows

σrr + σϕϕ = 2
[
Φ(ζ) + Φ(ζ)

]
,

σrr + i σrϕ = Φ(ζ) + Φ(ζ) − ζ̄ 2

r2ω′(ζ )

[
ω(ζ )Φ ′(ζ ) + ω′(ζ ) Ψ (ζ )

]
,

2μ|ω′(ζ )|(ur + i uϕ) = ζ̄

r
ω′(ζ )

[
κ η(ζ ) − ω(ζ )Φ(ζ ) − χ(ζ )

]
, (4)

where r , ϕ denote polar coordinates in the unit disk, ζ = r exp(iϕ), Φ(ζ) and Ψ (ζ )

are two holomorphic functions defined on the unit disk and, and η(ζ ) and χ(ζ ) are
functions related to Φ(ζ), Ψ (ζ ) by help of the expressions

η′(ζ ) = Φ(ζ)ω′(ζ ), χ ′(ζ ) = Ψ (ζ )ω′(ζ ), (5)

and ω(ζ ) is a mapping from the original geometry to the unit disk. Solution of a
boundary value in the unit disk and construction of a mapping ω(ζ ) is described in
detail in Sect. 3.

In addition, if 1, 2 denote Cartesian directions in the original geometry, displace-
ments u1, u2 read according to [23] as follows

2μ(u1 + i u2) = κ η(ζ ) − ω(ζ )Φ(ζ ) − χ(ζ ). (6)
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3 Conformal Mapping for a Cracked Disk and the Riemann–Hilbert
Problem

In this section, we discuss the application of conformalmapping to construct an analyt-
ical solution for a crack disk and formulation of the corresponding Riemann–Hilbert
problem in the unit disk. Moreover, to keep construction general, we do not specify
the corresponding conformal mapping explicitly, although the classical Schwarz–
Christoffel mapping is the first candidate [8]. We come back to this point later during
the discussion in Sect. 5.

3.1 Application of the Conformal Mapping to a Cracked Disk

The ideaof using conformalmapping for studying crackpropagationwithin the domain
ΩA is motivated by several facts: (i) analytical solution (2) is not valid for the case of a
propagated crack, since the distance between the crack tip and the kinking point is too
small to validate the assumptions of the classical crack tip solution; (ii) remeshing is
not necessary if the propagating crack does not intersect the coupling interface ΓAD;
(iii) analytical constructions are expected to provide higher flexibility and accuracy in
calculating mechanical quantities of interest relevant for propagation process [28].

Looking at the crack propagation process from the mechanical point of view, it is
known that depending on the specific loading conditions the crack can propagate in
different directions controlled by the angle θi with the propagation length di , where i is
the number of the loading step. Practically it implies, that conformal mappings need to
be calculated for all possible directions and lengths, which is a computationally expen-
sive operation to perform online. However, considering that the crack propagates only
insideΩA, conformal mappings can be pre-calculated for different values of the angle
θ

(k)
i ∈ [−π/2, π/2] with i denoting the propagation step and k = 0, . . . , N being the
number of a specific angle with parameter N controlling the angular discretisation,
and having the lengths d as a free parameter in the mapping, see Fig. 3. Note that the
crack tip is located at the centre of ΩA in Fig. 3 only for clarity reasons. In practice,
it is better to place the crack tip sufficiently close to the boundary of ΩA (taking into
account the fact that traction-free assumptions on the crack facesmust be still satisfied)
for addressing more propagation steps inside ΩA without remeshing.

3.2 Boundary Value Problem of Linear Elasticity as a Riemann–Hilbert Problem

Now we will show how a boundary value problem of elasticity can be transformed
into a Riemann–Hilbert problem for a piecewise holomorphic function. Let now D =
{ζ ∈ C : |ζ | < 1} be the unit disk with the boundary γ = {ζ ∈ C, |ζ | = 1}, and as
a positive direction we choose the counter-clockwise direction, as usual. Let S be a
finite domain in the complex z plane bounded by a simple smooth closed contour L ,
and let

ω : ζ ∈ D �→ z = ω(ζ ) ∈ S
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Fig. 3 Mapping between the unit disk and a cracked disk with different possible directions for crack
propagation

be amapping, whichmaps S ontoD in the plane ζ . The functionω(ζ ) is a holomorphic
function inside of γ .

