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Abstract

Due to an increased need for hydro-electricity, water storage, and flood
protection, it is assumed that a series of new dams will be built throughout
the world. Comparing existing design methodologies for arch-type dams,
model-based shape optimization can effectively reduce construction costs
and leverage the properties of construction materials. To apply the means
of shape optimization, suitable variables need to be chosen to formulate
the objective function, which is the volume of the arch dam here. In order
to increase the consistency with practical conditions, a great number of
geometrical and behavioral constraints are included in the mathematical
model. An optimization method, namely Genetic Algorithm is adopted
which allows a global search.

Traditional optimization techniques are realized based on a deterministic
approach, which means that the material properties and loading conditions
are assumed to be fixed values. As a result, the real-world structures that
are optimized by these approaches suffer from uncertainties that one needs
to be aware of. Hence, in any optimization process for arch dams, it is nec-
essary to find a methodology that is capable of considering the influences
of uncertainties and generating a solution which is robust enough against
the uncertainties.

The focus of this thesis is the formulation and the numerical method for
the optimization of the arch dam under the uncertainties. The two main
models, the probabilistic model, and non-probabilistic models are intro-
duced and discussed. Classic procedures of probabilistic approaches un-
der uncertainties, such as RDO (robust design optimization) and RBDO
(reliability-based design optimization), are in general computationally ex-
pensive and rely on estimates of the system’s response variance and fail-
ure probabilities. Instead, the robust optimization (RO) method which is
based on the non-probabilistic model, will not follow a full probabilistic
approach but works with pre-defined confidence levels. This leads to a
bi-level optimization program where the volume of the dam is optimized
under the worst combination of the uncertain parameters. By this, robust
and reliable designs are obtained and the result is independent of any as-
sumptions on stochastic properties of the random variables in the model.



The optimization of an arch-type dam is realized here by a robust optimiza-
tion method under load uncertainty, where hydraulic and thermal loads are
considered. The load uncertainty is modeled as an ellipsoidal expression.
Comparing with any traditional deterministic optimization (DO) method,
which only concerns the minimum objective value and offers a solution
candidate close to limit-states, the RO method provides a robust solution
against uncertainties.

All the above mentioned methods are applied to the optimization of the
arch dam to compare with the optimal design with DO methods. The re-
sults are compared and analyzed to discuss the advantages and drawbacks
of each method.

In order to reduce the computational cost, a ranking strategy and an ap-
proximation model are further involved to do a preliminary screening.
By means of these, the robust design can generate an improved arch dam
structure which ensures both safety and serviceability during its lifetime.



Zusammenfassung

Aufgrund des erhöhten Bedarfs an Wasserkraft, Wasserspeicherung und
Hochwasserschutz wird davon ausgegangen, dass weltweit eine Reihe neuer
Staudämme gebaut werden. Vergleicht man bestehende Entwurfsmetho-
den für Staudämme vom Bogentyp, kann die modellbasierte Formopti-
mierung effektiv die Konstruktionskosten reduzieren und besser die Eigen-
schaften von Baumaterialien nutzen. Um die Algorithmen der Formopti-
mierung anzuwenden, müssen geeignete Variablen gewählt werden, um
einerseits eine Zielfunktion zu formulieren, hier das Volumen der Bo-
genstaumauer, andererseits Parameter gefunden werden, die eine flexible
Beschreibung der Bauform zulassen.

Um die Übereinstimmung mit den praktischen Bedingungen zu erhöhen,
sind ferner im mathematischen Modell und der Optimierung eine große
Anzahl von geometrischen und Verhaltensbeschränkungen enthalten. Für
das resultierende nicht-lineare, nicht-konvexe und restringierte Optimierungs-
problem wird eine globale Optimierungs-methode (ein genetischer Algo-
rithmus) vorgeschlagen.

Herkömmliche Optimierungstechniken werden auf der Grundlage eines
deterministischen Ansatzes realisiert, was bedeutet, dass die Materialeigen-
schaften und die Belastungsbedingungen als feste und bekannte Werte
angenommen werden. Infolgedessen leiden die realen Strukturen, die
durch diese Ansätze optimiert werden, unter Effekten von Unsicherheiten,
welches impliziert, dass die strukturelle Zuverlässigkeit mitunter nicht
garantiert ist. Daher ist es bei jedem Optimierungsprozess für Bogen-
staumauern notwendig, eine Methodik zu finden, die in der Lage ist, die
Einflüsse von Unsicherheiten zu berücksichtigen und eine Lösung zu en-
twickeln, die robust gegen natürliche Streuungen in Lasten sowie Materi-
alkennwerten ist.

Der Schwerpunkt dieser Arbeit liegt daher in der Formulierung und der
numerischen Optimierung einer Bogenstaumauer unter Unsicherheiten.
Verschiedene Ansätze, mit den Unsicherheiten umzugehen, werden dabei
vorgestellt, analysiert und miteinander verglichen. Die beiden Hauptmod-
elle, ein probabilistisches Modell und ein nicht-probabilistisches Modell
werden vorgestellt und diskutiert. Klassische Verfahren der probabilis-
tischen Optimierungen unter Unsicherheiten wie RDO (Robust-Design-
Optimierung) und RBDO (Zuverlässigkeits-basierte Designoptimierung)



sind im Allgemeinen rechenintensiv und beruhen auf Schätzungen der
Antwortvarianz und Ausfallwahrscheinlichkeiten des Systems. Stattdessen
wird als Alternative die robuste Optimierungsmethode (RO), die auf einem
nicht-probabilistischen Konzept basiert und mit vordefinierten Konfiden-
zniveaus arbeitet, vorgeschlagen. Dies führt zu einem zweistufigen Opti-
mierungsprogramm, bei dem das Volumen der Staumauer unter der ungünstig-
sten Kombination der unsicheren Parameter optimiert wird. Dadurch wer-
den robuste und zuverlässige Designs erhalten, und das Ergebnis ist un-
abhängig bezüglich zu treffender Annahmen über stochastische Eigen-
schaften der Zufallsvariablen im Modell. Die Optimierung eines bogenförmi-
gen Staudamms wird hier durch eine robuste Optimierungsmethode unter
Lastunsicherheit, bei der hydraulische und thermische Belastungen berück-
sichtigt werden, realisiert.

Im Vergleich zu einer traditionellen deterministischen Optimierungsmeth-
ode (DO), die nur den minimalen Zielwert betrifft und einen Lösungskan-
didaten in der Nähe von Grenzzuständen bietet, liefern die RDO, die RBDO
und RO-Methode robuste Lösung bezüglich Unsicherheiten.

Obwohl alle drei unsicherheits-orientierten Methoden zunächst ein Ziel
haben, die Zuverlässigkeit der Strukturen zu erhöhen, ergeben sich in
den Wegen zu den finalen Designs und den berechneten Formen Unter-
schiede, die in der Arbeit verglichen und analysiert werden, um die Vor-
und Nachteile jeder Methode herauszuarbeiten.

Um den Rechenaufwand zu reduzieren, sind eine Rangfolgestrategie und
ein Approximationsmodell erforderlich. Dadurch kann die robuste Kon-
struktion effizient eine verbesserte Bogenstaumauer erzeugen, die während
ihrer Lebensdauer sowohl Sicherheit als auch eine höhere Wartungsfre-
undlichkeit gewährleistet.
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Chapter 1

Introduction

1.1 Motivation
The historical development of arch dams progressed through the following five peri-
ods: the Roman arch dams (1st centuries BC and AD), the Mongol dams (14 and 15th
centuries), some advanced masonry dams in the early 19th century, the Austrailan con-
crete arch dams (1880-1896) and the modern arch dams at the beginning of the 20th
century (4). Generally, the modern arch dam is made of concrete and placed in a ”V”-
shaped valley. To efficiently carry the loads, arch dams are shaped to carry the loads
in a relatively smooth and uniform manner consisting of smooth upstream and down-
stream curves without corners. The shape of arch dams has changed from shapes that
look more like thin gravity dams with straight segments for the upstream and down-
stream faces to curved upstream and downstream faces to minimize cantilever tensile
stresses.

The structure of the arch dam utilizes the upstream curvature to transfer the water pres-
sure to both sides of the valley. At the same time, the water pressure presses against
the arch, compressing and strengthening the structure. These particular characteris-
tics make the arch dam thinner than any other type of dam, and more economically
and practically fit for those projects with high demands on a dam’s height. Conse-
quently, choosing an appropriate dam design has significant influence on the economy
and safety of the arch dam.

Traditionally, the design of an arch dam is realized by trial and error. To obtain a bet-
ter shape, the designer should select several alternative schemes with various patterns
and modify them to obtain a number of feasible shapes. The best shape, satisfying the
demands of the design specifications, is selected as a final design. The results, how-
ever, are not necessarily optimal even after a long time of analysis and calculation. A

1



1.1 Motivation

huge advancement came with the invention of shape optimization techniques. These
techniques not only provide a more accurate design with improved efficiency but also
substantially reduce the amount of construction material required.

The use of efficient optimization tools leads to a higher quality of product and im-
proved functionality. Most of the design results are realized through deterministic
optimization techniques. However, it is known that uncertainties exist in engineering
systems due to variations which cannot be determined. The task of identifying these
uncertainties during optimization has increasingly received extensive attention. Com-
pared to conventional deterministic design methods, which only consider the nominal
values of parameters neglecting the uncertainties involved in the structural system, the
methods considering uncertainties have advantages in prolonging the structural service
life and reducing the maintenance costs.

The methods that take the parameter uncertainties into optimization have been de-
veloped in the last decades. They are basically classified into two kinds of models:
Probabilistic model and non-probabilistic model. For the probabilistic model, the un-
certain data are assumed to be random obeying a known or a partially known proba-
bility distribution. The corresponding optimization problems concern the generations
of the optimized results under the probability constraints evaluated by the reliability
analysis,(often referred as the reliability-based optimization (RBDO)) (5,6,7), or aim
at minimizing the variations of structural performance (often known as robust design
optimization (RDO)) (8,9,10) .

In contrast, the method based on the non-probabilistic model, also named as the robust
optimization (RO) (11,2), considers the uncertainty as a parameter within an uncertain
data set U. The RO method focuses on searching out an optimal design candidate rela-
tively insensible to the uncertainty data set. If the uncertainties existing in the structural
system can be well considered, the acquired arch dam design not only reduces the ma-
terials required but also increases the lifespan of the structure.

The traditional research dealing with data uncertainty in optimization is sensitivity
analysis; Taguchi (12) introduced the concept of parameter design which is to reduce
variation in performance by reducing the sensitivity of engineering designs to sources
of variation rather than controlling the sources. Fiacco (13) and Sobieski (14) et al.
provided methods for evaluating sensitivities of optimal objective function and opti-
mal design to changes in design variables and parameters that were kept constant dur-
ing optimization. Beltracchi and Gabriele (15) presented a method based on recursive
quadratic programming to estimate sensitivity without having to evaluate the second
deviation of the objective function.
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In recent years, there is a burst of application of RO into structural optimization, such
as Sun et al. (16) described a design in sheet metal forming using robust optimization,
Kanno (17) and Guo (18) realized a bar truss structure’s optimization under uncertain-
ties with RO methods. More works on the applications of the RO method can be found
in (19,20,21).

1.2 Literature Review

1.2.1 General Optimization of Arch Dams
Extraordinary efforts on arch dam optimization have begun from the late 1960’s. There
are several reasons for the prosperous application of optimization methods into arch
dam design. Firstly, the reduction of weight is essential for arch dam design, and var-
ious design conditions can be involved as design constraints during the optimization
process. Secondly, the finite element method can be exploited in structural optimiza-
tion, the analysis of structural performance can be evaluated precisely and efficiently.

In the early research investigation of arch dams (22), it mainly focused on dealing with
membrane-type solutions only concerning a single, simple loading condition. Based
on this assumption, the acquired structure was venerable to resist against the real-world
loading environment. Later, Rajan (23); Mohr (24) et al. considerably developed mem-
brane shell theory-based solutions. When Sharpe (25) first proposed the mathematical
programming of the optimization problems, the Finite Element Method (FEM) (26,27)
was introduced to analyze the structural stress state, and sequential linear program-
ming method was involved in searching for the optimum shape design of an arch dam
under static loads.

In the optimization, the arch dam is described by three-dimensional 8-node isopara-
metric hyper-elements, the design variables are the geometrical parameters of these
elements, and the objective function is the dam volume. Other similar works are men-
tioned in (28) based on the neural network approach to the definition of near-optimal
arch dam shape. Nevertheless, one of the most critical investigations in the field of
shape optimization of concrete arch dams was carried out by Bofang (29,30) et al.
since the middle 1970’s. The geometrical model used by Bofang is a continuous, ra-
tional and practical model and thus could draw the interests of many researchers. It is
the basis of the majority of later works in the field of shape optimization of arch dams.

Mathematical models for both single curve and multi-curves are developed to find out
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the optimum designs of arch dams at the given boundary conditions and constraints.
Later, with the development of heuristic algorithms (31),such as genetic algorithm
(GA) (32), particle swarm optimization (PSO) (33), Honey-bee mating optimization
(HBMO) (34) etc., it became popular to use these new methodologies in the optimiza-
tion of arch dams to obtain the optimum designs (35,36). However, heuristic algorithms
are computationally less efficient in comparison to the gradient-based methods, which
provide the possibility to find global optimum solutions.

1.2.2 Realiability-Based Design Optimization (RBDO) Method
By 1960, the concept of RBDO was applied to structural weight minimization for a
specified reliability cost (37). The early work of Freudenthal (38) and the subsequent
development by Ronay and Freudenthal (39) provided the reliability bases of structural
analysis and design. With these as the foundation, Cornell (40) formulated bounds
on the reliability of structural systems, and Moses (41,42) et al. presented methods
for incorporating reliability analysis into the optimization design of a structural sys-
tem. With the development of computer science, the reliability analysis was applied to
optimization methods. Since 1973, the RBDO method becomes matured and is suc-
cessfully used in many real-life engineering applications (7,43,44).

RBDO involves the evaluation of probabilistic constraints using the reliability index
or the performance measure. For acquiring the reliability index, many available tech-
niques, such as Monte Carlo Simulation, first- and second-order reliability methods (
45) can be used. Hasofer (46) developed a commonly used procedure for the calcula-
tion of the reliability index. The calculation of the reliability index often require large
amounts of evaluations of the limit state functions. To solve the computation prob-
lem caused by the evaluation amounts, Bucher (47) proposed a response surface model
(RSM) to represent the system behavior. Based on the theory of response surface, Liu
and Mose (48) developed a reliability analysis program for aircraft structural systems
combined the sequential RSM with Monte Carlo importance sampling. Liaw and De-
vries (49) described a reliability-based optimal design process by integrating reliability
and variability analyses with design optimization.

1.2.3 Robust Design Optimization (RDO) Method
The robust design optimization method is to reduce the variability of structural perfor-
mance caused by regular fluctuations rather than of the safety in the extreme events.
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This character makes the design candidates less sensitive to the variation of the design
parameters. This method has been succeeded applied to all kinds of structural designs
considering uncertainties. With the introduction of the multi-objective function, which
is composed of mean and standard deviation of the objective function due to variations
(50), both objective formulations of robust design and constraints are defined, and the
framework is developed.

Modeling the robust design optimization and the application are widely studied, as
a consequence of the increased power of computation brought by computers. A lot of
successful applications of the RDO methods can be found in the literature from (8,9,51).
In general, the RDO is an issue related to how to better model a design’s performance
with stochastic data models when making trade-offs between the mean value and vari-
ance attributes.

1.2.4 Robust Optimization (RO) Method
Stochastic problems are often very complicated, requiring overly simplistic assump-
tions in order to obtain a closed form of solutions. It is particularly true of many
engineering problems, where we cannot get enough information to build a precise
stochastic model. Hence, the robust optimization based on non-probabilistic models
should be developed to satisfy this requirement.

The first work to consider the robust programming goes back to 1970s (52). In next
subsequent decades, Taguchi (53) described the concept of robust design, which is a
method for improving the quality of a problem through minimizing the effect of the
causes of variation, ignoring the causes. As a non-probabilistic but bounded uncer-
tainty model, Ben-Haim (54) established the convex approach. Pantelides and Ganz-
erli (55) applied this method to the robust optimization of a truss structure under stress,
displacements, and buckling constraints. Elishakoff (56) proposed a methodology for
structure optimization under uncertainties but with interval bounded load, and the prob-
lem is solved by checking the vertices of the load-uncertainty domain. Lombardi (57)
used a two-step technique for non-probabilistic robust optimization of truss structures.

Since 2000, the RO area revived the development of theory and applications. Ben-Tal
and Nemirovski (19) contributed to the development of a unified methodology of the
robust counterpart of a broader class of convex optimization problems and applied it
to the truss structure. Calafiore (58) proposed a method for finding the ellipsoid bound
of the solution set of uncertain linear equations. Other efforts on the applications of
the RO method could be seen in the works: Sun and Li et al. (16) described a design

5



1.2 Literature Review

in sheet metal forming using robust optimization, Kanno and Takewaki (17) developed
a sequential semidefinite program to do robust design of truss structures under load
uncertainty, and Guo et al. (18) realized a bar truss structure’s optimization under un-
certainties with a proposed confidence formulation, etc.

1.2.5 Techniques Used in Optimization Procedure
1.2.5.1 Metamodel Approach

The simulation for the optimization of arch dams concerning the uncertainties is a
computationally expensive program, and it becomes impractical to rely exclusively on
simulation codes for design optimization. A superior choice is to use the approxima-
tion models, also referred to metamodels, to save the total amount of simulation time
by reducing the number of FEM simulations.

