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Kurzfassung
Seit einigen Jahrzenten hat sich die Finite Elemente Methode in Statik und Dynamik
als Standardverfahren etabliert. Für viele klassische Problemstellungen bietet diese
Methode eine schnellere und flexiblere Lösung als der analytische Ansatz. Damit werden
Prognosen für komplizierte Ingenieurprobleme möglich, für die es früher keine Lösung
gab.

Obwohl die Finite Elemente Methode ein sehr robustes Verfahren ist, führte sie zu neuen
Fragestellungen. Diese Probleme kann man in zwei Hauptgruppen einteilen: Zum einen
spielt die Computerleistung eine zentrale Rolle, zum anderen wirft die Interpretation
der digitalen Lösung oft Fragen auf.

Zeitgleich mit der Entwicklung der Finiten Elemente Methode für numerischen Lösun-
gen ist eine Theorie zwischen Balkentheorie und Schalentheorie entstanden: die Ver-
allgemeinerte Technische Biegetheorie, VTB. Diese Theorie ermöglicht nicht nur eine
systematische und analytisch klare Darstellung von komplizierten Tragwerksproblemen,
sondern bietet auch den Vorteil eines kompakten und eleganten Lösungsverfahrens, das
zur Verbesserung der Rechenzeit führen kann.

Leider erlangte die VTB bislang auf internationaler Ebene nur wenig Bekanntheit. Dies
ist vor allem darauf zurückzuführen, dass in den ersten Jahren ausschließlich Veröf-
fentlichung zur Theorie in deutscher Sprache erfolgten. Erst in den letzten Jahren hat
sich die VTB allmählich zu einem breiten Forschungsthema entwickelt. Dabei ist die
Entwicklung von linearen und nichtlinearen Analysen hervorzuheben.

Außerdem wird die VTB bislang ausschließlich isoliert betrachtet. Obgleich vor Kurzem
die Lösungen der VTB Finite-Elemente-Methode anwenden, sind die Verbindung von
den VTB Finiten Element zu anderen Elementen (Schalen, Volumenelemente) kein
Gegenstand der bisherigen Forschung. Damit ist das Hauptziel dieser Dissertation die
Kopplung von VTB und Schalen- bzw. Membranelementen zu implementieren und
dabei die Vorteile beider Ansätze zu nutzen: die Flexibilität der Schalenelemente sowie
die gute Performance der VTB bezüglich der Rechenzeit.

Ausgehend von den Grundlagen der VTB zeigt diese Dissertation auf, wie durch Tren-
nung der Variablen zwei Bereiche der Berechnung definiert werden: der Querschnitts-
bereich und der Längsachsenbereich. Daher kann die Finite-Elemente Methode nicht
nur im Querschnittsbereich angewendet werden, sondern es kann auch ein exakter
Finite-Elemente Ansatz unter Verwendung der VTB in Längsrichtung entwickelt wer-
den.

Die Querschnittsanalyse wird durch Lösung des quadratischen Eigenwertproblems unter
Anwendung der Trennung von Platten- und Membranverhalten durchgeführt. Dies
führt zu einer exakten Darstellung der Deformationsmoden sowie der reduzierten quadratis-
chen Eigenwertproblems.

Bezüglich der Longitudinalrichtung werden in dieser Dissertation neue Elementfor-
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mulierungen basierend auf hyperbolischen und trigonometrischen Ansatzfunktionen en-
twickelt. Obwohl die Formulierung dieser Funktionen nicht trivial ist, steht damit ein
rekursives Verfahren zur Verfügung, das unter Verwendung von periodischen Ableitun-
gen eine systematische Entwicklung der Steifigkeitsmatrizen erlaubt.

Außerdem ermöglichen die Ansatzfunktionen eine Diskretisierung in Einzelelemente
und sorgen für ein geglättetes Spannungsfeld.

Ausgehend von diesen Herleitungen wird die Verbindung von VTB und Schalenele-
menten in einem gemischten Model entwickelt, was das Hauptziel dieser Dissertation
darstellt. Basierend auf dem Verschiebungsfeld werden Kopplungsgleichungen unter
Verwendung des Master-Slave-Modells formuliert. Dies führt dazu, dass strukturelle
Verbindungen und Gelenke mit Schalenelementen, Balken jedoch mit VTB Elementen
modelliert werden können.

Als Nebeneffekt sorgen die Kopplungsgleichungen unter Anwendung der VTB für eine
Begrenzung des Verschiebungsfeldes der Schalenelemente, insbesondere in der Umge-
bung des Kopplungsquerschnitts.

In einer linearen Analyse sind diese Effekte fast unmerklich, wohingegen sie in der
nichtlinearen Analyse zu kumulativen Fehlern führen. Die Anwendung der gemischten
VTB-Schalen-Modellierung in nichtlinearen Analysen wird am Ende dieser Dissertation
diskutiert.
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Abstract
In the last decades, Finite Element Method has become the main method in statics and
dynamics analysis in engineering practice. For current problems, this method provides
a faster, more flexible solution than the analytic approach. Prognoses of complex
engineer problems that used to be almost impossible to solve are now feasible.

Although the finite element method is a robust tool, it leads to new questions about
engineering solutions. Among these new problems, it is possible to divide into two
major groups: the first group is regarding computer performance; the second one is
related to understanding the digital solution.

Simultaneously with the development of the finite element method for numerical so-
lutions, a theory between beam theory and shell theory was developed: Generalized
Beam Theory, GBT. This theory has not only a systematic and analytical clear presen-
tation of complicated structural problems, but also a compact and elegant calculation
approach that can improve computer performance.

Regrettably, GBT was not internationally known since the most publications of this
theory were written in German, especially in the first years. Only in recent years,
GBT has gradually become a fertile research topic, with developments from linear to
non-linear analysis.

Another reason for the misuse of GBT is the isolated application of the theory. Al-
though recently researches apply finite element method to solve the GBT’s problems
numerically, the coupling between finite elements of GBT and other theories (shell,
solid, etc) is not the subject of previous research. Thus, the main goal of this dis-
sertation is the coupling between GBT and shell/membrane elements. Consequently,
one achieves the benefits of both sides: the versatility of shell elements with the high
performance of GBT elements.

Based on the assumptions of GBT, this dissertation presents how the separation of
variables leads to two calculation’s domains of a beam structure: a cross-section modal
analysis and the longitudinal amplification axis. Therefore, there is the possibility of
applying the finite element method not only in the cross-section analysis, but also the
development for an exact GBT’s finite element in the longitudinal direction.

For the cross-section analysis, this dissertation presents the solution of the quadratic
eigenvalue problem with an original separation between plate and membrane mecha-
nism. Subsequently, one obtains a clearer representation of the deformation mode, as
well as a reduced quadratic eigenvalue problem.

Concerning the longitudinal direction, this dissertation develops the novel exact ele-
ments, based on hyperbolic and trigonometric shape functions. Although these func-
tions do not have trivial expressions, they provide a recursive procedure that allows
periodic derivatives to systematise the development of stiffness matrices. Also, these
shape functions enable a single-element discretisation of the beam structure and ensure
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a smooth stress field.

From these developments, this dissertation achieves the formulation of its primary
objective: the connection of GBT and shell elements in a mixed model. Based on the
displacement field, it is possible to define the coupling equations applied in the master-
slave method. Therefore, one can model the structural connections and joints with finite
shell elements and the structural beams and columns with GBT finite element.

As a side effect, the coupling equations limit the displacement field of the shell elements
under the assumptions of GBT, in particular in the neighbourhood of the coupling
cross-section.

Although these side effects are almost unnoticeable in linear analysis, they lead to cu-
mulative errors in non-linear analysis. Therefore, this thesis finishes with the evaluation
of the mixed GBT-shell models in non-linear analysis.
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1
Introduction

1.1. Motivation
There are two major motivations in this dissertation. The first one concerns the eco-
nomic and sustainable feature of thin-walled beam structures. Such structures lead to
minimal material consumption, and they are created from a wide variety of materials,
from the traditional metal elements, like steel and aluminum, to state of the art of
fibers, such as carbon fiber and fiberglass.

However, in the last decades, thin-walled beams have been showing a unique behavior,
especially when compared to traditional thick beams. Distortion, warping, local and
distortion buckling are some examples of inherent effects in this type of structure.

The prediction of these unusual effects brings to the second major motivation here:
find an understanding of physical behavior, as well as a practical design approach in
thin-walled beam structures.

Although Computer Aided Engineering, CAE, has been providing a powerful and ro-
bust tool for structural design for thin-walled beams, many results have neither a clear
physical understanding nor a direct correlation with traditional formulations. In this
scenario, models based on the Finite Element Method, FEM, more specific shell el-
ements, have been widely used in the last four decades. Smoothly colorful graphs
showing the displacement and stress fields in a thin-walled beam, with total conformity
to mechanics of materials, have been obtained. However, if these results are compared
to classical beam theories, it stands out that the FEM modeling solution is beyond the
capacity of traditional beam analysis.

This procedure drives into two main inconveniences: the first one is the computational
effort necessary to solve it; the second one is the labor effort in modeling all shell
elements.

Although computer performance has improved over the last decades, a FEM shell
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modeling of thin-walled beam leads to a substantial amount of redundant information.
Therefore, much of computer effort spent to solve a thin-walled beam model, based on
shell elements, is used to solve nearly similar nodal outcomes.

Concerning the practical modeling issue, the main problem is not in the generation of
the initial finite element mesh in the structural analysis. Mesh generation algorithms
have the capacity to overcome this problem. However, a structural design approach
works with several tries, i.e., for each try, it involves changing further than wall thick-
ness. Changes in thin-walled cross-sections require a new generation of finite element
meshes, or at least an update of the original ones. Since the mesh of a beam is usu-
ally linked to the mesh of a neighbor structural component, this neighbor mesh must
be regenerated as well, which brings it to a general model mesh regeneration. This
question is even more highlighted in the scenario of Building Information Modelling,
BIM, in which versatility in model changing is one of the main focus of this new design
approach. 1D beam elements are still a friendly and easily modeling manner in this
environment.

Moreover, the analytical interpretation of results obtained from FEM shell modeling
is quite elaborated. As an outcome, this analysis provides the stress fields in the thin-
walled beam. However, structural design codes are widely based on internal forces.
Thus, one must still integrate the stress field over the cross-section domain.

Unfortunately, if one tries to rebuild the stress field based on the internal forces, then
one does not reach the same results of the initial stress field. In other words, the internal
forces due to traditional beam theories, such as Bernoulli-Euler, Timoshenko[170] and
Vlasov beam theories, cannot provide a full description of mechanic behavior of a thin-
walled beam[41, 178].

Consequently, thin-walled beam structures require an advanced theory that has the
benefits of easy analysis, processing, and modeling of beam theories and the accurate
results of shell theory.

The seeking for the above requirements leads to major theories: Finite Strip Method [43,
85, 134] and Generalized Beam Theory,GBT. This last one is the main focus of study
in this dissertation.

1.2. Literature Review and historical development of GBT
Generalized Beam Theory, GBT, or in original in German ”Verallgemeinerte Technische
Biegetheorie” is a numerical approach that was initially developed to solve open thin-
walled prismatic beams by Richard Schardt in Darmstadt, Germany [135, 136, 141,
142].

According to Schardt, [46], GBT is a natural extension of Vlasov Beam Theory, [176].
It was only a matter of time for Vlasov to reach a similar formulation of GBT. Unfor-
tunately, his early death stopped his researches.
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In fact, when Vlasov solved the non-uniform torsion for thin-walled beams, he brought a
new view over beam elements: beyond the six degrees of freedom, which are concerning
the rigid body motion, a prismatic beam has an extra one, the seventh degree of
freedom, that is concerning the warping of the cross-section. This extra deformation
shape is related to a new internal force, which Vlasov named as Bi-moment.

To simply illustrate and prove this idea, Vlasov used a nodal force decomposition of an
”I” profile under a concentrated load in one of its corners, as shown below:

Figure 1.1: Nodal decomposition of a concentrated load in a column according to Vlasov
According to the classical Bernoulli-Euler Beam Theory, this column is under an oblique
compression that can be described as a linear combination of the nodal forces in config-
urations b until d in the above picture. However, the sum over these nodal forces does
not lead the initial force as shown in picture 1.1.a. An extra deformation of cross-section
rises: the Warping. Also, it leads to a new internal force, the Bi-moment. They are,
respectively, an extra degree of freedom and internal force of beams. Therefore, a 3D
space beam has seven degrees of freedom[129]: six concerning the rigid body motions
and one concerning the warping deformation.

Schardt, in his turn, extended this example to cross-section with five, or more, nodes.
The wonder of how to build the nodal force decomposition, in these cases, leads to
GBT principles.

Over a time of more than twenty years, Schardt developed GBT with his co-workers[133,
135, 140, 174]. As a result, in 1989, he published the only book concerning the subject
[136]. This book explains all linear analysis in GBT, with particular attention to the
cross-section analysis in the cases of circular, tubular and open cross-sections.

During this period, GBT has its first publication in English, made by J.M.Davies, [49],
in 1986. He is the pioneer of applying FEM in GBT. Davies is also responsible for
GBT’s disclosure outside Germany.

Later in 1994, Schardt publishes his publications in English language, [137, 138], in
which the focus are the non-linear analysis and the buckling from the coupling among
different deformations modes.

In 1998, J.M.Davies publishes a book section about GBT,[46]. Here, he introduces
GBT in the linear and non-linear analysis.

3



At the end of the ’90s, Dinar Camotim, from the Technical University of Lisbon, started
his group of GBT studies [149, 150]. Together with other researchers such as Nuno
Silvestre, Rodrigo Gonçalves and Rui Bebiano, they have become the most expressive
research group of GBT in the latest years. With more than 100 publications in the last
17 years, they have been pushing the boundaries of GBT. As a few examples of their
progress, one can mention:

- developments in linear analysis: open-cross section applications [75, 76, 155], generic
branched open cross-section analysis [50, 78], inclusion of shear lag [89], shear deforma-
tions in GBT [64, 145, 160], 3D frame connection behavior [11, 13, 15], cross-validation
with Finite Strip Method [53, 72, 161], vibration [31, 156, 158, 159] and dynamic anal-
ysis [24] and the development of the GBT software analysis GBTUL [23];

- developments in buckling and post-buckling analysis [33, 66, 153, 154] and the effects
of initial shear stress in buckling coupling [6, 14, 65, 157].

- developments in non-linear analysis: i) extension for non-linear physical behavior
[67, 69, 79]; ii) study of large deformation [108] and rotations in GBT; iii) analysis of
initial imperfections [109, 111, 112].

Recently, in the last five years, GBT started to spread out around the world. In Italy
and Australia, a joined group of GBT studies, coordinated respectively by G. Piccardo
and G. Ranzi[127, 169], has been progress in the dynamic analysis, including shear
effects. In Romanian, Nedelcu et.al. developed studies about buckling identification
modes based on GBT [122] and taper beams[120], especially concerning conical shell
analysis [116, 121].

In Denmark, M.J. Andreassen, [97, 98, 99, 100], developed a unique approach to obtain
the deformation modes in GBT that systematizes this extensive and characteristic
GBT’s analysis.

1.3. Objectives of the dissertation
The presented dissertation concerns the study and development of Generalized Beam
Theory, GBT, based on Finite Element Method. It does not only review this theory,
but it also contributes to several points, as listed below:

- Cross-section analysis: Based on recent GBT cross-section analysis of [97], this
dissertation proposes some modifications and improvements in this procedure. As a
result, one obtains a division among pure membrane, pure plate, and membrane-plate
modes. This separation is useful in the study of non-linear coupling;

- Linear analysis: It develops an exact finite element solution. Especial attention is
given to the ordinary differential equation of GBT, which leads to the deformation
mode classification and its respective shape functions. The conception of Completeness
Coefficient Matrix is a feature issue to overcome the numerical difficulties, which rise
from the most typical shape functions applied in GBT;
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- Modeling: One of the significant novel points of this dissertation is the coupling
between shell and GBT finite elements. This novel approach uses the definitions of
GBT’s deformation shapes as the basis of the coupling equation between these two
types of elements. As a result, it creates a mixed shell-GBT finite element model;

- Buckling Analysis: Last, but not least, this dissertation presents a buckling analysis of
the mixed shell-GBT finite element model. The development of this analysis is not lim-
ited to the usual linear initial stress stiffness components, but also studies the quadratic
ones. It develops the linear and quadratic initial displacement stiffness components as
well, and it shows the possible couplings between membrane and plate behaviours.
Moreover, this analysis reuses the exact formulation in linear analysis for the coupling
between longitudinal compression and the transverse high modes deformation.

1.4. Dissertation organization
The dissertation presents the above topics in a total of 8 chapters. The first one is this
introduction.

Initially, Chapter 2 presents a review of the development and principles of GBT. Start-
ing from the kinematic assumptions, this chapter shows how GBT is a natural extension
of Vlasov beam theory. Furthermore, it introduces the main features of GBT analysis:
i) the separation of variables of the displacement field in longitudinal and transverse
domains; ii) the orthogonal deformation modes concept.

Based on these features, Chapter 2 develops the variational formulation of internal and
external energies in GBT, leading not only to the fundamental equation of equilib-
rium of this theory, but also highlighting the idea of generalized cross-section proper-
ties.

As a first cross-section analysis, Chapter 3 studies the thin-walled circular hollow cross-
section. Although this type of cross-section is a particular case of GBT’s application,
it has a unique characteristic of avoiding the laborious analysis of the cross-section
by the quadratic and generalized eigenvalue problems. Thus, one can have a faster
introduction and overview of the potential of GBT.

Chapter 4 presents the analysis of a generic segmented thin-walled cross-section. Based
on the systematic approach formulated by Andreassen et al. ([97], [99], [98] and [100]),
this chapter presents an alternative approach to split the cross-section modal deforma-
tion shapes into the pure membrane, pure plate and membrane-plate modes. Also, at
the appendix, a full example compares the results of this alternative analysis with the
classical Schardt analysis.

Chapter 5 develops the exact finite element solution for GBT in the linear analysis.
Based on the particular solution of GBT ordinary differential equation, this chapter
proposes a complementary mode classification. In order to assort the correct shape
function, this complementary classification evaluates the ratio among the generalized
cross-section properties. This chapter also introduces the Completeness Coefficient Ma-
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trix, showing the practical application for this approach. A presented example details
the application of this exact finite element and compares the results of displacement
and stress fields with an entirely shell finite element model.

Chapter 6 builds the coupling between GBT and shell elements. This mixed shell-GBT
model has an appropriate application in practical modeling problems, especially con-
cerning steel structures. This modeling of connection is usually made by shell elements
and the structural frame by beam elements. This chapter develops the coupling equa-
tion for this application based on the deformation modes of GBT. The example in this
chapter provides not only the implementation of the mixed shell-GBT model, but also
it compares the results to an entirely shell finite element model.

Chapter 7 is related to non-linear analyses of the mixed shell-GBT model. It highlights
how the mode deformation decomposition, used in the linear analysis, can lead to the
coupling tensors of modes in the non-linear analysis. The physical meaning of these
tensors is priceless and maps all possible coupling effects among the linear modes of
GBT. Thus, the implementation and unique procedures of GBT in non-linear cases
are detailed here. Moreover, Chapter 7 extends the application of the coupling tensor
to develop the initial displacement stiffness matrix and a consistent internal force for-
mulation in non-linear GBT. As an outcome, the example of this chapter shows the
limitations of the mixed shell-GBT model in non-linear analysis, especially concerning
the results of the longitudinal displacements.

As a conclusion of this dissertation, Chapter 8 resumes and highlights the main contri-
butions. Also, this chapter presents ideas for future works.
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2
Generalized Beam Theory Assumptions

This chapter presents a detailed review of the Generalized Beam Theory’s assumptions.
Initially, the Vlasov beam theory’s assumption and kinematic model is introduced, in
order to provide a natural development of GBT as an extension of this beam the-
ory.

This chapter describes the two main features of GBT that are particularly relevant for
this study. The first one is the approach of separation of variables, which receives a
particular modification in its application in GBT. As for the second main feature, the
idea of orthogonal deformation shapes stands out.

Furthermore, the application of the variational formulation reaches the GBT’s differen-
tial equation and its boundary conditions. As an outcome, one obtains the description
of generalized cross-section properties, which condensates the GBT’s ideas.

2.1. Hypotheses of Generalized Beam Theory
GBT has three main hypotheses:

• Discretization of the thin-walled beam cross-section as a combination of shells seg-
ments;

• Separation of variables to describe the displacement field;

• A linear combination of orthogonal deformation-shape functions describes the dis-
placement in a cross-section.

Every hypothesis presented here involves other particular assumptions, as detailed in
the next subsections.
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2.1.1. Discretization of the thin-walled beam cross-section as a com-
bination of shell segments
As mentioned before, Generalized Beam Theory is an extension of Vlasov’s Thin-Walled
Beam Theory Vlasov [176]. They share the same basic principle, which is the descrip-
tion of any thin-walled beam as a combination of 2D element segments, as shown below:

Figure 2.1: Global and local coordinate systems: a) in a generic segmented cross-
section; b) in a hollow circular cross-section

In both theories, the cross-section’s geometry is described in a convenient local coordi-
nate system (x,s, t) instead of the global coordinate system (X, Y, Z). Similarly, the
local displacement (u,v,w) describes the displacement field. The global displacements
(ug,vg,wg) are useful in the cross-section analysis, as presented later in Chapter 4.

Concerning the particular case of a hollow circular cross-section, it has only one seg-
ment, represented by polar coordinates, as illustrated in figures 2.1.b.

2.1.2. Kinematic assumptions
In order to understand the extension of kinematic assumptions of GBT from Vlasov
Beam Theory, it is important to briefly review the kinematic hypotheses of Vlasov
Beam Theory, and subsequently how GBT affects them.

Kinematic assumptions of Vlasov Beam Theory
Vlasov Beam Theory uses a composition of simple beams to describe the thin-walled
beams. These simple beams have partial membrane and plate behaviors. It is partial
membrane behavior because it is assumed no transverse elongation and no shear con-
tribution for longitudinal equilibrium. It is also partial plate behavior since it uses only

8



the shear plate deformation. Therefore, there is not any transverse, neither longitudi-
nal curvature in each composing beam. Consequently, Vlasov Beam Theory has three
main kinematic assumptions, as listed below:

Figure 2.2: Types of Distortion: a) transverse bending distortion due to the variation
of transverse bending moments; b) transverse bending distortion due to the variation
of transverse forces; c) transverse elongation distortion.

•1st Constraining of transverse bending in each segment of the cross-section. Therefore,
the beam’s cross-section has no transverse distortion. Figures 2.2.a and 2.2.b clarify
this type of constrained deformation;

•2nd Constraining of transverse elongation:

εM
s (x,s) = v,s (x,s) = 0 (2.1)

where, the superscript ()M and comma subscript (), indicate a membrane term and
partial derivative, respectively.

It results in no transverse elongation distortion in each segment of the cross-section.
Figure 2.2.c shows this specific type of cross-section distortion.

•3rd Assumption of no shear contribution in the total longitudinal equilibrium: This
assumption conciliates the hypothesis of no shear deformation from the Bernoulli-Euler
beam theory with Bredt’s shear flow, in closed cross-section under uniform torsion.
To illustrate this longitudinal equilibrium, figure 2.3 shows an infinitesimal part of a
segment, which is under shear stress τxs

The last kinematic assumption leads to the following restriction:∫
s

τM
xs,s (x,s) thds= 0 (2.2)

where, th and τ represent the thickness of the segment and the shear stress, respec-
tively.

It is interesting to observe that the restriction in equation 2.2 allows a local shear con-
tribution in the longitudinal equilibrium of a cross-section’s section segment, as shown
in figure 2.3.b, but it does not allow the shear contribution in the total longitudinal
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Figure 2.3: Membrane shear flow in a infinitesimal segment of a cross-section.

equilibrium of the whole cross-section, as shown in figure 2.3.a. Therefore, the Grashof’s
method, which is used in Bernoulli-Euler beam theory to obtain the shear stress dis-
tribution in the cross-section, is applied in Vlasov beam theory. This observation is
reviewed later in the analysis of GBT’s stress field.

Thus, the membrane shear strain, γMxs :

γMxs (x,s) = u,s (x,s)+ v,x (x,s) (2.3)

together with the simple constitutive relationship:τM
xs (x,s) = GγMxs (x,s), where G is the

shear modulus, into eq. 2.2 reaches the following constraint expression:∫
s

G [u,ss (x,s)+ v,xs (x,s)] thds= 0 (2.4)

This expression can be fulfilled by Bernoulli-Euler beam theory as well as by the Bredt’s
constant shear flow assumption. In Bernoulli-Euler beam theory, the assumption of no
shear deformation leads to equality:

u,s (x,s) =−v,x (x,s) (2.5)

Therefore, each membrane’s segment remains plane, with no longitudinal distortion for
any deformation field. However, it is possible to have a different partial derivative of
longitudinal displacement in function of the local system s: u(,s) among the segments,
i.e. for two distinguished segments i and j, it is possible to have: usegmenti,s ̸= usegment j,s.
It is interesting to note that the cross-section, as a total, might not necessarily remain
plane. This hypothesis allows Vlasov Beam Theory to describe the warping in cross-
section due to non-uniform torsion.

However, the uniform torsion in closed cross-section cannot be studied under this as-
sumption, since it involves deformation due to constant shear flow. To overcome this
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limitation, one assumes the Bredt’s constant shea flow, which has the following defini-
tion of shear strain:

γMc
xs (x,s) = u,s (x,s)+ v,x (x,s) = 0+ vMc

,x (x) (2.6)

Here, the superscript ()Mc indicates a constant membrane function. One can observe
that his expression is complementary to Bernoulli-Euler shear assumption, eq. 2.5, in
the constrained relationship given in eq. 2.4.

Kinematic assumptions in GBT
In Generalized Beam Theory, the beam’s segments have a full plate behavior. Con-
sequently, the transverse bending distortion due to variation of transverse bending
moments and forces (figure 2.2.a and 2.2.b respectively) can be studied. Here, Gener-
alized Beam Theory relaxes the first hypothesis of the Vlasov Beam Theory presented
above.

Consequently, the description of longitudinal, transverse and shear strains is:

- Longitudinal strains: This strain has two components: the membrane one, which
is constant in thickness dimension, and the plate one, which is concerning the local
curvature in the longitudinal direction, therefore a linear function in thickness dimen-
sion:

εx (x,s, t) = εM
x (x,s)+ εP

x (x,s, t) = u,xx (x,s)+w,xx (x,s) t (2.7)

Here, the superscript ()P indicates a plate term, and t is the variable in thickness
dimensions, as showed in local coordinate system in figure 2.2.

- transverse strains: The Vlasov’s assumption of no transverse elongation, is partially
maintained in Generalized Beam Theory. The elongation of the cross-section middle
line is still neglected. I.e., there is no membrane elongation in this direction. However,
the elongation due to the transverse bending is allowed; in other words, the transverse
elongation is a linear function in the thickness dimension:

εs (x,s, t) = εM
s (x,s)+ εP

s (x,s, t) = 0+w,ss (x,s) t (2.8)

- Shear strains: similar to Vlasov beam theory, the shear strains has two components:
the constant membrane flow and a shear strain due to plate behavior:

γxs (x,s, t) = γMc
xs (x,s)+ γPsx (x,s, t) = vMc

,x (x)+2w,xs (x,s) t (2.9)

Also, GBT has an additional modification in Vlasov’s assumption. Although GBT uses
the same simplified constitutive relationship for membrane behavior:σM

x
σM
s

τM
xs

=

E 0 0
0 E 0
0 0 G

εM
x

εM
s

γMxs

 (2.10)
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GBT does not adopt this assumption for plate behavior. It uses the full constitutive
relationship: σP

x
σP
s

τ p
xs

=
E

1−µ2

1 µ 0
µ 1 0
0 0 1−µ

2

εP
x

εP
s

γPxs

 (2.11)

Here, E and µ represent the Young’s Modulus and the Poisson’s ratio, respectively.
These assumptions in constitutive relationships guarantee that there is no changing
in equations eq. 2.1 and eq. 2.2 for the middle line of the cross-section. As shown
later, these two equations can link the longitudinal displacement with the transverse
displacement.

2.1.3. Separation of variables to describe the displacement field.
One of the Schardt’s outstanding ideas is the application of separation of variables in
displacements field functions u, v and w. In this approach [84, 130], one function has the
variable concerning displacements on cross-section middle line s; and a second function
has the variable in longitudinal direction, x:

uM (x,s) = u(s)V,x (x) (2.12)

vM (x,s) = v(s)V (x) (2.13)
wM (x,s) = w(s)V (x) (2.14)

where V (x) is an amplitude function. This function is the same for three displacements:
u ,v and w. It is important to note that the first derivative, V,x (x), in eq. 2.12 is
not arbitrary. As it will be shown later on, it is necessary to link the longitudinal
displacement in the cross-section, u(x,s), with the transverse displacements: v(x,s)
and w(x,s) in order to avoid shear energy deformation. Also, this derivative can be
alternatively interpreted by the following perspectives:

- The transverse displacements are fully described in the same plane of the cross-section,
while the longitudinal displacement is perpendicular to cross-section’s plane;

- A cross-section is a beam with an infinitesimal length.

Another consequence of this hypothesis is the highlight of the cross-section functions,
u(s), v(s) and w(s), which leads to the generalized cross-section properties, and the
dependent amplification function1 V (x) that can be solved as a beam problem.

Also, the sum of membrane and plate parts gives the total displacement at a generic
point in the cross-section:

u(x,s, t) = uM (x,s)+uP (x,s, t) = [u(s)− tw(s)]V,x (x) (2.15)

v(x,s, t) = vM (x,s)+ vP (x,s, t) = [v(s)− tw,s (s)]V (x) (2.16)
w(x,s) = wM (x,s)+wP (x,s) = w(s)V (x)+0 (2.17)

1Gonçalves et al. [124, 125, 126] showed that the dependency between the cross-section functions
and the longitudinal amplification function is not valid for a curved beam’s axis

12



2.1.4. A linear combination of orthogonal deformation-shape func-
tion describes any possible displacement in a cross-section
Similar to other mathematical approaches to solve partial differential equations, the
separation of variables of GBT leads to a system of ordinary differential equations
that can be expressed in an orthogonal basis. Thus, each equation can be solved
independently. Hence, equations 2.12, 2.13 and 2.14 can be rewritten as:

u(x,s)=
n

∑
i=1

iu(s) iV,x(x) (2.18)

v(x,s)=
n

∑
i=1

iv(s) iV(x) (2.19)

w(x,s)=
n

∑
i=1

iw(s) iV(x) (2.20)

with the null inner product for any i ̸= j



∫
s

iu(s) ju(s)ds= 0∫
s

iu(s) ju(s)ds= 0∫
s

iw(s) jw(s)ds= 0

(2.21)

Where, the left-upper indexes indicates the GBT mode. This feature not only simplifies
the solving of beam problem, but also brings a clear representation of the physical
meaning in each deformation shape. It also allows the simple superposition among
these deformation shapes.

Moreover, by the linear combinations of orthogonal deformation shape functions, GBT
can be understood as a natural sequence of beam theories: starting from the classical
Bernoulli-Euler, followed by the Vlasov, and reaching GBT itself. Therefore, Bernoulli-
Euler beam theory is a particular case of Vlasov beam theory and this one is a particular
case of GBT.

The generic segmented cross-section, shown in figure 2.1.a, illustrates this feature of
GBT and its orthogonal modes:

As one can note, the first mode is the simple axial extension; the second and third ones
are the major and minor bending (Bernoulli-Euler theory), respectively; the fourth one
is the torsion and warping mode (Vlasov beam theory); the fifth one is a distortion
mode of GBT.

It is important to emphasize that the orthogonality of GBT happens only in the linear
analysis, after the solution of a quadratic eigenvalue problem. In the non-linear analysis,
the GBT equations are once again coupled. However, in this case, as showed in the
non-linear chapter, GBT can provide a clear systematic map of the coupling among the
modes due to the initial displacement/stress.
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Figure 2.4: Longitudinal orthogonal modes shapes of a generic segment cross-section.

2.2. Variational Formulation in Generalized Beam Theory
Based on the hypothesis and assumptions described in the previous section, the Vari-
ational Formulation is applied to highlight the generic cross-section properties, as well
as the GBT differential equation and its boundary conditions. One obtains it from the
minimization of the total energy’s functional:

Π =Uint −Vext (2.22)

δΠ = δUint −δVext = 0 (2.23)

Where Π is the total energy, Uint the internal strain energy and Vext the external load
potential energy. The next subsections develop each term according to GBT.

2.2.1. Internal strain energy according to GBT
According to GBT’s assumptions, the superposition of membrane and plate strains lead
to internal strain energy. However, it is necessary to keep in mind that for membrane
strains there is the absent of transverse and non-constant shear contributions. Hence,
the functional of internal strain energy in GBT is:

Uint =
∫
V

∫
εMx

σM
x dεM

x +
∫
εPx

σP
x dεP

x +
∫

γMc
xs

τMc
xs dγMc

xs +
∫
γPxs

τP
xsdγPxs+

∫
εPs

σP
s dεP

s

dV (2.24)

Using the simplified constitutive relation, eq. 2.10, to the membrane part, and the
fully constitutive relation, eq. 2.11, to the plate part, the functional leads to:
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Uint =
∫
V

E
2
(
εM
x
)2

+
E

1−µ2

[(
εP
x
)2

2
+µεP

x εP
s

]
+

+
G
2

[(
γMc
xs
)2

+
(
γPxs
)2]

+
E

1−µ2

[(
εP
s
)2

2
+µεP

x εP
s

]
dV (2.25)

And its variation concerning the internal strain energy is:

δUint =
∫
V

EεM
x δεM

x +
E

1−µ2

[
εP
x +µεP

s
]

δεP
x +

+G
[
γMc
xs δγMc

xs + γPxsδγPxs
]
+

E
1−µ2

[
εP
s δεP

s +µεP
x
]

δεP
s dV (2.26)

From the GBTs definition of the displacement functions (equations 2.12, 2.13 and
2.14), one rewrites the strains equations 2.7, 2.9 and 2.30 in the form:

εx (x,s, t) = εM
x (x,s)+ εP

x (x,s, t) = [u(s)− tw(s)]V,xx (x) (2.27)

γPxs (x,s, t) = 2tw,s (s)V,x (x) (2.28)

γMc
xs (x,s) = vc (s)V,x (x) (2.29)

εP
s (x,s, t) =−tw,ss (s)V (x) (2.30)

Since the terms u(s) and v(s) are predefined, their variations are obtained by the
amplification function: δV (x). Therefore, the variation of strain according to GBT
is:

δεx (x,s, t) = δεM
x (x,s)+δεP

x (x,s, t) = [u(s)− tw(s)]δV,xx (x) (2.31)

δγPxs (x,s, t) = 2tw,s (s)δV,x (x) (2.32)

δγMc
xs (x,s) = vMc (s)δV,x (x) (2.33)

δεP
s (x,s, t) =−tw,ss (s)δV (x) (2.34)

These expressions, together with the orthogonal modes assumption (equations 2.18,
2.19, 2.20 and 2.21), leads to the follow expression:

δUint =
n

∑
i=1

∫
V

[
E iu2 (s)+

E
1−µ

(
t iw(s)

)2] iV,xx (x)δ iV,xx (x)dV+

∫
V

µE
1−µ

t2iw,ss (s) iw(s) iV (x)δ iV,xx (x)dV+G
∫
V

[(
2t iw,s (s)

)2
+ ivMc (s)2

]
iV,x (x)δ iV,x (x)dV

+
E

1−µ2

∫
V

(
t iw,ss (s)

)2 iV (x)δ iV (x)dV+
∫
V

µE
1−µ

t2iw,ss (s) iw(s)δ iV (x) iV,xx (x)dV (2.35)
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The integrals in eq. 2.35 can have their integration domain over the volume split into
cross-sections’ area and longitudinal domains. Consequently, the generic cross-section
properties stand out:

δUint=
n

∑
i=1

(
E iCM+KiCP)∫

L

iV,xx (x)δ iV,xx (x)dx+G
(iDMc+iDP)∫

L

iV,xδ iV,x (x)dx+

+K iB
∫
L

iV (x)δ iV (x)dx+µK iDµ
∫
L

iV (x)δ iVxx (x)+δ iV (x)iVxx (x)dx (2.36)

where iCM and iCP are the generic moments of inertia, related to longitudinal strains,
in membrane and plate behaviors, respectively; iDMc, iDP and iDµ , are the generic shear
inertias due to the constant membrane shear flow, the plate’s shear inertia and the
effect of Poisson coupling, µ, as shear inertia, respectively; iB is the generic transverse
bending inertia; K is the plate’s stiffness. These terms are given by:

iCM = th
∫
s

iu(s)2 ds (2.37)

iCP =
∫
s

iw(s)2 ds (2.38)

iDMc = th
∫
s

ivc (s)2 ds (2.39)

iDP =
t3h
3

∫
s

iw,s (s)
2 ds (2.40)

K =
Et3h

12(1−µ2)
(2.41)

iB=
∫
s

iw2
,ss (s)ds (2.42)

iDµ =
∫
s

iw,ss (s)iw(s)ds (2.43)

2.2.2. External load potential energy according to GBT
GBT considers the external load as a distributed force in the local coordinate system.
Hence, it is considered as a vector field (with the components qx, qv and qw in the local
coordinate system) in function of the dimensions x and s:

[q(x,s)]T =
[
qx (x,s) qv (x,s) qw (x,s)

]
(2.44)

Similar to the displacement field, one represents the above components as separation
of variables:

qx (x,s)=qx (s) fx(x) (2.45)
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qv (x,s)=qv (s) fv(x) (2.46)

qw (x,s)=qw (s) fw(x) (2.47)

Similarly, one can represent the concentrated nodal loads at the initial and final beam’s
nodes in the local coordinate system. With the index i and f , these nodal forces are
given by:

[Pi (s)]
T =

[
Pix (s) Piv (s) Piw (s)

]
(2.48)

[Pf (s)]
T =

[
Pf x (s) Pf v (s) Pf w (s)

]
(2.49)

The inner product of these functions and their respective displacement leads to the
external load potential energy:

Vext =
∫
s

∫
L

[q(x,s)]T [u]dx [Pi (s)]
T [ui]+ [Pf (s)]

T [u f ]ds (2.50)

where [u] is the displacement field vector: [u] =
[
u(x,s) v(x,s) w(x,s)

]T and the vectors
[ui] and [u f ] are the displacement fields at the initial and final nodes respectively. Intro-
ducing in the above equation expressions from eq. 2.44 until eq. 2.49, one reaches:

Vext =
∫
s

∫
L

[
qx (s) fx (x) qv (s) fv (x) qw (s) fw (x)

]u(x,s)v(x,s)
w(x,s)

dx+
+
[
Pix (s) Piv (s) Piw (s)

]u(x= i,s)
v(x= i,s)
w(x= i,s)

+[Pf x (s) Pf v (s) Pf w (s)
]u(x= f ,s)

v(x= f ,s)
w(x= f ,s)

ds (2.51)

With the GBT’s representation of the displacement fields as a summation of orthogonal
modes, equations 2.18, 2.19 and 2.20, it is possible to notice that the integral over
local dimension s is in fact an inner product of deformation orthogonal modes and the
load vector. Consequently, the expression of external load is a sum of orthogonal load
modes as well. For instance, for the distributed load, one obtains:

iqx(s)=
∫
s

qx (s) iu(s)ds (2.52)

iqv(s)=
∫
s

qv (s) iv(s)ds (2.53)

iqw(s)=
∫
s

qw (s) iw(s)ds (2.54)

The load vectors of nodal concentrated in eq. 2.51 follow the same approach. Thus, the
evaluation of eq. 2.51 leads to the representation of the external load potential energy,
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according to GBT:

Vext =
n

∑
i=1

∫
L

iqx (s) fx (x) iV,x (x)+iqv (s) fv (x) iV (x)+iqw (s) fw (x) iV (x)dx+

+iPxiiVi,x+iPx fiVf ,x+
iPviiVi+iPv fiVf +

iPwiiVi+iPw f
iVf
]

(2.55)

And its variation [63, 117] is:

δVext =
n

∑
i=1

∫
L

iqx (s) fx (x)δ iV,x (x)+iqv (s) fv (x)δ iV (x)+iqw (s) fw (x)δ iV (x)dx+

+iPxiδ iVi,x+iPx f δ iVf ,x+
iPviδ iVi+iPv f δ iVf +

iPwiδ iVi+iPw f δ iVf
]

(2.56)

2.2.3. Equilibrium by Hamilton’s principle
Introducing the variations of internal strain energy eq. 2.36 and the external potential
energy eq. 2.56 into Hamilton’s principle presented in eq. 2.23, one obtains:

0=
n

∑
i=1

(E iCM+KiCP)∫
L

iV,xx (x)δ iV,xx (x)dx+G
(iDMc+iDP)∫

L

iV,xδ iV,x (x)dx+

+KiB
∫
L

iV (x)δ iV (x)dx+µKiDµ
∫
L

iV (x)δ iVxx (x)+δ iV (x)iVxx (x)dx+

−
∫
L

iqx (s) fx (x)δ iV,x (x)+iqv (s) fv (x)δ iV (x)+iqw (s) fw (x)δ iV (x)dx+

−iPxiiδVi,x−iPx fiδVf ,x−iPviiδVi+iPv fiδVf −iPwiiδVi−iPw f
iδVf

]
(2.57)

Integrating twice, by parts, the first integral and the first term in the fourth integral,
one finds:∫
L

iV,xx(x)δ iV,xx(x)dx=
[iV,xx(x)δ iV,x(x)

] f
i −
[iV,xxx(x)δ iV (x)

] f
i +
∫
L

iV,xxxx(x)δ iV (x)dx (2.58)

∫
L

iV (x)δ iV,xx (x)dx=
[iV (x)δ iV,x (x)

] f
i +
[iV,x (x)δ iV (x)

] f
i +

∫
L

iV,xx (x)δ iV (x)dx (2.59)

Also, integrating once, by parts, the second integral in eq. 2.36 and the first term in
eq. 2.56:

G
∫
L

(iDMc+iDP)iV,x (x)δ iV,x (x)dx=
[
G
(iDMc+iDP)iV,x (x)δ iV (x)

] f
i +

−
∫
L

G
(iDMc+iDP)iV,xx (x)δ iV (x)dx (2.60)
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∫
L

iqx (s) fx (x)δ iV,x (x)dx=
[iqx (s)Fx (x)δ iV,x (x)

] f
i −

∫
L

iqx (s)Fx (x)δ iV (x)dx (2.61)

Where Fx (x) is the integral of the amplification function of the distributed load, fx (x),
over the beam domain. These results in eq. 2.57 lead to:

0=
∫
L

[(
E iCM+KiCP)iV,xxxx (x)− (G(iDMc+iDP)−2µKiDµ)iV,xx (x)+KiBiV (x)+

iqx (s)Fx (x)−iqv (s) fv (x)−iqw (s) fw (x)
]
dxδ iV (x)−

(iPvi+iPwi
) iδVi− (iPv f +iPw f

) iδVf+

−iPxiiδVi,x−iPx fiδVf ,x+
[((

E iCM+KiCP)iV,xx (x)+2µKiV (x)
)

δ iV,x (x)
] f
i +[((

G
(iDMc+iDP)−2µKiDµ)iV,x(x)−(E iCM+KiCP)iV,xxx(x)−iqx (s)Fx (x)

)
δ iV(x)

] f
i (2.62)

Here, the equilibrium and boundary conditions stand out. Taking into account that
the functional eq. 2.62 is null for any arbitrary functions of longitudinal amplification,
δ iV (x), the parentheses terms of the integral must be zero, which leads to the non-
homogeneous differential equation of equilibrium in GBT:(

E iCM+KiCP)iV,xxxx (x)− (G(iDMc+iDP)−2µKiDµ)iV,xx (x)+KiBiV (x) =
iqv (s) fv (x)+iqw (s) fw (x)−iqx (s)Fx (x) (2.63)

Furthermore, the remaining terms are related to boundary conditions:[((
G
(iDMc+iDP)−2µKiDµ)iV,x (x)− (E iCM+KiCP)iV,xxx (x)+

−iqx (s)Fx (x)−iPvi−iPwi
)

δ iV (x)
]
x=i = 0 (2.64)[((

E iCM+KiCP)iV,xx (x)+2µKiV (x)−iPxi
)

δ iV,x (x)
]
x=i = 0 (2.65)

[((
G
(iDMc+iDP)−2µKiDµ)iV,x (x)− (EiCM+KiCP)iV,xxx (x)+

−iqx (s)Fx (x)−iPv f −iPw f
)

δ iV (x)
]
x= f = 0 (2.66)[((

E iCM+KiCP)iV,xx (x)+2µKiV (x)−iPx f
)

δ iV,x (x)
]
x= f = 0 (2.67)

Equations 2.64 and 2.66 represent the boundary conditions for the transverse dis-
placement and forces at the initial and final nodes, respectively. Meanwhile, equations
2.65 and 2.67 are the boundary conditions for the longitudinal forces and displacement
at these nodes. Since these equations involve generalized internal and external forces,
special attention is given for this subject in the next subsection.

2.3. Stress field in GBT: generalized internal forces
Using orthogonal deformation modes to describe the displacement field also has its
benefits in representing the stress field. It can be expressed by a simple superposition
of stresses due to generalized internal forces.
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The definition of orthogonal generalized internal forces is based on the inner product
of the total stress in a cross-section and the deformation mode of the stress direction.
For instance, the longitudinal generalized internal force, iWx (x), of a particular mode i
is expressed in the form:

iWx (x) =
∫
A

σx (x,s, t)iu(s, t)dA (2.68)

With this representation, GBT automatically contains the usual internal forces of a rod
and Bernoulli-Euler beam: if iu(s, t) = 1, then one obtains the normal internal force; if
iu(s, t) = y or iu(s, t) = z, where y and z are the main directions of moment of inertia, then
one obtains the internal bending moments. Also, the Vlasov’s bi-moment is already in
this representation, which is reached if iu(s, t) = ω, where ω is the sectorial area.

Carrying on the evaluation of the above expression, the extra internal forces of GBT
stand out. Also, it is necessary to remember that each orthogonal deformation mode is
itself a linear superposition of two orthogonal deformation behaviors of membrane and
plate, as shown in eq. 2.27. Thus, with the constitutive assumptions in equations 2.10
and 2.11, the generalized internal force can always be decomposed in membrane and
plate parts:

iWM
x (x) = E

∫
A

iuM (s)
n

∑
j=1

jεM
x (x,s)dA (2.69)

iWP
x (x) =

E
1−µ

∫
A

iuP (s, t)
n

∑
j=1

[jεP
x (x,s, t)+µ jεP

s (x,s, t)
]
dA (2.70)

The strain definitions in eq. 2.27 and the principle of orthogonal modes, eq. 2.21 lead
the expressions above into:

iWM
x (x) = Eth

∫
s

iuM (s)2 dsiV,xx (x) = E iCM iV,xx (x) (2.71)

iWP
x (x) =

Et3h
12(1−µ)

∫
s

iw(s)2 dsiV,xx (x)+µ
∫
s

iw(s)iw,ss (s)dsiV (x)

=

= K
[iCP iV,xx (x)+µ iDµ iV (x)

]
(2.72)

Again, one can note that eq. 2.71 includes the particular cases of Bernoulli-Euler bend-
ing moment and Vlasov’s bi-moment.

Meanwhile, eq. 2.72 can easily express the internal bending moment of a particular
mode only based on the respective modal amplification function iV (x) and its second
derivative, iV,xx (x).

Also, GBT can express the longitudinal stress in function of the generalized inter-
nal forces that are evaluated from the constitutive relations for membrane and plate,
eq. 2.10 and eq. 2.11, respectively:

iσx (x,s, t) = iσM
x (x,s)+iσP

x (x,s, t) (2.73)
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The evaluation of iσM
x (x,s) leads to:

iσM
x (x,s) = E iεM

x (x,s) = E iu(s) iV,xx (x) =
iW (x)

iC
iu(s) (2.74)

One can note that eq. 2.74 has as particular cases the well-known expressions of longi-
tudinal stress due to i) normal force, if iC is the area and iu= 1; ii) bending moments ,
if iC is the moment of inertia iu is the respective main direction y or z; iii) bi-moment,
if iC is the warping constant and iu is the sectorial area.

And the evaluation of iσP
x (x,s) leads to longitudinal stress of the generalized plate’s

bending moment:

iσP
x (x,s, t)=

E
1−µ

[iεP
x (x,s, t)+µiεP

s (x,s, t)
]
=

−Et
1−µ

[iw(s)iV,xx (x)+µ iw,ss (s)iV (x)
]

(2.75)

The generalized internal shear forces have a similar evaluation. This internal force is a
generalization of the torsion moment, which is indicated here as MTx. To obtain it, it
is necessary to apply the inner product of the shear stress, eq. 2.28 and eq. 2.29, and
the respective transverse displacement v(s, t):

iMTx (x) =
∫
A

τxs (x,s, t)iv(s, t)dA=
∫
A

(
τM
xs (x,s)+ τP

xs (x,s, t)
)(ivMc (s)−2t iw,s (s)

)
dA=

= G
∫
A

(ivMc (s)−2t iw,s (s)
)2
dA iV,x (x) (2.76)

Since the membrane and plate parts are orthogonal between themselves, each term
inside of the above integral leads directly to the generic shear inertia due to the constant
shear flown and plate’s shear inertia, eq. 2.39 and eq. 2.40, respectively. Hence, one
describes the generalized internal torsion moment as:

iMTx (x) = iMMc
Tx (x)+

iMP
Tx (x) = G iDMc iV,x (x)+G iDP iV,x (x) (2.77)

Similar to the longitudinal stress, one recovers the shear stress from the generalized
torsion moment based on i) the superposition of shear due to constant shear flow in
membrane and plate’s behavior; ii) the constitutive relationship:

iτxs (x,s, t) = iτMc
xs (x)+iτP

xs (x,s, t) (2.78)

The evaluation of iτMc
xs (x,s) leads to:

iτMc
xs (x) = GiγMc

xs (x) = GivMc iV,x (x) =
iMMc

Tx (x)
iDMc

ivMc (2.79)

One can recognize, in the above equation, the well-known expression of shear stress in
a hollow circular cross-section if ivMc = r (where r is the middle-line radius).

The evaluation of the plate part leads to the expression:

iτP
xs (x,s) = G iγPxs (x,s) = Gt iw,s (s) iV,x (x) =

iMP
Tx (x)
iDP t iw,s (s) (2.80)
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In the particular case of iw,s (s) = 1, one achieves the shear stress due to torsion moment
in thin-walled beams.

Unfortunately, no traditional beam theory studies the transverse cross-section bending.
Consequently, the generalized internal force of transverse bending, Ms (x), does not have
any direct connection to a well-known expression. Nevertheless, this unique internal
force is evaluated here for further applications:

iMs (x)=
∫
A

σP
s (x,s, t) t

iw,ss (s)dA=
E

1−µ

∫
A

[
µ iεP

x (x,s, t)+
iεP
s (x,s, t)

]
t iw,ss (s)dA (2.81)

With the definition of longitudinal and transverse strains, given in equations 2.27
and 2.30, the evaluation of the above expression reaches the representation of the trans-
verse bending moment only as a function along the beam’s longitudinal axis:

iMs (x) =
Et3h

12(1−µ)

∫
s

µiw(s)iw,ss (s)dsiV,xx (x)+
∫
s

iw2
,ss (s)ds

iV (x)

=

= K
[
µ iDµ iV,xx (x)+ iB iV (x)

]
(2.82)

As mentioned before, in subsection 2.1.2, the shear stress analysis of GBT’s modes,
which has no shear strain deformation, requires the Grashof’s method. Thus, the local
longitudinal equilibrium of a cross-section’s segment obtains the shear stress distribu-
tion, as shown in figure 2.5:

Figure 2.5: Local longitudinal equilibrium of a cross-section segment.

The longitudinal equilibrium in figure 2.5.b leads to:

dσM
x ds= dτM

xs dx (2.83)
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Since the longitudinal stress, σx, is described as a linear combination of orthogonal
modes, the shear stress can follow it as well. Thus, the introduction of eq. 2.74 in
eq. 2.83 leads to:

iτM
xs,s (x,s) =

iW,x (x)
iC

iu(s) (2.84)

Where iW,x (x) is the generalized internal shear force. The integration of the above
expression achieves the GBT’s general definition of the membrane’s shear stress:

iτM
xs (x,s) =

iW,x (x)
iC

s f∫
si

iu(s)ds+iτMc
xs (x) (2.85)

In this expression, the constant shear stress, iτMc
xs (x), has been already analyzed in

the eq 2.79. Also, the integral over the segment’s domain is nothing more than the
generalized first moment of inertia, named here as iMS:

iMS=

s f∫
si

iu(s)ds (2.86)

Until this point, this study presents the variational formulation and the analysis of dis-
placement and stress fields in GBT. However, the functions to describe the orthogonal
deformation mode shapes are still open. The approach to obtain these functions is one
of the main characteristics of GBT. The next two chapters develop the cases of circular
hollow and segmented cross-sections, respectively.
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3
GBT’s analysis of thin-walled hollow circular cross-section

This chapter has the hollow circular cross-section as a first example in GBT. Since this
cross-section leads directly to an orthogonal solution, one avoids the long approach of
cross-section analysis, which is typical of segmented profiles. Therefore, one can keep
the focus on the general ideas of GBT.

Initially, this chapter studies and reviews the state-of-art in hollow circular cross-section
according to GBT. Also, it emphasizes the representation of deformation shapes as a
Fourier-Series [136, 148]. Thus, GBT quickly and clearly describes the mechanical
behaviors of ovalization and warping.

One finds in this chapter the analysis of displacement and stress fields. The trans-
verse displacement receives a minor contribution, which includes the Poisson’s effect
on membrane behavior. Furthermore, this chapter demonstrates that the transversal
bending moment, Mθ (x,θ) presented in the original work of Richardt Schardt [136],
requires an adjustment.

3.1. GBT’s analysis of thin-walled hollow circular cross-section
This particular cross-section, which has a wide range of application (from pipe-lines
systems to structural frames[18]) , can directly illustrate the behaviors and characteris-
tics of the generalized cross-section properties. In fact, due to axisymmetric property,
the hollow circular cross-section can avoid the quadratic eigenvalue problem of GBT,
as well as all the steps to reach this problem[136, 146].

The analysis of this cross-section starts in the study of the displacement field that
highlights the relationships among displacements in each direction.
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3.1.1. GBT’s displacement field for thin-walled hollow circular cross-
section
To develop the displacement field for thin-walled hollow circular cross-section, some
changes concerning the generalized strain and displacements, presented in section 2.1.1,
are necessary as the polar coordinates are now required.