By taking complex conjugation of the second equation in Kolosov–Muskhelishvili
formulae (4), the following relation is obtained:

σrr − i σrϕ = Φ(ζ) + Φ(ζ) − ζ 2

r2ω′(ζ )

[
ω(ζ )Φ ′(ζ ) + ω′(ζ ) Ψ (ζ )

]
. (7)

For transforming the boundary value problem of linear elasticity in the unit disk of
the ζ -plane into a Riemann–Hilbert boundary value problem for a holomorphic func-
tion, discontinuities of holomorphic functions defined on C\γ need to be described.
Therefore, we consider the exterior of the unit disk E := C\D, and we introduce
holomorphic reflections as follows

lR : ζ ∈ E �→ l

(
1

ζ

)

, (8)

where the index R stays for reflection of a function and will be used in the sequel. The
function lR(ζ ) is holomorphic in E, if the function l(ζ ) is holomorphic in D.

Let now t = eiϕ ∈ γ be a point of the unit circle, and let t+ and t− tend to t from
the interior and exterior of the unit disk, respectively. Thus, t+ and t− can be defined
as follows

⎧
⎨

⎩

t+ := r+eiϕ ∈ D for r+ →
r+<1

1,

t− := 1

t+
∈ E.

(9)

Let now γσ denotes the part of boundary γ , where traction boundary conditions are
defined. Note that γσ can be a union of several disjoint arcs, see [22,23] for details.
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Considering relations l(t+) = l(1/t−) = lR(t−), Eq. (7) can be now rewritten for a
point t ∈ γσ as follows

ω′(t)
[
σ ∗
rr − i σ ∗

rϕ

] = ω′
R(t−)ΦR(t−) + ω′

R(t−)Φ(t+)

−t2
[
ωR(t−)Φ ′(t+) + ω′(t+) Ψ (t+)

]
, (10)

where ω′
R is the reflection of the derivative function, and the left-hand side represents

a known stress function on the boundary γσ with σ ∗
rr and σ ∗

rϕ being imposed stresses
on γσ .

To formulate a classical Riemann–Hilbert problem for a holomorphic function we
need to rewrite Eq. (10) in terms of only one holomorphic function, rather than a
combination of several functions as it is written at the moment. For that we need to
introduce an additional assumption: the conformal mapping has to be holomorphic on
the entire complex plane C and not only on the unit disk D

ω : ζ ∈ C �→ ω(ζ ).

Consequently, ωR(ζ ) is also defined on the entire complex plane and, in particular, in
the interior of the unit disk D. Hence, ωR(t−) and ω′

R(t−) can be replaced by ωR(t+)

and ω′
R(t+) in (10), respectively. It should be noted that if ω(ζ ) has a pole at infinity

of order not higher than N , then the asymptotic expansion ω(ζ ) at the infinity can be
written as follows

ω(ζ ) =|z|→+∞

N∑

k=0

ωkζ
k .

In addition, if ω(ζ ) has a pole at infinity, then ωR(ζ ) has a pole at zero and the
asymptotic expansion have the form

ωR(ζ ) =|z|→0

N∑

k=0

ωk

ζ k
. (11)

Let us consider the following holomorphic function on C\γ

Ω : ζ ∈ C\γ �→
⎧
⎨

⎩

ω′
R(ζ )Φ(ζ ) − ζ 2 [

ωR(ζ )Φ ′(ζ ) + ω′(ζ ) Ψ (ζ )
]
, if |ζ | < 1,

−ω′
R(ζ )ΦR(ζ ), if |ζ | > 1,

(12)

where the origin has been removed from the domain for the case if ωR(ζ ) has a pole
at zero. However, if ωR(ζ ) does not have a pole at the origin, then the origin should
be added to the domain. The boundary condition (10) can now be written as

ω′(t)
[
σ ∗
rr (t) − i σ ∗

rϕ(t)
] = Ω(t+) − Ω(t−). (13)
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Similar to γσ , we denote by γu the part of γ , where displacements are prescribed.
Again, γu can be a union of several disjoint arcs. From (6) and by help of variables t+
the formula for displacement boundary condition for a point t ∈ γu can be written as
follows

2μ(u∗
1 − iu∗

2) = κη(t+) − ω(t+)Φ(t+) − χ(t+),

where u∗
1 and u∗

2 are known displacements along Cartesian directions in the original
domain S imposed on γu considered as a function of ϕ. Finally, we need a formula for(
u∗
1

)′ − i
(
u∗
2

)′ with

(
u∗
1

)′ = ∂u∗
1

∂ϕ
,

(
u∗
2

)′ = ∂u∗
2

∂ϕ
.

