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Abstract 11 

Complex vortex flow patterns around bridge piers, especially during floods, cause scour process 12 

that can result in the failure of foundations. Abutment scour is a complex three-dimensional 13 

phenomenon that is difficult to predict especially with traditional formulas obtained using 14 

empirical approaches such as regressions. This paper presents a test of a standalone Kstar model 15 

with five novel hybrid algorithm of bagging (BA-Kstar), dagging (DA-Kstar), random 16 

committee (RC-Kstar), random subspace (RS-Kstar), and weighted instance handler wrapper 17 

(WIHW-Kstar) to predict scour depth (ds) for clear water condition. The dataset consists of 99 18 

scour depth data from flume experiments (Dey and Barbhuiya, 2005) using abutment shapes 19 

such as vertical, semicircular and 45° wing. Four dimensionless parameter of relative flow depth 20 

(h/l), excess abutment Froude number (Fe), relative sediment size (d50/l) and relative 21 

submergence (d50/h) were considered for the prediction of relative scour depth (ds/l). A portion 22 

of the dataset was used for the calibration (70%), and the remaining used for model validation. 23 

Pearson correlation coefficients helped deciding relevance of the input parameters combination 24 

and finally four different combinations of input parameters were used. The performance of the 25 

models was assessed visually and with quantitative metrics. Overall, the best input combination 26 

for vertical abutment shape is the combination of Fe, d50/l and h/l, while for semicircular and 45° 27 
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wing the combination of the Fe and d50/l is the most effective input parameter combination. Our 28 

results show that incorporating Fe, d50/l and h/l lead to higher performance while involving d50/h 29 

reduced the models prediction power for vertical abutment shape and for semicircular and 45° 30 

wing involving h/l and d50/h lead to more error. The WIHW-Kstar provided the highest 31 

performance in scour depth prediction around vertical abutment shape while RC-Kstar model 32 

outperform of other models for scour depth prediction around semicircular and 45° wing.  33 

Keywords: Abutment, scour depth, machine learning, empirical models. 34 

 35 

1. Introduction 36 

Bridges are critical infrastructures, and the failure of their piers can lead to severe economical 37 

and social consequences. The most common failure mode for bridges over rivers is generally due 38 

to intense local scouring around their piers. Therefore, a reliable estimation of abutment scour 39 

and its disruptive effects are crucially important to design these infrastructures as  overestimating 40 

or underestimating scour can result in higher construction cost and abutment failure, respectively 41 

(Azamathulla et al., 2009; Cardoso and Bettess, 1999). Bridge abutments change the local flow 42 

pattern and generally cause the formation of a three-part separation zone around a bridge pier. 43 

The pressure gradient due to the presence of the pier forces a down-flow that causes the scouring 44 

in front of the pier. This leads to the generation of a so-called horseshoe vortex which facilitate 45 

further the scouring in front of pier (Melville and Coleman, 2000; Török et al., 2014). The shear 46 

stresses at the upstream face of an abutment due to the principal vortices also facilitate secondary 47 

vortices. In addition, unsteady shear layers that are generated at the pier rotate in vertical axes 48 

(wake vortices) as small eddies. Furthermore, bow-waves can also contribute to the scouring 49 

process. A combination of these vortexes eventually lead to scour holes around piers of bridges 50 
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(Laursen and Toch, 1956; Liu et al. 1961; Kwan, 1988; Hosseini et al., 2016), and detailed 51 

descriptions on abutment scour depth process are widely available in the literature (e.g., Dey, 52 

1997; Dey and Barbhuiya, 2005; Gazi et al., 2019; Kothyari et al., 1992; Melville and Raudkivi, 53 

1977; Melville and Sutherland, 1988; Moonen and Allegrini, 2015; Namaee and Sui, 2019; 54 

Raudkivi and Ettema, 1983). 55 

A local scour can be created in conditions in which no sediments are proceeding from upstream 56 

reaches (i.e., clear water, or no sediment feeding from upstream) or in more natural conditions in 57 

which the flow approach the pier with sediments (i.e., sediment is fed from upstream reaches). A 58 

wide range of experimental and field studies investigated the process of scour depth around 59 

bridges under clear water conditions, due to the simplicity of this condition. Dey and Lambert 60 

(2005) conducted experiments under clear water conditions and investigated the evolution over 61 

time and the equilibrium conditions of scour depth for three different shapes of short abutments 62 

(vertical wall, semicircular, and 45° wing wall) using both uniform and nonuniform sediments. 63 

They applied the concept of mass conservation of sediment to derive numerical equations to 64 

calculate the scour depth evolution over time. Oliveto and Hager (2002) conducted a further set 65 

of experiments and proposed an equation that allows to calculate the scour depth around both 66 

piers and abutments that worked reasonably well when applied to other experimental datasets 67 

too, especially for rectangular cross section and uniform distribution of roughness. Amini et al. 68 

(2012) further revealed that the pile spacing, diameter, and the submerge ratio are three 69 

important parameter which can affect the scour depth. Although many flume experiments have 70 

been carried out to support scour depth modeling (Ataie-Ashtiani et al., 2010; Ataie-Ashtiani and 71 

Beheshti, 2006; Singh et al., 2020; Yang et al., 2020), this approach suffers from scale effect 72 

issues which can have an impact on the applicability of the results. Also, the experimental 73 
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approach is costly and time-consuming. Flume experimental data are generally used to derive 74 

empirical equations based on regressions but this approach, albeit practical, are too simplistic to 75 

represent the complexity of flows around a bridge piers (Azamathulla et al., 2009). Numerical 76 

investigations of scour depth have been attempted using SSIIM models (Hamidi and 77 

Siadatmousavi, 2018; Jahangirzadeh et al., 2014), Smagorinsky subgrid model combined with a 78 

ghost-cell immersed boundary method (Kim et al., 2014), Virtual Flow Simulator (VFS-79 

Geophysics) (Khosronejad et al., 2020), FLUENT (Yang et al., 2005), and FLOW-3D  (Omara et 80 

al., 2019), but applications of these models are restricted due to the paucity of large 81 

experimentally and field measurement dataset for their calibration and validation. Although these 82 

models consider the physics of the scouring processes, their implementation is difficult, time 83 

consuming, and needs large and accurate datasets.  84 

An alternative to traditional approaches is provided by the use of Artificial Intelligence (AI) as it 85 

is user-friendly, easy to perform, requires less data, is robust to missing data, and provides high 86 

accuracy to predict complex phenomena especially in engineering and geoscience fields. 87 

Artificial intelligence has the ability to train complex and hidden relationships between inputs 88 

and outputs without a detailed knowledge of the physics of the problem. Employing AI for 89 

predicting scour depth around different hydraulic structures has indeed been attempted in 90 

literature in the past decade (Ebtehaj et al., 2018; Guven and Azamathulla, 2012; Guven and 91 