Figure 3.1: Coordinate system in a thin-walled hollow circular cross-section

The hollow circular cross-section, presented in figure 2.1 and 3.1, has the same rela-
tions of longitudinal displacement and strains as the segmented cross-section. I.e., the
equations 2.15, 2.18 and 2.27 are still the same, only with the changes from variables
s to θ :

u(x,θ , t) = uM (x,θ)+uP (x,θ , t) = [u(θ)− tw(θ)]V,x (x) (3.1)

u(x,θ) =
n

∑
i=1

iu(θ) iV,x (x) (3.2)

εx (x,θ , t) = [u(θ)− tw(θ)]V,xx (x) (3.3)

Moreover, the radial displacement, w(x,θ), keeps the same property as shown in eq. 2.20.

w(x,θ) =
n

∑
i=1

iw(θ) iV (x) (3.4)

The significant difference in hollow circular cross-section is concerning the way to obtain
the tangent and angular displacements, as well as the angular strain. It is convenient
to divide the development of these displacements and strains in three steps:

The first step is the evaluation of tangent displacement, which has two components: i)
the membrane middle line term; ii) the plate term:

v(x,θ , t) = vM (x,θ , t)+ vP (x,θ , t) =
r+ t
r

v⋆ (x,θ)− t
r
w,θ (x,θ) (3.5)
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Here, v⋆ (x,θ) represents the middle line elongation in tangent direction. This function
is described in GBT’s manner, as a summation of orthogonal modes:

v⋆ (x,θ) =
n

∑
i=1

iv⋆ (θ) iV (x) (3.6)

The second step is the evaluation of angular strain, that in polar coordinates εθ is
obtained not by the variation of perimeter’s length, v(x,θ , t), but from the variation of
the angle that described it, defined here as ϑ (x,θ , t). Take the assumption that ϑ (x,θ , t)
is always a small angle, as shown in figure 3.2.a, one can consider its perimeter as the
tangent displacement:

ϑ (x,θ , t) =
v(x,θ , t)
r+ t

(3.7)

Figure 3.2: The angle of tangent displacement ϑ : (a) relationship according to the angle
θ and a constant angle; (b) relationship according to the radius r+ t and a constant
angle

However, it is important to note that ϑ (x,θ , t) not only happens if there is a changing
in the perimeter displacement, v(x,θ), but it also occurs in the case without a perimeter
displacement and a changing of the radius, due to radial displacement w(x,θ). As shown
in figure 3.2.b, a constant perimeter can lead to the following relationship:

(r+ t)θ = (r+ t+w(x,θ))(θ −ϑ (x,θ , t)) (3.8)

which leads to:
ϑ (x,θ , t) = θ

(
w(x,θ)

r+ t+w(x,θ)

)
(3.9)

With the assumption that the radial displacement, w(x,θ), is much smaller than the
radial position r+ t, one simplifies the above expression. Hence, one achieves the
general definition of the angular description of the tangent displacement by the sum of
the above expression with eq. 3.7:

ϑ (x,θ , t) =
1

r+ t
[v(x,θ)+θ (w(x,θ))] (3.10)

27



The third step is the evaluation of the angular strain itself. Following the definition of
the angular strain, εθ (x,θ , t) = ϑ,θ (x,θ , t), one obtains from eq. 3.10:

εθ (x,θ , t) =
1

r+ t
[v,θ (x,θ)+w(x,θ)+θw,θ (x,θ)] (3.11)

Here, the last term is much smaller than the other ones. Therefore, it is possible to
reach the simplified expression:

εθ (x,θ , t) =
1

r+ t
[v,θ (x,θ)+w(x,θ)] (3.12)

Introducing eq. 3.5 in this expression, one obtains:

εθ (x,θ , t) =
1
r

[
v⋆,θ (x,θ)−

t
r

r
r+ t

w,θθ (x,θ)+
r

r+ t
w(x,θ)

]
(3.13)

A Taylor Series over the variable t, truncated at the second term, leads to the following
expression [102]:

r
r+ t

≈ 1− t
r

(3.14)

Therefore, eq. 3.5 becomes:

εθ (x,θ , t) =
v⋆,θ (x,θ)+w(x,θ)

r
− t

w(x,θ)+w,θθ (x,θ)
r2

+ t2
w,θθ (x,θ)

r3
(3.15)

Since in thin-walled structures the ratio t2/r3 is tiny when compared with the other
terms, it is possible to neglect the last term in the above expression. Thus, it stands
out that the first and second terms in eq. 3.15 are the strains related to membrane
and plate behavior, respectively. Following the GBT’s assumption of no membrane
elongation, one achieves the below constraint relationship between the tangent and
radial displacements:

v⋆,θ (x,θ) =−w(x,θ) (3.16)
And the final expression of angular strain is:

εθ (x,θ , t) =−t
w(x,θ)+w,θθ (x,θ)

r2
(3.17)

Concerning the shear strains, its assumptions remain unchanged from the case of seg-
mented cross-sections: i) the membrane behavior has shear strains only due to constant
shear flow, ii) the plate behavior has the consideration of its fully shear strains.

To analyze the consequence of these assumptions, one considers initially the generic
definition of shear strain, in eq. 2.3, but now in polar coordinates:

γxθ (x,θ , t) =
u,θ (x,θ , t)

r+ t
+ v,x (x,θ , t) (3.18)

Introducing equations 3.1 and 3.5 into above expression, one obtains:

γxθ (x,θ , t) =
r

r+ t
u,θ (x,θ)− tw,xθ (x,θ)

r
+

r+ t
r

v⋆,x (x,θ)−
t
r
w,xθ (x,θ) (3.19)

28



And the Taylor Series simplification, given in eq. 3.14, leads to:

γxθ (x,θ , t) =
u,θ (x,θ)+ rv⋆,x (x,θ)

r
− t

u,θ (x,θ)− rv⋆,x (x,θ)+2rw,xθ (x,θ)
r2

+ t2
w,xθ (x,θ)

r2
(3.20)

Similar to angular strain, εθ , the third term in the expression above is tiny when
compared to the other two. Also, one can recognize that the first and second terms
are the shear strain due to membrane and plate behaviors, respectively. Here, these
two types of shear strains are studied separately, since they are complementary to each
other.

For the constant shear flow in membrane behavior, there is only a constant function,
vMc, to describe the tangential displacement. In fact, the Bredt’s shear flow assump-
tion requires an inexistent warping function, iu(s), and no transverse displacement
iw(s).

γMc
xθ (x) = vMc (x)+

t
r
vMc (x) (3.21)

The assumption of inexistent of membrane’s shear strain isolates the plate’s shear part.
Thus, one can extract the relationship:

u,θ (x,θ) =−rv⋆,x (x,θ) (3.22)

And the final expression of plate’s shear strain is:

γPxθ (x,θ , t) =−2t
w,xθ (x,θ)− v⋆,x (x,θ)

r
(3.23)

It is important to highlight two points: the first one concerns the orthogonality between
shear strains from membrane and plate behaviors. These strains are already orthogonal
and complementary in their assumptions and definitions; the second one is how the
expressions in equations 3.16 and 3.22 together with the separation of variables, resume
the kinematic assumptions of GBT in a circular hollow cross-section:

v⋆ (θ) =−
u,θ (θ)

r
(3.24) w(θ) =

u,θθ (θ)
r

(3.25)

To obtain the cross-section properties of a hollow circular, it is necessary to evaluate
once more the variation of internal energy, eq. 2.26, with the definition of strains as
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expressed in equations 3.3, 3.20 and 3.23:

δUint =
n

∑
i=1

∫
V

[
E iu2 (θ)+

E
1−µ

(
t iw(θ)

)2] iV,xx (x)δ iV,xx (x)dV+

+
∫
V

µE
1−µ

t2
iw(θ)+ iw,θθ (θ)

r2
w(θ)V (x)δV,xx (x)dV+

+G
∫
V

[(
vc+

t
r
vc
)2

+

(
2t

iwθ (θ)− iv⋆ (θ)
r

)2
]

iV,x (x)δ iV,x (x)dV+

+
E

1−µ2

∫
V

(
t
iw(θ)+ iw,θθ (θ)

r2

)2
iV (x)δ iV (x)dV+

+
∫
V

µE
1−µ

t2
iw(θ)+ iw,θθ (θ)

r2
w(θ)δV (x)V,xx (x)dV (3.26)

From the first above integral, one obtains the generalized moment of inertia, which
has two parts: membrane and plate. They are the same expressions as eq. 2.37 and
eq. 2.38, but in polar coordinates:

iCM = rth
∮

iu2 (θ)dθ (3.27)

iCP = r
∮

iw2 (θ)dθ (3.28)

The fourth integral is related to the generic inertia of transverse bending:

iB= r
∮ ( iw(θ)+ iw,θθ (θ)

r2

)2

dθ (3.29)

The first and second terms in the third integral are the generic inertia of shear, due
to constant shear flow in the wall’s thickness and the plate’s shear inertia, respec-
tively:

iDMc = th

(
r+

t2h
3r

)∮ ( ivMc)2 dθ (3.30)

iDP =
r
3
t3h

∮ ( iw,θ (θ)− iv⋆ (θ)
r

)2

dθ (3.31)

Lastly, the second - or the fifth - integral provides the generic inertia of shear due to
the Poison effect of coupling longitudinal and transverse strains:

iDµ = r
∮ iw(θ)+ iw,θθ (θ)

r2
w(θ)dθ (3.32)

These expressions of the generic properties of the hollow circular cross-section are the
key to obtain the displacement functions. Together with equations 3.24 and 3.25, they
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lead to the orthogonal conditions for the function iu(θ) and its derivation until the
fourth order: ∮

iu(θ) ju(θ)dθ = 0 for i ̸= j (3.33)

And equations 3.29 and 3.31 give the additional orthogonal condition:∮ ( iu,θθ (θ)+ iu,θθθθ (θ)
)( ju,θθ (θ)+ ju,θθθθ (θ)

)
dθ = 0 for i ̸= j (3.34)

∮ ( iu,θθθ (θ)+ iu,θ (θ)
)( ju,θθθ (θ)+ ju,θ (θ)

)
dθ = 0 for i ̸= j (3.35)

A direct solution leads to trigonometric functions: sin(mθ) and cos(mθ), where m is
a natural number. The GBT’s deformation modes in thin-walled circular hollow cross-
section are, in fact, a decomposition of the displacement field in a Fourier-Series. Also,
it is important to note that none of these deformations modes have a constant shear
flow in membrane component.

To maintain the consistency of a right-hand coordinate system, as shown in figure. 3.1,
the cosine terms receive a negative product. The table below resumes the deformation
shape modes:

Table 3.1: Orthogonal deformation shape modes of circular hollow cross-section ac-
cording to GBT

i m iu iv⋆ iw
1 0 1 0 0
2 1 r sin(θ) −cos(θ) −sin(θ)
3 1 −r cos(θ) −sin(θ) cos(θ)
4 2 r sin(2θ) −2cos(2θ) −22 sin(2θ)
5 2 −r cos(2θ) −2sin(2θ) 22 cos(2θ)
...

...
...

...
...

2m m r sin(mθ) −mcos(mθ) −m2 sin(mθ)
2m+1 m −r cos(mθ) −msin(mθ) m2 cos(mθ)

Below, some deformation shape modes are plotted to emphasize the outcomes of GBT
concerning physical meaning: i) the lower modes are the traditional elongation and
Euler-Bernoulli beam behaviors; ii) the high modes represent cross-section’s ovaliza-
tions: Here, it should be noted that the some modal shapes obtained in GBT, such
as i= 4,5,8, or 9, are similar to the von Karman analysis and its application in elbow
elements [20, 166]. Here, GBT can be realized as an extension and generalization of
von Karman concepts [177]. Also, one can observe, from the deformation shape modes
in figure 3.3, that not only the case of uniform torsion is absent, but also the case of
the uniform transverse elongation. These modes are not presented directly in Richard
Schardt’s original work [136]. However, Nuno Silvestre presents this extension [36, 147]
as a natural sequence, with some particular observations.
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Figure 3.3: transverse deformation shape modes of a thin-walled circular hollow section
according to GBT.

The uniform torsion mode leads directly to Bredt’s constant shear flow, which is free of
warping. As already mentioned, this deformation mode have neither longitudinal, u(θ),
nor radial, w(θ), displacements. The tangent displacement must be a constant and,
according to Bredt’s torsion hypothesis, must also be in proportion of radius: tvMc = r.
Here, the superscript t represent this particular mode.

Moreover, this case waives the hypothesis of absence of shear deformation in the middle-
line. Therefore, the membrane’s shear strain expression, eq. 3.21, leads to:

tγMc
xθ (x, t) = (r+ th) t

hV,x (x) (3.36)

So, the shear inertia from constant shear flow, eq. 3.30, leads to the well-known torsional
moment of inertia of a hollow circular:

tDMc = 2πr3t+π
r
6
t3h (3.37)

Usually, due to the small dimension of the thickness, th, the second term is neglected.

The case of uniform transverse elongation requires another exception. This deformation
shape mode violates the assumption of absence in membrane angular strain, εθ . Nev-
ertheless, similar to the case of uniform torsion, the simplified constitutive relationship
for membrane, given in eq. 2.10, avoid any coupling between this mode and others, es-
pecially the uniform axial elongation mode, i= 1. As a result, one includes the uniform
transverse elongation in GBT formulation without further modifications.

The table below presents this deformation shape mode function, as well as the case
of uniform torsion. Here, the superscript a represents the uniform axial elongation:
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Table 3.2: Additional orthogonal deformation shape modes of circular hollow cross-
section: a - uniform axial elongation; t - uniform torsion

i iu iv⋆ iw
a 0 0 1
t 0 r 0

Figure 3.4: transverse deformation of the additional modes of uniform radial elongation
and torsion.

The radial uniform deformation shape functions can be introduced directly in equations
3.27, 3.28, 3.29, 3.30, 3.31 and 3.32 with no extra effort.

As a resume, one can obtain the following generic cross-section properties for the hollow
circular:

iCM =


0 for i= t
0 for i= a
2πrth for i= 1
πthr3 for i> 1

(3.38)

iCP =


0 for i= t
2πr for i= a
0 for i= 1
πrm4 for i> 1

(3.39)

iB=


0 for i= t and i= 1
2π/r for i= a

πm4/r3
(
m2−1

)2 for i> 1

(3.40)

iDMc =

{
2πr3th+πr/6t3h for i= t
0 other cases

(3.41)

iDP =

{
π
3r t

3
hm

2
(
m2−1

)2 for i> 1
0 for other cases

(3.42)
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iDµ =

{
π
rm

4
(
1−m2

)
for i> 1

0 for other cases
(3.43)

3.1.2. transverse displacement due to Poisson’s effect in membrane
behavior
Although GBT does not include the Poisson’s effect in membrane behavior, as presented
in the simplified constitutive relationship in eq. 2.10, in the case of thin-walled hollow
circular cross-section it is possible to include this effect.

According to Poisson’s principle, the variation of transverse and longitudinal strains
is:

µ =−∂εθ
∂εx

(3.44)

In hollow circular cross-section, it implies in proportion between longitudinal and ra-
dial elongations. Therefore, if one introduces the longitudinal strain, given in eq. 3.3,
into the above expression, then the expression of transverse membrane strain due to
Poisson’s effect stands out:

εµ
θ =−µu(θ)V,xx (x) (3.45)

Comparing the above expression to the membrane part of eq. 3.12 and considering the
middle line of the cross-section, t = 0, one builds the following relationship:

wµ (x,θ) =−rµu(θ)V,xx (x) (3.46)

Here, the index µ indicates the Poisson’s effect origin of the displacement. One can
express the above equation directly as a function of radial displacement. From eq. 3.25
and the definition of deformation modes given in table. 3.1, one obtains:

wµ (x,θ) = µ
r2

m2w(θ)V,xx (x) (3.47)

The contribution of this particular displacement is relevant in the regions of the beam,
where it involves high longitudinal stress. The analysis of displacement in the numerical
example in Chapter 5 clearly shows it.

3.1.3. External loads in thin-walled hollow circular cross-section ac-
cording to GBT
After the evaluation of displacement field and cross-section properties of a thin-walled
hollow circular, one can build a system of homogeneous ordinary differential equation.
However, the majority of practical problems lead to a non-homogeneous system, i.e., it
involves external loads, which need special treatment by the approach of separation of
variables:

px (x,θ) = fx (x)qx (3.48)

pv (x,θ) = fv (x)qv (3.49)
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pw (x,θ) = fw (x)qw (3.50)

Furthermore, it is necessary to perform a modal decomposition, achieved by the inner
product of the deformation modes (listed in tables 3.1 and 3.2) and the functions of
external load:

iqx=−r
∮
qx(θ) iu(θ)dθ (3.51)

iqv=r
∮
qv (θ) iv⋆ (θ)dθ (3.52)

iqw=r
∮
qw (θ) iw(θ)dθ (3.53)

These functions are the external loads for each deformation mode. They lead to the non-
homogeneous ordinary differential equation of GBT for hollow circular cross-sections.
Moreover, it is interesting to observe that each expression above represents a coefficient
of Fourier Series, where half of the period is π [83, 136]. Therefore, one can express the
external loads in equations 3.48, 3.49 and 3.50 as:

px (x,θ) = fx (x)qx (θ) =− fx (x)

[
1qx
πr

+
n

∑
m=1

2mqx
πr3

2mu(θ)−
2m+1qx

πr3
2m+1u(θ)

]
(3.54)

pv (x,θ) = fv (x)qv (θ) =− fv (x)

[
n

∑
i=2

iqv
πrm2

iv⋆ (θ)

]
(3.55)

pw (x,θ) = fw (x)qw (θ) =− fx (x)

[
n

∑
m=1

2mqw
πrm4

2mw(θ)−
2m+1qw
πrm4

2m+1w(θ)

]
(3.56)

These representations of the external loads are particularly useful to obtain the internal
membrane forces, as shown next.

3.1.4. Stress field and internal forces for thin-walled hollow circular
cross-section according to GBT
Among the benefits of using GBT in thin-walled hollow circular cross-section’s analysis,
the extraction of internal forces and their consequent stress fields is a highlight. GBT
provides a clear set of internal forces due to membrane and plate behaviors, which lead
to a smooth and continuum stress field.

Since the internal forces due to membrane behavior require the internal cross-section
equilibrium that involves the plate’s internal forces, one must evaluate the plate’s in-
ternal force initially.

Thus, the curvatures in longitudinal direction, κx, as well as the one in transverse direc-
tion, κθ , are extracted from equations 3.3 and 3.17, respectively. In these expressions
the curvatures are the factors multiplied by the thickness dimension t:

iκx (x,θ) = w(θ)V,xx (x) (3.57)
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iκθ (x,θ) =
iw(θ)+ iw,θθ (θ)

r2
iV (x) (3.58)

Base on the constitutive relationship of plate behavior, eq. 2.11 and on Kirchhoff-Love
plate theory, one achieves the internal bending moment:

iMx (x,θ) =−K
[ iκx (x,θ)+µ iκθ (x,θ)

]
(3.59)

iMθ (x,θ) =−K
[
µ iκx (x,θ)+ iκθ (x,θ)

]
(3.60)

Where K is the plate stiffness, given in eq. 2.41.

It is relevant to observe that the positive and negative signals in the above expressions
are due to the local coordinate system, as shown in figure. 3.1.

Furthermore, there is an important correction concerning the the internal forces of
thin-walled hollow cross-section based on the original work of Richardt Schardt [136]:
the transverse bending moment Mθ (x,θ) has no contribution from the Poisson’s effect
of the longitudinal bending moment Mx (x,θ). This behavior is a result of the absence of
transverse curvature constraints along the longitudinal direction of the beam. I.e., one
can assume that the thin-walled hollow cross-section is a plane shell with support con-
ditions only in one direction, figure 3.5.a. In this configuration, a longitudinal bending
moment generates no transverse bending moment due to Poisson’s effect, since there
are no support conditions in the longitudinal direction. This behavior is maintained in
a curved cross-section, as shown in figure 3.5.b, and it is also maintained in gradually
curved cross-section until reaching the full circumference, figure 3.5.c

Figure 3.5: Absence of Poisson’s effect from the longitudinal into the transverse bending
moment: the behavior of a plane shell structure, as shown in a), is maintained in a
gradually curved cross-section, as shown in b). This behavior is also maintained in a
fully circular cross-section, as shown in c).

Inserting equations 3.57 and 3.58 into equations 3.59 and 3.60 respectively, together
with the sum of all modes, leads to the total longitudinal and transverse internal bend-
ing moments:

Mx (x,θ) =−K
n

∑
i=2

iw(θ) iV,xx (x)+µ
iw(θ)+ iw,θθ (θ)

r2
iV (x) (3.61)
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Mθ (x,θ) =−K
n

∑
i=2

iw(θ)+ iw,θθ (θ)
r2

iV (x) (3.62)

One obtains the internal twisting moment in a similar way. The fraction in eq. 3.23
provides the curvature of twist:

iκxθ (x,θ) =
iw,θ (θ)− iv⋆ (θ)

r
iV,x (x) (3.63)

Inserting this curvature into internal twisting moment, according to Kirchhoff-Love
theory:

iMxθ (x,θ) =−K (1−µ) iκxθ (x,θ) (3.64)

The sum in all relevant modes leads to the expression of GBT’s internal twisting
moment in the hollow circular’s wall:

Mxθ (x,θ) =−K
1−µ
r

n

∑
i=2

[ iw,θ (θ)− iv⋆ (θ)
] iV,x (x) (3.65)

The derivatives of internal plate moments lead straight forward to internal shear forces,
Q:

Qx (x,θ) =−Mx,x (x,θ)−
1
r
Mxθ ,θ (x,θ) (3.66)

Qθ (x,θ) =−Mxθ ,x (x,θ)−
1
r
Mθ ,θ (x,θ) (3.67)

Therefore, by inserting equations 3.61, 3.62 and 3.65 into the above expression, one
achieves the GBT’s representation of internal shear forces due to plate behavior in each
direction of hollow circular’s wall:

Qx (x,θ)=K
n

∑
i=1

iw(θ) iV,xxx (x)+
(
µ
(iw(θ)+iv⋆,θ (θ)

)
+iw,θθ (θ)−iv⋆,θ (θ)

) iV,x (x)
r2

(3.68)

Qθ (x,θ) =
K
r

n

∑
i=1

(1−µ)
( iw,θ (θ)− iv⋆ (θ)

) iV,xx (x)+
iw,θθθ (θ)+ iw,θ (θ)

r2
iV (x) (3.69)

After the analysis of internal forces due to plate behavior, it is possible to evaluate all
membrane’s internal forces.

Starting from the simplest case, longitudinal internal force, one can obtain it from the
membrane’s longitudinal strain (given in the first term in eq. 3.3):

iεx (x,θ) = iu(θ) iV,xx (x) (3.70)

The integration of above expression over the membrane’s thickness, together with
GBT’s constitutive law for membrane, eq. 2.10, and the sum of all relevant modes
lead to:

Nx (x,θ) = Eth
n

∑
i=1

iV,xx (x) iu(θ) (3.71)
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Unfortunately, the other two internal forces due to membrane behavior cannot be ob-
tained directly from the relationship between stress and strains, as used up to here.
The assumptions of null transverse elongation, εθ = 0, and the lack of participation
of shear stress in the total longitudinal equilibrium of the cross-section, invalidate any
attempt to obtain the stresses and internal forces due to these two kinds of membrane’s
strains.

To overcome this difficulty, one can reach these two internal forces by the equilibrium of
a cross-section’s segment. For instance, the longitudinal equilibrium of segment, shown
in the figure 3.6, leads to the membrane’s shear force:

Figure 3.6: Equilibrium in a infinitesimal segment of a thin-walled circular hollow
section, according to GBT.

Nx,x (x,θ)+
1
r
Nxθ ,θ (x,θ)+ px (θ) = 0 (3.72)

Inserting eq. 3.71 and the modal representation of the longitudinal external load,
given in eq. 3.54, into the above equation, and integrating over the angular domain,
lead to:

Nθx (x,θ) = tNθx (x)+2 fx (x) 1qx+ r
n

∑
m=1

[(
Eth 2mV,xxx (x)− fx (x)

2mqx (θ)
πr3

) 2mu,θ (s)
m2 +

+

(
Eth 2m+1V,xxx (x)+ fx (x)

2m+1qx (θ)
πr3

) 2m+1u,θ (s)
m2

]
(3.73)

In the evaluation above, the following property of trigonometric functions is used:∫
iu(θ)dθ =−

iu,θ (s)
m2 (3.74)

Also, the constant tNθx is nothing more than the internal shear force due to uniform
torsion mode, [147].
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Following the same approach, one can obtain the angular internal force, Nθ (x,θ), from
the axial shell’s equilibrium concerning the axial load qw (θ), as shown in figure 3.7:

Figure 3.7: Axial shell’s equilibrium in a infinitesimal segment of a thin-walled circular
hollow section, according to GBT.

Nθ (x,θ)
r

+Qx,x (x,θ)+
Qθ ,θ (x,θ)

r
− pw (x,θ) = 0 (3.75)

The evaluation of the above expression leads to:

Nθ (x,θ) = NA
θ + r fw (x)qw (θ)−K

n

∑
i=2

r iw(θ) iV,xxxx (x)+
iw,θθθθ (θ)+ iw,θθ (θ)

r3
iV (x)+

(
µ
(iw(θ)− iw,θθ (θ)

)
+2
(iv,θ (θ)(µ −1)+ iw,θθ (θ)

)) iV,xx (x)
r

(3.76)

The first term in the above expression is the tangent force due to the radial mode,
[147].

Chapter 5 presents an example of GBT’s analysis of circular hollow cross-section. Also,
this example discusses and identifies which modes are more relevant in a given problem
of thin-walled structure analysis.
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4
GBT’s analysis of a generic segmented thin-walled

cross-section

This chapter presents, perhaps, the most relevant characteristic and arduous procedure
in GBT: a generic cross-section analysis. In fact, this procedure is the major actor
not only in Richard Schardt’s book, [136], but it is also the main focus for many
publications concerning GBT: P. Leach [104], Silvestre et al. [50], Miranda et al. [113],
Ranzi et al. [127, 169], Andreassen et al. [97, 98, 99] and Bebiano et.al. [27, 29].

A common point among these works concerns the description of cross-section as a group
of straight segments, whom each segment has a natural node in each extreme. Also, the
segments can or cannot have intermediate nodes, known as internal nodes. Moreover,
there are the branched nodes, which are natural nodes related to three segments or
more. Figure 4.1 illustrates these nodes.

Figure 4.1: Nodal nomenclature of a generic segmented cross-section

Initially, Schardt elaborated the whole cross-section formulation based on a mixed
variation of internal energy. On one hand, it uses the virtual displacement to obtain
the transverse stiffness matrices due to elongation [C] and shear [D]; on another hand,
it uses the virtual internal forces, i.e., a force method, to find the transverse bending
stiffness matrix, [B], from the inverse of its flexible matrix.
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Figure 4.2: cross-section classification: a) and b) open unbranched; c) closed un-
branched; d) open branched; e) closed branched

This method can solve opened and closed unbranched cross-sections, as shown in figure
4.2.a, 4.2.b and 4.2.c. These cross-section shapes have a unique feature, in which the
number of natural nodes is the same as warping functions. This feature occurs if
the membrane part is the only one considered in the energy of longitudinal extension.
Consequently, Schardt’s simplified longitudinal energy assumption leads to arbitrary
and independent unit warping functions to set up the problem of cross-section analysis,
as illustrated below in figure 4.3:

Figure 4.3: Independent unit warping functions

The unit warping functions are grouped in a nodal warping displacement matrix, [U ].
Each line represents the longitudinal displacement of a natural node of the cross-section,
whilst each column represents an orthogonal mode shape. Initially, this matrix is an
identity matrix, [I]. The outcome from this setup is a system of non-orthogonal ordinary
differential equations:

[C]{V,xxxx}− [D]{V,xx}+[B]{V}= 0 (4.1)

Here, each coupled cross-section stiffness matrix, [C], [D] and [B], is understood on the
orthonormal basis [U ]. In order to uncouple this system, Schardt’s method applies a
generic linear eigenvalue problem, which brings an almost decoupled orthogonal system
of ordinary differential equation:[

C̃
]
{V,xxxx}−

[
D̃
]
{V,xx}+

[
B̃
]
{V}= 0 (4.2)

where
[
C̃
]
and

[
B̃
]
main diagonal matrices and

[
D̃
]
is a non-diagonal matrix, in which

the off-diagonal terms are usually much smaller than the diagonal terms. This condition
is especially found in open cross-section, obtained from:[

C̃
]
=
[
Ũ
]T

[C]
[
Ũ
]

(4.3)

42



[
D̃
]
=
[
Ũ
]T

[D]
[
Ũ
]

(4.4)[
B̃
]
=
[
Ũ
]T

[B]
[
Ũ
]

(4.5)

The new orthogonal base,
[
Ũ
]
, describes at each natural node how much is the longi-

tudinal displacement in each orthogonal deformation mode.

Unfortunately, some difficulties rise in classical Schardt’s method:

• For cross-section with a relative stiff transverse stiffness matrix, [D], such as closed
cross-sections [68, 73, 74], the approximation of almost decoupled system of differential
equations cannot be held. Although Schardt presented an alternative approach in the
orthogonalization process to minimize the coupled effect (which involves the solution of
the generic linear eigenvalue problem between the matrices [C] and [D]), it still presents
imprecise results;

• For branched cross-sections, the classical Schardt’s method requires the compatibility
of transverse displacements among three (or more) segments. Thus, the hypothesis of
null membrane shear deformation by the force method leads to an indeterminate system,
which has more natural nodes than warping functions, [114]. Consequently, the setup
of analysis cannot start from independent unit warping functions, but it is necessary
to select a convenient warping function to do so, [50, 115].

To overcome the second difficulty, Dinis et al., [50], replaced the force method for the
transverse bending stiffness matrix, [B], with the displacement method. Although this
alternative handles any branched cross-section, it still requires an initial selection of
convenient warping functions, which is an undesired feature in a general and unified
approach. Ranzi et al. achieved a directly approach [128], which not only unifies the
analysis of different types of cross-sections, but also uses only one step in the generalized
eigenvalue problem.

A relevant contribution in cross-section analysis was archived by J.M.Andreassen and
J.Jönsson, [97, 98, 99], who developed a semi-discretized approach entirely based on
the variation of internal strain energy. This approach not only describes any cross-
section under the GBT’s initial assumptions of null membrane’s shear and transverse
elongation, but also uses a quadratic eigenvalue solution to reach set of cross-section
stiffness matrices. Moreover, this approach has the benefits to be unified, general and
easy to implement in computer codes, since it is a directly extension of J.Jönsson’s
Finite Element Method to determine general cross-section properties [94].

Later, Gonçalves et al., [27], developed a similar, but independent, approach. Some
benefits from it stand out: i) the cross-section analysis involves the additional modes
of membrane’s shear and transverse elongation; ii) a particular treatment is carried out
for closed multi-cells cross-sections [80]. However, as a disadvantage, this procedure
requires a long sequence of solutions of generic eigenvalues problems.

From the features of each approach, this dissertation presents an alternative one: a dis-
cretized cross-section analysis, based on segment element that uses the internal strain
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energy of membrane and/or plate in a systematic manner to lead to orthogonal mem-
brane/plate modes. In other words, this alternative approach can separate the orthog-
onal deformation modes into three groups: i) pure membrane behavior; ii) pure plate
behavior; iii) coupled membrane-plate behavior. These features, as presented later in
Chapter 7, are useful in non-linear analysis.

4.1. Cross-section semi-discretization
The alternative approach proposed here follows the semi-discretization found in the
works of Gonçalves et.al, [27, 82] and specially J.M.Andreassen and J.Jönsson - [97].
These works describe a cross-section, as shown in figure 4.1, in an element assessment.
Each segment is viewed as one and each element has two nodes: the initial, s=−ls/2;
and the final node, s= ls/2. Here, ls is the element/segment length in local coordinate
system, as shown in figure. 4.4.

Figure 4.4: An element of a segment in the local coordinate system

Both the initial and final nodes have four degrees of freedom. Therefore, each element
has eight degrees of freedom. Also, it is possible to observe that from four degrees of
freedom per node, one is related to the longitudinal rotation, ϕ , and three are related
to the displacements.

It is essential to observe that, in GBT’s perspective point of view, each element’s
degree of freedom represents a deformation mode shape. Therefore, each element could
express up to eight orthogonal deformation mode shapes. However, the assumptions
of no segment elongation and shear strains limit to six deformation mode shapes per
element.

To evaluate a displacement at an arbitrated point inside the element, −ls/2≤ s≤ ls/2,
this approach uses the Hermitian shape functions to describe the displacement functions
of a particular deformation mode i as: iuh (s), ivh (s) and iwh (s). Here, the subindex h
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indicates the type of interpolation function.

In the cases of longitudinal and transverse displacement functions, uh (s) and vh (s)
respectively, one uses linear functions withC0 continuity between elements nodes:

iuh (s) =
[
s 1

] 1
2ls

[
−2 2
ls ls

] i[u1
u2

]
= [TsHe1] [ShHe1cc]

i [uh] (4.6)

ivh (s) =
[
s 1

] 1
2ls

[
−2 2
ls ls

] i[v1
v2

]
= [TsHe1] [ShHe1cc]

i [vh] (4.7)

Also, for the transverse displacement in the thickness direction, it receives Hermitian
cubic shape functions as an interpolation function. Therefore, a C1 continuity between
elements is archived:

iwh (s)=

[
s3 s2 s 1

]
8l3s


16 −16 8ls 8ls
0 0 −4l2s 4l2s

−12l2s 12l2s −2l3s −2l3s
4l3s 4l3s l4s −l4s


i

w1
w2
ϕ1
ϕ2

=[TsHe3] [ShHe3cc]

[i [wh]
i [ϕh]

]
(4.8)

In expressions 4.6, 4.7 and 4.8, the Hermitian shape functions are split in three com-
ponents: i) the variable vector [TsHe1] or [TsHe3], which are functions of distance s.
Here, the subindex He indicates a Hermitian shape function and the digit 1 or 3 names
the type of function linear or cubic, respectively; ii) [ShHe1cc] and [ShHe3cc] are the
completeness coefficient matrices obtained from the completeness requirements of the
shape functions. The subindex cc indicates the local boundary conditions of the el-
ement: clamped-clamped. In Chapter 5, there will be more details on these matri-
ces; iii) a nodal amplification vector of the deformation mode shape, i [uh] or i [vh] or[
i [wh]

i [ϕh]
]
, which describes the amount of deformation of each degree of freedom for

each deformation mode shape.

Although, in a first moment, the split representation of shape functions seems to be
awkward, it can easily handle much more complex shape functions, such as trigono-
metric and/or hyperbolic. Moreover, in non-linear analysis, this representation tracks
a systematic approach, as shown later in Chapter 7.

There are seven interesting observations about this discretization of the displacement
field:

1st : The principle of completeness in the finite element method is the initial orthonormal
basis of GBT’s deformation mode shapes. It is necessary to keep in mind that each
shape function is multiplied only by one term of the nodal amplification vector: a
unit value in this term and null in all other terms, which specifies a unit vector in an
orthonormal base. For instance, the transverse perpendicular displacement function
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above, iwh (s), has the two first unit vectors of its basis as:

1w̄h (s) = [TsHe3] [ShHe3cc]


1
0
0
0

 ; 2w̄h (s) = [TsHe3] [ShHe3cc]


0
1
0
0

 (4.9)

Consequently, all deformation mode shapes related to transverse perpendicular dis-
placement and rotation of one element can be described as an orthonormal base:

w̄h
el (s) = [TsHe3] [ShHe3cc]


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

= [TsHe3] [ShHe3cc] [I] (4.10)

Where [I] is the identity matrix. Naturally, one can apply this representation in the
other displacement functions:

ūhel (s) = [TsHe1] [ShHe1cc]

[
1 0
0 1

]
= [TsHe1] [ShHe1cc] [I] (4.11)

v̄hel (s) = [TsHe1] [ShHe1cc]

[
1 0
0 1

]
= [TsHe1] [ShHe1cc] [I] (4.12)

2nd : Any cross-section deformation mode shape can be defined by the global nodal
amplification vector i [Uh]:

i [Uh] =
[
i [uh] i [vh] i [wh]

i [ϕh]
]T (4.13)

where the sub-vectors [uh], [vh], [wh] and [ϕh] are each one an sub-orthonormal basis of
the respective displacement sort:

i [uh] =
[
iug1 iug2 iug3 . . .

]T (4.14)

i [vh] =
[
ivg1 ivg2 ivg3 . . .

]T (4.15)
i [wh] =

[
iwg1

iwg2
iwg3 . . .

]T (4.16)
i [ϕh] =

[
iϕg1

iϕg2
iϕg3 . . .

]T (4.17)

Here, the subindex g# indicates the global coordinate system and the number of the
node in the cross-section discretization. Hence, the initial orthonormal basis of analysis
of a whole cross-section is defined by:

[Ūh]nxn = [I]nxn (4.18)

where n is the total degree of freedoms of the cross-section. Furthermore, the solution of
eigenvalue problem will transform [Ūh] into

[
Ũh
]
, which can be understood as the matrix
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of eigenvectors, or as the transformation matrix, of ordinary differential equations, as
given in equations 4.3, 4.4 and 4.5.

3rd: The linear interpolation function for longitudinal displacement, uh (s), expresses
the exact assumption of GBT’s membrane displacement;

4th: The transverse interpolation displacement function, vh (s), in the element direction
s, allows a linear elongation in element middle-line. This elongation violates the classical
GBT’s assumption of null membrane elongation, εs = 0. Hence, some constraints are
necessary for this function. Nevertheless, it stands out an opportunity for further
relaxation of traditional GBT’s assumptions;

5th The perpendicular transverse interpolation function, based on vectors wh (s) and
ϕh (s), describes exactly a plate deformation according to Lowe-Kirchoff plate the-
ory;

6th The assumption of no membrane’s contribution from shear stress in the longitu-
dinal equilibrium of the cross-section can be represented by the constant part of the
function vh (s). Therefore, there is coupling between the displacement function uh (s)
and vh (s);

7th Although in the local coordinate system the transverse interpolation displacement
functions wh (s) and vh (s) are orthogonal and decoupled between themselves, they are
coupled in a global coordinate system of the whole cross-section.

From the last two observations, one can conclude that it is necessary to build a set
of global displacement functions to archive the cross-section analysis and its general
properties.

4.2. Transverse Stiffness matrices
Since the semi-discretization allows strains and displacements beyond the GBT’s kine-
matic assumptions, it is necessary to consider these extra effects and then constrain
them to recover the traditional GBT’s kinematic assumptions.

Consequently, the total internal strain energy functional, eq. 2.24, must have all terms
of plate and membrane. With the above extra effects, one can obtain the following
expression of a single element:

Uel
int =

∫
V el

∫
εMx

σM
x dεM

x +
∫
εPx

σP
x dεP

x +
∫

γMxs

τM
xs dγMxs +

∫
γPxs

τP
xsdγPxs+

∫
εMs

σM
s dεM

s +
∫
εPs

σP
s dεP

s

dV el

(4.19)
Here, the superscript ()el indicates a single element term.

Similar to M.Andreassen and J.Jönsson, the simplified constitutive relation, eq. 2.10,
is adopted for both membrane and plate parts. Hence, the functional above leads
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to:

Uel
int =

∫
V el

E
2

[(
εM
x
)2

+
(
εP
x
)2]

+
G
2

[(
γMxs
)2

+
(
γPxs
)2]

+
E
2

[(
εM
s
)2

+
(
εP
s
)2]

dV el (4.20)

And its variation concerning the internal strain energy is given by:

δUel
int =

∫
V el

E
[
εM
x δεM

x + εP
x δεP

x
]
+G

[
γMxs δγMxs + γPxsδγPxs

]
+E

[
εM
s δεM

s + εP
s δεP

s
]
dV el (4.21)

In the expression above, one can introduce the displacement functions given in equa-
tions 4.10, 4.11 and 4.12. Also, similar to the case of hollow circular cross-section, the
integrals over the volume are split in cross-section and longitudinal domains, which
leads to:

δUel
int =

∫
s

E
[
thuelh (s)2+

t3h
12

wel
h (s)2

]
ds
∫
L

V,xx (x)δV,xx (x)dx+

+
∫
s

G
[
thuelh,s (s)

2+2thuelh,s (s)v
el
h (s)+ thvelh (s)2+

t3h
3
wel
h,s (s)

2
]
ds
∫
L

V,x (x)δV,x (x)dx+

+
∫
s

E
[
thvelh,s (s)

2+
t3h
12

wel
h,ss (s)

2
]
ds
∫
L

V (x)δV (x)dx (4.22)

Here, the sum notation is no longer necessary, since the displacement functions already
have all orthonormal deformation mode shapes of one element.

Each term of each integral over the element length, s, generates a transverse stiffness
matrix. Starting with the membrane’s longitudinal strain energy (first term in the first
integral), one reaches:∫

s

Etuelh (s)2 ds= Et [ShHe1cc]
T
∫
s

[TsHe1]
T [TsHe1]ds [ShHe1cc] (4.23)

As shown above, only the variable vectors [TsHe1]
T and [TsHe1], which are function of

s, are evaluated in the integral. Thus, one reaches a kernel transverse stiffness matrix:

[ϒHe1] =
∫
s

[TsHe1]
T [TsHe1]ds=

ls
12

[
l2s 0
0 12

]
(4.24)

And the cross-section stiffness matrix due to membrane’s longitudinal strain is:

kMσx
uu = Eth [ShHe1cc]

T [ϒHe1] [ShHe1cc] = ls
Eth
6

[
2 1
1 2

]
(4.25)

Since the displacement functions for longitudinal and transverse element’s directions,
uelh (s) and velh (s) respectively, share the same shape functions, the evaluation of third
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term of the second integral in eq. 4.22 requires no additional effort. Thus, the cross-
section stiffness matrices due to membrane’s shear strains from the transverse displace-
ment, v(s), are:

kMτ
vv = Gth [ShHe1cc]

T [ϒHe1] [ShHe1cc] = ls
Gth
6

[
2 1
1 2

]
(4.26)

Following this procedure, one can evaluate the first term in the second integral, as well
as the first term in the third integrals, which are based on the first derivative of shape
functions. Therefore, it requires the first derivative of the variable vector:

[TsHe1,s] =
[
1 0

]
(4.27)

which leads to following kernel stiffness matrix:

[ϒHe1,s,s] =
∫
s

[TsHe1,s]
T [TsHe1,s]ds=

[
ls 0
0 0

]
(4.28)

Here, the index (),s,s indicates that the kernel stiffness matrix is based on two first
derivative of the variable vector. Subsequently, the cross-section stiffness matrix, due
to membrane’s shear strains from the longitudinal displacement, u(s), is:

kMτ
uu = Gth [ShHe1cc]

T [ϒHe1,s,s] [ShHe1cc] =
Gth
ls

[
1 −1
−1 1

]
(4.29)

With the same kernel stiffness and completeness coefficient matrices, the cross-section
stiffness matrix, due to membrane’s transverse strains has a similar result:

kMσs
vv = Eth [ShHe1cc]

T [ϒHe1,s,s] [ShHe1cc] =
Eth
ls

[
1 −1
−1 1

]
(4.30)

The last cross-section stiffness matrix, due to membrane behavior, concerns the shear
strain energy between the longitudinal and transverse displacements, which stands
out from the second term of the second integral in eq. 4.22. This term requires an
observation: the product of variable vectors, uelh,s (s)velh (s), is not commutative, but it
leads to transpose matrices. Consequently, this stiffness matrix is not locally symmetric.
However, it is out of the main diagonal of the global cross-section stiffness matrix, i.e.,
the transpose pair of matrices are symmetric from each other in the final global stiffness
matrix.

Hence, to evaluate them, one must find first the kernel stiffness matrix from a variable
vector and its first derivative, and vice-versa:

[ϒHe1,s] =
∫
s

[TsHe1,s]
T [TsHe1]ds=

[
0 ls
0 0

]
(4.31)

[ϒHe1,s]
T =

∫
s

[TsHe1]
T [TsHe1,s]ds=

[
0 0
ls 0

]
(4.32)
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With the respective completeness coefficient matrix for longitudinal and transverse
displacements, the cross-section stiffness matrix due to the membrane’s shear strain
from longitudinal-transverse displacements is:

kMτ
uv = Gth [ShHe1cc]

T
u [ϒHe1,s] [ShHe1cc]s =

Gth
2

[
−1 −1
1 1

]
(4.33)

Here, the temporary indexes u and v emphasize the correct order of completeness co-
efficient matrices. Following this evaluation, one can find the transpose related cross-
section stiffness matrix: membrane’s shear strain of coupling transverse-longitudinal
displacements:

kMτ
vu = Gth [ShHe1cc]

T
v [ϒHe1,s]

T [ShHe1cc]u =
Gth
2

[
−1 1
−1 1

]
(4.34)

After the analysis of each membrane term, the next evaluations are the plate terms.
Starting with the second term in the first integral in eq. 4.22, which represents the
cross-section stiffness matrix due to the plate’s longitudinal strain, one must initially
find the kernel stiffness matrix for this case:

[ϒHe3] =
∫
s

[TsHe3]
T [TsHe3]ds=

ls
4


l6s /112 0 l4s /20 0

l4s /20 0 l2s /3
l2s /3 0

sym. 4

 (4.35)

Thus, the cross-section stiffness matrix for this term is:

kPσx = E
t3h
12

[ShHe3cc]
T [ϒHe3] [ShHe3cc] =

E
t3h

5040
ls


156 54 22ls −13ls

156 13ls −22ls
4l2s −3l2s

Sym. 4l2s

= E

[kPσx
ww
] [

kPσx
wϕ

][
kPσx

ϕw

] [
kPσx

ϕϕ

] (4.36)

Here, in order to highlight the respective degree of freedom - transverse displacements
w(s) or the longitudinal rotation ϕ (s)- the plate’s stiffness matrix is subdivided.

The next plate’s term concerns the shear strain, last term of the second integral in
eq. 4.22, requires the first derivative of cubic Hermitian’s variable vector:

[TsHe3,s] =
[
3s2 2s 1 0

]
(4.37)

Which leads to the following kernel and cross-section stiffness matrices, respectively:

[ϒHe3,s,s] =
∫
s

[TsHe3,s]
T [TsHe3,s]ds= ls


9l4s /80 0 l2s /4 0

l2s /3 0 0
1 0

sym. 0

 (4.38)
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kPτ = G
t3h
3
[ShHe3cc]

T [ϒHe3,s,s] [ShHe3cc] =

Gt3h
180ls


72 −72 6ls 6ls

72 −6ls −6ls
8l2s −2l2s

Sym. 8l2s

= G

[kPτ
ww
] [

kPτ
wϕ

][
kPτ

ϕw

] [
kPτ

ϕϕ

] (4.39)

The last cross-section stiffness matrix is due to plate’s transverse strain elongation, kPσs
ww .

One obtains it from the evaluation of the second term in the last integral of eq. 4.22,
and it requires the second derivative of cubic Hermitian’s variable vector:

[TsHe3,s,s] =
[
6s 2 0 0

]
(4.40)

Following the same procedure of the previous cases, one reaches the kernel and cross-
section stiffness matrices for plate’s transverse elongation strains, respectively:

[ϒHe3,ss,ss] =
∫
s

[TsHe3,ss]
T [TsHe3,ss]ds= ls


3l2s 0 0 0

4 0 0
0 0

sym. 0

 (4.41)

kPσs = E
t3h
12

[ShHe3cc]
T [ϒHe3,ss,ss] [ShHe3cc]

=
Et3h
l3s


1 −1 ls/2 ls/2

1 −ls/2 −ls/2
l2s /3 l2s /6

Sym. l2s /3

= E

[kPσs
ww
] [

kPσs
wϕ

][
kPσs

ϕw

] [
kPσs

ϕϕ

] (4.42)

All these cross-section stiffness matrices can be grouped in the order of degrees of free-
dom as exposed in eq. 4.13. I.e. first, the longitudinal displacement of the membrane,
u(s); second, the transverse displacement in the segment direction, v(s); third, the
perpendicular segments transverse displacement, w(s); and fourth, the longitudinal ro-
tation, ϕ (s). Following this arrangement, the internal strain energy of a single element,
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eq. 4.22, is expressed in a matrix form:

δUel
int =


[
kMσx
uu
]

0 0 0
0 0 0 0

0 0
[
kPσx
ww
] [

kPσx
wϕ

]
0 0

[
kPσx

ϕw

] [
kPσx

ϕϕ

]

∫
L

V,xx (x)δV,xx (x)dx+

+


[
kMτ
uu
] [

kMτ
uv
]

0 0[
kMτ
vu
] [

kMτ
vv
]

0 0

0 0
[
kPτ
ww
] [

kPτ
wϕ

]
0 0

[
kPτ

ϕw

] [
kPτ

ϕϕ

]

∫
L

V,x (x)δV,x (x)dx+

+


0 0 0 0
0
[
kMσs
vv
]

0 0

0 0
[
kPσs
ww
] [

kPσs
wϕ

]
0 0

[
kPσs

ϕw

] [
kPσs

ϕϕ

]

∫
L

V (x)δV (x)dx (4.43)

As one achieves the variation of internal strain energy for a single element, it is possible
to assemble the total variation of internal strain energy of the cross-section. However,
the elements do not usually share the same local coordinate system. Therefore, for the
plate’s stiffness matrices, a usual matrix transformation,

[
TP
]
, is required to convert

the coordinate system from element’s local one into the global cross-section:

[
TP]=



cos(θ) 0 sin(θ) 0 0 0
0 cos(θ) 0 sin(θ) 0 0

−sin(θ) 0 cos(θ) 0 0 0
0 −sin(θ) 0 cos(θ) 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (4.44)

Here,
[
TP
]
has the coordinate order of v(s), w(s) and a rotation angle θ , as shown

in figure. 4.4. Since the displacement v(s) and w(s) are in the same plane, there is
a coupling between these displacements for non-aligned elements. For instance, this
transformation in sub-matrix

[
kPσx
vv
]
leads to:

[
kPσx
vv
] [

kPσx
vw
] [

kPσx
vϕ

]
[
kPσx
wv
] [

kPσx
ww
] [

kPσx
wϕ

][
kPσx

ϕv

] [
kPσx

ϕw

] [
kPσx

ϕϕ

]

g

=
[
TP]T


0 0 0

0
[
kPσx
ww
] [

kPσx
wϕ

]
0
[
kPσx

ϕw

] [
kPσx

ϕϕ

]

l

[
TP] (4.45)

Where the indexes g and l indicate the basis of the coordinate systems global and local,
respectively.

Although the above transformation is usual in structural analysis, the coordinate trans-
formation for the membrane’s stiffness matrices is unique. It involves the longitudinal
displacement u(s) instead of the longitudinal rotation ϕ (s):
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[
TM]=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos(θ) 0 sin(θ) 0
0 0 0 cos(θ) 0 sin(θ)
0 0 −sin(θ) 0 cos(θ) 0
0 0 0 −sin(θ) 0 cos(θ)

 (4.46)

Consequently, in the global coordinate system of the cross-section there is a coupling
between the membrane’s displacements u(s) and w(s), that does not exist in the local
coordinate system of each segment. As an example, the transformation of transverse
stiffness matrix due to the membrane’s shear strain is:[kMτ

uu
] [

kMτ
uv
] [

kMτ
uw
][

kMτ
vu
] [

kMτ
vv
] [

kMτ
vw
][

kMτ
wu
] [

kMτ
wv
] [

kMτ
ww
]

Gl

=
[
TM]T [kMτ

uu
] [

kMτ
uv
]

0[
kMτ
vu
] [

kMτ
vv
]

0
0 0 0


Lo

[
TM] (4.47)

After the transformation from local to global coordinates systems, one can assemble
each element’s matrix into a total cross-section stiffness matrix, leading to:

δU st
int =



[
kMσx
uu
]

0 0 0

0
[
kPσx
vv
] [

kPσx
vw
] [

kPσx
vϕ

]
0

[
kPσx
wv
] [

kPσx
ww
] [

kPσx
wϕ

]
0

[
kPσx

ϕv

] [
kPσx

ϕw

] [
kPσx

ϕϕ

]


∫
st

V,xx (x)δV,xx (x)dx+

+



[
kMτ
uu
] [

kMτ
uv
] [

kMτ
uw
]

0[
kMτ
vu
] [

kMτ
vv
]
+
[
kPτ
vv
] [

kMτ
vw
]
+
[
kPτ
vw
] [

kPτ
vϕ

]
[
kMτ
wu
] [

kMτ
wv
]
+
[
kPτ
wv
] [

kMτ
ww
]
+
[
kPτ
ww
] [

kPτ
wϕ

]
0

[
kPτ

ϕv

] [
kPτ

ϕw

] [
kPτ

ϕϕ

]


∫
st

V,x (x)δV,x (x)dx+

+


0 0 0 0

0
[
kMσs
vv
]
+
[
kPσs
vv
] [

kMσs
vw
]
+
[
kPσs
vw
] [

kPσs
vϕ

]
0
[
kMσs
wv
]
+
[
kPσs
wv
] [

kMσs
ww
]
+
[
kPσs
ww
] [

kPσs
wϕ

]
0

[
kPσs

ϕv

] [
kPσs

ϕw

] [
kPσs

ϕϕ

]


∫
st

V (x)δV (x)dx (4.48)

where the index st indicates the whole domain of structural beam.

The matrices above are named as: longitudinal stiffness of the cross-section, [C]; shear
stiffness of the cross-section, [D]; transverse stiffness of the cross-section, [B]. In each
one of these matrices, there are some singularities, listed below:

• Matrix [C]: As shown in eq. 4.43, there is not a term concerning the longitudinal
stiffness of a single element due to a transverse displacement in the element direction.
Thus, there is a singularity in this matrix for a chain of aligned elements.
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• Matrix [D]: Since the cross-section’s deformation modes concerning i) uniform elon-
gation, i = 1; ii and iii) main directions of bending, i = 2 and i = 3, these modes have
no shear strains. Thus, the matrix [D] has three singularities concerning these three
cross-section’s rigid body movements that must be identified and isolated.

• Matrix [B]: For the transverse stiffness matrix of the cross-section, there are four
singularities. In fact, all four deformation modes concerning rigid body movements
have no transverse distortion.

4.3. Identification and elimination of singular modes
Once all transverse stiffness matrices are set up, it is necessary to perform the elim-
ination of unique modes that have no cross-section shear stiffness matrix, [D]. This
elimination avoids singularities in GBT’s quadratic eigenvalue problem.

Moreover, since these modes do not involve all derivatives in expression eq. 4.22, it is
necessary to identify and address them to the correct differential equation solution and
the respective traditional beam theory.

The table below presents these singular modes and clarifies the GBT’s nomination and
traditional beam theory concerning them:

Table 4.1: Properties and nomination of singular modes according to GBT

Mode number
[
C̄
]

[D̄] [B̄] Description Beam Theory
1 X - - Pure longitudinal elongation rod’s theory
2 X - - Major bending Euler-Bernoulli
3 X - - Minor bending Euler-Bernoulli
4 X X - Non-uniform torsion Vlasov
t - X - Uniform torsion St-Venant-Bredt
>5 X X X Warping and Distortion GBT

Each mode in the above table demands an analysis step that involves not only a basis
transformation, but also requires a particular constraining expression for each beam
theory. The sequence of steps follows the order of steps above.

4.4. Membrane, Plate and Membrane-Plate modes
Up to this point, the development of the cross-section analysis follows a procedure
similar to [97, 98, 99, 100]. However, from this point on, the presented alternative
approach starts to diverge.

Here, the main idea consists in the splitting of eq. 4.48 in three parts: i) the internal
energy, involving only membrane behavior such as the first row/column in each ma-
trix of eq. 4.48; ii) the internal energy, involving only plate behavior such as the last
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row/column in each matrix of eq. 4.48; iii) the internal energy, involving membrane
and plate behaviors simultaneously, found in the second and third row/columns of the
matrices of eq. 4.48.

The benefit of this splitting approach is that not only highlights the singularities, but
also brings a clear classification of the deformation mode: i) membrane; ii) plate; iii)
membrane and plate.

The next sub-sections detail the filtering process of each internal energy behavior and
the necessary constraints due to GBT’s assumptions.

4.4.1. Membrane mode and constraints
The singular and plural words in the title of this section already indicate the out-
come: due to traditional GBT’s assumptions, membrane modes that involve transverse
elongation and shear strains are constrained. Consequently, only one mode of pure
membrane behavior remains, which is the longitudinal elongation.

Initially, one must apply the constraint concerning the transverse elongation, which is
also required in plate behavior. Thus, one imposes the eigenvector for a uniform longitu-
dinal displacement demanding an orthogonalization process afterwards. Finally, based
on the remained membrane stiffness matrices, one extracts the constraint relationship
to avoid the membrane shear energy. These steps are detailed below.

Transverse elongation constraint:
This constraint condition is directly obtained by the imposition of a uniform transverse
displacement vl1 = vl2 in the element local coordinate system. In vectorial representa-
tion, one represents this coupling equation in a more convenient and general form:

[
1 −1 0 0

]
v1
v2
w1
w2


l

= 0 (4.49)

With this representation, it is possible to obtain the coupling equation in the global
coordinate system by a standard rotation operation:

[
1 −1 0 0

]
cos(θ) 0 sin(θ) 0

0 cos(θ) 0 sin(θ)
−sin(θ) 0 cos(θ) 0

0 −sin(θ) 0 cos(θ)



v1
v2
w1
w2


g

= 0 (4.50)

Thus, one assembles a total global coupling matrix based on transverse elongation cou-
pling equation of all elements — this coupling matrix leads to a multi-freedom constraint
approach. Among the possible approaches, the present cross-section analysis selects the
master-slave method because it not only reduces the number of degrees of freedom of
the cross-section in n−1 (where n is the number of segments in the cross-section), but it
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also allows the definition of the master degree of freedoms. This definition is necessary
especially for extreme natural node, which must have its degrees of freedoms defined
as slave ones in order to avoid singularities in the stiffness matrices.

