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Abstract

The present paper introduces a highly efficient numerical simulation strategy for the analysis
of elasto-plastic shell responses. An isoparametric Finite Element, based on a Finite Rotation Reiss-
ner-Mindlin shell theory in isoparametric formulation, is enhanced by a Layered Approach for a
realistic simulation of nonlinear material behaviour. A material model including isotropic hardening
effects is embedded into each material point. A new, highly accurate integration scheme is com-
bined with consistently linearized constitutive relations in order to achieve quadratic rate of conver-
gence. A global Riks-Wempner-Wessels iteration scheme enhanced by a linear Line-Search proce-
dure has been used to trace arbitrary deformation paths. A numerical example shows the efficiency
of the present concept.

1 Introduction

Nonlinear computer simulations of realistic systems, like the crash-worthiness analysis of a car
or the snap-through response of a shell, are dominated by time-consuming computations for consid-
eration of nonlinear material behaviour, especially when layered shell models are applied. The coin-
cidence of all components, as the chosen Finite Element, the numerical integration scheme of the
material model, the consistently linearized constitutive tensor, and the path-following strategy de-
cide upon the possible size of load steps, the convergence behaviour and the accuracy of the com-
puted deformation path.

The paper starts with the presentation of a Reissner-Mindlin type shell theory including arbi-
trary large deformations in isoparametric formulation [1] as the basis for the formulation of corre-
sponding finite elements. To avoid shear-locking effects, the assumed-strain concept [2] has been
employed to obtain the locking-free finite element T5-IAS4. For the consideration of nonlinear ma-
terial laws, two major concepts can be found in the literature: the stress resultant model or the Lay-
ered Approach. The first concept, employed e.g. in [3], is advantageous because of its notational
simplicity and the assurance of quadratic convergence in a neighbourhood of the exact solution. The
Layered Approach, used in the present model, allows a much more accurate prediction of the stress
distribution throughout the shell thickness. The insurance of quadratic convergence near to the ex-
act solution is also guaranteed for the present model. The tracing of nonlinear deformation paths,
even in a post-peak range, is performed by the Riks-Wempner-Wessels iteration scheme. To ensure
convergence for very large load steps, a Line-Search procedure was implemented into the global
iteration scheme.

The highly accurate solution of the initial value problem, formulated by nonlinear constitutive
relations including elasto-plastic material behaviour, preserves an exact tracing of nonlinear defor-
mation paths even if large load steps are applied. The starting point for the derived algorithm is rep-
resented by the principle of maximum plastic dissipation. The integration of the nonlinear constitu-
tive relations is transformed into a constrained optimization problem. This problem can be solved
with any prescribable accuracy either by direct nonlinear programming optimization methods [4] or,
after transformation, by a Newton procedure, in which the plastic multiplier presents the only inde-
pendent parameter. To ensure quadratic convergence in a close neighbourhood to the exact solution,
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a consistent linearization of the constitutive tensor has been performed on the one hand for the in-
plane components and on the other hand for the component due to shear deformations.

Efficiency and accuracy of the presented simulation strategy is shown by a numerical exam-
ple, performed within the finite element system FEMAS2000 [5] developed at the Institute for Stat-
ics and Dynamics.

2 Finite-Element Formulation and Numerical Path-Tracing

2.1 Finite-Rotation Shell Theory in Isoparametric Formulation

In the following, a Reissner-Mindlin-type shell theory applicable to the finite-rotation analysis
of arbitrary structures is presented. The equations are derived in an isoparametric formulation,
which enables the derivation of corresponding finite elements.

Let r = ?(eo‘) be the position vector determining the undeformed surface F of a shell struc-

ture with respect to the unit vectors j' = j; associated with an orthogonal Cartesian reference frame
X', where 6 denote curvilinear coordinates of the given surface F. Using isoparametric coordi-

nates with limit values £ = 0,1, we approximate the position vector r by

o
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where f- are shape functions and X " the given values of X' at the points P - (L=1,...,N). To

introduce 2-D strain variables we approximate the position vector r associated with the deformed
position of an arbitrary point of the shell continuum by a linear function of the thickness coordinate

§3 as
. 3
r=r+&as, (2)
where r is the position vector of the deformed middle surface F and a3 the base vector associated

with the deformed coordinate line Eﬁ. Both vectors r and a3 are defined with respect to the global
reference frame ' = j;, thus

r=Xi, a;=Ai . 3)
The rotational variables y, are introduced as primary variables. Thus, the unit vector a3 = Alji is
determined by

Al =siny,cosy, , A2 =siny;siny, , A’ =cosy, . (4)

The deformed shell continuum is described by five independent variables X' and vy, . Using the

standard Finite-Element procedure, the incremental equations can be derived and transformed into
nonlinear element matrices.

Pure displacement-based models on the basis of shear deformation theories are sensitive to
shear locking. To avoid this deficiency, the assumed-strain concept, which has been successfully
employed in previous works [2], is used for the interpolation of the transverse shear strains. Further
characteristics of the developed four-noded element T5-IAS4 are summarised in [1].
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2.2 Layered Finite-Element Formulation

The shell theory of the previous section will be enhanced to consider nonlinear material be-
haviour. For the physically nonlinear simulation in a highly accurate way, the Layered Approach
has been introduced into the Finite Element T5-IAS4. This simulation strategy enables - in contrast
to the stress-resultant strategy - the prediction of stresses throughout the shell thickness.

In order to compute the required internal forces, the integration of the stresses will be trans-
formed into a summation over the thickness and the incremental internal forces are evaluated from
the consistently linearized constitutive tensors of the layers.