Gunal, 2008; Najafzadeh et al., 2013a; Najafzadeh and Lim, 2015).  92 

Artificial Neural Networks (ANN) is the traditional and most widely used algorithm for scour 93 

depth prediction (Amini et al., 2012; Kaya, 2010; Yazdandoost and Birgani, 2011). Three 94 

different ANN techniques as the Feed Forward Back Propagation (FFBP), Feed Forward 95 

Cascade Correlation (FFCC) and Radial Basis Function (RBF) were applied by Muzzammil 96 
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(2008) to estimate scour depth in clear-water condition for vertical wall abutments. In his study 97 

the input and output data were normalized (0 and 1) and the impact of dimensionless and 98 

dimensional inputs in modeling the scour depth was investigated. There were only a few later 99 

application of ANN models due to many critical disadvantages as the low speed convergence and 100 

poor generalization power (Choubin et al., 2018; Hooshyaripor et al., 2014). Also, the 101 

performances of the ANN model strongly depend of the extension of the dataset (Hooshyaripor 102 

and Tahershamsi, 2013). To overcome this issue, adaptive Neuro-Fuzzy Inference System 103 

(ANFIS) was developed as an ensemble of ANN and fuzzy logic. Bateni and Jeng (2007) 104 

employed an ANFIS method to simulate the scour depth. Hosseini et al. (2016) compared the 105 

prediction power of ANFIS, ANN and multiple nonlinear regression (MNLR) for scour depth 106 

perdition and finally stated that the ANFIS model has a higher prediction capability than ANN 107 

and MNLR models. Still, the ANFIS model suffers from determining the weights in a 108 

membership function, which affect significantly the result. Abd El-Hady Rady (2020) reported 109 

on the superiority of genetic programming (GP) over ANFIS algorithm for scour depth around 110 

bridge pier. Support Vector Machine (SVM) is another type of neuron-based model which was 111 

successfully applied in scour depth prediction. Parsaie et al. (2019) observed that the SVM 112 

model has a higher prediction capability for scour depth prediction than ANN and ANFIS 113 

algorithm. Ahmad et al., (2018) revealed that SVM is sensitive to hyper-parameter selection, and 114 

Najafzadeh et al. (2016) reported that ANFIS performed better than SVM and traditional existing 115 

equations. Further, the Group Method of Data Handling (GMDH) is a model which can 116 

automatically select the number of neurons and the network layers and allows to obtain a 117 

mathematical model in terms of polynomials for the target parameter. However, being a kind of 118 

neuron-based model, GMDH is sensitive to the extension of the dataset. Najafzadeh et al. (2013) 119 
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applied both GMDH and SVM approaches to a set of experimental data to predict scouring depth 120 

in four different shapes of abutments in both clear water and sediment feeding conditions. They 121 

used a backward path (BP) algorithm to design topology of the GMDH model in order to 122 

improve the performance of model and discovered that the BP-GMDH performed better than the 123 

SVM in both conditions. Scour depth around abutments was also predicted by using the pareto 124 

evolutionary structure of ANFIS network by Azimi et al. (2017; 2019). Using the dataset from 125 

Dey and Lambert (2005) they used a sensitivity analysis to rank the role of eleven different 126 

dimensional input variables which effect scour depth. Also, they compared their best developed 127 

model (i.e., ANFIS-GA/SVD 7) with other techniques employed previously (i.e., Azamathulla, 128 

2012; Moradi et al., 2019; Muzzammil, 2010; Najafzadeh et al., 2013b) and revealed that the 129 

ANFIS-GA/SVD model could provide more accurate results of scour depth in comparison with 130 

GEP, ANFIS–SC, ANFIS and GMDH models. Extreme Learning Machine (ELM) is another 131 

neuron-based algorithm with faster training phase and has been successfully applied in a 132 

different field of study. Ebtehaj et al. (2018) reported that the ELM model has a higher 133 

performance than ANN and SVM models to predict scour depth. In a recent study, Bonakdari et 134 

al. (2020) used the ELM technique to predict scour depth in clear-water condition considering 135 

four different nondimensional input parameters to estimate scour depth. About 11 different input 136 

combinations were tested to find the best one and they finally concluded that the model which 137 

contains all input variables allowed to obtain a better performance. They extended a matrix-138 

based equation to calculate the scour depth, but their equation is highly complex and need large 139 

mathematic calculations. Because ELM is a version of the ANN model, its performance strongly 140 

depends on the extent of the dataset and is hampered by low performances with small datasets. 141 
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To overcome the shortcomings of the aforementioned traditional machine learning algorithm, 142 

different kind of data mining algorithms have been recently developed. These are tree-based 143 

[random forest (RF), random tree (RT), M5 prime (M5P), reduced error pruning tree (REPT)], 144 

rule-based [M5 Rule (M5R)], lazy-learn-base [Kstar, instance-based K-nearest neighbors (IBK), 145 

locally-weighted learning (LWL)], regression-based [sequential minimal optimization regression 146 

algorithm (SMO)] and ensemble-based [bagging (BA), random committee (RC), random 147 

subspace (RS)] algorithms. Some of these techniques operate for classification as well as for 148 

regression, based on the learner. The superiority of the RF algorithm over ANN and SVM in 149 

infiltration process prediction was reported by Sihag et al. (2020). Also, Yan et al. (2012) found 150 

that M5P algorithm had a higher prediction capability than ANN model for daily suspended 151 

sediment load prediction. Different metaheuristic algorithms were applied to solve the weakness 152 

of neuron-based models which suffer from determination of weights in membership function and 153 

operators. Khosravi et al. (2019a) compared predictive modeling of standalone new algorithms 154 

of M5P, RT, RF, REPT, Kstar with standalone and optimized ANFIS model using metaheuristic 155 

algorithms for reference evaporation prediction. They found that new a decision-tree based 156 

standalone model and Kstar models have higher performance than the ANFSI model, while 157 

optimized ANFIS models performed slightly better than standalone new models. Except for 158 

better prediction power and more flexibility, new algorithms require fewer parametric settings, 159 

making them more practical for real applications.  160 

Sheikh Khozani et al. (2019) employed different standalone and a hybrid model to predict 161 

apparent shear stress in compound channels. They found that the BA-M5P model predicted the 162 

apparent shear stress with higher accuracy than standalone models. Khosravi et al. (2020) 163 

implemented four standalone algorithm of decision tree and four ensemble-based model using 164 
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BA algorithm for bedload transport rate prediction, and found that ensemble-based models 165 

predicted bedload with higher prediction accuracy. Similar observations have been reported by 166 

Bui et al. (2020b) and Khosravi et al. (2018). 167 

The main objective of the present study is to predict abutment scour depth using a suite of new 168 

standalone and ensemble-based models. To meet the aim, standalone KStar algorithm are applied 169 

as a base model along with five novel ensemble-based models of BA-KStar, dagging (DA-170 

