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1 Introduction

By applying the classical Finite Element Method to discrete crack propagation simulations a very
frequent adaptive remeshing is necessary. This requires a consistent transformation of the state vari-
ables. By using finite elements the stress distribution is discontinuous along the element edges, which
complicates this transformation. In the last years meshless simulation methods have been developed
where a continuous stress distribution can be reproduced. This enables a much easier transformation
of state variables. A different method to model discontinuities is the Extended Finite Element Method
(Moës et al. 1999) which is not used in this study.
In this paper a meshless component is presented, which internally uses the common meshless interpo-
lation technique “Moving Least Squares” (Lancaster and Salkauskas 1981), (Belytschko et al. 1994).
In contrast to usual meshless integration schemes like the cell quadrature and the nodal integration in
this study integration zones with triangular geometry spanned by three nodes are used for 2D analy-
sis. The boundary of the structure is defined by boundary nodes, which are similar to finite element
nodes. By using the neighborhood relations of the integration zones an efficient search algorithm
to detected the nodes in the influence of the integration points was developed. The components are
directly coupled with finite elements by using a penalty method (Häussler-Combe 2001).
An widely accepted model to describe the fracture behavior of concrete is the “Fictitious Crack
Model” (Hillerborg et al. 1976) which is applied in this study, which differentiates between micro
cracks and macro cracks, with and without force transmission over the crack surface, respectively.
This model has been already applied in some meshless algorithms (Häussler-Combe 2001),(Cichón
and Jaśkowiec 1999),(Carpinteri et al. 2001). In these studies the crack surface is modeled as an
internal polygon. The crack surface forces are reproduced by using integration zones with internal
discontinuities (Häussler-Combe 2001) or special surface nodes at the crack tip (Carpinteri et al.
2001). In this study the crack surface is discretized by node pairs in form of a polygon, which is part
of the boundary. To apply the “Fictitious Crack Model” finite interface elements are included between
the crack surface nodes. The determination of the maximum principal strain at the crack tip is done
following Häussler-Combe 2001 by introducing an influence area around the singularity.
The presented algorithms had been implemented in the SLang Software package (Bucher et al. 2002),
which is available at the Bauhaus-University for research activities. With this package the presented
numerical example has been calculated.
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2 Mechanical formulation

2.1 Meshless interpolation

In this section only a brief overview of the the “Moving Least Squares” approximation (Lancaster and
Salkauskas 1981, Belytschko et al. 1994) is given because this approximation type was applied in a
number of studies (e.g. Belytschko et al. 1995a, Belytschko et al. 1995b).
To interpolate an arbitrary function by using a polynomial we get

u(x) =
(
1 x y x2 ...

) a1

:
an

 = pT (x)a, (1)

with the base vector p(x) and the coefficient vector a. If the number of interpolation points m is equal
to the number of coefficients n the problem can be solved directly like in the Finite Element Method
and the coefficients can be given as

a = PT−1u; P = (p1...pm). (2)

By using the MLS-approximation, where m > n, the system of equations is overdetermined. To solved
this optimization problem by minimizing the least squares error we obtain the following formulation

Pu = PPT a. (3)

To represent the influence of distances between the interpolation points, e.g. to model geometrical
discontinuities, a weighting function is used in the least square approach which leads to

u(x) = ΦΦΦmlsu, ΦΦΦmls = pT A(x)−1B(x), (4)

with

B(x) = PW(x),

A(x) = PW(x)PT ,

W(x) = diag(w(d1), ...,w(dm)).

(5)

The weighting function w(dm), formulated depending on the distance d, can be chosen as (Häussler-
Combe 2001)

w(d) =

{
wg(d) d ≤ D
0 d > D

, wg(d) = e−( d
αD )

2

, (6)

where D is the influence radius. By choosing the base polynomial p linear with n = 3 the MLS-
approximation can reproduce every linear function exactly. Functions of higher order will not be
interpolated exactly, but will be optimally approximated. In contrast to the finite element interpolation,
then the interpolating function does not pass through the nodal values

