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ABSTRACT

This paper! is on model based structural damage location, i.e. on damage location based on
measurements taken from a structure as well as on a mathematical model of the structure for
the purpose of diagnosis, simulation and identification. Since this model has to be reliable the
model parameters have to be identified and updated. This adjustment of the parameters by
means of measured data, i.e. model correction within system identification, is in general an
ill-posed inverse problem which often has to be solved with incomplete output measurements
with respect to the nodes of the underlying finite element model ([1], [2],[3], [4], [5], [6], [7])-
The problem of incompleteness can be handled by projection methods introduced first in [3]
and thus avoiding a model reduction. This method, the Projective Input Residual Method
(PIRM), is an identification method based on input and incomplete output measurements in
the frequency domain. Using the projection methods of the PIRM in [8] a damage indicator
was defined and applied. This indicator was shown to be sensitive to system modifications,
e.g. decreased stiffness due to a damage, using only a small fraction of the total number
of possible measuring points. Further application and analysis of this indicator including
regularization methods was done in [9].

Since the computation amount to calculate the necessary projections for the hole mathemat-
ical model is growing rapidly with the number of degrees of freedom in this contribution a
generalisation of this indicator is introduced which is appropriate for subsystem monitoring
and subsystem damage location. Especially the evaluation of the indicator values for the
parameters under investigation becomes more efficient in the framework of monitoring.

The method and its underlying theory is presented and illustrated by a laboratory example,
a gantry robot. The structure was objected to real damage and the underlying input-output
measurements where taken for both states of the structures, the healthy and the damaged.
The results presented underline the sensitivity of the presented generalized indicator to
system modifications and damage location.

!This work is part of the collaborative research center 477 in Braunschweig, Germany, and as such
supported by the DFG, the Deutsche Forschungsgesellschaft.



1 NOMENCLATURE

The following nomenclature lists symbols and their meaning that are used in this paper:

R(W) image space of the linear map W generated by the columns of W
(

R(W) orthogonal complement of R(W)
N(W) kernel or null space of the linear map W
N(W) orthogonal complement of N (W)

Ny number of parameters to be identified

v indices for a parameter component

m number of measured output components

a variable parameter vector

a’ sought parameter of the true model

1 = (1,...,1)T start parameter vector by definition

ey € IR" : vth parameter unity vector

Bf Moore-Penrose or generalized inverse of a matrix B

BH = B*Tconjugate transpose of a matrix B

C € {0, 1} measurement matrix, selects measured rows, i.e. left-multiplication
with C' eliminates rows that correspond to non measured components

C € {0, 1}("=™)*" complementary measurement matrix,
selects non-measured rows: CCT = 0, (n—m)

Iy k x k identity matrix

S,(a)  dynamic stiffness matrix for frequency w
F,(a) = (S.,(a))"" frequency response matrix

2 INTRODUCTION

The parameters of our underlying mathematical model are the physical parameters of an
elastomechanical system, i.e. the mass, damping and stiffness matrices and its components.
Since the calculation of all the elements of these parameter matrices is computationally
too expensive we apply the well-known parameter topology as defined in [2] which uses a
low-dimensional (n, < n?/2) subbase of the space of the system matrices, presuming that
the sought true model may be well approximated in the corresponding model subspace:
The mass, damping and stiffness matrices of the start model are assembled from sparsely
occupied, symmetric matrices of full system dimension, i.e. n X n:

M=Y A,, B=) A, K=) A, (1)

ogeM peEB LEK

We have M UBUK = {1,...,n,}, where the elements of the sets M, B and IC are the
parameter indices of the mass, damping and stiffness summand matrices.

The mathematical model consists of all linear combinations of these base matrices, i.e. given

a parameter vector a = (ay, ..., a,,) we have for the model:
M(a) =Y asA,, Bla):=)Y a4, K(a):=>) aA, (2)
oceEM pEB eK

Thus the dynamic stiffness matrices of the model is:

Tp

Su(a) = —w’M(a) + jwB(a) + K(a) = > a,S,(ey) (3)

v=1



Remark: For given w > 0 the set of dynamic stiffness matrices
Sy :={S.(a) eC™":a eR™} (4)

is a real vector space of dimension n, generated by the base of elementary dynamic stiffness
matrices Sy (e1), ..., Su(en,)-

For further investigations we assume the following general experimental design in the fre-
quency domain:

