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Abstract
The paper deals with the simulation of the non-linear and time dependent behaviour of complex structures in engi-
neering. Such simulations have to provide high accuracy in the prediction of deformations and stability, by taking
into account the long term influences of the non-linear behaviour of the material as well as the large deformation
and contact conditions. The limiting factors of  the computer simulation are the computer run time and the memory
requirement during solving large scale problems. To overcome these problems we use a dynamic-explicit time
integration procedure for the solution of the semi-discrete equations of motion, which is very  suited for parallel
processing. In the paper at first we give a brief review of  the theoretical background of  the mechanical modelling
and the dynamic-explicit technique for the solution of the semi-discrete equations of motion. Then the concept of
parallel processing will be discussed. A test example concludes the paper.

1  Introduction
The growing demand on sophisticated simulations of complex structural behaviour can only be
met by increasing computational resources. Finite element models with more than 1 million
degrees of freedom are frequent nowadays in the aerospace and automotive industry as well
as in civil engineering. We developed for instance the serial finite element package ANSALT
II for the analysis of the coupled thermal-mechanical behaviour of deep underground struc-
tures in rock salt, which is capable to handle models with several 100.000 3D finite elements
(see Gabbert et al. 1995). One limiting factor of large scale applications - the memory re-
quirement -  has been overcome by using an explicit time integration strategy in transient as
well as in static problems (dynamic relaxation). In an explicit analysis neither element nor
system matrices are built, and consequently, the memory requirements are insignificant. Un-
fortunately, explicit methods are only conditionally stable and so the time step size has to be
smaller than a critical value, which is directly dependent on the largest frequency of the finite
element discretization (smallest element). As a consequence, in large scale problems we get
extremely short time steps (< 10-4 ...10-8 s) with a negative effect on the computer run time.
This drawback can be overcome by parallel computing, where we can use the advantage, that
explicit methods are excellent suited for parallel processing.
In general parallel computing is the only way to overcome the limits of single computers by
magnitudes. The research challenge is to reformulate the given problem, develope parallel
algorithms and computational strategies in order to fully utilise the capabilities of parallel ma-
chines. However, it can be realized that parallel computing is still an exotic technique in engi-
neering and only some specialists are engaged in applying the parallel computing technology.
But in recent years an increasing number of papers deals with concurrent scientific computa-
tion (for an overview see Adeli et al. 1992, 1993, Mesirov, 1991, Power, 1995, Valero et al.
1992) and also  with applications in finite element analysis (e.g. Farhat et al. 1987, 1994, Va-
lero et al. 1992,  Le Tallec 1994,  Lämmer et al. 1994). In our experience in the development
of finite element software (Baumgarten et al. 1991, Blanke et al. 1994, Gabbert et.al. 1995,
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1996) in addition to the efficiency the portability of the software is a major concern in parallel
processing. With increasing different computer architectures, it is essential to adopt a program
without rewriting most of the code or altering even the architectural basis of the software
every time, a new parallel processor enters the market. Only some hardware dependent basic
routines should be replaced to run a parallel finite element system on a massively parallel
system as well as a workstation cluster or on a single processor machine. In relation to this, in
parallel finite element analysis a mesh partitioning (substructure) technique combined with the
message passing programming model seems to be a good basis for the development of general
purpose parallel finite element software. The substructure technique is very popular and stan-
dard in large finite element applications and can be considered as the most natural approach in
parallel processing of the finite element method. Within our development of the parallel finite
element code PARFEM (Blanke et al. 1994, Gabbert et al. 1996) we have demonstrated, that
based on a mesh partitioning/substructure concept most of the routines as well as the data
structure of a serial finite element code (we used COSAR, see Baumgarten et al. 1991) can be
used. For an automatic mesh partitioning numerous methods and powerful algorithms exist
(see e.g. the shareware libraries Chaco: Hendrickson et al. 1995 and Metis: Karypis et al.
1995). PARFEM has been implemented on a ParSytec GCPowerPlus 96 parallel computer
using the basic routines recv and send only (see Haase et al. 1994). However, for a general
industrial application current parallel processors are simply too expensive, and consequently, a
network of relatively inexpensive workstations is a preferable alternative. Using PVM-like
communication tools message passing software can be quickly adapted to a cluster of work-
station. Based on the experiences of our former developments a new parallel finite element
system for large scale non-linear analysis is under progress. As justified above, in difference to
PARFEM, where the linear equation system of the discrete model is established  and solved
by an iterative solution technique (pcg with different preconditioner), with respect to very
large scale problems we use an explicit time integration scheme also in the static case.