KStar), RC-Kstar, RS-Kstar and Weighted Instance Handler Wrapper model (WIHW-Kstar). 171 

Finally, the results are compared with two traditional empirical equations (Dey and Barbhuiya, 172 

2005 and Muzzammil, 2010) as a benchmark.  173 

2. Methodology 174 

2.1. Identifying effective parameters 175 

Scour depth (ds) at abutment or around bridge piers depends on the sediment feeding conditions 176 

from upstream. Indeed, experiments can be designed with a certain rate of sediment supply from 177 

upstream (as generally expected in the field during flood events) or without coarse sediment 178 

supply (i.e., clear water conditions). Overall, the scour depth abutment has been considered as a 179 

function of sediment size, flow parameters, and the geometrical characteristics of the structure 180 

(Bonakdari et al., 2020; Firat and Gungor, 2009; Raudkivi and Ettema, 1983; Sheppard et al., 181 

2004). This can be written as follows: 182 

),,,,,,,,,,( 50  sscs hdKgblUUfd =        (1) 183 

Where U = average flow velocity; Uc = critical sediment velocity; l = transverse abutment 184 

length; b = stream wise length; g = acceleration due to gravity; Ks = abutment form factor; d50 = 185 

median sediment diameter; h = approach flow depth;   = fluid density; s = sediment density; 186 
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and   = fluid kinematic viscosity. As Ks is the same for each cross section, and s,  are 187 

constant, these three parameters can be removed from the list. According to several approaches 188 

in literature, and considering that dimensionless parameters are generally to be preferred, it can 189 

be said that: 190 

),,,( 5050

l
h

h
d

l
dFf

l
d

e
s =                                                                                                  (2) 191 

where Fe is defined as an excess abutment Froude number: 192 

)1(/ −= SglUFe                               (3) 193 

where S is the specific gravity of sediment defined as the ratio of sediment density to fluid 194 

density. Because b/l was constant for the dataset used in this paper (see next chapter) it was 195 

removed from the list of effective input parameters.  196 

 197 

2.2. Dataset collection and preparation 198 

In this study we used the Dey and Barbhuiya (2005) dataset referring to relative scour depth 199 

around bridge abutment (ds/l) for clear water conditions using uniform bed sediments. The 200 

dataset of Dey and Barbhuiya (2005) consists of 295 runs carried out in the hydraulic laboratory 201 

of the technology institute in India for three abutment shape (i.e. each set is about 99 data). Their 202 

experiments were performed on a 20 m long, 0.9 m wide, and 0.7 m deep flume. They used three 203 

type of abutment shape, vertical wall, 45° wing wall, and semicircular which were made from 204 

Plexiglas in five different sizes (Fig 1 and Table 1 and 2).  205 
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 206 

Fig 1. Schematic diagram of scouring at an abutment: (a) vertical wall, (b) semicircular and (c) 45° wing 207 

wall. [b is the streamwise length and l is the transverse length of abutments] 208 

Each abutment was placed in a bed sediment recess of 2.4 m long, 0.9 m wide, and 0.3 m deep 209 

appended to the flume wall. A V-notch weir embedded at the inlet of the flume was used for 210 

measuring discharge. A mechanical point gauge was used for flow adjusting and finally 211 

measured through Vernier point gauge with a veracity of ±0.1 mm. All experiments were carried 212 

out without feeding sediments (i.e., clear water) with U/Uc< 0.95 for a period of 48-50 h, until 213 

equilibrium conditions (i.e., no further morphological changes) were reached. All experiments 214 

were performed in a condition of short abutment physical model (i.e., h/l>1). Barbhuiya (2003) 215 

and Dey and Barbhuiya (2005) provide further details on the experimental runs and conditions. 216 

In the present work, after compiling the dataset, the data was spilt into two main groups 217 

randomly, with 70% of data (69 dataset) being used for developing the model, while the 218 

remaining 30% (30 dataset) was used for validating purpose.  219 

 220 
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Table 1. Main characteristics of the dimensionless data for the training (a) and the testing (b) dataset from 221 

Dey and Barbhuiya (2005) 222 

 223 

(a) 
Parameters 

 Vertical  Semi-circular  45 degree 
 Max Min Mean STD Skew  Max Min Mean STD Skew  Max Min Mean STD Skew 

d50/l  0.05 0.00 0.01 0.01 0.05  0.08 0.00 0.01 0.01 2.32  0.08 0.00 0.01 0.01 2.32 
h/l  6.25 0.48 2.37 1.42 6.25  6.25 0.38 2.41 1.44 1.02  6.25 0.59 2.45 1.39 1.02 

d50/h  0.02 0.00 0.01 0.01 0.02  0.02 0.00 0.01 0.01 1.04  0.02 0.00 0.01 0.01 1.14 
Fe  0.68 0.16 0.33 0.13 0.68  0.83 0.17 0.33 0.14 1.42  0.83 0.17 0.33 0.13 1.51 
ds/l  3.70 0.98 2.07 0.64 3.70  3.38 0.71 1.67 0.62 0.73  3.78 0.76 1.76 0.63 1.02 

 224 

(b) 
Parameters 

 Vertical  Semi-circular  45 degree 
 Max Min Mean STD Skew  Max Min Mean STD Skew  Max Min Mean STD Skew 

d50/l  0.08 0.00 0.01 0.02 2.84  0.05 0.00 0.01 0.01 1.52  0.05 0.00 0.01 0.01 1.37 
h/l  6.25 0.58 2.42 1.39 1.06  6.25 0.45 2.29 1.41 1.07  6.25 0.61 2.43 1.38 1.12 

d50/h  0.02 0.00 0.01 0.00 1.44  0.02 0.00 0.01 0.01 1.28  0.02 0.00 0.01 0.00 1.16 
Fe  0.83 0.17 0.32 0.14 1.90  0.65 0.15 0.31 0.13 1.17  0.65 0.19 0.33 0.12 1.01 
ds/l  4.35 1.13 2.08 0.71 1.37  3.10 0.65 1.58 0.60 0.86  3.15 1.00 1.75 0.62 0.77 

 225 

Table 2. Main characteristics of the dataset for the training (a) and the testing (b) dataset from Dey and 226 

Barbhuiya (2005) 227 

(a) 
Parameters 

 Vertical  Semi-circular  45 degree 
 Max Min Mean STD Skew  Max Min Mean STD Skew  Max Min Mean STD Skew 

d50 (m)  0.003 0.000 0.001 0.001 1.285  0.003 0.000 0.001 0.001 1.239  0.003 0.000 0.001 0.001 1.322 
h (m)  0.250 0.058 0.161 0.065 -0.169  0.250 0.050 0.164 0.064 -0.330  0.250 0.059 0.163 0.065 -0.190 
ds (m)  0.293 0.068 0.156 0.055 0.715  0.258 0.055 0.123 0.056 1.022  0.274 0.053 0.125 0.052 0.983 
l (m)  0.120 0.040 0.080 0.028 0.000  0.130 0.040 0.080 0.032 0.201  0.100 0.040 0.075 0.024 -0.361 
b (m)  0.240 0.080 0.160 0.057 0.000  0.260 0.080 0.080 0.063 0.201  0.300 0.120 0.075 0.071 -0.361 

