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The fire resistance of concrete members is controlled by the temperature distribution of the considered cross
section. The thermal analysis can be performed with the advanced temperature dependent physical properties
provided by EN 1992-1-2. But the recalculation of laboratory tests on columns from TU Braunschweig shows,
that there are deviations between the calculated and measured temperatures. Therefore it can be assumed, that
the mathematical formulation of these thermal properties could be improved. A sensitivity analysis is performed

to identify the governing parameters of the temperature calculation and a nonlinear optimization method is
used to enhance the formulation of the thermal properties. The proposed simplified properties are partly
validated by the recalculation of measured temperatures of concrete columns. These first results show, that the
scatter of the differences from the calculated to the measured temperatures can be reduced by the proposed
simple model for the thermal analysis of concrete.

1. Introduction

The fire resistance of reinforced concrete cross sections is mainly
determined by the temperature dependent material properties.
Therefore the accuracy of the calculated temperatures is crucial for
the mechanical analysis of the considered member. Achenbach and
Morgenthal perform a global sensitivity analysis of fire exposed
reinforced concrete walls and columns [1,2]. The results indicate, that
the uncertainty of the thermal analysis contributes the biggest part to
the scatter of the results for concrete compression members subjected
to a standard fire.

The recalculation of measured temperatures of concrete columns
using the material properties of EN 1992-1-2 [3] reveals, that the
temperatures at the surface are overestimated by calculation, while the
calculated temperatures at the center are lower compared to the
measured results [1]. The mean ratio of the calculated to the measured
temperatures 7, = ,,/6,,, [-]1 is 4 =0.9 with a standard deviation of
o = 0.3 for the examined laboratory tests.

The results of the recalculation of measured temperatures indicate,
that the parameters of the thermal analysis could be improved to
increase the accuracy of the results. The optimization of the formula-
tion of the thermal properties of concrete for concrete slabs and
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columns heated by a standard fire is described in this paper. In
Section 2, the physical model of the thermal analysis and the involved
parameters are described. The identification of the most influential
parameters — which are used for optimization — is performed in Section
3. The applied methods for the nonlinear optimization and the results
are discussed in Section 4. The proposed simplified thermal properties
are partly validated by the recalculation of laboratory tests on columns
in Section 5.

2. State of knowledge

The temperature distribution in a concrete wall, heated on both
surfaces as displayed in Fig. 1, is controlled by the differential equation

[4]

e, 1) A 0T 1)
o pc, oat @

with A= thermal conductivity [W/m K], p= density [kg/m®] and 6=
specific heat [J/kg K]. The boundary conditions at the surface are
described by the heat flux g [W/m?]. With the surface temperature of
the wall T, [K] and the temperature of the heated gas T, [K] these
conditions are
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Fig. 1. Concrete wall, heated on both surfaces.
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for conduction and

q=a(T,—T,) + eo(T, = T;) (3)

for convection and radiation, with a= coefficient of heat transfer [W/
m? K], e= emissivity [-] and o= Stephan-Boltzmann constant [W/
m? K*]. The physical properties A, p and cp, are temperature dependent
and the above mentioned equations can only be solved in that case with
numerical methods with the initial condition
I,=T,=T(x, t=0)= (20 +273.15) K.

The heat transfer from the heated gas to the concrete surface is
mainly determined by radiation [5]. The corresponding parameter &
contains the emissivity of the flame and the surface [5,6] and is
temperature dependent. The proposed constant value ¢ = 0.7 [-] for
concrete members according to EN 1992-1-2 [3] is a simplification and
derived from the recalculation of laboratory tests [6]. The coefficient of
heat transfer a is dependent from the velocity of the heated gas at the
surface [5] and describes the heat flux due to convection. The
recommended constant values [7] — a = 25 [W/m? K] for fire exposed
and 4 [W/m? K] for unexposed surfaces — are also a simple approach.