2  Basic equations of non-linear structural mechanics
The Hamilton principle
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leads after spatial FE discretization to the following semidiscrete form of the equations of mo-
tion
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where L is the Lagrangian function, q q q( ),&( ),&&( )t t t  are the vectors of generalized displacements,
velocities and accelerations, M  and C  are the mass and damping matrices respectively, fint  is
the vector of the internal resisting forces and fext  is the vector of the external applied forces.
The internal forces include the shares of material and geometric nonlinearities. Therefore the
internal force vector has to be updated at each time step as well as each iteration step during
the time integration of the equations of motion. At the current position the internal forces may
be evaluated from
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where D  is the incremental strain-displacement matrix, σσ  is the vector of Cauchy stresses,
which may depend on the time t , strain εε , strain rate &εε  and internal parameters h . If linear-
ity is assumed with respect to the displacements, the internal forces can be written in the form

f Kqint ( )= t                                          (4)

where K  is the stiffness matrix of the system. The equations hold for the time t . To  get a
new equilibrium state at t t+ ∆  we use an updated Lagrangian formulation with second Piola-
Kirchhoff stresses and Green-Lagrangian strains. Different types of constitutive relations can
be used. In ANSALT we use e.g. an additive combination model for the simulation of rock
materials.

& & & & &εε εε εε εε εε= +el th cr vp++ ++     (5)

This formulation consists of an elastic and a thermal part, creep deformations and a fracture
describing model, where the fracture behaviour is represented by a viscoplastic model with an
extended Drucker/Prager criterion using an associated flow rule (see Gabbert et al. 1995).

3   Explicit time integration
Contrary to  implicit schemes  the  generation and factorisation of system matrices, which are
very memory and time consuming, may be avoided by explicit schemes (lumped mass and
damping matrices). Working with system vectors (instead of  system matrices), which may be
added up by the finite element contributions, for the computation of  the state variables q and
&q , it is possible to increase the number of degrees of freedom and thus large engineering

problems can be treated. That is also a reason why in spite of the shortcomings, explicit algo-
rithms are often preferred to the analysis of very complex structures  (Underwood, Park
1982).  From a software development point of view the application of the explicit time inte-
gration schemes provides the opportunity to create an uniform software concept both for the
solution of static and dynamic problems. To this end a static problem has to be transformed
into a dynamic one by adding an artificial acceleration and an artificial damping. This method
is known as dynamic relaxation (Wood 1971 and Papadrakadis 1981, for a parallel version see
Topping et al. 1994). If static problems are solved by dynamic relaxation both the  mass and
the damping matrices lose their physical background and become fictitious quantities which
control the iteration process. The  central difference method to approximate q and &q  has
proved to be a very effective procedure to integrate the initial value problem (1).
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The stability consideration of the central difference scheme gives a limitation of the time step
length of

∆tkrit ≤ 2 ωmax                                     (7)

where  ωω max  is the highest frequency of the FE model. If we insert the Eqs. (6) in Eq. (1),
accept C M= c  with a lumped mass matrix M, the explicit solution scheme of Eq. (1) may be
written as
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In Eq. (8) f t
iint  is the internal force related to the degree of freedom i, which is calculated by

using Eq. (3), and fext
t

i  is the given external force at the degree of freedom i. If we solve a
static problem the stability criterion of the central difference method Eq. (7) is used to esti-
mate the diagonal element mii  of the lumped mass matrix. The largest eigenvalue of a matrix
A  is always smaller than any matrix norm (e.g. maximum sum of the absolute elements of a
matrix row, also known as Gerschgorin´s theorem). From this follows the estimation (note that
in our case A M K= −1 ):
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Substitution of Eq. (7) in Eq. (9) gives an estimation of mii :
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The damping coefficient c  included in (8) may  be calculated  from  the  condition  of  an
aperiodic oscillation, i.e.

ϑ
ω

= =1
2 0

c                   (11)

where ϑ ω, ,c 0  are the decrement of the damping, the damping coefficient and the smallest
eigenfrequency, respectively. The smallest eigenfrequency ω 0  is approximated by the
Rayleigh´s quotient of the FE system, i.e.

ω 0
2 ≤
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The substitution of Eq. (12) in Eq. (13) gives the damping factor as

c t
t T t

t T t
= 2

q K q
q M q

                  (13)

It should be noted, that the quadratic forms in Eqs. (12) and (13) are simply calculated at the
element level by adding up the shares of  each element.