 228 

(b) 
Parameters 

 Vertical  Semi-circular  45 degree 
 Max Min Mean STD Skew  Max Min Mean STD Skew  Max Min Mean STD Skew 

d50 (m)  0.003 0.000 0.001 0.001 1.572  0.002 0.000 0.001 0.001 1.109  0.003 0.000 0.001 0.001 1.347 
h (m)  0.250 0.058 0.166 0.063 -0.257  0.250 0.050 0.158 0.069 -0.076  0.250 0.059 0.163 0.063 -0.324 
ds (m)  0.287 0.078 0.153 0.051 0.840  0.240 0.058 0.112 0.045 1.172  0.269 0.061 0.127 0.053 1.174 
l (m)  0.120 0.040 0.079 0.029 -0.008  0.130 0.040 0.078 0.034 0.633  0.100 0.040 0.075 0.023 -0.352 
b (m)  0.240 0.080 0.159 0.059 -0.008  0.260 0.080 0.078 0.068 0.633  0.300 0.120 0.075 0.070 -0.352 

 229 

 230 

2.3. Input combination  231 

Because some input parameters are more important or relevant than others, it is important to 232 

exclude those that hamper the modeling performance without improving the effectiveness of the 233 

modeling. To select the best input array, four different input combinations were constructed 234 

based on the Pearson correlation coefficient and finally tested in order to find the most effective 235 

one. To start with, the parameter with the highest degree of Pearson correlation coefficient (r) 236 
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was considered as the first input parameter to the model. The assumption is that the parameter 237 

with the highest correlation with the output has a better ability to predict the output with higher 238 

accuracy. Then, the next parameter with the next highest r value was added to the first input and 239 

the selection “input No.2” was defined. This process continued until the parameter with the 240 

lowest r value was added to the combination of input parameters and the selection “input No.4” 241 

was defined (Table 3). The most effective input combination was identified by comparing the 242 

effectiveness of each input combination using the root mean square error (RMSE).   243 

Table 3. Selection of the different input parameters. 244 

Input No. Input parameters Outputs Input parameters Outputs 

1 Fe ds/l (V, S) Fe ds/l (45°) 

2 Fe, d50/l ds/l (V, S) Fe, d50/l ds/l (45°) 

3 Fe, d50/l, h/l ds/l (V, S) Fe, d50/l, d50/h ds/l (45°) 

4 Fe, d50/l, h/l, d50/h ds/l (V, S) Fe, d50/l, d50/h, h/l ds/l (45°) 

V, S and 45o are Vertical − Wall, Semicircular and 45oWing − Wall 245 

 246 

2.4. Sensitivity analysis 247 

A sensitivity analysis was performed in order to determine the effectiveness of each input 248 

parameter. To do that, at first all parameters were combined and considered as an input to the 249 

model (i.e. No. Total). Next, four different combinations of parameters were considered (i.e. No. 250 

A, B, C, and D) and in each combined parameter one of the input parameters was removed 251 

(Table 4). Similar to the previous section, RMSE was used as criterion to determine the range of 252 

changes, as removing the most effective parameter would lead to the highest degree of error.  253 

Table 4. Parameters considered in the sensitivity analysis 254 

No. Input parameters Removed parameter 
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A Fe, d50/l, h/l d50/h 

B Fe, d50/l, d50/h h/l 

C Fe, h/l, d50/h d50/l 

D d50/l, h/l, d50/h Fe 

Total Fe, d50/l, h/l, d50/h --- 

 255 

2.5. Models parameter optimization 256 

Apart from the quality of the dataset, a proper selection of input parameters and the modeling 257 

prediction capability determine the optimum values for each model operators and have a 258 

significant effect on the predictive power of the model. In the present study, a trial-and-error 259 

approach was applied to determine the optimum value for each operator. The models were first 260 

run using a range of default values, and then the values were adjusted arbitrary until converging 261 

to optimal values which led to the lowest RMSE.  262 

 263 

2.6. Model theory background 264 

2.6.1. Kstar 265 

This is an instance-base model that classifies an instance by contrasting it to a pre-classified 266 

sample dataset. Similar examples lead to similar classifications and this is the main assumption 267 

of the Kstar model. The associated elements of an instance-based trainee are the distance 268 

function that defines how similar two examples are, and the classification function that 269 

determines how similar examples give the new example an ultimate classification (Cleary and 270 

Trigg, 1995). The K-star method employs entropic measurements related to the probability of 271 

turning a sample into another by selecting randomly between all feasible transformations. The 272 

transformation of an example into another one is attained by mapping one instance to another by 273 
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determining a finite set of transformation, and then one instance (m) is converted into a finite 274 

sequence of transformations (n) beginning at (a) and ending at (b). Assuming the defined 275 

transformation 𝑆 and a value of this set 𝑠, maps 𝐼 → 𝐼. For mapping instance with itself 𝛽 is 276 

employed in 𝑆(𝛽(𝑎) = 𝑎). The parameter 𝛽 terminates the set of all codes of 𝑆∗ as 𝑃.  277 

𝑠̅𝑎 = 𝑠𝑛(𝑠𝑛−1(… 𝑠1(𝑎) … ))      𝑠 = 𝑠1 … . 𝑠𝑛       (4) 278 

The probability function of 𝑆∗ is 𝑃 which satisfies properties as: 279 

0 ≤
𝑝(𝑠̅𝑢)

𝑝(𝑠̅̅)
≤ 1           (5) 280 

∑ 𝑝(𝑠̅𝑢) = 𝑝(𝑠̅)𝑢           (6) 281 

𝑝(⋀) = 1           (7) 282 

∑ 𝑝(𝑠̅) = 1𝑠∈𝑝            (8) 283 

The probability function 𝑃∗ is defined as: 284 

𝑃∗ (
𝑏

𝑎
) = ∑ 𝑃(𝑠)𝑠∈𝑝:𝑠(𝑎)=𝑏          (9) 285 

Finally, the Kstar function defined as: 286 

𝑘∗ (
𝑏

𝑎
) = −𝑙𝑜𝑔2𝑃∗ (

𝑏

𝑎
)         (10) 287 

2.6.2. Bagging model 288 

Machine learning implementations suggest that any given learning model can outperform all 289 

others for a specific issue or for a specific subset of input data, but it is rare to find a single 290 

expert that achieves good outcomes on an entire given problem (Dietterich, 2000). Bagging is 291 
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one of the most well-known ensembles learning algorithms (Oza, 2005), and is also known as 292 

bootstrap aggregation (Breiman, 1996). The bagging model can improve the classification 293 

precision in machine learning (ML) and by decreasing the variance can leadsto prevent 294 

overfitting. This model is commonly applied to decision tree-based algorithms (Dietterich, 295 