Differentiating the previous formula we obtain

− 2μi t
[(
u∗
1

)′ − i
(
u∗
2

)′] = ω′(t+)Φ(t+) − κω′(t+)Φ(t+)

−t2
(
ω(t+)Φ ′(t+) + ω′(t+)Ψ (t+)

)
, (14)

where the relations η′(ζ ) = ω′(ζ )Φ(ζ ) and χ ′(ζ ) = ω′(ζ )Ψ (ζ ) have been used.
Taking into account the assumption that ω(ζ ) is defined on C, we finally get

−2μi t
[(
u∗
1

)′ − i
(
u∗
2

)′] = ω′
R(t+)Φ(t+) − κω′

R(t−)ΦR(t−)

−t2
(
ωR(t+)Φ ′(t+) + ω′(t+)Ψ (t+)

)
,

or in terms of function (12),

− 2μi t
[(
u∗
1

)′ − i
(
u∗
2

)′] = Ω(t+) + κΩ(t−). (15)

Thus, we get the following Riemann–Hilbert problem for the holomorphic function
Ω

{
Ω(t+) − Ω(t−) = f (t) on γσ ,

Ω(t+) + κΩ(t−) = f (t) on γu,
(16)

with boundary function f (t) defined by

f (t) :=
⎧
⎨

⎩

ω′(t)
[
σ ∗
rr − i σ ∗

rϕ

]
on γσ ,

−2μi t
[(
u∗
1

)′ − i
(
u∗
2

)′] on γu .
(17)

It should be noted that the imposed normal and tangential stresses σ ∗
rr and σ ∗

rϕ on γσ

correspond to polar directions in the ζ -plane, although the imposed displacements u∗
1
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and u∗
2 on γu correspond to Cartesian directions in the z-plane. However, both imposed

stresses and displacements are seen as functions of ϕ, or equivalently t , in the ζ -plane.

3.3 Solution of the Riemann–Hilbert Boundary Value Problem in the Unit Disk for
a General Case

In this section we describe at first the solution of the Riemann–Hilbert problem (16)
for a general case, and later we specify it for the considered problem. Consider that
γu is the union of n arcs such as γu = ⋃n

k=1(ak, bk). Let us consider the following
holomorphic function on C\γu

X0 : ζ ∈ C\γu �→
n∏

k=1

(ζ − ak)
−1/2+iβ(ζ − bk)

−1/2−iβ, with β = log κ

2π
. (18)

Taking into account displacement and traction boundary conditions given on γu and
γσ , it is well known that the following classical relations hold [22]:

X0(t+)

X0(t−)
= −κ on γu and

X0(t+)

X0(t−)
= 1 on γσ .

Thus, themixed boundary value problem (16) can be reduced to the following problem
for Ω(ζ)

X0(ζ )

Ω(t+)

X0(t+)
− Ω(t−)

X0(t−)
= f (t)

X0(t+)
on γ = γσ ∪ γu . (19)

Solution of (19) requires describing the asymptotic behaviour of Ω(ζ)/X0(ζ ). For
that, we recall that the function Φ(ζ) is holomorphic in D, and therefore, we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Φ(ζ) =
+∞∑

k=0

Akζ
k, if |ζ | < 1,

ΦR(ζ ) =
+∞∑

k=0

Ak

ζ k
, if |ζ | > 1,

where Ak, k = 0, 1, . . ., are unknown coefficients of the decomposition. Next, using
the fact that ω′

R(ζ ) →|ζ |→+∞ ω′(0) and definition of Ω(ζ), we obtain the following

asymptotic expansion

Ω(ζ) =|ζ |→+∞ B0 + B1

ζ
+ B2

ζ 2 + · · · ,
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where B0, B1, . . . are unknown coefficients. The asymptotic expansion of 1/X0(ζ ) is
obtained from (18) as follows