Lots of studies have been conducted on the application of various metamodeling tech-
niques. Jin et al. (59) used multiple modeling criteria and multiple test problems to test
the metamodels, Sherali (7) and Lee (60) provided the proofs that the Kriging meta-
modeling technique was considered to be a more suitable approximation model. Jin (
59) applied and compared various metamodels on the application and accuracy for the
optimization under uncertainties. The results showed that metamodeling techniques
offered a promising method for the optimization under uncertainties.

1.2.5.2 Adaptive Kriging Monte Carlo Simulation (AK-MCS)

For the RBDO method, the reliability analysis is especially crucial during the opti-
mization using this method. According to (59), Kriging as metamodeling technique
is considered to be a more suitable approximation method than the response surface
method since the former methods can provide a more accurate prediction. In this
research work, the adaptive built Kriging metamodel combined with Monte Carlo sim-
ulation is adopted to complete the reliability analysis (61).

This method is known as adaptive Kriging Monte Carlo simulation (AK-MCS) (62).
The process of AK-MCS is summarized as: Firstly use Kriging metamodel to predict
the value of the limit-state function with the experimental design samples. Then, an
adaptive experimental design is introduced to increase the accuracy of the surrogate
model. Finally, the Monte Carlo method is applied to evaluate the failure probability.
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1.3 Objectives of the Dissertation
The goal of the shape optimization of an arch dam is to search for an economical, ro-
bust and reliable design. Through the literature survey, it can be seen that limitations
and drawbacks are existing in the previous work. Therefore, there is a potential to im-
prove some of them. As mentioned above, the commonly used optimization design is
a deterministic optimization procedure without considering the uncertainties existing
in the structural analysis system, such as material properties, loading conditions, and
construction procedure, etc.

Reviewing of the available literatures on the optimization techniques, the goal of this
work is to conduct an in-depth analysis of applying existing techniques to the opti-
mization of the arch dams under uncertainties, and compare these methods with de-
terministic optimization methods through comparing the acquired optimized designs.
Through this research, the following objectives are expected as:

1. Reducing the computational cost

- The optimization procedure is performed based on a large structure with
complex mechanical properties. The shape optimization itself for such a
big project is a computationally expensive challenge. If the uncertainties
are involved in the optimization procedure, even higher demand for compu-
tational cost is required. It is because the evaluations of both the objective
function and constraints are more costly under uncertain conditions. An
appropriate and efficient technique for coping with uncertainties in the op-
timization procedure should, therefore, be used.

- A ranking strategy and approximation model are involved in the shape opti-
mization procedure to do a preliminary screening. The Kriging Metamodel
will be adapted to approximate the volume of the arch dam and the tensile
stress at the point in the structure where possibly suffered the maximum
tensile stresses.

2. The optimization under uncertainties with probabilistic model
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- One optimization approach of the probabilistic model under uncertainties
used in this work is the RBDO method with predefined distributions of un-
certainties, and the realization procedure will be proposed. The reliability
index is involved as a constraint to offer a good judgment on both the pre-
diction and evaluation of the arch dam’s safety.

- The success of reliability analyses relies on the accuracy of the modeling.
The traditional Monte Carlo simulation can offer a proper evaluation, but it
requires a large number of samples to reduce the error of simulation. The
Adaptive Kriging Monte Carlo simulation (AK-MCS) will be used to do
the reliability analysis.

- The uncertainty is described by probabilistic distribution functions, and the
corresponding optimization problem can also be expressed towards min-
imizing the mean value of the objective function and the variance of the
structural responses (Robust design and optimization (RDO). It is also at-
tractive to be a framework for searching out the robust arch dam design
candidate.

- The structural responses of both the objective function and implicit con-
straints must be evaluated by running a computationally expensive FEM
calculation. In order to acquire the converge of the optimization algorithm,
large numbers of FEM simulations must be performed. Therefore, an ef-
ficient methodology should be developed to reduce the costs from FEM
simulations.

3. Robust optimization

- The robust optimization method under an unknown-but-bounded uncer-
tainty set uses the framework called worst-case design and optimization.
The purpose of the RO method is to minimize the cost of the design while
ensuring the safety of the structure under the worst combination of uncer-
tain parameters.

- The traditional approach for the solution of the RO problems cannot guar-
antee a feasible and global optimal design. A confidence formulation for
the robust optimization proposed by Guo et al. (18) will be adopted to solve
the robust optimization of an arch dam.
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4. Finally, the comparison of tensile stresses, displacements, and von Mises stresses
among DO-, RBDO-, RDO- and RO-model would be performed to see the dif-
ferences in the optimization considering the uncertainty factors. Also, through
the comparison of these optimized arch dam models, we need to know about the
advantages and disadvantages of RBDO-, RDO- and RO-model when solving
the problems under uncertainties.

1.4 Dissertation Organization
From the previous sections, some key issues that will be addressed in this research are
identified through an introduction to the structural optimization under uncertainyies,
and the objectives of this work are clarified. The following parts of the dissertation are
divided into four chapters.

Chapter 2 begins with the description of the geometry of the arch dam. The shape
of an arch dam is determined by central vertical section and the horizontal sections
at selected elevations. Altogether with the describing functions of these sections, the
design variables are determined. Combined with the FE analysis method, an improved
optimization procedure involving ranking strategy and approximation model is formed
and applied to do a general shape optimization of an arch dam, which is also called as
deterministic optimization of an arch dam.

Chapter 3 realizes the optimization under uncertainties with probabilistic model. There
are two kinds of approaches: one is the RBDO method, and the other one is the RDO
method. The mathematical models of RBDO and RDO would be introduced first and
followed by simple examples to clarify the ideas and differences to solve the optimiza-
tion problem considering uncertainties with these two different methods. Then, the
shape optimal design candidates of the arch dam are acquired through the RBDO and
RDO methods, respectively.

Chapter 4 provides a non-probabilistic approach for searching out the feasible op-
timal design suffering from the uncertainties. Generally, this method is called ro-
bust optimization (RO). A confidence semi-defined programming formulation with
an unknown-but-bounded uncertainty data set is adopted as a framework to solve the
shape optimization of an arch dam under uncertainties. Similar to Chapter 3, a simple
mechanical example is tested to show the working procedure of the RO method before
the application into searching out the feasible design candidate of an arch dam.

In Chapter 5, the differences of the DO-, RBDO-, RDO-and RO- model are compared
to see the influence of uncertainties on arch dam design. A discussion on these different
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approaches for the shape optimization of arch dam under uncertainties is given, and the
advantages and shortcomings of these approaches are reviewed. Then, the work that
has been presented in this dissertation is summarized, and the main contributions of
this research are outlined. Finally, some recommendations for future work in this field
are suggested.
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Chapter 2

General Description of the Shape
Optimization of Arch Dams

2.1 Introduction
Shape optimization of an arch dam is a challenging problem due to the nonlinear prop-
erties of both objective function and constraints during the optimization process. It is
well known that the design of shape has a significant influence on the economy and
safety of an arch dam. Traditionally, the design of arch dams is based on engineering
experiences and code guidelines. Generally, arch dams are designed by trial and error,
that is, an initial shape is given and then analyzed. To get a feasible and better shape,
several forms are proposed and analyzed, from which one is selected. The results,
however, are not necessarily optimal even after a long time of analysis and calculation.

To improve the efficiency and accuracy of the arch dam design, optimization meth-
ods are introduced to find the design candidate. Some progressed achievements have
been made in the past years, and methods of shape optimization have been applied with
success to many practical arch dams, mainly due to the developments of sophisticated
computing techniques and the extensive applications of finite element method.

In this study, the shape optimization problem is studied for an asymmetric arch dam.
The Section 2.2.2 gives the description of the shape of the arch dam, then, the Section
2.2.3 and 2.2.1 define the constraints and objective function. The analysis method is
the Finite Element (FE) method which is described in Section 2.2.4. In order to im-
prove the optimization efficiency and reduce the computation cost, the approximation
model is discussed in Section 2.2.5.1, and then, the optimization procedure is con-
cluded. For demonstration, in Section 2.3, an arch dam model is optimized to see the
difference brought by the optimization method to arch dam design.
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2.2 General Description of Methods and Models

2.2.1 Objective Function
The purpose of the optimal design is to search out safe, reliable, economical and rea-
sonable shapes of arch dams. In this study, there is no purpose to take all the factors
affecting the economics into consideration. The following factors are assumed to be
fixed; the height of the dam and the construction material. Now, the objective is to
minimize the concrete volume, which will lead to the minimization of excavation cost
and concrete material cost.

The objective function of this problem can be expressed as the calculation of the dam’s
volume with a series of constraints. The corresponding optimization problem can be
formulated as follows:

minimize: f (x), x ∈ Rn

subject to: gi(x)≤ 0 (i = 1,2,3,4, . . .), (2.1)
lb� x� ub,

where f (x) is the cost function, gi(x) is the ith constraint, lb,ub are respectively lower
and upper boundaries of x. The vector x is the design variable vector.

Generally, the objective function of the shape optimization is either defined to ensure
minimum stresses of the structure or to ensure the minimum volume of the dam body.
In this case, for the shape optimization, the objective function is determined by the
minimum volume of the dam. In the coordinate (x,y,z), the function can be written as:

f (x) = Vol(x) =
∫ ∫

|yu(x,z)− yd(x,z)|dxdz. (2.2)

To tackle the current problem which involves nonlinear constraints and nonlinear ob-
jective function, the application of penalty-function method appears to be suitable since
it reduces the constrained optimal problem to a simple and convenient unconstrained
problem.
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Using an exterior penalty formulation, the new unconstrained objective function f̃
reads as follows:

f̃ (x) = f (x)+δk

m

∑
i=1

[max0,gi(x)]2. (2.3)

Where δk is a penalty factor, which can be written as ascending series by increasing
iteration number k, and m is the number of constraints.

2.2.2 Design Variables for the Arch Dam
Many factors are influencing the shape of an arch dam, e.g., the mechanical properties
of construction materials, the loads acting on the structure or the shape of the valley,
where the dam is built. These factors undoubtedly affect the shape of the arch dam and
its structural strength and stability. Therefore, proper variables need to be determined
to parameterize the dam’s shape and to allow a flexible and efficient description of the
dam’s form.

The shape of the arch dam is determined by the central vertical section and the hori-
zontal sections at selected elevations. There are different ways, such as (14,22,36), etc.,
to define the shape of the vertical and horizontal sections: (1) Determine the functions
of the upstream and downstream curves; (2) Determine the curves of the upstream
boundary and its sectional thickness; (3) Determine the curve function of the central
line and the corresponding sectional thickness. In this study, the vertical section is de-
termined by the curve of upstream and the thickness of the section; and the horizontal
sections are described by central curves and their thickness at selected elevations. The
parameters which determine the shapes are called design variables.

The upstream curve of the vertical section (seen in Fig.2.1(a)) can be determined by a
smooth function where polynomials of n-order along the height direction (z coordinate
direction as shown in Fig.2.1(a)) has been proven to be a good choice. Polynomials
provide a flexible way to represent the shape with a very limited number of variables.
The curve for the upstream side can be written setting n = 3 by a cubic polynomial
y(zi) = a0 + a1zi + a2z2

i + a3z3
i for different heights zi. Fig.2.1(a) shows few relation-

ships between the height, the upstream curve and resulting coefficients for the struc-
ture. According to these relationships, the parameters of the upstream curve can be
found by regarding the following equations:
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Figure 2.1: Description of the Shape of Arch Type Dam.

y(z1 = 0) = 0,

y(z2 = αH) = −β1t3, (2.4)

y(z3 = H) = −β2t3,
dy
dz

(z2 = αH) = 0.

Here t3 is the bottom thickness of the dams central vertical section; α,β1,β2 are co-

efficients obtained according to the designers’ experience, and with these values, the

cubic polynomial description of the upstream curve can be acquired. In the same

way, the function of the thickness of the central vertical section can be described by

tc(zi) = b0 +b1zi +b2z2
i +b3z3

i , where parameters are linked as follows:

tc(z1 = 0) = t1,

tc(z2 =
1

2
H) = t2, (2.5)

tc(z3 = H) = t3,

in which, t1, t2, t3 are the thickness of the dam at different heights, here are 0, 1
2H,H.

Generally, the horizontal arch section can be described by upstream and downstream

horizontal curves which are expressed respectively in the form of quadratic polynomi-

als. For the sake of simplicity, the center quadratic curve and the dam thickness along
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the horizontal direction are used to describe these curves (Fig.2.1(b)). Any quadratic
function can be written in the following form:

x2 = ay2 +by, (2.6)
tanφ = dy

dx =
2x√

4ax2+b2 , (2.7)

where the parameter a and central angle φ are obtained from the quadratic functions
of coordinate z:

ai = ∑
2
j=0 c jz

j
i i = 1,2,3, (2.8)

φi = ∑
2
j=0 γ jz

j
i i = 1,2,3. (2.9)

The coefficients c j,γ j(i = 1,2,3) can be derived according to the values of ai,φi(i =
1,2,3) at control points (z1 = 0,z2 =

1
2H,z3 = H).

Based on the above, the design variables are selected and listed in the following vector:

x = [α,β1,β2, t1, t2, t3,φ1,φ2,φ3,a1,a2,a3]
T . (2.10)

2.2.3 Constraints
The common causes of failure of arch dams as described in literature and design guide-
lines are;

1. ultimate stress exceeds allowable strength in structure;

2. overhanging of the structure;

3. sliding of the whole dam section or a monolith;

These factors are of major importance in dam design and must be identified in the
design of arch dams to guarantee the structural safety, serviceability, and construction
requirements. Hence, the corresponding requirements for these factors are treated as
constraints introduced in the design of arch dams, and they are stability constraints,
stress constraints, and geometric constraints respectively. According to the article (30),
the selected constraints gi(x) used in these research papers are shown as below:
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1. Stress constraint
For the assurance of safety condition during lifetime, the maximum stress of an
arch dam must be less than the prescribed maximal allowable stress. The stress
constraints can be expressed as follows:

g1 =
σ1
[σ1]
≤ 1, (2.11)

g2 =
σ3
[σ3]
≤ 1. (2.12)

In Eq.2.11 and Eq.2.12, gi are the constraints, [σ1], [σ3] are respectively the max-
imum allowable tensile stress and the maximum allowable compressive stress.

2. Geometric constraint
For a conventional construction, the geometrical constraint is generally expressed
as the overhang degrees of upstream and downstream, which is represented by s.
The principle overhang degree[s] is equal to 0.3 (30), and depending on that, the
geometrical constraint is written as:

g3 =
s
[s]
≤ 1, (2.13)

where [s] is the maximum allowable overhang degree.

3. Slope stability constraint
The design for an arch dam must fulfill the requirement of the slope’s stability.
Consequently, the stability against sliding must be taken into consideration by
introducing the coefficients of sliding resistance, which is given by the sliding
resistance Ki. The constraint with respect to sliding can be written as:

g4 =
[Ki]

Ki
≤ 1, (2.14)

where the [Ki] is the minimum allowable value of sliding resistance for the ith
point, and Ki is the coefficient of sliding resistance of ith point.

16



2.2 General Description of Methods and Models

2.2.4 Finite Element (FE) Analysis
2.2.4.1 Finite Element Mesh and Loadings

As illustrated in Fig.2.2, only the dam and foundation meshes are used. The founda-
tion mesh extension in horizontal directions is about the dam height at crest elevation,
whereas at the dam bottom it is extended 1.5 times of the dam height. The isopara-
metric element is selected, and the element used in the analysis is defined by 20 nodes
having three degrees of freedom per node. It can tolerate irregular shapes without as
much loss of accuracy and have compatible displacement shapes which are well suited
to curved model boundaries.

Considering the mesh size has a great influence on the stress responses. Consequently,
a series of mesh sizes were tested to find the most useful size with accuracy, but without
costing more time by generating too many elements. The von Mises stress variation
tendency (Fig.2.3), which was acquired by calculating the maximum and minimum
stresses of an arch dam model under mechanical state, shows that the reasonable mesh
size for this study of dam models is to divide the dam body into 1536 elements.

Certain loads are accurately predetermined with regard to their distribution and mode
of action. In this study, the loads are focused on the dead load and thermal load.

1. Dead Load
The shell structure of a dam body is subjected to the gravity loads, and the ac-
tion of the water pressure on the upstream face also referred to as the reservoir
hydrostatic pressure, is the main destabilizing force acting on the arch dam.

Another kind of dead loads is the uplift pressure generated from the headwa-
ter and tailwater exists through cross sections within the dam at the interface
between the dam and foundation. These loads, shown in Fig.2.4, are unavoid-
able and should be identified as universally applicable and prime importance to
all types of dams.

2. Thermal Load
Thermal load is an internal load generated by temperature differences associated
with changes in ambient conditions. The cyclic variation of air temperature and
solar radiation on the downstream face and the reservoir water temperature on
the upstream face affect the distribution of the temperature throughout the dam
body, leading to the variations in degrees of expansion. Due to this expansion,
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Figure 2.2: Finite Element Mesh Model of the Arch Dam under Study.

(a) Maximum von Misses Stress Varia-
tion Tendency with the Change of Element
Number.

(b) Minimum von Misses Stress Varia-
tion Tendency with the Change of Element
Number.

Figure 2.3: Stress Variation Tendency.
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Figure 2.4: Dead Loads Acting on Dams.
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Figure 2.5: 20-node Isoparametric Solid Element.

stresses are generated creating the potential for significant cracking in the dam
body. The concerns of cracking are that it affects the durability, stresses state,
and the structural safety of the arch dam.

2.2.4.2 Static Stress Analysis with the FE method

To achieve a high degree of accuracy on the calculation of mechanical stress and strain
in the three-dimensional arch dam structure by means of a finite element method, the
20-node isoparametric solid element (Fig.2.5) is used for the calculation process. The
term ’isoparametric’ means that the geometry and displacement fields are specified in
parametric form and interpolated with the same functions. The isoparametric formula-
tion allows elements to be created that are nonrectangular and have curved sides.