A: N > 1 excitation frequencies wy,...,wy, and 2N matrices P, U{", ... Py, Uk, each
having n rows and a varying number of linearly independent columns myq,...,my:
the m, columns of P* and U¥,r = 1,..., N, are (respectively) the excitation and as-
sociated (complete) response vectors for the frequencies w,,r = 1,..., N which are
created by the corresponding frequency response matrices: Ul' = F,, (a®)P{',... Uk =
F,\(a®)P%. (The upper index # in U* or P" is an abbreviation of the known mea-
surements, i.e. all objects having this superscript are constant objects coming from the
experimental design. In contrast, an upper index 7 as in P” is used in cases of objects
that are calculated as a function of a, PY = P7(a).

B: The measured output vectors with respect to the measurement matrix C' are the columns
of the matrices CU* = CF, (a®)P*, r=1,..., N, with a® as the true model param-
eter.

C: For an arbitrary parameter a, CU)(a) := CF, (a)P*, r = 1,...,N, are the corre-
sponding calculated output vectors, and are also incomplete.

In the following we assume for an arbitrary but fixed 1 <r < N: w := w,, P* := P" and
CU*" := CU}. Furthermore, we assume m < n for the row dimension of the measurement
matrix C.

3 SUBSYSTEM ADAPTATION OF THE PROJEC-
TIVE INPUT RESIDUAL METHOD

After a short introduction to the Projective Input Residual Method (PIRM) we will present
its adaptation for subsystem damage identification.

Due to the linear independence of the elementary dynamic stiffness matrices {S,(e,),v =
1,...,n,} the map a — S,(a) between the real vector space of n,-vectors and the space
of parametrized dynamic stiffness matrices S§ is an isomorphism. In consequence a® and
S.(a®) are the same objects w.r.t. this isomorphism, i.e. a® = S, (a°). Remark: Two vector
spaces E, F are said to be isomorphic if there exists an isomorphism of E onto F. In that
case, any theorem proved for E, involving vectors and subspaces of E, immediately gives a
corresponding theorem for F, involving the images of the vectors and subspaces in question
(see [10]). This is an important fact, since it implies that hunting for @ (and this is what
we do) means hunting for S,,(a°) as it is done by the classical input residual method which
may be applied as the minimization of the Ls-norm of the input residuals P* — S, (a)U"
if all output components were measured, i.e. C' = [, and m = n. The minimization must
be performed by solving the associated normal equations, i.e. the associated overdetermined
system of linear equations for a. If C' # I, i.e. not all components have been measured,
given an arbitrary parameter a we can write

Su(a)U" = [Sw(a)CVT][CU“] + [Su(a)CT][CU"], ()

- J N J/

~
T Ty



where T}, can be evaluated since CU* was measured and T;; can not be evaluated. But what
we know is that Ty is an element of X (w,a) := R(S,(a)CT), the n — m-dimensional image
space of the linear operator S,,(a)C7T.

Thus, as a generalization of the classical input residual method, we eliminate the uncertainty
in (5) by using the quotient vector space D(w,a) := C"/X (w,a) in which the cosets of all
elements of X (w,a) including Ty vanish and thus the evaluation of S, (a)U* in terms of
cosets of D(w,a) is unique. As can be shown, the classical input residual method applied in
the family of factor spaces {D(w, a)}qerre is to find a that minimizes the distance between
P# the experimental input, and the m-dimensional orthogonal complement of the space
X(w,a). We get the following PIRM definition equations with, in contrast to the classical
input residual method, nonlinear residuals v(a):

Find @ = argmin,|lv(a)|]* with (6)
v(a) = P(a) (P"— S,(a)CTCU"). (7)
::<I>‘(:u7a)

The operator P(a) is the projector to the orthogonal complement of X (w,a) = N(CF,(a))
and therefore the map a +— P(a) is nonlinear. Due to assumption B on page 3, ®(w, a’) is
an element of N(CF,(a")) and thus vanishes in D(w,a"). In consequence we have v(a®) = 0
and the method is shown to be asymptotically unbiased.

The following adaptation to subsystems of the PIRM-residuals v(a) as defined in (7) will be
used in the next section to define a damage indicator that can be used to indicate and locate
damages during online monitoring.