As an outcome, this constraint step reaches a transformation matrix among all trans-
verse displacements vi and wi of the cross-section: [1U ]2mx2m−n+1, where the subindex
m indicates the number of cross-sections’ nodes and the left subindex is necessary to
distinguish the present transformation among the several ones that will be used.

One remark is necessary: for free end segments, the transverse displacement of the ex-
treme node has no energy contribution in any cross-section stiffness matrix. Hence, the
respective degree of freedom must be vanished by the elimination of the correspondent
row in the constraint matrix [1U ].

It is possible to confirm the values of the constraint matrix [1U ] when applied in the
transverse stiffness matrix concerning only the membrane behavior, [B]M. As result,
one must obtain a reduced order and null matrix [1B]

M as:

[1B]
M = [1U ]T2mx2m−n+1

[[
kMσs
vv
] [

kMσs
vw
][

kMσs
wv
] [

kMσs
ww
]]

2mx2m
[1U ]2mx2m−n+1 = 0 (4.51)

Since matrix [1B]
M is null, it requires no further transformation. Following the above

transformation, one achieves the cross-section shear stiffness matrix of membrane be-
havior:

[1D]
M=

 [kMτ
uu
] [

1kMτ
uv
] [

1kMτ
uw
][

1kMτ
vu
] [

1kMτ
vv
] [

1kMτ
vw
][

1kMτ
wu
] [

1kMτ
wv
] [

1kMτ
ww
]
=[[I] [0]

[0] [1U ]

]T[kMτ
uu
] [

kMτ
uv
] [

kMτ
uw
][

kMτ
vu
] [

kMτ
vv
] [

kMτ
vw
][

kMτ
wu
] [

kMτ
wv
] [

kMτ
ww
]
[[I] [0]

[0] [1U ]

]
(4.52)

Here, the transformation matrix, [1U ], receives an identity matrix [I] to handle the
stiffness terms related to transverse and longitudinal displacements,

[
kMτ
uu
]
and

[
kMτ
uv
]

and their respective transposes. Hence, this identity matrix has the rank of mxm, which
represents the total number of degrees of freedom of longitudinal displacement.

Concerning the cross-section longitudinal stiffness matrix of membrane behavior, [C]M,
one realizes that this stiffness matrix requires no transformation, since it has only terms
which involve only longitudinal displacement. Therefore, one obtains:

[1C]
M = [C]M (4.53)

Pure elongation membrane mode:
Before the setup of shear membrane strain constraint, one must isolate and eliminate
the pure membrane elongation mode, since it has no shear effect.

The pure longitudinal elongation has a trivial displacement field: a unit longitudinal
displacement without transverse displacement. Consequently, the eigenvector of this
mode concerning the longitudinal displacement is:

1 [U ]m =
[
1ug1 = 1 1ug2 = 1 1ug3 = 1 . . .

]T (4.54)
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Based on this eigenvector, one can use a new non-orthogonal basis for the longitudinal
displacement degrees of freedom, which is an identity matrix that the first column
receives the terms of vector 1 [U ] concerning the longitudinal displacement, 1ugi:

[2U ]mxm =

[
1 [U ]T1xn

0
[I]n−1xn−1

]
=


1 0 0 0 . . .
1 1 0 0 . . .
1 0 1 0 . . .
...

...
...

... . . .

 (4.55)

Alternatively, the notation of Von Neumann, [123], can express the setup of this basis.
Such notation is useful in the next steps:

[2U ]nxn = Subst
(
Col1
1 [U ]

)
[I]nxn (4.56)

Converting the matrices [1C] and [1D] into this new basis, one reaches:

[2C]
M = [2U ]T [1C]

M [2U ] (4.57)

[2D]
M = [2U ]T [1D]

M [2U ] (4.58)
The outcome from this changing of basis is the achievement of cross-section’s longitu-
dinal stiffness, EA, in the correspondent term of matrix [2Ca], which is the first value
in the first row.

Since the pure axial elongation has not any shear stiffness contribution, the basis trans-
formation also brings out null values in the first row and column of the shear stiffness
matrix, [2Da]. Therefore, after this transformation, the differential equation of pure
axial elongation concerns only the longitudinal stiffness matrix, which is not yet or-
thogonalized with the other longitudinal degrees of freedoms. The matrix [2C] has
non-null values out of diagonal in the first row and column.

There are two procedures to overcome this lack of orthogonality in the cross-section
analysis.

The first one, developed by Andreassen et al. [97], consists in removing the row and
column concerning the pure axial elongation by a coupling equation. One defines this
coupling equation as null internal energy in the first row of [2C] for any displacement
field:

[
2C1,1 2C1,2 . . . 2C1,n

]

ug1
ug2
...

ugm

= 0 (4.59)

Based on this coupling equation, it is possible to use the Master-Slave method once
more. The slave term for this method is the first longitudinal degree of freedom.
Thus, one achieves a new transformation matrix [3U ]. It removes the pure elongation
membrane mode from the cross-section stiffness matrices without any side effect:

[3C]
M = [3U ]T [2C]

M [3U ] (4.60)
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[3D]
M = [3U ]T [2D]

M [3U ] (4.61)

The second procedure consists in a partial simultaneous orthogonalization of the lon-
gitudinal degrees of freedom of matrices [2C] and [2D], in order to obtain a basis from
which the pure longitudinal elongation is entirely orthogonal in respect to other defor-
mation modes.

This can be done by using Falk-Langemeyer method, [58], as Richard Schardt did in
his works. It is important to note that the Falk-Langemeyer method is applied only in
the off-diagonal terms of the first rows of matrices [2C] and [2D], since one searches only
an independent ordinary differential equation for the longitudinal elongation. Conse-
quently, the partial application of Falk-Langemeyer method, together with the elimina-
tion of the first longitudinal degree of freedom, leads also to the transformation matrix
[3U ], used in equations 4.61 and 4.60.

Finally, it is necessary to make a final remark concerning the pure axial elongation.
Mode 1 abolishes the GBT’s manner to express the longitudinal displacement function
with the first derivative of the amplification function, V,x (x). Instead, the function V (x)
defines the V,x (x) of this mode:

1u(x,s, t) = 1u(s, t) 1V (x) (4.62)

The insertion of this modification, together with the full orthogonalization among the
stiffness matrices into eq. 4.48, leads to the well-known expression of internal strain
energy of a rod:

1δUel
int = E 1C

∫
L

1V,x (x) 1δV,x (x)dx (4.63)

Membrane shear strain constraint:
The assumption of no contribution from the shear strain energy in the membrane
behavior of the cross-section, eq. 2.2, is represented in matrix form by the sub-matrices
of [3D]M:

[3D]
M=


[
3kMτ

uu
]
m−1xm−1

[[
3kMτ

uv
] [

3kMτ
uw
]]

m−1xm−1[[
3kMτ

vu
][

3kMτ
wu
]]

m−1xm−1

[[
3kMτ

vv
] [

3kMτ
vw
][

3kMτ
wv
] [

3kMτ
ww
]]

m−1xm−1

 (4.64)

From the first row in eq. 4.64, one achieves the following relationship for non-shear
membrane energy:

[
3kMτ

uu
]
m−1xm−1


ug1
ug2
...

ugm−1

+ [[3kMτ
uv
] [

3kMτ
uw
]]

m−1xm−1



vg1
vg2
...

wg1
wg2
...


= 0 (4.65)
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Therefore, one reaches a relationship of the slave transverse displacements v and w in
respect to master degrees of freedom for the longitudinal displacement, u:

vg1
vg2
...

wg1
wg2
...


=−

[[
3kMτ

uv
] [

3kMτ
uw
]]−1 [

3kMτ
uu
]


ug1
ug2
...

ugm−1

 (4.66)

Thus, one obtains the transformation matrix concerning the membrane shear con-
straint, [4U ]:

[4U ] =

[
[I]m−1xm−1

−
[[

3kMτ
uv
] [

3kMτ
uw
]]−1 [

3kMτ
uu
]] (4.67)

Similar to the transverse elongation constrain, it is possible to confirm the values of the
constraint matrix [4U ] when applied in the transverse shear membrane stiffness matrix,
[3D]

M. As a result, one must obtain a reduced order and null matrix [4D]
M as:

[4D]
M = [4U ]T [3D]

M [4U ] = 0 (4.68)

Consequently, the membrane behavior has only the stiffness matrix concerning the
longitudinal strain elongation:

[4C]
M = [4U ]T [3C]

M [4U ] (4.69)

This stiffness matrix is necessary for the analysis of membrane-plate modes, requiring
the participation of stiffness of the plate behavior.

4.4.2. Plate modes and constraints
Similar to the membrane stiffness matrices, one must split the modes of plate behavior
into two groups: the first one concerning pure plate behavior; the second one concerning
the mixed membrane-plate behavior.

Pure plate modes:
The pure plate modes have no stiffness contribution from the membrane behavior. I.e.,
if the application of the pure plate’s modal eigenvectors into the stiffness matrices of
membrane behavior, then the outcome stiffness must be zero. Example of this mode
are the torsion stiffness of angle profiles [52].

The stiffness from the longitudinal strains satisfies the above condition directly. In
fact, the displacement degrees of freedom of plate behavior has no longitudinal dis-
placement terms and the matrix [C]M is solely related to this type of degrees of freedom
behavior.
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The stiffness from transverse elongation strains, [B]M, also disappears. The transverse
elongation constraint, which is mandatory in plate behavior, eliminates any possibil-
ity of participation of the displacement field of plates in this membrane’s stiffness
type.

Lastly, the stiffness from shear strains, [D]M, must be null for any transverse displace-
ment field that involves the transverse degrees of freedom of membrane behavior.

The above limitations lead to remaining degrees of freedom of longitudinal rotation, ϕ ,
and the orthogonal transverse displacement at the extreme node of free end segments.
Thus, the transformation matrix to obtain the pure plate modes, [5U ], is nothing less
than a regular constraint matrix: an identity matrix, which the removing of the columns
related to the degrees of freedom of non-pure plate behavior.

As a result, one obtains the following stiffness matrices:

[1C]
P = [5U ]T


[
kPσx
vv
] [

kPσx
vw
] [

kPσx
vϕ

]
[
kPσx
wv
] [

kPσx
ww
] [

kPσx
wϕ

][
kPσx

ϕv

] [
kPσx

ϕw

] [
kPσx

ϕϕ

]
 [5U ] (4.70)

[1D]
P=[5U ]T


[
kPτ
vv
] [

kPτ
vw
] [

kPτ
vϕ

]
[
kPτ
wv
][
kPτ
ww
] [

kPτ
wϕ

][
kPτ

ϕv

][
kPτ

ϕw

][
kPτ

ϕϕ

]
[5U ] (4.71)

[1B]
P=[5U ]T


[
kPσs
vv
] [
kPσs
vw
][
kPσs
vϕ

]
[
kPσs
wv
] [
kPσs
ww
][
kPσs
wϕ

][
kPσs

ϕv

][
kPσs

ϕw

][
kPσs

ϕϕ

]
[5U ] (4.72)

To obtain the modal deformation modes and the generic cross-section properties due
to plate behavior, one must solve a quadratic eigenvalue of the three matrices above.
This solution and its spectral analysis are presented later, together with the analysis
of membrane-plate modes.

Transformation to obtain membrane-plate modes:
The outcome of this subsection is the constraint transformation matrix that highlights
the stiffness matrices of membrane-plate modes from the total plate’s stiffness matri-
ces.

Here, the key point is the analysis of the transverse bending moment, iMs (x)=K iB iV (x),
given in eq. 2.82. For membrane-plate modes, this transverse bending moment must
fulfill the following requirements:

i) there is no transverse bending moment in segments with a free end;
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ii) all internal/branched nodes must be in equilibrium with their respective transverse
bending moments of the neighbor segments.

Figure. 4.5 illustrates a generic opened cross-section with a possible iMs (x) distribution
for membrane-plate modes.

Figure 4.5: transverse bending moment conditions for membrane-plate modes. This
bending moment is null in the end segments. Also, at the internal nodes, the equilibrium
must be satisfied without any external load.

One can express the above requirements directly by the plate’s transverse stiffness
matrix of each segment. For instance, an end segment one uses the last two rows of
stiffness matrix given in eq. 4.42 to define the null transverse bending moment along
with it: [

0
0

]
=

[
Ms1
Ms2

]
l
=

Et3h
l3s

[
ls/2 −ls/2 l2s /3 l2s /6
ls/2 −ls/2 l2s /6 l2s /3

]
lo


w1
w2
ϕ1
ϕ2


l

(4.73)

The above expression still requires a transformation from local to global coordinate
system in order to insert it fully cross-section coupling matrix.

Concerning the master-slave degree of freedom definition, one realizes that the degrees
of freedom of pure plate behavior modes, defined previously, must now be defined as
slave ones. Thus, the modes of pure plate and membrane-plate behaviors are comple-
mentary to each other.

For an internal node, the stiffness matrices of the segments, whose the degrees of free-
dom relate to this node, give the compatibility among the transverse bending moments.
As an example, node 3 in figure. 4.5 has the compatibility between the transverse bend-
ing moments of the final and initial nodes segment s2 and s3, respectively. Therefore,
the coupling equation is based on the last row of the transverse stiffness matrix of the
segment s2 and the penultimate row of the s2’s stiffness matrix. In the global coordinate
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system, one achieves:

Et3h
l3s2

[[
kPσs

ϕv,s2

] [
kPσs

ϕw,s2

] [
kPσs

ϕϕ ,s2

]]


v2
v3
w2
w3
ϕ2
ϕ3



T

=
Et3h
l3s3

[[
kPσs

ϕv,s3

] [
kPσs

ϕw,s3

] [
kPσs

ϕϕ ,s3

]]


v3
v4
w3
w4
ϕ3
ϕ4



T

(4.74)

Performing and collecting these coupling equations among all cross-section segments,
one reaches the transformation matrix [6U ], which extracts the membrane-plate behav-
ior from the total plate stiffness matrices:

[2C]
P = [6U ]T


[
kPσx
vv
] [

kPσx
vw
] [

kPσx
vϕ

]
[
kPσx
wv
] [

kPσx
ww
] [

kPσx
wϕ

][
kPσx

ϕv

] [
kPσx

ϕw

] [
kPσx

ϕϕ

]
 [6U ] (4.75)

[2D]
P=[6U ]T


[
kPτ
vv
] [

kPτ
vw
] [

kPτ
vϕ

]
[
kPτ
wv
][
kPτ
ww
] [

kPτ
wϕ

][
kPτ

ϕv

][
kPτ

ϕw

][
kPτ

ϕϕ

]
[6U ] (4.76)

[2B]
P=[6U ]T


[
kPσs
vv
] [
kPσs
vw
][
kPσs
vϕ

]
[
kPσs
wv
] [
kPσs
ww
][
kPσs
wϕ

][
kPσs

ϕv

][
kPσs

ϕw

][
kPσs

ϕϕ

]
[6U ] (4.77)

Since plate theory has no stiffness due to elongation in the segment direction, the
constraint relationship used to eliminate the transverse membrane elongation is required
here as well. Thus, one obtains:

[3C]
P=[1U ]T [2C]

P[1U ] (4.78)

[3D]
P=[1U ]T[2D]

P[1U ] (4.79)

[3B]
P=[1U ]T [2B]

P[1U ] (4.80)

To merge the plate and membrane stiffness matrices, one must transform the three
stiffness matrices shown above from the transverse displacements v and w to the longi-
tudinal displacement u. This transformation is already defined in eq. 4.66. Thus, one
has:

[7U ] =−
[[

3kMτ
uv
] [

3kMτ
uw
]]−1 [

3kMτ
uu
]

(4.81)

And plate stiffness matrices have a new transformation:

[4C]
P=[7U ]T [3C]

P[7U ] (4.82)
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[4D]
P=[7U ]T[3D]

P[7U ] (4.83)
[4B]

P=[7U ]T [4B]
P[7U ] (4.84)

Hence, a simple superposition of membrane and plates stiffness matrices leads to the
complete stiffness matrices of membrane-plate behavior:

[1C]
MP = [4C]

M+[4C]
P (4.85)

[1D]
MP = [4D]

M+[4D]
P = [4D]

P (4.86)
[1B]

MP = [1B]
M+[4B]

P = [4B]
P (4.87)

The above expressions use the assumptions of null shear and transverse elongation of
membrane behavior, [4D]M = [1B]

M = 0.

4.4.3. Mode 2, 3 and 4 - Pure longitudinal bending and Torsion
As one obtains the stiffness matrices of membrane-plate behavior, it is necessary to iden-
tify the modes related to rigid-body transverse displacements: two related to bending,
modes 2 and 3; one related to torsion, mode 4. The combined identification of these
modes is particularly useful in the assessment of the major/minor inertia axis and the
shear center.

The pure longitudinal bending modes, which are related to Bernoulli-Euler beam’s
hypothesis, have no shear and transverse distortion cross-section stiffness contribution,[
2,3D

]
= 0 and

[
2,3B

]
= 0, respectively. Consequently, one must extract these modes

before the solution of GBT’s quadratic eigenvalue problem.

Fortunately, the extraction of these modes is straightforward: two unit displacement
vectors, one in each transverse direction, express the longitudinal bending modes. These
unit displacement vectors need to be orthogonal to each other, but not necessarily in
the main direction of bending. Thus, the simplest forms of these vectors are based on
the global coordinates Y and Z, as shown in figure 4.4:

2 [V] =
[
2vg1 = 1 2vg2 = 1 . . . 2wg1 = 0 2wg2 = 0 . . .

]T (4.88)

3 [V] =
[
3vg1 = 0 3vg2 = 0 . . . 3wg1 = 1 wwg2 = 1 . . .

]T (4.89)
Since previous constraint operations removed several degrees of freedom, the above
vectors require only the master degrees of freedom.

Other initial trial representations of mode 2 and mode 3 can be assumed. It is only
necessary to be aware that they must be consistent with the right-hand coordinate
system. Since both vectors are in the orthogonal basis of the transverse displacements v
and w, it is necessary to convert them to the longitudinal basis u. This transformation
is directly obtained by the pre-multiplication by matrix [7U ]−1. Thereby, these two
vectors can now compose a new transformation matrix:

[8U ] = [7U ]−1 [ 2 [V] 3 [V]
]

(4.90)
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which leads to the second order tensor of inertia of bending, [I]:

[I] = [8U ]T [1C]
MP [8U ] (4.91)

Thus, a standard eigenvalue problem [173] leads to the major/minor bending direc-
tion: [

[I]−λ [I]
][
ug
]
= 0 (4.92)

Which the eigenvectors of major/minor directions are:

[Tf ] =

[ 2u1 3u1
2u2 3u2

]
(4.93)

Thus, one reaches longitudinal displacements for mode 2 and 3:[
2 [U ] 3 [U ]

]
= [Tf ] [8U ] (4.94)

Before the application of the above vectors as a matrix transformation, it is convenient
to achieve the shear center, from which the identification is based on radius vector of
longitudinal rotation, r (s).

According to Vlasov beam theory, the radius vector is the distance from the shear center
until the perpendicular point in the segment middle line, as shown in figure 4.6.a.
However, in order to achieve the transverse displacement in each node, the radius
vector’s definition is related to the nodes. I.e., the nodal radius vector is decomposed
in terms of the global coordinate system, as shown in figure 4.6.b, and the node’s
transverse displacements are perpendicular to their respective radius vector, according
to a right-hand system. Thus, the proportion of the radius vector defines the magnitude
of transverse displacement.

Figure 4.6: Radius vector: a) according to classical Vlasov Beam Theory; b) according
to GBT’s identification

Following this definition, one can set up a trial displacement vector for the torsion
mode. Initially, any point of cross-section’s plan can receive the trial shear center, and
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one adopts a temporary coordinate system. It is not required from this temporary
coordinate system to be in the same basis of the principal moments of inertia. It is
only necessary to obey a right-hand system. However, there is an important detail
concerning the orientation’s consistency: the radius vector has its coordinate system
defined in the directions of the transverse displacements due to longitudinal bending
moments. The example in figure 4.6.b, that uses a temporary coordinate system in
the global coordinate system, clarifies this definition: i) a positive bending around the
global coordinate axis Y has the transverse displacement in the global direction −Z.
Therefore, this direction defines the origin of the longitudinal rotation angle ϕg; ii) a
positive bending around the global coordinate axis Z has the transverse displacement
in the global direction +Y . This direction defines a right-hand system concerning the
origin of the longitudinal angle ϕg.

After the definition of the initial trial shear center, the temporary coordinate system
and the origin of the longitudinal rotation angle, one obtains an initial trial transverse
displacement vector for mode 4:

4 [V]=
[
4vg1=rz1 4vg2=rz2 . . . 4wg1=ry1 4wg2=ry2 . . . 4ϕg1=1 4ϕg2=1 . . .

]T (4.95)

Similar to the trial vectors for bending modes, the master degrees of freedom, which
remain after the previous constraint operations, are enough to represent the trial vec-
tor of mode 4. The transformation [7U ]−1 4 [V] converts this vector into longitudinal
displacements. Together with the vectors in eq. 4.94, it is possible to build a new
transformation matrix:

[9U ] =
[
2 [U ] 3 [U ] [7U ]−1 4 [V]

]
(4.96)

As in the case of eq. 4.91, it provides a new second order tensor [173] that has not
only the bending stiffness terms in principal directions, but also the Vlasov’s warping
stiffness terms concerning these directions:

[IVlasov] = [9U ]T [1C]
MP [9U ] = E

I22 0 I2ω
0 I33 I3ω
Iω2 Iω3 Iωω

 (4.97)

where, Iωω is the inertia of warping, or usually namely constant of warping. Also, I2ω
and I3ω are the product of sectorial inertia. According to Vlasov, [176], the radius
vector between the trial and real shear centers is obtained by:

rvcs = I2ω/I22 (4.98) rwcs = I3ω/I33 (4.99)
From this radius vector, one achieves longitudinal displacement vector of mode 4:

4 [U ] = [7U ]−1 4 [V]−
[
2 [U ] 3 [U ]

][rvcs
rwcs

]
(4.100)

The collection of 2 [U ], 3 [U ] and 4 [U ] leads to transformation matrix [10U ]:

[10U ]n−1xn−1 = Subst
(

Cols1,2,3
2 [U ] 3 [U ] 4 [U ]

)
[I]n−1xn−1 (4.101)
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This transformation stands out the null shear and transverse stiffness of Bernoulli-Euler
modes:

[2D]
MP = [10U ]T [1D]

MP [10U ] =

[ [2−3DMP
]
= 0

[
2−3,HDMP

]
= 0[

H,2−3DMP
]
= 0

[
HDMP

] ]
(4.102)

[2B]
MP = [10U ]T [1B]

MP [10U ] =

[ [2−3BMP
]
= 0

[
2−3,HBMP

]
= 0[

H,2−3BMP
]
= 0

[
HBMP

] ]
(4.103)

Here, the upper-left index H is used to indicate any mode higher than 3.

Although the transformation matrix [10U ] leads to the warping, major and minor mo-
ments of inertia, this transformation matrix does not reach a full decoupled longitudinal
stiffness matrix:

[2C]
MP = [10U ]T [1C]

MP [10U ] =

[ [2−3CMP
] [

2−3,HCMP
][

H,2−3CMP
] [

HCMP
] ] (4.104)

From the first row of sub-matrices in the above expression, one achieves the following
multi-freedom constraint:

[2−3CMP][u1
u2

]
+
[2−3,HCMP]

u3u4...
=

[
0
0

]
(4.105)

Hence, this multi-freedom constraint leads to a transformation matrix, which not only
uncouples the Bernoulli-Euler modes, but also isolates the higher modes:

[11U ] =

[
−
[
2−3CMP

]−1 [2−3,HCMP
]

[I]m−3xm−3

]
(4.106)

Now, it is possible to extract the orthogonal ordinary differential equation of Bernoulli-
Euler modes from modes 2 and 3, leading to:

2δUint=E2C
∫
L

2V,xx (x) 2δV,xx (x)dx (4.107) 3δUint=E3C
∫
L

3V,xx (x) 3δV,xx (x)dx (4.108)

It is essential to highlight that mode 4 is still coupled to the other higher modes. The
eigenvector obtained in 4 [U ] is not a general solution [95, 96], which requires the
solution of quadratic eigenvalue problem based on the cross-section stiffness matrices
of membrane-plate behavior:

[3C]
PM = [11U ]T [2C]

PM [11U ] (4.109)

[3D]
MP = [11U ]T [2D]

MP [11U ] (4.110)

[3B]
MP = [11U ]T [2B]

MP [11U ] (4.111)
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4.5. Quadratic eigenvalue solution

4.5.1. Symmetric and anti-symmetric modes
Before the development of the quadratic eigenvalue problem, it is interesting to shed
light on one property concerning the solution used by Schardt, [136], and its effect on
separation of symmetric and anti-symmetric modes.

Schardt did not solve the quadratic eigenvalue. Instead, he applied Falk-Langemeyer
method, [58], to solve a generic eigenvalue problem concerning only the matrices [C]
and [B]. Thus, [D] was never a simple diagonal matrix. Schardt advocated for this
solution, since the off-diagonal terms of matrix [D] are usually small and do not affect
the final solution, especially for open thin-walled cross-sections.

Similar to the cross-section analysis developed by J.M.Andreassen and J.Jönsson, [97,
98, 99], here the solution is addressed directly to the quadratic eigenvalue problem.
However, the traditional approach of Schardt is still useful: for symmetric, or at least
mono-symmetric cross-sections, the Falk-Langemeyer method applied in the matrices
[C] and [B] highlights the separation of symmetric and anti-symmetric modes in matrix
[D]. Hence, the Falk-Langemeyer leads to transformation matrix [12U ]. Following the
previous transformations, one obtains:

[4C]
PM = [12U ]T [3C]

PM [12U ] (4.112)

[4D]
MP = [12U ]T [3D]

MP [12U ] (4.113)
[4B]

MP = [12U ]T [3B]
MP [12U ] (4.114)

In matrix [4D]
MP one can verify a ”chess-pattern” in the off-diagonal values. I.e., non-

null values are interleaved with null values. Based on this feature, one re-order the
rows and columns by a new transformation matrix, [13U ], which leads to the following
representation:

[5C]
MP =

[[
5CMP

a
]

[0]
[0]

[
5CMP

b

]]= [13U ]T [4C]
MP [13U ] (4.115)

[5D]
MP =

[[
5DMP

a
]

[0]
[0]

[
5DMP

b

]]= [13U ]T [4D]
MP [13U ] (4.116)

[5B]
MP =

[[
5BMP

a
]

[0]
[0]

[
5BMP

b

]]= [13U ]T [4B]
MP [13U ] (4.117)

Here, the sub-indexes a and b indicate the subgroups related to symmetric or anti-
symmetric modes. Since mode 4 is anti-symmetric, the subgroup that has this mode is
the anti-symmetric one.

Other benefits of this transformation are: i) the reduction size of the quadratic eigen-
value problem; ii) the simplification in the selection of conjugated eigenvectors, in the
case of two real roots obtained in the quadratic eigenvalue problem.

This transformation is also applied to pure plate behavior modes.
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4.5.2. Linearization and quadratic pencil
As one achieves the most compact form of the quadratic eigenvalue problem of GBT:

Q(λ )u :=
(
λ 2 [C]−λ [D]+ [B]

)
[u] = 0 (4.118)

Then, it is possible to linearize it by a quadratic pencil transformation, such as

L(λ ;C,D,B)z :=
([

− [D] [C]
[C] [0]

]
λ +

[
[B] [0]
[0] − [C]

])
[z] = 0 (4.119)

where:
[z] =

[
[u] λ [u]

]T (4.120)
The first row of eq. 4.119 has the definition of the GBT’s quadratic eigenvalue problem
and the second row of eq. 4.119 is set up to achieve the so-called structure preserving
transformations. As clarified and presented in [62], several other possibilities exist in
the linearization of the quadratic eigenvalue problem. For GBT, that leads invariably
to a set of complex and real eigenvectors.

It is important to note that, different from the general eigenvalue problem, in which a
single eigenvector leads to a decoupled ordinary differential equation, in the quadratic
eigenvalue problem there are two eigenvectors to each ordinary differential equation.
In other words, the quadratic eigenvalue problem shows that the high order general-
ized inertias iC, iD and iB have two possible conjugated modes, here named [iu] and
[iiu].

For complex eigenvector, the identification of conjugated modes is straight forward,
since conjugated modes share the same real part of the eigenvector and different values
in the imaginary part. However, if there is more than four real eigenvectors, the defini-
tion of each pair of conjugated eigenvectors is arbitrary. I.e., any possible combination
will lead to an equivalent orthogonal system. The only exception is the Vlasov torsion
mode, which has almost the same real eigenvectors. One identifies the first eigenvector
of this mode based on the respondent null eigenvalue. Then, it is possible to recognize
the second eigenvector by the almost unit solution of the inner product to the first
eigenvector.

Thus, the conjugated transformation achieves the cross-section matrices:

[6C]
MP =

1
2

[
[iU ]T [5C]

MP [iiU ]+ [iiU ]T [5C]
MP [iU ]

]
(4.121)

[6D]
MP =

1
2

[
[iU ]T [5D]

MP [iiU ]+ [iiU ]T [5D]
MP [iU ]

]
(4.122)

[6B]
MP =

1
2

[
[iU ]T [5B]

MP [iiU ]+ [iiU ]T [5B]
MP [iU ]

]
(4.123)

One realizes from equations 4.121, 4.122 and 4.123, that the imaginary part of complex
eigenvector has vanished.

Although these three matrices lead to the generalized properties of the cross-section,
none of them are necessarily diagonal matrices [103]. Thus, it implies in a residual
coupling among the deformation modes.
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4.5.3. Recover of the eigenvectors in the original coordinate sys-
tem
After the achievement of the solution of quadratic eigenvalue problem, one must trans-
form the resulting eigenvectors back to the original coordinate system. Therefore, one
must apply the sequence of matrix transformations in backward order.

For instance, the eigenvectors of modes 2 and 3 require the following sequence of mul-
tiplication: [

2Ug
3Ug
]
= [6Ū ] [1U ] [2U ] [3U ] [4U ]

[
2U 3U

]
(4.124)

Since the matrix [6U ] has no terms related to the degrees of freedom of longitudi-
nal displacement, it receives an identity matrix on these degrees of freedom and [6Ū ]
represents this adjustment.

For membrane-plate modes, the backward transformation is a bit longer:

[Ui,a,real] = [6Ū ] [1U ] [2U ] [3U ] [4U ] [10U ] [11U ] [12U ] [13U ]

[[
UMP
i
]

[0]

]
(4.125)

The imaginary part and the second eigenvector follows the same transformation.

Concerning the pure plate behavior modes, one reaches the following transforma-
tion:

[Ui,a,real] = [5U ]
[
12UP][

13UP][[UP
i
]

[0]

]
(4.126)

The last observation concerns mode 1. In a practical point of view, this mode does not
demand any transformation because none of the transformations affect its trivial defini-
tion as a unit longitudinal displacement with no transverse displacement, as presented
in the first columns of matrix [2U ], eq. 4.55.

A detailed example, presented at the appendix, clarifies not only this transformation
but also the whole procedure presented here.
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5
GBT’s finite element in longitudinal direction

After the cross-section analysis developed in Chapters 3 and 4, each deformation shape
will lead to an ordinary differential equation, something entirely independent of the
other deformation shapes in the linear analysis. Thus, this chapter is dedicated to
study and to obtain a solution of each ordinary differential equation of each deformation
mode.

Initially, it is presented a short review of the methods applied in the solution of
GBT’s differential equations. Starting from the Finite Differences Method, used by R.
Schardt [131, 139], until the recent developments in Finite Element Method, FEM.

Also, this chapter presents a novel approach in the Finite Element Method to reach the
exact solution in GBT problems. Among the benefits of this novel approach, one can
list: i) it avoids longitudinal discretization; ii) it reduces the numerical and computation
effort to obtain the GBT’ solution; iii) it leads to smoother displacement and stress
fields; iv) for constant internal loads, it also leads to the exact solution in non-linear
analysis.

In order to obtain the exact solution, there are two new concepts that need to be
presented.

The first one concerns the assortment of the GBT’s ordinary differential equation.
There is not only one type of ordinary differential equation in GBT, but there are
several of them. It is interesting to note that this classification is not only requested
by a mathematical point of view, but also has a mechanical interpretation, as it will be
discussed later.

The second one is related to the development of the exact stiffness matrix in the Finite
Element Method. Since GBT involves sophisticated functions in its analytical solutions,
a substantial mathematical effort is required to reach the shape functions and the exact
stiffness matrix. Even by computational symbolic analysis, these results are hard to
be found. To overcome this difficulty, it is presented here the concept of developing
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the exact stiffness matrix by the new matrices: Completeness Coefficient Matrix and
Kernel Stiffness Matrix.

A final and detailed example clarifies the novel approach proposed here. Besides, it
compares the pros and cons of the novel approach and the one based on the well-known
Hermitian shape functions.

5.1. Review of the applied solution methods in GBT’s ordi-
nary differential equations
In the original works of Richard Schardt and his co-workers, the ordinary differential
equations were evaluated by the finite difference method [131, 139]. Although this
method has a clear and direct numerical solution, it has been replaced by the finite
element method (FEM) in structural analysis, owing to the well-known versatility of
this method [151].

The first application of FEM in GBT was performed by J.M.Davies [49], who proposed
the use of an exact element. However, the formulation presented in this element has
some controversial points: i) there is not a clear development of the stiffness matrix.
Davies does not present a variational formulation and a detailed study of the internal
strain energy. Instead, he only presents an adaptation from a beam on elastic foun-
dation problem into GBT analysis; ii) he does not include the stiffness components of
transverse bending in the complete stiffness matrix, i.e., the transverse bending inertia,
iB, is neglected. Therefore, high deformation mode, which presents a high distortion
and a lower amount of warping, have coarse results; iii) the shape function used in the
formulation is based on the homogeneous solution, a linear independent function of the
most usual load functions, such as constant loading distribution.

In 2001, N. Silvestre and D. Camotim [151] developed a finite element based on Hermi-
tian shape functions. This method has been extensively applied in many studies and
analyses, such as [152], [81], [39], [2], and [3]. Although this type of element has good
convergence and allows easy implementation of the stiffness matrix, it does not reach
an exact solution and it also requires longitudinal discretization.

Here, it is essential to observe the longitudinal discretization in GBT. Since GBT
requires a high number of degrees of freedom in each node, if a beam structure also
requires a high number of elements and nodes to be modeled, then the total number of
degrees of freedom and unknowns of GBT will be no different from the total amount
needed in a usual shell elements modeling. Thus, one must avoid or at least minimize
the longitudinal discretization in order to obtain the high computational performance
of GBT [77].

Moreover, the generalized internal force obtained from Hermitian shape functions pre-
sented a coarse result due to the higher order derivatives that are necessary to achieve
it. These issues affect the non-linear analysis, i.e. the initial stress stiffness matrix [35].
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In this case, an even higher longitudinal discretization is required.

As an alternative to overcome these coarse results in higher order problems, Duan [55]
presents the formulation of a B-splines-based GBT, which provides continuity between
two adjacent elements. However, this alternative still requires longitudinal discretiza-
tion.

Recently, Gonçales and Eisenberger, [25, 26, 28], developed an exact finite element
solution for the ordinary differential equation of GBT based on Power Series Method. In
this approach, an exact solution is obtained not by a predefined and parametric stiffness
matrix, but by a posterior numerical stiffness matrix, using the recursive property of
Power Series. Thus, for each ordinary differential equation of each deformation mode
of GBT, this approach requires an iterative solution of a system of linear equations.
As each beam element has four degrees of freedom, the system of the linear equation
has the same size. Furthermore, one repeats the iterative-recursive approach until the
limit of the computational numerical precision.

On one hand, the stiffness matrix, based on Power Series, reaches the exact solution
and it requires any longitudinal discretization. On another hand, it involves an extra
numerical effort to obtain the computational exact stiffness matrix.

In order to avoid this extra numerical effort and obtain a predefined exact stiffness
matrix, this dissertation presents a novel approach, based on two concepts. The first
one is the classification of GBT’s ordinary differential equation, involving not only a
mathematical assortment, but also a mechanical behavior. The second concept is the
separation of shape functions and stiffness matrix into two major terms: a kernel one,
which is a set of functions obtained from the analytical solution of the ordinary differ-
ential equation; and a coefficient completeness matrix, imposed by the Completeness
Principle of Finite Element Method.

In next sections, these two concepts will be detailed.

5.2. Shape function assortment and transverse deformation
mode classification
The development of shape functions that describes the exact displacement field of GBT
is initially based on the analytical solution of the ordinary differential equation of each
GBT’s deformation mode.

It is important to note that, in GBT’s high deformation modes, the ordinary differential
equation can lead to different types of solution based on the value of generic cross-
section properties: iC, iD and iB. Here, the terms related to iV,xx (x) in eq. 2.63 are
simplified into a single equivalent term of shear stiffness as:

GD= G
(iDMc+iDP)−2µKiDµ (5.1)
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Thus, it is indispensable to perform a modal classification concerning not only the type
of respective ordinary differential equation, but also its solution. Each one of these
classifications are presented in the following subsections.

5.2.1. Classification of GBT’s deformation modes concerning the
ordinary differential equation
As presented in the previous chapters, the lower deformation modes, involving rigid
body movements of the cross-section, have a well-known related ordinary differential
equation. However, for the high modes, their related ordinary differential equations are
unusual in structural analysis.

One can divide these ordinary differential equations for high modes into four types,
whose nomenclature is based on kinematic behavior:

• Distortion with warping: This type of deformation shape involves all stiffness terms
of the cross-section: iC, iD and iB.

E iC iV,xxxx (x)− iGD iV,xx (x)+K iB iV (x) = iq(x) (5.2)

Schardt studied only this case in his initial work, [136]. Since there is longitudinal
stress in this type of deformation modes, they are relevant in nonlinear analysis;

• Distortion without warping: This particular deformation shape has no longitudinal
strain or stress. Therefore, the only displacement is concerning the transverse dis-
placement, which is a combination of longitudinal rotation of the same segments and
transverse bending of other segments of the cross-section. The ordinary differential
equation is:

− iGD iV,xx (x)+K iB iV (x) = iq(x) (5.3)

• Local distortion with warping: This unique deformation shape happens only in specific
cross-section, such as the radial elongation of hollow circular cross-section, as presented
at the end of subsection 3.1.1. Usually, the longitudinal displacement and stress are
only due to plate behavior. The ordinary differential equation for this case is:

E iC iV,xxxx (x)+K iB iV (x) = iq(x) (5.4)

• Local distortion without warping: The simplest ordinary differential equation occurs
in this case of deformation mode, which has no longitudinal displacement or stress
and no type of transverse displacement due to longitudinal rotation or pure transverse
displacement, i.e., there is only transverse bending in cross-section’s segments. The
ordinary differential equation is:

K iB iV (x) = iq(x) (5.5)

Table 5.1 lists each GBT’s ordinary differential equation, as well as the usual ordinary
differential equations of rod, Euler-Bernoulli, Vlasov and Bredt-Saint Venant torsion
beam theories:
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Table 5.1: Ordinary Differential Equation of GBT

Kinematic behavior Diff. Equation
Pure radial elongation E 1C 1V,xx (x) = 1q(x)

Major bending E 2C 2V,xxxx (x) = 2q(x)
Minor bending E 3C 3V,xxxx (x) = 3q(x)

Non-uniform torsion E 4C 4V,xxxx (x)−G 4D 4V,xx (x) = 4q(x)
Uniform torsion −G 4D 4V,xx (x) = 4q(x)

distortion with warping E iC iV,xxxx (x)− iGD iV,xx (x)+ iB iV (x) = iq(x)
distortion without warping − iGD iV,xx (x)+ iB iV (x) = iq(x)
local distortion with warping E iC iV,xxxx (x)+ iB iV (x) = iq(x)

local distortion without warping iB iV (x) = iq(x)

5.2.2. Classification of GBT’s deformation modes concerning the
solution of ordinary differential equations
All ordinary differential equations presented in table 5.1 have only one possible case of
solution, i.e., in each one of these differential equations, the homogeneous solution leads
to a function that is the same, independently of the value of cross-section properties
iC, iD and iB.

There is only one exception: the case of distortion with warping, in which different val-
ues of cross-section properties can lead to different types of homogeneous solution.

In fact, the homogeneous part of the ordinary differential equation is:

E iC iV,xxxx (x)− iGD iV,xx (x)+ iB iV (x) = 0 (5.6)

And it has the characteristic equation: EC iλ 4−G iDλ 2+ iB= 0, with the following
possible roots:

λ1,2 ,3 ,4=±

√√√√ iGD
2E iC

±

√(
iGD
2E iC

)2

− K iB
E iC

(5.7)

The internal square root can classify not only the mathematical type of numerical root,
but also the main stiffness component in a transverse deformation mode of the cross-
section (i.e. torsion or distortion). Therefore, one can derive the following cases:

- Case A: Dominant distortion mode if
(

iGD
2E iC

)2
< K iB

E iC i.e. iGD< 2
√
K iBE iC;

Deformation modes, in this case, have the main contribution in total transverse stiffness
from the transverse bending of each wall in the cross-section. This case is the most
relevant. In fact, it is the most usual case in GBT, and it was the basic case studied in
Schardt’s work [136]. With two real and one complex conjugate roots, the solution of
the homogeneous differential equation is:

V(x)=J1cosh(αx)cos(βx)+J2cosh(αx)sin(βx)+J3 sinh(αx)sin(βx)+J4sinh(αx)cos(βx) (5.8)
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where: J1, J2, J3 and J4 are constants found by the boundary conditions; and:

α =

√√
K iB
4E iC

+
iGD
4E iC

(5.9)

β =

√√
K iB
4E iC

−
iGD
4E iC

(5.10)

- Case B: Dominant torsion mode if
(

iGD
2E iC

)2
> K iB

E iC i.e. iGD> 2
√
K iBE iC;

In this case, torsion of each wall in the cross-section is the main contributor in the total
transverse stiffness for deformation modes. This case occurs in closed rectangular cross-
section [175] and opened cross-sections, especially when the extremity walls are much
thicker than the internal walls. With four real roots, the solution of the homogeneous
differential equation is:

V (x) = J1 cosh(ζx)+ J2 sinh(ζx)+ J3sinh(ηx)+ J4 cosh(ηx) (5.11)

where:

ζ =

√√√√ iGD
2E iC

+

√(
iGD
2E iC

)2

− K iB
E iC

(5.12)

η =

√√√√ iGD
2E iC

−

√(
iGD
2E iC

)2

− K iB
E iC

(5.13)

- Case C: Critical Torsion-Distortion mode if
(

iGD
2E iC

)2
= K iB

E iC i.e. iGD= 2
√
K iBE iC;

In this particular case, torsion and transverse bending of each wall in the cross-section
have the same contribution in the total transverse stiffness for deformation modes.
This case is the border between the two previously presented cases. With two pairs of
identical real roots, the solution of the homogeneous differential equation is:

V (x)=J1xcosh(ιx)+J2xsinh(ιx)+J3 cosh(ιx)+J4 sinh(ιx) (5.14)

with: ι=

√
iGD
2E iC

(5.15)

5.2.3. Shape functions based on homogeneous solutions in GBT
analysis
After the classification of possible types of ordinary differential equations, as well as
the possible types of solutions of them, one can set up shape function based on the
homogeneous solution.
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From table 5.1, the ordinary differential equations concerning the pure longitudi-
nal elongation and uniform torsion have a first order polynomial homogeneous solu-
tion:

V (x) = J1 x+ J2 for modes 1 and 5 (5.16)

And the major and minor bending moments (modes 2 and 3) have a third order poly-
nomial homogeneous solution:

V (x) = J1 x3+ J2 x2+ J3 x+ J4 for modes 2 and 3 (5.17)

These polynomial functions lead to the well-known Hermitian shape functions.

However, other deformation modes do not have a polynomial solution. For instance,
the non-uniform torsion (mode 4) has the homogeneous solution:

V (x) = J1 cosh(
√
2ιx)+ J2 sinh(

√
2ιx)+ J3 x+ J4 (5.18)

where ι is given in eq. 5.15. Therefore, the Hermitian shape functions cannot reach
the exact solution directly. The exact solution of this mode requires a shape function
based on hyperbolic functions that can be found in [107].

The same question arises in other deformation modes, such as distortion with and
without warping and local distortion with warping, whose shape functions are based
on trigonometric-hyperbolic functions, as presented in equations 5.2, 5.3 and 5.4.

At this point, one can formulate the shape functions based on a homogeneous solution,
leading to exact solutions for these modes of GBT. However, there is an issue about
distortion modes, which is absent the rod, Euler-Bernoulli and Vlasov deformation
modes: the usual external loading functions of beams are linear independents of the
homogeneous solution. Since the usual loading in the structural analysis are constant or
linear functions in respect to the longitudinal direction of the beam, equations 5.2, 5.3
and 5.4 do not include these loading functions.

Consequently, it is not interesting for GBT’s distortion modes, in a practical point of
view, to obtain the shape functions based on the homogeneous solution. Instead, one
can go directly to the shape functions from the non-homogeneous solution. This also
includes the case of a homogeneous solution.

5.2.4. Shape functions based on non-homogeneous solutions in GBT
analysis
In non-homogeneous differential equations, the general solution is a combination be-
tween the homogeneous and a particular solution that represents an external load
function. In the most common structural analysis, external load functions are con-
stants or linear functions linearly independent from the homogeneous solutions of equa-
tions 5.2, 5.3 and 5.4. Therefore, the function of the exact solution of non-homogeneous
equation needs six terms, four from the boundary conditions - J1, J2, J3, and J4 -, for
the non-polynomial functions and two extra terms due to loading distribution - J5x+J6.
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For instance, the non-homogeneous solution for distortion with warping for these type
of loads is:

V (x) = J1 cosh(αx)cos(βx)+ J2 cosh(αx)sin(βx)+ J3 sinh(αx)sin(βx)+
+ J4 sinh(αx)cos(βx)+ J5x+ J6 (5.19)

which leads to three nodes for each element, with two degrees of freedom per node.
Further, for convenience of symmetric and anti-symmetric properties of trigonometric
function, the initial node is chosen in x=−L

2 and the final node as x= L
2 , as shown in

figure 5.1.

Figure 5.1: Element for Non-homogeneous solution with 6 degrees of freedom

In this proposed approach, all elements’ formulations are based on this element with
an extra node. Nevertheless, one can note that a static contraction can avoid this extra
node.

In the next paragraphs, the exact shape functions and their respective stiffness matrices
are developed for the GBT modes, for different cases of solutions and also for a variety
of boundary conditions.

5.2.5. Non-Homogeneous solution for distortion with warping - case
A with clamped-clamped boundary conditions
Starting with the shape functions of case A, dominant distortion mode, in clamped-
clamped1 boundary conditions. It is necessary to satisfy the completeness principle:
each interpolation function corresponds to a nodal displacement (transverse or lon-
gitudinal). Moreover, each interpolation function must have a unitary value for its
respective nodal displacement and vanish for other displacements and nodes [167]. For
instance, the first shape function, ShHacc1,2 which interpolates the initial generalized
displacement, is based on:

ShHacc1 = J11 cosh(αx)cos(βx)+ J21 cosh(αx)sin(βx)+
+ J31 sinh(αx)sin(βx)+ J41 sinh(αx)cos(βx)+ J51x+ J61 (5.20)

1The term clamped-clamped boundary conditions is an analog of bending moment. It refers to a
beam with longitudinal and transverse restraints in both initial and final nodes

2The index Hacc1 indicates that the shape functions are based on Hyperbolic-Trigonometric functions
(H), in clamped-clamped boundary conditions (cc) and it concerns the first function (1) of the set of
orthogonal functions.
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Where Ji j is the ind constant value of shape function j. The constants above must satisfy
the following conditions:

ShHacc1

(
x=

−L
2

)
1 ∴ J11 cosh

(
−αL
2

)
cos
(
−βL
2

)
+ J21 cosh

(
−αL
2

)
sin
(
−βL
2

)
+

+ J31 sinh
(
−αL
2

)
sin
(
−βL
2

)
+ J41 sinh

(
−αL
2

)
cos
(
−βL
2

)
− J51

L
2
+ J61 = 1 (5.21)

ShHacc1(x= 0) = 0 ∴ J11+ J61 = 0 (5.22)

ShHacc1

(
x=

L
2

)
= 0 ∴ J11 cosh

(
αL
2

)
cos
(

βL
2

)
+ J21 cosh

(
αL
2

)
sin
(

βL
2

)
+

+ J31 sinh
(

αL
2

)
sin
(

βL
2

)
+ J41 sinh

(
αL
2

)
cos
(

βL
2

)
+ J51

L
2
+ J61 = 0 (5.23)

ShHacc1,x

(
x=

−L
2

)
=0 ∴ J11

(
α sinh

(
−αL
2

)
cos
(
−βL
2

)
−β cosh

(
−αL
2

)
sin
(
−βL
2

))
+

J21

(
α sinh

(
−αL
2

)
sin
(
−βL
2

)
+β cosh

(
−αL
2

)
cos
(
−βL
2

))
+

J31

(
α cosh

(
−αL
2

)
sin
(
−βL
2

)
+β sinh

(
−αL
2

)
cos
(
−βL
2

))
+

+J41

(
α cosh

(
−αL
2

)
cos
(
−βL
2

)
−β sinh

(
−αL
2

)
sin
(
−βL
2

))
+J51=0 (5.24)

ShHacc1,x(x= 0) = 0 ∴ J21β + J41α + J51 = 0 (5.25)

ShHacc1,x

(
x=

L
2

)
= 0 ∴ J11

(
α sinh

(
αL
2

)
cos
(

βL
2

)
−β cosh

(
αL
2

)
sin
(

βL
2

))
+

+ J21

(
α sinh

(
αL
2

)
sin
(

βL
2

)
+β cosh

(
αL
2

)
cos
(

βL
2

))
+

+ J31

(
α cosh

(
αL
2

)
sin
(

βL
2

)
+β sinh

(
αL
2

)
cos
(

βL
2

))
+

+ J41

(
α cosh

(
αL
2

)
cos
(

βL
2

)
−β sinh

(
αL
2

)
sin
(

βL
2

))
+ J51 = 0 (5.26)

The conditions presented above can also be expressed in a matrix form that can be
applied for the other interpolation functions in this case:

[ShHacc1]
[
J11 J21 J31 J41 J51 J61

]T
=
[
1 0 0 0 0 0

]T (5.27)
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With: [ShHacc1] =

ch L
2
c L

2
−ch L

2
s L
2

sh L
2
s L
2

−sh L
2
c L

2
−L

2 1
−αsh L

2
c L

2
+βch L

2
s L
2

αsh L
2
s L
2
+βch L

2
c L

2
−αch L

2
s L
2
+β sh L

2
c L

2
αch L

2
c L

2
−β sh L

2
s L
2

1 0
ch L

2
c L

2
ch L

2
s L
2

sh L
2
s L
2

sh L
2
c L

2

L
2 1

αsh L
2
c L

2
−βch L

2
s L
2

αsh L
2
s L
2
+βch L

2
c L

2
αch L

2
s L
2
−β sh L

2
c L

2
αch L

2
c L

2
−β sh L

2
s L
2

1 0
1 0 0 0 0 1
0 β 0 α 1 0


(5.28)

Where: ch L
2
= cosh(αL

2 ), sh L
2
= sinh(αL

2 ), c L
2
= cos(βL

2 ), and s L
2
= sin(βL

2 ). The matrix
in eq. 5.28 is symbolically inverted, leading to the values of the six constants of the
first shape function. It is interesting to observe that the only difference among the
six shape functions is the vector on the right side of eq. 5.27. This vector will be:[
0 1 0 0 0 0

]T , [0 0 1 0 0 0
]T , [0 0 0 1 0 0

]T , [0 0 0 0 1 0
]T

and
[
0 0 0 0 0 1

]T for shape functions 2, 3, 4, 5 and 6 respectively. By solving
the system presented above for the other five interpolation functions, it is possible to
represent all constant values of the shape functions in a coefficient matrix, ShNHacc,
called here as completeness coefficient matrix:

[ShNHacc] =



J11 J12 J13 = J11 J14 =−J12 J15 =−2J11 0
J21 J22 J23 =−J21 J24 = J22 0 J26
J31 J32 J33 = J31 J34− J32 J35 =−2J31 0
J41 J42 J43 =−J41 J44 = J42 0 J46
J51 J52 J53 = J51 J54− J52 0 J56

J61 =−J11 J62 =−J12 J63 =−J11 J64 = J12 J65 0


KNHacc

(5.29)

With: KNHacc = 2
(

α sin
(

βL
2

)
−β sinh

(
αL
2

))(
cos
(

βL
2

)
− cosh

(
αL
2

))
(5.30)

J11 = β sinh
(

αL
2

)
cos
(

βL
2

)
+α cosh

(
αL
2

)
sin
(

βL
2

)
(5.31)

J12 = sinh
(

αL
2

)
sin
(

βL
2

)
(5.32)

J65 = α sin(βL)+β sinh(αL) (5.33)

J21 =
KNHacc

DS1
sinh

(
αL
2

)(
βJ212+αJ12−

α
4
sinh(αL)sin(βL)

)
(5.34)

where: DS1 = sinh3
(

αL
2

)(
L
(
α2+β 2)sin2(βL

2

)
+β sin(βL)

)
+

−α sinh(αL)sinh
(

αL
2

)
sin2

(
βL
2

)
−α sinh4

(
αL
2

)
sin
(

βL
2

)
sin(βL)+

−β sinh(αL)sinh2
(

αL
2

)
sin
(

βL
2

)
+

α
4
sinh2(αL)sin

(
βL
2

)
sin(βL) (5.35)
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J22 = J21

αL
2 − sinh

(αL
2

)
cos
(

βL
2

)
βJ12+αJ32

(5.36)

J26 = J21L−2J22 (5.37)

J31 = β cosh
(

αL
2

)
sin
(

βL
2

)
−α sinh

(
αL
2

)
cos
(

βL
2

)
(5.38)

J32 = 1− cosh
(

αLL
2

)
cos
(

βLL
2

)
(5.39)

J41 =
KNHacc

DS1
sinh

(
αL
2

)(
αJ212−βJ12+

β
4
sinh(αL)sin(βL)

)
(5.40)

J42 = J41

βL
2 − cosh

(αL
2

)
sin
(

βL
2

)
−αJ12+βJ32

(5.41)

J52 = J51
α coth

(αL
2

)
−β cot

(
βL
2

)
α2+β 2 (5.42)

J51 =−KNHacc

DS1
sinh

(
αL
2

)(
α2+β 2)J212 (5.43)

J46 = J41L−2J42 (5.44)

J56 = J51L−2J52+KNHacc (5.45)

Consequently, the generalized nodal displacements can now express the amplification
function V (x):

V (x) = [TxNHa] [ShNHacc] [ϑ ] (5.46)

Where [TxNHa] is the term vector in case A, which is dependent of length x, and [ϑ ]
is the vector of beam’s nodal displacements. These two vectors are presented below:

[TxHa] =



cosh(αx)cos(βx)
cosh(αx)sin(βx)
sinh(αx)sin(βx)
sinh(αx)cos(βx)

x
1



T

(5.47) [ϑ ] =



V−L/2
V ′
−L/2
VL/2
V ′
L/2
V0
V ′
0


(5.48)

The amplification function, V(x), is conveniently represented in eq. 5.46. It splits into
three terms: a first vector, in eq. 5.47, only function of x; a second, in completeness
coefficient matrix of boundary conditions, eq. 5.29, independent of x; and a third vector,
in eq. 5.48, which is vector of the nodal displacements. For different cases of dominant
torsion and/or distortion, as well as different boundary conditions, it is only necessary
to change the respective vector or/and matrix in the formulation above.
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A variation of V(x) is easily given by:

δV (x) = [TxHa] [ShHacc] (5.49)

Introducing equations 5.46 and 5.49 into the variational formulation presented in eq. 2.57
leads to:

- For the first integral:
(
E iCM+KiCP)∫

L

iV,xx(x)δ iV,xx(x)dx=

(
E iCM+KiCP) L

2∫
− L

2

[i [TxNH1,xx]
i [ShNHacc]

i [ϑ ]
]T i [TxNH1,xx]

i [ShNHacc]dx=

=
(
E iCM+K iCP) i [ShNHacc]

T i [ϒ′′
NHa
] i [ShNHacc]

i [ϑ ] (5.50)