2000). The bagging model procedure follows three steps: a) bootstrap samples are collected by 296 

resampling as arbitrarily of the training dataset to develop a set of training subsets; b) several 297 

classifier-based models are designed using each of the sub-sets; and finally, c) the terminal 298 

method comprises of the aggregation of all classifier-based models. 299 

2.6.3. Dagging model 300 

The Dagging algorithm presented by Ting and Witten (1997) is an ensemble of algorithms. Like 301 

the bagging, the approach focuses at achieving a reliable model of classification by integrating 302 

the poor learners trained on various samples of the training set. However, the Dagging model 303 

utilizes disjointed, stratified samples instead of bootstrapping, and it is a powerful method when 304 

the individual classifiers have a bad time complexity.  305 

2.6.4. Random Subspace model 306 

The Random Subspace method (RSS; Ho, 1998) is another ensemble learning technique that 307 

combines several classifiers trained on randomly chosen subspace features. This algorithm is 308 

randomly selected by the original training set to make the training subset (Kotsiantis, 2011). 309 

Therefore, the series features a subset of each sub-classifier training at the final prediction 310 

outcomes achieved by a combination of voting methods (Sun and Zhang, 2007). When 311 

considering the situation with 𝑛 observations in a 𝑘 dimensional space, then: 312 
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{((𝑥1𝑗 , 𝑥2𝑗 , … . , 𝑥𝑖𝑗 , … . , 𝑥𝑘𝑗)|𝑥𝑖𝑗)} ,    𝑤ℎ𝑒𝑟𝑒  𝑖 ∈  {1, 𝑛}, 𝑗 ∈  {1, 𝑘}    (11) 313 

where 𝑖 and 𝑗 are the number of observation and variables, respectively. The RSS developed by 314 

selecting the variables randomly is shown as follows: 315 

{((𝑥1𝑗 , 𝑥2𝑗 , … . , 𝑥𝑖𝑗 , … . , 𝑥𝑘𝑗)|𝑥𝑖𝑗)} , 𝑎𝑠    {
𝑥𝑖𝑗 = 𝑥𝑖𝑗         𝑓𝑜𝑟 𝑖 ∈ 𝐼

𝑥𝑖𝑗 = 𝑁𝑢𝑙𝑙     𝑓𝑜𝑟 𝑖 ∉ 𝐼
    (12) 316 

in which 𝐼 is 𝑘′ dimensional subsect and 𝑘′ ≤ 𝑘. Every time, a random producer from 1 to 𝑘′ is 317 

employed to choose a variable to be applied in the subspace, and the procedure is repeated 𝑘′ 318 

times. As an outcome, 𝑁 random subspaces are generated as various filters for the identified 319 

issue. On top of those filters, a similar algorithm is applied to produce various decision agents. 320 

This method represents a type of stochastic discrimination to improve prediction performance by 321 

combining poor models with no maximum discriminating power for the same issue (Ho, 1998).  322 

2.6.5. Random Committee model 323 

The Random Committee (RC) approach produces a set of main classifiers (random trees) and 324 

creates their estimation by combining predictions of probability. Every main classifier is based 325 

on similar data but employs another gene random number. It only becomes meaningful when 326 

randomizing the main classifier, otherwise all classifiers will be equivalent. 327 

2.6.6. Weighted Instance Handler Wrapper model 328 

In this algorithm, a general wrapper technique around any classifier allows for weighted 329 

instances support. This approach benefit from a weight resampling if the interface is not enforced 330 

by the base classifier and instances weights other than 1.0. The learning data is transferred to the 331 
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base classifier by default when it can manage instance weights. Anyway, implementing 332 

resampling technique with weights is applicable as well.  333 

2.6.7. Dey and Barbhuiya equation 334 

In their original paper, Dey and Barbhuiya (2005) proposed empirically derived equations for 335 

each shape of abutments as such: 336 

𝑑𝑠

𝑙
= 7.281(𝐹𝑒)0.314 (

ℎ

𝑙
)

0.128

(
𝑙

𝑑50
)

−0.167

         𝑓𝑜𝑟 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑤𝑎𝑙𝑙 𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡𝑠  (13) 337 

𝑑𝑠

𝑙
= 8.319(𝐹𝑒)0.312 (

ℎ

𝑙
)

0.101

(
𝑙

𝑑50
)

−0.213

         𝑓𝑜𝑟 45° 𝑤𝑎𝑙𝑙 𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡𝑠   (14) 338 

𝑑𝑠

𝑙
= 8.689(𝐹𝑒)0.192 (

ℎ

𝑙
)

0.103

(
𝑙

𝑑50
)

−0.296

         𝑓𝑜𝑟 𝑆𝑒𝑚𝑖𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑎𝑏𝑢𝑡𝑚𝑒𝑛𝑡𝑠  (15) 339 

where d50 is the median diameter of sediment particles, ds is the equilibrium scour depth, h is the 340 

approaching flow depth, l is the transverse length of abutment, and Fe is the excess abutment 341 

Froude number 342 

2.6.8. Muzzammil equation 343 

The performance of three ANFIS, ANN and conventional regression-based models for 344 

estimating scour depth in clear-water condition was investigated by Muzzammil (2010). He 345 

obtained a conventional regression model which depended on four different nondimensional 346 

parameters to calculate the scour depth at the abutments as:  347 

𝑑𝑠

𝑙
= 9.694𝐾𝑠(𝐹𝑒)0.648 (

ℎ

𝑙
)

0.04

(
𝑑50

𝑙
)

−0.075

       (16) 348 

Equation (16) was proposed for all three different geometry of abutments (vertical-wall, 45° 349 

wing-wall, and semicircular).  350 

2.7. Model evaluation 351 
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All approaches are finally compared in terms of their power of prediction. Here a portion (30%) 352 

of the original dataset was used for validation purposes, and we used both graphical methods 353 

(line graphs, scatter plots and violin plots) and quantitative metrics to evaluate the performance 354 

of each approach. A ranking of performance was achieved using quantitative metrics including 355 

RMSE, relative RMSE (RRMSE), Nash-Sutcliffe efficiency index (NSE), Willmott’s index of 356 

agreement (WI), and Legates and McCabe coefficient of efficiency (LM) that were computed as 357 

follows: 358 
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where N is the number of data sample, while e
sd Pr , Obs

sd , and Obs
sd , are the predicted, observed 364 

and mean of the observed scour depth, respectively.  365 
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3. Results and discussion 366 