The arch dam structure is divided into isoparametric elements with Ne nodes for
each element, and determined by the coordinates (x,y,z) of the nodes. Unlike the struc-
ture body, the isoparametric element is described by non-dimensional local coordinates
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ξl,ηl,ζl(−1≤ ξl,ηl,ζl ≤ 1). Both coordinates and displacements are interpolated with
the same shape functions:

x =
Ne

∑
i=1

Nixi = N1x1 +N2x2 + · · ·+NNexNe ,

y =
Ne

∑
i=1

Niyi = N1y1 +N2y2 + · · ·+NNeyNe , (2.15)

z =
Ne

∑
i=1

Nizi = N1z1 +N2z2 + · · ·+NNezNe.

(2.16)

u =
Ne

∑
i=1

Niui = N1u1 +N2u2 + · · ·+NNeuNe,

v =
Ne

∑
i=1

Nivi = N1v1 +N2v2 + · · ·+NNevNe , (2.17)

w =
Ne

∑
i=1

Niwi = N1w1 +N2w2 + · · ·+NNewNe .

Here x,y,z are point coordinates, xi,yi,zi are node coordinates, u,v,w are displacements
at the point with local coordinates ξl,ηl,ζl; and ui,vi,wi are displacements at the nodes.
According to the arrangement of the nodes as shown in Fig.2.5, the shape functions are:

Ni =
1
8(1+ξlξli)(1+ηlηli)(1+ζlζli),

i = 1,2,3, · · · ,8
Ni =

1
4(1−ξ 2

l )(1+ηlηli)(1+ζlζli),

i = 9,10,11,12
Ni =

1
4(1−η2

l )(1+ξlξli)(1+ζlζli), (2.18)
i = 13,14,15,16

Ni =
1
4(1−ζ 2

l )(1+ξlξli)(1+ηlηli),

i = 17,18,19,20
(2.19)

In the above relations ξli,ηli,ζli are the values of local coordinates at nodes.

21



2.2 General Description of Methods and Models

The strain vector {ε}is given as:

{ε}=



εx
εy
εz
γxy
γyz
γzx


= {ε}=



∂u
∂x
∂v
∂y
∂w
∂ z

∂u
∂y +

∂v
∂x

∂v
∂ z +

∂w
∂y

∂w
∂x +

∂u
∂ z


. (2.20)

According to Eq.2.17-2.20, the strain can be acquired in terms of nodal displacements:

{ε} = [B]{δ}e , (2.21)

[Bi] =



∂Ni
∂x 0 0
0 ∂Ni

∂y 0

0 0 ∂Ni
∂ z

∂Ni
∂y

∂Ni
∂x 0

0 ∂Ni
∂ z

∂Ni
∂y

∂Ni
∂ z 0 ∂Ni

∂x


,


∂Ni/∂ξl
∂Ni/∂ηl
∂Ni/∂ζl

 = [J]


∂Ni/∂x
∂Ni/∂y
∂Ni/∂ z

 .

The transformation of integrals from the global coordinate system to the local coordi-
nate system is performed with the use of the Jacobian matrix:

dv = dxdydz = |J|dξldηldζl, (2.22)

with equations as mentioned earlier, the finite element equilibrium equation can be
written as:

[kg]{δ}e =
{

Pg
}e

. (2.23)

The [kg] is the elemental stiffness,
{

Pg
}e is the elemental nodal force, which is com-

posed by equivalent body force
{

Pg
}e

qv , surface force
{

Pg
}e

qs element matrices and
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2.2 General Description of Methods and Models

vectors are:

[kg] =
∫ 1
−1
∫ 1
−1
∫ 1
−1 [B(ξl,ηl,ζl)]

T [D][B(ξl,ηl,ζl)]|J|dξldηldζl, (2.24)

body force: {Pa}e
qv
=
∫ ∫ ∫

[N]T {qv}dv, (2.25)

surface force: {Pa}e
qs
=
∫

S [N]T {qs}dS, (2.26)

thermal strain: {Pa}e
T =

∫ ∫ ∫
[B]T [D]{εT}dv. (2.27)

Here, the matrix [D] is defined as the elastic matrix, {qv} is the body force,{qs} is
the surface force working on the boundary S, εT is the strain caused by the change of
temperature.

The global structural balance equation can be written as:

Kgδ = Pg, (2.28)

in which, the [Kg] is the global structural stiffness, {δ} is the vector consisted of all the
nodal displacements.

The state of displacements at any point is obtained in terms of nodal displacements.

Then the stresses are calculated using Hook’s law:

{σ}e = [D] [B]{δ}e . (2.29)

The maximum and minimum stresses which are also treated as tensile and compressive
stresses that may be developed at any point within the dam are usually denoted as σ1
and σ3 respectively (as shown in Fig.2.6).
The two principal stresses σ1 and σ3 are the roots w.r.t. ω of the polynomial:

det(σ −ωI) = 0, (2.30)

stress tensor: σ =

 εx γxy γxz
γyx εy γyz
γzx γzy εz

 ,

I3 =

 1 0 0
0 1 0
0 0 1

 .
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2.2 General Description of Methods and Models

Figure 2.6: Elemental Stress State.

2.2.4.3 Thermal analysis with the FE method

The analysis of the arch dam’s thermal behavior is a heat conduction problem. For a
cubic elemental volume dv = dxdydz, which is part of the structural body, under the
influence of temperature distribution inside the body, heat fluxes will occur through the
six corresponding surfaces of the cube as shown in Fig.2.7. The heat flow is following
the Fourier’s law of heat conduction, given by;

qx =−kxx
∂ 2T
∂x2 ,

qy =−kyy
∂ 2T
∂y2 , (2.31)

qz =−kzz
∂ 2T
∂ z2 .

Here T is the temperature, qx,qy,qz are the heat flow through the unit area in three
directions, kxx,kyy,kzz are the respective thermal conductivities. In this work, the ma-
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2.2 General Description of Methods and Models

Figure 2.7: Heat Fluxes through a Cubic Solid Element.

terial is assumed to be homogeneous, then kxx = kyy = kzz = k.

According to the law of conservation of energy, the fundamental equation of heat
transfer has the following formation:

kxx
∂ 2T
∂x2 + kyy

∂ 2T
∂y2 + kzz

∂ 2T
∂ z2 +Qin = ρsc

∂T
∂ t

(2.32)

Here, ρs is the density of the material, c is the specific heat and Qin is the internal heat
generation rate per unit volume. In the arch dam analysis, there is no heat source in
the dam body, and therefore the Qin is assumed to be zero. In a static situation, the
temperature will not change with time, and the heat transfer function can be written as:

kxx
∂ 2T
∂x2 + kyy

∂ 2T
∂y2 + kzz

∂ 2T
∂ z2 = 0. (2.33)

The thermal boundary of an arch dam is separated into two parts (see Fig.2.8) the
boundary between water and dam surface (S1) which is treated as Dirichlet boundary
condition (boundary condition of the first type) and the temperature on the boundary
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2.2 General Description of Methods and Models

Figure 2.8: The Thermal Boundaries of an Arch Dam.

of the body is prescribed as:

T (t,z) = Tw(t,z) on S1, (2.34)

which means the temperature of the dam’s surface is equal to the temperature of the
water Tw. The Tw(t,z) is a known temperature function of water changing in terms of
height. In this study, the Tw is assumed to be a constant.

The second part is the boundary between the dam surface and air (S2) which expe-
riences a thermal interaction between the body and the surrounding fluid. The bound-
ary is considered as a control ’volume’ with zero thickness for an energy balance,
which means the ’volume’ cannot store the energy, and the heat entering the surface by
conduction has to leave outwards by convection. This boundary is called the Cauchy
boundary (boundary condition of the third type):

qxnx +qyny +qznz = βTc(T −Tc) on S2, (2.35)
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2.2 General Description of Methods and Models

where βTc is the convection coefficient, Tc is a known air temperature, n =
{

nx,ny,nz
}

is the outward normal vector of boundary surface.

According to the principle of variation, the thermal problem can be transferred to an
extreme functional problem. The functional form of the heat transfer problem is:

I(T )=
∫ ∫ ∫

Ω

aT

2

[(
∂T
∂x

)2

+

(
∂T
∂y

)2

+

(
∂T
∂ z

)2
]

dxdydz+
∫ ∫

S

βTc

cρs

(
1
2

T 2−TcT
)

ds,

(2.36)

in which the aT = k/cρs is the temperature conductivity for isotropic situations. The
solution is acquired by solving for the extreme minimum value of the functional equa-
tion:

δ I = 0. (2.37)

The arch dam structure is divided into ne finite elements, and the following relations
exist according to the divergence theorem;

I = ∑
ne
e=1 Ie, (2.38)

Ie =
∫ ∫ ∫

MΩ

{
aT
2

[(
∂T
∂x

)2
+
(

∂T
∂y

)2
+
(

∂T
∂ z

)2
]}

dxdydz (2.39)

+
∫ ∫

MS
βTc
cρs

(1
2T 2−TcT

)
ds,

∂ Ie

∂Ti
=
∫ ∫ ∫

MΩ
{aT

[
∂T
∂x

∂

∂Ti

(
∂T
∂x

)
+ ∂T

∂y
∂

∂Ti

(
∂T
∂y

)
+ ∂T

∂ z
∂

∂Ti

(
∂T
∂ z

)]
}dxdydz (2.40)

+
∫ ∫

MS
βTc
cρs

(
T T

Ti
−Tc

∂T
∂Ti

)
ds.

According to the the extreme value condition;

∑
∂ Ie

∂Ti
= 0. (2.41)

Shape functions Ni are used for interpolation of temperature at any point inside the
element regarding the nodal temperature {T}e:

27



2.2 General Description of Methods and Models

T (x,y,z) = [N1(x,y,z),N2(x,y,z),N3(x,y,z) · · · ]


T1
T2
T3
...

 (2.42)

= [N]{T}e

Differentiation of the temperature interpolation equation gives the following interpo-
lation relation for temperature gradients:


∂T
∂x
∂T
∂y
∂T
∂ z

=


∂N1
∂x

∂N2
∂x · · ·

∂N1
∂y

∂N2
∂y · · ·

∂N1
∂ z

∂N2
∂ z · · ·

{T}e = [B]{T}e . (2.43)

Applying Eq.2.43 to Eq.2.41, we derive the following relations:

∂ Ie

∂Ti
= ∑he

i jTi +∑qe
i jTi−ge

i Tc = 0, (2.44)

in which

he
i j =

∫ ∫ ∫
Mv aT

(
[Bi]

T [B j
])

dxdydz

qe
i j =

∫ ∫
MS

βTc
cρs

NiN jdS

ge
i =

∫ ∫
MS

βTc
cρs

NidS

 .

For the whole structure, the assembled finite element equations for heat transfer prob-
lem in this study is:

([H]+ [Q]){T}−{g}Tc = 0. (2.45)

2.2.4.4 Thermal-Mechanical Coupling

The numerical simulation of a thermal-mechanical coupling process is based on a com-
bination of these two systems. The material is assumed to be a homogeneous material
with linear thermal expansion. When the temperature changes from T0 to T , the ther-
mal strain is:

εT = αT (T −T0), (2.46)
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2.2 General Description of Methods and Models

in which the αT is the thermal expansion parameter. Then, the total strain in the cou-
pling system is obtained by integrating the thermal strain εT and the strain in the stress
field εs. Finally, the total strain becomes;

ε = εs + εT . (2.47)

2.2.5 General Optimization Procedure
Methods of shape optimization have been applied with success in many practical arch
dams. However, the optimization procedure of an arch dam is a computationally ex-
pensive procedure. The majority of computing time is used in the stress reanalysis of
the dam during the process of optimization. Hence it can be worthwhile to develop a
highly efficient method to solve this problem.

Some techniques have been proposed and applied to reduce the cost of the stress anal-
ysis. Schmit and Farshi (63) used the first-order Taylor’s series expansion method to
replace the traditional stress analysis procedure, and later, Bofang (30) continually de-
veloped a method called internal force expansion method to approximately approach
the structural stress analysis. These techniques exponentially created leaps in the di-
rection of reducing the calculation consumption. In this study, the Kriging Metamodel
is introduced to be an approximation model and an optimization ranking strategy is
introduced to improve the efficiency of the optimization process. For the deterministic
optimization of the arch dam, the procedure is sketched in Fig.2.9.

2.2.5.1 Kriging Metamodel

A suitable strategy for improving the efficiency of expensive computational optimiza-
tion problems of arch dam design is to utilize approximation models which are often
referred as metamodels to replace the expensive calculation model.

The research mentioned in (59), a study conducted on the accuracy of various meta-
modeling techniques under uncertainty, concludes that the Kriging metamodeling per-
forms well as an approximation model.

Kriging is an interpolation method with the ability to provide the best estimate value
of a random field (64,65). Its form can be written as:
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2.2 General Description of Methods and Models

Figure 2.9: The Optimization Flow Chart for the Arch Dam.
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ŷ =
k

∑
j=1

γ j f j(x)+Z(µ(x),R(x,x
′
,θ)), (2.48)

where γ j is an unknown coefficient, f j(x) is the basic function of the mean value of a
stochastic process, and Z(µ(x),R(x,x

′
,θ)) is assumed to be a stochastic process with

zero mean. In this work, Z(µ(x),R(x,x
′
,θ)) is expressed as a stochastic Gaussian pro-

cess with zero mean and unit variance. The probability space of the Gaussian process
is defined based on the correlation function R and correlation length θ .

The correlation function is a crucial ingredient for a Kriging predictor since it de-
scribes the similarities between the observations and the new points. It means that
close input points are expected to have similar outputs. It is characterized by the form
of R(x,x

′
,θ), where x is the prediction point, x

′
is the observation, and θ is a vector

containing a set of parameters. In the current stage, it is assumed that one element of
θ is used per dimension for notational clarity.

1. Analytic model of correlation function

- Triangular correlation function

Triangular correlation function - is one of the simplest correlation func-
tions as shown in Fig.2.10(a).

R(τ,θ) =
{

1−|τ|/θ if |τ| ≤ θ

0 if |τ|θ . (2.49)

Here τ is the distance between any two points in the domain.

- Exponential correlation function associated with a first-order auto-regressive
process:

Exponential correlation function is also widely known as Markov Corre-
lation function (shown in Fig.2.10(b)). It is very commonly used because
of its simplicity, and its simplicity since it renders a process where the
’future’ depends only on the ’present’ and not on the past. The Markov
correlation function has the following form:

R(τ,θ) = exp
{
−2|τ|

θ

}
. (2.50)
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Figure 2.10: Comparison of Three Types of Correlation Functions for
θ = 1.0.

- Gaussian correlation function

The Gaussian correlation function (shown in Fig.2.10(c)) is a mean square
differential, which means its derivative has finite variance and so level ex-
cursion statistics are more easily computed. The Gaussian correlation func-
tion has the following form:

R(τ,θ) = exp
{
−π

(
τ

θ

)2
}
. (2.51)

2. Correlation length
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2.2 General Description of Methods and Models

For simplicity, the correlation length θ is assumed to be isotropic in this work.
The correlation length θ is the distance within which points are significantly cor-
related. Mathematically, θ is calculated from following integration formula (66):

θ =
∫

∞

−∞

R(τ)d(τ) = 2
∫

∞

0
R(τ)d(τ). (2.52)

However, this formula is not convenient to be utilized in the real calculation
process. Generally, the correlation length θ is approximately acquired through
some simulation models.

(a) Cross-validation

Cross-validation is a method to estimate the expected level of how well a
model fits a data set that is independent of the data used to train the mode.
It combines the methods that fit to derive a more accurate estimate of model
prediction performance. With this estimation model, the correlation length
θ can be expressed as the following optimization process:

θ = argmin
N

∑
i=1

(ŷi−µi) , (2.53)

where ŷi is the prediction value of xi, and µi is the mean Kriging predictor.

(b) Maximum-Likelihood estimators

The Maximum-Likelihood (ML) estimators have some desirable statisti-
cal properties by finding the parameters which yield the highest likelihood
of actual observed data. The correlation length θ is acquired by solving the
following optimization problem based on the likelihood function:

θ = argmin
(

1
2

log(det(R))+
N
2

log(2πθ
2 +

N
2

)
). (2.54)

In this study, the random process is based on a Gaussian process, the Gaussian correla-
tion function is selected as the analytic model, and the correlation length θ is estimated
by the Maximum-Likelihood method where the results show well enough for the pre-
liminary analysis in the optimization. Here, we used programming UQLab (67) to
acquire the approximation model. Fig.2.11 and Table 2.1 give the comparison results
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2.2 General Description of Methods and Models

(a) The Approximation of Tensile Stress

with Kriging Metamodel.

(b) The Approximation of Dam Volume

with Kriging Metamodel.

Figure 2.11: Approximation with Kriging Metamodel.

Table 2.1: Approximation Model of Tensile Stress and Dam Volume

Samplings out− error

Tensile Stress Approximation LHS : 800 9.0534e−2

Volume Approximation LHS : 800 4.8018e−2

of tensile stress and dam volume approximation models.

2.2.5.2 Optimization method

For solving the optimization problems, there are two main concepts: One is local

method mostly based on gradients of objective functions, the other one is the global

optimization method. The following sections will discuss these two kinds of concepts

on optimization methods. The local optimum method mentioned here is the Newton’s

Method, and the global optimization method used to compare is the genetic algorithm

(GA) method.