ΦΦΦmls
i (xj) 6= δδδij. (7)

which leads to problems in fulfilling the boundary conditions. Different possibilities to solve this
problem, like the application of Lagrange multipliers (Belytschko et al. 1994), the introduction of a
penalty term (Häussler-Combe 2001) and the usage of special boundary components (Karutz 2000),
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have been developed in the recent years. By using Lagrange multipliers, the system of equations,
which has to be solved, becomes larger and special solvers are required due to the singularity of
the coefficient matrix. The penalty solution can force fulfillment of the boundary conditions, but the
correct choice of the penalty term is difficult. The formulation of boundary components fulfills the
boundary conditions but is very un-practical for the coupling with finite elements. To enable a direct
coupling, which is necessary for a simple transformation of finite elements into meshless components
and the uncomplicated application of random fields, in this study the penalty method is preferred.

2.2 Integration, boundary discretization and search algorithm

Common integration schemes in MLS-based meshless methods are the integration via a cell quadra-
tures (Belytschko et al. 1996), which is a kind of a structure-independent background mesh, the ele-
ment quadrature (Belytschko et al. 1996), in which the background mesh is coupled to the structure,
and the nodal integration (Beissel and Belytschko 1996), in which no background mesh is necessary.
In the first two methods the necessary integration order is uncertain. This is caused be the fact, that
the node distribution, which develops during the simulation, may not be identical in each cell and
may reach a critical value. By the nodal integration the main problem is the much higher numerical
effort. By all methods, the integration across lines of discontinuity needs special attention, because
crack geometries and structure surfaces do not necessarily coincide with the cell or nodal influence
boundaries.
For these reasons a different integration scheme was used. In the presented 2D analysis this method
uses integration zones with triangular geometry spanned by three nodes. The boundary of the structure
is defined by boundary nodes, which enables the direct coupling with finite elements. The crack
surfaces are discretized by node pairs as parts of the boundary. To compute the integration zones the
Advancing Front Method (Peraire et al. 1987) with a modification to consider arbitrary external and
internal boundaries is used. In crack growth simulations the integration zones have to be adapted only
around the moving crack tips. An exemplary node distribution with belonging triangle zones is shown
in Fig.1.
The determination of these nodes, which are located in the influence radius of an integration point,
can be sped up by using the neighborhood relations of the presented triangular integration zones. This
necessitates the storage of the determined node incidences during the computation of the triangles.
For a given integration point the search algorithm detects these triangles, which are neighbors of first
and second order of the triangle, which this integration point is part of. All nodes, which span these
neighbor triangles are called neighbor nodes. Then only the neighbor nodes have to be checked for
their distance to the integration point. This is illustrated exemplarily in Fig.2.

Figure 1: Boundary discretization and integra-
tion zones at a crack tip
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neighbor triangle
second−order
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Figure 2: Improved influencing node determina-
tion by using neighborhood relations

The computational effort to determine the influencing nodes of one integration point is for larger sys-
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tems independent of the total node number. The total numerical cost of the search procedure depends
almost linearly on the total number of integration points. By investigating all nodes for every inte-
gration points the numerical effort is nearly proportional to the product of the node number and the
integration point number, which shows the efficiency of the presented improved algorithm.

2.3 Crack modeling

In this study the crack growth behavior of concrete is in the point of interest. Therefore the classical
linear fracture hypotheses (Gross 1996), which were mainly developed for metals, are not applied.
A widely accepted crack model for concrete is the “Fictitious Crack Model” (Hillerborg et al. 1976)
where a force transmission across the crack surface is introduced for micro cracks. For macro cracks
no forces will be transmitted. If the maximum principal tensile strain exceeds a material specific
ultimate strain, a micro crack will arise. The macro crack develops from a micro crack, if a critical
crack width is reached. If the ultimate strain at a crack tip is exceeded the crack keeps on growing. In
order to remove the local influence of singularities at the crack tip the strains values will be computed
by introducing an influence area around the singularity like shown in Fig.3 (Häussler-Combe 2001).
The comparative strain value εεε is calculated from the strain values in the influence area as