4  Concept of a parallel explicit time integration and dynamic relaxation
Fig. 1 shows the structure of the time stepping algorithm by using an explicit integration in
dynamics or the dynamic relaxation in static cases. Each row represents the equation for one
degree of freedom of the finite element system. Obviously, this form is excellent suited for
parallel computing.
The communication via a network is the main disadvantage of the virtual parallel computer.
Because the computers of a cluster can not use a shared memory like vector computers or
high speed links like transputers all data have to pass through the network. Although the per-
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formance of the data transfer by networks is speeded up in the last years (100 Mbits/s and
more by CDDI and FDDI networks), the transfer of data is slow compared to massively par-
allel computers. The absolute minimisation of the data transfer is the consequence of this fact.
In our concept of a parallel explicit FE system based on the master-slave model (Fig. 2) the
master generates the finite element model from the input data, configures the virtual parallel
computer (find out the number of computers in the cluster and bind them to the task) and gen-
erates the mesh partitions of the FE model of the solution domain. The partitioning is done by
using standard techniques (see e.g. Hendrickson 1995, Karypis 1995). We tested different
methods at  large 3D engineering models and got best results with the multi-level techniques
of the Metis library (see Deutsch 1995). The master maps the mesh partitions as well as all
mesh data (geometry, material, forces, boundary conditions etc.) onto the slaves. The slaves
get the data from the master and create their own data arrays for the analysis, which is done
only once.

         Figure 1 Structure of  the explicit time integration (e.g. dynamic relaxation) scheme

The advantage of the explicit method and the  dynamic relaxation is that no system matrices
have to be assembled. The algorithms can be implemented on element basis only. Conse-
quently, each slave is able to calculate the vector of displacements for his own mesh partition.
A fraction of it, the external degrees of freedom, which  share common boundaries with other
domains, are sent for an update to the master. Here also the global control parameters for the
solution scheme (Eqs. 10 and 13) are calculated. These parameters and the globally updated
fractions of the solution vector (external degrees of freedom) are sent back to the slaves to
start the next time or iteration step. Local results like element stresses and strains are also cal-
culated separately on each processor without any communication. At the end all required
results are sent to the master. Using these results of the complete FE model the master can
determine other solution components of interest. The implementation of the concept briefly
described above on an heterogeneous computer cluster composed of 4 HP-workstations C120,
one 2-processor workstation J210 and one Pentium PC 166 under Windows-NT (see[14]) is
under progress. As programming language we use FORTRAN 77 and PVM (Geist 1994) for
the  realisation of the virtual parallel computer, the de facto standard for heterogeneous net-
work computing. This makes the concept open for the integration of  other computer types or
for an implementation on other designed computer clusters.
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     Figure 2   Virtual parallel computer concept of an explicit finite element system

5  Example
The explicit time integration for dynamic problems as well as the dynamic relaxation method
has been tested at several large scale engineering problems (e.g. transient process of mining
out a cavity in a deep level rock salt formation, see Gabbert et al. 1995). Also a parallel ver-
sion of the dynamic relaxation method  has been developed and tested on a ParSytec GCPow-
erPlus 96 parallel computer. Due to the limited length of the paper we only present as a sim-
ple test examples a problem from linear crack mechanics (Fig. 3), which has been calculated
with different degrees of freedom and 2, 4, 8, 16, 32 and 64 parallel processors. As a result in
Fig. 3 the speed up of the total elapsed time with respect to the number of processors and the
increase of the communication time is demonstrated.
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Figure 3   Parallel finite element calculation of a plane crack problem
Parameters: E = 1 N/mm2, ν = 0.3, p = 1 N/mm
FE mesh:  16x32  8-node plane elements (3266 degrees of freedom)

6  Conclusion
The exploitation of parallelism within algorithms and the efficient use of hardware calls for
new strategies in parallel finite element software. The combination of the domain decomposi-
tion (substructure technique respectively) with the explicit time integration in transient prob-
lems and dynamic relaxation in static cases discussed in this paper gives a general and uniform
concept for the simulation of large scale non-linear  problems in mechanics, which  is very
well suited for parallel processing. In the paper at first we give a brief review of  the theoreti-
cal background of  the mechanical modelling and the dynamic-explicit technique for the solu-
tion of the semi-discrete equations of motion. For the implementation, which is under prog-
ress, we use a heterogeneous computer cluster. The programming language is FORTRAN 77
and as software for the  realisation of the virtual parallel computer we use PVM. A test exam-
ple concludes the paper. However, there is remains a lot to do to make it a tool for real com-
plex engineering problems.
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