The values of the integration matrix [ϒ′′
NHa] =

L
2∫

− L
2

[TxNHa,xx]
T [TxNHa,xx]dx are:

[
ϒ′′
NHa
]
=



ϒ′′
Ha,11 0 ϒ′′

Ha,13 0 0 0
ϒ′′
Ha,22 0 ϒ′′

Ha,24 0 0
ϒ′′
Ha,33 0 0 0

ϒ′′
Ha,44 0 0

0 0
Sym. 0


(5.51)

where: ϒ′′
Ha,11 =

1
4αβ

(
β sinh(αL)

(
α2 (α2−3β 2)cos(βL)+ (α2+β 2)2)+

+ α sin(βL)
((

α2+β 2)2+ (β 4−3α2β 2)cosh(αL)
)
+αβL

(
α4−6α2β 2+β 4)) (5.52)

ϒ′′
Ha,13 =

1
4
(
−β
(
β 2−3α2)sinh(αL)cos(βL)+α

(
α2−3β 2)cosh(αL)sin(βL)+

+4αβL(α −β )(α +β )) (5.53)

ϒ′′
Ha,22 =−ϒ′′

Ha,11+

(
α2+β 2

)2 sinh(αL)+αL
(
α4−6α2β 2+β 4

)
2α

(5.54)

ϒ′′
Ha,24 = ϒ′′

Ha,13+2αβL
(
β 2−α2) (5.55)

ϒ′′
Ha,33 =−ϒ′′

Ha,11+

(
α2+β 2

)2
(α sin(βL)+β sinh(αL))

2αβ
(5.56)

ϒ′′
Ha,44 = ϒ′′

Ha,11−
(
α2+β 2

)2 sin(βL)+βL
(
α4−6α2β 2+β 4

)
2β

(5.57)
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Thus, one obtains the stiffness matrix due to longitudinal strains of energy from the
multiplication:

i [Kc] =
(
E iCM+K iCP) i [ShHacc]

T i [ϒ′′
Ha
] i [ShHacc] (5.58)

- For the second term in the integral in eq. 2.57, one can proceed in a similar way:

G
(iDMc+iDP)∫

L

iV,x(x)δ iV,x(x)dx=G
(iDMc+iDP) i [ShNHacc]

T i [ϒ′
NHa
] i [ShNHacc]

i [ϑ ] (5.59)

The values of the integration matrix [ϒ′
NHa] =

L
2∫

− L
2

[Tx′NHa]
T [Tx′NHa]dx are given below:

[
ϒ′
NHa
]
=



ϒ′
Ha,11 0 ϒ′

Ha,13 0 0 0
ϒ′
Ha,22 0 ϒ′

Ha,24 ϒ′
NHa,25 0

ϒ′
Ha,33 0 0 0

ϒ′
Ha,44 ϒ′

NHa,45 0
L 0

Sym. 0


(5.60)

where: ϒ′
Ha,11 =

1
4αβ

(
αβL

(
β 2−α2)+β sinh(αL)

(
α2 cos(βL)+α2+β 2)+

−α sin(βL)
(
α2+β 2 cosh(αL)+β 2)) (5.61)

ϒ′
Ha,13 =

1
4
(−2αβL+β sinh(αL)cos(βL)+α cosh(αL)sin(βL)) (5.62)

ϒ′
Ha,22 =−ϒ′

Ha,11+
αL
(
β 2−α2

)
+
(
α2+β 2

)
sinh(αL)

2α
(5.63)

ϒ′
Ha,24 = ϒ′

Ha,13+αβL (5.64)

ϒ′
Ha,33 =−ϒ′

Ha,11−
(
α2+β 2

)
(α sin(βL)−β sinh(αL))

2αβ
(5.65)

ϒ′
Ha,44 = ϒ′

Ha,11+
βL
(
α2−β 2

)
+
(
α2+β 2

)
sin(βL)

2β
(5.66)

ϒ′
NHa,25 = 2cosh

(
αL
2

)
sin
(

βL
2

)
(5.67)

ϒ′
NHa,45 = 2sinh

(
αL
2

)
cos
(

βL
2

)
(5.68)

The stiffness matrix due to shear strains can be obtained from the multiplication:

i [Kd ] = G
( iDMc+ iDP) i [ShNHcc]T i [ϒ′

NHa
] i [ShNHcc] (5.69)
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- the third term in the integral in eq. 2.57 follows the same procedure:

K iB
∫
L

iV (x)δ iV (x)dx= K iB i [ShHacc]
T i [ϒHa]

i [ShHacc]
i [ϑ ] (5.70)

The values of the integration matrix [ϒNHa] =

L
2∫

− L
2

[TxNHa]
T [TxNHa]dx are given below:

[ϒNHa] =



ϒHa,11 0 ϒHa,13 0 0 ϒNHa,16
ϒHa,22 0 ϒHa,24 = ϒHa,13 ϒNHa,25 0

ϒHa,33 0 0 ϒNHa,36
ϒHa,44 ϒNHa,45 0

L3
12 0

Sym. L

 (5.71)

where: ϒHa,11 =
1

4αβ (α2+β 2)

(
α
(
α2+β 2)(βL+ sin(βL))+

+β sinh(αL)
(
α2 cos(βL)+α2+β 2)+αβ 2 cosh(αL)sin(βL)

)
(5.72)

ϒHa,13 =
α cosh(αL)sin(βL)−β sinh(αL)cos(βL)

4(α2+β 2)
(5.73)

ϒHa,22 =−ϒHa,11+
αL+ sinh(αL)

2α
(5.74)

ϒHa,33 =−ϒHa,11+
α sin(βL)+β sinh(αL)

2αβ
(5.75)

ϒHa,44 = ϒHa,11−
sin(βL)−βL

2β
(5.76)

ϒNHa,16 =
αϒ′

NHa,45+βϒ′
NHa,25

α2+β 2 (5.77)

ϒNHa,25=ϒ′
NHa,25

−βL
2

(
α2+β 2

)
cot
(

βL
2

)
+α tanh

(αL
2

)(L
2

(
α2+β 2

)
+2β cot

(
βL
2

))
−α2+β 2

(α2+β 2)2
(5.78)

ϒNHa,36 =
αϒ′

NHa,25−βϒ′
NHa,45

α2+β 2 (5.79)

ϒNHa,45=ϒ′
NHa,45

βL
2

(
α2+β 2

)
tan
(

βL
2

)
+α coth

(αL
2

)(L
2

(
α2+β 2

)
−2β tan

(
βL
2

))
−α2+β 2

(α2+β 2)2
(5.80)

Thus, one obtains the stiffness matrix due to transverse distortion from:

i [Kb] = K iB i [ShNHacc]
T i [ϒNHa]

i [ShNHacc] (5.81)
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- the fourth term in the integral in eq. 2.57 has a unique property. It involves the shape
function and its second derivative, as well as its commutative product. Each stiffness
matrix is not symmetric, but they are transposed from each other. This leads to the
final symmetric matrix in the summation:

µK iDµ
∫
L

iV (x)δ iV (x)dx= µK iDµ i [ShHacc]
T i [ϒ′′

NHa,
′ ] i [ShHacc]

i [ϑ ] (5.82)

The values of the integration matrix [ϒ′′
NHa,

′ ] =

L
2∫

− L
2

[Tx′′NHa]
T [TxNHa]+[TxNHa]

T [Tx′′NHa]dx

are:

[
ϒ′′
NHa,

′ ]=


ϒ′′
Ha,11,

′ 0 ϒ′′
Ha,13,

′ 0 0 ϒNHa,16′′,′

ϒ′′
Ha,22,

′ 0 ϒ′′
Ha,24,

′ ϒ′′
NHa,25,

′ 0
ϒ′′
Ha,33,

′ 0 0 ϒ′′
NHa,36,

′

ϒ′′
Ha,44,

′ ϒ′′
NHa,45,

′ 0
0 0

Sym. 0


(5.83)

where: ϒ′′
Ha,11,

′=
1

2αβ
[
β sinh(αL)

(
α2 cos(βL)+α2−β 2)−αβ 2 cosh(αL)sin(βL)+

+α(α2−β 2)(βL+ sin(βL))
]

(5.84)

ϒ′′
Ha,13,

′=
1
2
(2αβL+β sinh(αL)cos(βL)+α cosh(αL)sin(βL)) (5.85)

ϒ′′
Ha,22,

′=

(
α2−β 2

)
(αL+ sinh(αL))

α
−ϒ′′

Ha,11,
′ (5.86)

ϒ′′
Ha,24,

′= ϒ′′
Ha,13,

′−2αβL (5.87)

ϒ′′
Ha,33,

′= ϒ′′
Ha,22,

′+

(
α2−β 2

)
(βL− sin(βL))

β
(5.88)

ϒ′′
Ha,44,

′= ϒ′′
Ha,11,

′−
(
α2−β 2

)
(βL+ sin(βL))

β
(5.89)

ϒ′′
NHa,16,

′= αϒ′
NHa,45−βϒ′

NHa,25 (5.90)

ϒ′′
NHa,36,

′= βϒ′
NHa,45+αϒ′

NHa,25 (5.91)

ϒ′′
NHa,25,

′= αLsinh
(

αL
2

)
sin
(

βL
2

)
+βLcosh

(
αL
2

)
cos
(

βL
2

)
−ϒ′

NHa,25 (5.92)

ϒ′′
NHa,45,

′= αLcosh
(

αL
2

)
cos
(

βL
2

)
−βLsinh

(
αL
2

)
sin
(

βL
2

)
−ϒ′

NHa,45 (5.93)
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Similar to the other stiffness matrices, the one due to Poisson effect in plate behavior
can be obtained from the multiplication:

i [Kµ
]
= µK iDµ i [ShNHacc]

T i [ϒ′′
NHa,

′ ] i [ShNHacc] (5.94)

The total stiffness matrix can be expressed by the combination of equations. 5.58, 5.69,
5.81 and 5.94, as:

i[KNHacc] =
i[ShNHacc]

T [(E iCM+K iCP) i[ϒ′′
NHa]+G

( iDMc+ iDP) i[ϒ′
NHa]+

+K iB i [ϒNHa]+µK iDµ i [ϒ′′
NHa,

′ ]] i[ShNHacc] (5.95)

Here, it is important to highlight that the integration matrices ϒNHa, ϒ′
NHa, ϒ′′

NHa and
[ϒ′′

NHa,
′ ] [given respectively in equations 5.71, 5.60, 5.51 and 5.83] are not dependent

on the boundary conditions. Therefore, the completeness coefficient matrix, which
expresses the boundary conditions, can be understood as matrix transformation of a
kernel stiffness matrix:

i[KNHa] =
[(
E iCM+K iCP) i[ϒ′′

NHa]+G
( iDMc+ iDP) i[ϒ′

NHa]+

+K iB i [ϒNHa]+µK iDµ i [ϒ′′
NHa,

′ ]] (5.96)

The total stiffness matrix of clamped-clamped of case A can be expressed by:

i[KNHacc] =
i[ShNHacc]

T i[KNHa]
i[ShNHacc] (5.97)

Force vector for case A:
As mentioned before, the main reason to use 3 nodes, with 2 degrees of freedom each,
is to fulfill the inner product of the constant/linear distributed force and the variation
of generalized displacement, as expressed below:

∫
L

iq(x)δ iV (x)dx=

L
2∫

− L
2

iq(x) i [TxNHa]
i [ShHacc]dx (5.98)

Just like in the development of the stiffness matrix, the completeness coefficient matrix
of the boundary conditions is independent of the length, therefore one can find:

i [FNHacc] =
i[ShNHacc]

T i [FkNHa] (5.99)

Where the components of the vector are: i [FkNHa]
T = [Fk1,Fk2,Fk3,Fk4,Fk5,Fk6],

which in a linear load function, iq= ax+b, the expressions are:

Fk1 =
2b
(

α sinh
(αL

2

)
cos
(

βL
2

)
+β cosh

(αL
2

)
sin
(

βL
2

))
α2+β 2 (5.100)
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Fk2 =
a

(α2+β 2)2

(
α sinh

(
αL
2

)(
L
(
α2+β 2)sin(βL

2

)
+4β cos

(
βL
2

))
+

−cosh
(

αL
2

)(
βL
(
α2+β 2)cos(βL

2

)
+2(α −β )(α +β )sin

(
βL
2

)))
(5.101)

Fk3 =
2b
(

α cosh
(αL

2

)
sin
(

βL
2

)
−β sinh

(αL
2

)
cos
(

βL
2

))
α2+β 2 (5.102)

Fk4 =
a

(α2+β 2)2

(
sinh

(
αL
2

)(
βL
(
α2+β 2)sin(βL

2

)
+2
(
β 2−α2)cos(βL

2

))
+

+α cosh
(

αL
2

)(
L
(
α2+β 2)cos(βL

2

)
−4β sin

(
βL
2

)))
(5.103)

Fk5 =
aL3

12
(5.104)

Fk6 = L (5.105)

As a particular case, the constant function: iq= a eliminates the 2nd , 4th and 5th in the
above vector.

5.2.6. Simplification of the high-order derivatives and stiffness ma-
trices for coupled modes
The smoothness of the high-order derivatives of hyperbolic-trigonometric shape func-
tions has the numerical cost of long terms. For each multiplication term between
hyperbolic and trigonometric functions, the derivative always leads to the sum of two
new multiplication terms. As an example: (Sinh(αx)Sin(βx)),x = αCosh(αx)Sin(βx)+
βSinh(αx)Cos(βx). Fortunately, the resulting expression are similar to the initial ex-
pression. Thus, it is possible to rearrange the derived terms in the completeness coeffi-
cients matrix in order to reuse the kernel stiffness matrix. For instance, one can express
the first derivate of the function given in eq. 5.106 as:

V (x),x = [TxNHa] [ShNHa],x [ϑ ] (5.106)

where [ShNHa],x is completeness coefficients matrix for the first derivative. Each row
is a linear combination of the rows of the ordinary completeness coefficients matrix
[ShNHa]: 

Sh1
Sh2
Sh3
Sh4
Sh5
Sh6


NHa,x

=



βSh2+αSh4
−βSh1+αSh3
αSh2−βSh4
αSh1+βSh3

0
Sh5


NHa

(5.107)
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The second derivative has a similar simplification:

V (x),xx = [TxNHa] [ShNHa],xx [ϑ ] (5.108)

with: 

Sh1
Sh2
Sh3
Sh4
Sh5
Sh6


NHa,xx

=



(
α2−β 2

)
Sh1+2αβSh3(

α2−β 2
)
Sh2−2αβSh4(

α2−β 2
)
Sh3−2αβSh1(

α2−β 2
)
Sh4+2αβSh2
0
0


NHa

(5.109)

Thus, since the vector [TxNHa] is the same for the shape functions and its derivatives,
there is only one type of kernel stiffness matrix that can be obtained from:

i j [ϒNHa] =

L
2∫

− L
2

i [TxNHa]
T j [TxNHa]dx (5.110)

If ”i=j” the above expression is equal to the kernel stiffness matrix of linear anal-
ysis 5.71. Otherwise, one obtains the matrix required in the coupling between to
modes:

i j [ϒNHa]=



i jϒHa,11 0 i jϒHa,13 0 0 i jϒNHa,16
0 i jϒHa,22 0 i jϒHa,24

i jϒNHa,25 0
i jϒHa,31 0 i jϒHa,33 0 0 i jϒNHa,36

0 i jϒHa,42 0 i jϒHa,44
i jϒNHa,45 0

0 i jϒHa,51 0 i jϒHa,54
L3
12 0

i jϒHa,51 0 i jϒHa,53 0 0 L

 (5.111)

Here, if one sets α = iα and β = iβ , then: i jϒNHa,16 =ϒNHa,16 eq. 5.77; i jϒNHa,36 =ϒNHa,36
eq. 5.79; i jϒNHa,25 = ϒNHa,26 eq. 5.78; i jϒNHa,45 = ϒNHa,46 eq. 5.80;

Else, one sets α = jα and β = jβ , then: i jϒNHa,61 = ϒNHa,16 eq. 5.77; i jϒNHa,63 = ϒNHa,36
eq. 5.79; i jϒNHa,52 = ϒNHa,26 eq. 5.78; i jϒNHa,54 = ϒNHa,46 eq. 5.80. And the remained
terms are:
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i jϒHa,11 0 i jϒHa,13 0

0 i jϒHa,22 0 i jϒHa,24
i jϒHa,31 0 i jϒHa,33 0

0 i jϒHa,42 0 i jϒHa,44

=


−
β 0

−
α 0

0
−
β 0 −

−
α

−
α 0 −

−
β 0

0 −
−
α 0 −

−
β


Cosh

(−
α L

2

)
Sin
(−

β L
2

)
2
(

−
α2+

−
β 2

) +



−
α 0 −

−
β 0

0
−
α 0

−
β

−
−
β 0 −

−
α 0

0
−
β 0 −

−
α


Sinh

(−
α L

2

)
Cos

(−
β L

2

)
2
(

−
α2+

−
β 2

) +



+

β 0 −
−
α 0

0 −
+

β 0 −
−
α

−
α 0

+

β 0

0
−
α 0 −

+

β


Cosh

(−
α L

2

)
Sin
(

+

β L
2

)
2
(

−
α2+

+

β 2

) +



−
α 0

+

β 0

0 −
−
α 0

+

β

−
+

β 0
−
α 0

0 −
+

β 0 −
−
α


Sinh

(−
α L

2

)
Cos

(
+

β L
2

)
2
(

−
α2+

+

β 2

) +



−
β 0 −

+
α 0

0
−
β 0

+
α

+
α 0

−
β 0

0 −
+
α 0

−
β


Cosh

(
+
α L

2

)
Sin
(−

β L
2

)
2
(

+
α2+

−
β 2

) +



+
α 0

−
β 0

0
+
α 0 −

−
β

−
−
β 0

+
α 0

0
−
β 0

+
α


Sinh

(
+
α L

2

)
Cos

(−
β L

2

)
2
(

+
α2+

−
β 2

) +



+

β 0
+
α 0

0 −
+

β 0
+
α

+
α 0 −

+

β 0

0
+
α 0

+

β


Cosh

(
+
α L

2

)
Sin
(

+

β L
2

)
2
(

+
α2+

+

β 2

) +



+
α 0 −

+

β 0

0 −
+
α 0 −

+

β

−
+

β 0 −
+
α 0

0 −
+

β 0
+
α


Sinh

(
+
α L

2

)
Cos

(
+

β L
2

)
2
(

+
α2+

+

β 2

) (5.112)

Where:
+
α = iα + jα (5.113)
−
α = iα − jα (5.114)
+

β = iβ + jβ (5.115)
−
β = iβ − jβ (5.116)

In case of i ̸= j, the above matrix is asymmetric. However, in a total global stiffness
matrix, the coupling matrix i j [ϒNHa] is completely symmetric in respect to its transpose,
ji [ϒNHa].
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5.2.7. Non-Homogeneous solution for distortion with warping - case
A with hinged-hinged boundary conditions
When one adopts different boundary conditions at the element nodes, the advantages
in presenting the stiffness matrix in the form of eq. 5.96 stand out simply by changing
the completeness coefficients matrix.

For hinged-hinged1 boundary conditions, the null propriety of the first derivative of
longitudinal restraint at the initial and final nodes cannot be applied. Instead, one must
eliminate the generalized internal moment, which implies that the second derivative of
shape function must be null at the hinged nodes.

For instance, the first two shape functions of case A, presented in eq. 5.20, must satisfy
the following conditions at the initial node:

ShHahh1:
ShHahc1(x=−L

2
)=1 (5.117)

ShHahc1,xx(x=−L
2
)=0 (5.118)

ShHahc1(x=0)=0 (5.119)

ShHahc1,x(x=0)=0 (5.120)

ShHahc1(x=
L
2
)=0 (5.121)

ShHahc1,xx(x=
L
2
)=0 (5.122)

ShHahc2:

ShHahc2(x=−L
2
)=0 (5.123)

ShHahc2,xx(x=−L
2
)=0 (5.124)

ShHahc2(x=0)=0 (5.125)

ShHahc2,x(x=0)=0 (5.126)

ShHahc2(x=
L
2
)=0 (5.127)

ShHahc2,xx(x=
L
2
)=0 (5.128)

1The term hinged-hinged boundary conditions is an analog of bending moment, and it refers to
a beam with longitudinal release and transverse restraint at initial and the final nodes. In GBT, a
transverse membrane in a cross-section (such as a stiffener with thin thickness) provides this type of
boundary condition for high modes.
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Amatrix form can express not only the above conditions, but also other shape functions.
Following the same procedure presented in the previous subsection and solving the
six systems, each one with six equations, the hinged-hinged completeness coefficients
matrix of boundary conditions are:

[ShNHahh] =



J11 0 J13 = J11 0 J15 =−2J11 0
J21 0 J23 =−J21 0 0 J26 = J21L
J31 0 J33 = J31 0 J35−2J31 0
J41 0 J43 =−J41 0 0 J46 = J41L
J51 0 J53 = J51 0 0 J56

J61 =−J11 0 J63 =−J11 0 J65 0


KNHahh

(5.129)

With: J65 =−2αβ (cosh(αL)+ cos(βL)) (5.130)

J11 =
(
β 2−α2)sinh(αL

2

)
sin
(

βL
2

)
−2αβ cosh

(
αL
2

)
cos
(

βL
2

)
(5.131)

KNHahh = J65−2J11 (5.132)

J21 =
KNHahh

DS2

((
β 2−α2)sinh(αL

2

)
cos
(

βL
2

)
+2αβ cosh

(
αL
2

)
sin
(

βL
2

))
(5.133)

DS2 = L
(
α2+β 2)(β sinh

(
αL
2

)
cos
(

βL
2

)
+α cosh

(
αL
2

)
sin
(

βL
2

))
+ Jaux (5.134)

Jaux =−2αβ (cosh(αL)− cos(βL)) (5.135)

J31 = (α2−β 2)cosh
(

αL
2

)
cos
(

βL
2

)
−2αβ sinh

(
αL
2

)
sin
(

βL
2

)
(5.136)

J41 =
KNHahh

DS2

(
2αβ sinh

(
αL
2

)
cos
(

βL
2

)
+(α2−β 2)cosh

(
αL
2

)
sin
(

βL
2

))
(5.137)

J51 = KNHahh
Jaux−DS2

DS2L
(5.138)

J56 =
LJauxJ51
Jaux−DS2

(5.139)

By replacing ShNHacc with ShNHahh in eq. 5.97, one obtains the exact stiffness matrix for
an element with hinged-hinged boundary conditions. The vector force in eq. 5.99 must
receive the same substitution.

5.2.8. Non-Homogeneous solution for distortion with warping - case
A with clamped-hinged boundary conditions
The completeness coefficients matrix to clamped-hinged boundary conditions can be
determined in the same way of the previous case. However, due to non-symmetric
boundary conditions, it leads to substantial complex and longer terms, which calls for
attention to the cost of the exact solution for GBT in finite element method.
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It is important to note that, in spite of the complexity of the terms below, the stiffness
matrix for these boundary conditions is only feasible with the use of completeness
coefficients matrix. A direct derivation of the stiffness matrix, without the completeness
coefficients matrix, will lead to extremely long terms.

By following the same procedure, as in hinged-hinged boundary conditions, one obtains
the coefficient completeness matrix for the clamped-hinged boundary conditions:

[ShNHach] =



J11 J12 J13 0 J15 J16
J21 J22 J23 0 J25 J26
J31 J32 J33 0 J35 J36
J41 J42 J43 0 J45 J46
J51 J52 J53 0 J55 J56

J61 =−J11 J62 =−J21 J63 =−J13 0 J65 = KNHach− J15 J66 =−J16


KNHach

(5.140)
To evaluate this case, the following auxiliary terms are used:

b1 =
(
α2+β 2) (5.141)

b2 =
(
α2−β 2) (5.142)

b3 =
(
3α2+β 2) (5.143)

b4 =
(
3α2−β 2) (5.144)

b5 =
(
α2+3β 2) (5.145)

b6 =
(
α2−3β 2) (5.146)

a1=2b1

(
α sin

(
βL
2

)
−β sinh

(
αL
2

))
(5.147)

a3=2b1(α sin(βL)−β sinh(αL)) (5.148)

a2 = 4sinh
(

αL
2

)
sin
(

βL
2

)(
cos
(

βL
2

)
− cosh

(
αL
2

))
(5.149)

a4 = csch
(

αL
2

)
csc
(

βL
2

)
− coth

(
αL
2

)
cot
(

βL
2

)
(5.150)

a5 =−Lb1b2 cosh(αL)cos(βL) (5.151)

a6 =−β 2Lb1 cos(βL) (5.152)

a7 =−α2Lb1 cosh(αL) (5.153)

a8 =−4αβ 2 sinh(αL) (5.154)

a9=−4αβ 2 sinh
(

αL
2

)
cos
(
3βL
2

)
(5.155)

a10=−4α2β cosh
(

αL
2

)
sin
(
3βL
2

)
(5.156)
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a11=−2αβLb1 sinh
(

αL
2

)
sin
(

βL
2

)
(5.157)

a12=−4α2β cosh
(
3αL
2

)
sin
(

βL
2

)
(5.158)

a13=−4αβ 2 sinh
(
3αL
2

)
cos
(

βL
2

)
(5.159)

a14=−Lb1b2 cosh
(

αL
2

)
cos
(

βL
2

)
(5.160)

a15 =−2αβLb1 sinh(αL)sin(βL) (5.161)

a16 = 4α2β sin(βL) (5.162)

a17=−2αb2 sin
(
3βL
2

)
sinh

(
αL
2

)
(5.163)

a18=4αβ 2 sin
(

βL
2

)
cosh

(
αL
2

)
(5.164)

a19 = 4α2β cos
(

βL
2

)
sinh

(
αL
2

)
(5.165)

a20 = 4α2β sin(2βL) (5.166)

a21=−α2b1Lcos
(
3βL
2

)
cosh

(
αL
2

)
(5.167)

a22=β 2b1Lcos
(

βL
2

)
cosh

(
3αL
2

)
(5.168)

a23 =−sinh
(

αL
2

)(
4α cosh

(
αL
2

)(
b1 cos(βL)−α2+4β 2 cosh(αL)

)
−

2b1

(
2β sinh

(
αL
2

)
sin(βL)+sin

(
βL
2

)
(3αβL(cos(βL)+1)−2α sin(βL)−2β sinh(αL))

))
(5.169)

Therefore, the terms in eq. 5.140 are:

KNHach = a23−2(a5+a6−a7−a15−a16)+3
(a8
2
+a10−a13

)
+a11 (1−3cosh(αL))+

+a9−a12−a14+a20+a21+a22 (5.170)

J11 = a5+a6−a7−a8−a9−a10+a12+a13−a15−a16 (5.171)

J16 =
a11

α2β 2

(
4
(
β 2a7−α2a6

)
(Lb1)

2 +
a16−a8

4

)
(5.172)

J13 = J11+a1a2 (5.173)

J15 =−2J11−a1a2 (5.174)

93



J12 =−L
2
a1a2− J16 (5.175)

J25=a3

(
αL−2sinh

(
αL
2

)
cos
(

βL
2

))
(5.176)

J22=
4αβJ25
Lb1a3

(
a11b2
2α2β 2+

2a14
b2

−a6
β 2−

a7
α2

)
(5.177)

J23 =
2a6b3−3b2a11+a15b4

βLb1
−

4βa14
(
−2α4a6+L(αβb1)2−β 2b2a7

)
(Lαβb1)2 b2

+

+
2βa7

(Lαβb1)2
(
2α2β 2Lb1−b4a6−2a11β 2)− L2b1 (a8+a16)+8a15

4βL
−a17 (5.178)

J26 =
L
2
(J21− J23)− J22 (5.179)

J21 =−(J23+ J25) (5.180)

J31 =−α (a6−a9)
β

+
b3a8−b5a16+b2a15

2αβ
+2

αβa5
b2

− βa7
α

+

+a18

(
3+

α2

β 2 +2cos(βL)−2cosh(αL)
)
+a19

(
2+

β 2

α2 +2cosh(αL)
)

(5.181)

J33 = J31+a1a2a4 (5.182)
J32 = J12a4 (5.183)
J36 = J16a4 (5.184)

J35 =−(J31+ J33) (5.185)

J43 =
2

αL

(
a5+a6−a7+a14−a21−a22−

a11
Lb1

(
a6
β 2 +

a7
α2 −

4a14
b2

))
− β

α
J23 (5.186)

J45 =−a3
(

βL−2cosh
(

αL
2

)
sin
(

βL
2

))
(5.187)

J42 =
J22J45
J25

(5.188)

J46 =
L
2
(J41− J43)− J42 (5.189)

J41 =−(J45+ J43) (5.190)
J5i =−(βJ2i+αJ4i) for: 1≤ i≤ 5 (5.191)

J56 = KNHach− (βJ26+αJ46) (5.192)
By replacing ShNHacc with ShNHach in eq. 5.97, one obtains the exact stiffness matrix for
an element with clamped-hinged boundary conditions. The same must be done for the
vector force presented in eq. 5.99.
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5.3. Numerical Examples
As a detailed numerical example of the application of the exact stiffness matrix, a
thin-walled circular hollow steel cross-section, as shown in figure 5.2, is applied in a
vertical cantilever structure. This structure is under a linear projected surface load,
i.e., the total load applied in the structure is not a product of the surface load and
the area of the surface, but the product of the surface load and the project area on
the global coordinate direction z. The material parameters are: Young Modulus, E =
205,000N/mm2, Poisson’s ratio, µ = 0.3, Shear Modulus, G= 78,846.2N/mm2.

Figure 5.2: Thin-walled circular hollow section under a linear projected force; a) Ele-
vation; b) cross-section; c) Force and area’s projection in local coordinate system.

The evaluation of this problem has the following analytical steps: 1st - Cross-section
analysis and load’s mode participation; 2nd - Finite Element solution in the longitudinal
direction; 3rd and 4th Analysis of the displacement and stress fields, respectively.

5.3.1. Cross-section analysis and load’s mode participation
As exposed in chapter 3, the cross-section analysis of thin-walled circular hollow avoids
the quadratic eigenvalue problem. Moreover, from an infinite number of orthogonal
deformation modes, only a few modes are necessary to evaluate an applied problem such
as the current one. The filtering technique of relevant deformation mode is performed
by the modal decomposition of the external loads, which are assumed to be represented
by separation of variables, as given in equations 3.48, 3.49 and 3.50 together with the
inner product of the deformation modes, 3.51, 3.52 and 3.53. For instance, in the
present case, the external project load can be described in the local coordinate system
(v,w) as:

for π/2≤ θ ≤ 3π/2

{
qv = qsin(θ)cos(θ)
qw =−qcos(θ)2

and qx = 0 (5.193)

In the inner products of these functions, equations 3.51, 3.52 and 3.53, the relevant
modes in GBT’s structural analysis stand out. Furthermore, the integral of odd trigono-
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metric functions, inside the interval π/2≤ θ ≤ 3π/2, are eliminated. Therefore, the even
modes do not participate in this analysis, since evenqv= qm

∫ 3π/2
π/2 cos(θ)sin(θ)cos(mθ)dθ =

0 and evenqw = qm2 ∫ 3π/2
π/2 cos(θ)2 sin(mθ)dθ = 0. Table 3.1 present the summary of ex-

ternal forces modal decomposition and the respective mode cross-section properties
necessary to develop the GBT solution:

Table 5.2: Example 5.1 - cross-section and external load modal decomposition

Mode C D B Dµ qv qw qtot
mm4 mm4 mm−1 mm−1 N/mm2 N/mm2 N/mm2

a 11,651.51 0 2.513-2 0 0.000 -2.3562 -2.3562
3 3,976,084,027 0 0 0 1.000 2.000 3.000
5 3,976,171,414 1.36 1.072-6 -0.20 -2.3562 -4.7124 -7.069
7 3,976,550,088 21.71 3.860-5 -2.71 1.800 3.600 5.400
11 3,979,719,299 542.87 2.681-3 -62.83 -0.714 -1.429 -2.143
15 3,990,065,841 4,256.08 4.119-2 -482.75 0.467 0.933 1.400

Here, 5 modes are chosen. Among these modes, 3 and 5 are enough to solve the dis-
placement field. However, in order to obtain some particular internal forces, especially
in the neighborhood of support, higher modes are required. Since these high modes
have C, D and B stiffness terms, one must perform a mode classification concerning
the dominant behavior, as it is in subsection 5.2.2:

Table 5.3: Example 5.1 - Modal classification

Mode GD(N/mm2) 2
√
BEC(N/mm2) condition case

a 0.00 7.016E+6 GD< 2
√
BEC A

5 1.658E+5 4.210E+7 GD< 2
√
BEC A

7 2.538E+6 2.526E+8 GD< 2
√
BEC A

11 6.191E+7 2.106E+9 GD< 2
√
BEC A

In all GBT’s modes, the dominant behavior is the distortion, which is typical in thin-
walled beams. Moreover, one can apply the exact stiffness matrix approach detailed in
Case A.

5.3.2. Finite element solution in the longitudinal direction
After obtaining and classifying the cross-section properties, the finite element approach
solves the longitudinal amplification for each deformation mode. A well-known Hermi-
tian element, with 2 nodes and 4 degrees of freedom, could solve mode 3. However, as
an opportunity to clarify the application of completeness coefficient matrix, this mode
is solved here by a Hermitian element with 3 nodes and 6 degrees of freedom, such as
in figure 5.1. For this element, the shape functions vector is:

V (x) = [TxHe] [ShHecc] [ϑ ] (5.194)
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with: [TxHe] =
[
x5 x4 x3 x2 x 1

]
(5.195)

[ϑ ] =
[
V−L/2 V ′

−L/2 VL/2 V ′
L/2 V0 V ′

0

]T
(5.196)

The completeness coefficient matrix, ShHecc, can be obtained by applying the procedures
showed in section 5.2.5. For the case of clamped-clamped, it results in:

[ShHecc] =



24/L5 4/L4 −24/L5 4/L4 0 16/L4

−8/L4 −2/L3 −8/L4 2/L3 16/L4 0
−10/L3 −1/L2 10/L3 −1/L2 0 −8/L2

4/L2 1/(2L) 4/L2 −1/(2L) −8/L2 0
0 0 0 0 0 1
0 0 0 0 1 0

 (5.197)

The corresponding kernel stiffness matrix and force vector (for linear external force:
f = ax+b) for this case are, respectively:

[
ϒ′′
He
]
=



25L7/28 0 3L5/2 0 0 0
9L5/5 0 2L3 0 0

3L3 0 0 0
4L 0 0

0 0
Sym. 0

 (5.198) [FHe] =



aL7/448
bL5/80
aL5/80
bL3/12
aL3/12
bL

 (5.199)

Thus, one can build i) the effective stiffness matrix by the transformation of com-
pleteness coefficient matrix: 3 [Kc] = E 3C 3 [ShHecc]

T 3 [ϒ′′
He]

3 [ShHecc], and ii) the effective
external force vector:

[
3F
]
= 3 [ShHecc]

T [FHe]. Together with the boundary conditions of
the null displacement and rotation in x=−L/2, one addresses the system of equations
to find the nodal displacements in mode 3 (units in N and mm):

1.69E+4
−3.21E+7
2.4E+4
5.14E+7

=


4.39E+3 −2.94E+7 −3.09E+3 −4.97E+7

2.58E+11 2.32E+7 2.48E+11
6.18E+3 0

Sym 9.94E+11



3VL/2
3V ′

L/2
3V0
3V ′

0

 (5.200)

[
3VL/2

3V ′
L/2

3V0 3V ′
0

]T
=
[
273.28 0.0124 93.94 0.0106

] (5.201)

With the nodal displacement values, eq. 5.194 and its first derivative achieve the dis-
placement field corresponding to mode 3 at any position in the longitudinal direc-
tion.

In the sequence, it is developed the finite element analysis for GBT’s high modes 5, 7,
11 and 15:

- mode 5: To build up the completeness coefficient and stiffness matrices, one must
first find the values of α and β :

5α =

√√
B

4EC
+

GD
4EC

= 1.13855E−4 (5.202)
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5β =

√√
B

4EC
− GD

4EC
= 1.13401E−4 (5.203)

Hence, the completeness coefficient matrix is evaluated based on clamped-clamped
boundary conditions, eq. 5.29:

[ShNHacc] =


0.25 2,341.167 0.25 −2,341.167 −0.5 0.0

−1.071 −4,823.949 1.071 −4,823.949 0.0 −22,473.151
0.318 1,212.475 0.318 −1,212.475 −0.637 0.0
−0.342 −2,639.382 0.342 −2,639.382 0.0 −4,994.045
0.00016 0.848 −0.00016 0.848 0.0 4.117
−0.25 −2,341.167 −0.25 2,341.167 1.5 0.0

 (5.204)

Following the presented procedure, the kernel stiffness matrices due to longitudinal
stress, transverse shear, distortion and Poisson effect of the plate behavior are addressed
by the respective equations 5.51, 5.60, 5.71 and 5.83:

[
ϒ′′
NHa

]
= 10−11


3.048 0 −0.794 0 0 0

0.403 0 −0.802 0 0
1.327 0 0 0

4.124 0 0
0 0

Sym 0

 (5.205)

[
ϒ′
NHa

]
= 10−4


5.69 0 −7.218 0 0 0

11.534 0 −3.344 56.499E+3 0
11.843 0 0 0

5.412 −6.928E+3 0
3E+8 0

Sym 0

 (5.206)

[ϒHa] = 104


1.9814 0 1.1803 0 0 2.1757

6.1946 0 1.1803 3.709E+4 0
4.5811 0 0 2.7954

0.5949 8.088E+3 0
2.25E+8 0

Sym 3.0

 (5.207)

[
ϒ′′
Ha,

′ ]= 10−4


−6.036 0 −6.682 0 0 −7.198

6.143 0 −14.43 2.103+4 0
6.122 0 0 5.627

−6.054 −9.567+4 0
0 0

Sym 0

 (5.208)

From eq. 5.97, these matrices lead to the exact stiffness matrix, presented below in
eq. 5.209. Also, it is presented the correspondent load vector, obtained from eq. 5.99:

5[KNHa] = 103


6.957 3.394+4 −1.022 5.219+3 −2.216 4.563+4

2.679+8 −5.219+3 2.587+7 −2.076+4 2.411+8
6.957 −3.394+4 −2.216 −4.563+4

2.679+8 2.076+4 2.411+8
1.330+1 0

Sym 1.171+9

 (5.209)
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5 [FNHacc]
T = 104

[
−0.9115 −2.9E+3 −3.9246 7.416E+3 −5.7668 −12.335E+3

] (5.210)

The boundary conditions for GBT’s high modes are, in this case, the same of Euler-
Bernoulli bending, since the longitudinal (warping) and transverse (distortion) at the
initial point, x = −L/2 are restrained. After this restriction, one can solve the system
of linear equation to determine the other degrees of freedom:


−3.9246
7.416E+3
−5.7668

−12.335E+3

=

0.6957 −3.392E+3 −0.2216 −4.564E+3

2.679E+7 2.076E+3 2.412+7
1.33 0

Sym 1.172E+8



5VL/2
5V ′

L/2
5V0
5V ′

0

 ∴


5VL/2
5V ′

L/2
5V0
5V ′

0

=


−13.303

−4.896−4
−5.788

−5.228−4


(5.211)

- modes 7, 11, 15 and radial: These modes follow the same procedure used for mode 5.
Hence, only the final values of nodal displacements are presented here:

a [ϑ ]T =
[
0.0 0.0 −4.573E−4 −1.524E−8 −2.287E−4 −1.524E−8

] (5.212)

7 [ϑ ]T =
[
0.0 0.0 2.763−1 9.547−6 1.384−1 9.152−6

] (5.213)
11 [ϑ ]T =

[
0.0 0.0 −1.59−3 −7.24−8 −7.88−4 −5.26−8

] (5.214)
15 [ϑ ]T =

[
0.0 0.0 6.71−5 2.53−9 3.35−5 2.23−9

] (5.215)

In the case of radial mode, since there is not any torsion stiffness, D= 0, it leads to a
particular case, in which α = β .

5.3.3. Analysis of the displacement field
This subsection does not only plot the generalized displacement and rotation functions,
but also it compares them to the solution obtained from the usual C1 Hermitian shape
functions. Moreover, it details the cross-section transverse deformation at the extreme
free point of the structure and compares it to the results obtained from a finite-element
analysis based on shell elements.

The generalized displacement functions, given by eq. 5.46, are plotted below for modes
a, 5, 7, and 11, in figures 5.3, 5.4, 5.5, 5.6 and 5.7, respectively. The amplification func-
tions for cross-section warping, i.e., the longitudinal displacement, are found by the first
derivative of eq. 5.46 and plotted below for the same modes in figures 5.8, 5.9, 5.10, 5.11
and 5.12, respectively.

One can observe that the solution obtained from a single Hermitian element lacks pre-
cision, which can be overcome by finer discretization, e.g. with 10 elements as used
above. Although this solution seems to have better accuracy for the displacement field
for the lower order modes 5 and 7, the first derivatives for the higher modes, such as
11, 15 and the radial mode, have coarse results, especially near the support boundary
condition. Further, it is important to keep in mind that this solution was obtained
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Figure 5.3: Generalized displacement of the radial mode, aV , (in mm)

Figure 5.4: Generalized displacement of mode 5, 5V , (in mm)

Figure 5.5: Generalized displacement of mode 7, 7V , (in mm)

Figure 5.6: Generalized displacement of mode 11, 11V , (in mm)

from a linear equation system of 20 unknowns instead of a system with 4 unknowns,
as proposed here by the trigonometric-hyperbolic shape functions. Moreover, the high
computational performance of GBT is only reached by coarse longitudinal beam dis-
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Figure 5.7: Generalized displacement of mode 15, 15V , (in mm)

Figure 5.8: Generalized warping displacement of the radial mode, aV ′, (in m/m)

Figure 5.9: Generalized warping displacement of mode 5, 5V ′, (in m/m)

Figure 5.10: Generalized warping displacement of mode 7, 7V ′, (in m/m)

cretization. If some structural analysis requires many GBT modes, it will lead to similar
amount of degrees of freedom for each beam node as in the case of a cross-section mod-
eled by shell elements. This GBT model with a high number of modes, together with

101



Figure 5.11: Generalized warping displacement of mode 11, 11V ′, (in m/m)

Figure 5.12: Generalized warping displacement of mode 15, 15V ′, (in m/m)

fine longitudinal discretization, provides a total number of unknowns that is similar
to a traditional shell element analysis. This case is especially applicable in non-linear
analysis involving plasticity [2].

Actually, shell element models with high discretization are used in the approach to
validate the GBT’s models that are based on comparison of the results from both types
of models [37, 38, 71].

Here, the results using shell elements were obtained from commercial ANSYS® software,
where four models based on shell elements types 63, 93, 181, and 281 were developed.
The discretization among these models are the same: 100 nodes for the cross-section
and 600 element segments in the longitudinal direction. This leads to a total of 60,000
elements. The differences among these models are: i) the type of interpolation func-
tion applied: linear (shell-63 and shell-181) or quadratic (shell-93 and shell-281); ii)
the kinematic hypotheses: Kirchhoff-Love (shell-63 and shell-93) and Mindlin-Reissner
(shell-181 and shell-281) [5, 168].

The comparison of displacement fields, among these models and the GBT one, is placed
in the cross-section at the free extreme, which is plotted in figures 5.13 and 5.14. The
combination of radial and tangential displacements, equations 3.6 and 3.4 respectively,
achieves the transverse deformation. The value of iV (x) of each mode is taken at the
node x = L/2, and for each desired point on this cross-section, the values v and w are
accessed in table. 3.1.
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Figure 5.13: Results of top cross-section deformation: the GBT solution is obtained
by the summation of all modal deformation factors. The solution achieved from shell
elements is also presented.

One can note in figure 5.13, that the contribution from modes 7, 11, 15 and radial are
almost undetectable in the total displacement. Nevertheless, these modes are required
to achieve an accurate stress field, as shown in the next subsection. Table 5.4 shows that
the highest mean difference is around 0.8%, which occurs in the tangential direction
v between GBT and Shell-63. Further, it shows that the GBT results approach the
response of elements with quadratic interpolation functions.

Table 5.4: Mean differences, in %, and standard deviation (SD) of displacement field
between GBT and shell elementsk models at point x= L/2

element u v w
diff. SD diff. SD diff. SD

Shell-63 0.13% 0.36% 0.78% 0.94% 0.4% 1.58%
Shell-93 0.04% 0.25% 0.49% 1.06% 0.34% 1.51%
Shell-181 0.16% 0.41% 0.61% 1.08% 0.43% 1.62%
Shell-281 0.04% 0.30% 0.49% 1.06% 0.34% 1.52%

For longitudinal displacement, the differences are even smaller. The highest mean
difference is around 0.16% with respect to Shell-181. Figure. 5.14 presents a diagram
of the longitudinal displacement in order to show the quality of the results:

To illustrate how the Poisson’s effect, presented in sub-section 3.1.2, acts in the dis-
placement field, figure 5.15 plots the cross-section deformation at the longitudinal po-
sition of x = 1m. Inserting the modal displacement, from eq. 5.211 to eq. 5.215 into
eq. 5.46, one achieves the values of iV (x) of each respective mode:
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Figure 5.14: Results of longitudinal displacement at top cross-section: Comparison
between the solutions of GBT and shell elements.

Table 5.5: GBT displacements at x=1m

aV 3V 5V 7V 11V 15V

-1.524-5 5.429-1 -4.712-2 2.331-3 -3.160-5 1.951-6

Figure 5.15: Results of cross-section deformation at x=1m: Comparison among the
GBT solutions with/without Poisson effect and shell elements.
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Figure 5.16: Results of longitudinal displacement of the cross-section at x=1m: Com-
parison between the solutions of GBT and shell elements.

Table 5.6: Mean differences, in %, and standard deviation (SD) of displacement field
between GBT and shell elementsk models at point x= 1m

element u v w w/o Poisson w with Poisson
diff. SD diff. SD diff. SD diff. SD

Shell 63 -0.14% 0.51% 15.74% 8.75% 35.06% 38.02% 9.7% 8.84%
Shell 93 -0.19% 0.44% 13.71% 11.68% 35.09% 37.87% 9.76% 8.3%
Shell 181 -0.19% 0.45% 15.73% 8.73% 35.09% 37.88% 9.75% 8.32%
Shell 281 -0.09% 0.59% 13.8% 11.7% 35.12% 38.11% 9.73% 9.12%

It is interesting to observe how the Poisson’s effect correction approximates to the shell
finite elements’ solution. Table 5.6 shows a reduction in mean difference and standard
deviation values, 35% and 38% respectively, to 9.7% and 8.9% if one includes the
Poisson’s effect into the analysis of radial displacement w.

Also, figure 5.15 shows that this effect decreases in high modes. The only difference
between the results concerns mode 3, which indicates the cos in the assumption of
no shear deformation in membrane behavior. Therefore, to improve the quality of this
result, it is necessary to change the kinematic assumption of mode 3 from the traditional
Bernoulli-Euler beam to Timoshenko beam theory[129, 170].

Another evidence that supports the lack of shear deformation in the transverse displace-
ment is the longitudinal displacement of the cross-section at this point. Figure 5.16
and table. 5.6 show the differences between GBT and shell element solutions are almost
imperceptible: around 0.2%.
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5.3.4. Analysis of the stress field
As shown in section 3.1.4, one obtains the longitudinal and the shear stresses, at a
particular point of one cross-section, by the superposition of all stress modal partici-
pation (equations 2.74 and 2.85, respectively). Similar to the displacement field, this
subsection plots the results of the stress field obtained from the formulation of exact
solution in GBT, as well as the results from the traditional Hermitian shape functions.

Figure 5.17: Generalized Internal force of radial mode, aW , (in MN*m)

Figure 5.18: Generalized Internal force of radial mode, aW ′, (in MN)

Figure 5.19: Generalized Internal force of mode 5, 5W , (in MN*m)

The stress field results found from Hermitian and trigonometric-hyperbolic functions
have a clear contrast. Due to the higher order derivatives required to achieve the stress
fields, the Hermitian shape functions present discontinuities, especially for the general-
ized shear force (see figures 5.18, 5.20, 5.22 and 5.24). Since hyperbolic-trigonometric
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Figure 5.20: Generalized Internal force of mode 5, 5W ′, (in MN)

Figure 5.21: Generalized Internal force of mode 7, 7W , (in MN*m)

Figure 5.22: Generalized Internal force of mode 7, 7W ′, (in MN)

Figure 5.23: Generalized Internal force of mode 11, 11W , (in MN*m)

shape functions always have derivatives, such effect does not exist. Besides, the general-
ized bending moments for radial and higher order modes (figures 5.17 and 5.21, respec-
tively) present an exponential growing behavior near the support. Consequently, the
Hermitian shape functions require an even higher discretization in this domain.
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Figure 5.24: Generalized Internal force of mode 11, 11W ′, (in MN)

Figure 5.25: Generalized Internal force of mode 15, 15W , (in MN*m)

Figure 5.26: Generalized Internal force of mode 15, 15W ′, (in MN)

This issue of precision deficiency in the Hermitian shape function has a particular high-
light in the case of circular hollow sections, whose internal forces are obtained from a
combination of the higher order derivatives, as presented in equations 3.61, 3.62, 3.65, 3.66
and 3.67.

To illustrate the quality of the results obtained from the presented GBT approach, all
internal bending moments and shear forces in the cross-section at the point x= 1m are
plotted below alongside the results obtained from shell element models.

Figures 5.27 to 5.31 show how GBT approaches the results of the other models. It also
indicates that there is no consensus among the different shell element models regarding
the values of the plate’s internal forces. Tables 5.7 to 5.11 present mean differences and
standard deviations for all models.

For the longitudinal bending moment Mx, GBT leads to the results of Shell-93 model.
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Figure 5.27: Longitudinal bending moment, Mx, in cross-section at x=1m

Figure 5.28: transverse bending moment, Mθ , in cross-section at x=1m
Table 5.7: Mx: Mean differences, (in table’s upper-right side), and their standard devi-
ation (in table’s lower-left side) among all models

Mx GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – -6.22% 0.31% -6.16% 78.9%

Shell 63 12.24% – -8.32% -0.05% 93.94%
Shell 93 8.83% 1.97% – -8.27% 77.8%
Shell 181 12.37% 0.1% 2.06% – 92.89%
Shell 281 5.62% 18.34% 19.76% 22.81% –
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Figure 5.29: Twist moment, Mθx, in cross-section at x=1m

The mean difference is around 0.31%. Shell models with a linear interpolation function,
Shell-63 and Shell-181, reach almost the same result. The mean difference between
these two models is -0.05% and the standard deviation is lower than 0.1%. Both
models have the mean difference and standard deviation with GBT around 6.2% and
12.24%, respectively. Surprisingly, Shell-281 has results much higher than the other
models.

However, for the transverse bending momentMθ , the highest mean difference is between
Shell-93 and GBT, which is around of 19.5%. GBT results are consistent with the ones
obtained from the other shells models. It is possible to observe the same behavior in
twist bending moment,Mθx. GBT results diverge from the Shell-93 ones and converge to
the other models. Nevertheless, the mean differences for this internal bending moment
are lower than the other bending moments.
Table 5.8: Mθ : Mean differences, (in table’s upper-right side), and their standard
deviation (in table’s lower-left side) among all models

Mθ GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – 7.16% 19.48% 7.27% 7.27%

Shell 63 0.72% – 1.33% -0.1% -0.1%
Shell 93 41.03% 37.19% – -0.09% -0.08%
Shell 181 0.72% 0.03% 38.12% – 0.01%
Shell 281 0.71% 0.09% 38.09% 0.06% –

One interesting observation concerns how the GBT modal analysis provides a spectral
description of the internal forces that points out the relevant kinematic behavior in a
thin-walled structure. This feature leads to a clear design approach, which allows the
mitigation of the significant stress’ modes.

For instance, from figure 5.27, it is clear that the longitudinal bending moment is
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Table 5.9: Mθx: Mean differences, (in table’s upper-right side), and their standard
deviation (in table’s lower-left side) among all models

Mθx GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – 2.78% 3.31% 2.45% 2.9%

Shell 63 2.93% – 1.13% 1.06% -0.11%
Shell 93 9.77% 9.25% – -0.01% 1.25%
Shell 181 3.78% 5.7% 5.75% – 1.19%
Shell 281 3.05% 0.13% 9.33% 5.81% –

mainly provided from mode 3. On the other hand, this mode has no participation in
transverse bending or twist moments, as shown in figures 5.28 and 5.29. Also, from
these pictures, one can observe that modes 5 and 7 are the most relevant for transverse
bending and twist moments.

Following the same representation, one can express and compare the internal shear
forces, given in equations 3.66 and 3.67, with the results of shell models.

Figure 5.30: Shear forces, Qx, in cross-section at x=1m

Similar to longitudinal bending moment, GBT’s longitudinal shear force, Qx, approaches
the results found in Shell-93 by the mean difference value. However, if one considers
the standard deviation, GBT achieves the results of Shell-281 model. Shell-181 is an-
other highlight in this internal force. As presented in figure 5.30, the results of this
shell model have not only a quantitative difference, but also a considerable qualitative
difference.

On the other hand, for the transverse shear force, Shell-181 presents the lower difference
from GBT’s results, mean difference of 8.93% and standard deviation of 3.75%.

This lack of consensus about the plate’s internal forces does not happen for the internal
membrane forces. Although membrane requires even higher derivatives of the amplifi-
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Figure 5.31: Shear forces, Qθ , in cross-section at x=1m

Table 5.10: Qx: Mean differences, (in table’s upper-right side), and their standard
deviation (in table’s lower-left side) among all models

Qx GBT Shell-93 Shell-181 Shell-281
GBT – 3.58% 25.43% 3.74%

Shell 93 11.71% – -3.97% 0.95%
Shell 181 280.16% 350.09% – -75.59%
Shell 281 5.1% 8.08% 73.5% –

Table 5.11: Qθ : Mean differences, (in table’s upper-right side), and their standard
deviation (in table’s lower-left side) among all models

Qθ GBT Shell-93 Shell-181 Shell-281
GBT – 15.11% 8.93% 10.36%

Shell 93 21.36% – -2.19% -1.43%
Shell 181 3.75% 19.7% – 2.48%
Shell 281 12.11% 10.54% 9.63% –

cation function V (x) to express the internal forces (as presented in equations 3.71, 3.73
and 3.76), the proposed GBT element and all shell models lead almost to the same
solution. The internal membrane forces, in the cross-section at the point x=1m, show
this convergence in figure 5.32 and Table 5.12, as well.

Since GBT has a high accuracy concerning the longitudinal displacement, it is not a
surprise that the longitudinal membrane force reaches a high agreement to the results
from shell element models.
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Figure 5.32: Membrane force, Nx, in cross-section at x=1m
Table 5.12: Nx: Mean differences, (in table’s upper-right side), and their standard
deviation (in table’s lower-left side) among all models

Nx GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – 0.02% -0.02% 0.05% -0.02%

Shell 63 0.17% – 0.05% -0.03% 0.05%
Shell 93 0.13% 0.04% – 0.08% 0.01%
Shell 181 0.19% 0.02% 0.06% – -0.08%
Shell 281 0.13% 0.04% 0.01% 0.06% –

The tangential membrane force, Nθ , reaches high accurate results as well, which the
closest results concerns to model Shell-63. Moreover, this internal force requires a fourth
order derivative, which is null in cubic Hermitian shape functions. It is another point
that stresses the need for functions with continuous derivatives, such as the Hyperbolic-
trigonometric functions presented here.
Table 5.13: Nθ : Mean differences, (in table’s upper-right side), and their standard
deviation (in table’s lower-left side) among all models

Nθ GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – 0.79% 1.11% 0.83% -1.96%

Shell 63 1.81% – -0.44% -0.08% 3.1%
Shell 93 1.44% 0.45% – -0.4% -0.64%
Shell 181 1.91% 0.14% 0.57% – 2.42%
Shell 281 5.42% 7.77% 9.55% 14.65% –

Lastly, the GBT’s membrane shear force, Nθx, leads almost to the same result of shell
element models.
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Figure 5.33: Membrane force, Nθ , in cross-section at x=1m

Figure 5.34: Membrane force, Nθx, in cross-section at x=1m

As a conclusion from this numerical example, one verifies not only the accurate dis-
placement and stress fields obtained by GBT, but also it stands out the low computing
effort to achieve the results based on the type of element presented here.
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Table 5.14: Nθx: Mean differences, (in table’s upper-right side), and their standard
deviation (in table’s lower-left side) among all models

Nθx GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – 0.01% -0.02% 0.01% -0.02%

Shell 63 0.17% – 0.03% 0.01% 0.03%
Shell 93 0.14% 0.03% – 0.03% 0%
Shell 181 0.19% 0.02% 0.05% – -0.03%
Shell 281 0.15% 0.02% 0.01% 0.04% –
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6
GBT’s applied in frame beam structures

Up to this point, the linear analysis of GBT is carried out concerning only a simple
structural model, which is a straight beam. Since many structures are composed by
beam frames, it is necessary to handle the interaction among the beams, sharing a
common node.