1. Local Optimization Method

The local optimization algorithms are methods that make optimal decisions at

each step without attempting to acquire the best overall decisions. They are

gradient-based methods using the derivative information to guide the search pro-

cess. The direction of the negative gradient along with the objective function

decreasing the fastest is the most natural choice. The principle of the gradient
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2.2 General Description of Methods and Models

descent algorithm can be obtained by setting the searching direction and finding
an optimal step size. By using the gradient descent technique, it is guaranteed to
converge to a local minimum from any start point.

In the case of Newton’s method, the objective function f (x) is assumed to be
a twice differentiable function, and then the method utilizes both the first and
second partial derivatives of the objective function to find its minimum. The
search direction is −H(x)−15 f (x), the new point xk+1 is acquired by :

xk+1 = xk−H(x)−15 f (x), (2.55)

where the H(x) is the Hessian matrix of f (x). The Fig.2.12 is the flow chart of
Newton’s method, and the Fig.2.13 shows how this method works for the opti-
mization.

2. Global Optimization Method

Global optimization is distinguished from local optimization by its focus on
finding the maximum or minimum overall input values. The global optimiza-
tion method GA (genetic algorithm) is adopted in this work. The idea behind
GA is to find the global optimal solution searching region, mimicking the pro-
cedure of the gene genetics (68,69). Therefore, the variable x = (x1,x2, . . . ,xn)

T

should be encoded to chromosomes, such as binary encoding, which only con-
tain 0s and 1s.

In practice, the GA optimization procedure is s governed by the following steps:

(1) Generate random population of chromosomes;

(2) Evaluate how well each chromosome in the population fits the model;

(3) Create a new population by selecting two parent chromosomes, crossing over
the parents to form new offspring, then mutating the new offspring at each locus,
and placing the new offspring in the new population;

(4) If the new population satisfies the final conditions, this one would be the
optimization selection, otherwise go back to step(2) until arriving at the best
population;
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2.2 General Description of Methods and Models

Figure 2.12: Newton’s Method Procedure.
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Figure 2.13: Geometric Interpretation for Newton’s Method.

In many nonlinear optimization problems, the objective function f has a large num-
ber of local minimum or maximum values, which will lead the local methods to poor
performance when compared with global methods. In order to test this theory, we ap-
ply the following minimum optimization problem with the objective function f (x) =
xsin(x)+ 2xcos(2x). Fig.2.14 gives the optimum results with different initial points
for local optimization method, and Fig.2.15 gives the optimum results for the global
optimization method.

From Fig.2.14 and Fig.2.15, it can be seen that the local optimization is a point
which has the best objective value of any possible point in its neighborhood. With
different initial points, the local optimization would lead to different local optimum
points. However, the global optimization method only focuses on finding the best ob-
jective value over the entire design space.

The object model for engineering problems may have lots of local extreme values,
however, for engineering purposes, the best design in the design space is always ex-
pected. Besides, the gradient-based local optimization methods are less effective in
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Figure 2.14: Newton’s Method (local optimization method) with Differ-
ent Initial Points for the Objective Function f (x)= xsin(x)+2xcos(2x).
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Figure 2.15: GA method (global optimization method) for the Objective
Function f (x) = xsin(x)+2xcos(2x).
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comparison to engineering optimization for discrete-valued, nondifferentiable objec-
tive and constraints, analysis programs which crash for some designs, etc. (70). Hence,
the global optimization is much more suitable for the optimization problem of arch
dams, and the GA method is selected as the optimization method in this work.

2.3 Shape Optimization of Arch Dams with Determin-
istic Optimization Method

2.3.1 Description of Numerical Model
According to Section 2.2, the shape optimization of an arch dam with DO method is
described as:

find x = [α,β1,β2, t1, t2, t3,φ1,φ2,φ3,a1,a2,a3]
T ,

minimize : f (x) = Vol(x) =
∫ ∫
|yu(x,z)− yd(x,z)|dxdz, (2.56)

subject to: g1 =
σ1
[σ1]
≤ 1,

g2 =
σ3
[σ3]
≤ 1,

g3 =
s
[s] ≤ 1,

g4 =
[Ki]
Ki
≤ 1,

lb� x� ub.

The presented methodology shall be applied to the design of a new arch dam with the
following data provided:

- The height of the dam is 140m,

- ’V’ shape valley;

- the basements on both sides of the valley are assumed to be rigid foundations;

- the average range of temperature change is assumed to be 5.4◦C, the temperature
change of the reservoir water is relatively small and asumed to be 4.1◦C, and the
water level is 135m;

- the lower and upper boundary of design variables selected for the optimization
are assumed according to empirical experiences (29,35,36) and are shown in Table
2.2.
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Table 2.2: The Upper and Lower Boundaries of Shape Design Variables
0.5≤ α ≤ 0.9 0.3≤ β1 ≤ 0.7 0.3≤ β2 ≤ 0.7

3≤ t1 ≤ 10 10≤ t2 ≤ 30 15≤ t3 ≤ 35
25≤ φ1 ≤ 70 25≤ φ2 ≤ 70 15≤ φ3 ≤ 40
−2≤ a1 ≤ 2 −2≤ a2 ≤ 2 −2≤ a3 ≤ 2

Table 2.3: Geometrical Parameters of the Initial Arch Dam Model
Height Thickness(m) Central Angle′2φ ′(◦) Coefficient′a′

140 5 75.64 −1
120 9.43 86.55 −1
105 12.47 91.53 −1
90 16.15 93.88 −1
75 19.40 91.53 −1
55 21.55 86.23 −1
35 23.47 78.37 −1
20 25.14 67.75 −1
0 27 49.32 −1

The load combinations considered in the optimization procedure is listed as follows :

• self-weight ,

• hydrostatic pressure,

• uplift pressure,

• temperature load.

The initial model for the optimization is supposed to be a poorly designed arch type
dam under the existing situation discussed above. The geometrical parameters to build
the initial model are listed in the Table 2.3:

2.3.2 Comparison of the Optimal and Initial Models
The arch type dam can be designed through the shape design variables as described
in Section2.1, the optimal arch dam using the general optimization procedure (DO
model) is acquired, and the geometric parameters are listed in the Table 2.4:

The comparison of the principal stress results and sum displacements between initial
and optimal models under the same load conditions are shown in Fig.2.16 -Fig.2.20.
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Table 2.4: Geometrical Parameters of the Optimal Arch Dam Model

Height Thickness(m) Central Angle′2φ ′(◦) Coefficient′a′

140 3.02 91.09 0.75
120 5.41 91.75 0.64
105 7.07 90.81 0.58
90 8.59 88.62 0.53
75 9.99 85.19 0.50
55 11.64 78.69 0.47
35 13.07 69.98 0.47
20 13.99 62.01 0.49
0 15.02 49.44 0.53

(a) Dam Upstream. (b) Dam Downstream.

Figure 2.16: First Principle Stress of Initial Dam Model (Pa).

From these comparisons, we can see that after optimization, the volume is largely re-
duced with little change in the stress state.

The Table 2.5 illustrates the comparison between the initial arch type dam and the
optimal arch type dam. The comparison demonstrates that the optimization can take a
poorly designed model and efficiently improve it to a qualified design with increased
economic benefits.

Table 2.5: The Comparison of Initial Model and Optimal Model
Volume Sum Displacement Tensile Stress Compressive Stress
(m3) (m) (MPa) (MPa)

Initial Model 5.22e5 2.25e−2 2.56 5.75
Optimal Model 2.841e5 1.65e−2 1.49 2.95
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(a) Dam Upstream. (b) Dam Downstream.

Figure 2.17: First Principle Stress of Optimal Dam Model (Pa).

(a) Dam Upstream. (b) Dam Downstream.

Figure 2.18: Third Principle Stress of Initial Dam Model (Pa).

(a) Dam Upstream. (b) Dam Downstream.

Figure 2.19: Third Principle Stress of Optimal Dam Model (Pa).
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(a) Initial Dam Model. (b) Optimial Dam Model.

Figure 2.20: Sum of Displacement (m).

2.4 Conclusion
From comparing with existing design methodologies for the arch dam, the shape opti-
mization approach can effectively reduce construction cost and leverage the properties
of construction materials. In the shape optimization procedure, it is crucial to choose
suitable variables to formulate the objective function, i.e., to minimize the volume of
the arch dam. Additionally, a series of constraints are derived to form a reasonable and
safe design. For the optimization method, a Genetic Algorithm is used to perform a
global search avoiding to converge to the local minimum.

The use of metamodeling techniques has shown to be promising for global optimiza-
tion with time-consuming stress analysis. From the comparison of the Kriging Meta-
model and real model with 100 random testing samples (Fig.2.11), the Kriging Meta-
model provides a well-performed approximation model to reduce the computational
cost during the optimization process and save extra efforts in the stress analysis.

However, the optimization procedure discussed in this section is based on the deter-
ministic optimization (DO) model. The uncertainty existing in the structural analysis
system, such as loads uncertainties, material properties variation, etc. is not consid-
ered in the DO model. In the following sections, the method to solve the optimization
problem under uncertainty will be discussed.
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Chapter 3

Optimization of Arch-type Dams
under Uncertainties with Probabilistic
Model

3.1 Introduction
In this chapter, the two different approaches based on the probabilistic model devel-
oped to account for the uncertainties will be described. For the probabilistic model, the
uncertainty data is assumed to obey a previously known probability distribution. One
of the analysis disciplines concerns the minimum value of the objective function under
the probabilistic constraints evaluated by the reliability index (7,43,44 ), and character-
ized to be named as reliability-based design optimization (RBDO). Another method
based on the probabilistic model is called robust design optimization (RDO), which
aims at minimizing the mean value of the objective function and the variance of the
structural response. Earlier, researchers added an estimate of the model’s response
variance to the objective function, so that they could select the optimal solutions where
variance in the input data lead to smaller variations in the output (9,10,71).

No matter the RBDO method or the RDO method, these probabilistic approaches are
both computational-intensive tasks involving structural and reliability analysis. In or-
der to reduce this computational burden, it is necessary to develop an accurate analyt-
ical model providing assessments of the failure probability and structural responses,
given the uncertainties in the material, environmental, and loading conditions.

Firstly, an introduction of basic concepts is described in Section 3.2. The uncertainties
are expressed using probability distributions, and this description is applied in both the
reliability-based optimization and robust design optimization. The reliability analysis
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3.2 Description of Uncertainties Using Probability Distributions

method mentioned in Section 3.3 will be adopted, and it will be used for the RBDO
method as an expression of a constraint. After that, in Section 3.3, the formulation of
the RBDO is discussed, and a truss structure is used to demonstrate this approach. Sec-
tion 3.4 describes the RDO approach, and Section 3.5 concludes these two approaches.

3.2 Description of Uncertainties Using Probability Dis-
tributions

When we start a probabilistic approach under uncertainties, it is crucial to identify and
model the sources of the uncertainties. In the probabilistic definitions, the uncertainties
are characterized as random variables X = [x1,x2,x3, . . .] described by the cumulative
distribution function (CDF) FX(x) and probability density function (PDF) fX(x) in the
sample space Su.

The probability density function fX(x) for the random variable X is defined as:

0≤ fX(x)≤ ∞,∫
∞

−∞

fX(x)dx = 1, (3.1)

P[a < X < b] =
∫ b

a
fX(x)dx.

Here, P[a < X < b] is the probability of X falling in the range of [a,b].

The cumulative distribution function FX(x) is defined with the PDF by:

FX(t) = P[X < t] =
∫ t

−∞

fX(x)dx. (3.2)

Here, the Fig.3.1 offers an example of the CDF and PDF for a normal distribution
(Gaussian distribution) with mean µX = 0 and standard deviation σX = 1.

In engineering practices, the variability of a random quantity is characterized by central
tendency and variability. The mean (expected value) tells us about its central tendency
and is defined mathematically as:
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(a) Probability Density Function of Gaussian
Distribution for µX = 0 and σX = 1 .
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(b) Cumulative Distribution Function of Gaus-
sian Distribution for µX = 0 and σX = 1.

Figure 3.1: Gaussian Distribution.

µX =

{
∑
x

x fX(x) (discrete case)∫
∞

−∞
x fX(x)dx (continuous case)

. (3.3)

The characteristics of the random variables which decides the distribution shape, ”wide”
or ”narrow”( Fig.3.2), is called the variance of X and expressed as:

σ
2
X = var[X ] = E[(X−µX)

2] (3.4)

=

{
∑
x
(x−µX)

2 fX(x) (discrete case)∫
∞

−∞
(x−µX)

2 fX(x)dx (continuous case)
.

More than one random variables are representing the uncertainties considered in the
optimization. For each random variable, there may exist some connection to other ran-
dom variables, and this connection is characterized as a correlation coefficient among
random variables.

The correlation coefficient between random variables X and Y is:

ρXY =
Cov[X ,Y ]

σX σY
. (3.5)

In which, Cov[X ,Y ] is the co-variance of random variables X and Y , and expressed as:

Cov[X ,Y ] = E[XY ]−E[X ][Y ]−E[X ]E[Y ] = E[XY ]−µX µY . (3.6)
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Figure 3.2: Probability Density of Gaussian Distribution with Different
Standard Deviations σX .
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The correlation coefficient, which is always −1≤ ρXY ≤ 1, expresses how profoundly
one random variable influences the other variables: when ρXY = 0, it means that the
variables X and Y are entirely independent of each other, when ρXY =±1, that means
X and Y are perfectly correlated.

3.3 Reliability-Based Optimization Design (RBDO)
Method

3.3.1 Safety Concept
The method to define structural safety for classic reliability problems is through the
loading action S and the resistance R. The resistance R, also known as loads, is the
structural capacity to resist the stress system. The structural system is treated as a fail-
ure when the stress S and the resistance R fulfill the following requirements:

S≤ R. (3.7)

In a statistical model, this problem is transformed to compute the probability of the
stress being more significant than the resistance:

Pf = P[S > R]. (3.8)

In structural reliability analysis, verification that the structure does not exceed a speci-
fied limit state is performed. The limit state is what divides the design or variable space
into fail and safe regions. It is expressed as the limit state function and is of the form:

gX = R−S. (3.9)

The probability of failure refers to the probability that an undesired performance occurs
(see Fig.3.3).
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Figure 3.3: Distribution of failure function gX = R−S.

3.3.2 The Selected Limit State Function
The limit state determines the safe and failure regions. It requires an analytical model
describing the limit state, and the model must include all the relevant primary vari-
ables (loads), material parameters, and geometrical parameters. The structural reliabil-
ity analysis in this thesis only concerns the failure of the material. Then, the material
yield criteria theories under combined stresses are considered as the limit state func-
tion.

In this work, the studied structure is the arch dam, and assume the material for the
arch dam is isotropic, then the yield criteria for isotropic materials can be expressed as
a function of three independent stress invariant or principle shear stresses. The gener-
alized criteria may be expressed as:

F(σi) = F(I1,J2,J3), (3.10)
F(σi) = F(τ12,τ23,τ31,σ12,σ23,σ31),

where I1 is the first invariant of stress tensor, J1,J2 are the second and third invariant
of stress deviator tensor, τ12,τ23,τ31 are the principle shear stresses, and σ12,σ23,σ31
are the normal stresses acting on the sections where the principle shear stresses act
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respectively.

Evaluating the dam’s reliability is to check the possibility that the stresses exceed the
capacity of the structural resistance of the system. The failure mode or limit state could
be chosen to be the evaluation boundary of the reliability analysis. For the arch dam
structure, there are several kinds of failure modes, and in this work, the Twin Shear
Stress Yield Criterion (72), which is proposed by Yu(1961) (72), is introduced as an
additional condition to judge the failure mode. This criterion assumes that the yielding
is determined by two larger principle shear stress. This criterion can be expressed in
the following two equations:

f =


ft−
(

σ1−
(

α f
2

)
(σ2+σ3)

)
ft

= 0, σ2 ≤
σ1+α f σ3

1+α f
,

ft−
((

α f
2

)
(σ1+σ2)−α f σ3

)
ft

= 0, σ2 >
σ1+α f σ3

1+α f
,

(3.11)

where ft is the tensile allowance of material, α f is the ratio of tension and compression
allowances of material, which is α f = ft/ fc.

The Twin Shear Stress Yield Criterion is involved as the limit state function considers
the possibility that the material can yield both in the tensile and compressive stresses.
The choice of the exact expression of the twin shear criterion depends on which stress
type behaves as the dominant failure reason.

The limiting surface of the generalized Twin Shear Stress Yield Criterion in three-
dimensional principle stress space and its cutting section with π-plane are shown in
Fig.3.4. The limiting surface is usually a semi-infinite hexagonal cone with unequal
sides. The shape and size of the surface are determined by the allowable strength in
tension and compression.
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Figure 3.4: Generalized Twin Shear Stress Yield Surface.

3.3.3 General Description of the RBDO Method
From the engineering point of view, the RBDO method enhanced the optimization with

stochastic restrictions such as a predefined small failure probability to ensure sufficient

structural safety and serviceability (See Fig.3.5).

optimal deterministic design

optimal reliability based design

Figure 3.5: Reliability-based Design Optimization and Deterministic Optimization.

The reliability index is involved as a measure to decide if the optimal result is

applicable under specific reliability requirements. The constraint expression is charac-

terized as:
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g5 =
[βr]

βr
≤ 1, (3.12)

in which, [βr] is the required allowable reliability index, and the βr is the minimum
reliability index for the whole structure. In this work, the minimum reliability index is
taken as 3.7.