1

X0(ζ )
=|ζ |→+∞ ζ n + Dn−1ζ

n−1 + · · · + D1ζ + D0 + D−1

ζ
+ · · · , (20)

where Dn−1, . . . , D0, . . . are known coefficients obtained by an asymptotic expansion
of 1/X0(ζ ). Finally, it is evident that there exists a polynomial of degree not higher
than n

Pn(ζ ) = Ĉ0 + C1ζ + . . . + Cnζ
n, (21)

such that

Ω(ζ)

X0(ζ )
− Pn(ζ ) →|ζ |→+∞ 0. (22)

If ωR(ζ ) has a pole at the origin, then the asymptotic expansion of Ω(ζ)/X0(ζ ) at
the origin has to be determined. If the order of this pole of ωR(ζ ) is not higher than
N , as it has been shown in (11), then the pole of ω′

R(ζ ) at the origin is not higher
than N − 1. Considering that the value of X0(ζ ) at the origin is a non-zero constant,
it follows from (12) that there exists a function QN (ζ ) of the form

QN (ζ ) = C̃0 + C−1

ζ
+ · · · + C−(N−1)

ζ N−1 ,

such that

Ω(ζ)

X0(ζ )
− QN (ζ ) →|ζ |→0

0. (23)

Introducing a new constant C0 := Ĉ0 + C̃0, we finally obtain:

R(ζ ) = Pn(ζ ) + QN (ζ ) = Cnζ
n + · · · + C0 + C−1

ζ
+ · · · + C−(N−1)

ζ N−1 .

Thus, the general solution of (16) is given now by

Ω(ζ) = Ω0(ζ ) + X0(ζ )R(ζ ) with Ω0(ζ ) = X0(ζ )

2iπ

∫

γ

f (t)dt

X0(t+)(t − ζ )
, (24)

where the integration is taken over the whole boundary γ . The coefficients
C−(N−1), . . . ,C0, . . . ,Cn should be identified by ensuring displacement continuity
at ends of the arcs ak and bk and by ensuring that there is no stress and displacement
singularities at zero.

Finally, holomorphic functionsΦ(ζ) andΨ (ζ ) can be easily derived from (24) and
therefore displacements and stresses are obtained in S.
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3.4 Solution of the Riemann–Hilbert Boundary value Problem in the Unit Disk for
the Considered Crack Configuration

Next, we discuss the construction of an explicit solution of the Riemann–Hilbert
problem for the crack propagation process shown in Fig. 2. Domain ΩA with a kinked
crack can be considered as a circular-arc polygon with verticeswi , i = 1, . . . n, which
are located along the crack path, and we keep the convention that vertex w(n+1)/2
is located at the crack tip. Since according to the coupling idea, displacements are
interpolated on the whole coupling interface ΓAD, no extra vertices are required on
ΓAD, and the fact of having several coupling elements will be addressed by piecewise
definition of the boundary function f (t) in (16). Thus, vertices wi , i = 1, . . . n, are
mapped to the correspondingpre-vertices at the unit circleγ denotedby zi , i = 1, . . . n,
see Fig. 4.

Thus, in the case of analytical–numerical coupling the unit circle γ is subdivided
into arcs γu = znz1 with unknown displacement boundary conditions given by the
interpolation function (3), and γσ = ⋃n−1

i=1 zi zi+1 with traction-free conditions on
the crack faces. Therefore, considering that only one arc with displacement boundary
conditions is given and assuming that ωR(ζ ) has no pole at the origin, a general
solution (16) can be written as follows

Ω(ζ) = X0(ζ )

2π iκ

∫

γ

f (t)dt

X+
0 (t)(t − ζ )

+ X0(ζ ) [C0 + C1ζ ] , (25)

where

X0(ζ ) = (ζ − z1)
−1/2−iβ(ζ − zn)

−1/2+iβ, with β = log κ

2π
.

x1

x2

r
ϕ

DΩA

ΓAD

w2

wn−1

w1

wn w3

wn−2
· · ·

z1
z2

z3

· · · zn−1

zn

ω−1(ζ, d)

ω(z, d)

Fig. 4 Vertices and pre-vertices for the mapping between the unit disk and a cracked disk during the crack
propagation process
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Applying displacement boundary conditions on ΓAD and traction-free conditions on
the crack faces, the following systemof equations for unknown coefficients is obtained