3.1. The importance of the input variables  367 

Each input parameter has a different relative effectiveness on the result. The relative importance 368 

of these parameters for each abutment shape was assessed through the Pearson correlation 369 

coefficient (r) and is shown in Fig 2. Results reveal that the Fe parameter has the highest effect 370 

on the scour depth prediction at each shape of Vertical – wall (r =0.978), Semicircular (r =0.964) 371 

and 45° wing – wall (r =0.957), followed by d50/l (r =0.920, 0.906 and 0.910 respectively), h/l (r 372 

=0.614, 0.518 and 0.528 respectively) and d50/h (r =0.439, 0.508 and 0.512 respectively).  373 

 374 

Fig 2. The relative importance of each input parameter using Pearson correlation coefficient  375 

3.2. Assessing the best input combination 376 

Although incorporating more input parameters in most of the cases can improve the performance 377 

of each algorithm in the training phase, including more parameters lead to more errors and to 378 

over-complicated algorithms (Fig 3a-c). For vertical-wall shape abutments, the best input 379 

combination is the No.3 (parameters Fe, d50/l, h/l), as involving the additional parameter d50/h 380 
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reduces the modeling prediction power and lead to more error. This result is in accordance with 381 

the outcomes of the correlation coefficient which showed that the d50/h parameter has the lowest 382 

correlation with scour depth process.  383 

For semicircular and 45° wing shape abutment, the input combination No.2 (Fe and d50/l) has the 384 

highest effectiveness if compared to other input parameter combinations and results show that 385 

for semicircular shape abutment incorporating h/l and d50/h lead to more degree of error. 386 

Although h/l is included on the empirical equations of Dey and Barbhuiya (2005) and 387 

Muzzammil  (2010), our results show that this parameter is not crucially important in all cases 388 

and lead to more error in the modeling process.  389 

Results show that the best input combinations have a 9.04%, 16.93% and 28.57% higher 390 

performance for vertical, semicircular and 45° wing abutment shape respectively, if compared to 391 

the worst input combination. This proves that determining the best input combination is 392 

significantly effective on the result and one of the most important steps in modeling process. 393 

Also, with the same input combination the result for different algorithms would be different, 394 

which reflects the different computation structures of the algorithms that each models developed 395 

is based on. Bonaldari et al. (2020) revealed that the best input combination for the Extreme 396 

Learning Machine (ELM) model is one in which all parameters (Fe, h/l, d50/l, and Ks) are 397 

involved. Our results differ in this sense likely due to the different model structures and different 398 

computational capabilities.  399 
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Fig 3. Use of quantitative metrics (RMSE) to determine the best input combination for the 400 
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models (the dataset is split in training and testing components). 401 

3.3. Sensitivity analysis 402 

A sensitivity analysis was carried out to determine the extent to which each parameter is 403 

effective on the results (Fig 4 and Table 4). According to the results, for vertical abutment shape, 404 

removing d50/h, h/l, d50/l and Fe implies a 5.74%, -3.44%, -16% and -18.4% change in the result 405 

(in terms of RMSE) revealing that Fe has the most significant effect on the results followed by 406 

d50/l, d50/h and h/l. Also, removing h/l, d50/l and Fe increased RMSE while adding the d50/h lead 407 

to a higher error. For semicircular shape abutment, removing d50/h, h/l, d50/l and Fe causes a 408 

5.12%, 19.87%, -13.46% and -12.17% change in the results and shows that h/l is the most 409 

effective parameter on scour depth prediction for semicircular shape abutment followed by d50/l, 410 

Fe and d50/h. However, incorporating d50/l and Fe and removing d50/h, h/l lead to higher 411 

performances. Although removing h/l cause higher changes in the results, incorporating h/l and 412 

d50/h leads to more error and reduces the models prediction power. For the 45° wing shape, 413 

removing d50/h, h/l, d50/l and Fe causes a 4.9%, 14.7%, -7.84% and -1.47% changes on the scour 414 

depth prediction. Indeed, h/l is the most important parameter followed by d50/l, d50/h and Fe, 415 

respectively. Also, similar to semicircular shape abutment, incorporating d50/l and Fe and 416 

removing d50/h, h/l leads to higher performances. This is in accordance with the outcomes of the 417 

r value and the determination of the most effective input parameter combination. Also, our result 418 

is in accordance with Bonakdari et al. (2020) which stated that the relative median sediment 419 

diameter (d50/l) is the most effective parameter for the prediction of scour depth. Bonakdari et al. 420 

(2020) also stated that h/l is effective on the result and removing this parameter cause to about 421 

1% higher error (which is overall not very significant). The opposite result can be obtained from 422 

different models structure and combining all dataset (rather than splitting them based on the 423 
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abutment shape as in the present study). Our results are in accordance with the finding of 424 

Mohammadpour et al. (2013) that showed that incorporating h/l can lead to higher errors in the 425 

determination of the scour depths. 426 

According to our results, the abutment geometry (i.e., l) has a significant effect on the scour 427 

occurrence process. As 45° and semicircular shape are more similar to each other if compared to 428 

the triangular shape, the effective parameters for 45° and semicircular shape are the same and 429 

different from those selected for the triangular shape.  430 

Our results show that the approach flow depth (h) is not very effective on the overall scour depth, 431 

while flow velocity, transverse abutment length, and median sediment diameter are important. 432 

Azimi et al., (2019), Moradi et al., (2019) and Bonakdari et al., (2020) revealed that their best 433 

input combination was a combination of Fe, h/l, Ks, d50/l. This definitely shows that the structure 434 

of the modeling approach has a crucial role on the selection of the input combination, which is 435 

resulting from different structure of each model. In our study, the best input combination for 45° 436 

wing wall and semicircular shapes involves Fe and d50/l while for vertical wall the best 437 

combination includes Fe, d50/l and h/l.  438 
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 439 

Fig 4. Percentage of changes applied for sensitivity analysis (the inner, middle and outer circles 440 

represent the vertical, semicircular, and 45° wing abutment shapes, respectively). 441 

 442 

3.4. Evaluation of models performances 443 

A visual comparison of the prediction power of the different machine learning models in terms 444 

of line graph and scatter plot is presented in Figure 5, 6 and 7 for vertical, semicircular and 45° 445 

wing, respectively. The figures present the values of scour depth obtained from the experimental 446 

data, and the values predicted by the stand-alone models of Kstar and its hybrid models of BA-447 

Kstar, DA-Kstar, RC-Kstar, and WIHW-Kstar. Figure 6 also presents the results obtained using 448 

the empirical equations developed by Dey and Barbhuiya (2005) and Muzzammil (2010), and 449 

shows how all hybridized algorithm could enhance the performance of standalone Kstar 450 

algorithms while the empirical equations appear substantially overperformed.  451 
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 457 

Fig 5. Line-graph and scatter plot of predicted vs. measured ds/l for vertical- wall shape abutment 458 
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 463 