The reliability index is acquired according to the failure probability with the following
relation:

Pf = Φ(−βr)⇐⇒ βr = Φ
−1(Pf ). (3.13)

Here, Φ(·) and Φ−1(·) are the standard normal cumulative distribution function and
inverse respectively. The failure probability p f is calculated through the Eq.3.2:

Pf =
∫

gX (x)≤0
lb≤x≤ub

fX(x)dx. (3.14)

Evaluating the dam reliability involves checking the possibility that the stresses exceed
the capacity of the structural resistance of the system. The failure mode or limit state
could be chosen to be the evaluation boundary of the reliability analysis. For the arch
dam structure, there are several kinds of failure modes, and in this work, the Twin
Shear Stress Yield Criterion, expressed as Eq.3.11 mentioned in Section 3.3.2, is con-
sidered as the evaluation criteria.

If reliability design is followed in the optimization procedure, higher demands for the
computational costs are expected. Moreover, an approximation analysis mentioned in
Section 2.2.5.1 can obviously increase the calculation speed, but the accuracy of the
result is not satisfied to meet research demands.

In this situation, the proposed approach for the optimization can be ranked into three
stages: An initially built preliminary judgment of the geometric constraints, an adap-
tive exclusion of unsatisfied design samples and finally an accuracy analysis to evaluate
the final selections. The detailed procedure of the RBDO method in the frame of the
GA optimization method is given as in Fig.3.6.
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Figure 3.6: The Optimization Procedure of the RBDO Method in This Work.

3.3.4 Numerical Techniques for the Evaluation of the Reliability
Numerical techniques for evaluation of reliability have been proposed and generally
classified into two groups: random sampling methods and analytical methods. The
random sampling methods are traditional Monte Carlo method and its variants, such
as importance sampling (1). The analytical methods define a surface, separating the
failure and safe regions, based on the limit functions, such as first- and second-order
reliability methods, response surface methods, etc.

3.3.4.1 First and Second Order Reliability Methods (FORM and SORM)

The basic idea of FORM and SORM is to ease the computation of structural reliability
analysis by approximating the limit function. The reliability index is defined to be the
minimum distance from the origin to the limit surface. The name of FORM comes
from the fact that the limit function gX(x) is approximated by the first-order Taylor
expansion (linearization). SORM is an improved approximation based on FORM by
using the second-order surface to approach the limit surface.
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1. First-Oder Reliability Method

Three steps are involved in acquiring the reliability index in the approxima-
tion. Firstly, to make the probability integration easy to be computed, the vec-
tor of random variables X ∼ fX(x) are transferred to a standard normal vector
U ∼ N(µx,σx). The transferred standard variables are given as:

U = Φ
−1[FX(x)] = Φ

−1
[

Φ

(
X−µx

σx

)]
=

X−µx

σx
. (3.15)

Then the limit function is written as:

gX(x) = gU(u). (3.16)

The failure probability function in Eq.3.14 is transformed to given as:

Pf =
∫

fX(x)dx =
∫

gU (u)≤0

fU(u)du, (3.17)

where fU(u) is the joint PDF of U :

fU(u) =
n

∏
i=1

σx
√

2π

1
exp
(
−1

2
u2

i

)
, (3.18)

and the probability integration can be written as:

Pf =
∫
· · ·
∫

gU (u1,u2,··· ,un)≤0

n

∏
i=1

σx
√

2π

1
exp
(
−1

2
u2

i

)
du1du2 · · ·dun. (3.19)

After the transformation step, the limit function gU(u) is approximated with the
first order Taylor expansion around the expansion point U∗:

gU(u)≈ gU(U∗)+5gU(U∗)(U−U∗)T , (3.20)

5g(U∗) =
(

∂gU(u)
u1

,
∂gU(u)

u2
, · · · , ∂gU(u)

un

)
|U∗. (3.21)

The point which is closest to the origin, in the domain of failure is called the
most probable point (MPP) (shown in Fig.3.7). Maximizing the joint PDF fU(u)
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at gU(u) gives the location of the MPP. Since the joint PDF fU(u) only depends
on the ‖U∗ ‖2, then we obtain the MPP U∗ which can be expressed as a mini-
mum value search process, and it is:

find U∗,
minimize : ‖U∗ ‖, (3.22)

subjected to: gU(u) = 0.

Figure 3.7: First-Order Reliability Method (1).

Finally, the reliability index is acquired according to its definition that is the
distance from MPP to origin 0. Hence, the reliability index βr is:

βr =‖U∗ ‖ . (3.23)

2. Second-Order Reliability Methods
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The analysis procedure of SORM is almost same with the FORM. The only
difference is that the expansion in SORM is a second order Taylor expansion
around U∗ (see Fig.3.8), which is :

gU(u)≈ gU(U∗+5(U∗)(U−U∗)T )+
1
2
(U−U∗)H(U∗)(U−U∗)T , (3.24)

where H(U∗) is the Hessian matrix at the MPP:

H(U∗) =


∂ 2gU
∂u2

1

∂ 2gU
∂u1u2

· · · ∂ 2gU
∂u1un

∂ 2gU
∂u2u1

∂ 2gU
∂u2

2
· · · ∂ 2gU

∂u2u1

· · · · · · · · · · · ·
∂ 2gU
∂unu1

∂ 2gU
∂unu2

· · · ∂ 2gU
∂u2

n

 . (3.25)

Figure 3.8: Second-Order Reliability Method (1).

3.3.4.2 Response Surface Method (RSM)

The idea of the response surface method (see Fig.3.9) is using a sequence of design ex-
periments to build an approximation response model. The application of the Response
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Figure 3.9: Response Surface Method (RSM) (1).

Surface Method is to reduce the cost of expensive analyses.

The critical step for RSM is to search for a suitable approximation relation between
the response and the independent variables. Generally, this relationship is formed with
a low-order polynomial, such as:

gX(x) = B f
′
(x)+a, (3.26)

where f
′
(x) is a vector function consisting of elements and cross-products of elements

of the vector x up to a certain degree, B is a vector of constant coefficients, and a is a
random experimental error assumed to have zero mean.

The obtaining of the approximation response surface is an iteratively building pro-
cess, and the parameters can be acquired through an optimization procedure which is
aimed at finding the best possible quality of the approximation structure. With the re-
sponse surface of the limit function, the failure probability or the reliability index can
be easily acquired by first finding the MPP as mentioned in Section 3.3.4.1.
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3.3.4.3 Monte Carlo Simulation (MCS)

The Monte Carlo simulation is an estimation technique fitting for solving those prob-
lems which cannot be adequately represented by the mathematical models, or where
the solution is not possible through analytical methods. The basic concept of the Monte
Carlo simulation is shown in Fig.3.10. The sampling selects the value of uncertain
variables according to their probability distribution functions randomly. The failure
probability integral can be written as:

Pf =
∫

gX (x)≤0

fX(x)dx =
∫

Ig(x) fX(x)dx, (3.27)

where Ig(x) = I[gX(x) ≤ 0] is an indicator function equal to 1 if gX(x) ≤ 0 and other-
wise equal to zero.

The basis for the Monte Carlo simulation is the assumption that for the number of
sampling N approaches infinity then the failure probability is close to the ratio of the
number of samples (n f ) violating the constraints to the limit function gX(x). Then, the
estimation of MCS is given by:

Pf =
1
N

N

∑
j=1

Ig(X) =
n f

N
. (3.28)

The coefficient of variation Cov is estimated by:

Cov =

√
1−Pf

NPf
. (3.29)

From the Eq.3.29, the accuracy of MCS depends heavily on the number of samples,
which can lead to an expensive simulation procedure. Some sampling techniques are
referred to as variance reduction methods.

3.3.4.4 Importance Sampling

The basic idea of importance sampling is to concentrate the distribution of sampled
candidates in the region of most importance or the area which mainly contributes to
the failure probability, instead of spreading them out evenly among the whole range of
possible values (see Fig.3.11).

59



3.3 Reliability-Based Optimization Design (RBDO)
Method

Figure 3.10: Monte Carlo Simulation (MCS)(1).

The basic idea is to introduce a positive weighting function hy(x), which can be inter-
preted as the density function of a random vector Y , and samples are taken according
to hy(x). Then the Eq.3.28 can be rewritten as:

Pf =
1
N

N

∑
j=1

fX(x)
hy(x)

Ig(x) = E
[

fX(x)
hy(x)

Ig(x)
]
. (3.30)

The variance of the p f is:

σ
2
Pf

=
1
N

E
[

fX(x)2

hy(x)2 Ig(x)
]
. (3.31)

The selection of hy(x) is based on obtaining the minimum variance σ2
Pf

.
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Figure 3.11: Importance Sampling (1).

3.3.4.5 Adaptive Kriging Monte Carlo Simulation (AK-MCS)

In the work of (62), a method called Adaptive Kriging Monte Carlo Simulation (AK-
MCS) is described to evaluate the failure probability. The method combines Monte
Carlo simulation with adaptively built Kriging metamodels by generating a corre-
sponding limit-state function response with the Kriging metamodel (details mentioned
in Section 2.2.5.1) and then evaluating the failure probability through Monte Carlo
simulation with the final limit state function responses.

In the work of AK-MCS, an adaptive experimental design algorithm is introduced to
increase the accuracy of the surrogate model, and the procedure summarized as fol-
lows:

1. Generate the initial experimental design X = (x1,x2, . . . ,xN)
T and evaluate the

corresponding limit function responses G = [gX(x1),gX(x2), . . . ,gX(xN)]
T .

2. Train a Kriging metamodel Ĝ based on experimental design {X ,G}.

3. Generate large numbers of samples and predict the corresponding Ĝ.
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4. Choose the best next sample to be added to the experimental design X .

5. Check whether the surrogate model meet the convergence criterion. If it is, skip
to step(7), otherwise, continue the procedure to step (6).

6. Add the best next sample and the corresponding limit function response to the
experimental design of the metamodel.

7. Estimate the failure probability through Monte Carlo simulation with the final
limit function surrogate.

3.3.5 Studies on the Evaluation Methods of Structural Reliability
In order to select an effective method for the structural analysis of an arch dam, several
examples are tested to compare the properties of these Evaluation Methods of Struc-
tural Reliability.

1. Example of a simple abstract structural expression for the sampling differ-
ence
Here is a simple abstract expression for the reliability analysis which only con-
tains the resistance R and the stress S. The structural limit state function is ex-
pressed as:

gX = R−S. (3.32)

The structural system fails when the resistance is less than the stress. The input
data are assumed to follow the distributions: R∼N (5,0.8), S∼N (2,0.6). The
following Fig.3.12-Fig.3.13 give the analysis results with different evaluation
methods.

2. Example for a two-bar truss structure
The two-bar structure shown in Fig.3.14 is defined such that the mass density and
Young’s Modulus are supposed to be 1, the resistance of the structural system
is influenced by the cross-sectional areas of the bars(a1,a2), and the values of
the sectional areas obey the distribution that a1 ∼N (1,0.1),a2 ∼N (1,0.1).
The stress applied to the system acts at the node 3 and follows the distribution
f ∼N (1,0.3). The limit state is expressed as the nodal displacement at node 3
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(a) Monte Carlo Sampling. (b) Importance Sampling.

(c) AK-MCS Experimental Design.

Figure 3.12: The Experimental Sampling Design for gX = R−S.
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(a) Monte Carlo Simulation. (b) Important Sampling.

(c) FORM Simulation. (d) AK-MCS Simulation.

Figure 3.13: The Convergence Comparison for gX = R−S.
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Figure 3.14: Two-bar Truss Structure.

which is required to be less than 5. The acquired reliability results of the two-
bar structure with different analysis methods are shown in Fig.3.15(a), and Table
3.1.

Table 3.1: Reliability Analysis Results of Two-bar Truss Structure with Different Eval-
uation Methods
Evaluation Failure Reliability Numbers of Failure Probability
Methods Probability Index Experimental Designs Confidence Interval
MCS 4.92e−4 3.30 10e5 [4.49e−4,5.35e−4]
FORM 4.34e−4 3.33 40 −
IS 5.04e−4 3.29 60040 [4.95e−4,5.13e−4]
AKMCS 4.80−4 3.30 25 [3.44e−4,6.16e−4]

65



3.3 Reliability-Based Optimization Design (RBDO)
Method

(a) Monte Carlo Simulation. (b) Importance Sampling.

(c) FORM Simulation. (d) AK-MCS Simulation.

Figure 3.15: The Convergence of the Failure Probability for the Two-
bar Truss Structure.
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3.3.6 Comparison of the Simulation Techniques

(a) FORM and SORM

For using FORM or SORM methods, some special requirements need to be
satisfied. Firstly, all the random variables must be in the form of standard
normal distribution, and then all the random variables must be independent
of each other. Finally, the limit state function must be suitable enough to
be represented with lucid expression and differential.

However, some nonlinear limit state functions apparently do not satisfy the
requirements for the FORM or SORM. Sometimes the limit state cannot
always be expressed with a function in real life, and this makes the use of
FORM and SORM impossible in these cases. Besides, FORM and SORM
may lead to non-convergence due to the presence of numerical noise.

(b) Monte Carlo Simulation

Monte Carlo simulation uses randomness to solve problems that might be
deterministic. The problems could be difficult or impossible to use other
approaches. The accuracy of the Monte Carlo simulation relies on the num-
ber of samples. Thus, a high number of evaluations of the objective func-
tion or limit state function are required.

The Monte Carlo simulation can be used as long as the deterministic so-
lution is analytically available, without any modifications of the existing
algorithm for structural analysis. However, a direct Monte Carlo simula-
tion would, therefore, be unpractical in the applications of computationally
expensive evaluations. For the analysis of the arch dam structure in this
work, it is impossible to evaluate the limit state with the given sample size.

(c) Importance Sampling

Importance sampling is to concentrate the distribution of sampling points
in the region of most importance. The area that mainly contributes to
the failure probability, instead of spreading them out evenly among the
whole range of possible values of the basic variables. (see Fig.3.13(a) and
Fig.3.13(b))
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With the help of importance sampling, it makes an otherwise infeasible
problem amenable to Monte Carlo. It can also yield an estimate with infi-
nite variance when simple Monte Carlo would have infinite variance. How-
ever, the importance sampling can only improve the calculation efficiency
to a certain degree. It is still a computationally expensive method for com-
plex analysis problems as the structural analysis of the arch dam.

(d) Metamodel-based Approach: RSM and AK-MCS

Metamodel approach is to use a sequence of designed experiments to ex-
plore the relationships between objective or limit state and several inde-
pendent variables. The metamodel types most encountered in literature are
response surface model (RSM), Kriging Metamodel, etc. The Metamodel
is acknowledged as an approximation model, but it is easy to be estimated
and applied, even when little is known about the process.

The advantage of the metamodel approach is to save the simulation time by
reducing the number of structural FE analyses. However, attention should
be paid to the accuracy and the model complexity. Even the best model
acquired by the metamodel approach is an approximation in comparison to
the reality.

How is a metamodel selected to be an approximation model is another
challenge. Some works have approved the Kriging metamodel as a more
suitable option compared with RSM since it provides more accurate pre-
dictions. Combining the metamodel and Monte Carlo simulation gives an
efficient and convenient way to solve the probability problem such as the
evaluation of the arch dam.

From the above comparisons and studies on different reliability evaluation meth-
ods, it can be seen that for an arch dam structural analysis, the FORM or SORM
will not satisfy the requirements namely accuracy and applications in complex
structural analyses. The Monte Carlo simulation cannot be applied in the struc-
tural analyses of large numbers due to the high expenses of the analysis of the
structural dam. Even with the help of the importance sampling method, the re-
quired analysis number is obviously reduced, it is still too time-consuming to be
applied to the reliability analysis method.
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The Adaptive Kriging Monte Carlo method shows its advantage in the reliability
analysis of the arch dam. The Kriging metamodel provides an ideal approxima-
tion model for the complex structural analysis to make it possible to use Monte
Carlo simulation to do the reliability analysis with a sufficient number of sam-
ples. Hence, the AK-MCS is selected as the reliability analysis method for the
RBDO process of the arch dam.

3.3.7 Examples for the Illustration of RBDO

In this section, the 10-bar truss structure shown in Fig.3.16 is used to illustrate
the numerical performance of the proposed RBDO. To display this method in a
simple and clear way, the design for a truss structure, which needs the design
of the cross-sectional area of bars, a1,a2, . . . ,a10, under the action of loads on
the nodes 4 and 6. The objective is to find the minimum structural weight with
the performance constraint, which is considered as the displacement at node 6 in
this case.

The Young’s Modulus and the mass density of the truss material are supposed to
be 1.0. The cross-sectional areas of the bars are random design variables. The
loads acting on the fourth and sixth nodes are supposed to follow a normal dis-
tribution with mean value µ f = 1, and standard deviation σ f = 0.3.

The constraints considered in this problem include:

(a) reliability constraint, which is expressed as the reliability index [βr]≤ βr,

(b) nodal displacement constraint, also as limit state, which requires the nodal
displacement for the sixth node, ‖u6‖2 = u2

6x +u2
6y ≤ 52,

(c) bound limits for the design variables: 1.0e−5≤ a1≤ 6.0 (i= 1,2, . . . ,10).

Then, the formulation of the RBDO for optimization problem of the truss struc-
ture can be expressed as:
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Figure 3.16: 2D Truss Structure.

find (a1,a2, . . . ,a10)

minimize : Weight(a1,a2, . . . ,a10) = ∑
10
i=1 ρiliai (3.33)

subject to u6
[u] −1≤ 0

[βr]
βr
−1≤ 0

In this work, the GA method is selected to discover the global optimum design.
The Fig.3.17 shows the optimum results where the GA method has some fluc-
tuations around their mean values, therefore, the mean values of the optimum
results are chosen as the optimum design.

The optimization process, using the DO and RBDO methods are shown in Table
3.2, the optimum design with different [βr] are also listed in this table.

From the comparison of the optimum results, the RBDO is much more feasible
but conservative than the optimum design from the DO method.
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a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
Design Variables

0

1

2

3

4

Optimal Results of 10-bar Truss Structure with GA Method

Figure 3.17: Fluctuation of Optimum Results with GA Method.