εεε =

∫
Ωt

w(|x − xt|) · εεε(x)dΩ, (8)

where xt is the position of the crack tip, Ωt is the influence area and w(d) is a weighting function,
which can be chosen similar to the MLS-weighting function in Eq.(6). The size of the influence radius
can be determined by the numerical adjustment of experimental data (Häussler-Combe 2001).
After the calculation of the direction and the length of the new crack increment, the node discretiza-
tion and the integration zones around the crack tip have to be adapted. For this purpose the area of
these triangles through which the new crack increment passes and their neighbors will be triangulated
again by duplicating the node at the previous crack tip. To improve the geometry of the new triangles
the Laplace smoothing algorithm (Herrmann 1976) is applied to modify the positions of the nodes,
which are not members of the crack surface and the determined local boundary. In Fig. 4 the local
adaptation around the new crack increment is shown exemplarily. After this triangulation the integra-

influence area

singularity area xt

Figure 3: Determination of a comparative strain
value by introducing an influence area

Figure 4: Discretization update around the crack
tip by local re-triangulation

tion point data have to be transformed from the old positions to the new one, which is done directly
by using the MLS-approximation. For a detailed description of the random field data transformation
the reader is referred to Most and Bucher 2003.
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2.4 Fictitious Crack Model

To model the force transmission over micro crack surfaces where the crack width w is smaller then a
critical value

0 ≤ w ≤ wc, (9)

the “Fictitious Crack Model” following Hillerborg et al. 1976 is applied in this study. In this model
the normal stresses are formulated depending on the crack width

tn = fn(w). (10)

Based on experimental results this stress-crack-width-relation can be approximated by a bilinear curve
following Gustafsson and Hillerborg 1984

tn =


fctm ·

(
1− 0.85

w

w1

)
0 ≤ w ≤ w1

0.15fctm · wc −w

wc −w1

w1 ≤ w ≤ wc

0 w > wc

(11)

with

wc = αf ·
GF

fctm

, w1 = 2 · GF

fctm

− 0.15wc, (12)

where fctm is the tensile strength, GF is the specific energy which is dissipated by the crack opening
and αf is a introduced coefficient. These values are material constants which depend on the concrete
properties and can be found in literature for example in the CEB-Modelcode (Telford 1993).
For the numerical implementation of this model the following assumption was done in Häussler-
Combe 2001

t̃n =



c ·w w ≤ 0

2GF
w

w̃c ·w0

0 ≤ w ≤ w0

2GF

(
w

w̃c(w0 − w̃c)
− 1

w0 − w̃c

)
w0 ≤ w ≤ w̃c

0 w > w̃c

(13)

where w̃c can be chosen by assuming t̃max
n = fctm as w̃c = 2GF /fctm. The parameter w0 has no

physical meaning and affects the convergence behavior. To avoid the penetration of both crack sides
by non-monotonic loading the value of constant c has to be chosen large enough. The approximation
curves according to Eq.(11) and Eq.(13) are shown in Fig. 5.
To describe the shear force transmission along the crack surfaces in Häussler-Combe 2001 a simple
assumption is recommended which uses the Coulomb friction hypothesis. To activate the friction
forces a displacement ua in crack direction has to be present

tτ =

 β · fn ·
u

ua

u ≤ ua

β · fn u > ua

(14)
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To apply the FCM in the presented meshless discretization the transmission of the crack softening
forces has to be done between the node pairs of the crack surfaces. To avoid additional external loads
at these nodes, linear interface elements are included between the crack surfaces. The used interface
elements are usually known as iso-parametric bond elements (Mehlhorn and Kolleger 1995). In both
integration points of one element the relative displacements in crack direction and in normal direction
are computed by using linear shape functions to calculate the normal and the shear stresses. Numerical
investigations on a concrete beam without reinforcement by using the normal stress approximation in
Eq.(13) showed force redistributions around the crack, which led to the arising of new cracks next to
the first one, caused by the high stiffness values of the interface elements if w is smaller than w0. This
means that this assumption could lead to numerical problems if we compute the displacements implic-
itly. A better assumption is Eq.(11) where the stiffness gets negative values. To avoid the penetration
without introducing a jump in the stress curve we can assume the following relation

tn(w < 0) = tmax
n − c ·w. (15)