Fig 6. Line-graph and scatter plot of predicted vs. measured ds/l for semicircular shape abutment 464 

 465 
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 469 

Fig 7. Line-graph and scatter plot of predicted vs. measured ds/l for 45° wing shape abutment 470 
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The violin plots of Figure 8 show that the WIHW-Kstar is able to predict the maximum ds/l 471 

values more accurately than other algorithms for vertical abutment. All developed algorithms are 472 

able to predict the first and third quartile and median relative scour depth values accurately while 473 

RC-Kstar predicted the minimum scour depth close to the measured values. Results also show 474 

that the equation proposed by Dey and Barbhuiya (2005) is more accurate than the equation 475 

proposed by Muzzammil (2010). Overall, the shape of violin plot of WIHW-Kstar is more 476 

similar to measured values compare to other models which have a similar distribution of data 477 

with measured dataset (Fig 8a). Although the violin plot generated by Dey and Barbhuiya (2005) 478 

equation have a similar shape of the measured values, their empirical equation fails to predict 479 

maximum, minimum, and median values with accuracy. Overall, the RC-Kstar model has a more 480 

similar shape of violin plot if compared with the measured values (Fig 8b). The RS-Kstar 481 

predicted better the maximum values while the WIHW-Kstar predicted better the minimum 482 

values. For 45° wing wall, all violin plot shapes of predicted dataset are far from the measured 483 

data. The RC-Kstar is able to predict the maximum values accurately while RS-Kstar and 484 

WIHW-Kstar are more accurate in predicting the minimum value of scour depth (Fig 8c). Also, 485 

none of the empirical equations are able to predict accurately the scour depth.  486 

 487 

 488 

 489 

 490 

 491 

 492 

 (a) 
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 504 
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 507 

 508 

 509 

Fig 8. Violin plot of predicted Vs. measured scour depth prediction around (a) vertical, (b) semicircular 510 

and (c) 45° wing wall abutment.   511 

The detailed results of the quantitative metrics for different abutment shape are showed on Table 512 

5. The hybrid algorithm of WIWH-Kstar outperformed other algorithms in scour depth 513 

prediction for the vertical abutment shape (RMSE=0.084, RRMSE=4.081%, NSE=0.985, 514 

WI=0.996 and LM=0.857) followed by RC-Kstar (RMSE=0.097, RRMSE=4.711%, NSE=0.980, 515 

(b) 

(c) 
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WI=0.994 and LM=0.850), RS-Kstar (RMSE=0.124, RRMSE=5.998%, NSE=0.968, WI=0.991 516 

and LM=0.823), DA-Kstar (RMSE=0.111, RRMSE=5.363%, NSE=0.974, WI=0.993 and 517 

LM=0.830), BA-Kstar (RMSE=0.123, RRMSE=5.941%, NSE=0.968, WI=0.991 and 518 

LM=0.823), Kstar (RMSE=0.164, RRMSE=7.910%, NSE=0.944, WI=0.984 and LM=0.804), 519 

Dey and Barbhuiya  (RMSE=0.522, RRMSE=25.125%, NSE=0.319, WI=0.883 and LM=-0.037) 520 

and Muzzammil (2010) (RMSE=4.618, RRMSE=222%, NSE=-42.375, WI=0.257 and LM=-521 

7.764).  Overall, all standalone and hybrid algorithms obtained excellent performance (RRMSE ≤ 522 

10%), Dey and Barbhuiya (2005) had a fair performance (20% ≤ RRMSE ≤ 30%) while 523 

Muzzammil (2010) performed rather poorly (Despotovic et al, 2016). According to NSE, all 524 

standalone and hybrid algorithms had a very good performance (NSE>0.75) while Dey and 525 

Barbhuiya (2005) and Muzzammil (2010) performed rather poorly (Moriasi et al., 2007). Also, 526 

based on the RMSE metric BA, DA, RC, RS and WIHW could enhance the predictive power of 527 

the standalone algorithms of about 25%, 32.3%, 40.85%, 24.4% and 48.8% respectively. Finally, 528 

results based on the RMSE show that the WIHW-Kstar appears to be most effective model with 529 

about 8384% and 98.17% higher performance than Dey and Barbhuiya (2005) and Muzzammil 530 

(2010), respectively. According to our results, the RC-Kstar models outperforms all other 531 

algorithm for both semicircular and 45o Wing abutment shape while Dey and Barbhuiya (2005) 532 

and Muzzammil (2010) had the lower performance. According to the RRMSE and NSE metrics, 533 

all standalone and hybrid algorithms had an excellent performance for both semicircular and 45o 534 

Wing abutment.  535 

It is interesting to note how BA, DA, RC, RS and WIHW could enhance the prediction power of 536 

the standalone algorithms of about 3.93%, 14.96%, 30.70%, 8.66% and 20.47% respectively for 537 

semicircular abutment (based on the RMSE metric). Also, the RC-Kstar is the most effective 538 
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model and has about 72.92% and 97.37% higher performance than while Dey and Barbhuiya 539 

(2005) and Muzzammil (2010), respectively (based on the RMSE metric). According to the 540 

results of RMSE, BA, DA, RC, RS and WIHW could enhance the prediction power of the 541 

standalone algorithms of about 3.97%, 21.85%, 32.45%, 20.52% and 26.49%, respectively, for 542 

45° wing abutment. Also, the result of the RC-Kstar is the most effective model, and has about 543 

82.07% and 97.46% higher performance than while Dey and Barbhuiya (2005) and Muzzammil 544 

(2010), respectively.  545 

Table 5. Quantitative performance of the tested models 546 

Abutment 
shape Models RMSE RRMSE (%) NSE WI LM 

Vertical 

Kstar 0.164 7.91 0.944 0.984 0.804 
BA-Kstar 0.123 5.941 0.968 0.991 0.823 
DA-Kstar 0.111 5.363 0.974 0.993 0.830 
RC-Kstar 0.097 4.711 0.98 0.994 0.850 
RS-Kstar 0.124 5.998 0.968 0.991 0.823 
WIWH-Kstar 0.084 4.081 0.985 0.996 0.857 
Dey and Barbhuiya (2005) 0.522 25.125 0.319 0.883 -0.037 
Muzzammil (2010) 4.618 222 -42.375 0.257 -7.764 

Semicircular 

Kstar 0.127 8.069 0.954 0.987 0.775 
BA-Kstar 0.122 7.762 0.957 0.988 0.789 
DA-Kstar 0.108 6.913 0.966 0.99 0.806 
RC-Kstar 0.088 5.603 0.977 0.994 0.854 
RS-Kstar 0.116 7.365 0.961 0.989 0.799 
WIWH-Kstar 0.101 6.463 0.97 0.992 0.824 
Dey and Barbhuiya (2005) 0.325 20.668 0.698 0.938 0.435 
Muzzammil (2010) 3.355 213.036 -30.993 0.286 -6.145 