Here, there are two obstacles that stand out. The first one is due to the complexity
in the kinematic coupling among the GBT’s deformation shapes at the joint, which
involves several modes simultaneously. The next section presents the bibliographic
review and the state-of-art about this issue.

The second obstacle concerns the physical connection itself. In practical structural
design, a substantial amount of details arises at the connection, such as stiffeners, bolts
and weldings for steel structures. These details not only change the kinematic behavior
of the connection, but also cannot be modeled as beam elements.

Thus, due to the high level of details in structural connections, shell and solid elements
are widely applied in their structural analysis. Therefore, it is convenient to split the
structural analysis into two domains: the first is the beam domain, in which GBT
elements are applied; the second one is the connection domain, in which shell or solid
elements are used.

This domain separation leads directly to the question of how to couple the degrees of
freedom of shell and solid elements with the high order of GBT’s degrees of freedom
that represent the modal shape deformations.

The current chapter develops a novel application of multi-freedom constraints in a
coupling method between shell and GBT elements in order to solve the issue of the
previous paragraph. Additionally, it provides a detailed numerical example to illustrate
the proposed method, as well as compare the result of the mixed GBT-shell models
with those of pure shell models.

117



6.1. Pure GBT beam frame analysis
The expression used here, pure GBT beam frame analysis, is the nomenclature to
describe numerical models that involve solely GBT’s finite elements. Although the first
studies in this application were not directly related to GBT, they were concerned of
warping transmission of Vlasov beam element, which one can understand as the first
high mode of GBT.

Among these studies, one can highlight the following publications:

- Fujitami et al., [59, 60], indicate the capacity of warping and bi-moment to be fully
transmitted independently of the angle between beams at the connection. In this
publication, Fujitami et al. proposed that the warping acts as a scalar and not as a
vector. Therefore, the warping is not related to the local coordinate system of each
beam in a frame. As shown in the next subsection, this assumption is only correct in
some particular cases;

- Tong et al., [171], are the firsts indicating the coupling between torsional-warping
and the distortion of the cross-section at connections with diagonal stiffeners. Here,
warping and bi-moment are treated as scalars;

- Kraus and Kindmann, [101], also treat warping as a scalar, with no relation to the
coordinate system of the beam element. Moreover, the authors emphasize how the
construction type of the connection is of crucial importance to understand the warping
transmission. They address special attention to the rule of stiffeners, which can act as an
internal support mechanism. I.e., in some particular layouts, the stiffeners eliminate the
internal bi-moment by a direct link of opposite self-balanced moments. Unfortunately,
the example used, the box connection, has another behavior, as presented below;

- Basaglia et al., [8, 12, 16, 17]: since these publications are the first ones to study the
warping as a high mode of GBT, they are particularly important. These publications
highlight not only the leading role of the layout of connection in warping transmission,
but also emphasize the kinematic behavior of the internal support mechanism and
coupling with distortion. However, different from Kraus and Kindmann, Basaglia et
al. prove that the box type connection is not an internal support restraint, but another
kinematic mechanism that occurs only in modes higher than six degrees of freedom of
rigid-body motion: the inverse-clamp behavior.

To clarify how the connection layout affects the warping and distortion transmission,
one can consider four particular types of connections between beams with an ”I” profile:
box-diagonal, box, non-stiffener and diagonal connections, as shown in figure 6.1. In
fact, these types of welded steel connections are widely applied in structural design.
Each one of these connections is detailed in sequence.
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Figure 6.1: Type of connections to clarify the kinematic behavior in high modes

6.1.1. Internal support mechanism
The connection that leads to internal support behavior is the box-diagonal one. Here,
the internal support mechanism is nothing more than the restraint of cross-section
warping and/or distortion by stiffeners. Since all internal forces, which are beyond the
traditional six degrees of freedom, have two or more opposite forces and/or bending
moments in the cross-section, a stiffener component can directly link these opposite
forces and/or bending moments, which will nullify them.

For instance, in the particular case of non-uniform torsion of Vlasov, the seventh degree
of freedom indicates warping in the node. Different from the six traditional degrees of
freedom, that can be understood as a representation of rigid-body movement at one
node, the seventh degree of freedom indicates deformation at the node itself.

Following this representation, a node cannot be interpreted as a point but as an ele-
mentary volume, as shown by the elementary cube in figure 6.2 1. Consequently, the
warping degree of freedom, and any other GBT’s high deformation mode, can be under-
stood as the nodal deformation mode, i.e., the warping is only one of several possible
deformations of the high modes at the node.

Figure 6.2: Elementary node to describe the kinematic behavior of the connection,
which involves high deformation modes.

1The figure also presents the unique behavior of high modes. In the case of torsional warping, a
body with positive warping in the x axis also can be understood as an increase of rotation around the
same x axis in the x axis direction. However, it can also be described as a combination of simultaneous
negative warping in the y and z directions.
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The remarkable property of any degree of freedom higher than the six of rigid-body
movement is that it does not necessarily need an external restriction (such as building
foundations) to have a support conditional. In other words, it is possible to have a
support for the node’s deformation only by stiffening the node. Therefore, the internal
support is a node that is stiff enough to avoid the warping or distortion deformation,
such as the box-diagonal connection, illustrated above.

6.1.2. Inverse-clamp mechanism
To explain how it is possible to transmit inverse internal forces of high modes, one can
consider the simple beam-column frame under an external bi-moment as presented in
figure 6.3.

Figure 6.3: Kinematic mechanism of box connection; a) the stress compatibility; b)
and c) local bending moments in the flanges of beam and column; d)resume of the
kinematic interpretation

According to Vlasov’s assumption that the cross-section does not remain plane in the
deformation configuration, each flange can be interpreted as a single beam. Hence,
the flanges can rotate independently from each other due to the low stiffness of the
web.

By decoupling the upper and lower flanges from the structure shown in figure 6.3, one
obtains two cantilever beams. Their supports are the two vertical stiffeners of the box
connection, which lead to a binary reaction force. Since the vertical stiffeners have low
values of torsion stiffness, each vertical stiffener acts as hinge support.

The reaction forces in the stiffeners, with the principle of action and reaction, act in the
column’s flanges as concentrated bending moments, similar to the case of the beam’s
flanges. However, these local bending moments in the column have an opposite direction
compared to the local bending moments in the flange of the beam. For instance, in
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figure 6.3 the beam’s moment vectors of the flanges are inward oriented, while in the
column these vectors are outward oriented.

It is important to note that this unique property of warping transmission also exists in
other high modes. As a second example, one can consider the following ”I” beam under
an opposite dual self-balanced torsion moment2, as illustrated in figure 6.4. In this
example, the upper flange’s extreme of beam A is linked by a rigid rod to the bottom
flange’s extreme of beam B. Since the rod creates a compatibility of displacement
between these flanges, the vertical displacement of the upper flange will be the same as
that of the bottom flange. However, the vertical displacement of the bottom flange’s
extreme in beam B is opposite that of the same point in beam A. Thus, the total
distortion of beam B is opposite that of beam A. Despite the fact that this connection
is not usual in current structures, it is an example of how the inverse transmission of
distortion can be produced.

Figure 6.4: Kinematic mechanism of inverse distortion transmission; a) undeformed
structure under a bi-torsion internal force (the connection rod is in red); b) deformed
structure with inverse transmission.

6.1.3. Coupling of different high modes due to connections
The non-stiffener connection not only explains the hinge behavior of GBT’s high modes,
but it is also a good example of how warping and distortion can be coupled due to the
connection.

Similar to the explanation of box connection, figure 6.5 shows how the flanges of the
beam can be treated as cantilever beams. Furthermore, the cross-section’s bi-moment
can be expressed as a local bending moment of these cantilever beams.

However, in the case of non-stiffener connection, there is no reaction binary force com-
posed by the vertical stiffener. The only restraints provided are the torsional inertia
of each individual column’s flange and the flexural bending stiffness of the web. Both

2The dual self-balanced torsion moment is named here as bi-torsion in analogy to the Vlasov bi-
moment.
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Figure 6.5: Kinematic mechanism of non-stiffener connection; a) warping deformation
of the web; b) and c) local torsional and bending moments in the flanges of beam and
column; d) distortion shaped in the column’s cross section.

effects in general cases have low values compared to the moment of inertia of the beam’s
flange.

Consequently, only residual warping is transmitted among the elements. If the thick-
nesses of the web and the column’s flange tend to zero, then the non-stiffener connection
can be considered as an ideal warping hinge connection.

It is important to note two effects in this connection type. The first one is the inversion
of the residual bi-moment from the beam into the column. This inversion is due to
the web’s warping transmission, which can be understood as an elementary slice of the
cube presented in figure 6.2. Naturally, the web capacity for warping transmission is
quite limited.

The second effect is the coupling of the residual transmitted warping with the distortion
of the column’s cross-section. The non-stiffener connection is an emblematic example
of how the warping is coupled with distortion. Figures 6.5.b and c show a kinematic
interpretation of how the local bending moments in the flange become local torsion
moments in the column’s flange. These torsion moments are self-balanced in the cross-
section and can be described as bi-torsion. This distortion-torsional mode has no
warping stiffness. Therefore, this mode, in this example, only involves the transversal
bending and shear stiffness matrices of the cross-section.
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6.1.4. Clamp mechanism
The clamp mechanism behavior of high modes can be explained by the diagonal con-
nection. The kinematic behavior of this connection, which does not invert the high
modes’ internal forces and displacements, can be understood based on the equilibrium
of the flanges and the stiffener.

Different from the box connections, the local bending moments of the beam’s flanges
are not balanced by binary forces due to the reactions of the stiffeners. Instead, they
are balanced by the moments’ equilibrium at intersection points among i) the flanges
of the column; ii) the flange of the beam; and iii) the diagonal stiffener, as the point
“A” presented in figure 6.6.

Figure 6.6: Kinematic mechanism of diagonal connection; a) bi-moment equilibrium
as nodal equilibrium; b) and c) bending moments in the stiffener and in the flanges of
beam and column; d) Left view of the nodal moment equilibrium.

Analogous to the case of trusses, point A in figure 6.6.4 b and c has its equilibrium
when the sum of the moment’s vector is null. Naturally, the only difference with respect
to the vectorial equilibrium approach in trusses is that the bending vectors are always
perpendicular to the flanges and the stiffeners and not aligned with them.

Following this idea and by the third Newton’s law, the local bending moments in the
column’s flanges have an “incoming” direction, such as the local bending moments in
the beam’s flanges. Therefore, there is no inversion of the warping and bi-moment
direction.

However, this simple explanation has the assumption of null torsional inertia in the
stiffener and in the flanges. If the connection has a thick stiffener and flanges, then the
torsion moments vector, which is aligned with the stiffeners and flanges, will restrain
the connection to warping. In other words, as perpendicular vectors with respect to
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the bending moment vectors, the torsional vectors will also restrain the connection in
the stiffener’s direction and not only in the perpendicular direction with respect to it
as a “membrane” diagonal.

To clarify this, as shown in figure 6.7, the torsion moments can be understood as
bending moments in “virtual stiffener and flanges,” which are fully perpendicular to
the real one. Then, a simple diagonal connection becomes a box-diagonal, an internal
support condition, as explained before.

Figure 6.7: Diagonal connection with the effects of torsion inertia of flanges and stiffener
resulting in a box-diagonal connection.

The final remark about this connection is the effect of the residual web’s warping
transmission. As explained in the previous subsection, the web has an inversed warping
transmission, as well as a box-connection.

In fact, the diagonal connection is a clear example of how complex a connection’s
kinematic model can reach. Even more complex issues arise in the generic cross-section,
in which the centers of gravity and shear are not coincident at the same point.

6.2. Connections obtained from coupling between GBT and
shell elements
From the examples of warping transmission in the previous section, it becomes clear
that the connections involving GBT’s high modes are not only complex in the kinematic
mechanism but also in the unique properties of these modes. In addition, a usual
structure connection involves many details, such as welds, bolts, holes, and stiffeners,
which require minute modeling and analysis, usually carried out by shell or solid finite
elements.

Since the main field of application of GBT is thin-walled structures and the connections
of these structures are often modeled by shell elements, the focus of this section is on
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the coupling between these elements and GBT elements.

The coupling approach proposed here is a novel application of Master-Slave method
for beam frames and connections [92, 93]. It uses the superposition property of GBT’s
deformation modes to set up the relationship between the master and slaver degrees of
freedom. Furthermore, these degrees of freedom are divided in two groups: shell and
GBT. Each group is related to a master or slaver degree of freedom. Different from
traditional applications, the presented approach predefines which group is the master
and which is the slaver. These details are discussed in sequence.

6.2.1. Definition of master and slaver degrees of freedom
Usually, in the Master-Slaver multi-freedom constraint method, there is no rule re-
garding the definition of which degree of freedom is the master and which one is the
slaver[172]. However, in the present implementation, this definition is predefined. Since
the main focus of the proposed procedure is to build up a degree of freedom mapping
of type shell-GBT or GBT-shell and avoid any kind of restraint of type GBT-GBT or
shell-shell, one can classify the degree of freedom as shell or GBT group. Once this
limitation and classification are defined, the next issue is which group is the master
and which is the slaver.

The direct answer to this question is that the degrees of freedom of GBT are the master
ones.

This choice is not arbitrary. It is based on the fact that one GBT node has a lower
amount of degrees of freedom than the summation of all degrees of freedom of shell
elements used to described a cross-section. For instance, one can consider the coupling
of a hollow circular cross-section, as plotted in figure 6.8. This coupled cross-section
has 28 shell nodes; each node has 6 degrees of freedom, giving a total of 168 degrees of
freedom. This same cross-section can be described in GBT by 6 deformation modes,
each one having two degrees of freedom per node (there are a few exceptions, such as
the uniform torsion or the uniform longitudinal elongation deformation modes, which
require just one degree of freedom per node). Consequently, GBT requires a total of
12 degrees of freedom.

Since the finite element model’s response is always limited by the coarse description
of the cross-section, the opposite choice, i.e., the shell’s degrees of freedom as master
ones, is numerically inefficient. This alternative definition requires more computational
effort to reach the results of the choice mentioned in the previous paragraph.

Consequently, one can express the coupling between shell and GBT degrees of freedom
as in matrix form:

[ϑ ]shell = [Tc] [ϑ ]GBT (6.1)

Where, [Tc] is the multi-freedom constraint transformation matrix, detailed in the se-
quence; while [ϑ ]shell and [ϑ ]GBT are the displacement vectors of shell and GBT’s degrees
of freedom, respectively.
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Figure 6.8: Example of coupling of shell and GBT models: a)Hollow circular cross-
section between; b)Shell nodes in the middle of GBT’s cross-section segments

6.2.2. Master-slave relationships based on GBT’s modes
After the definition of the degrees of freedom’s group, the next step is the setup of the
multi-freedom constraint transformation matrix, [Tc]. Thus, one uses the GBT’s de-
scription of displacement field as a sum of the modal displacement, equations 2.18, 2.19
and 2.20, to express the shell’s nodal displacement. For instance, the longitudinal
displacement of node 1, in shell element discretization showed in figure 6.8, can be
expressed as follows:

u1,shell = 1u1 1V (x=−L/2)+
m

∑
i=1

iu(s) iV,x (x) (6.2)

Here, the longitudinal position in beam element, x, is set at one of the extreme nodes:
x = −L/2 or x = L/2, consistent with the element definition in figure 5.1. A matrix
form can represent this sum, which is already the main components of multi-freedom
constrain transformation matrix:

[u]shell = [Tc]u [V,x]GBT ;



u1
u2
u3
u4
...
un


shell

=



1u1 2u1 3u1 . . . mu1
1u2 2u2 3u2 . . . mu2
1u3 2u3 3u3 . . . mu3
1u4 2u4 3u4 . . . mu4
...

...
... . . . ...

1un 2un 3un . . . mun




1V
2V,x
3V,x
...

mV,x


GBT

(6.3)

Here, the indexes n and m indicate the number of shell nodes and GBT modes, respec-
tively.
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It is not necessary that the shell nodes and the GBT cross-section discretization nodes
are in the same geometric position. The only restriction is the imposition that shell
nodes have to be in the middle line of the cross-section walls. Since this condition is
maintained, an arbitrary shell node position can be coupled with GBT modes by the
interpolation functions, given in eq. 4.6. Thus, eq. 6.3 is re-order based on the segments
of the cross-section:[

u1 u2 u3 u4 . . . un
]T
shell=[TS1]seg [uh]seg

[
1V 2V,x 3V,x . . . nV,x

]T
GBT (6.4)

Here, [TS1]seg is a matrix, in which the number of rows is the number of shell nodes and
the number of columns is the number of segments of the cross-section that contains the
shell nodes. This matrix is populated in each row by the linear Hermitian interpolation
function of [TsHe1] [ShHe1cc] in the respective column of the segment that has the shell
node. For example, in the coupling illustrated in figure 6.8.b the shell node 1 is in
cross-section segment 1, shell nodes 2 and 3 are in segment 2, and shell node 4 is in
segment 3. For this case, one obtains the following interpolation segment matrix:

[TS1]seg =


[TsHe1]s1 [ShHe1cc]s1 0 0 . . .

0 [TsHe1]s2 [ShHe1cc]s2 0 . . .
0 [TsHe1]s2 [ShHe1cc]s2 0 . . .
0 0 [TsHe1]s3 [ShHe1cc]s3 . . .
...

...
... . . .

 (6.5)

Where the lower-right indexes s1, s2 and s3 indicate the relative cross-section segment.
The second matrix in the right-hand side of eq. 6.4, [uh]seg, is nothing more than all of
the modal longitudinal displacements of each segment that has the shell nodes:

[uh]seg =


1 [uh]s1

2 [uh]s1
3 [uh]s1 . . . m [uh]s1

1 [uh]s2
2 [uh]s2

3 [uh]s2 . . . m [uh]s2
1 [uh]s3

2 [uh]s3
3 [uh]s3 . . . m [uh]s3

...
...

... . . . ...

 (6.6)

The transversal displacements v and w are obtained in a similar way. The only change
is the absence of mode 1 (axial deformation). If the shell nodes share the same position
as the GBT nodes of cross-section discretization, one finds:

[v]shell = [Tc]v [V ]GBT ;


v1
v2
v3
...
vn


shell

=


2v1 3v1 4v1 . . . nv1
2v2 3v2 4v2 . . . nv2
2v3 3v3 4v3 . . . nv3
...

...
... . . . ...

2v6 3v6 4v6 . . . nv6




2V
3V
4V
...

nV,x


GBT

(6.7)

[w]shell = [Tc]w [V ]GBT ;


w1
w2
w3
...
wn


shell

=


2w1

3w1
4w1 . . . nw1

2w2
3w2

4w2 . . . nw2
2w3

3w3
4w3 . . . nw3

...
...

... . . . ...
2w6

3w6
4w6 . . . nw6




2V
3V
4V
...
nV


GBT

(6.8)
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Otherwise, the shell nodes are at another point of the cross-section segments, it is
necessary to apply the interpolation functions of respective displacement, which leads
to: [

v1 v2 v3 v4 . . . vn
]T
shell = [TS1]seg [vh]seg

[
2V 3V 4V

... nV
]T
GBT

(6.9)[
w1 w2 w3 w4 . . . wn

]T
shell = [TS3]seg [wh]seg

[
2V 3V 4V . . . nV

]T
GBT (6.10)

where, the interpolation segment matrices [TS1]seg and [TS3]seg are already presented
above. The first matrix is the same of eq. 6.5, while [TS3]seg correspond to the cubic
Hermitian function, given in eq. 4.8. The GBT’s modal segment matrices: [vh]seg and
[wh]seg follow the same procedure of longitudinal displacement.

Concerning the rotational degrees of freedom, one can directly setup the coupling of
transversal rotation, υ , as shown in figure 6.8.a, between shell elements and the generic
segmented cross section based on eq. 2.15. From this equation, it is clear that the
transversal rotation is given by:

υ (x,s) = w(s)V,x (x) (6.11)

which leads to the following expression of coupling, in modal superposition:

υshell =
n

∑
i=1

iw(s) iV,x (x) (6.12)

Thus, the transversal rotation coupling can be expressed by the multi-freedom con-
straint transformation matrix, [Tc]w, and GBT’s degrees of freedom of generalized ro-
tation, [V,x]GBT , which are given in equations 6.8 and 6.3, respectively:

[υ ]shell = [Tc]w [V,x]GBT (6.13)

In the more generic case, in which the shell nodes lie at an arbitrary point in the GBT
segment, the coupling expression is given by:[

υ1 υ2 υ3 υ4 . . . υn
]T
shell = [TS3]seg [wh]seg

[
2V,x 3V,x 4V,x . . . nV,x

]T
GBT (6.14)

Following a similar procedure, one obtains the coupling of longitudinal rotation, φ,
based on eq. 2.16:

φ (x,s) = w,s (s)V (x) (6.15)

If GBT’s discretization and shell nodes share the same position, no interpolation of the
GBT segment is necessary. Thereby, one finds:

[φ]shell = [Tc]φ [V ]GBT ;



φ1
φ2
φ3
φ4
...

φn


shell

=



2φ1
3φ1

4φ1 . . . nφ1
2φ2

3φ2
4φ2 . . . nφ2

2φ3
3φ3

4φ3 . . . nφ3
2φ4

3φ4
4φ4 . . . nφ4

...
...

... . . . ...
2φn

3φn
4φn . . . nφn




2V
3V
4V
...
nV


GBT

(6.16)
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Otherwise, one expresses the coupling by the interpolated values inside of a GBT
as: [

φ1 φ2 φ3 φ4 . . . φn
]T
shell=[TS3,s]seg [wh]seg

[
2V 3V 4V . . . nV

]T
GBT (6.17)

where the subindex ,s indicates the first derivative of the interpolation segment matrix
[TS3]seg.

The transversal perpendicular rotational degree of freedom, χ, shown in figure 6.8.a,
requires special remarks.

The first one is regarding the GBT’s assumption of a linear variation of the longitu-
dinal displacement in each cross-section segment. This leads to a constant transversal
perpendicular rotation in each segment. Thus, if GBT’s discretization and shell nodes
do not share the same position, one can reach the following expression:[

χ1 χ2 χ3 . . . χn
]T
shell=[Tc]χ [V,x]GBT = [TS1,s]seg [uh]seg

[
1V 2V,x . . . nV,x

]T
GBT (6.18)

However, since each segment can have a different constant value of this rotation, this
leads to a discontinuity at the GBT nodes of cross-section discretization. Consequently,
if GBT’s discretization and shell nodes share the same position, there are ambiguous
values of GBT transversal perpendicular rotation to couple.

In a simple-minded approach, this problem can be overcome by using the average of
the transversal perpendicular rotations of each segment that reach the node.

The second remark is about the type of shell element used. Many shell elements do not
have this degree of freedom, named in the literature as the drilled degree of freedom.
For these shell elements, there is no coupling for this transversal rotation, and all
information about it vanishes.

Coupling with a different global coordinate system - the hollow circular cross-
section case
It is important to observe that the approach presented up to this point considers a com-
mon coordinate system between the shell and GBT elements. Usually, this condition
is found in the generic segmented cross-section, as presented in Chapter 4. However,
for a hollow circular cross-section, as presented in Chapter 3, the coordinate systems
are not the same, such as the local coordinate system presented in figure 3.1, which is
left-handed. Therefore, coupling for the hollow circular cross-section requires an extra
transformation for the displacements v and w:

[
[v]shell
[w]shell

]
Scs
=



−sin(θ1) . . . 0 cos(θ1) . . . 0
... . . . ...

... . . . ...
0 . . . −sin(θn) 0 . . . cos(θn)

cos(θ1) . . . 0 sin(θ1) . . . 0
... . . . ...

... . . . ...
0 . . . cos(θn) 0 . . . sin(θn)


[
[v]shell
[w]shell

]
GBTcs

(6.19)
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Where, θn is the angle of each shell node according to GBT’s local coordinate system,
as shown in figure 3.1; the subindexes Scs and GBTcs indicate the Shell coordinate system
and the GBT’s coordinate system.

The transversal rotations require the same treatment:

[
[υ ]shell
[χ]shell

]
Scs
=



−sin(θ1) . . . 0 cos(θ1) . . . 0
... . . . ...

... . . . ...
0 . . . −sin(θn) 0 . . . cos(θn)

cos(θ1) . . . 0 sin(θ1) . . . 0
... . . . ...

... . . . ...
0 . . . cos(θn) 0 . . . sin(θn)


[
[υ ]shell
[χ]shell

]
GBTcs

(6.20)

6.2.3. Coupled stiffness matrix and external load vector
Once the multi-freedom constraint matrices are evaluated, the next step in the mixed
shell-GBT model is the setup of coupled stiffness matrix and the external load vector.
This is easily achieved by the respective matrix transformations:

[K]cp = [Tc]
T
tot [K]uc [Tc]tot (6.21)

[F ]cp = [Tc]
T
tot [F ]uc (6.22)

where the subindexes cp and uc indicate the coupled and uncoupled matrices, respec-
tively. The total coupling transformation matrix, [Tc]tot , is an identity matrix of the
same rank as the uncoupled stiffness matrix, which has the columns concerning the
coupled shell’s degrees of freedom removed. Furthermore, the rows concerning these
degrees of freedom are re-populated by the values of matrices [Tc]u, [Tc]v, [Tc]w, [Tc]φ
and [Tc]χ . The next section shows the implementation of this matrix via a detailed
example.

6.3. Numerical example of coupling GBT and shell elements
The structure presented in the numerical example of Chapter 5 is coupled in its base
with an extension of half meter long, which has the same material and geometry prop-
erties.

One discretizes this extension in 48 nodes elements in transversal direction and 5 layers
of elements in the longitudinal direction. Thus, the shell part of the model has 288 nodes
and 240 shell elements. Initially, the shell element is limited to membrane behavior,
which leads to 3 degrees of freedom per node. Therefore, the extension part has a
total of 864 degrees of freedom. From this total, the boundary condition at the base
restraints 144 degrees of freedom. Also, the multi-freedom constraint matrix restraints
the same amount at the top cross-section of this prolongation. The final mixed model
has 576 free degrees of freedom from the shell part. The GBT amount of degree of
freedom is 36, as presented in the example of Chapter 5.
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Figure 6.9: Thin-walled circular hollow section under a linear projected force and a
coupled shell element segment; a) elevation; b) cross-section in GBT’s domain; c)
cross-section in shell’s domain at the coupling point

6.3.1. Setup of finite element and coupling matrices
Since there is no modification in geometry and loads, the GBT’s element and modes
are the same used in the example of Chapter 5. Therefore, the GBT’s matrices (equa-
tions 5.198 and 5.209) and load vector (equations 5.199 and 5.210) can be directly
applied in this example.

Regarding the membranes, all elements are equal, which leads to the same local stiffness
matrix. This matrix is presented below, as well as the plot of an isolated element:

Figure 6.10: Membrane element local displacement definition
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[K]el=
Et

24ρ (1−µ2)



u1 u2 u3 u4 v1 v2 v3 v4

u1 4m3 2m5 −2m3 −4m6 3m1 −3m2 −3m1 3m2
u2 4m3 −4m6 −2m3 3m2 −3m1 −3m2 3m1
u3 4m3 2m5 −3m1 3m2 3m1 −3m2
u4 4m3 −3m2 3m1 3m2 −3m1
v1 4m4 4m8 −2m4 −2m7
v2 4m4 −2m7 −2m4
v3 4m4 4m8
v4 symm 4m4


(6.23)

where, ρ is the length/height ratio:

ρ = hel/bel (6.24)

The matrix’s terms are:
m1 = ρ (1+µ) (6.25)

m2 = ρ (1−3µ) (6.26)

m3 = 2+ρ2 (1−µ) (6.27)

m4 = 2ρ2+(1−µ) (6.28)

m5 = ρ2 (1−µ)−4 (6.29)

m6 = ρ2 (1−µ)−1 (6.30)

m7 = 4ρ2− (1−µ) (6.31)

m8 = ρ2− (1−µ) (6.32)

One can observe from this simple element that the length/height ratio is 0.98, which
involves no special issue concerning shear locking. The numerical values of the element’s
local stiffness matrix are (units in N and mm):

[K]el = 103



u1 u2 u3 u4 v1 v2 v3 v4

u1 301.4 −180.8 −150.7 30.2 109,9 −8.4 −109.8 8.4
u2 301.4 30.1 −150.7 8.4 −109.8 −8.4 109.9
u3 301.4 −180.9 −109.8 8.4 109.8 −8,4
u4 301.4 −8.4 109.8 8.4 −109.9
v1 307.0 37.5 −153.5 −191.0
v2 307.0 −191.0 −153.5
v3 307.0 37.4
v4 symm 307.0


(6.33)

The transformation from local to global coordinate system of each element and the
assembling of global stiffness matrix follow the well-known approach of finite elements
[19, 91]. The GBT’s stiffness matrices are added to the global stiffness obtained from
membrane elements. The resulting stiffness matrix is still uncoupled and requires the
coupling procedures of the next steps. Table 6.1 resumes the setup of the degrees of
freedom:
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Table 6.1: Setup of degrees of freedom in mixed membrane-GBT model

displacement DOF’s Support restraint Master DOF Slavers DOF
u 1 to 288 1 to 48 – 241 to 288
v 289 to 576 289 to 337 – 529 to 576
w 577 to 864 577 to 625 – 817 to 864
3V 865;867;869 – 865 –
3V,x 866;868;870 – 866 –
5V 871;873;875 – 871 –
5V,x 872;874;876 – 872 –
7V 877;879;881 – 877 –
7V,x 878;880;882 – 878 –
11V 883;885;887 – 883 –
11V,x 884;886;888 – 884 –
15V 889;891;893 – 889 –
15V,x 890;892;894 – 890 –
aV 895;897;899 – 895 –
aV,x 896;898;900 – 896 –

Coupling of longitudinal displacement - u
To couple the longitudinal displacement, u, one must evaluate the multi-freedom con-
straint transformation matrix, [Tc]u, for each slaver degree of freedom with respect to
each GBT mode. To do so, it is necessary to compute the modal longitudinal displace-
ment of each slaver node, given in tables 3.1 and 3.2, with the respective node angle
θ , where the ∆θ between the nodes is 7.5◦, as presented in figure 6.9.c. These results
are introduced into eq. 6.3, leading to:

[Tc]u =−750



866 872 878 884 890 896

241 cos(0◦) cos(0◦) cos(0◦) cos(0◦) cos(0◦) 0
242 cos(7.5◦) cos(15◦) cos(22.5◦) cos(37.5◦) cos(52.5◦) 0
243 cos(15◦) cos(30◦) cos(45◦) cos(75◦) cos(105◦) 0
244 cos(22.5◦) cos(45◦) cos(67.5◦) cos(112.5◦) cos(157.5◦) 0
...

...
...

...
...

...
...

288 cos(352.5◦) cos(705◦) cos(1057.5◦) cos(1762.5◦) cos(2467.5◦) 0


(6.34)

On the left and on the top, the row and column indexes indicate the slave and master
degrees of freedom, respectively. Since the longitudinal displacement of GBT is consis-
tent with the global coordinate system of the membranes, no extra transformation is
required for these degrees of freedom.

Coupling of transversal displacements - v and w

Similar to the coupling of longitudinal displacement, the transversal coupling is ob-
tained by the multi-freedom constrain transformation matrices [Tc]v and [Tc]w, which
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are based on the expression of tables 3.1 and 3.2. Therefore, one can find:

[Tc]v=−1



865 871 877 883 889 895

529 sin(0◦) 2sin(0◦) 3sin(0◦) 5sin(0◦) 7sin(0◦) 0
530 sin(7.5◦) 2sin(15◦) 3sin(22.5◦) 5sin(37.5◦) 7sin(52.5◦) 0
531 sin(15◦) 2sin(30◦) 3sin(45◦) 5sin(75◦) 7sin(105◦) 0
532 sin(22.5◦) 2sin(45◦) 3sin(67.5◦) 5sin(112.5◦) 7sin(157.5◦) 0
...

...
...

...
...

...
...

576 sin(352.5◦) 2sin(705◦) 3sin(1057.5◦) 5sin(1762.5◦) 7sin(2467.5◦) 0


(6.35)

[Tc]w=



865 871 877 883 889 895

817 cos(0◦) 4cos(0◦) 9cos(0◦) 25cos(0◦) 49cos(0◦) 1
818 cos(7.5◦) 4cos(15◦) 9cos(22.5◦) 25cos(37.5◦) 49cos(52.5◦) 1
819 cos(15◦) 4cos(30◦) 9cos(45◦) 25cos(75◦) 49cos(105◦) 1
820 cos(22.5◦) 4cos(45◦) 9cos(67.5◦) 25cos(112.5◦) 49cos(157.5◦) 1
...

...
...

...
...

...
...

864 cos(352.5◦) 4cos(705◦) 9cos(1057.5◦) 25cos(1762.5◦) 49cos(2467.5◦) 1


(6.36)

Different from the longitudinal displacement, the GBT transversal ones are not in the
global membrane’s coordinate system. Thereby, the transformation given in eq. 6.20 is
required, which leads to:

[Tc]vw =



529 ... 576 817 ... 864

529 −sin(0◦) . . . 0 cos(0◦) . . . 0
...

...
. . .

...
...

. . .
...

576 0 . . . −sin(352.5◦) 0 . . . cos(352.5◦)
817 cos(0◦) . . . 0 sin(0◦) . . . 0
...

...
. . .

...
...

. . .
...

864 0 . . . cos(352.5) 0 . . . sin(352.5◦)


[
[Tc]v
[Tc]w

]
(6.37)

6.3.2. Finite element solution
Once the multi-freedom constraint transformation matrices are evaluated for each dis-
placement direction, a total form of these matrices, [Tc]tot , can be built up.

As mentioned before, initially, an identity matrix, I, is defined. Its dimensions have
the same number of no-support degrees of freedom, 756x756. From this matrix, all
columns corresponding to slave degrees of freedom are removed, leading to the dimen-
sion 756x612. Thereafter, each component of the rows that concerns the slave degrees
of freedom is replaced by the respective term from the matrices [Tc]u and [Tc]vw.

With the definition of the total multi-freedom constraint transformation matrix, one
can achieve the coupled free stiffness matrix [K]cp by eq. 6.21, in which the dimensions
are 612x612.

Since, in this example, there is no external load applied to the slave degrees of freedom,
the external load vector can be directly assembled without the related rows. Alterna-
tively, one can apply eq. 6.22. The same external load vector is reached.
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Finally, the numerical values of the degrees of freedom are achieved by a standard solver,
such as the Cholesky decomposition, which is used here. Tables 6.2 and 6.3 present
this numerical solution for GBT and shell elements degrees of freedom, respectively:

Table 6.2: Solution of GBT’s degrees of freedom, in mm

mode V
(
x=−L

2

)
V,x
(
x=−L

2

)
V (x= 0) V,x (x= 0) V

(
x= L

2

)
V,x
(
x= L

2

)
3 1.793E-1 5.535E-4 2.901E+2 1.298E-2 1.024E+2 1.116E-2
5 -1.302E-2 -4.488E-5 -1.325E+1 -4.788E-4 -5.867E+0 -5.130E-4
7 6.048E-4 2.088E-6 2.753E-1 9.021E-6 1.383E-1 9.172E-6
11 -6.473E-6 -2.351E-8 -1.573E-3 -4.965E-8 -7.885E-4 -5.257E-8
15 2.927E-7 1.194E-9 6.690E-5 2.001E-9 3.352E-5 2.235E-9

axial 7.619E-15 -1.524E-8 -4.573E-4 -1.524E-8 -2.287E-4 -1.524E-8

One important remark concerns the indirect coupling among the GBT’s degrees of
freedom of orthogonal modes. Unlike the GBT’s linear analysis, where each model is
solved completely isolated from the others, this is no longer possible in the mixed model.
The multi-freedom constraint transformation matrices build this indirect coupling that
requires solving a relative large linear system, typical of shell element models, but on
another hand can still provide the model analysis of GBT. The next subsection presents
an analysis of this point.

6.3.3. Analysis of displacement field
To evaluate the results obtained in the mixed model above, full shell element models
are used as a control parameter. Following the same approach applied in Chapter 5,
one develops the shell models in the commercial software ANSYS®.

To avoid any miss-understating concerning a particular property and response of shell
elements, such as shear or membrane lockings and approximations for plate’s shear [5,
90], the four shell models used in the previous chapter are recreated using the geometric
and loading conditions of this example.

All models have the same discretization, which has 100 elements in the cross-section,
and 610 segments in the longitudinal direction. In total, each model has 61,000 ele-
ments, leading to 366,600 and 1,099,200 degrees of freedom respectively for the linear
and quadratic element models.

Starting at the top cross-section, the two below figures plot the comparison among all
models for the transversal displacement at this point. The modal displacement fields
of GBT are plotted as well.

Here, the results of transversal displacements obtained from different full shell elements
models are almost the same. The highest difference is 0.588%, which occurs at angle
108°, between the lowest value of shell types 181 w=-45.391mm and the highest value
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Table 6.3: Shell elements’ degrees of freedom, in mm, on global coordinate system

node u v w node u v w
49 -7.54E-02 2.17E-01 -2.50E-14 97 -1.54E-01 1.99E-01 -5.58E-14
50 -7.49E-02 2.14E-01 2.68E-02 98 -1.53E-01 1.97E-01 2.21E-02
51 -7.34E-02 2.05E-01 5.21E-02 99 -1.50E-01 1.90E-01 4.31E-02
52 -7.09E-02 1.90E-01 7.46E-02 100 -1.45E-01 1.78E-01 6.18E-02
53 -6.75E-02 1.71E-01 9.28E-02 101 -1.38E-01 1.63E-01 7.72E-02
54 -6.30E-02 1.48E-01 1.06E-01 102 -1.29E-01 1.45E-01 8.84E-02
55 -5.76E-02 1.23E-01 1.13E-01 103 -1.18E-01 1.26E-01 9.48E-02
56 -5.12E-02 9.73E-02 1.13E-01 104 -1.05E-01 1.05E-01 9.58E-02
57 -4.39E-02 7.23E-02 1.06E-01 105 -8.96E-02 8.52E-02 9.13E-02
58 -3.57E-02 4.98E-02 9.26E-02 106 -7.29E-02 6.72E-02 8.14E-02
59 -2.67E-02 3.14E-02 7.32E-02 107 -5.45E-02 5.24E-02 6.64E-02
60 -1.70E-02 1.85E-02 4.90E-02 108 -3.47E-02 4.20E-02 4.72E-02
61 -6.71E-03 1.25E-02 2.13E-02 109 -1.36E-02 3.70E-02 2.48E-02
62 4.07E-03 1.39E-02 -8.15E-03 110 8.34E-03 3.83E-02 6.90E-04
63 1.51E-02 2.32E-02 -3.73E-02 111 3.09E-02 4.60E-02 -2.36E-02
64 2.62E-02 4.01E-02 -6.40E-02 112 5.36E-02 6.02E-02 -4.63E-02
65 3.72E-02 6.38E-02 -8.62E-02 113 7.59E-02 8.02E-02 -6.56E-02
66 4.77E-02 9.28E-02 -1.02E-01 114 9.74E-02 1.05E-01 -7.99E-02
67 5.76E-02 1.25E-01 -1.10E-01 115 1.18E-01 1.33E-01 -8.79E-02
68 6.65E-02 1.59E-01 -1.10E-01 116 1.36E-01 1.61E-01 -8.87E-02
69 7.42E-02 1.91E-01 -1.01E-01 117 1.51E-01 1.89E-01 -8.22E-02
70 8.04E-02 2.19E-01 -8.42E-02 118 1.64E-01 2.13E-01 -6.88E-02
71 8.50E-02 2.41E-01 -6.03E-02 119 1.73E-01 2.32E-01 -4.95E-02
72 8.78E-02 2.55E-01 -3.14E-02 120 1.79E-01 2.44E-01 -2.59E-02
73 8.88E-02 2.59E-01 1.07E-14 121 1.81E-01 2.49E-01 6.24E-14
74 8.78E-02 2.55E-01 3.14E-02 122 1.79E-01 2.44E-01 2.59E-02
75 8.50E-02 2.41E-01 6.03E-02 123 1.73E-01 2.32E-01 4.95E-02
76 8.04E-02 2.19E-01 8.42E-02 124 1.64E-01 2.13E-01 6.88E-02
77 7.42E-02 1.91E-01 1.01E-01 125 1.51E-01 1.89E-01 8.22E-02
78 6.65E-02 1.59E-01 1.10E-01 126 1.36E-01 1.61E-01 8.87E-02
79 5.76E-02 1.25E-01 1.10E-01 127 1.18E-01 1.33E-01 8.79E-02
80 4.77E-02 9.28E-02 1.02E-01 128 9.74E-02 1.05E-01 7.99E-02
81 3.72E-02 6.38E-02 8.62E-02 129 7.59E-02 8.02E-02 6.56E-02
82 2.62E-02 4.01E-02 6.40E-02 130 5.36E-02 6.02E-02 4.63E-02
83 1.51E-02 2.32E-02 3.73E-02 131 3.09E-02 4.60E-02 2.36E-02
84 4.07E-03 1.39E-02 8.15E-03 132 8.34E-03 3.83E-02 -6.90E-04
85 -6.71E-03 1.25E-02 -2.13E-02 133 -1.36E-02 3.70E-02 -2.48E-02
86 -1.70E-02 1.85E-02 -4.90E-02 134 -3.47E-02 4.20E-02 -4.72E-02
87 -2.67E-02 3.14E-02 -7.32E-02 135 -5.45E-02 5.24E-02 -6.64E-02
88 -3.57E-02 4.98E-02 -9.26E-02 136 -7.29E-02 6.72E-02 -8.14E-02
89 -4.39E-02 7.23E-02 -1.06E-01 137 -8.96E-02 8.52E-02 -9.13E-02
90 -5.12E-02 9.73E-02 -1.13E-01 138 -1.05E-01 1.05E-01 -9.58E-02
91 -5.76E-02 1.23E-01 -1.13E-01 139 -1.18E-01 1.26E-01 -9.48E-02
92 -6.30E-02 1.48E-01 -1.06E-01 140 -1.29E-01 1.45E-01 -8.84E-02
93 -6.75E-02 1.71E-01 -9.28E-02 141 -1.38E-01 1.63E-01 -7.72E-02
94 -7.09E-02 1.90E-01 -7.46E-02 142 -1.45E-01 1.78E-01 -6.18E-02
95 -7.34E-02 2.05E-01 -5.21E-02 143 -1.50E-01 1.90E-01 -4.31E-02
96 -7.49E-02 2.14E-01 -2.68E-02 144 -1.53E-01 1.97E-01 -2.21E-02
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Figure 6.11: Results of top cross-section: transversal displacement of mixed shell-GBT
element model. The sum of all modal deformation factors, at the top point, leads to
the GBT solution. The solutions achieved from the full shell element models are also
presented.

Table 6.4: Mean differences, in %, and standard deviation (SD) of displacement field
between GBT and shell element models at the top point

element u v w
diff. SD diff. SD diff. SD

Shell 63 0.16% 0.34% 0.7% 0.12% 0.6% 0.3%
Shell 93 0.08% 0.24% 0.62% 0.07% 0.55% 0.18%
Shell 181 0.17% 0.17% 0.93% 0.94% 0.84% 0.86%
Shell 281 0.62% 0.07% 0.54% 0.19% 0% 0%

of shell type 93 w=-45.126mm. Also, the difference between GBT and shell elements is
almost imperceptibly; for this angle, it is w=-44.633mm. A difference of 1.10% above
of shell element type 93. Moreover, these difference are also found in the comparison
between the pure GBT and shell models in Chapter 5, which indicates no perturbation
in the results due to the coupling process developed here.

The diagrams of longitudinal displacement is plotted below as well. Similar to transver-
sal displacements, the differences among the models are almost imperceptibly. The
highest difference is between GBT and Shell element type 181: -1.257% at angle θ = 90◦.

Since the Poisson’s effect plays an important role in the displacement field, especially
where the longitudinal stress is high, it is interesting to compare the results obtained
near the base of the structure. Here, one selects the coupling cross-section to explore
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Figure 6.12: Comparison of results among mixed shell-GBT and fully shell models at
top cross-section: longitudinal displacement.

the Poisson’s effect in mixed GBT-shell models. Figures 6.13 and 6.14 present the
transversal and longitudinal displacement, respectively:

Figure 6.13: Comparison of results among mixed shell-GBT and fully shell models at
the coupling cross-section: transversal displacement.

The differences among the shell models are indistinguishable and the highest difference
as obtained between mixed GBT-shell and shell 63 models: 0.73%, at angle θ = 108◦.
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Table 6.5 presents the detailed outcomes of radial and longitudinal displacements from
these different models:

Table 6.5: Mean differences, in %, and standard deviation (SD) of displacement field
between GBT and shell elementsk models at the point x= 1m

element u v w w/o Poisson w with Poisson
diff. SD diff. SD diff. SD diff. SD

Shell 63 0.57% 1% 0.14% 0.11% 85.47% 29.03% 0.07% 0.21%
Shell 93 0.56% 0.92% 0.25% 0.04% 85.53% 28.9% 0.1% 0.1%
Shell 181 0.65% 1.09% 0.23% 0.13% 85.58% 29.09% 0.14% 0.25%
Shell 281 0.56% 0.93% 0.25% 0.04% 85.52% 28.9% 0.1% 0.1%

There is one detail in figure 6.13 that is related to the observation of shear deformation
in figure 5.16. The figure of this chapter shows that GBT reaches almost the same
result of shell elements model; the difference is around 0.12%. On the other hand, the
figure in Chapter 5 presents a difference around 2.0%. This increase in the quality
of results of GBT is not an outcome from itself, but from the capacity of membranes
element, at the structure’s both, to handle shear deformations.

Figure 6.14: Comparison of results among mixed shell-GBT and fully shell models at
the coupling cross-section: longitudinal displacement.

Lastly, the comparison of longitudinal displacement at the coupling cross-section shows
no course results in mixed GBT-Shell model to the other ones. The highest difference
is 1.1%, at angle θ = 108◦ between GBT and the shell models with elements with linear
interpolation function, Shell 63 and Shell 181.
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6.3.4. Analysis of stress field
The comparisons among the mixed GBT-shell and the full-shell element models are
placed at the longitudinal position of x= 525mm. This point is in the GBT domain in
the mixed model and at the center of the first elements after the coupling cross-section
in the full-shell element models. Following the same sequence of Chapter 5, the analysis
of stress field starts in internal bending moments:

Table 6.6: Longitudinal bending moment, Mx, at x = 525mm: mean differences (in the
table’s upper-right side) and their standard deviation (in the table’s lower-left side)
among all models

Mx GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – -9.22% -0.59% -9.45% 79.57%

Shell 63 2.09% – -8.57% 0.25% 95.65%
Shell 93 4.64% 2.3% – -8.8% 77.55%
Shell 181 2.07% 0.02% 2.31% – 95.38%
Shell 281 19.48% 21.33% 22.18% 28.31% –

Figure 6.15: Comparison of results among mixed shell-GBT and fully shell models at
point x= 525mm: longitudinal bending moment, Mx

Similar to table 5.7, in Chapter 5, GBT approaches to the solution of Shell-93. In
general, there is an increase in the mean difference among GBT and all shell models.
However, the standard deviation decreases, especially concerning the models with Shell-
63 and Shell-181. Also, the particular results of model Shell-281 are kept.

Although shell-93 gives the closest result to GBT in terms of the longitudinal bending
moment, it provides the farthest one concerning the transversal bending moment. Ta-
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ble 6.7 presents similar results to Table 5.8, i.e., there is no significant interference due
to the coupling approach proposed here.

Figure 6.16: Comparison of results among mixed shell-GBT and fully shell models at
point x= 525mm: transversal bending moment, Mθ .

Table 6.7: Transversal bending moment, Mθ , at x = 525mm: mean differences (in the
table’s upper-right side) and their standard deviation (in the table’s lower-left side)
among all models

Mθ GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – 0.52% 41.17% 0.59% 0.61%

Shell 63 0.48% – -77.16% -0.06% 0.09%
Shell 93 192.69% 129.06% – -77.22% -77.04%
Shell 181 0.89% 0.49% 131.32% – 0.03%
Shell 281 0.29% 0.3% 128.97% 0.78% –

Concerning the twist bending moment, Mθx, the same behavior from Chapter 5 is
observed: GBT’s results diverge from the Shell-93 ones and converges to the other
models. Moreover, as well as the longitudinal bending moment, there is a increasing in
the mean difference among GBT and all shell models, simultaneously with a decrease
in standard deviation.

Since the cross-section analysis of this example is closer to the support conditions
than in the example of Chapter 5, it is not a surprise that the divergence among the
outcome’s shear forces is higher than the previous chapter.

Table 6.9 confirms the analysis of Chapter 5: the longitudinal shear force of Shell-281
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Figure 6.17: Comparison of results among mixed shell-GBT and fully shell models at
point x= 525mm: twist moment, Mθx.

Table 6.8: Twist bending moment, Mθx, at x= 525mm: mean differences (in the table’s
upper-right side) and their standard deviation (in table’s lower-left side) among all
models

Mθx GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – 6.7% 6.77% 6.08% 7%

Shell 63 5.1% – 3.67% 1.07% 0.22%
Shell 93 18.41% 19.34% – 1.1% 3.97%
Shell 181 6.05% 8.2% 11% – 1.27%
Shell 281 6.35% 1.11% 20.39% 9.12% –

is the closest solution from GBT and Shell-181 has the worst results’ agreement with
GBT.

Table 6.9: Longitudinal plate’s shear, Qx, at x= 525mm: mean differences (in the table’s
upper-right side) and their standard deviation (in the table’s lower-left side) among all
models

Qx GBT Shell-93 Shell-181 Shell-281
GBT – 7.29% 55.43% 7.21%

Shell 93 17.05% – -22% 1.34%
Shell 181 401.58% 544% – -69.95%
Shell 281 8.59% 10.1% 70.59% –

However, the transversal shear force, Qθ , has the opposite behavior. GBT gets closer

142



Figure 6.18: Comparison of results among mixed shell-GBT and fully shell models at
point x= 525mm: longitudinal shear force, Qx.

Figure 6.19: Comparison of results among mixed shell-GBT and fully shell models at
point x= 525mm: transversal shear force, Qθ .

to the solution of Shell-181 model and deviates from Shell-93 and Shell-281 models, as
presented in figure 6.19 and table 6.10. Furthermore, one can observe that the diagram
of solution from Shell-93 and Shell-281 is almost a shift from the diagram of GBT or
Shell-181, which indicates a lack of shear force concerning mode 3.

Concerning the internal membrane forces, the coupling approach introduces no pertur-
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Table 6.10: Transversal plate’s shear, Qθ , at x= 525mm: mean differences (in the table’s
upper-right side) and their standard deviation (in the table’s lower-left side) among all
models

Qθ GBT Shell-93 Shell-181 Shell-281
GBT – 73.27% 1.91% 23.34%

Shell 93 362.26% – -151.6% 87.48%
Shell 181 6.67% 87.84% – 247.31%
Shell 281 496.43% 51.87% 852.02% –

bation in the results of longitudinal and shear forces. Tables 6.11 and 6.12 present
almost the same values of the respective tables in Chapter 5: 5.12 and 5.14.

Figure 6.20: Comparison of results among mixed shell-GBT and fully shell models at
point x= 525mm: longitudinal membrane force, Nx.

Table 6.11: Longitudinal membrane force, Nx, at x = 525mm: mean differences (in the
table’s upper-right side) and their standard deviation (in the table’s lower-left side)
among all models.

Nx GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – 0.02% -0.03% 0.05% -0.03%

Shell 63 0.17% – 0.05% -0.03% -0.05%
Shell 93 0.13% 0.04% – 0.08% 0.01%
Shell 181 0.19% 0.02% 0.06% – -0.08%
Shell 281 0.13% 0.04% 0% 0.06% –
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Figure 6.21: Comparison of results among mixed shell-GBT and fully shell models at
point x= 525mm: shear membrane force, Nθx.

Table 6.12: Shear membrane force, Nθx, at x= 525mm: mean differences (in the table’s
upper-right side) and their standard deviation (in the table’s lower-left side) among all
models.

Nθx GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – 0.02% -0.01% 0.02% -0.01%

Shell 63 0.15% – 0.03% 0.01% -0.03%
Shell 93 0.12% 0.03% – 0.03% 0%
Shell 181 0.17% 0.02% 0.05% – -0.03%
Shell 281 0.13% 0.02% 0.01% 0.04% –

However, the approximation of the cross-section analysis to the support conditions is
reflected in the membrane’s result in the transversal direction, Nθ : Shell-181 presents
higher results than any other model. Moreover, there is no consensus among all models
on the values of this internal force. Nevertheless, one can note that the values presented
in figure 6.22 are really small compared to the values of the other membrane forces given
in figures 6.20 and 6.21.

A general evaluation of stress fields shows that the proposed formulation of coupling
between GBT and shell elements has imperceptible differences for the internal forces
Nx and Nθx. The same evaluation can be built for the plate’s bending moments Mx

and Mθ . However, for these internal forces, one model of full shell elements leads to
divergent results. The GBT results are approximately the same as the other models’
results.

The mean difference and its standard deviation of twist bending moment, Mθx, have al-
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Figure 6.22: Comparison of results among mixed shell-GBT and fully shell models at
point x= 525mm: transversal membrane force, Nθ

Table 6.13: Membrane tangential force, Nθ , at x = 525mm: mean differences (in the
table’s upper-right side) and their standard deviation (in the table’s lower-left side)
among all models

Nθ GBT Shell-63 Shell-93 Shell-181 Shell-281
GBT – 39.35% 22.54% 862.3% 35.73%

Shell 63 137.35% – 14.87% -82.61% -82.2%
Shell 93 33.48% 115.82% – 320.36% 26.09%
Shell 181 3.25% 0.87% 2041.77% – -86.47%
Shell 281 36.05% 110.91% 64.73% 0.79% –

most no perturbation when compared to results obtained in the evaluation of full GBT,
developed in Chapter 5. The longitudinal shear force, Qx, has a similar performance,
but in this case, it has an increase of the mean difference. The reason for this increase
is the position of the cross-section under analysis, which is closer to the support than
the analyzed cross-section of the example presented in the previous chapter.

The transversal shear force and the transversal membrane force, Qθ and Nθ , respec-
tively, cannot be concluded based on the perturbation of the coupling procedure, as all
models have no consensus on the final results. Nevertheless, these internal forces are
much lower than any other internal force. In fact, they have residual participation in
the total stress field.
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7
Non-linear analysis of mixed Shell-GBT models

This chapter presents the introduction to non-linear geometrical analysis in GBT. Af-
ter a brief historical review, it will bring the main concepts in non-linear GBT. The
departure from linear analysis leads directly to the coupling among deformation modes.
I.e., in non-linear analysis, each mode cannot be solved from the others independently.
However, the uncoupling modes remain relevant to the linear analysis due to the fact
that i) they still have a clear kinematic meaning; ii) they will lead to the Tensors
of Coupling, which indicates how a coupler mode creates a link between two coupled
modes. Since the geometric properties of the cross-section are the only source of these
tensors, they have a unique potential of predicting coupling instability in the initial
stages of the structural design.

Also, this chapter develops different types of non-linear stiffness matrices, as well as
the consistent internal forces of GBT in the non-linear analysis. These matrices and
internal forces, based on the shape functions developed in Chapter 5, have the benefits
of using high derivatives of hyperbolic-trigonometric functions to describe any stress
field in GBT’s high modes. Moreover, they have a recursive property, useful in the
development of quadratic terms in non-linear analysis. I.e., due to the similarity among
shape functions and their derivatives, a stiffness matrix of a particular shape function
can be adjusted and re-used in other terms of the non-linear analysis.

Here, the approach of splitting the stiffness matrix into two parts - the kernel and the
coefficient completeness matrices - shows another benefit: a systematic technique of
developing and applying the initial stress and displacement stiffness matrices.