Table 3.2: Optimum Designs of Truss Structure with RBDO Method for Different
Reliability Index Constraints

Design Variables DO method [βr] = 3.5 [βr] = 3.7 [βr] = 4.0 [βr] = 4.2
a1 2.924 3.302 3.792 3.242 3.315
a2 0.010 0.010 0.672 0.409 0.877
a3 2.160 1.370 2.521 2.481 3.157
a4 2.016 2.617 1.313 1.343 1.220
a5 0.010 0.010 0.011 0.010 0.010
a6 0.010 0.010 0.526 1.066 0.762
a7 0.316 0.222 1.025 1.015 1.271
a8 2.545 3.050 1.570 2.198 2.264
a9 1.869 2.396 1.988 2.721 2.033
a10 0.010 0.010 0.492 0.534 0.739
Weight 13.832 15.348 16.081 17.698 18.260

71



3.3 Reliability-Based Optimization Design (RBDO)
Method

Figure 3.18: Relation between Reliability Index and Structural
Weight(10-bar Truss)(AK-MCS Method).

In order to see the influence of the reliability constraints on the optimum de-
sign, a series of tests are performed. From Fig.3.18, the weight of the optimum
tends to increase to satisfy the higher demands on the reliability constraint.
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3.3.8 The Shape Optimization of Arch Dams with RBDO

A reliability constraint is involved in judging on the prediction and evaluating
the dam’s safety. The success of the reliability analysis relies on the modeling
of uncertainties in the parameters, which are treated as random variables while
computing the limit state.

The stability of the dam is influenced by various sources of uncertainties ex-
isting in the structure and surrounding environment, and these uncertainties can
be mainly classified into loads and material properties.

In this study, the main considered load uncertainties are the variation of the tem-
perature and water level on the upstream surface. The properties of constructing
material, for which are chosen to reflect the uncertainties in the materials, are the
tensile strength, compressive strength, Young’s Modulus, and density, as they
have been identified as the main parameters in a preliminary sensitivity analysis.
The distributions of the statistical random variables are listed in Table 3.3, where
the data is assumed according to (30,35).

Parameter Mean Standard Deviation Distribution
Temperature Variation 5.4 1.378 Normal
(◦C)
Water level(m) 135.00 2.835 Normal
(m)
Tensile strength 3.00 0.3 Normal
(MPa)
Compressive strength 30.00 3.00 Normal
(MPa)
Young’s Modulus 2.1×104 2.1×103 Normal
(MPa)
Density 2400 240 Normal
(kg/m3)

Table 3.3: Assumptions on Material Parameters

However, for the dam structure, uncertainties are existing in the distribution of
the material, i.e., the values of the material properties are not isotropic through-
out the structure, and the random field analysis is introduced to evaluate these
particular uncertainties. In order to simplify the analysis, the uncertainties are
considered only in two directions along the surface of the dam, and the material
properties are kept constant in the direction of thickness.
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Assuming two positions τ1 and τ2, which are separated by distance τ = τ1− τ2,
the random variables X(τ1) and X(τ2) at these two positions show some de-
pendence on each other. The probability density function, which describes the
complete probabilistic behavior of a random process, can be written as follows:

fX1,X2,X3,...(x1,x2,x3, . . .), (3.34)

where X1,X2, ... are different locations in the computational domain and x1,x2, ...
are possible values that the random field may have at these locations. In order to
characterize the degree of dependence of the two positions, a correlation func-
tion is introduced.

There are many models to express the correlation function, such as the trian-
gular correlation function, the polynomially decaying correlation function, the
Markov correlation function or the Gaussian correlation function, e.g., (64). In
this work, the Markov correlation function is used, and the fields are generated
by Karhunen-Loève expansions:

ρ(τ1,τ2) =
C (τ1,τ2)

σ2

= exp
{
− 2

θ
(|τ1|+ |τ2|)

}
(3.35)

= exp
{
−2|τ1|

θ1

}
+ exp

{
−2|τ2|

θ2

}
,

where θ1,θ2 are the correlation lengths along two directions. The random fields
of each material property are created. Assuming that the correlation length is
larger than the length of the dam. Fig.3.19 gives the random fields of each prop-
erty used in the analysis:

The evaluation of the limit state function gX(X1,X2, . . . ,Xn) is costly using Monte
Carlo simulation requiring a large number of samples, especially for a big and
complex analysis model. Based on the characteristics of Kriging metamodels
which assures comparably accurate prediction value of the limit-state function
with a corresponding limit-state function response.

With the application of Adaptive Kriging Monte Carlo Simulation (AK-MCS), a
corresponding limit-sate function response with the adaptive Kriging metamodel
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(a) Random Field of Density (kg/m3). (b) Random Field of Young’s Modulus
(Pa).

(c) Random Field of Tensile Strength (Pa). (d) Random Field of Compressive Strength
(Pa).

Figure 3.19: Random Field of Material’s Properties.
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Figure 3.20: AK-MCS Convergence.

is generated, and then the failure probability is evaluated through Monte Carlo
simulation with the final limit-state function response. This reliability analysis is
realized by the program UQLAB (67) developed at the Chair of Risk, Safety an
Uncertainty Quantification of ETH Zurich. Fig.3.20 and Table 3.4 show values
of the reliability analysis results with AK-MCS method.

Failure Probability 1.16e−4
βr 3.86

Model Evaluations 846

Table 3.4: The Reliability Analysis Results with AK-MCS

The structural state analysis is obtained through ANSYS with a mesh-convergence
test checked element size. The dam body is divided into 1536 elements, the de-
tail geometrical description of the arch dam is mentioned in Section 2.2. The
optimization procedure is performed by coupling ANSYS with MATLAB where
the optimization and reliability analysis are implemented.
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(a) Dam Upstream. (b) Dam Downstream.

Figure 3.21: First Principal Stress of the Optimal Model(Pa).

The loads considered in the optimization procedure are: dead load, hydrostatic
pressure on the upstream face and the uplift pressure on the foundational inter-
face. Additionally, a realistic assessment of loading of water flow and temper-
ature are also considered for the coupled response of shape optimization. The
load combination is Self-weight, hydrostatic pressure, uplift pressure, and tem-
perature.

Through the above-mentioned procedure, the optimized arch type dam is gen-
erated (see Table 3.5). Since the tensile stress shows an important influence on
the structure’s safety, the comparison between tensile stresses is used to illus-
trate the advantages of the optimized results. The following Fig.3.21- Fig.3.22
and Table 3.6 illustrate the optimization results of the arch type dam.

Table 3.5: Geometrical Parameters of the Optimal Arch Dam with RBDO Method

Height Thickness(m) Central Angle′2φ ′(◦) Coefficient′a′

140 6.51 130.68 −0.799
120 7.49 116.23 −0.579
105 8.40 105.62 −0.457
90 9.83 91.75 −0.354
75 11.52 78.23 −0.317
55 12.95 68.30 −0.333
35 14.53 58.57 −0.386
20 16.25 49.02 −0.477
0 18.78 36.58 −0.657
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(a) Dam Upstream. (b) Dam Downstream.

Figure 3.22: Third Principal Stress of the Optimal Model(Pa).

Volume Maximum Maximum Reliability
tensile compressive index

(m3) stress(MPa) stress(MPa)
Optimized Model 3.42e5 1.79 4.61 3.863

Table 3.6: The Optimization Results of Arch Dam with RBDO

3.4 Robust Design Optimization (RDO)

3.4.1 General Description of the RDO Method

Robust Design Optimization aims at searching out a design candidate that is
less sensitive to changes in the variable parameters and was first introduced by
Taguchi (12,53). It has and continues to gain recognition in recent years, as an
effective design method to improve the quality of the design for engineering
products. The RDO is involved in the concepts of minimum tolerance design.

For general optimal designs, the structure is subjected to large scatter at differ-
ent stages of service lifecycle, which may not only concern the structural quality
with deviations from expected performance but also may add to the structural
maintenance costs. For an engineering perspective, a well-designed structure
minimizes costs by performing in the presence of uncontrollable variations dur-
ing the whole life-cycle. Another indicator of a poorly designed structure is the
variation of the structural performance.

In robust design optimization, the structure must minimize the costs from the
deviation of the structural performance. To fulfill the idea, the design in which
the structural performance must be less sensitive to the variation of the struc-
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tural system. The RDO is mainly focused on the minimum range of variation
and only partly on the mean value. The principle behind the RDO is that the
quality of structural design is evaluated not only by the mean value but also by
the ability to resist the uncertainty factors. The multi-objective optimization is
involved in offering an objective function combining both minimum mean value
and minimum variation of structural performance.

3.4.2 Mathematical Formulation of the Robust Design Opti-
mization

The idea behind the robust design optimization is to acquire an optimum design
and improve the structural quality by minimizing the variation of the structural
performance. Hence, the optimization problem is stated as a multi-objective
problem expressed by a weighted sum function.

The mean value of the object E( f (x)), as well as the standard deviation of the
performance response σ(h(x)), is used to define the objective function and con-
straints in a weighted sum function. Similar with the RBDO approach, uncer-
tainty is introduced using probability distributions. The formulation for a robust
design optimization can be formed as:

find x,
minimize {E( f (x)),σ(h(x))} , (3.36)
subject to Pf [g(x)≤ 0]≤ P0,

lb� x� ub,

where f (x) and g(x) are the objective function and constraints described in the
deterministic optimization problem, h(x) is any selected structural response (or
a combination of several ones), for which minimal variations are sought-for.

One of the attempts to reduce the computational costs of the above optimization
problem is the moment matching method (73), which assumes the constraint is
normally distributed and is as follows :

µg + kσg ≤ 0, (3.37)
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where µg and σg are the vectors containing the mean value and the standard
deviation of constraints, and k = Φ−1 is the inverse function of the CDF of a
standard normal distribution. For example, when k = 2 represents for a failure
probability of 0.0228 and k = 3 represents for a failure probability of 0.0087.

From here, it is shown that the exact failure probability is not the main con-
cern of the robust design optimization problem, although the feasibility may be
improved with the increase of the value of the parameter k. Also, it should be
aware that the probability distribution of the function value g(x) is still assumed
to be normal, and it is reasonable from an engineering point to give such an as-
sumption of the structural performance.

For the calculation purpose, the formulation of Eq.3.37 does not result in an
efficient way to solve the problem. In order to improve the calculation process,
the linear weighted sum function is involved. The objective function is trans-
formed into a linear combination of the individual objectives with a series of
weights. In this way, the trade-offs between the individual objects depend on
the relative weights occupied in the combined objective function. Introducing
Eq.3.37 into Eq.3.37, the problem of RDO can be written as follows:

find x,
minimize αw

µ f
µ∗f

+(1−αw)
σh
σ∗h
, (3.38)

subject to µg + kσg ≤ 0,
lb� x� ub .

Here 0 ≤ αw ≤ 1 is the factor weighting the two objectives, the µ∗f and σ∗h are
normalization factors.

From Eq.3.39, we can see that when αw = 1, the problem could be transformed
to a pure function value optimization problem, and when αw = 0, it is changed
to be a pure standard deviation minimization problem.

Different calculation techniques can be used to solve the RDO problem, as de-
scribed in Section 3.3.4. In this study, the metamodel is introduced to solve this
RDO problem. The advantage of using approximation metamodel in combina-
tion with the evolution optimization method, referred as the GA method in this
work, is that it simplifies the calculation of standard deviation and mean value
using an approximation model instead of doing a FE analysis for such a complex
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Figure 3.23: The Optimization Procedure of the RDO.

structure and increase the computational efficiency. The procedure of the RDO
method can be concluded as in Fig.3.23.

3.4.3 Example for Implementation

For the sake of comparison, the 10-bar truss structure used in Section 3.3.7 is
analyzed using the RDO method and the above proposed mathematical model.
In this problem, the parameter k = 3, the performance constraint condition is
the displacement on the node 6, which is | u6 |≤ 5. The searching target is to
find the design candidate for the minimization of the structural weight and nodal
displacement. The optimization for the truss structure is represented as:

find x = [a1,a2, . . . ,a10]
T ,

minimize αw
Weight(a1,a2,...,a10)
Weight(a1,a2,...,a10)∗

+(1−αw)
σu6
σ∗u6

, (3.39)

subject to µg + kσg ≤ 0,
lb� x� ub.

The Weight(a1,a2, . . . ,a10)
∗ is the weight at nominal design, and the σ∗u6

is the
standard deviation of selected structural performance at the nominal design . The
following Fig.3.24 shows a comparison of the variation of nodal displacements
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(a) Optimal Design with RBDO for βr =
3.7.

(b) Optimal Design with RDO for αw =
0.5.

Figure 3.24: Occurrence Frequency Distribution of Nodal Displace-

ments for the 10-bar Truss Structure.

Table 3.7: Comparison of Optimal Truss Structures Acquired by the RBDO and the

RO Method

RBDO Mean Value Standard RDO Mean Value Standard

Deviation Deviation

[βr] = 3.5 5.293 1.352 αw = 0.7 5.522 1.418

[βr] = 3.7 5.030 1.338 αw = 0.5 5.280 1.298

[βr] = 4.0 5.001 1.286 αw = 0.3 5.161 1.256

[βr] = 4.2 4.9463 1.206 αw = 0 1.810 0.428

on node 6 between RBDO ([βr = 3.7]) and RDO (αw = 0.5) under the same un-

certainty assumption for the load condition.

From the comparison, the mean value of the displacement on the selected node

for the two designs are 5.030 for RBDO and 5.280 for RDO respectively, whereas

the standard deviation is 1.790 for RBDO and 1.685 for RDO. The detailed com-

parison is listed in Table 3.7.

As can be seen from the results, the RDO method leads to a higher expected

value but a much smaller range of variation of the nodal displacements on the

selected node. It implies that the design acquired by RDO method is superior in

terms of robustness since the corresponding structural performance is less sensi-

tive to the variation of the system and has a smaller scatter.
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Table 3.8: Optimal Truss Structure with Different Weighting Parameters

Design Variables αw = 0 αw = 0.3 αw = 0.5 αw = 0.7 αw = 1
a1 6 3.152 3.3020 3.094 2.924
a2 6 0.697 0.6724 0.010 0.010
a3 6 3.222 2.6450 2.282 2.160
a4 6 1.343 1.4215 2.318 2.016
a5 6 0.010 0.0106 0.010 0.010
a6 6 0.795 0.6010 0.010 0.010
a7 6 1.387 0.3025 0.300 0.316
a8 6 1.668 3.0171 2.312 2.545
a9 6 1.896 2.3458 1.821 1.869
a10 6 0.974 0.0429 0.010 0.010
Weight 63.9511 17.598 16.076 14.008 13.832

Also, to illustrate the influence of parameter αw, the optimal design obtained
with different weighting factors αw are summarized in Table 3.8. As can be
seen from the results, when the weight ratio for minimum standard deviation in-
creases, the optimal solution results in a larger mean value but a smaller standard
deviation of the structural performance.

3.4.4 Optimization of Arch Dams with RDO Method

We apply the above mentioned RDO method to the optimization of the arch
dam model which is described in Section 3.3.8. The acquired optimal design is
described in the following Table 3.9. Fig.3.25-Fig.3.26 give the stress state of
the optimized model using RDO method, and the optimized results are reported
in Table 3.10.
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Table 3.9: Geometrical Parameters of the Optimal Arch Dam with RDO Method

Height Thickness(m) Central Angle′2φ ′(◦) Coefficient′a′

140 5.23 111.70 −0.31
120 6.57 102.97 −0.18
105 7.59 96.12 −0.100
90 8.61 89.02 −0.03
75 9.65 81.66 0.02
55 11.05 71.45 0.06
35 12.47 60.77 0.09
20 13.55 52.47 0.08
0 15.04 40.99 0.06

(a) Dam Upstream. (b) Dam Downstream.

Figure 3.25: First Principal Stress of the Optimal Model (Pa).

(a) Dam Upstream. (b) Dam Downstream.

Figure 3.26: Third Principal Stress of the Optimal Model (Pa).
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Table 3.10: The Optimization Results of the Arch Dam with RDO

Volume Maximum Maximum
tensile compressive

(m3) stress (MPa) stress (MPa)
Optimized Model 3.068e5 1.50 2.51

3.4.5 Comparison of the Optimal Designs of the Arch Dams
between RBDO and RDO

As a non-deterministic structural optimization formulation for the design of the
arch dam, both methods aim at incorporating random performance into the op-
timization process to acquire a robust and reliable structure. The RBDO is to
minimize the structural volume under failure probability constraints in extreme
events, and the RDO is to reduce the variability of structural performance as well
as minimizes the structural volume. Since the evaluation of failure constraint and
structural performance are both the tensile stresses, the comparison of the ten-
sile stresses of these two optimal designs for arch dams under 200 randomly
generated samples are shown in Fig.3.27 to see the difference between these two
acquired optimal designs.

It can be seen that the tensile stress is highly concentrated around the mean value
for the optimal design acquired by the RDO method, the optimal design acquired
by RBDO tends to have a smaller mean value but a larger deviation range.
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Figure 3.27: Comparison of Occurrence Frequency Distribution of the

Maximum Tensile Stress for RDO and RBDO.
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3.5 Conclusion

Both RBDO and RDO provide non-deterministic structural optimization formu-
lations. Although both of them incorporate statistical models into the design
process, the optimal solutions of these two methods both exhibit increased relia-
bility. However, there still exist differences between these two methods.