The physical properties 4, p and c, — determined by different
scientists — show a remarkable scatter, which is caused by different
experimental methods [8,9]. The heat transfer in the concrete wall is
described by the thermal diffusivity a = 4/(p-c,), which means that all
variables are put together and the scatter of the different physical
properties can be “equalized”. This can also be seen in the published
values for a [8,9].

The temperature dependent functions for the physical properties 4,
p and c, given in EN 1992-1-2 [3], must be understood as a
compromise among the involved specialists [10]. The lower limit for
A has been derived from the recalculation of concrete members [10],
while composite members have been used for fitting the upper limit
[11].

3. Sensitivity analysis
3.1. Applied methods

A Monte Carlo simulation [12] of a concrete wall, heated on both
sides by a standard fire according to EN 1991-1-2 [7], is set up. The
wall is displayed in Fig. 1 and the parameters are given in Table 1. In
lack of more detailed statistic key data for the thermal properties, each
stochastic variable is assumed to be normally distributed with the
nominal value as mean value p and a coefficient of variation
v =o/u = 0.1 (Table 2). The symmetric normal distribution has been
chosen to avoid any preferences, which may be caused by the choice of
an asymmetric distribution, e. g. a log-normal distribution. It is also
assumed, that there is no correlation between the variables. The
temperature dependent physical properties and the gas temperature
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Table 1
Parameters of the sensitivity analysis.

parameter unit value
height: h [em] 10

fire duration: tr [min] 30

heat transfer coefficient: a [W/m?K] 25
emissivity: & [-] 0.7
density: p(20 °C) [kg/m®] 2400
moisture content: u [%] 1.5
thermal conductivity: A [W/m K] lower limit

Table 2
Basic variables of simulated walls (DET=deterministic, N=normal distribution).

variable distribution description

h DET Table 1

0y N EN 1991-1-2, standard fire
e N Table 1

a N Table 1

A N Table 1

P N Table 1

cp N EN 1992-1-2, u acc.Table 1
X, N model uncertainty

0, are multiplied by X;, which is also normally distributed with 4 = 1.0
and v=0.1. One X; is generated for each variable. The uncertainty of the
physical model, described in Section 2, is modeled by the variable X,
and contains all uncertainties, which are not covered by the scatter of
the other variables. These uncertainties are for instance: the radiation
conditions in the testing furnace, the error in temperature measure-
ment of the thermocouples and the possible incompleteness of the
mathematical model. It is assumed, that these uncertainties can be
described by normally distributed (¢ = 1.0 and v=0.1), multiplicative
variable X;. The calculated temperatures are multiplied by X, to
consider these model uncertainties.

A number of 5000 samples is generated and the temperature
distributions for #; = 30 min are calculated. The results for a distance
to the surface u=0, 2.5 and 5.0 cm are evaluated in the sensitivity
analysis. Spearman's rank correlation coefficients [13] and first order
Sobol [14] indices are used for the assessment of the sensitivities of the
results against the stochastic variables.

The Spearman rank correlation coefficient rg; is a measure for the
correlation between the values oft the considered variable X; and the
results Y [13]. Values |rg| ~ 0 indicate, that there is no correlation
between the values of the considered variables. Results |ry| = 1 show,
that there is a full linear or nonlinear monotonic correlation — all other
values need interpretation. Values of ;=0 show, that increasing values
for X; lead to increasing values for Y (positive correlation).

The first order Sobol indices are a variance based measure for the
sensitivity. They are based on the assumption, that a completely
unknown function y can be described by a function f(x) with terms
of increasing dimensionality [15]:

FO =fy+ DA + D L0 5) + 4 fy

i<j 4
The variance of each term is V, = V(f;(x)), V; = V 1 xj)), . and it
can be concluded that the total variance is described by
V= Z V’ + Z Vlj + ot V]Z...n'
i i<j (6]
The ratio
sV
Ty (6)

is the so called first order Sobol index and is a measure for the
contribution of the variance of one single variable to the total variance
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Fig. 2. Spearman's rank correlation coefficient (black) and first order Sobol indices (white) of the simulated wall.

of all results. It can be easily derived that ) S; < 1, where results
>, S; ~ 1 indicate that there are no interactions between the variables.