2.3 Path-following Strategies enhanced by Line-Search Procedures

For the solution of the global Finite Element equation the Standard Newton-Raphson as well as the
Riks-Wempner-Wessels iteration scheme have been employed. These global iteration schemes have
been enhanced by a linear Line-Search procedure to ensure convergence for greater load steps. In
the present Line-Search procedure, only interpolations are selected due to possible "dangerous"
extrapolations, which may destroy the convergence of the iteration scheme.

3 Numerical Formulation for Elastoplastic Analysis

3.1 Closest-Point Projection Algorithm

The integration of the elastoplastic constitutive model employs a closest point projection
scheme which, for linear isotropic hardening, may be expressed in energy norm by means of the
following functional presenting the complementary plastic dissipation [6]

2
. L/ g . i K 1 +
p i i ki p
X (GU’quvj = E(IGtrial - Gu)Gijkl( Gyl — O )+ EK[Y eqvj , (5)
where iGler represents the trial elastic state at time ="t At, computed by

ij i-1
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Herein, C%!' abbreviates the elastic material tensor [7],Giju and K represent the inverse elastic

material tensor and the plastic modulus, respectively. \? oqv 18 the equivalent plastic strain increment.

According to the plastic dissipation principle, the actual state of the stress ¢ and internal

variable {(r ‘e’qv is that one among all possible states, satisfying the yield condition, that minimizes the

functional (5). It can be interpreted geometrically as the closest point projection of the trial state
onto the yield surface and solved by direct nonlinear optimization procedures [8].

By introduction of the Lagrangean functional
L(Gijaygqvo}\'): X(Gij,}’gqv)"'?&F(Gij,quv) ’ (7)

the constrained minimum principle is transformed into the unconstrained problem which is formu-
lated in standard Kuhn-Tucker form in [8,9]. This optimality condition, employing the associativity
of the flow and hardening rules and the loading / unloading conditions, yields the relations for the
stress tensor and the equivalent plastic strain increment. This resulting equation may be solved for

"% . In this paper, the iterative solution procedure employing Newton's method is applied.
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After determination of the plastic multiplier, the updated values of the stresses can be computed,
and the equivalent plastic strain as well as the stresses are obtained. To avoid spurious unloading
during the iteration process, all state variables are updated with respect to the previous equilibrium
state.

3.2 Consistent Tangent Modulus

The elastoplastic tangent modulus [10] is derived by linearization of the update algorithm pre-
sented in the previous section on the one hand for the in-plane components of the stress tensor and
on the other hand for the stresses due to shear deformations. This procedure guarantees a quadratic
convergence behaviour in the neighbourhood of the exact solution for the applied Reissner-Mindlin

type theory [8].

The differential relationships between the internal forces and the strain components leads to the
required internal forces, from which the stiffness matrices can be calculated.

4  Numerical Applications
4.1 Shallow Cylindrical Shell under Point Load

As a numerical example, the geometrically nonlinear elastoplastic response of a shallow cylin-
drical shell under point load will be studied. The shell is hinged at the longitudinal edges and free
along the curved boundaries. Geometry, finite element mesh and material data are presented in Fig-
ure 1.

E = 3.103 kN/mm?
t =6.35mm
v =03
oF=0.001 kN/mn?
Fo= 1.0 kN
Er=1i) 0.0

i) E/2.0

iii) E

@ = 5.729578°

R = 2450 mm

Figure 1. Geometry, Finite Element Mesh and Material Data for Shallow Cylindrical Shell

A finite element mesh of 20x20 elements is used to discretize one quarter of the structure. The com-
putation is performed for different isotropic hardening parameters expressed by different tangent
moduli Et. The dependence of the vertical displacement under the force F, on the load factor is
plotted in Figure 2.
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Figure 2. Load - Displacement Curves for Different Hardening Parameters

This figure compares the curves computed by the present algorithms using elastic-ideal plastic
(Er=0.0) and isotropic hardening (Er=E/2) material models with those obtained by elastic
analysis (Er=E) . As it may be seen, the structure exhibits elasto-plastic snap-through behaviour in
contrast to the elastic response where snap-through as well as snap-back phenomena are pro-
nounced. The propagation of plastic zones throughout the shell thickness for several sections, cal-
culated for isotropic hardening material at various load levels noted in Figure 2, is shown in Figure

3.
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Figure 3. Spread of Plastic Zones throughout Shell Thickness for Three Load Factors noted in Figure 2

The sections are traced by planes parallel to the longitudinal edges of the shell. Evidently, the redis-

tribution of plastic zones becomes apparent again.
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S5  Summary and Conclusions

For the analysis of arbitrary discretized shell structures, an efficient numerical simulation
strategy including geometrically and physically nonlinear effects has been presented.

In the beginning, a Finite-Rotation shell theory allowing constant shear deformations across the
shell thickness is presented in an isoparametric formulation. The assumed-strain concept enables the
derivation of a locking-free finite element. The Layered Approach has been applied to ensure a suf-
ficiently precise prediction of the spread of plastic zones throughout the shell thickness. A Riks-
Wempner-Wessels global iteration scheme enhanced by a Line-Search procedure ensures the trac-
ing of nonlinear deformation paths under rather great load steps even in the post-peak range.

A material model, including isotropic hardening, has been employed to describe elasto-plastic mate-
rial behaviour. A new Operator-Split return algorithm ensures a highly exact solution of the initial-
value problem even for great load steps. The combination with consistently linearized constitutive
equations ensures quadratic convergence in a close neighbourhood to the exact solution.

Finally, an example demonstrates the accuracy and numerical efficiency of the presented algorithm
in the pre- and post-peak range.
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