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(κ + 1)
∫

zn z1

Ω0(t0)ω
′(t0)dt0

+(κ + 1)
∫

zn z1

ω′(t0)X0(t0)(C0 + C1t0)dt0 = 2μ[ f (z1) − f (zn)],

X0(0)

2π iκ

∫

γ

f (t)

X+
0 (t)

dt

t
+ C0X0(0) + C1 = 0,

(26)

with

Ω0(t0) = X0(t0)

2π iκ

∫

γ

f (t)dt

X+
0 (t)(t − t0)

,

and

X0(0) = lim
ζ→0

[
(ζ − z1)

−1/2−iβ(ζ − zn)
−1/2+iβ

]
= e−iπe−i(ϕ1+ϕn)/2e−β(ϕn−ϕ1),

where the fact that ln |z1| and ln |zn| are zero on the unit disk has been taken into
account. Denoting by ϕ0 the argument of the middle of the arc znz1, and by ω0 its
central angle, the expression for X0(0) can be simplified to

X0(0) = −e−iϕ0−βω0 .

To identify constants C0 and C1, system (26) can be transformed into its real form
and solved explicitly. To avoid bulky expressions, we omit the presentation of the
explicit solution of the corresponding real 4 by 4 system here. Nonetheless, the whole
procedure remains the same at each step of the crack propagation process as long as
the boundary conditions of the Riemann–Hilbert problem are kept as described in this
section. The main computational complexity is related to numerical calculation of the
conformal mapping.

4 Energetic Approach to Crack Propagation

In this section, the mechanical point of view on the crack propagation based on the
energetic formulation proposed in [10] is described. Similar to previous sections, we
describe a general setting of the energetic approach at first, and after that, we specify
it for the problem considered in the paper.

Consider now time-dependentNeumannboundary conditionsF(t)givenonΓ1, then
for any time t , the crack geometry Γc(t) is obtained by finding the global minimum
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of the total energy E tot under the assumption of irreversibility of the crack growth, i.e.
the crack can only grow. The total energy for the Neumann boundary conditions F∗
on Γ1 and for any crack geometry Γ ∗

c is expressed as follows

E tot(F∗, Γ ∗
c ) := E(F∗, Γ ∗

c ) − W(F∗, Γ ∗
c ) + D(Γ ∗

c ),

where the stored elastic energy E(F∗, Γ ∗
c ), the work of external forces W(F∗, Γ ∗

c ),
and the dissipated energy D(Γ ∗

c ), are given by

E(F∗, Γ ∗
c ) = 1

2

∫

G
σ (F∗, Γ ∗

c ) : ε(F∗, Γ ∗
c )dV ,

W(F∗, Γ ∗
c ) =

∫

Γ1

F∗ · u(F∗, Γ ∗
c )dS, D(Γ ∗

c ) = Gc

∫

Γ ∗
c

dl,

where σ is the stress tensor, ε the strain tensor and u the displacement vector. Based
on the above consideration, the energetic criterion can now be formulated as follows
[10]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) : ∀ s < t, Γc(s) ⊂ Γc(t),

(b) : ∀Γc(t) ⊂ Γ ∗
c , E tot(F(t), Γc(t)) ≤ E tot(F(t), Γ ∗

c ),

(c) : ∀ s < t, E tot(F(t), Γc(t)) ≤ E tot(F(t), Γc(s)).

(27)

Let us make some remarks regarding the criterion: condition (a) corresponds to the
constraint of irreversibility of the crack growth; the condition (b) ensures that the
total energy for the actual crack is lower than for any longer crack; and condition (c)
ensures that the total energy of the actual crack is lower than for any previous real
crack considering the actual boundary conditions.