By choosing tmax
n = fctm in some cases the implicit iteration could not find equilibrium by monotonic

loading with theoretically increasing crack widths, but snapped back into the negative part explained
in Eq.(15) where pressure forces are transmitted over the crack surface. In order to avoid this effects
the curve was modified as shown in Fig. 6, where the maximum value tmax

n was reduced, to obtain
numerical stability. The assumed unloading and reloading behavior is displayed additionally in the
figure.
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Figure 6: Assumed normal stress function with
reloading cycles

2.5 Algorithmic specifics

To apply the presented model in an implicit global Newton-Raphson-Iteration we have to consider
some specifics. In order to obtain numerical stability it is necessary to allow only one crack increment
per iteration cycle. If the transformation criterion for some finite elements is exceeded, in this iteration
cycle no new crack increment should be included to separate the effects by transforming the finite
elements and by the force redistribution around a new crack increment. If the theoretical new crack
increment touches a finite element, this element has to be transformed first by neglecting the new
increment and the iteration cycle has to be repeated.
The included interface elements between the crack nodes need special attention in this form, that af-
ter included a new crack increment with belonging interface elements an internal iteration has to take
part to obtain an equilibrium between external and internal forces with no nodal restoring forces along
the crack surfaces. Then the new global iteration cycle can be done and a new crack increment can
arise. If this fact is not considered, a force redistribution around the new crack increment takes part,
which leads to the appearance of new cracks and anticipates the development of existing cracks. The
internal iteration is comparable with the iteration at the integration point level for nonlinear material
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laws, where first the local convergence has to be achieved before a new global iteration cycle can be
done. The developed global iteration with included local iteration is shown in Table 1.

• get new external load vector F
• calculate initial deviation between load and global restoring force vector ∆F0 = RF − F

• start iteration with iteration count i:
START

• get new displacement increment ∆ui by solving Ki−1∆ui = ∆Fi−1

• merge new displacements ui = ui−1 + ∆ui onto the nodes
• build up stress values and check for critical elements
• if no critical elements go to NO TRANSFORM
• transform critical elements to MLS-components, go to TRANSFORM

NO TRANSFORM
• check for new crack increment
• if found new crack increment without touching a finite element

update the discretization and go to NO CRACK TRANSFORM
• do not use new crack increment, but transform touched finite elements

TRANSFORM
NO CRACK TRANSFORM

• build up meshless weighting and shape functions
• if new crack increment renumber global degrees of freedom to include

the new nodes and to reduce the band width of the stiffness matrix
• build up global load vector F, global restoring force vector RFi

and stiffness matrix Ki

• calculate the difference norm NORM = ‖∆Fi‖ of ∆Fi = RFi − F
• if no new crack increment go to NO INTERNAL ITERATION

• set initial values for the internal iteration:
∆Fj=0 = ∆Fi, Kj=0 = Ki and uj=0 = ui

• start internal iteration with iteration count j:
START INTERNAL

◦ get new displacement increment ∆uj by solving Kj−1∆uj = ∆Fj−1

◦ merge new displacements uj = uj−1 + ∆uj onto the nodes
◦ build up global restoring force vector RFj and stiffness matrix Kj

◦ calculate the difference norm NORM INTERNAL = ‖∆Fj‖
of ∆Fj = RFj − F

◦ if NORM INTERNAL is larger then a given tolerance
go back to START INTERNAL

END INTERNAL
• set ∆Fi = ∆Fj

NO INTERNAL ITERATION
• if NORM is larger then a given tolerance go back to START

END

Table 1: Extended implicit algorithm with included internal iteration

3 Numerical example

By means of this example the influence of the included interface elements on the crack evolution
is shown. Therefore a simply supported beam which was tested experimentally by Ebert and Bucher
2002, will be investigated by including the presented elements and without interface elements as done
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in Most and Bucher 2003. In Fig.7 the analyzed system with loading and support conditions is shown.
The Young’s modulus, the tensile strength and the specific crack energy of the concrete are assumed
to be lognormally distributed random fields with 0.2 as coefficient of variation and 2.1m as correlation
length, which corresponds to the beam length. The first 30 eigenvectors are used, which represents
the random field which contains 11340 random variables with a quality of 97.70%. The correlation
coefficients between different parameters are assumed as Cparij