The Sobol indices can be estimated by a Monte Carlo simulation
[15]. In this paper, a conceptual implementation for the estimation of
the Sobol index is used [14] with a slice size of 200. This method is also
known as “method of slices”.

3.2. Results of the sensitivity analysis

The results of the sensitivity analysis are displayed in Fig. 2. The
variance of the calculated temperatures at the surface u=0cm is
controlled by the scatter of the gas temperature 0, and the model
uncertainty X;: the sum of both first order Sobol indices is 0.98. Hence
the influence of the scatter of all other variables on the results can be
disregarded.

At the center u=5.0 cm of the examined wall, the physical proper-
ties become more influential. The calculated Spearman's rank correla-
tion coefficients show, that the basic variables p and c,, have a negative
correlation: increasing these values leads to lower temperatures. This is
accordance with the differential Eq. (1). The sum of the first order
Sobol indices S, + S, + Se, is 0.63, which means that 63 % of the
variance of the calculated temperatures is controlled by the uncertainty
of the thermal properties. The basic variables 8, and X, contribute
36 % to the variance of the calculated temperatures. The sensitivity of
the basic variables a and ¢ is not mentionable.

The results for u=2.5cm are between the previously discussed
results, the effect of the scatter of a and & on the results is also of
inferior importance.

3.3. Conclusions of the sensitivity analysis

The calculated sensitivities reveal, that the basic variables a and e
can be fixed to their nominal values. The variance of the calculated
temperatures at the surface is controlled by the uncertainty of the gas
temperature and the model uncertainty. The accuracy of the calculated
temperatures at the surface of the wall could only be reduced, if the
variance of the basic variables 6, and X, would be reduced by
improving the testing procedure or the accuracy of the physical model.

The sensitivity against the physical parameters increases with the
distance from the surface u. Improving the mathematical formulation
of the physical properties can lead to a reduction of the variance of the
calculated temperatures.
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4. Nonlinear optimization of the thermal conductivity
4.1. Applied methods

The laboratory tests with continuous slabs carried out by Kordina
and Wesche [16] are used for the calibration problem, which is solved
by means of nonlinear optimization. The plates have been heated on
bottom and the influence of the layout of the upper reinforcement on
the fire resistance has been studied. The temperatures at different
distances u, as displayed in Fig. 3, have been recorded for plate number
2 up to the failure after 92 min. The height of the plate was 10 cm and a
moisture content of 3.6 % has been measured at the date of test. The
reported data contains a certain scatter, because the measured
temperatures are from one thermocouple at each location only. Also
thermocouples — not plate thermometers — have been used to
determine the temperature in the furnace.

The difference between the calculated and measured temperatures

A6 = ., — ., is used to judge on the accuracy of the results. The mean

~ 1x Iy
Al = — Z (Ggal‘[ - gexp,i) = - Z AH“
s " ist @

and the variance

21 i 712
s2= = Y (A6, — AD)

nig (8)
are evaluated for all n measured temperatures. The thermal properties
according to EN 1992-1-2 are considered as reference and the
statistical key data A@ and s? are calculated. As second step, constant
material properties — as proposed in ENV 1992-1-2 [17] for simple

0

a

Fig. 3. Concrete slab, fire exposure at bottom.



M. Achenbach et al.

Table 3
Thermal properties for recalculation of laboratory tests.
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Table 4
Variance s* and mean Ad for 6., — 6., for constant material properties.

parameter unit value

heat transfer coefficient: a [W/m?K] exposed: 25
unexposed: 4

emissivity: & [-] 0.7

density: p(20 °C) [kg/m?] 2400

moisture content: u [%] 3

thermal conductivity: A [W/m K] lower limit

calculations — are examined. Finally the method proposed by Nelder
and Mead [18] is used for the nonlinear optimization of the thermal
conductivity by minimizing the variance given by Eq. (8). It is a direct
search algorithm, which does not need the local derivatives of the
considered function.