Energetic criterion (27) is formulated for a continuous time, in practice, however,
a time discretisation t1 < . . . < tn is introduced with t1 corresponding to the initial
configuration. Thus, according to (27), knowing the crack geometry Γc(t j−1) at the
time step j − 1, the crack geometry Γc(t j ) at the time step j (with 1 ≤ j ≤ n) is
determined as follows

Γc(t j ) = argmin
Γc(t j−1)⊂Γ ∗

c

[E tot(F(t j ), Γ
∗
c )

]
(28)

Indeed, for any time discretisation, (28) clearly implies (27).
In general, the total energy E tot(F(t j ), Γ ∗

c ) depends on the stress and displace-
ment field in the whole domain Ω . However, under the assumption that the crack can
propagate only inside the analytical domain ΩA, minimisation problem (28) can be
formulated locally. In this case of local formulation,Neumann boundary conditionsFA
on the coupling interface ΓAD are considered. These Neumann boundary conditions
are obtained at each step of propagation j and for each trial of new crack geometry
by solving the continuous coupling with finite element method. Indeed, as the crack
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growth tends to relax strain and stress, the Neumann boundary conditions FA needs
to be re-computed for any tested evolution of the crack geometry. However, as the
analytical domain ΩA is chosen to cover the largest possible area in the elastic body,
the computational cost is expected to be reduced. Such a local formulation would
not be possible in the classical finite element setting without using elements of higher
regularity, since traces of generalised derivatives of basis functions are needed in order
to obtain Neumann data on ΓAD. However, this problem does not appear in the case of
analytical–numerical coupling described in previous sections, since a strong solution
to the differential equation in ΩA is constructed. Thus, Neumann data on ΓAD can be
obtained straightforwardly.

So, to formulate the minimisation problem, we consider Neumann boundary condi-
tions FA, which are formally determined as a function of F(t) and Γ ∗

c , on the coupling
interface ΓAD for any crack Γ ∗

c . Then, minimisation problem (28) can be reduced to:

Γc(t j ) = argmin
Γc(t j−1)⊂Γ ∗

c

[E tot
A (FA

[
F(t j ), Γ

∗
c

]
, Γ ∗

c )
]
, (29)

where the local total energy E tot
A (F∗

A, Γ ∗
c ) is given by

E tot
A (F∗

A, Γ ∗
c ) = EA(F∗

A, Γ ∗
c ) − WA(F∗

A, Γ ∗
c ) + D(Γ ∗

c ),

with the elastic energy EA(F∗
A, Γ ∗

c ) stored in the analytical domain ΩA, and the work
of forces WA(F∗

A, Γ ∗
c ) on the coupling interface ΓAD are given by

EA(F∗
A, Γ ∗

c ) = 1

2

∫

ΩA

σ (F∗
A, Γ ∗

c ) : ε(F∗
A, Γ ∗

c )dV ,

WA(F∗
A, Γ ∗

c ) =
∫

ΓAD

F∗
A · u(F∗

A, Γ ∗
c )dS. (30)

Thus, formulation (29) presents the advantage that the analytical solution of the
Riemann–Hilbert problem described in Sect. 3 is used to compute at each time step
j the total energy E tot

A . Indeed, for all F∗
A and Γ ∗

c one can compute analytically
σ (F∗

A, Γ ∗
c ), ε(F∗

A, Γ ∗
c ) and u(F∗

A, Γ ∗
c ) involved in (30).

5 First Example Towards a Complete Numerical Scheme

The aim of this section is twofold: first, we briefly discuss the difficulties related to
practical implementation of the complete solution strategy presented in this paper, and
recall some of possible approaches to overcome these difficulties, whichwill constitute
the future work; after that, we present a small numerical example focusing only on
the use of conformal mapping and the Riemann–Hilbert problem, since these are the
crucial parts of the complete algorithm to model crack propagation in elastic bodies.
Moreover, we outline clearly all problems related to the numerical stability of the
method, since overcoming these problems constitute the major part of future work.

123



D. Legatiuk, D. Weisz-Patrault

The analytical domain ΩA containing a crack is a circular-arc polygon, with crack-
faces representing the polygonal part and the coupling interfaceΓAD being the circular
arc. The idea of the method presented in this paper is to map the circular-arc polygon
to the unit disk, because Riemann–Hilbert problems in the unit disk are well studied
in the context of linear elasticity, see for example [11,22]. While there are several
classical works studying conformal mappings of circular arc-polygon regions, see for
example [4,8] and references therein, it is well-known that an explicit representation
of a mapping function between a circular-arc polygon and the unit disk does not exist.
The classical approach to construct a mapping function for such type of domains is to
work with the Schwarz–Christoffel differential equation.