For this purpose let Q € {0,1}*", similar to the measurement matrix C, be a matrix whose
left multiplication with S,(a) or F,(a) selects certain rows of this matrices: Let Q select
the rows of a certain [-dimensional subsystem and assume that the measured components
are contained in this subsystem implying [ > m. Furthermore we assume the measurement
matrix C' to select the measured components/rows within this subsystem und not within
the whole system, i.e. C € {0,1}™*! instead of C' € {0,1}™*™. Also the experimental input
and output measurements are assumed to be of subsystem dimension, i.e. the corresponding
vectors P* and U" are of length [. Then we can write for the part of the dynamic stiffness
matrix that corresponds to the subsystem

SQ(W7G) = QSw(G)QT7 (8)

If Q selects a slightly coupled subsystem we can further assume to have approximately

So(w,a)™t = (QS.(a)QT)™ 9)

0, if subsystem is slightly coupled
7\

Ve

= QS,(a)7'Q" - [QF(0)Q"][QF.()Q"] M [QF.(a)Q"] (10)
Q (Su(a) ™' Q" = QF.(a)Q" (11)
N ——

Fo(w,a)

Q

A proof for equation (10) can be found in [11]. In adaptation of equation (5) we get the
following calculated input for our subsystem

QS.(a)Q"U* = [Q5.()Q"CTIICU| + Q5. ()" CT[CUY, (12)



Thus the adaptation vg(a) of the PIRM residuals v(a) corresponding to (7) is given by:

g

vo(a) = PQ(a)gP“ — So(w, a)C’TC’U“)J. (13)
=:10q(w,a)

where Pg(a) is the projection to the orthogonal complement of

Xolw.a) == R(QS.(a)Q"CT) &~ N(CQF.()Q"). (14)
(11)
Under this assumption it follows that

vo(a’) ~ 0 (15)

because:
CU" ~ ClQF,(a®)QT]- (pﬂ) (16)
CU" ~ ClQF,(a®)QT]- ([QSw(aO)QT]CTCU“>, (17)

and thus
Pt —[QS,(a®)QTICTCU" € N(CQF,(a)Q") ~ R(QS.(a)Q"CT) (18)
= v(a") ~0 (19)

The main advantage of vg(a) in comparison to v(a) is that the time consuming computation
of P(a) is substituted by the evaluation of Pgy(a), which is much more efficient because of
the smaller subsystem dimension | < n.

Since vg(a®) vanishes only approximately, vg(a) is not well suited for the identification of the
subsystem parameters corresponding to () if the couplings are more complex. But it is well
suited for a local analysis of the system that takes only small deviation of the parameters
from a healthy reference state (described by the start parameter 1) of the system into
account. This is done in the next section by defining a damage indicator that is based only

on the partial derivatives &)BQT@) ,v=1,...,n,, of the subsystem adaptation of the PIRM

=1
residuals. This indicator will be illustrated by a realistic example considering real damage.

4 THE DAMAGE INDICATOR BASED ON PRO-
JECTED SUBSYSTEM RESIDUALS

In contrast to parameter identification in damage detection the primary task is not the
updating of the parameter components that have changed due to a time-variant behaviour
of the structure, but to locate the damage that has caused this time-variance, i.e. to determine
the damage related parameter components.

For this purpose an indicator-based analysis — as presented in the following — that may be
applied online is more suitable than a time consuming identification procedure.

In the following @ is a selection matrix for a given subsystem that is used for monitoring
and damage detection. Since the partial derivatives
Ovg(a)

vg)(a) = yv=1,...,n,, (20)

a=1
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are very sensitive to structural modifications they are well-suited for this purpose and can
be applied to this task by the following indicator definition:

(v)
v, (1
T,,Z:MZO forv=1,...,n,, (21)
pW) 1 p
log " (D)l

where vg(a) are the projected subsystem residuals for the measurements U% of the possi-
bly damaged structure but based on the same excitation P* as used for the undamaged
case (U*). The justification for 7, being a damage indicator is as follows. In practice the
enumerator of (21), ||vg' )(1)||, which should theoretically be 0, is not equal to zero: due to
measurement errors and imperfect parameter components of the start model 1, ||v®)(1)]|
is in general a real number greater than zero which reflects the last reference-state of the
structure. This reference value for the healthy state is then compared via 7,, with the corre-
sponding gradient norm |[v5 (V)(]l)H based upon the measurements Ul that are taken from
the (possibly) damaged structure and also contain similar measurement errors and imper-
fections than U*. If no damage has occurred, 7, will take a value near 1 since then we expect
va’)(]l)H R~ va(y)(]l)H. The other case is 0 < 7, < 1, i.e. Hvéf(]l)H < va(y)(]l)ﬂ, and hence
the parameter component v is indicating a damage associated to parameter v.