The numerical examples of this chapter highlight not only the application of non-linear
analysis in the mixed Shell-GBT models, but also the limitation from assumptions of
no shear and transversal membrane strains energy of GBT to handle non-linear effects.
Full shell element models, based on commercial packages, cross-check the results of
these examples.
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7.1. Introduction - Brief historical development of non-linear
GBT
Non-linear analysis in GBT have been proving to be an alternative and powerful tool in
describing and modeling complex problems in thin-walled beams. The first non-linear
analysis in GBT was developed to solve coupled stability problems by Zhang[143, 144,
180] and Richard Schardt,[137, 138], and later by Davies and his co-workers [47, 48].
These publications introduce the concept of third-order coupling tensor i jkX and its
physical meaning.

However, the focus of these works is the linear instability analysis[21, 42], based on
eigenvalue problem, which applies trigonometric functions to describe the strain and
stress fields of thin-walled beams in the longitudinal direction. Although these ampli-
fication functions can satisfy the simple support boundary conditions of a beam under
concentrated load at the nodes, they have limitations in other loading condition or/and
complex modal coupling configurations.

At the beginning of this century, non-linear GBT started to have a dedicated researching
group in the Technical University of Lisbon, where Dinar Camotim and his colleagues
developed several contributions in this subject: [30, 51, 155, 162].

In particular, an astonishing work from Silvestre [152] is a turning point in the under-
standing of the GBT non-linear analysis. This work not only highlights the importance
of the fourth-order tensor i jklX to achieve precise and feasible results in non-linear ge-
ometrical analysis, but also it is the first work to observe the relevance of shear and
transversal elongation modes in this type of analysis. Such observation is directly
related to the results and conclusion achieved in this Chapter.

Also in Portugal but at the University of Coimbra, Simão et.al.[164, 165] developed a
unified energy formulation of non-linear GBT. Similar to publications from Schardt,
the development of these publications had a focus in buckling analysis.

Among the contributions of these publications, there is the development of non-linear
analysis in different types of applied force and boundary conditionals [7, 22, 110]. Also,
Silvestre et al used Hermitian [10, 40, 152] and Langrage [34, 35, 118] cubic polynomials
to describe the displacement and stress fields. These polynomials have the benefits
to describe the internal forces, and consequently the initial stress, in compacted and
directly form. On the other hand, it is necessary to have enough discretization of the
thin-walled beam to reach a smooth initial stress field between the elements.

Concerning large deformation and rotation, the first study of GBT appears by Madeo
et.al.[106], which extends the corotational method into GBT analysis. Gonçalves
et.al[81] also studied this method, and recently, both groups detailed this procedure in
[132].

Lastly, Silvestre in [2] is the first to address the non-linear physical analysis in GBT,
which shows the requirement of a quite large number of models to describe this type
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of non-linearity. Gonçalves et.al[70, 88] also confirm this feature. Later, this subject
is applied in elastic-plastic with large displacement [1, 3, 4, 163] and Direct Strength
Method, DSM, [9, 119]. Duan et.al also developed a GBT elastic-plastic formulation
based on B-Splines curves [54, 56] and impact load analysis[57]. The non-linear physical
GBT is beyond of this dissertation’s scope.

7.2. Geometric stiffness in GBT
The starting point in the development of non-linear GBT’s analysis is a review of
the principle of virtual work and how an incremental virtual displacement leads to,
among other matrices, the initial stress stiffness matrix [86, 87]. The next subsections
present, in the sequence: i) the assumptions in strains and its incremental variation; ii)
the variation of longitudinal and transversal strain energy, respectively; iii)the linear
and quadratic initial stress stiffness matrices, and iv)the linear and quadratic initial
displacement stiffness matrices.

7.2.1. Principle of Virtual Works applied in non-linear GBT
As a first step in non-linear GBT analysis, one can consider the fiber of a generic
segment of a thin-walled beam, as shown in figure 7.1, under small strains:

Figure 7.1: Fiber elongation of a thin-walled beam segment
By keeping the assumption of Lagrangian strain [32], it is possible to obtain from an
infinitesimal fiber, as shown above, the following expressions:

εx =
dlx−dx

dx
=

√
(dx+du)2+dv2+dw2−dx

dx
=

√
1+2

du
dx

+
du2

dx2
+

dv2

dx2
+

dw2

dx2
−1 (7.1)

εs =
dls−ds

ds
=

√
(ds+dv)2+du2+dw2−ds

ds
=

√
1+2

dv
ds

+
dv2

ds2
+

du2

ds2
+

dw2

ds2
−1 (7.2)
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Here, one approximates the square-root in equations 7.1 and 7.2 by a Taylor series.
Truncating it in the linear part, one obtains:

εx =
(
1+

1
2
(2u,x+u2,x+ v2,x+w2

,x)

)
−1= u,x+

1
2
(u2,x+ v2,x+w2

,x) (7.3)

εs =
(
1+

1
2
(2v,s+ v2,s+u2,s+w2

,s)

)
−1= v,s+

1
2
(u2,s+ v2,s+w2

,s) (7.4)

The terms u2,x and v2,s are small if compared with the other terms. Therefore, a new
approximation neglects these terms [32]. Further, each displacement is divided into two
states: the first one shows ū, v̄ and w̄, which concern the initial displacement state. The
second one brings +

u,
+
v and +

w, concerning the incremental displacement state. Thus,
one reaches:

εx = ū,x+
+
u,x+

1
2

[
(v̄,x+

+
v,x)2+(w̄,x+

+
w,x)

2
]
=

−
εx+

+
εx+

++
εx (7.5)

εs = v̄,s+
+
v ,s+

1
2

[
(ū,s+

+
u,s)2+(w̄,s+

+
w,s)

2
]
=

−
εs+

+
εs+

++
εs (7.6)

where:
−
εx = ū,x+

v̄2,x+ w̄2
,x

2
(7.7)

+
εx =

+
u,x+ v̄,x

+
v ,x+ w̄,x

+
w,x (7.8)

++
εx =

+
v,x2+

+
w,x

2

2
(7.9)

−
εs = v̄,s+

ū2,s+ w̄2
,s

2
(7.10)

+
εs =

+
v ,s+ ū,s

+
u,s+ w̄,s

+
w,s (7.11)

++
εs =

+
u,s2+

+
w,s

2

2
(7.12)

It is important to note that the strain component to the initial displacement, −
ε , has

no variation. Hence, the variation of the strain can only affect the incremental compo-
nent:

δεx = δ
+
εx+δ

++
εx (7.13)

δ
+
εx = δ +

u,x+ v̄,xδ
+
v,x+ w̄,xδ

+
w,x (7.14)

δ
++
εx =

+
v,xδ

+
v,x+

+
w,xδ

+
w,x (7.15)

δεs = δ
+
εs+δ

++
εs (7.16)

δ
+
εs = δ +

v,s+ ū,sδ
+
u,s+ w̄,sδ

+
w,s (7.17)
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δ
++
εs =

+
u,sδ

+
u,s+

+
w,sδ

+
w,s (7.18)

These variations are applied to minimize the functional of the energy system, given
in eq. 2.22. Thus, it leads to same expression in eq. 2.23. However, for non-linear
analysis, the variation of internal strain energy, δUint , must be based on equations 7.13
and 7.16.

Although this new incremental variation links strains and stresses between membranes
and plates, the superposition of these strains and stress, given in equations 7.19 and 7.20,
are still valid. I.e., the strain and stresses over the thickness dimension maintain the
constant and linear distributions related to membrane and plate behavior, respectively.
However, the incremental variation builds crossing constitutive relationships between
membrane’s strain and plate’s stress, as well as the plate’s strain and membrane’s
stress

εx = εM
x + εP

x (7.19)

σx = σM
x +σP

x (7.20)

Consequently, much more complex expressions are obtained to internal strain energy
and its variation. In order to minimize this complexity, each strain and its incremental
(from eq. 7.7 to 7.18) are presented below, in respect to membrane and plate parts.
The evaluation of these expressions are based on GBT’s displacements assumptions,
given in equations 2.15, 2.16 and 2.17:

−
εM
x = ū,x+

v̄2,x+ w̄2
,x

2
(7.21)

+
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2
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2
(7.23)

δ
+
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x = δ+

u,x+ v̄,xδ
+
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+
w,x (7.24)

δ
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x =

+
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+
v ,x+

+
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+
w,x (7.25)
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2
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(7.28)

δ
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δ
++

εP
x = t2

+
w,xsδ

+
w,xs (7.30)
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−
εM
s =

ū2,s+ w̄2
,s

2
(7.31)

+

εM
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+
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+
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++
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+
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2
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(7.33)

δ
+

εM
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δ
++
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(7.36)

+
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δ
+
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w,ss+ t2w̄,sxδ
+
w,sx (7.39)

δ
++

εP
s = t2

+
w,sxδ

+
w,sx (7.40)

7.2.2. Variation of longitudinal internal strain energy
To develop the expression of internal strain energy in non-linear GBT analysis, one can
start from the total energy for longitudinal strain in linear analysis, which is given by
the two first integrals in eq. 2.24:

Ux =
∫
V

∫
εMx

σM
x dεM

x +
∫
εPx

σP
x dεP

x

dV (7.41)

However, in non-linear analysis, this expression must be defined in a more general way
based on equations 7.19 and 7.20:

Ux =
∫
V

∫
εx

σxdεxdV =
∫
V

∫
εMx

(
σM
x +σP

x
)
dεM

x +
∫
εPx

(
σM
x +σP

x
)
dεP

x

dV (7.42)

Introducing the material constitutive relationships in this expression, given in equa-
tions 2.10 and 2.11, one can reach:

Ux =
∫
V

E
1−µ2

[
εP
x
2

2
+µεP

x εP
s + εM

x
(
εP
x +µεP

s
)]

+E
εM
x

2

2
dV (7.43)

From this expression, the variations [63, 117] of membrane’s and plate’s strain in lon-
gitudinal directions lead respectively to:
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δUM
x =

∫
V

δεM
x E
[

εP
x +µεP

s

1−µ2 +εM
x

]
dV (7.44) δUP

x =
∫
V

δεP
x

E
1−µ2

[
εP
x +µεP

s +εM
x
]
dV (7.45)

And the variation of the transversal strain, due to Poison effect leads to:

δUP
xs=

∫
V

δεP
s

µE
1−µ2

[
εP
x + εM

x
]
dV (7.46)

Now, one can expand the above expressions based on strain definitions of equations 7.5
and 7.6 and their variations from equations 7.13 to 7.18. For instance, the introduction
of these terms in eq. 7.44 leads to:

δUM
x =

∫
V

(
δ

+

εM
x +δ

++
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)
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)dV (7.47)

One can reorganize this integral in a sum of six parts:
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∫
V
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dV (7.48)

Here, the first term corresponds to the virtual work of the initial stress at the initial
stage. This term gives the internal forces. It plays a central role in the iteration
procedure since the difference between internal and external forces leads to unbalanced
ones. The second term represents the virtual work of the initial stress in the incremental
stages, which leads to the linear and quadratic stiffness matrices. The third term is the
virtual work due to initial displacement that provides the linear and quadratic initial
displacement matrices. Finally, the fourth, fifth and sixth terms are much smaller than
the others. Thus, one can neglect them.

The variation of internal energy concerning the longitudinal plate’s strains can be
developed in the same way, and reach a similar expression. The introduction of equa-
tions 7.13 to 7.18 into eq. 7.45 leads to:
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In above integral, the first, second and third terms lead to the internal forces of the
plate behavior and the initial stress and displacement matrices in the incremental plate’s
strains, respectively.

Following the same approach, one evaluates the variation of the plate’s longitudinal
strain due to the Poisson effect:
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7.2.3. Variation of transversal internal strain energy
The evaluation of transversal internal strain energy in non-linear GBT is similar to
the longitudinal direction. However, as shown later in the development of this internal
strain energy, the assumption of no membrane transversal strain leads only to quadratic
terms.

Nevertheless, the evaluation of internal strain energy itself, in this direction, has a high
contrast between the linear and non-linear analysis. Here, this strain has components
from the derivatives in the transversal direction of the displacements in the thickness
and longitudinal directions, as presented in equations 7.31, 7.32 and 7.33.

Therefore, the simple internal strain energy in the linear case, which only considers the
plate’s behavior:

Us =
∫
V

E
1−µ2

[
εP
s
2

2
+µεP

x εP
s

]
dV (7.51)
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is replaced by a more general expression, but similar to longitudinal direction (eq. 7.43):
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and its variation in respect to membrane and plate strains in longitudinal and transver-
sal directions are, respectively:

δUM
s =

∫
V

δεM
s E
[

εP
s +µεP

x

1−µ2 +εM
s

]
dV (7.53)

δUP
s =

∫
V

δεP
s

E
1−µ2

[
εP
s +µεP

x +εM
s
]
dV (7.54)

δUP
sx=

∫
V

δεP
x

µE
1−µ2

(
εP
s +εM

s
)
dV (7.55)

Consequently, the final variations of this internal energy lead to similar expressions of
longitudinal direction. As an example, one obtains the variation of transversal mem-
brane strain from the introduction of equations 7.13 to 7.18 into eq. 7.53:
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The variation of transversal plate strain (eq. 7.54) has the same evaluation:
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And the last evaluation of internal strain energy is related to Poisson’s effect of longi-
tudinal direction into incremental transversal strains, given in eq. 7.55:
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Similar to equations 7.48, 7.49, and 7.50, the first terms in the equations 7.56, 7.57
and 7.58 represent the internal forces, the second and third terms represent the vir-
tual work of the initial stress and displacement, respectively. All other terms are
neglected.

7.2.4. Linear and Quadratic Initial Stresses Stiffness - Longitudinal
Direction
As mentioned earlier, the second terms in equations 7.48, 7.49, 7.50, 7.56, 7.57
and 7.58 represent the virtual work of initial stress. Each of these terms can also split
into two parts: linear and quadratic. To illustrate this division, one can introduce
eq. 7.21 and 7.25 at the membrane part of second term in eq. 7.48:
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The first resultant integral in eq. 7.59 is the linear part of the virtual work of the
initial stress, which leads to the initial stress stiffness matrix due to the membrane
part. The studies of Richard Schardt, [137, 138] consider only this part in non-linear
GBT. The development of this integral is carried out by the introduction of GBT’s
separation of variable assumptions, given in equations 2.12, 2.13 and 2.14, which
splits the domain of integration in longitudinal and transversal directions, x and s,
respectively. Also, the concept of superposition modes, given in equations 2.18, 2.19
and 2.20, is introduced:∫

V

Eū,x
(

+
v,xδ

+
v,x+

+
w,xδ

+
w,x

)
dV = E

n

∑
i=1

n

∑
j=1

n

∑
k=1

∫
V

iū(s) iV̄,xx (x)(
j+v (s) j+V ,x (x) k

+
v (s)δ k+V ,x (x)+ j+w(s) j+V ,x (x) k

+
w(s)δ k+V ,x (x)

)
dV=Et i jkXMM

3
iV jk

X3 (7.60)
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where:

i jkXMM
3 =

∫
s

iū(s)
(
j+v (s) k

+
v (s)+ j+w(s) k

+
w(s)
)
ds (7.61) iV jk

X3=
∫
x

iV̄,xx (x) j +V,x (x)δ k +
V,x (x)dx (7.62)

i jkXMM
3 is the third order coupling tensor, obtained only from the cross-section proper-

ties. The following section details this feature. The index MM indicates the virtual work
of initial Membrane strain, in the longitudinal direction, in the incremental Membrane
strain in the same direction. The integral iV jk

X3 leads to the correspondent matrices of
the variation in the longitudinal direction. The left- and right-upper indices emphasize
the initial stage mode i and the incremental stages j and k, respectively.

The evaluation of eq. 7.60 considered a uniform thickness, t, in all segments of the cross-
section. Consequently, if a cross-section has different thicknesses in different segments,
then the coupling tensor X must be developed for each group of segments with the
same thickness.

The second resultant integral in eq. 7.59 represents the quadratic part, neglected by
many applications. Nevertheless, its evaluation is:

∫
V

E
2
(
v̄,x2+ w̄,x

2)( +
v,xδ

+
v,x+

+
w,xδ

+
w,x

)
dV =

E
2

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

∫
V

(iv̄(s) iV̄,x (x) jv̄(s) jV̄,x (x)+ iw̄(s) iV̄,x (x) jw̄(s) jV̄,x (x)
)

(
k+v (s) k

+
V ,x (x) l

+
v (s)δ l+V ,x (x)+ k+w(s) k

+
V ,x (x) l

+
w(s)δ l+V ,x (x)

)
dV =

Et
2

i jklXMM
4

i jVkl
X4 (7.63)

with:
i jklXMM

4 =
∫
s

(iv̄(s) jv̄(s)+ iw̄(s) jw̄(s)
)(k+v (s) l+v (s)+k+w(s) l

+
w(s)
)
ds (7.64)

i jVkl
X4=

∫
x

iV̄,x (x) jV̄,x (x) k
+
V,x (x)δ l +V,x (x)dx (7.65)

Here, i jklXMM
4 is the fourth order coupling tensor between Membrane-Membrane strains

and its respective variation matrices are i jVkl
X4, that is based on the initial stage of

modes i and j.

The virtual work of the initial plate’s strains in the incremental membrane’s strains
behavior follows the same evaluation. Introducing equations 7.33, 7.26 and 7.36 into
second terms in the equation 7.48 leads to:
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∫
V

δ
++

εM
x E

−
εP
x +µ

−
εP
s

1−µ2 dV=
∫
V

(
+
v ,xδ

+
v ,x+

+
w,xδ

+
w,x

) E
1−µ2

(
t2w̄2

,xs

2
−tw̄,xx+µ

(
t2w̄2

,xs

2
−tw̄,ss

))
dV

=
E (1+µ)
2(1−µ2)

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

∫
V

t2iw̄,s (s) iV̄,x (x) jw̄,s (s) jV̄,x (x)(
k+v (s) k

+
V ,x (x) l

+
v (s) lδ

+
V ,x (x)+ k+w(s) k

+
V ,x (x) l

+
w(s)δ l+V ,x (x)

)
= (1+µ)

K
2
i jklXMP

4
i jVkl

X4 (7.66)

where K is the plate stiffness, given in eq. 2.41 and:

i jklXMP
4 =

∫
s

(iv̄(s) jv̄(s)+ iw̄(s) jw̄(s)
) k+w,s (s) l

+
w,s (s)ds (7.67)

Once the virtual work about the incremental membrane’s strain is evaluated, the next
evaluation concerns the virtual work of incremental plate’s strains in longitudinal di-
rections and its Poisson’s effect, given in the second terms in equations 7.49 and 7.50,
respectively. The evaluation of both expressions can be carried out simultaneously,

since the incremental strains δ
++

εP
x and δ

++

εP
s are the same, as shown in equations 7.30

and 7.40. Therefore, the introduction of equations 7.30, 7.40, 7.26, 7.36 and 7.21 into
second integral in equations 7.49 and 7.50 leads to:∫

V

δ
++

εP
x

E
1−µ2

(
µ

−
εP
s +

−
εP
x +

−
εM
x

)
dV +

∫
V

δ
++

εP
s

µE
1−µ2

(
−
εP
x +

−
εM
x

)
dV =

∫
V

t2
+
w,xsδ

+
w,xs

E
1−µ2(

µ

(
−t ¯w,ss+

t2w̄2
,xs

2

)
+(1+µ)

(
−tw̄,xx+

t2w̄2
,xs

2
+ ū,x+

v̄2,x+ w̄2
,x

2

))
dV (7.68)

One can observe that the linear part concerning the initial strains of plate leads to an
odd function. Thus, the integral over the thickness vanishes it. Therefore, the only
remained in the linear part of the virtual work is the membrane’s initial stress over the
incremental plate strain:∫

V

t2
+
w,xsδ

+
w,xs

E (1+µ)
1−µ2 ū,xdV =

E (1+µ)
1−µ2

n

∑
i=1

n

∑
j=1

n

∑
k=1∫

V

iū(s) iV̄,xx (x) t2 j
+
w,s (s) j+V ,x (x)δ k +

w,s (s) k
+
V ,x (x)dV = (1+µ)Ki jkXMP

3
iV jk

X3 (7.69)

Here, VX3 are the variation matrices give in eq. 7.62 and i jkXMP
3 is the third-order tensor

of coupling of initial Membrane strain and the incremental Plate strain:

i jkXMP
3 =

∫
s

iū(s) j+w,s (s) k
+
w,s (s)ds (7.70)

158



Usually, in thin-walled structures, the linear coupling part of membrane initial strains
and plate’s incremental strains has a secondary role to archive a consistent displacement
and stress fields. The quadratic part of this coupling is even smaller. Generally, they
are neglected as well. Nevertheless, the evaluation of this term is present below:∫

V

t2
+
w,xsδ

+
w,xs

E (1+µ)
1−µ2

v̄,x2+ w̄,x
2

2
dV =

E (1+µ)
2(1−µ2)

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

∫
V

t2
(iv̄(s) iV̄,x (x) jv̄(s) jV̄,x (x)+

iw̄(s) iV̄,x (x) jw̄(s) jV̄,x (x)
) k+w,s (s) k

+
V ,x (x) l

+
w,s (s)δ l+V ,x (x)dV = (1+µ)

K
2
i jklXMP

4
i jVkl

X4 (7.71)

The last evaluation concerns the quadratic term of coupling between the initial plate’s
strains and itself:

∫
V

t2
+
w,xsδ

+
w,xs

E (1+2µ)
1−µ2

¯t2w,xs
2

2
dV =

E (1+2µ)
2(1−µ2)

n

∑
i=1

n

∑
j=1

n

∑
k=1∫

V

t4iw̄,s(s)iV̄,x(x) jw̄,s(s) jV̄,x(x)k
+
w,s(s) k

+
V,x(x) l

+
w,s(s)δ l+V,x(x)dV=(1+2µ)

3t2K
40

i jklXPP
4

i jVkl
X4 (7.72)

where:
i jklXPP

4 =
∫
s

iw̄,s (s) jw̄,s (s) k
+
w,s (s) l

+
w,s (s)ds (7.73)

One can notice that the quadratic coupling between plates’ strains is small in thin-
walled beams since it involves the fifth order of thickness. To clarify all possibilities in
the virtual work of longitudinal direction, table 7.1 presents a summary of it.
Table 7.1: Summary of virtual work of the initial stress in the incremental stages in
the longitudinal direction.

Relation
initial

stress in:

incremental strain in:

Membrane: Plate:

Linear Membrane eq. 7.60: Et i jkXMM
3

iV jk
X3 eq. 7.69: (1+µ)Ki jkXMP

3
iV jk

X3

Quadratic
Membrane eq. 7.63: Et

2
i jklXMM

4
i jVkl

X4 eq. 7.71: (1+µ) K
2
i jklXMP

4
i jVkl

X4

Plate eq. 7.66: (1+µ) K
2
i jklXMP

4
i jVkl

X4 eq. 7.72: (1+2µ) 3t2K
40

i jklXPP
4

i jVkl
X4

7.2.5. Linear and Quadratic Initial Stresses Stiffness - Transversal
Direction
The initial stresses stiffness matrices in transversal direction have a more straightfor-
ward evaluation than the longitudinal direction. GBT’s assumption of non-transversal
elongation eliminates the linear part of the membrane’s strain. Also, as shown in the
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longitudinal direction evaluation, there is not linear part due to plate’s strains. Hence,
the transversal direction has only quadratic stiffness matrices, as shown in the evalua-
tion of incremental membrane strain, given in the second term of eq. 7.56:

∫
V

δ
++

εM
s E

 −
εP
s +µ

−
εP
x

1−µ2 +
−

εM
s

dV =

∫
V

(
+
u,sδ

+
u,s+

+
w,sδ

+
w,s

)
E

−tw̄,ss+
t2w̄2

,xs
2 +µ

(
−tw̄,xx+

t2w̄2
,xs

2

)
1−µ2 +

ū2,s+ w̄2
,s

2

dV (7.74)

One can introduce in the above expression, in part concerning the initial membrane
strain, the equations 7.35 and 7.31 and reach the quadratic expression of variation of
initial and incremental membrane’s strains in transversal direction:

∫
V

δ
++

εM
s E

−
εM
s dV =

∫
V

(
+
u,sδ

+
u,s+

+
w,sδ

+
w,s

)
E
ū2,s+ w̄2

,s

2
dV =

E
2

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

∫
V

(iū,s (s) iV̄,x (x) jū,s (s) jV̄,x (x)+ iw̄,s (s) iV̄ (x) jw̄,s (s) jV̄ (x)
)

(
k+u,s (s) k

+
V ,x (x) l

+
u,s (s)δ l+V ,x (x)+ k+w,s (s) k

+
V (x) l

+
w,s (s)δ l+V (x)

)
dV =

Et
2

(
i jklSMM

u4
i jVkl

X4+2i jklSMM
uw4

i jVkl
XS4+

i jklXPP
4

i jVkl
S4

)
(7.75)

where:

i jklSMM
u4 =

∫
s

iū,s (s) jū,s (s) k
+
u,s (s) l

+
u,s (s)ds (7.76)

i jklSMM
uw4=

∫
s

iū,s(s) jū,s(s) k
+
w,s(s) l

+
w,s (s)ds (7.77)

i jVkl
XS4=

∫
L

iV̄,x (x) jV̄,x (x) k
+
V (x)δ l+V (x)dx (7.78)

i jVkl
S4=

∫
L

iV̄ (x) jV̄ (x) k
+
V (x)δ l+V (x)dx (7.79)

For the part of the initial plate’s strain, the introduction of equations 7.36 and 7.26
leads to the quadratic relationship:
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∫
V

δ
++

εM
s E

−
εP
s +µ

−
εP
x

1−µ2 dV =
∫
V

(
+
u,sδ

+
u,s+

+
w,sδ

+
w,s

) E (1+µ)
2(1−µ2)

t2w̄2
,xsdV =

E (1+µ)
2(1−µ2)

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

∫
V

t2iw̄,s (s) iV̄,x (x) jw̄,s (s) jV̄,x (x)(
k+u,s (s) k

+
V ,x (x) l

+
u,s (s)δ l+V ,x (x)+ k+w,s (s) k

+
V (x) l

+
w,s (s)δ l+V (x)

)
dV =

K (1+µ)
2

(
i jklSMM

uw4
i jVkl

X4+
i jklXPP

4
i jVkl

XS4

)
(7.80)

Similar to longitudinal direction, the evaluation of incremental plate’s strains is de-

veloped simultaneously for both terms δ
++

εP
x and δ

++

εP
s . Thereby, the introduction of

equations 7.40, 7.26 and 7.36 into the second terms of equations 7.57 and 7.58 leads
to:

∫
V

δ
++

εP
s

E
1−µ2

(
−
εP
s +µ

−
εP
x +

−
εM
s

)
dV +

∫
V

δ
++

εP
x

µE
1−µ2

(
−
εP
s +

−
εM
s

)
dV =

∫
V

t2
+
w,sxδ

+
w,sx

E
1−µ2

(
(1+µ)

(
ū2,s+ w̄2

,s

2
−tw̄,ss+

t2w̄2
,xs

2

)
+µ

(
−tw̄,xx+

t2w̄2
,xs

2

))
dV (7.81)

From the above expression, one reaches the following quadratic relationship between
the initial membrane and incremental plate strains:

∫
V

t2
+
w,sxδ

+
w,sx

E (1+µ)
1−µ2

ū2,s+ w̄2
,s

2
dV =

E (1+µ)
2(1−µ2)

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

∫
V

(
iū,s (s) iV̄,x (x) jū,s (s) jV̄,x (x)+ iw̄,s (s) iV̄ (x) jw̄,s (s)

j V̄ (x)
)

t2k
+
w,s (s) k

+
V ,x (x) l

+
w,s (s)δ l+V ,x (x)dV = (1+µ)

K
2

(
i jklSMM

uw4
i jVkl

X4+
i jklXPP

4
i jVkl

SX4

)
(7.82)

with:
i jVkl

SX4 =
∫
L

iV̄ (x) j+V (x) k
+
V ,x (x)δ l+V ,x (x)dx (7.83)

It is essential to highlight that if different shape modes have different shape functions,
then: VSX4 ̸= VXS4. Finally, the quadratic relationship between the initial and incre-
mental plate’s strains is:
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∫
V

t2
+
w,sxδ

+
w,sx

E (1+2µ)
2(1−µ2)

t2w̄2
,sxdV =

E (1+2µ)
2(1−µ2)

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1∫

V

t4iw̄,s(s) iV̄,x(x) jw̄,s(s) jV̄,x(x) k
+
w,s(s) k

+
V,x(x) l

+
w,s(s)δ l+V,x(x)dV=(1+2µ)

3t2K
40

i jklXPP
4

i jVkl
X4 (7.84)

To clarify all possibilities in the virtual work of longitudinal direction, table 7.2 presents
a summary of it.

Table 7.2: Summary of virtual work of the initial stress in the incremental stages in
the transversal direction.

Relation
initial

stress in:

incremental strain in:

Membrane: Plate:

Quadratic
Membrane

eq. 7.75: Et
2

(
i jklSMM

u4
i jVkl

X4+

2i jklSMM
uw4

i jVkl
XS4+

i jklXPP
4

i jVkl
S4
) eq. 7.82: (1+µ) K

2(
i jklSMM

uw4
i jVkl

X4+
i jklXPP

4
i jVkl

SX4
)

Plate
eq. 7.80: (1+µ) K

2(
i jklSMM

uw4
i jVkl

X4+
i jklXPP

4
i jVkl

XS4
) eq. 7.84: (1+2µ) 3t2K

40
i jklXPP

4
i jVkl

X4

7.2.6. Linear and Quadratic Initial Displacements Stiffness - Lon-
gitudinal Direction
The development of Linear and Quadratic Initial Displacements Stiffness Matrices in
GBT is based on the third terms in the integrals of equations 7.48, 7.49, 7.50, 7.56, 7.57
and 7.58.

The evaluations of these expressions are similar to the case of initial stress stiffness
matrices. For instance, the variation of longitudinal membrane strain correspondent to
its incremental strains, given the third term of integral in eq. 7.48, has the following
evaluation with the introduction of equations 7.8 and 7.14:

∫
V

δ
+

εM
x E

+

εM
x dV =

∫
V

(
δ+
u,x+ v̄xδ

+
v ,x+ w̄,xδ

+
w,x

)
E
(
+
u,x+ v̄,x

+
v ,x+ w̄,x

+
w,x

)
dV =

∫
V

δ+
u,xE

+
u,xdV +

∫
V

E
[
δ+
u,x
(−
v ,x

+
v ,x+

−
w,x

+
w,x

)
+
+
u,x
(−
v ,xδ

+
v ,x+

−
w,xδ

+
w,x

)]
dV

+
∫
V

(−
v ,x

+
v ,x+

−
w,x

+
w,x

)
E
(−
v ,xδ

+
v ,x+

−
w,xδ

+
w,x

)
dV (7.85)

162



The first resulting integral in eq. 7.85 represents the virtual work of the incremental
displacement at the incremental stage. The second and the third integral above are,
respectively, the linear and quadratic part of the virtual work of the initial displacement
at the incremental stage. Evaluating the linear part, one obtains:∫

V

E
[
δ+
u,x
(−
v ,x

+
v ,x+

−
w,x

+
w,x

)
+
+
u,x
(−
v ,xδ

+
v ,x+

−
w,xδ

+
w,x

)]
dV =

E
n

∑
i=1

n

∑
j=1

n

∑
k=1

∫
V

k+u (s)δ k+V ,xx (x)
(

iv̄(s) iV̄,x (x) j+v (s) j+V ,x (x)+ iw̄(s) iV̄,x (x) j+w(s) j+V ,x (x)
)
+

j+u (s) j+V ,xx (x)
(

iv̄(s) iV̄,x (x) k
+
v (s) kδ

+
V ,x (x)+ iw̄(s) iV̄,x (x) k

+
w(s) k

+

δV,x (x)
)
dV =

Et
(
ki jXMM

3
iV jk

3u+
jikXMM

3
iV jk

3vw

)
(7.86)

Where:
iV jk

3u=
∫
x

iV̄,x (x) j +V,x (x)δ k +
V,xx (x)dx (7.87)

iV jk
3vw=

∫
x

iV̄,x (x) j +
V,xx (x)δ k +

V,x (x)dx (7.88)

Here, one can observe two properties. The first one is in regards to the integral in
the longitudinal direction: if the mode shapes j and k have the same shape function,
then V3u leads to a transpose matrix of V3vw. The second observation is about the
tensors ki jXMM

3 and jikXMM
3 . These tensors are the same as the tensor in eq. 7.61, but

the different order of reading. The following section details this feature.

Concerning the quadratic part of eq. 7.85, its evaluation leads to:

∫
V

(−
v ,x

+
v ,x+

−
w,x

+
w,x

)
E
(−
v ,xδ

+
v ,x+

−
w,xδ

+
w,x

)
dV =

E
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

∫
V

(
iv̄(s) iV̄,x (x) k

+
v (s) k

+
V ,x (x)+ iw̄(s) iV̄,x (x) k

+
w(s) k

+
V ,x (x)

)
(

jv̄(s) jV̄,x (x) l
+
v (s)δ l+V ,x (x)+ jw̄(s) jV̄,x (x) l

+
w(s)δ l+V ,x (x)

)
dV = Et ik jlXMM

4
i jVkl

X4 (7.89)

Similar to the linear part, eq. 7.89 involves the same tensor of initial quadratic stress,
given in eq. 7.64, but with an interchanged order of reading.

For the virtual work correspondent to incremental plate and membrane displacement,
the linear part from the plate’s strain is vanished, due to the integral of the odd func-
tions over the thickness dimension. Thus, the introduction of equations 7.27 and 7.37
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in the plate’s part in the third integral of eq. 7.48 leads to:

∫
V

δ
+

εM
x E

+

εP
x +µ

+

εP
s

1−µ2 dV=
∫
V

(
δ+
u,x+v̄xδ

+
v ,x+w̄,xδ

+
w,x

)
E
t2w̄,xs

+
w,xs (1+µ)− t

(
+
w,xx+µ+

w,ss

)
1−µ2 dV =

∫
V

δ+
u,xE

t2w̄,xs
+
w,xs (1+µ)
1−µ2 dV +

∫
V

(
v̄xδ

+
v ,x+w̄,xδ

+
w,x

)
E
t2w̄,xs

+
w,xs (1+µ)
1−µ2 dV (7.90)

The first and second integrals above are the initial linear and quadratic displacement,
respectively. They couple the plate and variation membrane’s strains. The evaluation
of each term is:

∫
V

δ+
u,xE

t2w̄,xs
+
w,xs (1+µ)
1−µ2 dV =

E (1+µ)
1−µ2

n

∑
i=1

n

∑
j=1

n

∑
k=1∫

V

k+u (s)δ k+V ,xx (x) t2iw̄,s (s) iV̄,x (x) j+w,s (s) j+V ,x (x)dV =
Et

1−µ
ki jXMP

3
iV jk

3u (7.91)

∫
V

(
v̄xδ

+
v ,x+w̄,xδ

+
w,x

)
E
t2w̄,xs

+
w,xs (1+µ)
1−µ2 dV =

E (1+µ)
1−µ2

n

∑
i=1

n

∑
j=1

n

∑
k=1

l

∑
k=1

∫
V

(
iv̄(s) iV̄,x (x) l

+
v (s)δ l+V ,x (x)iw̄(s) iV,x (x) l

+
w(s)δ lV,x (x)

)
t2 jw̄,s (s) jV̄,x (x) k

+
w,s (s) j+V ,x (x)dV = K (1+µ) il jkXMP

4
i jVkl

X4 (7.92)

The next evaluations are related to the variation of longitudinal plate’s strains and
its Poisson’s effect. Similar to the evaluation of initial stress terms, the development
of both expressions is carried out simultaneously, since the incremental strains are
similar (as given in equations 7.29 and 7.39). Thereby, the introduction of expres-
sions 7.29, 7.39, 7.22 7.27, and 7.37 into the sum of third terms of equations 7.49
and 7.50 leads to:

∫
V

δ
+

εP
x

E
1−µ2

(
+

εP
x+µ

+

εP
s+

+

εM
x

)
dV+

∫
V

δ
+

εP
s

µE
1−µ2

(
+

εP
x +

+

εM
x

)
dV=

∫
V

(
δ +
w,xx+µδ +

w,ss

) −Et
1−µ2(

+
u,x+v̄,x

+
v ,x+w̄,x

+
w,x−t

+
w,xx+t2w̄,xs

+
w,xs

)
+δ +

w,xx
µEt

1−µ2

(
t
+
w,ss−t2w̄,sx

+
w,sx

)
+t2 ¯w,xsδ

+
w,xs

E
1−µ2

(
(1+µ)

(
+
u,x+v̄,x

+
v ,x+w̄,x

+
w,x−t

+
w,xx+t2w̄,xs

+
w,xs

)
−µ
(
t
+
w,ss−t2w̄,sx

+
w,sx

))
dV (7.93)
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And by eliminating terms involving integrals of odd functions in the thickness domain,
the above expression is simplified to:∫

V

δ +
w,xx

Et2

1−µ2

(
+
w,xx+µ+

w,ss

)
dV +

∫
V

δ +
w,ss

µEt2

1−µ2
+
w,xxdV+

∫
V

w̄,xsδ
+
w,xs

Et2

1−µ2

(
(1+µ)

(
+
u,x+v̄,x

+
v ,x+w̄,x

+
w,x

)
+(1+2µ)t2w̄,xs

+
w,xs

)
dV (7.94)

In the three resulting integrals above, the first and the second one represents the virtual
work of the incremental plate’s displacement, at the same stage, in the longitudinal and
transversal direction, respectively. Therefore, they are archived directly by the linear
stiffness matrix at the corresponding stage. The third resulting integral represents all
virtual work of initial displacement. One can split this integral into three terms: i)
linear between plate and membrane; ii) quadratic between plate and membrane; iii)
quadratic between plates. The developments of each term are: 6++6∫

V

w̄,xsδ
+
w,xs

Et2

1−µ2 (1+µ)+u,xdV = K (1+µ)
n

∑
i=1

n

∑
j=1

n

∑
k=1∫

V

iw̄,s (s) iV̄,x (x) k
+
w,s (s)δ k+V ,x

j+u (s) j+V ,xx (x)dV = K (1+µ) jikXMP
3

iV3vw
jk (7.95)

∫
V

w̄,xsδ
+
w,xs

Et2

1−µ2 (1+µ)
(
v̄,x

+
v ,x+w̄,x

+
w,x

)
dV = K (1+µ)

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1∫

V

iw̄,s (s) iV̄,x (x) l
+
w,s (s)δ l+V ,x

(
jv̄(s) jV̄,x (x) k

+
v (s) k

+
V ,x+

jw̄(s) jV̄,x (x) k
+
w(s) k

+
V ,x

)
dV =

K (1+µ) jkilXMP
4

i jVkl
X4 (7.96)

∫
V

w̄,xsδ
+
w,xs

Et4

1−µ2 (1+2µ) w̄,xs
+
w,xsdV = (1+2µ)

3t2K
40

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1∫

V

iw̄,s (s) iV̄,x (x) l
+
w,s (s)δ l+V ,x

jw̄(s) jV̄,x (x) k
+
w(s) k

+
V ,xdV =(1+2µ)

3t2K
40

il jkXPP
4

i jVkl
X4 (7.97)

Similar to virtual work of initial stress, the coupling among plate’s strains reach the
fifth power of thickness. Therefore, one can neglect this coupling in thin-walled appli-
cations.

The table below presents a summary of all coupling relationships due to the virtual
work of initial displacement in the longitudinal direction.
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Table 7.3: Summary of virtual work of the initial displacement in the incremental stages
in the longitudinal direction.

Relation
initial

displ. in:

incremental strain in:

Membrane: Plate:

Linear
Membrane

eq. 7.86:

Et
(
ki jXMM

3
iV jk

3u+
jikXMM

3
iV jk

3vw

) eq. 7.95: K (1+µ) jikXMP
3

iV jk
3vw

Plate eq. 7.91: Et
1−µ

ki jXMP
3

iV jk
3u –

Quadratic
Membrane eq. 7.89: Et ik jl i jXMM

4
i jVkl

X4 eq. 7.96: K (1+µ) jkilXMP
4

i jVkl
X4

Plate eq 7.92: K (1+µ) il jkXMP
4

i jVkl
X4 eq. 7.97: (1+2µ) 3t2K

40
il jkXPP

4
i jVkl

X4

7.2.7. Linear and Quadratic Initial Displacements Stiffness - transver-
sal Direction
The last evaluation of incremental virtual work is related to the initial displacement in
transversal direction, which is given in the third terms of equations 7.56, 7.57 and 7.58.
Starting with the incremental part of membrane strain, eq. 7.56, one can insert the
expressions 7.34, 7.37, 7.27 and 7.32 and finds:

∫
V

δ
+

εM
s E

 +

εP
s +µ

+

εP
x

1−µ2 +
+

εM
s

dV =
∫
V

(
ū,sδ

+
u,s+ w̄,sδ

+
w,s

)
E

−t
+
w,ss+ t2w̄,sx

+
w,sx+µ

(
−t

+
w,xx+t2w̄,xs

+
w,xs

)
1−µ2 +ū,s

+
u,s+ w̄,s

+
w,s

dV (7.98)

It is possible to observe from the above expression that all linear terms vanish. Conse-
quently, there are only quadratic terms:

∫
V

δ
+

εM
s E

 +

εP
s +µ

+

εP
x

1−µ2 +
+

εM
s

dV=∫
V

(
ū,sδ

+
u,s+w̄,sδ

+
w,s

)
E

(
t2w̄,sx

+
w,sx (1+µ)
1−µ2 +ū,s

+
u,s+w̄,s

+
w,s

)
dV (7.99)

166



The evaluation of membrane’s part leads to:∫
V

δ
+

εM
s E

+

εM
s dV =

∫
V

(
ū,sδ

+
u,s+ w̄,sδ

+
w,s

)
E
(
ū,s

+
u,s+ w̄,s

+
w,s

)
dV =

E
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

∫
V

(
iū,s (s) iV̄,x (x) l

+
u,s (s)δ l+V ,x+

iw̄,s (s) iV̄ (x) l
+
w,s (s)δ l+V

)
(

jū,s (s) jV̄,x (x) k
+
u,s (s) k

+
V ,x+

jw̄,s (s) jV̄ (x) k
+
w,s (s) k

+
V
)
dV =

Et
(
il jkSMM

u4
i jVkl

X4+2il jkSMM
uw4

i jVkl
XS4+

il jkXPP
4

i jVkl
S4

)
(7.100)

And the plate’s part to:

∫
V

δ
+

εM
s E

+

εP
s +µ

+

εP
x

1−µ2 dV=
∫
V

(
ū,sδ

+
u,s+ w̄,sδ

+
w,s

)
E
t2w̄,sx

+
w,sx (1+µ)
1−µ2 dV =

K (1+µ)
n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1

∫
V

(
iū,s (s) iV̄,x (x) l

+
u,s (s)δ l+V ,x+

iw̄,s (s) iV̄ (x) l
+
w,s (s)δ l+V

)
jw̄,s (s) jV̄,x (x) k

+
w,s (s) k

+
V ,xdV = K (1+µ)

(
il jkSMM

uw4VX4+
il jkXPP

4 VXS4

)
(7.101)

The incremental parts of plate strain, equations 7.57 and 7.58, are developed simulta-
neously. The introduction of expressions 7.39, 7.29, 7.37, 7.27 and 7.32 in the sum of
these equations achieves:∫

V

δ
+

εP
s

E
1−µ2

(
+

εP
s +µ

+

εP
x +

+

εM
s

)
+δ

+

εP
x

µE
1−µ2

(
+

εP
s +

+

εM
s

)
dV =

∫
V

(
µδ +

w,xx+δ +
w,ss

) −Et
1−µ2(

ū,s
+
u,s+w̄,s

+
w,s−t

+
w,ss+t2w̄,sx

+
w,sx

)
+δ +

w,ss
µEt

1−µ2

(
t
+
w,xx−t2w̄,xs

+
w,xs

)
+t2w̄,xsδ

+
w,xs

E
1−µ2

(
(1+µ)

(
ū,s

+
u,s+w̄,s

+
w,s−t

+
w,ss+t2w̄,sx

+
w,sx

)
−µ
(
t
+
w,xx−t2w̄,xs

+
w,xs

))
dV (7.102)

The elimination of the terms, which involves integrals of odd functions in the thickness
domain, simplifies the above expression into:∫

V

(
µδ +

w,xx+δ +
w,ss

) Et2

1−µ2
+
w,ss+δ +

w,ss
µEt2

1−µ2
+
w,xx+

t2w̄,xsδ
+
w,xs

E
1−µ2

(
(1+µ)

(
ū,s

+
u,s+w̄,s

+
w,s+t2w̄,xs

+
w,xs

)
+µt2w̄,sx

+
w,sx

)
dV =∫

V

δ +
w,ss

Et2

1−µ2

(
+
w,ss+µ+

w,xx

)
dV +

∫
V

δ +
w,xx

µEt2

1−µ2
+
w,ssdV+

∫
V

w̄,xsδ
+
w,xs

Et2

1−µ2

(
(1+µ)

(
ū,s

+
u,s+w̄,s

+
w,s

)
+(1+2µ)t2w̄,xs

+
w,xs

)
dV (7.103)
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The interpretation of this expression is entirely analogous to expression in the longi-
tudinal direction, eq. 7.94. Thus, the first and the second resulting integrals are the
virtual work, at the incremental stage, of the plate’s displacement in transversal and
longitudinal direction, respectively. Thus, they lead to the linear stiffness matrix at the
corresponding stage. The third resulting integral is the virtual work of initial transver-
sal displacement. One divides and evaluates this integral in two terms: i) quadratic
between plates, which has the same evaluation of eq.: 7.97 and ii) quadratic between
plate and membrane, from which the evaluation is:

∫
V

w̄,xsδ
+
w,xs

Et2

1−µ2 (1+µ)
(
ū,s

+
u,s+w̄,s

+
w,s

)
dV = K (1+µ)

n

∑
i=1

n

∑
j=1

n

∑
k=1

n

∑
l=1∫

V

iw̄,s (s) iV̄,x (x) l
+
w,s (s)δ l+V ,x

(
jū,s (s) jV̄,x (x) k

+
u,s (s) k

+
V ,x+

jw̄,s (s) jV̄ (x) k
+
w,s (s) k

+
V
)
dV =

K (1+µ)
(
il jkSMM

uw4
i jVkl

X4+
il jkXPP

4
i jVkl

SX4

)
(7.104)

Table 7.4 presents the summary of all possibilities in the virtual work of initial dis-
placement in transversal direction:

Table 7.4: Summary of virtual work of the initial displacement in the incremental stages
in transversal direction.

Relation
initial

displ. in:

incremental strain in:

Membrane: Plate:

Quadratic
Membrane

eq. 7.100: Et
(
il jkSMM

u4
i jVkl

X4

+2il jkSMM
uw4

i jVkl
XS4+

il jkXPP
4

i jVkl
S4
) eq. 7.104: K (1+µ)(

il jkSMM
uw4

i jVkl
X4+

il jkXPP
4

i jVkl
SX4
)

Plate
eq. 7.101: K (1+µ)(

il jkSMM
uw4

i jVkl
X4+

il jkXPP
4

i jVkl
XS4
) eq. 7.97: (1+2µ)

3t2K
40

il jkXPP
4

i jVkl
X4

7.3. Internal forces evaluation in non-linear GBT
In the non-linear analysis, the evaluation of internal forces plays a central role, since all
incremental/iterative procedure is based on the balance of this force and the external
one. In the particular case of GBT, the evaluation of internal forces, based on the first
integrals from equation 7.48 to 7.50 and from equation 7.56 to 7.58, will lead again to
the coupling tensors.

For instance, the introduction of equations 7.24, 7.26, 7.36 and 7.21 into the first integral
of eq. 7.48 results in the internal force due to the membrane strain behavior in the
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longitudinal direction:

∫
V

δ
+

εM
x E

 −
εP
x +µ

−
εP
s

1−µ2 +
−

εM
x

dV =
∫
V

δ+
u,x+

(
v̄,xδ

+
v ,x+ w̄,xδ

+
w,x

)
E

−tw̄,xx+
t2w̄2

,xs
2 +µ

(
−tw̄,ss+

t2w̄2
,xs

2

)
1−µ2 + ū,x+

v̄2,x+ w̄2
,x

2

dV (7.105)

From the above expression, one realizes that: i) the integral ovter the thickness domains
eliminates the linear terms tw̄,xx and tw̄,ss; ii) the integral

∫
V

δ+
u,xū,xdV is nothing more

than longitudinal membrane internal force of the linear analysis of the initial membrane
displacement; iii) longitudinal membrane internal forces, due to initial plate displace-
ments are always quadratic. The evaluation of the terms related only to membrane
behavior leads to:

• linear membrane internal force due to initial membrane displacements:

∫
V

δ+
u,xE

v̄2,x+ w̄2
,x

2
dV =

E
2

n

∑
i=1

n

∑
j=1

n

∑
k=1

∫
V

i+u (s) iδ
+
V ,xx (x)

(
jv̄(s) jV̄,x (x) kv̄(s) kV̄,x (x)+ jw̄(s) jV̄,x (x) kw̄(s) kV̄,x (x)

)
dV=

E
2
t i jkXMM

3
jkVi

X3 (7.106)

Here, one must be aware that the integral jkVi
X3 is related to two initial displacement

modes, and not just one as presented in the evaluations of initial linear stresses and
displacements matrices. Thus, the result of this integral is a vector and not a ma-
trix.

• linear membrane internal force due to initial membrane stress:
∫
V

(
v̄,xδ

+
v ,x+ w̄,xδ

+
w,x

)
Eū,xdV = E

n

∑
i=1

n

∑
j=1

n

∑
k=1

∫
V

(
iv̄(s) iV̄,x (x) j+v (s) jδ

+
V ,x (x)+

iw̄(s) iV̄,x (x) j+w(s) jδ
+
V ,x (x)

)
kū(s) kV̄,xx (x)dV=Etki jXMM

3
ikV j

X3 (7.107)

• quadratic membrane internal force due to initial membrane stress:

∫
V

(̄
v,xδ

+
v,x+w̄,xδ

+
w,x

)
E
v̄2,x+w̄

2
,x

2
dV=E

n

∑
i=1

n

∑
j=1

n

∑
k=1

∫
V

(
iv̄(s)iV̄,x(x) j

+
v(s) jδ

+
V,x(x)+iw̄(s)iV̄,x(x) j

+
w(s) jδ

+
V,x(x)

)
(
kv̄(s)kV̄,x (x)l v̄(s)lV̄,x (x)+kw̄(s)kV̄,x (x)lw̄(s)lV̄,x (x)

)
dV=

Et
2

i jklXMM
4

iklV j
X4 (7.108)

And the evaluation of terms involving the plate strains leads to:
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• linear membrane internal force due to initial plate displacements:
∫
V

δ+
u,x

E
2
(1+µ)

t2w̄2
,xs

1−µ2 dV = (1+µ)
K
2
i jkXMP

3
jkVi

X3 (7.109)

• quadratic membrane internal force due to initial plate stress:
∫
V

(
v̄,xδ

+
v ,x+ w̄,xδ

+
w,x

) E
2
(1+µ)

t2w̄2
,xs

1−µ2 dV = (1+µ)
K
2
i jklXMP

4
iklV j

X4 (7.110)

One obtains the longitudinal plate internal forces in a similar way. The evaluation of
the first integral in eq. 7.49 leads to the following components:

• linear plate internal force due to initial membrane displacements:∫
V

t2w̄,xsδ
+
w,xs

E
(1−µ2)

ū,xdV = Kki jXMP
3

ikV j
X3 (7.111)

• quadratic plate internal force due to initial membrane displacements:
∫
V

t2w̄,xsδ
+
w,xs

E
(1−µ2)

v̄2,x+w̄
2
,x

2
dV =

K
2
ki jlXMP

4
iklV j

X4 (7.112)

• quadratic plate internal force due to initial plate displacements:∫
V

t2w̄,xsδ
+
w,xs

E
(1−µ2)

(1+µ) t2w̄2
,xsdV = 3(1+µ)

Kt2

20
ki jlXPP

4
iklV j

X4 (7.113)

The integral of the first term in eq. 7.56 achieves the respective membrane transversal
internal forces:

• transversal quadratic membrane internal force due to initial membrane displace-
ments:∫
V

δ
+

εM
s E

−
εM
s dV=

Et
2(1−µ2)

[
i jklSMM

u4
iklV j

X4+
i jklSMM

uw4
iklV j

XS4+
kli jSMM

uw4
iklV j

SX4+
i jklXPP

4
iklV j

S4

]
(7.114)

• transversal quadratic membrane internal force due to initial plate displacements:

∫
V

δ
+

εM
s E

−
εP
s +µ

−
εP
x

1−µ2 dV = (1+µ)
K
2

[
i jklSMM

uw4
iklV j

X4+
i jklXPP

4
iklV j

SX4

]
(7.115)

And the integral of the first term in eq. 7.57 achieves the respective plate transversal
internal forces:
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• transversal quadratic plate internal force due to initial membrane displacements:∫
V

δ
+

εP
s

E
1−µ2

−
εM
s dV=

K
2

[
kli jSMM

uw4
iklV j

X4+
i jklXPP

4
iklV j

XS4

]
(7.116)

• transversal quadratic plate internal force due to initial plate displacements:
∫
V

δ
+

εP
s

E
1−µ2

(
−
εP
s +µ

−
εP
x

)
dV=3(1+µ)

Kt2

40
i jklXPP

4
iklV j

X4 (7.117)

The internal forces due to Poisson’s effect have the same evaluation. Starting with
eq. 7.50, one obtains the following cases:

• transversal linear and quadratic plate internal force due to initial membrane displace-
ments: ∫

V

δ
+

εP
s

µE
1−µ2

−
εM
x dV =µK

[
ki jXMP

3
kiV j

X3+
1
2
kli jXMP

4
iklV j

X4

]
(7.118)

• transversal quadratic plate internal force due to initial plate displacements:∫
V

δ
+

εP
s

µE
1−µ2

−
εM
x dV =

3µKt2

40
kli jXMP

4
kliV j

X4 (7.119)

Finally, the evaluation of the first integral of eq. 7.58 leads to:

• transversal quadratic plate internal force due to initial membrane:∫
V

δ
+

εP
x

µE
1−µ2

−
εM
s dV =

µK
2

[
kli jSMM

uw4
kliV j

X4+
kli jXPP

4
kliV j

S4

]
(7.120)

• transversal quadratic plate internal force due to initial plate:∫
V

δ
+

εP
x

µE
1−µ2

−
εP
s dV =

3µKt2

40
kli jXMP

4
kliV j

X4 (7.121)

7.4. Properties of GBT’s coupling tensors
The coupling tensors of GBT have two interesting properties that deserve special at-
tention.

The first property is the practical nature of these tensors, which provides a map of all
possible coupling effects of a cross-section. For instance, the third-order tensor of initial
stress from the membrane to membrane strains, i jkXMM

3 , indicates how initial stress from
the coupler mode i can build the relationship between the coupled displacement mode

171



j and the coupled force mode k. It is important to note that one obtains this tensor
only based on geometric properties of the cross-section. Therefore, GBT can provide a
priori qualitative analysis of the coupling problems of a thin-walled beam. For example:
in a hypothetical application, the major external forces is the bending moment (mode
3) and symmetric distortion mode, such as mode 5. With this information, one can
search for an optimal cross-section which has the minimal value possible for the i35X3
or i53X3. Although one must perform a fully non-linear analysis for total quantification
of the second or higher-order effects, this tensor property is helpful in firsts stages in
the design of thin-walled structures.

The second property of GBT’s coupling tensors is their symmetric. The third-order
tensors always hold the property i jkX3 =

ik jX3 and the fourth-order the property i jklX4 =
i jlkX4 =

jiklX4 =
jilkX4. Consequently, there is a reduction of the numerical effort in their

evaluation as well as computational implementation. GBT’s tensors not only lead to a
symmetric system of data, but are also reused in different manners. The tensor used
to set up the initial matrix is the same to set up the corespondent initial displacement
matrix. The only difference is the order of reading the tensors, as mentioned in the
previous sections. Also, the coupling tensors are required in the evaluation of internal
forces in each incremental/iteration step, as showed in the next section.