Because the Schwarz–Christoffel differential equation is ill-posed due to non-linear
constrains for the parameters of the map, it is known that its numerical solution is a
challenging task, although some methods for numerical calculations of such map-
pings exist [2,5,16]. An alternative approach would be to directly use algorithms for
numerical conformal mapping, such as for example the osculation algorithms [15,27].
However, the main obstacle for the use of numerical conformal mapping in the con-
text of coupled method is the fact, that not only the geometry must be mapped, as
typically addressed in the field of numerical conformal mappings, but the differential
equation and its solution procedure as well. Thus, it must be studied how the solution
of Riemann–Hilbert problem in our case will behave under a numerical conformal
mapping.

Because of difficulties discussed above in the way of implementing the complete
numerical procedure presented in this paper, we present an illustrative example focus-
ing only on the crack propagation based on the solution of the Riemann–Hilbert
problem. Thus, instead of considering a global boundary value problem in a domain
G, we consider a boundary value problem formulated directly in the analytical domain
ΩA and boundary conditions on the coupling interface ΓAD. Additionally, to avoid a
circular-arc polygon mapping, we consider a square domain centred at the crack tip
of the initial configuration.

Let us consider an infinite plane containing a single crack of length 2a with constant
stresses p applied at infinity (Fig. 5, left). To formulate a boundary value problem, we
consider a square domain of length L located around one of the crack tips (Fig. 5, right)
representing the analytical domain ΩA. To keep the illustrative example closer to the
setting discussed in Sect. 3, displacement boundary conditions are considered on the
interface ΓAD and traction-free conditions on the crack faces Γc. Thus, we consider
the following boundary value problem

⎧
⎨

⎩

−μΔu − (λ + μ) grad div u = 0, in ΩA,

u = u1 + iu2, on ΓAD,

σ · n = 0, on Γc,

where the displacements components u1 and u2 are chosen according to the well-
known analytical solution, see for example [20], and are given by the following
formulae:
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2a

p

p

ΓAD

ΓAD

ΓAD

ΓAD

ΓAD
Γc

Γc

ΩA

L

Fig. 5 Setting for the illustrative example: crack in an infinite body (left), representation of the analytical
domain ΩA with the coupling interface ΓAD as a square (right)

u1 = p
√
2ra

8μ

[

(2κ − 1) cos
(ϕ

2

)
− cos

(
3ϕ

2

)]

,

u2 = p
√
2ra

8μ

[

(2κ + 1) sin
(ϕ

2

)
− sin

(
3ϕ

2

)]

,

with r , ϕ being polar coordinates with the coordinate origin located at the crack tip,
and κ and μ being material parameters.

For a numerical conformal mapping of the domain ΩA, in general, the classi-
cal Schwarz–Christoffel toolbox for Matlab developed by Driscoll [7] can be used.
However, using this toolbox implies the necessity to work with the inverse Schwarz–
Christoffel mapping in all constructions presented in Sect. 3, which complicates the
numerical part. Therefore, instead of the Schwarz–Christoffel toolbox, the PlgCirMap
Matlab toolbox will be used, which has been introduced recently in [24]. The
PlgCirMap toolbox allows mapping of polygonal multiply connected domains onto
circular domains by using Koebe’s iterative method. Fig. 6 shows the domain ΩA and
the unit disk together with the conformal grid calculated by the PlgCirMap toolbox.

The advantage of using the PlgCirMap toolbox is the fact that the direct mapping
from the polygonal domain ΩA to the unit disk can be used in all constructions pre-
sented in Sect. 3, which significantly simplifies all related calculations. Nonetheless,
although the PlgCirMap toolbox provides a lot of useful functions for numerical con-
formal mapping, it is also not free of geometrical restrictions: polygonal domains with
slits and cusps are not allowed. To overcome this restriction, we model the crack in a
domain as a cut with width of order 10−4. In this case, the conformal mapping to the
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Fig. 6 DomainΩA togetherwith the conformal grid (left), and the unit diskwith the conformal grid obtained
after calculating the conformal mapping from ΩA by using the PlgCirMap toolbox

Table 1 Vertices and pre-vertices for the conformal mapping

Series number Series Pre-vertices series Vertices

1 −10 + 0.0001i 0.955417215003076 + 0.295259115482937i

2 0.0001i 0.955422389606861 + 0.295242370668431i

3 −0.0001i 0.955391244897614 + 0.295343138015746i

4 −10 − 0.0001i 0.955396421837903 + 0.295326390861588i

5 −10 − 10i 0.825604379631623 + 0.564249420321443i

6 10 − 10i −0.171634834630707 + 0.985160638444964i

7 10 + 10i 0.414173847997492 − 0.910197793688246i

8 −10 + 10i 1

unit disk can be calculated with the relative residual of order 10−5. The vertices cal-
culated during the conformal mapping, as well as pre-vertices of the original domain,
are listed in Table 1. Because some vertices are located very close to each other, we
list the coordinates of vertices in a long format provided by Matlab.