- The reliability-based design optimization approach takes the reliability in-
dex into account as a constraint condition. Note, that the objective function
is expressed in the same way as the deterministic optimization method,
which means the RBDO method concerns less the variation of the struc-
tural performance under uncertainties. Unlike the RBDO, the robust design
optimization approach takes the variation of performance as part of the ob-
jective function. Comparing to RBDO, RDO concerns more on finding a
design that is relatively insensitive to uncertainties. In another word, the
RBDO is to move the mean of the performance, and the RDO is to reduce
the performance variability.

- Since the RBDO takes the reliability index as a constraint condition, it eval-
uates the structural safety or design quality in the extreme events, while
in contrast, the RDO evaluates the structural design by the structural per-
formance variation under the fluctuations of the whole structural system.
Although, both RBDO and RDO rely on the predefined distributions of in-
puts, RBDO shows a more profound dependence on the accuracy of the
assumption on the probabilistic distributions. However, the RDO method
concerns less on the precise description of the statistical model than the
RBDO method, for that the RDO method involves only the prediction of
basic characteristics of the performance variability.

- The RDO approach is solved by using a multi-criteria optimization prob-
lem, where the influence of choosing the weighting factor becomes an es-
sential part of this approach. Currently, there are no defined rules on how to
determine the best weighting factors. The decision may be made according
to practical design requirements.
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Chapter 4

Optimization of Arch-type Dams
with non-probabilistic Model under
Uncertainties

4.1 Introduction

A probabilistic model relies sometimes rather visibly on the precise information
given by the probability distribution of the uncertain variables, and this char-
acter makes the results less conservative. It is usually difficult to identify the
underlying distribution of the actual data accurately. Even for a small number of
parameters that can be further estimated by observations, accurate identification
of the probability distributions requires an astronomical number of observations.
Hence, the probabilistic approach more often than not is forced to be determined
through assumptions of the actual distributions, and it is difficult to evaluate the
influence of the uncertainties in the probability distribution.

An alternative approach to deal with the uncertainty is proposed as the robust
optimization (RO), which is based on a non-probabilistic model that considers
the uncertainty as the a parameter within an uncertainty dataset U. In this ap-
proach, it aims at finding a solution candidate that is relatively insensible to any
realization of uncertainty in the given dataset U. With the robust optimization
approach, the desire to stay on the safe side can be easily achieved by enlarging
the uncertainty data set. For this character, this approach is also named as worst
case design and optimization. Based on this frame, much research has been car-
ried out to solve this optimization problem. A so-called convex model has been
well analyzed by Ben-Haim (54) to describe the uncertainty of a system. Lat-
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ter, Ben-Tal (19) proposed a unified methodology of a robust counterpart of a
broader class of convex programming.

The RO methodology can be applied into every generic optimization problem
where one can separate the uncertain data, which is known to belong to a given
dataset, for structural optimization problem under uncertainties. In recent years,
there is a burst of application of the RO for structural optimization problems, for
example, Sun et al. (16) described a design in sheet metal forming using robust
optimization, Kanno (17) and Guo (18) realized a bar truss structure’s optimiza-
tion under uncertainties with RO methods.

The focus of this chapter will be on the calculation frame and the mathematical
techniques of the RO method. In Section 4.2, the robust optimization function
is formulated. Some techniques, such as SDP, convex programming, bi-level
formulation, etc., are introduced and discussed. Section 4.2.4 is devoted to a
numerical example to illustrate the calculation procedure of the RO method in a
specific way. Through the numerical example, the effectiveness of the RO ap-
proach is demonstrated. Finally, the RO method is applied to the optimization of
the arch type dam, and some conclusions are given in the final section.

4.2 Description of the Robust Optimization Method

4.2.1 Uncertainty Analysis with Non-probabilistic Models

4.2.1.1 The Worst Case Analysis

The worst case analysis has been applied to various fields, such as environmen-
tal engineering, structural design, computer science, etc. In the approach of the
worst case analysis (73), it is attempted to search out a point as far away as pos-
sible from the failure constraints. The idea behind this analysis is to minimize
the objective function when all fluctuations are simultaneously in the worst pos-
sible combination. Uncertain parameters are modeled as deterministic data sets
instead of probability density functions. Hence, this approach can simplify the
incorporation of the variability into a deterministic problem.
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Figure 4.1: The Corner Space Evaluation (2).

4.2.1.2 The Corner Space Evaluation

Sundaresan et al. (2) proposed another estimating method, called the corner
space evaluation. Similar with the worst case analysis, it is not required to define
a probability distribution of uncertain parameters in advance. However, unlike
the worst case analysis, the uncertain parameters are not transmitted into con-
straint functions in this approach.

Assume the uncertainty parameters have nominal values and tolerances. The
tolerance space is defined as a set of points close to the target design point. In
order to maintain the design feasibility, the design candidate should be inside
the feasible region by maintaining contact between the corner space and original
constraints (see Fig.4.1).
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4.2.2 Robust Optimization Function

In general, a robust optimization problem with worst-case analysis can be ex-
pressed as the minimum value of the objective function at which the perfor-
mance constraints cannot be violated, and subjected to any situation in confined
data space. With a single level semi-infinite program, it can be written as:

find x = (x1,x2, . . . ,xn)
T ∈ Rn,

minimize f (x), (4.1)
subjected to: gi(x,ξ )≤ 0, ∀ξ ∈ U, i = 1, . . . ,m,

lb� x� ub,

where x ∈ Rn is the vector of design variables and ξ ∈ U is the vector of uncer-
tain parameters within the data set U.

Here, semi-infinite means the optimization problem possibly has an infinite num-
ber of constraints, and it is worth nothing to solve a numerically intractable op-
timization problem with infinitely many constraints. In order to avoid this prob-
lem, one possible method is to replace Eq.4.1 with the following bi-level format:

find x = (x1,x2, . . . ,xn)
T ∈ Rn,

minimize f (x), (4.2)
subject to: max

ξ∈U
gi(x,ξ )≤ 0, i = 1, . . . ,m,

lb� x� ub.

In the bi-level Eq.4.2, the upper level is to find the design which is optimum for
the structural objective function, while the lower level aims at finding the worst
case structural performance responses, which are used to test the feasibility of
the selected design candidate.

For the lower level problem in Eq.4.2, only the global optimum can accurately
determine the feasibility of a given design. However, if the lower level problem
is a non-convex problem, it is highly possible to get a local minimum if the ini-
tial point of optimization is not chosen appropriately. Furthermore, it is always
NP-hard (nondeterministic polynomial) to find the optimal global solution for a
non-convex optimization problem.
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4.2 Description of the Robust Optimization Method

(a) The Kidney Shaped Set. (b) The Square Contains Some Boundary
Points But Not Others.

Figure 4.2: Some Non-convex Sets (3).

4.2.2.1 Convex Sets

Considering a set C is a convex set, it means the line segment between any two
points x1,x2 in C have the following relation:

κx1 +(1−κ)x2 ∈ C. (4.3)

Here, κ is a parameter with 0≤ κ ≤ 1. Following Fig.4.2-Fig.4.3 give some sim-
ple examples to illustrate the difference between convex and non-convex sets.

In the most general form, a point of the form κ1x1 + · · ·+κkxk, where κ1 + · · ·+
κk = 1 and κi ≤ 0, i = 1, . . . ,k,is called a conic combination. When xi are in a
convex cone C, every conic combination of xi is in C. Herein we discuss some
critical examples of convex sets which are mostly used in mathematical tech-
niques (3).
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4.2 Description of the Robust Optimization Method

(a) Hyperplanes and Halfspaces. (b) An Ellipsoid in R2.

(c) A Norm Cone in R3. (d) A Polyhedra for the Intersection of Six
Halfspaces, with Outward Normal Vectors
ac1, . . . ,ac6.

(e) A Semidefinite Cone in S2.

Figure 4.3: Some Often Used Convex Sets (3).
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4.2 Description of the Robust Optimization Method

Figure 4.4: A Graph of the Convex Function.

4.2.2.2 Convex Function

A real-valued function is called a convex function only if the line segment be-
tween any two points on the graph of the function lies above the graph of the
function (see Fig.4.4). In mathematical form, it can be expressed as:

f (κx1 +(1−κ)x2)≤ κ f (x1)+(1−κ) f (x2) (x1,x2 ∈ X), (4.4)

where, X ∈ R is a convex set in a real vector space, κ is a parameter that
is 0 ≤ κ ≤ 1. If the strict inequality holds in Eq.4.4 whenever x1 6= x2 and
0 < κ < 1, the function is said to be strictly convex.

Generally, it is difficult to judge if the function is a convex function from the
form of the function. Here are some steps to determine whether or not the func-
tion is convex.

(a) First-order Condition
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4.2 Description of the Robust Optimization Method

Figure 4.5: First-order Condition for Convex Function.

If f is differentiable, then f is convex only if the function lies above all
of its tangents(Fig.2a), and its domain X is a convex set which means:

f (x1)≤ f (x2)+O f (x2)
T (x2− x1). (4.5)

This function holds for all x1,x2 ∈ X .

(b) Second-order Condition

If f is twice differentiable, which means its Hessian matrix exists at each
point, then the conditions to judge whether the function f is convex are that
the domain X is convex and its Hessian matrix is positive semi-definite,
which means for all x ∈ X , there is :

O2 f (x)� 0. (4.6)

However, for structural optimization problems, the criteria are difficult to evalu-
ate.
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4.2 Description of the Robust Optimization Method

4.2.2.3 Duality

In mathematics, duality refers to the translation of mathematical structures into
related structures. Let us consider the standard form of the optimization prob-
lem, which is:

minimize: f (x) x ∈ Rn,

subject to: gi(x)≤ 0, i = 1, . . . ,m, (4.7)
hi(x) = 0, i = 1, . . . , p.

The optimal value of this optimal problem is denoted as f ∗, and the problem
in Eq.4.7 is not convex. The commonly used duality function is the Lagrange
duality function. The idea behind the Lagrange duality is to take the constraints
in Eq.4.7 into account by augmenting the objective function with the sum of the
weighted constraint function, and the Eq.4.7 can be rewritten as:

L(x,λ ,ν) = f (x)+
m

∑
i=1

λigi(x)+
p

∑
i=1

νihi(x), (4.8)

where λ ,ν are the Lagrange multipliers associated with the constraint functions.

Then the Lagrange dual function G is defined as the minimum value of the La-
grange function over x: for λ ∈ Rm,ν ∈ Rp.

G(λ ,ν) = inf
x∈Rn

L(x,λ ,ν) = inf
x∈Rn

(
f (x)+

m

∑
i=1

λigi(x)+
p

∑
i=1

νihi(x)

)
. (4.9)

We can see that the dual function is the infimum of a family of affine functions
of (λ ,ν). Therefore, the function g is concave even if the function in Eq.4.7 is
not convex. When the optimal value of the Lagrange dual problem is G∗, the
important inequality exists:

G∗ ≤ f ∗, (4.10)

and it holds even if the original optimization problem is not convex. This prop-
erty is characterized as weak duality. If the gap between the original problem
and duality problem is zero, which is:

G∗ = f ∗, (4.11)
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4.2 Description of the Robust Optimization Method

it is called strong duality. Generally, the strong duality does not hold except if
the original problem is convex.

4.2.3 Formation of the RO Method under Load Uncertainty

Generally, the uncertainty factors originate from both the variations of manufac-
turing material and operational conditions, which can also be treated as uncer-
tainties in the structural stiffness and load. However, for an efficient application
of the present approach, the uncertainties from the material’s or resistance side
are shifted towards the loading side, resulting in an increase in the assumed un-
certainties in the loads and keeping the material constants fixed. The calculation
processes for the load uncertainty and the stiffness uncertainty are different pro-
cesses.

Compared to the problem of stiffness uncertainty, the problem under load un-
certainty is easier solved, and the influence of material properties on structural
response can be treated as a kind of loading response. Another reason is the com-
plex relationship between material properties and structural design variables, and
it is difficult to build a clear expression between design variables and structural
stiffness for such a complex structure.

4.2.3.1 Problem Statement

Now, the range of the uncertainties of applied load is assumed to be expressed
as an ellipsoidal model:

U = {ξ ∈ Rn | (ξ −ξ0)
T Bh(ξ −ξ0 ≤ 1}, (4.12)

where ξ is the applied load vector, ξ0 is the nominal value of ξ and Bh forms the
shape matrix of the ellipsoid.

The goal is to find a robust design of the structure, considering both the min-
imum objective function and safe structural performance. The basic single-level
programming including the uncertain variables does not fit into this problem
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anymore; instead, bi-level programming is involved as follows:

find x = [x1,x2,x3, . . . ,xn]
T ∈ Rn,

minimize: f (x) :=Vol(x), (4.13)
subject to: max

Kg(x)u=ξ

ξ∈U

gi(x;ξ )−gu
i ≤ 0, i = 1, ....m,

− max
Kg(x)u=ξ

ξ∈U

gi(x;ξ )+gl
i ≤ 0, i = 1, ....m,

xl
i ≤ xi ≤ xu

i ,

where gi(x;ξ ) are the selected structural performance constraints, gu
i and gl

i are
upper and lower boundaries respectively.

Solving this problem equals to solving the lower level program with global op-
timality. In the lower level program, the optimal value of gi(x;ξ ) is acquired
under the uncertain load ξ with known resistance leading to a well-defined stiff-
ness matrix Kg(x), which is naturally a function of the current design x.

Let ζ = ξ − ξ0, and then the ζ runs around the nominal value ξ0 within the
boundary of the uncertainty ellipsoid. Thus, for a given design x, we find a com-
bination of the vector ζ to increase the structure’s performance. The value of
gi(x;ξ ) reflects the resistance ability of the design x against the uncertainty. By
this, the problem can be rewritten as :

find ζ ∈ Rn, (4.14)
minimize: −g j(x;ζ ),

subject to: ζ
T Bhζ −1≤ 0.

The selection of different performance constraints would lead to different de-
grees of difficulty for finding the global optimum. Here the algebraic value of
nodal displacement of the node with the maximum displacement of FEM expres-
sion of the studied problem is considered as the performance constraints. The
expression is:

u2
x +u2

y +u2
z = ξ

T (K−1
g dxdT

x K−1
g +K−1

g dydT
y K−1

g +K−1
g dzdT

z K−1
g )ξ = ξ

T Aξ .
(4.15)
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4.2 Description of the Robust Optimization Method

In Eq.4.15, Kg is the global stiffness matrix, di (i = x,y,z) is the vector for which
dT

i u = ui (i = x,y,z), and ui are the nodal displacements on the nodes that have
the maximum displacement in x,y,z directions. Since K−1

g didT
i K−1

g � 0,(i =
x,y,z), A� 0.

Based on the conditions as mentioned above, the robust optimization problem
is formed as:

find x = [x1,x2,x3, . . . ,xn]
T ∈ Rn,

minimize: f (x), (4.16)
subject to: dT

l K−1
g ξ0 +

√
h(x)≤ û,

xl
i ≤ xi ≤ xu

i , i = 1,2, ...,n.

In the Eq.4.16, dT
l K−1

g ξ0 is the displacement of the node which owns the max-
imum displacement under the nominal value of load with design x. The prede-
fined performance in the structure is denoted with û. The h(x) is the optimal
value of the following lower-level program:

find ζ ∈ Rn, (4.17)
minimize: −(ζ +ξ0)

T A(ζ +ξ0),

subject to: ζ
T Bhζ −1≤ 0.

The Lagrange duality (see section 4.2.2.3) of this lower level problem is:

L(ζ ,λ ) =−(ζ +ξ0)
T A(ζ +ξ0)+λ (ζ T Bhζ −1), (4.18)

where λ ≥ 0 is the Lagrange multiplier. According to the homogenization pro-
cedure (see Appendix), Eq.4.18 can be rewritten as:

L(ζ ,λ )=−
(

ζ

1

)T ( −A −Aξ0
sym −ξ0

T Aξ0

)(
ζ

1

)
+

(
ζ

1

)T (
λBh 0
sym −λ

)(
ζ

1

)
.

(4.19)

As a result, the dual form of Eq. 4.18 is:
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find t ∈ R, λ ≥ 0
minimize: −t (4.20)

subject to:
(
−A+λBh −Aξ0

sym −ξ0
T Aξ0−λ − t

)
� 0

The acquired min{−t} with the condition of the matrix A � 0 and Bh � 0 is
smaller than the global value of the primal problem. The matrix A is obtained by
calculating the algebraic value of nodal displacements of the node with the max-
imum displacements as described in Eq.4.15. The lower-level program is solved
as a convex optimization problem, and the upper-level program is realized by
the global searching method (In this work, the GA method is applied to do the
global searching).

4.2.4 Illustration Example for the 10-bar Truss Structure

The same 10-bar truss structure used in Chapter 3 is examined with the above
mentioned RO method. The structural performance constraint is the nodal dis-
placement at node 6, which is ‖ u6 ‖2= u2

6x+u2
6y ≤ 52, the uncertainty of the ap-

plied load as described by a single ellipsoid, which is (ξ −ξ0)
T Bh(ξ −ξ0)≤ 1,

here the Bh =
1

25 I8, (I8 is a unit matrix), and the ξ0 = (0,0,0,−1,0,0,0,−1)T .

The design variables are the section areas of these bars, and the range of the
design variables are: 0.01≤ ai ≤ 6, (i = 1,2, . . . ,10).

The corresponding minimum structural weight is 20.819 , and the optimum de-
sign is calculated as follows:

Table 4.1: The Acquired Optimum Design with the RO Method
a1 a2 a3 a4, a5

4.352 0.184 3.596 2.632 0.010
a6 a7 a8 a9, a10

0.010 0.328 3.458 3.098 0.212

In order to better understand the advantage of the RO method, Fig.4.6 gives the
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(a) Deterministic Optimization Method

(mean= 5.545, var=2.04).

(b) Robust Optimization Method (mean=
3.63, var=0.908).