7.5. Development of geometric stiffness matrices in GBT
After the development and analysis of GBT’s coupling tensors, it is necessary to develop
for each term in these tensors to the respective stiffness matrix. Here, the non-linear
stiffness matrices present main differences from the linear stiffness matrices developed
in Chapter 5. This difference concerns the amount of shape functions. Linear analysis
requires only 2 shape functions to develop the stiffness matrix. However, in non-linear
analysis, it is necessary 3 or 4 shapes functions, of different modes, to achieve the
stiffness matrix.

One can develop the non-linear stiffness matrices based on Hermitian shape func-
tions, which has an extensive literature (such as [61, 179]), or based on hyperbolic-
trigonometric shape functions. Since the last option not only has smoother high-
derivative functions but also they are the exact solution of the linear analysis, the
hyperbolic-trigonometric are adopted. This choice directly leads to arduous and exten-
sive expression terms in the stiffness matrices. Therefore, the next subsection presents
some strategies to simplify and optimize the evaluations of stiffness matrices of these
functions.

7.5.1. Simplification of the multiplication among several shape func-
tions
Although the expression in eq. 5.111 is a pair of different modes i ̸= j, the GBT’s non-
linear analysis cannot use this matrix directly. In fact, non-linear analysis requires cou-
pling among three or four modes. However, the hyperbolic-trigonometric functions have
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several mathematical properties that enable the use of eq. 5.111. These mathematical
properties convert a multiplication between two simple modal hyperbolic-trigonometric
functions into a sum of two linear combined modal hyperbolic-trigonometric func-
tions:

Cos
(iβ)Cos( jβ)= 0.5

[
Cos

(iβ + jβ
)
+Cos

(iβ − jβ
)]

(7.122)

Cos
(iβ)Sin( jβ)= 0.5

[
Sin
(iβ + jβ

)
−Sin

(iβ − jβ
)]

(7.123)

Sin
(iβ)Sin( jβ)= 0.5

[
−Cos

(iβ + jβ
)
+Cos

(iβ − jβ
)]

(7.124)

Sin
(iβ)Cos( jβ)= 0.5

[
Sin
(iβ + jβ

)
+Sin

(iβ − jβ
)]

(7.125)

Cosh
(iβ)Cosh( jβ)= 0.5

[
Cosh

(iβ + jβ
)
+Cosh

(iβ − jβ
)]

(7.126)

Cosh
(iβ)Sinh( jβ)= 0.5

[
Sinh

(iβ + jβ
)
−Sinh

(iβ − jβ
)]

(7.127)

Sinh
(iβ)Sinh( jβ)= 0.5

[
Cosh

(iβ + jβ
)
−Cosh

(iβ − jβ
)]

(7.128)

Sinh
(iβ)Cosh( jβ)= 0.5

[
Sinh

(iβ + jβ
)
+Sinh

(iβ − jβ
)]

(7.129)

Thus, in non-linear analysis, one can decompose the multiplication among several shape
functions into the summation of pair multiplication of several linear combinations
among the modes. For instance:

iV (x) jV (x) kV (x) = 0.5
[i+ jV (x)+ i± jV (x)+ i− jV (x)+ i∓ jV (x)

] kV (x)V (x) (7.130)

Here, modes i+ j, i± j, i− j and i∓ j are the possible modes from the linear combinations
between modes i and j. The pairs α and β of these modes are: - mode i+ j: +

α and
+

β ;

- mode i± j: +
α and

−
β ; - mode i− j: −

α and
−
β ; - mode i∓ j: −

α and
+

β .

7.5.2. Setup of GBT’s non-linear stiffness matrices
The simplification of the previous subsection optimize and systematize the process in
the setup of the non-linear GBT’s stiffness matrices. As an example of this proce-
dure, one can evaluate the integral of VX3, given in eq. 7.62, based on equations 5.106
and 5.108:

VX3=
∫
x

iV̄,xx (x) j +V,x (x)δ k +
V,x (x)dx=

∫
L

i [TxNHa]
i [ShNHacc],xx

i [ϑ̄] k [ShNHacc]
T
,x
k [TxNHa]

T j [TxNHa]dx j [ShNHacc],x
j
+

[ϑ ] (7.131)

In the above expression, it is important to highlight the meaning of each index. The
initial stress in mode i is the coupler mode that connects the forces in coupled mode j to
the virtual displacement of coupled-mode k. To simplify this expression, it is important
to divide the vector i [TxNHa] into its components:[
cosh(iαx)cos(iβx) cosh(iαx)sin(iβx) sinh(iαx)sin(iβx) sinh(iαx)cos(iβx) x 1

]
.
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It is clear that each part must be preceded by the correct completeness constant and
the weighted value: i[S̄1m],xxi[ϑ̄ ]. For instance, the first component of i [TxNHa] leads
to:

1VX3=i[S̄1m],xxi[ϑ̄ ]k[ShNHacc]
T
,x

∫
L

cosh(iαx)cos(iβx)k[TxNHa]
T j [TxNHa]dx j[ShNHacc],x

j
+

[ϑ ](7.132)

Then, one can transform each term in the multiplication cosh(iαx)cos(iβx)k [TxNHa]
T

into a sum of the combined modes i and k, as presented from eq. 7.122 to 7.129. Thus,
each row of the original stiffness matrix is a linear combination of the rows of the
combined stiffness matrices obtained from eq. 5.112. For the above multiplication,
which involves cosh(iαx)cos(iβx), one obtains the following linear combination:

i jk
1 [ϒNHa]=

1
4


1
i+k, jϒHa+ 1

i±k, jϒHa+ 1
i−k, jϒHa+ 1

i∓k, jϒHa

2
i+k, jϒHa− 2

i±k, jϒHa− 2
i−k, jϒHa+ 2

i∓k, jϒHa

3
i+k, jϒHa− 3

i±k, jϒHa+ 3
i−k, jϒHa− 3

i∓k, jϒHa

4
i+k, jϒHa+ 4

i±k, jϒHa− 4
i−k, jϒHa− 4

i∓k, jϒHa

5
i+k, jϒHa+ 5

i±k, jϒHa+ 5
i−k, jϒHa+ 5

i∓k, jϒHa

6
i+k, jϒHa+ 6

i±k, jϒHa+ 6
i−k, jϒHa+ 6

i∓k, jϒHa

 (7.133)

For the others terms cosh(iαx)sin(iβx), sinh(iαx)sin(iβx) and sinh(iαx)cos(iβx), one achieves
the respective matrices:

i jk
2 [ϒNHa]=

1
4


2
i+k, jϒHa+ 2

i±k, jϒHa+ 2
i−k, jϒHa+ 2

i∓k, jϒHa

1
i+k, jϒHa− 1

i±k, jϒHa− 1
i−k, jϒHa+ 1

i∓k, jϒHa

4
i+k, jϒHa− 4

i±k, jϒHa+ 4
i−k, jϒHa− 4

i∓k, jϒHa

3
i+k, jϒHa+ 3

i±k, jϒHa− 3
i−k, jϒHa− 3

i∓k, jϒHa

5
i+k, jϒHa+ 5

i±k, jϒHa+ 5
i−k, jϒHa+ 5

i∓k, jϒHa

6
i+k, jϒHa+ 6

i±k, jϒHa+ 6
i−k, jϒHa+ 6

i∓k, jϒHa

 (7.134)

i jk
3 [ϒNHa]=

1
4


3
i+k, jϒHa+ 3

i±k, jϒHa+ 3
i−k, jϒHa+ 3

i∓k, jϒHa

4
i+k, jϒHa− 4

i±k, jϒHa− 4
i−k, jϒHa+ 4

i∓k, jϒHa

1
i+k, jϒHa− 1

i±k, jϒHa+ 1
i−k, jϒHa− 1

i∓k, jϒHa

2
i+k, jϒHa+ 2

i±k, jϒHa− 2
i−k, jϒHa− 2

i∓k, jϒHa

5
i+k, jϒHa+ 5

i±k, jϒHa+ 5
i−k, jϒHa+ 5

i∓k, jϒHa

6
i+k, jϒHa+ 6

i±k, jϒHa+ 6
i−k, jϒHa+ 6

i∓k, jϒHa

 (7.135)

i jk
4 [ϒNHa]=

1
4


4
i+k, jϒHa+ 4

i±k, jϒHa+ 4
i−k, jϒHa+ 4

i∓k, jϒHa

3
i+k, jϒHa− 3

i±k, jϒHa− 3
i−k, jϒHa+ 3

i∓k, jϒHa

2
i+k, jϒHa− 2

i±k, jϒHa+ 2
i−k, jϒHa− 2

i∓k, jϒHa

1
i+k, jϒHa+ 1

i±k, jϒHa− 1
i−k, jϒHa− 1

i∓k, jϒHa

5
i+k, jϒHa+ 5

i±k, jϒHa+ 5
i−k, jϒHa+ 5

i∓k, jϒHa

6
i+k, jϒHa+ 6

i±k, jϒHa+ 6
i−k, jϒHa+ 6

i∓k, jϒHa

 (7.136)

Concerning the linear and constant terms of the vector i [TxNHa], the development of
their stiffness matrices is not necessary, since the second derivative eliminates these
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terms. For the first derivative, iV̄,x (x), one obtains the non-linear stiffness matrix related
to variation of x term directly from eq. 5.111.

The final remark is about the quadratic stiffness matrices. These matrices involve the
coupling of four modes, which requires the combination of modes i, j and l. Thus,
one must apply the simplification procedure twice. I.e., one obtains each quadratic
stiffness matrix from a linear combination of matrices involves three modes. Each row
of these matrices with three modes is also a linear combination of the matrices of two
combined modes, as shown above. Consequently, one builds the stiffness matrices of
three modes coupling from the combination of four stiffness matrices. Proportionately,
one creates the stiffness matrices of four modes coupling from the combination of 16
stiffness matrices.

7.6. Numerical example of non-linear analysis in coupling
GBT and shell elements
The goal of this example is the study of the non-linear effects in a GBT’s element due
to the load conditions transmitted from a structural connection modelled with shell
elements. Thus, this example analyses the displacement field of a hollow circular column
under different load conditions in the linear and non-linear analyses. This column is part
of a structure, which is a combination of the components found in examples of Chapters
4, 5 and 6. The 10 m height steel column, with hollow circular cross-section of Chapter
5, has in its tip a connection to two steel gutter beams, as presented in figure. 7.2. The
adopted steel properties are: Young Modulus, Young Modulus, E = 205,000N/mm2,
Poisson’s ratio, µ = 0.0, Shear Modulus, G= 102,500N/mm2.

The steel gutter beams have the profile of Chapter 4’s example but in scale 1/10. Con-
cerning the connection, it is a shell super-element model, developed in ANSYS® software
with elements Shell-181 (linear interpolation elements based on Mindlin-Reissner The-
ory). The discretizations of the circular hollow and opened thin-walled cross-sections
have 100 and 27 nodes, respectively (as presented in figure. 7.2.e). The connection’s
shell model has 1,916 elements and 12,120 degrees of freedom, in total. However, based
on Super-element technique [105], the final stiffness matrix of the connection is reduced
to 474 degrees of freedom. While, the GBT’s discretization uses a single element for the
column and each. Due to the symmetric of geometry, boundary conditions and load
cases presented below, only symmetric and bi-symmetric modes are required to model
the beams and the columns respectively. Therefore, one adopts for the column modes
”a” and 1 (with 2 degrees of freedom each one) and modes: 5, 9, 13, 17, 21, 25, 29, 33
and 37 (with 6 degrees of freedom each one). The adopted mode of the beam are 3, 6
and 7 (as presented in figures. A.2 and A.3), each mode has 6 degrees of freedom as
well. As a total, there are 94 GBT’s degrees of freedom.

Thus, the unconstrained and uncoupled model has 568 degrees of freedom. However,
the boundary conditions and the coupling equations reduce the amount of free coupled
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Figure 7.2: Coupling structure among thin-walled circular hollow section and two open
thin-walled cross-sections: a)frontal elevation; b)connection’s frontal elevation; c)top
view; d)beams’ discretization; e)connections left view; f) shell model’s perspective.

degrees of freedom to 174. From this amount, 100 degrees of freedom concern to nodes
in the shell connection, which are left free to receive load conditions.

In order to evaluate the performance of GBT’s non-linear analysis in the column, this
example uses two load cases. The first one is a periodic load function: fx (θ) = −50−
20(Cos(θ)+(2θ)), at the 100 degrees of freedom in the connection’s super-element.
The second load case has a surface distributed force of 0.1 kN/cm² on the beams, as
well as a concentrated load of 45 kN at the 100 degrees of freedom in the connection’s
super-element.

7.6.1. Setup of the mixed GBT-shell finite element model
As a first step in the setup of the mixed GBT-shell model, one obtains the GBT cross-
section properties of GBT for linear and non-linear.

For linear analysis, Table 7.5 presents the deformation modes of the hollow circular
cross-section. The differences between the values of this table and Table 5.2 are related
to Poisson’s ratio, which is null in this example. Also, due to the symmetric conditions
of load and geometry, only the bi-symmetrical modes of the hollow circular cross-
section are adopted. Concerning the beams’ cross-section, Table 7.6 shows not only
the values of the symmetric modes used in this analysis, but also the modal forces in
the second load case. One obtains these values from the modal eigenvectors presented
in Table. A.97 of the appendix. In fact, the beams’ cross-section of this example is
proportional to the cross-section shown in Chapter 4.
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Table 7.5: Generalized properties: hollow circular cross-section
Mode C D B

cm4 cm4 cm−1

a 0 0 515.22
5 397616.3 0.01 0.05
9 397743.5 1.36 19.78
13 398294.9 16.63 545.3
17 399779.3 95.76 5584
21 402909.3 369.49 33664.6
25 408600.9 1110.11 145646.3
29 417973.8 2809.68 501745.9
33 432351.3 6275.54 1463736
37 453260.2 12743.28 3761815.8

Table 7.6: Generalized properties: Beams’ cross-section

Mode C D B Load
cm4 cm4 cm−1 kN

cm
1 132.8 0 0 0
3 12482.3 0 0 -1.36
6 24.19 0.0037 0 0.019
7 28.29 0.0592 0.43 0.066
6-7 -4.63 -0.0126 -0.01 0

One also uses these eigenvectors to setup the coupling equations between the degrees
of freedom of beams’ modes and the shell elements. Since the discretization of the
beams’ cross-section in shell elements uses more nodes than the GBT discretization, one
needs to apply the coupling equations with interpolation functions, equations 6.5, 6.9
and 6.10. Based on these equations and eigenvectors, together with the nodal dis-
cretization of the beams’ cross-section (figure 7.2.d), one obtains the coupling matrices
(equations 7.137, 7.138 and 7.139) between the nodal displacement in the global coordi-
nate system and GBT modes of Beam 1. For the coupling matrices for Beam 2, due to
its orientation, one must multiply by −1 the matrices related to the global displacement
y and z. Concerning the coupling matrices between the hollow circular cross-section
and the shell elements, they follow the same procedure presented in the example of
Chapter 6. The only difference here is the number of nodes in the discretization of the
cross-section.
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disp. 1u 3u 6u 7u

y1 1 −17.95 1 −0.44
y11 1 −11.95 0.13 0.06
y2 1 −5.95 −0.73 0.57
y21 1 −3.63 −0.61 0.34
y22 1 −1.48 −0.5 0.12
y23 1 1.05 −0.37 −0.14
y24 1 3.11 −0.26 −0.35
y25 1 5.53 −0.14 −0.59
y3 1 8.05 −0.01 −0.85
y31 1 8.83 0.07 −0.55
y32 1 9.62 0.15 −0.25
y33 1 10.43 0.24 0.06
y34 1 11.25 0.32 0.37
y35 1 12.08 0.41 0.69
y4 1 12.91 0.49 1
y41 1 12.08 0.41 0.69
y42 1 11.25 0.32 0.37
y43 1 10.43 0.24 0.06
y44 1 9.62 0.15 −0.25
y45 1 8.83 0.07 −0.55
y5 1 8.05 −0.01 −0.85
y51 1 5.53 −0.14 −0.59
y52 1 3.11 −0.26 −0.35
y53 1 1.05 −0.37 −0.14
y54 1 −1.48 −0.5 0.12
y55 1 −3.63 −0.61 0.34
y6 1 −5.95 −0.73 0.57
y61 1 −11.95 0.13 0.06
y7 1 −17.95 1 −0.44


(7.137)



disp. 6v 7v

z1 −0.21 0.49
z11 −0.16 0.3
z2 −0.11 0.11
z21 −0.09 0.03
z22 −0.08 −0.03
z23 −0.06 −0.09
z24 −0.04 −0.12
z25 −0.03 −0.14
z3 −0.01 −0.12
z31 −0.01 −0.11
z32 −0.01 −0.08
z33 −0.0034 −0.05
z34 −0.0015 −0.03
z35 −0.0004 −0.01
z4 0 0
z41 0.0004 0.01
z42 0.0015 0.03
z43 0.0034 0.05
z44 0.01 0.08
z45 0.01 0.11
z5 0.01 0.12
z51 0.03 0.14
z52 0.04 0.12
z53 0.06 0.09
z54 0.08 0.03
z55 0.09 −0.03
z6 0.11 −0.11
z61 0.16 −0.3
z7 0.21 −0.49


(7.138)



disp. 3w 6w 7w

x1 1 −0.14 0.08
x11 1 −0.14 0.08
x2 1 −0.14 0.08
x21 1 −0.11 −0.04
x22 1 −0.08 −0.15
x23 1 −0.05 −0.25
x24 1 −0.02 −0.31
x25 1 0 −0.34
x3 1 0.03 −0.31
x31 1 0.05 −0.22
x32 1 0.07 −0.08
x33 1 0.08 0.08
x34 1 0.09 0.22
x35 1 0.1 0.34
x4 1 0.1 0.38
x41 1 0.1 0.34
x42 1 0.09 0.22
x43 1 0.08 0.08
x44 1 0.07 −0.08
x45 1 0.05 −0.22
x5 1 0.03 −0.31
x51 1 0 −0.34
x52 1 −0.02 −0.31
x53 1 −0.05 −0.25
x54 1 −0.08 −0.15
x55 1 −0.11 −0.04
x6 1 −0.14 0.08
x61 1 −0.14 0.08
x7 1 −0.14 0.08


(7.139)

Concerning the non-linear analysis, the matrix in eq. 7.140 presents all terms related to
the third-order tensor due to membrane behavior, i jkXMM

3 . One obtains these terms from
the evaluation of the integral in eq. 7.61 with the cross-section modal functions given
in Table. 3.1. From the matrix in eq. 7.140, one realizes how the modal representation
in GBT is useful in non-linear analysis: From all possibilities of third-order coupling
(in this case 103) only 117 cases exist. Also, if one excludes the symmetric cases, the
coupling cases are 63. Therefore, it is possible to plot all levels of the tensor i jkXMM

3 in
a two-dimension matrix.

The fourth-order tensor, i jklXMM
4 , shows the same prosperity. From the all 104 possible

cases, there are only 1569. If one considers the symmetric of the tensor, the number
of coupling cases are 880. Since the exhibition of these cases is quite long for a quite
tiny contribution in the final displacement field, the results of the integral in eq. 7.64
are not plotted here.

The final evaluation, in the setup of the mixed GBT-shell model, concerns in the
assessment of the GBT stiffness matrices. Each beam and the column have only one
element in discretization, with the lengths of 985 and 85cm, respectively. The procedure
to achieve the numerical values of the linear stiffness matrices follows the same steps
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detailed in Chapter 5.



j\k 5 9 13 17 21 25 29 33 37

5

i= 1
1413.7
i= 9
31809

i= 5
190852
i= 13
148440

i= 9
413512
i= 17
349895

i= 13
720996
i= 21
636173

i= 17
1113302
i= 25

1007273

i= 21
1590431
i= 29

1463197

i= 25
2152384
i= 33

2003943

i= 29
2799159
i= 37

2629513

i= 33
3530757

9

i= 1
19227
i= 17
636173

i= 5
1590431
i= 21

1463197

i= 9
2799159
i= 25

2629513

i= 13
4347179
i= 29

4135121

i= 17
6234491
i= 33

5980022

i= 21
8461094
i= 37

8164214

i= 25
11026990

i= 29
13932178

13

i= 1
94154
i= 25

3339906

i= 5
6234491
i= 29

5980022

i= 9
9701631
i= 33

9383545

i= 13
13932178
i= 37

13550475

i= 17
18926132

i= 21
24683493

i= 25
31204262

17

i= 1
294053
i= 33

10687698

i= 5
17176658
i= 37

16752543

i= 9
24683493

i= 13
33547497

i= 17
43768669

i= 21
55347009

21
i= 1

713927
i= 5

38488437
i= 9

52325189
i= 13

68282516
i= 17

86360419

25
i= 1

1475920
i= 5

75259208
i= 9

98225036
i= 13

124244492

29
i= 1

2729321
i= 5

133596228
i= 9

168999228

33
i= 1

4650562
i= 5

220624627

37 sym.
i= 1

7443218


(7.140)

7.6.2. Finite element solution
After the setup of the mixed GBT-shell model, one can perform the finite element
solution. Since ANSYS® provides the stiffness matrix of the connection’s super-element
only in linear analyses, this example adopts the modified Newton-Raphson method to
solve the non-linear analysis. Thus, each iteration reuses the linear stiffness matrices.
Nevertheless, the achievement of the internal forces uses widely the non-linear terms
developed in this chapter, as explained in section 7.3.

Since, the linear analysis is the first iteration of the non-linear analysis in this example,
Tables 7.7.a and 7.7.b show the column’s accumulative modal displacements of both
analyses for load cases 1 and 2, respectively. The initial degrees of freedom 1 and 2 are
null for all GBT’s modes.

Concerning the number of iterations, the non-linear procedure in mixed GBT-shell
models uses the same amount of iterations of the ANSYS® solution.
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Table 7.7: Accumulative modal displacements

Mode Iterations Load case 1 Iterations Load case 2
DOF 1 2 3 4 1 2 3 4
a-2 -1.86E-06 -1.86E-06 -1.90E-06 -1.93E-06 6.36E-06 6.34E-06 4.87E-06 3.56E-06
1-2 -1.70E+00 -1.70E+00 -1.74E+00 -1.77E+00 -1.61E+00 -1.64E+00 -3.10E+00 -4.43E+00
5-3 -1.70E-03 -2.19E-03 -2.31E-03 -2.35E-03 -1.41E-01 -1.46E-01 -1.47E-01 -1.52E-01
5-4 1.09E-04 1.28E-04 1.32E-04 1.34E-04 7.50E-04 8.88E-04 9.20E-04 1.09E-03
5-5 -1.41E-02 -1.82E-02 -1.92E-02 -1.96E-02 -1.61E-01 -1.90E-01 -1.97E-01 -2.34E-01
5-6 -2.99E-05 -3.73E-05 -3.91E-05 -3.97E-05 -4.02E-04 -4.61E-04 -4.80E-04 -5.90E-04
9-3 -1.22E-04 -1.34E-04 -1.36E-04 -1.37E-04 -4.53E-04 -4.29E-04 -4.07E-04 -3.96E-04
9-4 6.29E-06 7.10E-06 7.28E-06 7.37E-06 7.34E-06 5.57E-06 4.06E-06 3.43E-06
9-5 -7.13E-05 -6.50E-05 -6.01E-05 -5.81E-05 -8.13E-05 4.48E-05 1.36E-04 2.66E-04
9-6 -8.16E-07 -1.39E-06 -1.72E-06 -1.93E-06 -1.12E-06 1.91E-07 1.68E-06 3.16E-06
13-3 6.32E-06 6.92E-06 6.96E-06 6.93E-06 -1.76E-04 -1.94E-04 -2.32E-04 -3.37E-04
13-4 -3.34E-07 -3.90E-07 -3.97E-07 -3.98E-07 9.89E-06 1.13E-05 1.34E-05 1.91E-05
13-5 -7.22E-08 -2.61E-07 -2.97E-07 -3.24E-07 2.14E-06 9.78E-06 -6.41E-06 -3.03E-05
13-6 -1.94E-09 -2.17E-09 -9.07E-10 4.77E-10 5.70E-08 8.34E-08 1.18E-06 4.14E-06
17-3 1.01E-07 6.96E-09 -3.48E-08 -5.86E-08 -4.72E-05 -5.08E-05 -5.17E-05 -5.60E-05
17-4 3.01E-08 3.86E-08 4.23E-08 4.45E-08 1.96E-06 2.17E-06 2.22E-06 2.57E-06
17-5 6.34E-12 -6.73E-10 1.45E-09 2.32E-09 2.46E-09 1.13E-06 1.33E-06 2.05E-06
17-6 -7.44E-13 -1.82E-11 -9.39E-12 -2.75E-12 -3.36E-11 6.72E-09 8.24E-09 1.32E-08
21-3 1.51E-06 1.65E-06 1.67E-06 1.68E-06 1.57E-06 2.30E-06 2.33E-06 2.95E-06
21-4 -4.93E-08 -5.96E-08 -6.12E-08 -6.14E-08 -4.42E-07 -5.68E-07 -5.83E-07 -6.69E-07
21-5 1.29E-13 -1.80E-08 -2.02E-08 -2.09E-08 8.65E-13 -1.49E-08 -2.39E-08 -4.51E-08
21-6 1.06E-14 -1.07E-10 -1.25E-10 -1.30E-10 5.04E-14 -2.35E-11 -5.82E-11 -4.15E-10
25-3 1.72E-06 1.91E-06 1.95E-06 1.97E-06 -3.42E-07 -2.10E-07 3.45E-07 9.88E-07
25-4 -3.62E-09 -6.17E-09 -6.26E-09 -5.90E-09 -3.89E-08 -4.21E-08 -1.60E-08 1.47E-09
25-5 5.35E-17 -1.37E-08 -1.55E-08 -1.62E-08 1.69E-17 -3.03E-09 -4.99E-09 -1.16E-08
25-6 5.11E-18 -8.45E-11 -9.82E-11 -1.03E-10 5.16E-19 -1.95E-11 -3.28E-11 -7.43E-11
29-3 -4.72E-07 -5.36E-07 -5.56E-07 -5.68E-07 -6.24E-06 -6.99E-06 -7.51E-06 -8.80E-06
29-4 1.85E-08 2.18E-08 2.27E-08 2.33E-08 8.64E-08 1.01E-07 1.20E-07 1.54E-07
29-5 -1.99E-21 2.74E-09 3.14E-09 3.32E-09 -1.93E-20 3.19E-08 3.68E-08 7.67E-08
29-6 -2.23E-22 1.67E-11 1.96E-11 2.08E-11 -2.40E-21 1.96E-10 2.31E-10 4.82E-10
33-3 5.02E-07 5.67E-07 5.88E-07 6.02E-07 -1.93E-06 -2.14E-06 -1.70E-06 -1.44E-06
33-4 -1.76E-08 -2.00E-08 -2.08E-08 -2.13E-08 -2.89E-08 -4.13E-08 -6.02E-08 -9.01E-08
33-5 1.52E-24 -2.05E-09 -2.33E-09 -2.47E-09 -4.82E-24 6.18E-09 7.02E-09 1.14E-08
33-6 4.56E-26 -1.26E-11 -1.45E-11 -1.54E-11 -1.34E-25 3.85E-11 4.45E-11 7.26E-11
37-3 3.54E-07 4.10E-07 4.28E-07 4.39E-07 1.92E-07 2.57E-07 5.74E-07 9.82E-07
37-4 3.32E-08 4.07E-08 4.30E-08 4.43E-08 2.39E-08 3.03E-08 6.06E-08 1.05E-07
37-5 1.37E-25 -1.09E-09 -1.27E-09 -1.35E-09 1.86E-27 -9.60E-10 -1.24E-09 -3.64E-09
37-6 1.21E-27 -6.79E-12 -8.01E-12 -8.55E-12 1.30E-27 -5.97E-12 -7.77E-12 -2.29E-11

7.6.3. Analysis of displacement field
Following the same procedure of Chapters 5 and 6, the analysis of the displacement
fields uses a full shell element model developed in ANSYS® as a control model. However,
this example compares only the results between the GBT and shell-181 models. As
presented in the two previous chapters, the difference in the displacement fields among
the shell models are almost imperceptible. Moreover, shell-181 is the same element
type applied in the development of the connection’s super-element. The mesh of the
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full shell model follows the same discretization of the connection’s super-element. Thus,
the full model has 42,200 elements and 135,828 degrees of freedom.

Tables from 7.8 to 7.11 and figures 7.3 to 7.10 show the results of the displacement
fields of the cross-sections at the levels 250, 500, 750 and 985cm. The plotted results in
figures 7.3, 7.4, 7.7 and 7.8 do not show the value of the uniform longitudinal displace-
ment. This representation is necessary, since the uniform longitudinal displacement is
much larger than the periodic warping displacement.

Table 7.8: Mean differences, in %, and standard deviation (SD) of displacement field
between mixed GBT-Shell and Shell-181 model - linear analysis load case 1

Section u v w
Level (m) diff. SD diff. SD diff. SD

9.85 -0.03% 0.01% 12.59% 1.36% 11.28% 10.71%
7.50 -0.03% 0.01% 4.31% 0.28% 4.03% 2.19%
5.00 -0.03% 0.01% 5.1% 0.07% 5.26% 0.56%
2.50 -0.03% 0.01% 8.36% 0.06% 8.49% 0.48%

Table 7.9: Mean differences, in %, and standard deviation (SD) of displacement field
between mixed GBT-Shell and Shell-181 model - Non-linear analysis load case 1

Section u v w
Level (m) diff. SD diff. SD diff. SD

9.85 -/5.38% 0.1% 14.93% 1.96% 14.84% 7.93%
7.50 -5.37% 0.04% 19.25% 0.35% 19.12% 1.91%
5.00 -5.37% 0.03% 20.47% 2.18% 21.84% 17.22%
2.50 -5.38% 0.11% 23.86% 3.87% 21.88% 25.13%

Figure 7.3: Results of longitudinal displacement, without mean value, of mixed shell-
GBT and full shell-181 model: Linear analysis - Load Case 1.
From tables 7.8 and 7.10, one realizes that the highest mean difference in the displace-
ment fields in the linear analyses is 12.6% for the transversal displacement at the level
985cm in the load case 1. Meanwhile, for the same level, mean difference in load case
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Figure 7.4: Results of longitudinal displacement, without mean value, of mixed shell-
GBT and full shell-181 model: Non-linear analysis - Load Case 1.

Figure 7.5: Results of transversal displacement of mixed shell-GBT and full shell-181
model: Linear analysis - Load Case 1.

Table 7.10: Mean differences, in %, and standard deviation (SD) of displacement field
between mixed GBT-Shell and Shell-181 model - linear analysis load case 2

Section u v w
Level (m) diff. SD diff. SD diff. SD

9.85 -0.02% 0.09% 0.6% 0.02% -0.42% 0.75%
7.50 -0.02% 0.1% 1.14% 0.01% 1.25% 0.04%
5.00 -0.02% 0.11% 2.11% 0.01% 2.21% 0%
2.50 -0.02% 0.13% 5.04% 0.01% 5.14% 0.05%

2 is lower than 1%. The magnitude of the longitudinal displacement explains this con-
trast: load case 1 has a tiny transversal displacement, near zero. Such small numerical
approximation leads to significant mean differences. Since the transversal displacement
in load case 2 has an order ten times bigger than load case 1, it reduces this numerical
approximation effect. Also, tables 7.8 and 7.3 show an agreement between the results
for the longitudinal displacements.
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Figure 7.6: Results of transversal displacement of mixed shell-GBT and full shell-181
model: Non-linear analysis - Load Case 1.
Table 7.11: Mean differences, in %, and standard deviation (SD) of displacement field
between mixed GBT-Shell and Shell-181 model - Non-linear analysis load case 2

Section u v w
Level (m) diff. SD diff. SD diff. SD

9.85 -63.69% 0.77% 3.93% 1.02% 0.37% 2.84%
7.50 -63.69% 0.1% -4.29% 4.35% -6.29% 19.04%
5.00 -63.69% 0.64% -4.79% 3.69% -4.58% 19.31%
2.50 -63.73% 1.5% 1.51% 5.79% 22.65% 26.1%

However, this convergence of the results of the longitudinal displacement is lost in the
non-linear analysis, as presented in tables 7.9 and 7.11. For load case 1 the mean
difference increases, in absolute values, from 0.03% to 5.4%. For the load case 2,
the growth is even more drastic, from .02% to 63.7%. From the standard deviations
(SD) in these tables, as well as from the periodic warping in figures 7.4 and 7.8, one
realizes that such increase in the mean difference is related to the uniform longitudinal
displacement.

Such divergence in the results not only highlights the limitation of the proposed mixed
GBT-shell model in non-linear analysis, but also gives an indicator of this contrast: for
the load case with higher transversal displacements, the divergence of the longitudinal
displacements in the non-linear analysis is higher. This observation refers directly to
the initial assumptions of GBT of non-shear and non-transversal membrane deforma-
tion energy. Thus, these assumptions, in non-linear analysis, lead to incorrect internal
forces related to transversal displacements. Since the current formulation of non-linear
GBT neglects the third-order coupling tensor of the transversal membrane, the rela-
tionship between GBT’s amplification function V (x) and V,x (x) (for transversal and
longitudinal displacement, respectively) links indirectly the transversal displacement
and the internal forces in longitudinal direction.

Here, it rises the opportunity to develop future studies in the mixed GBT-shell model,
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Figure 7.7: Results of longitudinal displacement of mixed shell-GBT and full shell-181
model: Linear analysis - Load Case 2.

Figure 7.8: Results of longitudinal displacement, without mean value, of mixed shell-
GBT and full shell-181 model: Non-linear analysis - Load Case 2.

in order to incorporate the shear and transversal membrane elongation in the linear
and non-linear analyses.
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Figure 7.9: Results of transversal displacement of mixed shell-GBT and full shell-181
model: Linear analysis - Load Case 2.

Figure 7.10: Results of transversal displacement, without mean value, of mixed shell-
GBT and full shell-181 model: Non-linear analysis - Load Case 2.

185



186



8
Conclusion and future research

8.1. Conclusion
This dissertation presented the application of Finite Elements Method, FEM, in Gen-
eralized Beam Theory (GBT). Such application combines the benefits of the versatility
of FEM’s solution with the high numerical performance of GBT.

Starting from the GBT’s assumptions in Chapter 2, this dissertation presents the pos-
sibility of achieving the separation of variables in structural beam assessments. Thus,
this division leads to two steps. The first one is related to cross-section analysis, which
is independent of boundary and loading conditions. The second one is related to the
solution of the longitudinal beam’s axis. In the perspective of FEM, this separation
allows not only parallel processing between the cross-section analysis and the modelling
process, but also uses uni-dimensional elements, which are easier to model.

Unfortunately, GBT has an arduous and elaborate process for the cross-section anal-
ysis, as presented in Chapter 4. Therefore, this dissertation first introduces the study
of hollow circular cross-section in Chapter 3, which requires only a decomposition in
Fourier-Series. Thus, this type of cross-section provides a faster overview of the GBT.
Moreover, Chapter 3 has a minor contribution in the original GBT circular hollow
cross-section to incorporate radial deformations due to Poisson’s effect. The example
in Chapter 5 shows that this minor contribution reduces the difference between GBT
and shell finite elements models from 35% (original GBT formulation) to 10% (with
Poisson’s effect).

For the complex process of a general segmented cross-section, Chapter 4 has another
minor contribution to the procedures recently presented, that uses FEM in this step.
This contribution allows the separation of the pure plate and membrane-plate deforma-
tion modes before the performance of the quadratic eigenvalue problem. Consequently,
one obtains a reduced problem, which requires a lower numerical effort, as well as a
solution with an explicit decomposition between modes with and without membrane’s
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warping mechanisms. A detailed example, presented in Appendix, is the same one
found in Richard Schardt’s book [136], which is the primary reference in GBT. Thus,
the comparison between the results shows: i) the simplified version of the presented
contribution has the values of the original work of Richard Schardt; ii) the quadratic
eigenvalue problem leads to results with lower longitudinal stiffness and higher shear
stiffness, especially for higher modes.

The major contributions in this dissertation are the exact GBT’s finite element for-
mulation and the coupling between these elements with shell elements, presented in
Chapters 5 and 6, respectively.

The exact solution formulation is not only attractive in GBT due to minimal discretiza-
tion, but also in the numerical effort’s point of view. Since each node of a GBT’s element
has several mode shapes with one or two degrees of freedom, the total amount of un-
known in a fine discretized GBT model is comparable to a usual shell FEM model.
Therefore, the exact solution highlights the compact feature of GBT. Moreover, the
shape functions involved in the exact solution, hyperbolic-trigonometric functions, are
smooth. This property of having derivatives for any order at any point of the element
domain leads to reliable internal forces, as well as to a systematic approach to devel-
oping the stiffness matrices. The example in this chapter provides not only a detailed
implementation of the stiffness matrices based on hyperbolic-trigonometric functions,
but also compares the results among these functions, the Hermitian shape functions
and full shell element models. The highest difference among the GBT and the shell
modes is 15% related to tangential displacement.

In Chapter 6, the major contribution concerns the study of coupling between GBT and
shell elements. Based on GBT’s displacement field definition, the Master-Slave method
defines the GBT’s degrees of freedom as master ones and creates not only coupling with
shell elements, but also among the deformation modes of GBT themselves.

The resulting mixed finite elements models have the benefits of using the versatility of
shell elements to model structural connections and the numerical performance of GBT
elements to model beams. Although these mixed models remove the isolation of the
GBT’s implementation from its own elements, they create displacement constraints
in shell element part. Thus, the solution in the neighbourhood of a coupling cross-
section is limited to the GBT’s assumptions. The numerical example in this chapter
shows the results’ convergence of the displacement field among the proposed mixed
model and others created with different types of shell elements. The analysis of the
stress field among all models, in the neighbourhood of the coupling cross-section, shows
convergence if the results concern the most relevant internal forces, such as longitudinal
membrane force in this example. For this force, the highest difference is below 0.1%.
However, internal forces with low values present divergent results not only between the
mixed and shell models, but also among the shell models. For instance, transversal
plate shear forces have a difference between the mixed and shell-93 models of 22%,
but the difference between shell-93 and shell-281 is around 26%. Nevertheless, these
internal forces have residual values when compared to relevant internal forces.
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The last chapter in this dissertation explores the performance of mixed GBT-shell mod-
els in non-linear analysis. Based on incremental strain formulation, Chapter 7 achieves
the non-linear stiffness matrices of initial stresses and displacements, as well as the ex-
pressions of the internal forces. The development of these matrices and internal forces
shows that the original assumptions of GBT, of non-transversal and non-shear mem-
brane strains energy, neglects the third-order coupling tensors related to these strains.
Thereby, the transversal strains and displacements involve only fourth-order tensors,
which have a minor effect since they are limited to plate’s behaviour. The last example
of this dissertation shows the consequences due to the absence of the third-order tensor:
the initial transversal displacements leads to unrealistic uniform longitudinal internal
force and, consequently, to unreliable longitudinal displacements as well. For instance,
the last model in this dissertation has a ratio of the radial displacement by the radius
of 1/80 that, with the modal amplification functions, V (x), and their derivative, V,x (x),
link the transversal deformations solely with the longitudinal strains/stresses. Con-
sequently, for this example, the longitudinal displacement and internal forces in the
longitudinal direction are 64% higher than the results of the control model. Here, it
stands out the limitation of GBT in non-linear analysis under the original assumptions
of this theory.

8.2. Future research
Although this dissertation developed the coupling between GBT and shell finite ele-
ments, some questions arise during this development. Thus, one can list some future
research and studies:

- Study of structural preserving isospectral flow, in GBT’s quadratic eigenvalue prob-
lems, to reduce the residual coupling among the GBT’s modes;

- Analysis and validation of GBT’s complementary modes related to the membrane’s
transversal elongation and shear deformation;

- Development of exact finite elements of these complementary modes and the classifi-
cation concerning the longitudinal amplification function;

- Coupling of complementary modes of GBT and shell elements;

- Development of non-linear analysis of these complementary modes. This development
leads to the coupling of plate and membrane, based on third-order tensors;
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A
Appendix A: Numerical example - GBT’s analysis of a

generic segmented thin-walled cross-section

A.1. Numerical example
The presented numerical example is the same open cross-section found in the example
of the second chapter of Schardt’s book [136]. Thus, it is possible to evaluate and cross-
check the results of the presented approach and the original procedure of GBT.

The open cross-section is a concrete roof, as plotted in figure. A.1, in which the
material parameters are: Young Modulus=21,000MN/m2, Poisson’s ratio = 0, Shear
Modulus=10,500MN/m2.

Figure A.1: Concrete Roof extracted from R. Schadt [136].

A.1.1. Step 1 - Setup of Cross-section stiffness matrices
In local coordinate systems, segments 1 and 6, as well as segments 2, 3, 4 and 5,
share the same geometry and material property. Hence, one builds up the cross-section
stiffness matrices due to membrane behavior.
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• longitudinal membrane stiffness matrix: based on eq. 4.25, one achieves the following
local stiffness matrices for segments 1;6 and for segments 2-5, respectively:

[C]M1;6=



ul1 ul2 vl1 vl2 wl1 wl2

ul1 1512 756 0 0 0 0
ul2 1512 0 0 0 0
vl1 0 0 0 0
vl2 0 0 0
wl1 0 0
wl2 symm 0

 (A.1)

[C]M2−5=



ul1 ul2 vl1 vl2 wl1 wl2

ul1 1568 784 0 0 0 0
ul2 1568 0 0 0 0
vl1 0 0 0 0
vl2 0 0 0
wl1 0 0
wl2 symm 0

 (A.2)

• shear membrane stiffness matrix: this stiffness matrix has terms related to the longi-
tudinal displacement, eq. 4.29, terms concerning the transverse displacement, eq. 4.26,
and terms concerning both longitudinal and transverse displacement, equations 4.29
and 4.34. Thus, the local stiffness matrices are:

[D]M1;6=



ul1 ul2 vl1 vl2 wl1 wl2

ul1 1575 −1575 −945 −945 0 0
ul2 1575 945 945 0 0
vl1 756 378 0 0
vl2 756 0 0
wl1 0 0
wl2 symm 0

 (A.3)

[D]M2−5=



ul1 ul2 vl1 vl2 wl1 wl2

ul1 300 −300 −420 −420 0 0
ul2 300 420 420 0 0
vl1 784 392 0 0
vl2 784 0 0
wl1 0 0
wl2 symm 0

 (A.4)

• transverse elongation membrane stiffness matrix: eq. 4.30 provides the terms of this
stiffness matrix:

[B]]M1;6=



ul1 ul2 vl1 vl2 wl1 wl2

ul1 0 0 0 0 0 0
ul2 0 0 0 0 0
vl1 3150 −3150 0 0
vl2 3150 0 0
wl1 0 0
wl2 symm 0

 (A.5)

[B]M2−5==



ul1 ul2 vl1 vl2 wl1 wl2

ul1 0 0 0 0 0 0
ul2 0 0 0 0 0
vl1 600 −600 0 0
vl2 600 0 0
wl1 0 0
wl2 symm 0

 (A.6)
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After the setup of the local stiffness matrices, one must transform them into the global
coordinate system, as presented in equations 4.46 and 4.47. Since this transformation
is well-known in finite element applications, the numerical values are not presented.
Nevertheless, these values are indirectly audited in the global cross-sections stiffness
matrices, as presented below. The assembly of these global matrices is guided by the
mapping matrix, which informs of each local degree of freedom the respective one in
the global coordinate system:



seg.1 seg.2 seg.3 seg.4 seg.5 seg.6

ul1 u1 u2 u3 u4 u5 u6
ul2 u2 u3 u4 u5 u6 u7
vl1 v1 v2 v3 v4 v5 v6
vl2 v2 v3 v4 v5 v6 v7
wl1 w1 w2 w3 w4 w5 w6
wl2 w2 w3 w4 w5 w6 w7
ϕl1 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6
ϕl2 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7


(A.7)

The above mapping of the degrees of freedom presents also the relationships of the longi-
tudinal rotations for future in plate behavior stiffness matrices. Based on this mapping,
the assembly of the global cross-section stiffness matrices of membrane behavior leads
to:

[C]M =



u1 u2 u3 u4 u5 u6 u7 v1 ... w7

u1 1512 756 0 0 0 0 0 0 . . . 0
u2 3080 784 0 0 0 0 0 . . . 0
u3 3136 784 0 0 0 0 . . . 0
u4 3136 784 0 0 0 . . . 0
u5 3136 784 0 0 . . . 0
u6 3080 756 0 . . . 0
u7 1512 0 . . . 0
v1 0 . . . 0
...

. . .
...

w7 symm 0


(A.8)

In this matrix, the null values of all terms involving the transverse displacements, v and
w, highlight the assumption of a simplified material constitutive relationship, given in
eq. 2.10. Reciprocally, the global transverse membrane stiffness matrix presents null
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values concerning the longitudinal displacements degrees of freedom:

[B]M =



... u7 v1 v2 v3 v4 v5 v6 v7 w1 w2 w3 w4 w5 w6 w7

...
. . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
u7 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v1 . . . 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v2 . . . 450 −450 0 0 0 0 0 260 −260 0 0 0 0
v3 . . . 1032 −582 0 0 0 0 −260 362 −103 0 0 0
v4 . . . 1164 −582 0 0 0 0 −103 0 103 0 0
v5 . . . 1032 −450 0 0 0 0 103 −362 260 0
v6 . . . 450 0 0 0 0 0 260 −260 0
v7 . . . 0 0 0 0 0 0 0 0
w1 . . . 3150 −3150 0 0 0 0 0
w2 . . . 3300 −150 0 0 0 0
w3 . . . 168 −18 0 0 0
w4 . . . 36 −18 0 0
w5 . . . 168 −150 0
w6 . . . 3300 −3150
w7 . . . s. 3150


(A.9)

The global shear stiffness matrix due to membrane behavior presents a property con-
cerning segments with an end free node: the degree of freedom of the correspondent
transverse displacement has no participation. One realizes it in rows and columns
V1 and V7 of eq. A.10 and check the same rows and columns in expressions A.8 and
A.9.
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The cross-section stiffness matrices due to plate behavior follows a similar assem-
bling:

• longitudinal plate stiffness matrix: based on eq. 4.36, one reaches the following ma-
trices:

[C]P1;6=



vl1 vl2 wl1 wl2 ϕl1 ϕl2

vl1 0 0 0 0 0 0
vl2 0 0 0 0 0
wl1 4.55 1.57 0.77 −0.45
wl2 4.55 0.45 −0.77
ϕl1 0.17 −0.13
ϕl2 symm 0.17

 (A.11)

[C]P2−5=



vl1 vl2 wl1 wl2 ϕl1 ϕl2

vl1 0 0 0 0 0 0
vl2 0 0 0 0 0
wl1 0.93 0.32 0.37 −0.22
wl2 0.93 0.22 −0.37
ϕl1 0.19 −0.14
ϕl2 symm 0.19

 (A.12)

• shear plate stiffness matrix: it is obtained directly by eq. 4.39. Thus, the local stiffness
matrices are:

[D]P1;6=



vl1 vl2 wl1 wl2 ϕl1 ϕl2

vl1 0 0 0 0 0 0
vl2 0 0 0 0 0
wl1 20.41 −20.41 2.04 2.04
wl2 20.41 −2.04 −2.04
ϕl1 3.27 −0.82
ϕl2 symm 3.27

 (A.13)

[D]P2−5=



vl1 vl2 wl1 wl2 ϕl1 ϕl2

vl1 0 0 0 0 0 0
vl2 0 0 0 0 0
wl1 0.77 −0.77 0.18 0.18
wl2 0.77 −0.18 −0.18
ϕl1 0.67 −0.17
ϕl2 symm 0.67

 (A.14)

• transverse elongation plate stiffness matrix: lastly, eq. 4.42 provides the transverse
bending stiffness matrices, which for segments 1 and 6 leads to:

[B]P1;6 =



vl1 vl2 wl1 wl2 ϕl1 ϕl2

vl1 0 0 0 0 0 0
vl2 0 0 0 0 0
wl1 70.88 −70.88 42.53 42.53
wl2 70.88 −42.53 −42.53
ϕl1 34.02 17.01
ϕl2 symm 34.02

 (A.15)
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and for segments 2, 3, 4 and 5 to:

[B]P2−5 =



vl1 vl2 wl1 wl2 ϕl1 ϕl2

vl1 0 0 0 0 0 0
vl2 0 0 0 0 0
wl1 0.49 −0.49 0.69 0.69
wl2 0.49 −0.69 −0.69
ϕl1 1.28 0.64
ϕl2 symm 1.28

 (A.16)

To transform each plate stiffness matrix of each segment, one must apply equations 4.44
and 4.45. Furthermore, the assembly of the global plate stiffness matrices is driven by
the mapping matrix in A.7. Thereby, one achieves the following matrices:
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A.1.2. Step 2 - transverse elongation constrains
As one obtains the global cross-section stiffness matrices, the next step is the assembly
of multi-freedom constraints concerning the transverse elongation. As mentioned in
sec. 4.4.1, these constraints are not only necessary in plate stiffness matrices, in which
the plate theory does not involve these degrees of freedom, but they are also necessary
due to GBT’s assumption of non-transverse strain: εs = 0

Equation. 4.49 provides the coupling in the element local coordinate system. Thus,
one must apply the following transformation to achieve the multi-freedom constraints
in the cross-section global coordinate system:


cos[θ ] 0 sin[θ ] 0

0 cos[θ ] 0 sin[θ ]
−sin[θ ] 0 cos[θ ] 0

0 −sin[θ ] 0 cos[θ ]

[1 −1 0 0
]

vi
v f
wi
w f


g

= 0 (A.20)

Where θ is the angle of the segment from the global coordinate system to the local one.
After this transformation in each segment, one collects all multi-freedom constraints
equations into a single matrix formulation:

0= [1,1N]
[
v
w

]
=



v1 v2 v3 v4 v5 v6 v7 w1 w2 w3 w4 w5 w6 w7

seg.1 0 0 0 0 0 0 0 1 −1 0 0 0 0 0
seg.2 0 0.87 −0.87 0 0 0 0 0 0.5 −0.5 0 0 0 0
seg.3 0 0 0.98 −0.98 0 0 0 0 0 0.17 −0.17 0 0 0
seg.4 0 0 0 0.98 −0.98 0 0 0 0 0 −0.17 0.17 0 0
seg.5 0 0 0 0 0.87 −0.87 0 0 0 0 0 −0.5 0.5 0
seg.6 0 0 0 0 0 0 0 0 0 0 0 0 −1 1





v1
...
v7
w1
...
w7


(A.21)

From the above matrix, one starts a recursive approach to achieve the transformation
matrix [1U ]. This approach is based on selecting one coupling equation from matrix
[1,1N] to build an intermediate transformation matrix [1,iU ], applied back to the matrix
[1,1N] in order to find a new reduced coupling matrix [1,2N]. From this matrix, the
approach is restarted to reach the next intermediate transformation matrix [1,i+1U ].
Then, the approach continues until it covers all constraint equations. Once this process
is done, the product among all intermediate matrices leads to the final transformation
matrix [1U ]:

[1U ] =
n

∏
i=1

[1,iU ] (A.22)

For instance, if one selects the last row in matrix [1,1N] in eq. A.21 and the degree of
freedom w7 as a slave one, then one obtains the following intermediate transformation
matrix, [1,iU ]:
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[1,1U ] =



v1 v2 ... v7 w1 ... w6

v1 1 0 . . . 0 0 . . . 0
v2 0 1 . . . 0 0 . . . 0
...

...
...

. . .
...

...
. . .

...
v7 0 0 . . . 1 0 . . . 0
w1 0 0 . . . 0 1 . . . 0
...

...
...

. . .
...

...
. . .

...
w6 0 0 . . . 0 0 . . . 1
w7 − v1

w7
= 0 − v2

w7
= 0 . . . − v7

w7
= 0 −w1

w7
= 0 . . . −w6

w7
= 1


(A.23)

From these intermediate transformation matrix, one transforms the initial multi-freedom
constrain matrix into:

[
1,2N

]
=
[
1,1N

][
1,1U

]
=



v1 v2 v3 v4 v5 v6 v7 w1 w2 w3 w4 w5 w6

seg.1 0 0 0 0 0 0 0 1 −1 0 0 0 0
seg.2 0 0.87 −0.87 0 0 0 0 0 0.5 −0.5 0 0 0
seg.3 0 0 0.98 −0.98 0 0 0 0 0 0.17 −0.17 0 0
seg.4 0 0 0 0.98 −0.98 0 0 0 0 0 −0.17 0.17 0
seg.5 0 0 0 0 0.87 −0.87 0 0 0 0 0 −0.5 0.5
seg.6 0 0 0 0 0 0 0 0 0 0 0 0 0


(A.24)

Since the last row of [1,1N] was chosen, [1,2N] must eliminate this row, as presented
above. Continuing the approach, if one selects the fifth row of [1,2N] and w6 as slave
degree of freedom, then the following [1,i+2U ] is set up:

[
1,2U

]
=



v1 v2 ... v5 v6 ... w5

v1 1 0 . . . 0 0 . . . 0
v2 0 1 . . . 0 0 . . . 0
...

...
...

. . .
...

...
. . .

...
v5 0 0 . . . 1 0 . . . 0
v6 0 0 . . . 0 1 . . . 0
...

...
...

. . .
...

...
. . .

...
w5 0 0 . . . 0 0 . . . 1
w6 − v1

w6
= 0 − v2

w6
= 0 . . . − v5

w6
=−1.732 − v7

w6
= 1.732 . . . −w5

w6
= 1


(A.25)

Thus, the new intermediate coupling matrix [1,3N] is:

[
1,3N

]
=
[
1,2N

][
1,2U

]
=



v1 v2 v3 v4 v5 v6 v7 w1 w2 w3 w4 w5

seg.1 0 0 0 0 0 0 0 1 −1 0 0 0
seg.2 0 0.87 −0.87 0 0 0 0 0 0.5 −0.5 0 0
seg.3 0 0 0.98 −0.98 0 0 0 0 0 0.17 −0.17 0
seg.4 0 0 0 0.98 −0.98 0 0 0 0 0 −0.17 0.17
seg.5 0 0 0 0 0 0 0 0 0 0 0 0
seg.6 0 0 0 0 0 0 0 0 0 0 0 0


(A.26)

Repeating this process until the last, one achieves by the eq. A.22 the transverse elon-
gation constraint:
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[1U ] =
n

∏
i=1

[1,iU ] = [1,1U ] [1,2U ] [1,3U ] [1,4U ] [1,5U ] [1,6U ] =



v1 v2 v3 v4 v5 v6 v7 w2

v1 1 0 0 0 0 0 0 0
v2 0 1 0 0 0 0 0 0
v3 0 0 1 0 0 0 0 0
v4 0 0 0 1 0 0 0 0
v5 0 0 0 0 1 0 0 0
v6 0 0 0 0 0 1 0 0
v7 0 0 0 0 0 0 1 0
w1 0 0 0 0 0 0 0 1
w2 0 0 0 0 0 0 0 1
w3 0 1.73 −1.73 0 0 0 0 1
w4 0 1.73 3.94 −5.67 0 0 0 1
w5 0 1.73 3.94 −11.34 5.67 0 0 1
w6 0 1.73 3.94 −11.34 3.94 1.73 0 1
w7 0 1.73 3.94 −11.34 3.94 1.73 0 1



(A.27)

Once [1U ] was obtained, then it is possible to apply eq. 4.51 to verify this transforma-
tion matrix. Thereby, one finds the constrained form of shear membrane cross-section
stiffness matrix by eq. 4.52, which leads to A.28.

Here, one observes that all membrane stiffness matrices due to membrane behavior
have no terms related to the degrees of freedom v1 and v7. End segments for open
cross-section do not have any stiffness in the transverse direction of the segment at
the end nodes. Hence, one can eliminate the corresponding row and columns of these
degrees of freedom in membrane stiffness matrices.