An application of this indicator is presented in the next section.

5 Application

5.1 Description of the structure and the experimental design

The presented method was applied to the damage diagnosis of the steel frame construction
of the gantry robot. Figure 1 shows a photo of the robot used in the investigations. This
robot performs transportation tasks within a manufacturing centre which consists of two
lathes and two storage magazines. The equipment that constitutes the manufacturing cell
determines the size of the frame construction that is 6.00 m x 8.00 m x 2.94 m (3.36 m). The
structure consists of steel beams with hollow rectangular cross-sections. Such a construction
was subjected to impact excitation during the investigations. The dynamic test included two
stages:

1. Impact test of the undamaged structure,

2. Impact test of the structure after the introduction of the damage.

The damage consisted in loosening bolts that connect the crosswise stiffening beam with the
horizontal beam (see figure 2).

The location of the damage is also marked in figure 3 that presents the model and the loca-
tion of the excitation force and accelerometers. Both tests were technically identical, which
means that the same design of the experiment was used in both cases as well as the same
parameters were used during the acquisition and processing of the signals. The excitation
was located at the column which is marked by an arrow in figure 3. The excitation force
was produced by a impulse force hammer type. During the experimental investigations 4
tri-axial piezoelectric accelerometers type were used. These 4 sensors were moved after tak-
ing the measurements to the new positions as to obtain the measurements in all the 98
experimental nodal points as shown in figure 3. Each measurement included 10 averages
for a better accuracy of the calculated frequency domain characteristics that is auto-power



Figure 1: The structure under investigation: A gantry robot

spectrums, coherence functions and frequency response functions (FRF). Uniform and ex-
ponential windows were applied to the force and acceleration signals respectively to improve
signal to noise ratio. The sampling frequency was equal to 2048 Hz.

On the basis of the experiment 294 FRF (3x94) were obtained for both undamaged and
damaged structure. These characteristics were directly used for the detection of the damage.
for healthy and damaged structure are shown in the figure 4.

Since the acceleration signals were used for the calculation of FRF they were integrated in
the frequency domain to produce the displacement type signal according to the equation:

Hp(jw) = (%)QHA<jw> (22)

Such signal can be directly used for the determining the damage indicator. FRF calculated
as the ratio of the displacement spectrum to the force spectrum can be treated as the re-
sponse of the system to the unit force excitation. Thus, in consequences UM! and UMz, the
displacements corresponding to the healthy and damage structures respectively are replaced
by the frequency response functions measured at healthy and damaged structure. The ex-
citation force remains constant and is equal ”1” for all frequency components considered
during the computations of the damage indicator. The method requires also the construc-
tion of the model. The system matrices M, B, K are used for the evaluation of the projected
input residuals as defined in equation (13). The important issue is that the damage indicator
defined in (21) does not require the construction of the model which describes the mass-
damping-spring properties of the damaged structure but only the model which corresponds
to the undamaged object.

The finite element model of the considered frame construction was built in such a manner to
allow further changes focused on model updating. The model was constructed by means of
the finite element method. The FE model of the structure was produced using the structural
dynamics toolbox (SDT) of Matlab. The model consists of quad4, tria3 elements and one
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Figure 2: Location of damage, i.e. loosend bolts that connect the crosswise stiffening beam
with the horizontal beam

lumped mass for the modelling of the robot’s gripper.

The material properties of every element, except contact elements, in the initial model were:

young modulus: 2.1 x 10° Mpa,
density: 7800 kg/m3.

The thicknesses of the finite elements of the particular constructional parts of the structure
are as follows:

long beams and vertical columns. 0.01 m,
short beams: 0.005 m,

crosswise beams: 0.004 m.

A lumped mass of 400 kg was added to simulate the influence of the gripper on the object
dynamics.