Let us nowoutline the general procedure for constructing a solution of theRiemann–
Hilbert problem:

Step 1. Map the domain ΩA to the unit disk.
Step 2. Map boundary conditions from ΩA to the unit disk.
Step 3. Create and solve linear system of Eqs. (26).
Step 4. Compute the general solution of Riemann–Hilbert problem in the unit disk

by help of formula (25).

Figure 7 shows the solution of Riemann–Hilbert problem in the unit disk with respect
to ϕ ∈ [−π, π ] and for r = 1/2. It is also important to remark, that the solution
of a linear system in Step 3 can be written explicitly in our case, implying that no
numerical procedure is necessary to solve the linear system. Nonetheless, computing
the solution is still numerically difficult, because several singular integrals need to
be calculated in Step 3, since they appear in the coefficients of the system and in the
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Fig. 7 DomainΩA togetherwith the conformal grid (left), and the unit diskwith the conformal grid obtained
after calculating the conformal mapping from ΩA by using the PlgCirMap toolbox

right-hand side. Thus, the quality of the solution of the Riemann–Hilbert problem
(and further computations with it) strongly depends on calculation of these singular
integrals. However, because four of the eight vertices are located very close to each
other, see Table 1, they cause numerical stability issues during computing the singular
integrals. In the example presented in this section, the singular integrals could be
computed only with the accuracy of order 10−1 by using built-in Matlab adaptive
quadratures. Evidently, this accuracy is not sufficient for further calculations of stresses
and displacements. Therefore, one of the tasks for future work is finding a numerical
quadrature for computing singular integrals with the accuracy of the same order as
provided by numerical conformal mapping.

6 Summary and Outlook

In this paper, we have presented the theoretical background of a coupled analytical–
numerical approach tomodel a crack propagation process in two-dimensional bounded
domains. The main idea of the method is to obtain the correct solution behaviour
near the crack tip by help of the analytical solution constructed by using tools of the
complex function theory and couple it continuously with the finite element solution
in the region far from singularity. To calculate possible directions of crack growth,
the idea is to utilise the conformal mapping techniques and to transform a problem
of linear elasticity into a Riemann–Hilbert problem in the unit disk for holomorphic
functions. In the paper, we have presented the analytical solution of the Riemann–
Hilbert problem, as well as discussed numerical stability issues appearing on the way
of practical realisation of the method, proposed in this paper.

As has been discussed in Sect. 5, the main difficulty of the method is related to
the need of having a conformal mapping between a circular-arc polygon and the unit
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disk. Unfortunately, this mapping cannot be expressed explicitly by help of known
conformal mappings. Therefore, we have considered a simplified version of a prob-
lem in Sect. 5, where a circular domain has been replaced by a rectangular domain.
Nonetheless, even in that case, further studies are necessary for finding a numerical
quadrature enabling calculating of singular integrals with a higher accuracy, which is
necessary for calculating stresses and displacements.

In summary, this paper presents a work-in-progress, rather than a final result. The
scope of future work consists in studying different approaches for practical calcula-
tions of circular-arc polygonmappings in the context of the couplingmethod, aswell as
analysing of different advanced methods for computing singular integrals. Addition-
ally, further theoretical studies of the method, such as for example unique solvability
of the interpolation problem under conformal mapping, must also be made.

Finally, it is worth mentioning, that some recent works dealing with analysis of
kinked cracks proposed to work with a mapping from a half-space [1,3]. Considering
that different conformal mappings can be used on different propagation steps, as well
as a composition of several conformal mappings can also be helpful in practice, the use
of the mapping from a half-space needs also to be studied in the context of the coupled
method, presented in this paper. Perhaps a new setting for the complete methods can
be found in this way.
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