= 0.8; i 6= j. The other material prop-
erties of the concrete and the properties of the reinforcement are assumed to be deterministic and were
taken according to Ebert 2002 and Telford 1993 (Fig.7). The concrete was discretized initially with

Concrete Young’s modulus E = 3.2 · 1010N/m2

Poisson’s ratio ν = 0.2
Mass density ρ = 2700kg/m3

Tensile strength fct = 3.3 · 106N/m2

Spez. crack energy GF = 85.5 ·Nm/m2

FCM parameter αF = 7
Steel Young’s modulus E = 2.1 · 1011N/m2

Poisson’s ratio ν = 0.3
Mass density ρ = 7850kg/m3

Figure 7: Simple supported beam tested in Ebert and Bucher 2002

5x84 9-node-plane elements and the reinforcement with 84 rod elements. The bond behavior between
the concrete and the reinforcement was modeled with deterministic bond-link-elements (Mehlhorn
and Kolleger 1995) by using a nonlinear law between the shear stress and the relative displacement
(Doerr 1980).
In Fig.8 the initial distributions of Young’s modulus, tensile strength and specific crack energy of
the concrete of one sample are shown. If a new crack increment arises the random field data for
tensile strength and specific crack energy of the included interface elements are obtained from the
surrounding meshless integration points by using the MLS-approximation in the same manner as for
the interpolation of the random field data of new meshless integration points which is described in
detail in Most and Bucher 2003. In Fig.9 the longitudinal stresses in the beam are displayed for an
external load of 5000 N. The figure shows, that with the included elements the crack evolution stops
by about 2/3 of the height which corresponds to the experimental observations. By not using interface
elements the crack growth goes further up to 4/5 of the height until the bond between reinforcement
and concrete is activated and the tensile force can be transmitted.
To discuss the numerical results, the obtained first natural frequency of the modeled beam is compared
with the experimental results. In Fig.10 the relative frequency decrease of the averaged experimental
and the numerical results are shown. Above a load of 2.5kN , at which the crack evolution starts,
the numerically and experimentally obtained frequencies decrease. The differences between the two
numerical curves show that the considered force transmission and the contact forces in the unloaded
state (where the first natural frequency was measured) have an important influence on the dynamic
properties. The deviation from the experimental curve is caused by the development of the most cracks
in a small load window, which could be an indicator that the crack criterion is not sensitive enough.
In further investigations different crack criteria (e.g. based on energy values) and shorter correlation
lengths have to be investigated. In general we can summarize, that the improvement of the model by
including the presented interface elements lead to a better representation of the observed experimental
phenomena.
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Figure 8: Initial Young’s modulus, tensile strength and specific crack energy distribution
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Figure 9: Obtained longitudinal stresses in the beam by using interface elements and without for an
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4 Conclusion

In this paper a meshless component for stochastic crack simulations is presented. This component
internally uses the common MLS-approximation scheme. To enable a direct coupling with finite ele-
ments a penalty method is used to enforce the boundary and coupling conditions.
The presented integration scheme by using triangle integration zones is different from usually applied
methods and enables the application of an efficient search algorithm by using the triangle neighbor-
hood relations. The material uncertainties of the system are modeled with random fields, which are
discretized at the integration points.
The simulation of crack propagation requires an adaptation of the nodes around the crack tip and
the transformation of the finite elements to meshless components, where the crack criterion is almost
reached. At the moving crack tips a local re-triangulation is sufficient to update the integration zones.
To enable the force transmission over the crack surfaces interface elements are placed between the
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crack nodes, where the assumption in Gustafsson and Hillerborg 1984 was modified to get numerical
stability.
On a practical example it was shown that the included elements improve the model by the transmission
of the surface forces during monotonic loading and by the representation of the contact forces of
closed cracks during reverse loading. This could be shown on the dynamic properties of a simply
supported beam under cyclically increasing loading. For future works the authors will investigate
different crack criteria for the model in order to reduce the observed effects, that most cracks arise
in a small load window, which decreases the numerical stiffness values too fast compared with the
experimental results.
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