Figure 4.6: Occurrence Frequency Distribution of Nodal Displacement.

comparison of the occurrence frequency distribution of nodal displacements with

the assumption that the loads follow the normal distribution with mean value 1

and standard deviation 0.3. The optimal design acquired by RO method shows

better structural performance both on mean value and variance.

4.3 Optimization of Arch Dams with the Robust
Optimization (RO) Method

In the sequel, the presented methodology shall be applied to the design of a new

arch dam with the following assumptions, provided only for analysis require-

ments:

• The height of the dam is 140m,

• ’V’ shaped valley.

• The basements on both sides of the valley are assumed to be a rigid foun-

dation.

• The average range of temperature change of air is assumed as −5.4◦C, the

temperature change of the reservoir water is relatively small and assumed
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to be −4.1◦C.

• The water level is assumed as 135m.

• The lower and upper boundary of the selected design variables for the opti-
mization are assumed according to empirical experiences (30,35,36) and are
shown in Table 4.2.

Table 4.2: The Upper and Lower Boundaries of Shape Design Variables
0.5≤ α ≤ 0.9 0.3≤ β1 ≤ 0.7 0.3≤ β2 ≤ 0.7

3≤ t1 ≤ 10 10≤ t2 ≤ 30 15≤ t3 ≤ 35
25≤ φ1 ≤ 70 25≤ φ2 ≤ 70 15≤ φ3 ≤ 40
−2≤ a1 ≤ 2 −2≤ a2 ≤ 2 −2≤ a3 ≤ 2

The uncertainty of the applied load is the equivalent nodal force of the load
combinations considered in the optimization procedure:

• self-weight

• hydrostatic pressure

• uplift pressure

• temperature load.

The uncertainty of the applied load is expressed as an ellipsoid (see Eq.(4.12),
and the range of the uncertainty is assumed to be twice the equivalent nodal
force under initial loading conditions. The nominal value of loads and material
properties are chosen as initial conditions. According to (30), the nominal value
of loads and material properties used in the analysis are assumed as given in Ta-
ble4.3

Table 4.3: Loading Condition and Material Parameters of the Dam Model
Parameters NominalValue
Air Temperature Variation(◦C) 5.4
Reservoir Water Temperature Variation(◦C) 4.1
Water Level (m) 135
Density(kg/m3) 2400
Young’s Modulus(Pa) 2.1e10
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Table 4.4: Geometrical Parameters of the Optimal Dam Model According to the RO
Height Thickness(m) Central Angle′2φ ′(◦) Coefficient′a′

140 3 123.41 −0.271
120 8.04 117.99 −0.405
105 11.28 112.38 −0.530
90 14.07 105.45 −0.677
75 16.41 97.20 −0.844
55 18.81 84.15 −1.100
35 20.41 68.75 −1.395
20 21.07 55.66 −1.640
0 21.25 36.16 −2.000

Table 4.5: Comparison
Volume Sum of Displacement Tensile Stress Von Mises Stress
(m3) (m) (MPa) (MPa)

DO 2.841e+05 0.01653 1.49 3.15
RO 4.4173e+05 0.00987 1.40 2.79

With the conditions as mentioned above, an arch dam model with the RO method
and a model with deterministic optimization method are developed to form a
comparison (shown in the Fig.4.7). The following Table 4.4 demonstrates the
results of the obtained geometrical parameters.

In Fig.4.7 a visual comparison between the different qualities of the two opti-
mized designs can be illustrated. As expected, the RO leads to more conserva-
tive designs.

Since the maximum displacement of the arch dam is selected as the performance
constraint, the Fig.4.8 and Fig.4.9 show maximum summed displacements of
these two arch dam models under the same load situations for deterministic
(Fig.4.8) and robust optimization (Fig. 4.9).

Table 4.5 illustrates the details of two optimal arch dams. From the direct com-
parison, it is demonstrated that the model with RO shows better performance un-
der the same conditions, however, the volume is larger than that acquired through
the DO approach.
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Figure 4.7: Comparison of the Geometries between DO and RO Opti-
mum Design.

Figure 4.8: The Sum of Displacement (m) of Optimal Arch Dam Based
on DO.
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Figure 4.9: The Sum of Displacement (m) of Optimal Arch Dam Based
on RO.

Table 4.6: Range of Random Samples
Parameters Distribution Variation
Air Temperature Variation(◦C) Uniform [4,7]
Reservoir Water Temperature Variation(◦C) Uniform [2,6]
Water Level (m) Uniform [130,140]
Density(kg/m3) Uniform [2200,2600]
Young’s Modulus(Pa) Uniform [1.9e10,2.3e10]

The question remains regarding the behavior of designed structures under ran-
domly varying loads. Indeed the RO structure behaves more robust, i.e., same
variations on the load parameters should lead to changed mean-values and in
particular lower variances in the models’ responses. Therefore, 200 random
load and material property combinations around the nominal values (as shown
in Table 4.3) are generated following a range listed in Table 4.6 and the corre-
sponding tensile stresses, von Mises stresses, and the sum of the displacements
are recorded. The results are visualized in terms of histograms, see Fig.4.10.

From the Fig.4.10, both mechanical characters of the arch dam realized with
RO method show better performances than with the DO methods. The gaps in
the tensile stresses and Von Mises stresses are not that clear in comparison to the
gap in the sum of displacements, especially the von Mises stresses, it shows little
difference between these two dam models. The displacements, however, show a
clear difference, and the curve’s variation of the RO model is much smaller than
the variation of DO model. This situation may be caused by the fact that the sum
of displacements are selected as the performance constraint.
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(a) Comparison of Maximum Tensile

Stress.

(b) Comparison of Maximum von Mises

Stress.

(c) Comparison of the Maximum Sum of

Displacements.

Figure 4.10: Comparison of Mechanical Properties between the Arch Dams Acquired

with DO Method and RO Method.
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Table 4.7: Mean Value of Structural Performance for the Optimal Designs
Volume Tensile von Mises Sum of
(m3) Stress (MPa) Stress (MPa) Displacement (m)

RO 4.417e5 1.314 2.816 0.0099
RDO 3.068e5 1.466 2.874 0.0122
RBDO 3.420e5 1.396 2.973 0.0121
DO 2.841e5 1.492 3.304 0.0165

Table 4.8: Standard Deviation of Structural Performance for the Optimal Designs
Tensile von Mises Sum of

Stress (MPa) Stress (MPa) Displacement (m)
RO 1.372e5 1.546e5 7.854e−4
RDO 1.271e5 1.502e5 9.795e−4
RBDO 1.893e5 1.567e5 1.226e−3
DO 1.914e5 1.586e5 1.301e−3

4.3.1 Comparison of the Optimal Designs of Arch Dams Ac-
quired by the RO, RBDO and RO Method

Both RO, RBDO and RDO methods aim at solving the structural optimization
problems, incorporating with the uncertain factors. However, the RO method is
based on a non-probabilistic model. The following Fig.4.11-Fig.4.12 show the
comparison between the differently optimized arch dams on the structural prop-
erties, and the Table 4.7 and Table 4.8 give the conclusions from these structural
evaluations.

As can be seen from the figures and tables, the optimal design acquired by RO
shows smaller mean values, and the variance is close to the design with RDO.
Since the performance constraint in the RO method is displacement, the designed
structure performs especially well on it. However, the acquired volume is also
much larger than in the two other designs. In other words, the design is acquired
by increasing the dam’s volume in some way.
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(a) Comparison of Maximum Tensile

Stress.

(b) Comparison of Maximum von Mises

Stress.

(c) Comparison of the Maximum Sum of

Displacements.

Figure 4.11: Comparison of Mechanical Properties between the Arch

Dams Acquired with RBDO Method and RO Method.
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(a) Comparison of Maximum Tensile

Stress.

(b) Comparison of Maximum von Mises

Stress.

(c) Comparison of the Maximum Sum of

Displacements.

Figure 4.12: Comparison of Mechanical Properties between the Arch

Dams Acquired with RDO Method and RO Method.

109



4.4 Conclusion

4.4 Conclusion

The task of optimizing an arch-type dam through robust optimization has been
solved by the combination of Kriging-based metamodeling and a bi-level semi-
defined programming approach, which can be regarded as worst case design op-
timization. By adopting a 3D Finite Element model of an arch-type dam under
load uncertainties, the non-probabilistic robust design is obtained. Comparisons
with the results of deterministic optimization show that the RO designs are more
robust and will yield more reliable and safe structures. The price to pay is a
less effective use of the material. Still, the RO design has visibly improved the
efficient use of material than any classical design would propose.

For the further applications of the RO method in engineering designs, some
limitations exist and must be solved. The format of the constraints should ful-
fill specific requirements, which means not all the concerned constraints can be
transformed into the required form. Moreover, the analysis is only suitable for
simple linear elastic structures. More efforts are still needed to improve the RO
method and make it applicable to wider ranges of engineering problems.
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Chapter 5

Conclusions

5.1 Summary of Achievements

5.1.1 Comparison of Optimization Methods

Based on the optimal results of the truss structure and the applications into the
optimum design of the arch dam, the characteristics of these methods for the
arch dam design are concluded as follows:

(a) Deterministic Optimization vs. Uncertainty Based Optimization

The deterministic optimization method is obtained at specific conditions,
ignoring that even a small uncertainty in the data can make the optimal so-
lution to the problem completely meaningless. In realistic situations, prob-
lems are often unknown in its entirety, giving rise to uncertainties. The
reason includes measurement errors, implementation errors, etc. With the
introduction of uncertainty, the uncertainty based optimization provides the
possibility to find an optimal design to cope with the system variations.

(b) Probabilistic Model vs. Non-probabilistic Model

In the probabilistic model, the uncertainties are assumed to obey a known
in advance probability distribution. The accuracy of the distribution based
on the accuracy of the data information. In most situations, the distribu-
tion of the uncertainty data is partially known. This makes the approach of
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probability based model less conservative than the non-probabilistic model.

Furthermore, even when the true data obeys some stochastic nature, it is
still not easy to identify their distributions in a precise way. Especially for
multi-dimensional probability distributions, usually an astronomical num-
ber of observations is required. This further increases the difficulty in ob-
taining the information required to decide on the data distribution. Hence,
the probability based model is often forced to operate with oversimplified
guesses instead of actual distributions.

The non-probabilistic model in this article adopts the uncertain-but-bounded
data model. The possible data information is defined regarding a given per-
turbation vector varying in a given data set. Compared with the stochastic
data model, the data set makes sense without many times specific actions.
With the uncertain-but-bounded dataset, we can make predictions on the
acceptable probabilistic guarantees.

In the non-probabilistic model, the searching target is directly acquired.
Even if the information on the uncertainties is unknown, the results can
guarantee the robust properties. In the probability based model, there is no
guarantee on the relevance of the stochastic model of uncertainty data. It
is difficult to evaluate the influence of the uncertainty information on the
whole structural system.

Since the non-probabilistic model remains on the safe side, sometimes the
acquired results are too conservative for the design requirements. It will
increase more other costs and some unnecessary burden for the structure.

(c) Reliability Based Optimization Design (RBDO) vs. Robust Design Opti-
mization (RDO)

Both reliability-based optimization design and robust design optimization
are based on the stochastic model, in which the uncertainty is described by
the predefined distributions. However, in the present state of research on
these two approaches has revealed the differences of them.

The RBDO method is addressing on offering a quantification of the reliabil-
ity in the acquired optimum design by minimizing a constrained objective
function. The accuracy of the RBDO method hinges on the selected model,
data information, etc. In the RBDO method, the uncertainty is decided by
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a predefined distribution. The availability of detailed statistical inputs is
critical to the RBDO. With the introduction of the reliability analysis, the
RBDO approach is sensitive to faulty assumptions in the uncertainty in-
puts. It may lead to results with significant errors in computations of the
failure probability if the stochastic model for uncertainty is insufficient.

In the reliability based optimization, the limit state function is used for the
calculation of failure probability. In the simulation process, many assump-
tions are made. It is shown that the changing of any assumptions during
the simulation process in reliability analysis, such as material modelings,
yield locus, etc., would lead to a sizeable mean shift of the simulation re-
sponse. The mean error will significantly influence the prediction of the
failure probability.

The robust design optimization, on the other hand, is less sensitive to model
errors when compared with the RBDO approach. For the RDO method, the
statistics are less costly to compute for the mean of the objective function,
and it becomes more reliable for small sample sizes with limited informa-
tion on the stochastic inputs.

The objective function of the RDO method is formulated as a multi-criteria
optimization problem, in which the minimum standard deviation of this
performance is introduced as part of the objective function. The objective
function is expressed with a weighted sum of the two design criteria. The
weighting factor decides the relative importance of each subpart. Besides,
a standard deviation of the original constraint function, which is expressed
with a so-called feasibility index, is treated as a constraint condition. With
the increase of the feasibility index, the structure shows more feasibility.

The choice of these two methods relies on the real purpose of the opti-
mization study. If the study emphasizes the insensitivity of the structural
performance, the RDO method should be adopted. Just minimizing the ob-
jective function with the attention on the issue of structural safety in the
extreme events favors the use of the RBDO approach. Different selections
of methods lead to different optimal designs.
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5.2 Outlook

A good structural design not only saves the material, but also provides robust
characteristics against all kinds of unexpected situations, and reduces the main-
tenance costs. In this work, four approaches have been discussed to deal with
the uncertainties in the optimization process.

The advantages that exist due to the introduction of uncertainties in the opti-
mization process of the arch dam are highlighted. However, these researches are
still far from the expected targets. Further detailed studies must be conducted
during future work on the method approach to structural design with uncertain-
ties.

• From the comparison of a non-probabilistic based model and a probabilis-
tic model, we can observe the complementary approaches of how each han-
dles the uncertainties. The stochastic information of uncertainty may work
as a guideline for building the uncertain data set for the non-probabilistic
model. A further discussion would be considering the combination of these
two approaches, to provide a more convenient and efficient result with
higher accuracy.

• Comparison with the results of deterministic optimization shows that the
RO designs are more robust and will yield more reliable and safer struc-
tures. The price to pay is a less effective use of material, yet, the RO design
has visibly improved the efficient use of the material.

For further application of the RO method into engineering designs, there
still exists some limitations. The format of the constraints should fulfill
specific requirements, which means not all the concerned constraints can
be transformed into the required form. Moreover, the analysis is only suit-
able for simple linear elastic structures. More efforts are still required to
improve the RO method and make it applicable to wider ranges of engi-
neering problems.

• Numerical analysis of thermo-hydro- mechanical (THM) coupling prob-
lems is an important subject for the arch dam structural safety and stability
because of the interactions of these three fields. The thermal expansion and
mechanical stress would cause the fractures in the dam body, fluid injec-
tion would cause large changes in pressure and temperature, thus affecting
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hydraulic properties which would be fractures and pore spaces. Thus the
interaction of thermal, hydraulic, and mechanical fields would worsen the
structural state, and it is worth well to introduce the THM coupling to the
structural analysis.

• So far, the analyses in this work are based on a static model of the arch
dam. As we know, the arch dam has outstanding characteristics to with-
stand earthquakes. However, the seismic analysis of a structure like an
arch dam itself is a considerable challenge. It would be even harder to in-
volve uncertainties in the optimization of the arch dam based on a seismic
model. To determine a more reliable and efficient way to find the optimum
design under uncertainties against the seismic loads would be a challenging
but possible in further research.
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Appendix A

A.1 Homogenization

Let Q ∈ Sn, q ∈ Rn, and r ∈ R, then:(
x
1

)T ( Q q
qT r

)(
x
1

)
� 0, ∀x ∈ Rn, (A.1)

if and only if:

(
Q q
qT r

)
� 0. (A.2)

A.2 S-procedure

For Qi ∈ Sn, qi ∈Rn, ri ∈R, let f0(x), f1(x), . . . , fm(x) be real functions of x∈Rn

with the form of:

fi(x) =
(

x
1

)T ( Qi qi
qT

i ri

)(
x
1

)
� 0, ∀i = 0,1, . . . ,m, (A.3)

then the implication:

f1(x)≥ 0, . . . , fm(x)≥ 0,⇒ f0(x)≥ 0, (A.4)
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holds if there exist τ1,τ2, . . . ,τm ≥ 0, such that:

f0(x)≥
m

∑
i=1

τi fi(x) ∀x ∈ Rn. (A.5)

A.3 The Lagrange Duality of the lower-level prob-

lem

The Lagrange duality of the lower-level problem referring to Chapter.4 is :

L(ζ ,λ ) =−(ζ +ξ0)
T A(ζ +ξ0)+λ (ζ T Bhζ −1), (A.6)

where λ is the Lagrange multiplier, the corresponding Karush-Kuhn-Tucker(KKT)
condition is:

∇ζ L(ζ ,λ ) =−2A(ζ +ξ0)+2λBhζ = 0

ζ
T Bhζ −1≤ 0, λ ≥ 0 (A.7)

(ζ T Bhζ −1)λ = 0,

with the use of homogenization procedure, this can be written as:

L(ζ ,λ )=−
(

ζ

1

)T ( −A −Aξ0
sym −ξ T

0 Aξ0

)(
ζ

1

)
+

(
ζ

1

)T (
λBh 0
sym −λ

)(
ζ

1

)
.

(A.8)
The dual function qd , therefore, is the function of λ .

qd(λ ) = inf
ζ∈Rn

L(ζ ,λ ) = inf
ζ∈Rn

(
ζ

1

)T ( −A+λBh −Aξ0
sym −ξ T

0 Aξ0−λ

)(
ζ

1

)
= sup{t | L(ζ ,λ )≥ t,∀ζ ∈ Rn}

⇔ sup
{

t |
(
−A+λBh −Aξ0

sym −ξ T
0 Aξ0−λ − t

)
� 0
}
.
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