4.2. Results according to EN 1992-1-2

The measured temperatures of plate 2 [16] are recalculated using
the material properties of EN 1992-1-2. The corresponding parameters
are given in Table 3 and the calculated and measured temperatures are
displayed in Fig. 4. The mean difference of the calculated temperatures
A@ is —-13 K with a variance s* = 883 K>. The temperatures at the fire
exposed surface at u=1 cm are overestimated, where the temperatures
at the unexposed surface (u = 7 cm) are underestimated by calculation.
The biggest deviations occur at u=7 cm for the first 40 min of fire
exposure: the calculated temperature are remarkable lower compared
to the laboratory results.

4.3. Results for constant material properties

Constant material properties for simple calculations are given in
ENV 1992-1-2. It is proposed to use a constant density p = 2300 kg/m’,
a constant specific heat ¢, = 1000J/kg K and constant thermal con-
ductivity 4 = 1.6 W/mK for siliceous (1.3 W/m K for calcareous) ag-
gregates.

A constant density of p = 2400 kg/m® has been chosen in accordance
with previously published results by Achenbach and Morgenthal [1].
The recommended value ¢, = 1000 J/kg K has been adopted from ENV
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Fig. 4. Calculated (==) and measured (x) temperatures of the slab in dependence from
the distance to the surface u, material properties acc. to Table 3.
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AG
[W/m K] [K?] (K]
1.6 3078 66
1.3 2297 44
1.0 1830 15
0.9 1773 4
0.8 1780 -9
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Fig. 5. Calculated (=) and measured (x) temperatures of the slab in dependence from
the distance to the surface u with constant material properties: 1= 0.9 W/mK,
p = 2400 kg/m’, ¢, = 1000 J/kg K.

1992-1-2. The boundary conditions at the surface a and & are taken
from Table 3 for the examinations. The variance s* and mean Ad in
dependence from the thermal conductivity A are given in Table 4: the
least variance is calculated for 2 = 0.9 W/m K. The calculated tempera-
tures, using constant material properties, are shown in Fig. 5.
Comparing the results of the simple material properties with the
advanced material properties of EN 1992-1-2 shows, that the tem-
peratures for u=5 and 7 cm differ only slightly. For u=3 cm, the
measured temperatures are overestimated after 30 min of fire expo-
sure. The largest deviations occur for u=1 cm, which shows clearly the
limit of constant material properties.

4.4. Results for optimized material properties

The sensitivity analysis reveals, that the parameters a and ¢ can be
fixed to their nominal values, which are given in Table 3. The scatter of
the calculated temperatures within the cross section is controlled by the
physical parameters A, p and c,,. Though it is assumed in the performed
sensitivity analysis, that these parameters are not correlated due to the
lack of statistical key data, this can be doubted by practical considera-
tions. The density p and the specific heat c,, are both related to the
mass, so there must be at least a correlation between these both
variables. Therefore it seems to be reasonable to fix both values and to
use the thermal conductivity A for fitting. This is also justified, because
the heat flux on the surface is controlled by A, as indicated by Eq. (2).
The effect of this equation can also be seen in the results for constant
material properties: the biggest deviations are observed close the fire
exposed surface.

Therefore the thermal conductivity A is considered in the nonlinear
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Table 5
Nonlinear optimization of the thermal conductivity A: initial and final values.