The dimensions were assumed on the basis of the technical documentation of the robot
and direct measusrements. The contact joints between the constructional elements and also
between the vertical columns and the ground were used as updating parameters. The contact
joints were modelled as thin layers with significantly lower Young modulus and density than
steel. Thus, thickness, Young modulus and density of the contact joints were used to tune
the model to the results of the experimental investigations, i.e to obtain the used start model
parameter 1 describing the healthy state of the system. Remember that 1 is necessary to
evaluate the damage indicator 7, as defined in eq. (21). The FE model was updated to
obtain a good correlation with the modes that were well excited during the experimental
investigations of the healthy structure.



Impact excitation
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Figure 3: Location of the damage and the measuring and excitation points

They were selected on the basis of the SUM characteristic which is shown in figure 4. The
set of the considered eigenfrequencies includes the following natural frequencies: 18 Hz, 44
Hz, 78 Hz, 88 Hz, 129 Hz.

The final step concerning model preparation is its division into geometrically defined regions.
The structure is divided into subsystems for which damage indicator values are calculated.
For our application the subdivision consists in the construction of a separate subsystem for
each of the n, parameter components as shown in figure 5. The subsystems matrices that
satisfy the equation (1) where also created. While dividing into subsystems one has to take
into account the location of the sensors during experimental tests since each region must
include at least one measured FRF. Having this in mind the investigated frame construction
was divided into 16 regions as shown in figure 5. The stiffness and inertia matrices were built
for all of the subregions. The dynamic stiffness matrix (see eq. (3)) is then expressed as a
linear function of the dimensionless parameter that are assumed to be equal 1 for the model
describing the healthy state of the structure (1).

5.2 Results

The results of the experimental measurements and the subdivided model of the healthy
structure is used for the calculation of the introduced damage indicator. The computation
included 5 scenarios that included different frequency components for the calculation of the
damage indicator. In general the selection of the frequency components was based on the
observed significant differences between SUM functions (figure 4) calculated for the healthy
and the damaged state of the structures.

In the first scenario the damage indicator was calculated at the single frequency 78 Hz. The
results are shown in the figure 6. The lowest value of the indicator was obtained for the
region number 3 that correspond to the location of the loosened bolts. The second lowest
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Figure 4: Sample frequency characteristics (red line=damaged state, blue line=healty state)
obtained taking the sum of the characteristic of all nodes (y-axis).

value of the indicator is for the region number 1 which includes also the crosswise stiffening
beam. The behaviour of this element was influenced at most by the introduced damage.

The second scenario was enhanced by the additional consideration of the frequency 114 Hz
(fig. 7). The results are very similar to those obtained during first approach. The consider-
ation of the frequency bands 75...78 113,114,115 Hz also produces comparable values in
scenario 3 (see figure 8). The fourth scenario considers frequencies 44, 78 and 114 Hz and
thus is qualitatively different in comparison to the previous ones since the SUM function of
the damaged structure (red line in figure 4) exhibits smaller values at 44 Hz than the healthy
structure; and this is in contrast to the frequencies 78 and 114 Hz where the healthy struc-
ture exhibits smaller values. Again, the obtained results as shown in figure 9 are indicating
the location of the damage in subsystem 3.

The fifth scenario included all significant frequency components of the measured FRFs, that
are 18 Hz, 44 Hz, 78 Hz, 114 Hz and 119 Hz. Once again the values of the damage indicator
located correctly the fault of the system within the region number 3 (see figure 10).

6 CONCLUSIONS

The paper is about model based parameter identification and damage localization of elas-
tomechanical systems using input and output measurements in the frequency domain.

An adaptation of the Projective Input Residual Method (PIRM,[3]) to subsystem damage
identification is presented. For this purpose the PIRM residuals were adapted with respect
to a given subsystem to be analysed. Based on the gradients of these projected subsystem
residuals a damage indicator was introduced which is sensitive to parameter changes and
structural damages in a given subsystem. Since the computations are done w.r.t. the smaller
dimension of a subsystem this indicator shows a computational performance gain compared
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Division into regions

Figure 5: Subdivision of the model into regions/subsystems
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to the non-subsystem approach. This gain in efficiency makes the indicator applicable in
online monitoring and online damage diagnosis where continous and fast data processing is
required.

The presented application of the indicator to a gantry robot could illustrate the ability of
the indicator to indicate and locate real damage of a complex structure.

Since in civil engineering applications the system input is often unknown further investiga-
tions will focus on the output-only case since the generalization of the presented methods to
this case will broaden the application spectrum of the method.

Keywords: System identification, damage location, incomplete measurements, projection
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methods, damage indicator, non-linear parameter estimation.
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