45o Wing 

Kstar 0.151 8.692 0.937 0.982 0.763 
BA-Kstar 0.145 8.319 0.942 0.983 0.777 
DA-Kstar 0.118 6.783 0.961 0.989 0.804 
RC-Kstar 0.102 5.853 0.971 0.992 0.833 
RS-Kstar 0.120 6.903 0.96 0.989 0.797 
WIWH-Kstar 0.111 6.38 0.966 0.99 0.813 
Dey and Barbhuiya (2005) 0.569 32.636 0.115 0.847 -0.01 
Muzzammil (2010) 4.012 229.88 -42.877 0.254 -7.018 

 547 
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The Kstar algorithm is able to match the observed values obtained in the flume experiments by 548 

Dey and Barbhuiya (2005) with higher performance than traditional empirical approaches and 549 

the other tested methods. Being based on heuristic search, the Kstar algorithm leads to 550 

considerable improvements in terms of both memory and runtime (Aljazzar and Leue, 2011). 551 

Because of the higher flexibility of the structures of the ensemble algorithms, in most of cases, 552 

these models show better performance than standalone algorithms (De’Ath and Fabricius, 2000). 553 

Determining the proper combination of input parameters is one of the most important steps in 554 

developing a precise AI model. We investigated the combinations using a sensitivity analysis to 555 

find the most significant input variables to estimate the scour depth. Fe resulted one of the most 556 

important parameters in estimating scour depth for three shapes of abutments, probably because 557 

the flow velocity is embedded in the Fe parameter. Garde et al. (1961) noted that the optimum 558 

scour depth happens at the condition of threshold for the movement of sediments and that the 559 

flow rate defined in excess of Froude number has a major impact on the depth of the scour. In 560 

addition, Froehlich (1989) showed that the excess Froude influence the scour depth in a uniform 561 

sediment bed, under clear-water condition, and our results are in agreement with that.  The other 562 

AI models proposed by Azimi et al. (2019), Bonakdari et al. (2020), Moradi et al. (2019) and 563 

Najafzadeh et al. (2013b) all mentioned that the influence of Fe parameter in the prediction of 564 

scour depth is remarkable.  565 

By using the same dataset of Dey and Barbhuiya (2005) different researchers attempted to 566 

estimate scour depth by employing other AI appraoches (Azimi et al., 2019; Bonakdari et al., 567 

2020; Moradi et al., 2019). Moradi et al. (2019) used a neuro-fuzzy-embedded  subtractive 568 

clustering (ANFIS–SC) method to forecast scour depth and their results showed that ANFIS-SC 569 

with RMSE of 0.154 scored the better performance in estimating the scour depth. The 570 
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application of ELM method in predicting scour depth was investigated by Bonakdari et al. 571 

(2020) that showed that the best ELM model can predict scour depth with RMSE of 0.177. In 572 

another research, Azimi et al., (2019) studied an application of a hybrid model as ANFIS-573 

GA/SVD to predict scour depth and they concluded that their proposed model is robust in 574 

estimating scour depth with RMSE of 0.135. In our study we used a different ensemble-based 575 

models to the predict scour depth for each shape of abutments. For vertical-wall abutments the 576 

WIWH-Kstar model showed the best performance among all other models, with a RMSE of 577 

0.084. In semicircular and 45° wing wall, the RC-Kstar (RMSE of 0.088 and 0.102, respectively) 578 

indicated higher accuracy in predicting scour depth. In comparison with other AI methods which 579 

were previously applied by different researchers, our proposed methods are more robust in scour 580 

depth estimations and have a higher prediction power. This is probably due to the fact that the 581 

model structure of our proposed algorithms work better than traditional models and it is better to 582 

model the data of each shape separately in order to avoid having to include in the analysis a 583 

shape factor.  584 

The outcomes of the proposed models compared with the scour depth values which calculated 585 

from equations proposed by Dey and Barbhuiya (2005) and Muzzammil (2010) demonstrated 586 

that the proposed WIWH-Kstar and RC-Kstar for vertical wall, and semicircular and 45° wing 587 

wall respectively, predict more precisely the experimental scours than empirical approaches.  588 

One of the main sources of uncertainty in our study refers to the extent of the dataset. Each set of 589 

data was about 100 raw data. In this sense, any further experimental dataset would allow to 590 

refine the modeling efforts. It is also worth pointing out that it would be recommendable to select 591 

dataset from several researchers to build a training dataset for algorithms. Also, a more extended 592 
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dataset would allow a proper calibration and validation, and ideally a validation performed with 593 

data obtained in a different experimental setting. 594 

5. Conclusion 595 

Inaccurate predictions of scour depth (ds) at bridge abutment can cause the failure of strategic 596 

structures. Due to the complexity of the scour process with non-linearity structure, simple 597 

empirical equations are not able to predict ds accurately. In the present study, standalone Kstar 598 

model and five novel hybrid algorithm of bagging (BA), dagging (DA), random committee (RC), 599 

random subspace (RS), and weighted instance handler wrapper (WIHW) (i.e. BA-Kstar, DA-600 

Kstar, RC-Kstar, RS-Kstar, WIWH-Kstar) were applied for ds prediction in a clear water (no 601 

sediment feeding) condition and the result were compared with two most common empirical 602 

equations as a benchmark. The results of the current study are the following: 603 

• According to Pearson correlation coefficient, the Fe parameter has the highest effect on 604 

the scour depth prediction at each shape of Vertical – wall, Semicircular and 45° wing – 605 

wall, followed by d50/l, h/l and d50/h, respectively. 606 

• For vertical-wall shape abutment, the best input is the combination of Fe, d50/l, h/l 607 

parameters, and result shows that involving parameter of d50/h reduces the modeling 608 

prediction power.  609 

• For semicircular and 45° wing shape abutment, the input combination of Fe, d50/l has the 610 

highest effectiveness. 611 

• The sensitivity analysis revealed that Fe has the largest effect on the ds prediction around 612 

vertical abutment shape, while the h/l parameter has the great effect on the ds prediction 613 

around semicircular and 45° wing – wall abutment. 614 
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• The sensitivity analysis revealed that Fe, d50/l and h/l increase the predictive power of the 615 

modeling for vertical abutment, while for semicircular and 45° wing – wall abutment 616 

incorporating d50/l and Fe and removing d50/h, and h/l cause to higher performance.  617 

• Result showed that hybrid algorithm of WIHW-Kstar outperform of other algorithm for 618 

vertical abutment while RC-Kstar superior in ds prediction around semicircular and 45° 619 

wing abutment. 620 

• According to NSE, all artificial intelligence models have a very good performance while 621 

the two empirical equations available in the literature have a much lower performance.  622 

• BA, DA, RC, RS and WIHW could enhance prediction power of the standalone 623 

algorithms significantly.  624 
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