0 Ainitiat Afinal
[°C] [W/m K] [W/m K]
0 2.0 2.44

200 1.6 1.30

400 1.2 1.00
>600 1.0 0.70

optimization, while the density and specific heat are fixed to
p = 2400 kg/m’® and ¢, = 1000 J/kg K. It is assumed, that A is piecewise
linear and determined by the values for 8 = 0, 200, 400 and 600 °C. The
Nelder-Mead method [18] is used to find those values for A, which
minimize the variance s? given by Eq. (8). The additional condition
AG20K is introduced to guarantee that the mean temperatures are
overestimated. Therefore the values of the upper limit of thermal
conductivity according to EN 1992-1-2 are used as initial values to
ensure, that the calculated temperatures are higher than the experi-
mental results to allow more optimization cycles.

The initial and final values for A are given in Table 5 and the final
function is plotted in Fig. 7. The results of the calculated temperatures
for the optimized function of A is given in Fig. 6. The evaluation of
AG =0, — 6, leads to A9 = 1 Kand 5% = 584 K2, which means that the
results are more accurate than those obtained with material properties
from EN 1992-1-2. This is also visible in Fig. 6: there are small
differences for u=5 cm and the results for u=7 cm are closer to the test
results for the first 40 min of the test.

The shape of temperature dependent, simplified thermal conduc-
tivity is determined by the values at 0 °C, 200 °C and 600 °C, as
indicated in Fig. 7. The value at 400 °C, obtained by nonlinear
optimization, is not needed for the description of the piecewise linear
function. The optimized values for & < 100 °C are higher than the upper
limit of EN 1992-1-2, which leads to a faster heat transfer to the
unexposed surface. It is also remarkable, that a constant value of
¢, = 1000 J/kg K has been assumed in the optimization. Though the
effect of evaporating water can be measured on small specimen and is
considered in the material properties of EN 1992-1-2 by the variable

¢, s it can be neglected in the optimization of A.

S I R B R B B
700 | D -
wu=1licm
600 i X o
SO0 [vovioee ot uzs
& a0 b f o T —
S u::5pn1
0H) <
200F i K 2
u="T.cm
100 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I [ p—
N e R R T
10 20 30 40 50 60 70 80 90
t [min]

Fig. 6. Calculated (==) and measured (x) temperatures of the slab in dependence from
the distance to the surface u with optimized conductivity A
(p = const = 2400 kg/m3, ¢, = const = 1000 J/kg K).
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A [W/mK]

800 1000 1200

0[°C]

Fig. 7. Thermal conductivity A of concrete: optimized function (==), lower (-) and upper
(- - -) limit acc. to EN 1992-1-2.

5. Validation
5.1. Applied methods

The proposed optimized thermal properties (Agnq: according to
Table 5 and Fig. 7, p = const = 2400 kg/m’, ¢, = const = 1000 J/kg K) are
checked by the recalculation of measured temperatures of concrete
columns heated by a standard fire. The results are compared to the
calculated temperatures using the advanced thermal properties of EN
1992-1-2, with the parameters described in Table 3.

The considered columns have been tested in Germany [19] and
Sweden [20], the cross sections are displayed in Fig. 8. The columns
from Germany had square cross section of » = 4= 20 and 30 cm and
have been heated on all surfaces. A moisture content from u = 2.0 to
6.0 % and siliceous aggregates are documented. The reported tem-
peratures are mean values of different columns and thermocouples —
the scatter of single measurements is smoothened. The temperature in
the furnace has been measured with thermocouples. The temperatures
for a distance to the surface of 0, 1, 3, 4, 6, 10 and 15 c¢m are calculated
for the time steps ¢ = 10, 20, ...90 min. A total number of n=79 data
points is evaluated.

The three columns tested in Sweden had a cross section of
b =h=20cm and have been heated on three surfaces, as indicated
in Fig. 8. A high moisture content of 6 % is reported. The measured
temperatures are only documented in one figure with smoothened

0 0
0 Eeg h 9 0
Gg 9&

Fig. 8. Tested concrete columns from Germany (left) and Sweden (right), heated surface
indicated by (- - -).
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Table 6

Statistical key data of the validation with columns using thermal properties of EN 1992-
1-2 (EN) and optimized thermal conductivity A (OPT) (p = const = 2400 kg/m3 s
¢, = const = 1000 J/kg K), n=number of results.