[1D]
M =



u1 u2 u3 u4 u5 u6 u7 v1 v2 v3 v4 v5 v6 v7 w2

u1 1575 −1575 0 0 0 0 0 0 0 0 0 0 0 0 −1890
u2 1875 −300 0 0 0 0 0 −727 0 0 0 0 0 1470
u3 600 −300 0 0 0 0 475 −575 0 0 0 0 274
u4 600 −300 0 0 0 505 1149 −1654 0 0 0 292
u5 600 −300 0 0 474 1080 −3109 1654 0 0 274
u6 1875 −1575 0 2546 5791 −16674 5791 3274 0 1470
u7 1575 0 −3274−7445 21437 −7445. −3274 0 −1890
v1 0 0 0 0 0 0 0 0
v2 10758 20454 −57502 19487 6804 0 6211
v3 46519 −130778 44318 15474 0 11809
v4 376560 −127609−44557 0 −33199
v5 44318 15474 0 11250
v6 6804 0 3928
v7 0 0
w2 symm 5854


(A.28)
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A.1.3. Step 3 - Pure elongation membrane mode
The isolation of the single pure membrane mode, the longitudinal elongation one, is
straight forward. It is only necessary to set up the transformation matrix [2U ] based
on a unit longitudinal displacement:

[2U ] =



u1 u2 u3 u4 u5 u6 u7 v2 ... v7 w2

u1 1 0 0 0 0 0 0 0 . . . 0 0
u2 1 1 0 0 0 0 0 0 . . . 0 0
u3 1 0 1 0 0 0 0 0 . . . 0 0
u4 1 0 0 1 0 0 0 0 . . . 0 0
u5 1 0 0 0 1 0 0 0 . . . 0 0
u6 1 0 0 0 0 1 0 0 . . . 0 0
u7 1 0 0 0 0 0 1 0 . . . 0 0
v2 0 0 0 0 0 0 0 1 . . . 0 0
...

...
...

...
...

...
...

...
... . . . ...

...
v7 0 0 0 0 0 0 0 0 . . . 1 0
w2 0 0 0 0 0 0 0 0 . . . 0 1



(A.29)

This transformation applied in equations 4.57 and 4.58 leads to the matrices [2C]M and
[2D]

M, given in equations A.30 and A.31, respectively.

[2C]
M =



u1 u2 u3 u4 u5 u6 u7 v2 ... w2

u1 27888 4620 4704 4704 4704 4620 2268 0 . . . 0
u2 3080 784 0 0 0 0 0 . . . 0
u3 3136 784 0 0 0 0 . . . 0
u4 3136 784 0 0 0 . . . 0
u5 3136 784 0 0 . . . 0
u6 3080 756 0 . . . 0
u7 1512 0 . . . 0
v2 0 . . . 0
...

. . .
...

w2 symm 0


(A.30)

Here, one observes that the first term in first row and column is, in fact, the stiffness
product EA= 21000MN/m2 ∗1.328m2 of the cross-section.

From [2D]
M one realizes that [2U ] removes the shear membrane stiffness of the longitu-

dinal elongation mode. I.e., there is any term in the first row/column of [2D]M:
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[2D]
M =



u1 u2 u3 u4 u5 u6 u7 v2 v3 v4 v5 v6 w2

u1 0 0 0 0 0 0 0 0 0 0 0 0 0
u2 1875 −300 0 0 0 0 −727 0 0 0 0 1470
u3 600 −300 0 0 0 474 −575 0 0 0 274
u4 600 −300 0 0 505 1149 −1654 0 0 292
u5 600 −300 0 475 1080 −3109 1654 0 274
u6 1875 −1575 2546 5791 −16674 5791 3274 1470
u7 1575 −3274 −7445 21437 −7445 −3274 −1890
v2 10758 20454 −57502 19486 6804 6211
v3 46519 −130778 44318 15474 11809
v4 376560 −127609 −44557 −33199
v5 44318 15474 11250
v6 6804 3928
w2 s. 5854


(A.31)

Hence, it is possible to isolate this mode from all others by the transformation [3U ].
Based on the coupling equation. 4.59, one uses the first row of matrix [2C]

M to achieve
the transformation row in [3U ]:

[
− u2

u1
=− 4620

27888 − u3
u1
=− 4704

27888 . . .
]

[3U ] =



u2 u3 u4 u5 u6 u7 v2 ... v7 w2

u1 −0.165 −0.168 −0.168 0.168 −0.165 −0.081 0 . . . 0 0
u2 1 0 0 0 0 0 0 . . . 0 0
u3 0 1 0 0 0 0 0 . . . 0 0
u4 0 0 1 0 0 0 0 . . . 0 0
u5 0 0 0 1 0 0 0 . . . 0 0
u6 0 0 0 0 1 0 0 . . . 0 0
u7 0 0 0 0 0 1 0 . . . 0 0
v2 0 0 0 0 0 0 1 . . . 0 0
...

...
...

...
...

...
...

...
. . .

...
...

v7 0 0 0 0 0 0 0 . . . 1 0
w2 0 0 0 0 0 0 0 . . . 0 1



(A.32)

Applying equations 4.60 and 4.61, one reaches the membrane stiffness matrices without
the pure longitudinal elongation mode:

[3C]
M =



u2 u3 u4 u5 u6 u7 v2 ... w2

u2 2314.64 4.72 −779.28 −779.28 −765.36 −375.72 0 . . . 0
u3 2342.55 −9.45 −793.45 −779.28 −382.55 0 . . . 0
u4 2342.55 −9.45 −779.28 −382.55 0 . . . 0
u5 2342.55 4.72 −382.55 0 . . . 0
u6 2314.64 380.28 0 . . . 0
u4 1327.55 0 . . . 0
v1 0 . . . 0
...

. . .
...

w2 symm 0


(A.33)

[3D]
M =

 [
3kMτ

uu
] [[

3kMτ
uv
] [

3kMτ
uw
]][[

3kMτ
vu
][

3kMτ
wu
]] [[

3kMτ
vv
] [

3kMτ
vw
][

3kMτ
wv
] [

3kMτ
ww
]]
 (A.34)
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where:

[
3kMτ

uu
]
=



u2 u3 u4 u5 u6 u7

u2 1875 −300 0 0 0 0
u3 600 −300 0 0 0
u4 600 −300 0 0
u5 600 −300 0
u6 1875 −1575
u7 symm 1575

 (A.35)

[[
3kMτ

vu
][

3kMτ
wu
]]T=[[3kMτ

uv
] [

3kMτ
uw
]]
=



v2 v3 v4 v5 v6 w2

u2 −727 0 0 0 0 1470
u3 474 −575 0 0 0 274
u4 505 1149 −1654 0 0 292
u5 475 1080 −3109 1654 0 274
u6 2546 5791 −16674 5791 3274 1470
u7 −3274 −7445 21437 −7445 −3274 −1890

 (A.36)

[[
3kMτ

vv
] [

3kMτ
vw
][

3kMτ
wv
] [

3kMτ
ww
]]=



v2 v3 v4 v5 v6 w2

v2 10758 20454 −57502 19486 6804 6211
v3 46519 −130778 44318 15474 11809
v4 376560 −127609 −44557 −33199
v5 44318 15474 11250
v6 6804 3928
w2 symm. 5854

 (A.37)

A.1.4. Step 4 - Membrane shear strain constraint
Inserting equations A.36 and A.35 into eq. 4.66, one achieves the membrane shear
multi-freedom constraint:

−
[[

3kMτ
uv
] [

3kMτ
uw
]]−1 [

3kMτ
uu
]
=



u2 u3 u4 u5 u6 u7

v2 0.89 −0.41 0 0 0 0
v3 −0.18 0.7 −0.52 0 0 0
v4 0 0.18 0 −0.18 0 0
v5 0 0 0.52 −0.7 0.18 0
v6 0 0 0 0.41 −0.89 0.48
w1 −0.83 0 0 0 0 0

 (A.38)

The above matrix leads to the matrix [4U ], as presented in eq. 4.67. Moreover, one
verifies this transformation by: i) eq. 4.68, which must vanish any stiffness due to
membrane’s shear strains, [4C]M = 0; ii) eq. 4.69, which must keep [4C]

M = [3C]
M. Thus,

at this stage, the cross-section stiffness matrices due to membrane behavior are limited
only to longitudinal matrix.

A.1.5. Step 5 - Pure plate modes
After all transformation in membrane stiffness, one must extract and isolate the pure
plate modes. As exposed in section 4.4.2, the extraction of pure plate mode is straight
forward. It is only necessary to set up a transformation matrix, which isolates the
degrees of freedom of longitudinal rotation ϕ , and the orthogonal transverse displace-
ment at the extreme node of free end segments, v1 and v7 in this example. Thus, the
transformation matrix [4U ] is:
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[5U ] =



v1 v7 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

v1 1 0 0 0 0 0 0 0 0
v2 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
v5 0 0 0 0 0 0 0 0 0
v7 0 1 0 0 0 0 0 0 0
w1 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
w7 0 0 0 0 0 0 0 0 0
ϕ1 0 0 1 0 0 0 0 0 0
ϕ2 0 0 0 1 0 0 0 0 0
ϕ3 0 0 0 0 1 0 0 0 0
ϕ4 0 0 0 0 0 1 0 0 0
ϕ5 0 0 0 0 0 0 1 0 0
ϕ6 0 0 0 0 0 0 0 1 0
ϕ7 0 0 0 0 0 0 0 0 1



(A.39)

The introduction of above transformation matrix into equations 4.70, 4.71 and 4.72
leads to pure plate behavior stiffness matrices, as presented below. They are directly
addressed to the quadratic eigenvalue problem.

[1C]
P =



v1 v7 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

v1 4.55 0 −0.77 0.45 0 0 0 0 0
v7 4.55 0 0 0 0 0 0.45 −0.77
ϕ1 0.17 −0.13 0 0 0 0 0
ϕ2 0.36 −0.14 0 0 0 0
ϕ3 0.37 −0.14 0 0 0
ϕ4 0.37 −0.14 0 0
ϕ5 0.37 −0.14 0
ϕ6 0.36 −0.13
ϕ7 symm. 0.17


(A.40)

[1D]
P =



v1 v7 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

v1 20.41 0 −2.04 −2.04 0 0 0 0 0
v7 20.41 0 0 0 0 0 −2.04 −2.04
ϕ1 3.27 −0.82 0 0 0 0 0
ϕ2 3.93 −0.17 0 0 0 0
ϕ3 1.34 −0.17 0 0 0
ϕ4 1.34 −0.17 0 0
ϕ5 1.34 −0.17 0
ϕ6 3.93 −0.82
ϕ7 symm. 3.27


(A.41)

[1B]
P =



v1 v7 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

v1 70.88 0 −42.53 −42.53 0 0 0 0 0
v7 70.88 0 0 0 0 0 −42.53 −42.53
ϕ1 34.02 17.01 0 0 0 0 0
ϕ2 35.3 0.64 0 0 0 0
ϕ3 2.56 0.64 0 0 0
ϕ4 2.56 0.64 0 0
ϕ5 2.56 0.64 0
ϕ6 35.3 17.01
ϕ7 symm. 34.02


(A.42)
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A.1.6. Step 6 - Membrane-plate modes
The isolation of membrane-plate modes is complementary to pure plate modes extracted
in the previous step. Therefore, one expects 9 coupling equations in this example:
4 concerning the assumption of null transverse bending moment at any point of the
extreme segments (2 coupling equations for each segment); 5 concerning the equilibrium
of transverse bending moment at the internal nodes.

Starting with the extreme segments, one obtains eq. 4.73 directly from last two rows of
transverse stiffness matrix, given in eq. A.15. Thus, the coupling equation in the local
coordinate system for segments 1 and 6 is:[

0
0

]
=

[ vl1 vl2 wl1 wl2 ϕl1 ϕl2

0 0 42.53 −42.53 34.02 17.01
0 0 42.53 −42.53 17.01 34.02

][
v1 v2 w1 w2 ϕ1 ϕ2

]T
l (A.43)

Applying the transformation from local to the global coordinate system, together with
the mapping among the local and global degrees of freedom, one achieves the following
global coupling equations:

- For segment 1:[
0
0

]
=

[ v1 v2 w1 w2 ϕ1 ϕ2

−42.53 42.53 0 0 34.02 17.01
−42.53 42.53 0 0 17.01 34.02

][
v1 v2 w1 w2 ϕ1 ϕ2

]T (A.44)

- For segment 6:[
0
0

]
=

[ v6 v7 w6 w7 ϕ6 ϕ7

42.53 −42.53 0 0 34.02 17.01
42.53 −42.53 0 0 17.01 34.02

][
v6 v7 w6 w7 ϕ6 ϕ7

]T (A.45)

Concerning the internal nodes, the coupling equations of nodes 2 and 6 have a more
straightforward implementation. The displacements in segments 2 and 5 must lead to
zero transverse bending moments at these nodes. Hence, one applies the transformation
and mapping from local to the global coordinate system over the fifth and last rows of
the matrix in eq. A.16, to find the coupling equation of node 2 and 6, respectively:

- For node 2:

0=
[ v2 v3 w2 w3 ϕ2 ϕ3

−0.343 0.343 0.594 −0.594 1.28 0.64
][
v2 v3 w2 w3 ϕ2 ϕ3

]T (A.46)

- For node 6:

0=
[ v5 v6 w5 w6 ϕ5 ϕ6

0.343 −0.343 0.594 −0.594 1.28 0.64
][
v5 v6 w5 w6 ϕ5 ϕ6

]T (A.47)

The other three coupling equations, of internal nodes 3, 4 and 5, involve the transverse
stiffness matrices of all linked segments at a particular node to obtain the equilibrium.
For instance, the above relationship between segments 2 and 3 defines the equilibrium
of transverse bending moment at node 3:

[ v2 v3 w2 w3 ϕ2 ϕ3

−0.343 0.343 0.594 −0.594 0.64 1.28
][
v2 v3 w2 w3 ϕ2 ϕ3

]T
=

−
[ v3 v4 w3 w4 ϕ3 ϕ4

−0.12 0.12 0.675 −0.675 1.28 0.64
][
v3 v4 w3 w4 ϕ3 ϕ4

]T (A.48)
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Which leads to the following coupling equation:

[ v2 v3 v4 w2 w3 w4 ϕ2 ϕ3 ϕ4

−0.343 0.224 0.119 0.594 0.081 −0.675 0.64 2.56 0.64
][
v2 v3 v4 w2 w3 w4 ϕ2 ϕ3 ϕ4

]T
=0

(A.49)
Following the same procedure, one obtains the following coupling equations for nodes
4 and 5, respectively:

[ v3 v4 v5 w3 w4 w5 ϕ3 ϕ4 ϕ5

−0.119 0.238 −0.119 0.675 0 −0.675 0.64 2.56 0.64
][
v3 v4 v5 w3 w4 w5 ϕ3 ϕ4 ϕ5

]T
=0

(A.50)
[ v4 v5 v6 w4 w5 w6 ϕ4 ϕ5 ϕ6

0.119 0.224 −0.343 0.675 −0.081 −0.594 0.64 2.56 0.64
][
v4 v5 v6 w4 w5 w6 ϕ4 ϕ5 ϕ6

]T
=0

(A.51)
Similar to Step 2, one can collect all these 9 coupling equations into a single coupling
matrix. This matrix leads to the same recursive approach to reach the transformation
matrix [6U ]. However, one remark is necessary here: the slave degrees of freedom must
be the ones that have no terms in membrane stiffness matrices. In this example, they
are v1, v7 and from ϕ1 until ϕ7. Thus, the transformation matrix [6U ] is:

[6U ]=



v2 v3 v4 v5 v6 w1 w2 w3 w4 w5 w6 w7

v1 1.27 −0.3 0.02 0.01 0 0 −0.47 0.61 −0.18 0.04 −0.01 0
v2 1 0 0 0 0 0 0 0 0 0 0 0
v3 0 1 0 0 0 0 0 0 0 0 0 0
v4 0 0 1 0 0 0 0 0 0 0 0 0
v5 0 0 0 1 0 0 0 0 0 0 0 0
v6 0 0 0 0 1 0 0 0 0 0 0 0
v7 0 0.01 0.02 −0.3 1.27 0 0.01 −0.04 0.18 −0.61 0.47 0
w1 0 0 0 0 0 1 0 0 0 0 0 0
w2 0 0 0 0 0 0 1 0 0 0 0 0
w3 0 0 0 0 0 0 0 1 0 0 0 0
w4 0 0 0 0 0 0 0 0 1 0 0 0
w5 0 0 0 0 0 0 0 0 0 1 0 0
w6 0 0 0 0 0 0 0 0 0 0 1 0
w7 0 0 0 0 0 0 0 0 0 0 0 1
ϕ1 0.23 −0.25 0.02 0.01 0 0 −0.39 0.51 −0.15 0.04 −0.01 0
ϕ2 0.23 −0.25 0.02 0.01 0 0 −0.39 0.51 −0.15 0.04 −0.01 0
ϕ3 0.08 −0.04 −0.03 −0.02 0.01 0 −0.14 −0.1 0.3 −0.07 0.01 0
ϕ4 −0.02 0.06 −0.08 0.06 −0.02 0 0.04 −0.26 0 0.26 −0.04 0
ϕ5 0.01 −0.02 −0.03 −0.04 0.08 0 −0.01 0.07 −0.3 0.1 0.14 0
ϕ6 0 0.01 0.02 −0.25 0.23 0 0.01 −0.04 0.15 −0.51 0.39 0
ϕ7 0 0.01 0.02 −0.25 0.23 0 0.01 −0.04 0.15 −0.51 0.39 0



(A.52)

Since the plate assumptions do not consider the transverse elongation of each segment,
one must also apply the transformation [1U ], eq. A.27, in the stiffness matrices of
plate behavior. Here, one must be aware that the degrees of freedom v1 and v7 are al-
ready removed in transformation matrix [6U ]. Fortunately, as transverse displacements
of extreme nodes, these degrees of freedom can have their corresponding columns in
matrix [1U ] removed without any costs. Thus, one has the following modified

[
1UP

]
matrix:
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[
1UP]=



v2 v3 v4 v5 v6 w2

v2 1 0 0 0 0 0
v3 0 1 0 0 0 0
v4 0 0 1 0 0 0
v5 0 0 0 1 0 0
v6 0 0 0 0 1 0
w1 0 0 0 0 0 1
w2 0 0 0 0 0 1
w3 1.73 −1.73 0 0 0 1
w4 1.73 3.94 −5.67 0 0 1
w5 1.73 3.94 −11.34 5.67 0 1
w6 1.73 3.94 −11.34 3.94 1.73 1
w7 1.73 3.94 −11.34 3.94 1.73 1



(A.53)

Applying the above transformations, [6U ] and
[
1UP

]
, into plate stiffness matrices (equa-

tions A.17, A.18 and A.19), one achieves:

[3C]
P=
[
1UP

]T
[6U ]T [C]P[6U ]

[
1UP

]
=



v2 v3 v4 v5 v6 w2

v2 53.23 10.64 −79.17 32.5 2.65 13.26
v3 106.71 −195.96 67.06 8.81 16.48
v4 482.09 −201.8 −13.52 −48.9
v5 110.75 −11.27 17.51
v6 33.18 1.69
v6 symm. 8.63

 (A.54)

[3D]
P=
[
1UP

]T
[6U ]T [D]P[6U ]

[
1UP

]
=



v2 v3 v4 v5 v6 w2

v2 22.9 −39.14 11.98 4.81 −0.55 0
v3 93.32 −41.8 −17.19 4.81 0
v4 59.65 −41.8 11.98 0
v5 93.32 −39.14 0
v6 22.9 0
v6 symm. 0

 (A.55)

[3B]
P=
[
1UP

]T
[6U ]T [B]P[6U ]

[
1UP

]
=



v2 v3 v4 v5 v6 w2

v2 0.26 −1.22 0.71 0.27 −0.02 0
v3 7.83 −2.74 −4.15 0.27 0
v4 4.06 −2.74 0.71 0
v5 7.83 −1.22 0
v6 0.26 0
v6 symm. 0

 (A.56)

The three above stiffness matrices are related to transverse displacements. However,
the membrane stiffness matrix is related to longitudinal displacement. Therefore, it
is necessary the transformation from transverse to longitudinal displacement in plate
stiffness matrices, which is already defined by the membrane shear multi-freedom con-
straint, in eq. A.38. For convenience, this multi-freedom constraint matrix is labeled
as [7U ]:

[7U ] =−
[[

3kMτ
uv
] [

3kMτ
uw
]]−1 [

3kMτ
uu
]

(A.57)

The introduction of the above transformation into equations 4.82, 4.83 and 4.84, with
the respective matrices A.54, A.55 and A.56 leads to:

224



[4C]
P=



u2 u3 u4 u5 u6 u7

u2 33.79 −29.83 13.5 −2.88 0.98 −0.31
u3 33.38 −19.82 6.3 −2.88 1.28
u4 22.72 −19.82 13.5 −5.04
u5 33.38 −29.83 11.58
u6 33.79 −15.25
u7 symm. 7.68

 (A.58)

[4D]
P=



u2 u3 u4 u5 u6 u7

u2 34.03 −44.55 30.97 −9.1 2.57 −0.66
u3 62.28 −50.05 21.89 −9.1 2.78
u4 60.25 −50.05 30.97 −11.04
u5 62.28 −44.55 16.74
u6 34.03 −13.26
u7 symm. 5.3

 (A.59)

[4B]
P=



u2 u3 u4 u5 u6 u7

u2 0.86 −1.75 1.83 −0.93 0.24 −0.03
u3 3.96 −4.72 2.88 −0.93 0.16
u4 6.53 −4.72 1.83 −0.37
u5 3.96 −1.75 0.4
u6 0.86 −0.22
u7 symm. 0.06

 (A.60)

Thus, one can merge the membrane and plate longitudinal strains stiffness matrices
into a single matrix, as presented in eq. 4.85:

[1C]
MP= [4C]

M +[4C]
P=



u2 u3 u4 u5 u6 u7

u2 2348.42 −25.11 −765.78 −782.16 −764.38 −376.03
u3 2375.94 −29.26 −787.15 −782.16 −381.28
u4 2365.27 −29.26 −765.78 −387.6
u5 2375.94 −25.11 −370.98
u6 2348.42 365.03
u7 symm. 1335.24

 (A.61)

[1D]
MP = [4D]

M+[4D]
P = [4D]

P (A.62) [1B]
MP = [1B]

M+[4B]
P = [4B]

P (A.63)

A.1.7. Step 7 - Pure longitudinal bending modes and Vlasov mode
As exposed in section 4.4.3, the pure bending modes are extracted by the definition
of unit transverse displacements. They need to be orthogonal to each other, but not
necessarily in the main direction of bending. Moreover, one can present these unit
transverse displacements already in the most compacted form, after the constraints of
transverse elongation and the elimination of pure plate modes. Then, the unit vectors
are collected into matrix [Vvw]:

[Vvw]
T==

[ v2 v3 v4 v5 v6 w2

1 1 1 1 1 0
0 0 0 0 0 1

]
(A.64)

By applying eq. 4.90, one converts the above matrix into terms of the longitudinal
displacement:

[8U ] = [7U ]−1 [Vvw]
T==

[ u2 u3 u4 u5 u6 u7

0 −2.42 −5.18 −7.94 −10.36 −10.36
−1.2 −2.6 −3.09 −2.6 −1.2 0

]T
(A.65)
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The transformation [8U ] applied in longitudinal strain stiffness matrix, [1C]MP, leads to
well-known second order tensor of bending, eq. 4.91:

[I] = [8U ]T [1C]
MP [8U ] =

[
420394.40 0

0 26212.9

]
(A.66)

Here, one realizes that the off-diagonal terms are zero. Consequently, the above tensor
is already in the main directions and the transformation [Tf ], eq. 4.93, is an identity
matrix. Thus, the vectors of the longitudinal displacements of mode 2 and 3 (

[
2U
]
and[

2U
]
) are equal to the columns of matrix [8U ].

To obtain the shear center, one adopts: i) the node 1 as a trial shear center; ii) the global
coordinate system as the temporary one. Hence, the vectors 2 [Vi], 3 [Vi] and 4 [Vi], in
figure 4.6.b, define the origin angle and the orientation of radius vector. Based on this
definition of radius vector, one finds the following transverse displacement vector for
mode 4:

4 [V]T=
[ v2 v3 v4 v5 v6 w2

0 −1.4 −1.886 −1.4 0 0
] (A.67)

Converting this transverse displacement into longitudinal direction by the inverse of
matrix [7U ], the transformation matrix [9U ] is obtained:

[9U ]T=
[
2 [U ] 3 [U ] [7U ]−1 4 [V]

]T
=


u2 u3 u4 u5 u6 u7

0 −2.42 −5.18 −7.94 −10.36 −10.36
−1.2 −2.6 −3.09 −2.6 −1.2 0
0 0 2.68 10.4 24.91 37.35

 (A.68)

The introduction of the above transformation into eq. 4.97 leads to the second order
tensor with Vlasov’s warping stiffness:

[IVlasov] = [9U ]T [1C]
MP [9U ] =

420394.40 0 −1120305
26212.9 135844

symm. 3790837

 (A.69)

The first and second rows of the tensor above, in equations 4.98 and 4.99 respectively,
achieve the position of the shear center by its radius vector: rvcs =−1120305/420394=
−2.66 and rwcs = 135844/26212.9 = 5.18. These radius vectors, in global coordinate
orientation, reach the point y = 5.18 and z = 2.66. They are also applied in eq. 4.100
to find the longitudinal displacement according to Vlasov beam theory:

4 [U ]T =
[ u2 u3 u4 u5 u6 u7

6.22 7.01 4.86 2.72 3.51 9.73
] (A.70)

So, the transformation matrix [10U ], given in eq. 4.101 is:

[10U ]==



u2 u3 u4 u5 u6 u7

u2 0 −1.2 6.22 0 0 0
u3 −2.42 −2.6 7.01 0 0 0
u4 −5.18 −3.09 4.86 0 0 0
u5 −7.94 −2.6 2.72 1 0 0
u6 −10.36 −1.2 3.51 0 1 0
u7 −10.36 0 9.73 0 0 1

 (A.71)
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Applying this transformation and matrices [1D]MP, [1B]MP and [1C]
MP into equations 4.102,

4.103 and 4.104, one achieves:

[2D]
MP=



u2 u3 u4 u5 u6 u7

u2 0 0 0 0 0 0
u3 0 0 0 0 0
u4 69.06 29.18 −27.77 12.25
u5 62.28 −44.55 16.74
u6 34.03 −13.26
u7 symm. 5.3

 (A.72)

[2B]
MP=



u2 u3 u4 u5 u6 u7

u2 0 0 0 0 0 0
u3 0 0 0 0 0
u4 0 0 0 0
u5 3.96 −1.75 0.4
u6 0.86 −0.22
u7 symm. 0.06

 (A.73)

[2C]
MP=



u2 u3 u4 u5 u6 u7

u2 420394.4 0 0 −12698.73 −22059.51 −11743.98
u3 26212.98 0 −3071.81 2561.39 3165.27
u4 101356.13 −7766.54 −2234.82 6367.31
u5 2375.94 −25.11 −370.98
u6 2348.42 365.03
u7 symm. 1335.24

 (A.74)

As it was expected, the first two rows/columns in matrices [2D]
MP and [2B]

MP are
eliminated. In fact, there is no participation of shear or transverse strain energy in
Bernoulli-Euler beam theory. Also, these two rows/columns are almost decoupled from
the rest of the matrices. Only matrix [2C]

MP has coupling terms, which leads to the
next transformation [11U ], given in eq. 4.106:

[11U ] =−[420394.4 0
0 26212.9

]−1 [0 −12698.73 −22059.51 −11743.98
0 −3071.81 2561.39 3165.27

]
[I]

=


u4 u5 u6 u7

u2 0 0.03 0.05 0.03
u3 0 0.12 −0.1 −0.12
u4 1 0 0 0
u5 0 1 0 0
u6 0 0 1 0
u7 0 0 0 1


(A.75)

This transformation and equations 4.109- 4.110 lead the cross-section stiffness matrices
to:

[3C]
MP=


u4 u5 u6 u7

u4 101356.13 −7766.54 −2234.82 6367.31
u5 1632.37 −391.3 −354.8
u6 940.6 −560.51
u7 624.95

 (A.76)

[3D]
MP=


u4 u5 u6 u7

u4 69.06 29.18 −27.77 12.25
u5 62.28 −44.55 16.74
u6 34.03 −13.26
u7 5.3

 (A.77)
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[3B]
MP=


u4 u5 u6 u7

u4 0 0 0 0
u5 3.96 −1.75 0.4
u6 0.86 −0.22
u7 0.06

 (A.78)

The first rows in each of the above matrices show how mode 4 has no transverse
distortion. However, this mode is still coupled to the other modes and it requires the
solution of the quadratic eigenvalue problem.

A.1.8. Step 8 - Symmetric and anti-symmetric modes
Since the present example has one symmetric axis, it is interesting to perform the Falk-
Langemeyer method to split the GBT modes into symmetric and anti-symmetric. As
exposed in section 4.5.1, the Falk-Langemeyer method is applied in matrices [3C]PM and
[3B]

PM, leading to the following transformation matrix:

[12U ]=


u4 u5 u6 u7

u4 1 0.31 0.3 −0.03
u5 0 −1.32 −0.47 0.23
u6 0 −5.14 −2.51 0.6
u7 0 −8.41 −6.29 1

 (A.79)

Equations 4.112, 4.114 and 4.113 lead to:

[4C]
MP=


u4 u5 u6 u7

u4 101356.14 0 0 0
u5 262.24 0 0
u6 941.87 0
u7 symm. 2.39

 (A.80)

[4B]
MP=


u4 u5 u6 u7

u4 0 0 0 0
u5 0.23 0 0
u6 0.05 0
u7 sy. 0.02

 (A.81)

[4D]
MP=


u4 u5 u6 u7

u4 69.06 22.73 0 0
u5 10.91 0 0
u6 6.65 −1.08
u7 sym. 0.25

 (A.82)

Eq. A.82 shows that the current order of terms in the matrices leads to the subdivision of
symmetric and anti-symmetric modes. Since the Vlasov torsion mode is anti-symmetric
and its inertia is related to the degree of freedom u4, then one can expect an anti-
symmetric mode related to the degree of freedom u5. Consequently, the degrees of
freedom u6 and u7 lead to symmetric modes.

Furthermore, eq. A.82 requires, in this example, no re-order in the rows and columns.
Thus, the transformation matrix [13U ] is an identity matrix and equations 4.115, 4.116
and 4.117 lead to: [5C]MP= [4C]

MP, [5D]MP= [4D]
MP and [5B]

MP= [4B]
MP, respectively.
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A.1.9. Step 9 - Quadratic eigenvalue problem
From the cross-section stiffness matrices [5C]

MP, [5D]MP and [5B]
MP, one extracts two

quadratic eigenvalue problems. Starting from the first two rows/columns of these ma-
trices, one has the first quadratic eigenvalue problem:

Q(λ )u :=
(

λ 2
[
101356.14 0

0 262.24

]
−λ
[
69.06 22.73
22.73 10.91

]
+

[
0 0
0 0.23

])
[u] = 0 (A.83)

Based on the pencil given in eq. 4.119, one solves the linearized problem. Here, the
software Matlab® is used to achieve the following complex eigenvectors and eigenvalues,
respectively:

[AU ]MP=

[ ua1 ua2 ua3 ua4

u4 −1.0 −0.0077+0.000135i −0.0077−0.000135i −0.997
u5 0.0 −0.7041−0.710032i −0.7041+0.710032i −0.0697

]
(A.84)

[Aλ ]MP=
[ λa1 λa2 λa3 λa4

0.0 0.0208+0.021i 0.0208−0.021i 0.000697
] (A.85)

Among the above eigenvectors and eigenvalues, it is easy to identify the pairs of con-
jugated modes: ua1 with ua4 and ua2 with ua3. The last pair share both the same real
part and the imaginary part in absolute values, which defines it as a conjugate pair.
Based on these vectors, one can reach the system of ordinary differential equations by
the transformation given in equations 4.121, 4.122 and 4.123. For instance, the stiffness
matrix due to longitudinal strain is transformed into:

[6AC]
MP=

1
2

 [ u4 u5

ua1 −1.0 0.0
ua2 −0.0077+0.000135i −0.7041−0.710032i

]
[5AC]

MP
[ ua4 ua3

u4 −0.997 −0.0077−0.000135i
u5 −0.0697 −0.7041+0.710032i

]

+

[ u4 u5

ua4 −0.997 −0.0697
ua3 −0.0077−0.000135i −0.7041+0.710032i

]
[5AC]

MP
[ ua1 ua2

u4 −1.0 −0.0077+0.000135i
u5 0.0 −0.7041−0.710032i

]

=

[ u4 u5

u4 101109.59 −787.28
u5 −787.28 268.26

]
+

[ u4 u5

u4 0 6.51
u5 6.51 0

]
i (A.86)

And the other stiffness matrices become:

[6AD]
MP =

[ u4 u5

u4 70.48 −16.79
u5 −16.79 11.15

]
+

[ u4 u5

u4 0 0.25
u5 0.25 0

]
i (A.87)

[6AB]
MP =

[ u4 u5

u4 0 −0.01
u5 −0.01 0.23

]
+

[ u4 u5

u4 0 0.01
u5 0.01 0

]
i (A.88)

Following the same procedure to symmetric modes, one defines the following quadratic
eigenvalue problem as:

Q(λ )u :=
(

λ 2
[
941.87 0

0 2.39

]
−λ
[
6.65 −1.08
−1.08 0.25

]
+

[
0.05 0
0 0.02

])
[u] = 0 (A.89)
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Which has the corresponding eigenvector and eigenvalues:

[BU ]MP=

[ ua1 ua2 ua3 ua4

u6 −0.5926−0.7036i −0.5926+0.7036i 0.0070−0.0121i 0.0045+0.0121i
u7 −0.1522+0.3615i −0.1522−0.3615i −0.998+0.0669i −0.998−0.0669i

]
(A.90)

[Bλ ]MP=
[ λa1 λa2 λa3 λa4

0.0038+0.0061i 0.0038−0.0061i 0.0523+0.0687i 0.0523−0.0687i
] (A.91)

Here, the following conjugated pairs stand out: ua1 with ua2 and ua3 with ua4. Apply-
ing these conjugated vectors into equations 4.121, 4.122 and 4.123, one achieves the
following stiffness matrices of symmetric modes:

[6BC]
MP =

[ u6 u7

u6 797.37 4.56
u7 4.56 2.57

]
(A.92)

[6BD]
MP =

[ u6 u7

u6 6.02 −0.51
u7 −0.51 0.27

]
(A.93)

[6BB]
MP =

[ u6 u7

u6 0.041 0.0036
u7 0.0036 0.0192

]
(A.94)

For these symmetric modes, the stiffness matrices are only in real domain.

After one obtains the stiffness matrices and their respective displacement vectors, it
is important to scale these vectors. The reference to this example uses this action,
imposing a unit value at the maximum longitudinal displacement. Therefore, it is
compulsory here to achieve cross-validation among the results. However, to perform
this scaling, it is necessary to recover all displacements of each eigenvector in the original
coordinate system.

A.1.10. Step 10 - eigenvectors in original coordinate system
Equations 4.124 and 4.125 provide the recovery of eigenvectors in the original coordinate
system. For the first equation, one applies the vectors 2 [U ] and 3 [U ] found in the first
two columns of matrix [9U ], given in eq. A.68. The second equation is applied twice:
for real and imaginary matrices below:


i4 ii4 i5 ii5 i6 ii6 i7 ii7

u4 −1 −0.9976 −0.0077 −0.0077 0 0 0 0
u5 0 −0.0697 −0.7041 −0.7041 0 0 0 0
u6 0 0 0 0 −0.5926 −0.5926 0.007 0.007
u7 0 0 0 0 −0.1522 −0.1522 −0.9977 −0.9977

 (A.95)


i5 ii5 i6 ii6 i7 ii7

u4 0.0001 −0.0001 0 0 0 0
u5 −0.71 0.71 0 0 0 0
u6 0 0 −0.7036 0.7036 −0.0121 0.0121
u7 0 0 0.3615 −0.3615 0.0669 −0.0669

i (A.96)

In the above matrices, the sub-indexes i() and ii() indicate the first and second vectors
of the conjugated pairs, respectively. Thus, one finds the vectors for the real part, as
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presented in eq. A.97. The vectors related to modes 1, 2, 3 and 4 are already scaled.
The initial longitudinal and transverse displacements are based on the unit displace-
ment according to rod, Bernoulli-Euler and Vlasov theory. Figure. A.2 illustrates the
transverse deformation of these modes.

Figure A.2: transverse modal displacements: modes 1 to 4

Here, it is possible to see that the two real possible deformation shapes of mode 4 are
practically the same.
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1 2 3 i4 ii4 i5=ii5 i6=ii6 i7=ii7

u1 1 5.1823 1.7953 4.8649 4.863 0.1379 0.2562 −0.0092
u2 1 5.1823 0.5953 −1.3539 −1.3626 −0.1313 −0.1865 0.0119
u3 1 2.7575 −0.8047 −2.1472 −2.1304 0.1006 −0.0075 −0.0176
u4 1 0 −1.2909 0 0 0 0.1342 0.0208
u5 1 −2.7575 −0.8047 2.1472 2.1304 −0.1006 −0.0075 −0.0176
u6 1 −5.1823 0.5953 1.3539 1.3626 0.1313 −0.1865 0.0119
u7 1 −5.1823 1.7953 −4.8649 −4.863 −0.1379 0.2562 −0.0092
v1 0 1 0 −3.8649 −3.9123 −0.6036 −0.5133 0.1017
v2 0 1 0 −2.6649 −2.6787 −0.2252 −0.2868 0.0223
v3 0 1 0 −1.2649 −1.2515 0.0945 −0.0415 −0.0254
v4 0 1 0 −0.7787 −0.7726 0.0365 0 0
v5 0 1 0 −1.2649 −1.2515 0.0945 0.0415 0.0254
v6 0 1 0 −2.6649 −2.6787 −0.2252 0.2868 −0.0223
v7 0 1 0 −3.8649 −3.9123 −0.6036 0.5133 −0.1017
w1 0 0 1 5.1823 5.188 0.2244 0.3689 −0.0176
w2 0 0 1 5.1823 5.188 0.2244 0.3689 −0.0176
w3 0 0 1 2.7575 2.716 −0.3294 −0.056 0.0651
w4 0 0 1 0 0 0 −0.2913 −0.079
w5 0 0 1 −2.7575 −2.716 0.3294 −0.056 0.0651
w6 0 0 1 −5.1823 −5.188 −0.2244 0.3689 −0.0176
w7 0 0 1 −5.1823 −5.188 −0.2244 0.3689 −0.0176
ϕ1 0 0 0 −1 −1.028 −0.3153 −0.1887 0.0662
ϕ2 0 0 0 −1 −1.028 −0.3153 −0.1887 0.0662
ϕ3 0 0 0 −1 −1.0022 −0.0545 −0.1482 −0.0302
ϕ4 0 0 0 −1 −0.9764 0.2064 0 0
ϕ5 0 0 0 −1 −1.0022 −0.0545 0.1482 0.0302
ϕ6 0 0 0 −1 −1.028 −0.3153 0.1887 −0.0662
ϕ7 0 0 0 −1 −1.028 −0.3153 0.1887 −0.0662



(A.97)

As exposed above, the GBT modes 5, 6 to 7 require the scaling procedure. Hence, one
obtains the vectors for these high mode presented in eq. A.98. The graphical represen-
tation of the transverse deformation of these vectors is shown in figure A.3.

Figure A.3: transverse modal displacements: modes 5 to 7
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i5=ii5 i6=ii6 i7=ii7

u1 1 1 −0.443
u2 −0.952 −0.7279 0.5696
u3 0.7289 −0.0291 −0.8458
u4 0 0.5237 1
u5 −0.7289 −0.0291 −0.8458
u6 0.952 −0.7279 0.5696
u7 −1 1 −0.443
v1 −4.3754 −2.0035 4.8869
v2 −1.6323 −1.1195 1.0709
v3 0.6854 −0.1619 −1.2204
v4 0.2643 0 0
v5 0.6854 0.1619 1.2204
v6 −1.6323 1.1195 −1.0709
v7 −4.3754 2.0035 −4.8869
w1 1.6267 1.4399 −0.8439
w2 1.6267 1.4399 −0.8439
w3 −2.3877 −0.2187 3.1248
w4 0 −1.1369 −3.7963
w5 2.3877 −0.2187 3.1248
w6 −1.6267 1.4399 −0.8439
w7 −1.6267 1.4399 −0.8439
ϕ1 −2.2859 −0.7367 3.18
ϕ2 −2.2859 −0.7367 3.18
ϕ3 −0.3948 −0.5786 −1.45
ϕ4 1.4963 0 0
ϕ5 −0.3948 0.5786 1.45
ϕ6 −2.2859 0.7367 −3.18
ϕ7 −2.2859 0.7367 −3.18



+



i5=−ii5 i6=−ii6 i7=−ii7

u1 0.7293 1.2003 0.2721
u2 −0.8823 −0.8846 −0.2154
u3 0.8582 0.0029 0.0522
u4 0 0.5743 0.0563
u5 −0.8582 0.0029 0.0522
u6 0.8823 −0.8846 −0.2154
u7 −0.7293 1.2003 0.2721
v1 −4.1904 −2.5812 −0.8252
v2 −1.4932 −1.3691 −0.3449
v3 0.7637 −0.1374 0.0464
v4 0.3112 0 0
v5 0.7637 0.1374 −0.0464
v6 −1.4932 1.3691 0.3449
v7 −4.1904 2.5812 0.8252
w1 1.343 1.7374 0.4063
w2 1.343 1.7374 0.4063
w3 −2.5659 −0.3959 −0.2715
w4 0 −1.1752 −0.0084
w5 2.5659 −0.3959 −0.2715
w6 −1.343 1.7374 0.4063
w7 −1.343 1.7374 0.4063
ϕ1 −2.2477 −1.0101 −0.4003
ϕ2 −2.2477 −1.0101 −0.4003
ϕ3 −0.3407 −0.6193 −0.038
ϕ4 1.5662 0 0
ϕ5 −0.3407 0.6193 0.038
ϕ6 −2.2477 1.0101 0.4003
ϕ7 −2.2477 1.0101 0.4003



i (A.98)

One can obtain, from the above vectors, the generalized cross-sections properties. Ap-
plying these vectors together with global stiffness matrices of membrane and plate
(equations A.8- A.9 and A.17- A.19, respectively) into equations 4.121, 4.122 and 4.123,
the results in table A.1 stand out. This table also presents the results extracted from
[136]. Also, table A.2 presents the residual coupled cross-section properties between
modes 4 and 5, as well as modes 6 and 7.

Table A.1: Generalized cross-section properties

Mode This example Schardt [136] Difference %
C D B C D B C D B

1 1.328 0 0 1.328 0 0 0% 0% 0%
2 20.019 0 0 20.018 0 0 0% 0% 0%
3 1.248 0 0 1.248 0 0 0% 0% 0%
4 4.815 0.007 0 4.808 0.007 0 0.1% 0% 0%
5 0.671 0.056 12.309 0.405 0.035 7.885 39.7% 37.3% 35.9%
6 0.578 0.009 0.632 0.235 0.003 0.242 59.4% 61.5% 61.7%
7 0.283 0.059 44.321 0.22 0.047 39.054 22.3% 20.9% 11.9%

Table A.1 presents almost the same result for modes 1 to 4 between the presented
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Table A.2: Generalized cross-section properties due to coupling modes

Mode C D B
4-5 0.2718+0.0022i 0.0116+0.0002i 0.0417+0.042i
6-7 0.0407 -0.0091 0.671

alternative approach and the original work of Schardt. However, for modes 5 to 7,
there is an increase in the difference among the results. These differences have two
causes: i) the numerical approach to solve the quadratic eigenvalue problem. Here, it is
used the solution of the quadratic eigenvalue problem, instead of the simplification to
generalized eigenvalue problem between matrices [C] and [B]; ii) Schardt’s example has
no participation of plate’s stiffness matrix of longitudinal strain, [C]P. It is assumed
as null. Nevertheless, Schardt includes this plate’s longitudinal strain stiffness and
presents only the results concerning the longitudinal stiffness, leading to the differences
presented in table A.3

Table A.3: Longitudinal generalized stiffness, including plate’s longitudinal strain stiff-
ness

C Mode
1 2 3 4 5 6 7

This example 1.328 20.0188 1.2482 4.8147 0.6713 0.3145 0.2658
[136]-Ch.3 1.328 20.019 1.248 4.826 0.424 0.268 0.227

Difference % 0% 0% 0% -0.2% 36.8% 14.8% 14.6%

Table A.4: Generalized cross-section properties - without [C]P and QEP

Mode This example Schardt [136] Difference %
C D B C D B C D B

1 1.328 0 0 1.328 0 0 0% 0% 0%
2 20.019 0 0 20.018 0 0 0% 0% 0%
3 1.248 0 0 1.248 0 0 0% 0% 0%
4 4.826 0.007 0 4.808 0.007 0 0.4% 0% 0%
5 0.421 0.035 7.899 0.405 0.035 7.885 3.8% 0.2% 0.2%
6 0.238 0.003 0.242 0.235 0.003 0.242 1.4% 0% 0%
7 0.232 0.049 39.031 0.22 0.047 39.054 5.1% 4.6% -0.1%

Alternatively, one can compare the results of Schardt [136] setting the plate’s stiffness
matrix of longitudinal strain, in eq. A.17, as a null matrix. Furthermore, Step 9 is
skipped in the present approach and the vectors of Step 8 lead to the recovery of eigen-
vector in the original coordinate system. Thus, one obtains the results for the general-
ized cross-section properties (showed in table A.4), and their eigenvectors are directly
cross-checked with results found in [136]-Chapter 2, as presented in table A.5.
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Table A.5: Differences among the eigenvectors from the proposed approach and [136]

Displ. Difference %
1 2 3 4 5 6 7

u1 0% 0% 0% 0% -0.3% 0% -0.1%
u2 0% 0% 0% 0.1% 0% -0.1% 0.1%
u3 0% 0% -0.1% 0% -0.2% -3.3% 0%
u4 0% 0% -0.1% 0% 0% -0.1% 0%
u5 0% 0% -0.1% 0% -0.2% -3.3% 0%
u6 0% 0% 0% 0.1% 0% -0.1% 0.1%
u7 0% 0% 0% 0% -0.3% 0% -0.1%
v1 0% 0% 0% 0% -0.1% 0% 0%
v2 0% 0% 0% 0% -0.1% 0% 0%
v3 0% 0% 0% 0% -0.1% -0.1% 0%
v4 0% 0% 0% -0.1% -0.1% 0% 0%
v5 0% 0% 0% 0% -0.1% -0.1% 0%
v6 0% 0% 0% 0% -0.1% 0% 0%
v7 0% 0% 0% 0% -0.1% 0% 0%
w1 0% 0% 0% 0% -0.1% 0% -0.1%
w2 0% 0% 0% 0% -0.1% 0% -0.1%
w3 0% 0% 0% 0% -0.1% -0.3% 0%
w4 0% 0% 0% 0% 0% 0% 0%
w5 0% 0% 0% 0% -0.1% -0.3% 0%
w6 0% 0% 0% 0% -0.1% 0% -0.1%
w7 0% 0% 0% 0% -0.1% 0% -0.1%

Mean Diff. 0% 0% 0% 0% -0.1% -0.4% 0%
Standard Deviation. 0% 0% 0% 0% 0.1% 1% 0.1%

A.1.11. Step 11 - Analysis of pure plate modes
Similar to membrane-plate modes, the pure plate modes uses first the Falk-Langemeyer
method (Step 8) to split the modes into symmetric and anti-symmetric. Based on the
stiffness matrices found in Step 5, the Falk-Langemeyer method leads to the following
transformation matrix:

[12U ]P=



v1 v7 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7

v1 0.93 1.08 0.12 −0.3 0.05 −0.07 −0.05 0.29 0.19
v7 −0.93 1.08 −0.12 −0.3 0.05 −0.07 0.05 −0.29 0.19
ϕ1 0.79 0.91 0.94 −1.06 0.08 −0.07 −0.06 0.98 1.45
ϕ2 0.75 0.87 0.27 0.94 −0.06 −0.03 0.01 −0.89 0.45
ϕ3 −0.2 −0.27 0.1 0.59 0.8 −0.83 −0.94 −0.37 0.24
ϕ4 0 0.14 0 0.49 1.16 1.19 0 0 0.18
ϕ5 0.2 −0.27 −0.1 0.59 0.8 −0.83 0.94 0.37 0.24
ϕ6 −0.75 0.87 −0.27 0.94 −0.06 −0.03 −0.01 0.89 0.45
ϕ7 −0.79 0.91 −0.94 −1.06 0.08 −0.07 0.06 −0.98 1.45


(A.99)

The transformation above, when applied in eq. 4.71, leads to a shear strain stiffness
matrix, inviting to the following re-order transformation:
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[13U ]P=



v1 ϕ1 ϕ5 ϕ6 v7 ϕ2 ϕ3 ϕ4 ϕ7

v1 1 0 0 0 0 0 0 0 0
v7 0 0 0 0 1 0 0 0 0
ϕ1 0 1 0 0 0 0 0 0 0
ϕ2 0 0 0 0 0 1 0 0 0
ϕ3 0 0 0 0 0 0 1 0 0
ϕ4 0 0 0 0 0 0 0 1 0
ϕ5 0 0 1 0 0 0 0 0 0
ϕ6 0 0 0 1 0 0 0 0 0
ϕ7 0 0 0 0 0 0 0 0 1


(A.100)

By applying this transformations into matrices given in equations A.40, A.41 and A.42,
one obtains the matrices presented in equations A.101, A.102 and A.103, respectively.
Each matrix in these equations can split into two parts that will lead to symmetric and
anti-symmetric modes. Hence, one solves the quadratic eigenvalue for each part and the
transformation given in eq. 4.126 recovers the eigenvectors in the original coordinate
system. The real and imaginary part of the resulting eigenvectors are shown in A.104
and A.105, respectively.

[5C]
P=
[
13UP

]T [
12UP

]T
[1C]

P
[
12UP

][
13UP

]
=



v1 ϕ1 ϕ5 ϕ6 v7 ϕ2 ϕ3 ϕ4 ϕ7

v1 7.35 0 0 0 0 0 0 0 0
ϕ1 0.05 0 0 0 0 0 0 0
ϕ5 0.69 0 0 0 0 0 0
ϕ6 0.67 0 0 0 0 0
v7 9.85 0 0 0 0
ϕ2 0.71 0 0 0
ϕ3 0.5 0 0
ϕ4 1.62 0
ϕ7 symm. 0.13


(A.101)

[5D]
P=
[
13UP

]T [
12UP

]T
[1D]

P
[
12UP

][
13UP

]
=



v1 ϕ1 ϕ5 ϕ6 v7 ϕ2 ϕ3 ϕ4 ϕ7

v1 30.52 4.17 −1 8.82 0 0 0 0 0
ϕ1 4.91 −0.51 5.02 0 0 0 0 0
ϕ5 2.51 −0.45 0 0 0 0 0
ϕ6 18.83 0 0 0 0 0
v7 40.8 −10.79 1.25 −1.31 7.31
ϕ2 21.66 −0.38 0.64 −7.79
ϕ3 3.11 −0.07 1.16
ϕ4 4.54 −0.7
ϕ7 symm. 11.78


(A.102)
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[5B]
P=
[
13UP

]T [
12UP

]T
[1B]

P
[
12UP

][
13UP

]
=



v1 ϕ1 ϕ5 ϕ6 v7 ϕ2 ϕ3 ϕ4 ϕ7

v1 1.3 0 0 0 0 0 0 0 0
ϕ1 58.98 0 0 0 0 0 0 0
ϕ5 4.67 0 0 0 0 0 0
ϕ6 71.53 0 0 0 0 0
v7 1.7 0 0 0 0
ϕ2 82.22 0 0 0
ϕ3 9.53 0 0
ϕ4 4.72 0
ϕ7 symm. 146.05


(A.103)



i1 ii1 i2=ii2 i3=ii3 i4=ii4 i5 ii5 i6=ii6 i7=ii7 i8=ii8 i9=ii9

u1 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
u7 0 0 0 0 0 0 0 0 0 0 0
v1 −0.2 0.934 0.05 0.473 0.003 −0.251 1.079 −0.12 −0.034 0.445 0.008
v2 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
v1 0 0 0 0 0 0 0 0 0 0 0
v7 0.2 −0.934 −0.05 −0.473 −0.003 −0.251 1.079 −0.12 −0.034 0.445 0.008
w1 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
w7 0 0 0 0 0 0 0 0 0 0 0
ϕ1 −1.1 0.795 −0.284 0.472 −0.043 −1.622 0.917 −0.149 −0.134 0.389 0.029
ϕ2 −0.2 0.747 −0.585 0.323 0.055 −0.283 0.863 0.528 0.069 0.345 −0.025
ϕ3 −0.1 −0.193 −0.238 0.322 −0.721 −0.155 −0.257 0.267 −0.609 0.495 0.738
ϕ4 0 0 0 0 0 −0.119 0.133 0.194 −0.896 0.481 −1.032
ϕ5 0.1 0.193 0.238 −0.322 0.721 −0.155 −0.257 0.267 −0.609 0.495 0.738
ϕ6 0.2 −0.747 0.585 −0.323 −0.055 −0.283 0.863 0.528 0.069 0.345 −0.025
ϕ7 1.1 −0.795 0.284 −0.472 0.043 −1.622 0.917 −0.149 −0.134 0.389 0.029


(A.104)
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i2=−ii2 i3=−ii3 i4=−ii4 i6=−ii6 i7=−ii7 i8=−ii8 i9=−ii9

u1 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
u7 0 0 0 0 0 0 0
v1 0.1 0.013 0.04 −0.036 0.063 0.051 −0.026
v2 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
v6 0 0 0 0 0 0 0
v7 −0.1 −0.013 −0.04 −0.036 0.063 0.051 −0.026
w1 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
w7 0 0 0 0 0 0 0
ϕ1 0.5 0.743 0.049 −0.757 0.012 0.738 −0.029
ϕ2 0.1 −0.673 −0.004 −0.655 0.042 −0.602 −0.004
ϕ3 0 −0.253 0.61 −0.442 0.536 0.036 −0.412
ϕ4 0 0 0 −0.377 0.736 0.276 0.584
ϕ5 0 0.253 −0.61 −0.442 0.536 0.036 −0.412
ϕ6 −0.1 0.673 0.004 −0.655 0.042 −0.602 −0.004
ϕ7 −0.5 −0.743 −0.049 −0.757 0.012 0.738 −0.029



i (A.105)

The above vectors are plotted in figures A.4 and A.5. Furthermore, one obtains the
generalized cross-section properties, replacing the stiffness matrices of membrane-plate
with the pure plate in equations 4.121, 4.122 and 4.123. These generalized cross-
section properties are presented in equations A.106, A.107 and A.108. In contrast to
the model of membrane-plate behavior, the pure plate modes have a relevant coupling
among the modes. Here rises the possibility of future studies in decoupling approach
of these modes [44, 45].

[C]P=



1P 2P 3P 4P 5P 6P 7P 8P 9P
1P 0.06 0.08 1.69 0.2 0 0 0 0 0
2P 0.18 0.1 0.01 0 0 0 0 0
3P 2.39 −0.09 0 0 0 0 0
4P 0.71 0 0 0 0 0
5P 0.11 −0.09 0.1 1.88 −0.24
6P 0.33 0 0 −0.01
7P 0.53 −0.1 −0.02
8P 2.21 0.09
9P sym. 1.64


(A.106)

[D]P=



1P 2P 3P 4P 5P 6P 7P 8P 9P
1P 5.53 1.11 5.92 0.54 0 0 0 0 0
2P 4.53 2.96 0.38 0 0 0 0 0
3P 16.93 −0.49 0 0 0 0 0
4P 2.53 0 0 0 0 0
5P 9.66 −0.91 0.43 6.05 −0.58
6P 9.22 −0.35 −1.9 0.12
7P 3.3 −1.32 −0.1
8P 15.63 0.35
9P sym. 4.51


(A.107)
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Figure A.4: transverse modal displacements of plate symmetric modes: 1 to 4

[B]P=



1P 2P 3P 4P 5P 6P 7P 8P 9P
1P 0.24 20.9 −1.13 0.76 0 0 0 0 0
2P 61.36 9.8 0.55 0 0 0 0 0
3P 37.62 −1.77 0 0 0 0 0
4P 4.71 0 0 0 0 0
5P 0.41 −14.85 3.21 −0.47 −0.48
6P 123.72 0.44 −3.69 −0.11
7P 10.04 −4.36 −0.13
8P 35 0.72
9P sym. 4.72


(A.108)

239



Figure A.5: transverse modal displacements of plate anti-symmetric modes: 5 to 9
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