Germany [19] Sweden [20]

parameter unit EN OPT EN OPT
n [-] 79 79 32 32
AD [K] 5 21 39 59
s? [K%] 1806 1171 2109 1479
s [K] 42 34 46 38
1000 T T T T T T T T
900
800
700
600
£ 500
oo}
400
300
200
100
0

t[min]

Fig. 9. Measured (x) and calculated temperatures of columns b =h =30cm from
Germany [19] in dependence from the distance to the surface u with thermal properties
acc. to EN 1992-1-2 (==) and with optimized thermal conductivity A (-)
(p = const = 2400 kg/m3, ¢, = const = 1000 J/kg K).

61°C]

120

t [min]

Fig. 10. Measured (x) and calculated temperatures of columns from Sweden [20] in
dependence from the distance to the surface u with thermal properties acc. to EN 1992-
1-2 (==) and with optimized thermal conductivity A (-) (p = const = 2400 kg/m3,
¢, = const = 1000 J/kg K).

curves, therefore only the time steps r = 15, 30, ...120 min are consid-
ered for a distance to the surface of 0, 2, 4 and 10 cm. A number of
n =32 data points is calculated. It is not clear, if the documented
temperatures are from one thermocouple of one column, or if they are
averaged over all three tested columns. So the data must be interpreted
carefully. But the data is assumed to be valuable, because of the high
moisture content and long fire duration of 120 min.

5.2. Results

The statistical key data of the recalculation is documented in
Table 6. The measured and calculated temperatures of the columns
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b =h=30cm tested in Germany are displayed in Fig. 9 for a set of
representable distances u. The results for both examined formulations
of the thermal properties are close to each other for the distances u = 0
to 4 cm, only the results at the centroid for u = 15 cm differ. This is in
accordance with the results of the sensitivity analysis: the calculated
temperatures inside the cross section are sensitive against the thermal
properties. The temperatures close to the surface are overestimated by
calculation, which can also be observed by the recalculation of slabs in
the previous section. The proposed simplified thermal properties
enhance the prediction of the temperatures at the centroid, as indicated
in Fig. 9. This influences also the statistical key data of the differences
A@: the mean value A is increasing and the variance s? is reduced.

The results of the recalculation of the columns from Sweden are
displayed in Fig. 10. Though a large scatter of the results is visible, the
conclusions of the tests from Germany are also valid. Both formulations
of the thermal properties are close to each other at the surface and
differ at the centroid. The proposed simplifications mainly affect the
temperatures at the centroid and lead to a reduction of the variance s,
as indicated in Table 6.

6. Conclusions

The sensitivity analysis reveals, that calculated temperatures at the
surface are highly sensitive against the uncertainty of the gas tempera-
ture and the model uncertainty. Both uncertainties can be hardly
reduced. The influence of the uncertainty of the material properties
increases with the distance to the surface. Hence the uncertainty of the
calculated temperatures can be reduced by improved material proper-
ties.

It can be shown, that it is possible to fix the density p and the
specific heat c,, to constant values and to consider only the thermal
conductivity A as temperature dependent. The applied methods leads to
a simple, piecewise linear function for A. The proposed function is for
small temperatures out of the range, which is specified by the lower and
upper limit given in EN 1992-1-2. This needs further discussion,
especially a bigger database of laboratory tests for optimization and
validation should be considered.

Though the obtained results of the calibration and validation are
encouraging for further simplifications , it is not clear, if the proposed
values are valid for all dimensions and types of concrete cross sections
like beams and hollow core slabs. It must be pointed out that only one
slab with a thickness of 10 cm has been used for optimization and that
the results of the validation are limited to tests on columns from two
laboratories. Therefore the proposed methodology should be applied to
a bigger number of laboratory tests. Also the effect on the fire resistance
and the mechanical behavior of the considered member needs further
investigation.
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