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Abstract. The execution of project activities generally requires the use of (renewable)
resources like machines, equipment or manpower. The resource allocation problem
consists in assigning time intervals to the execution of the project activities while tak-
ing into account temporal constraints between activities emanating from technological
or organizational requirements and costs incurred by the resource allocation. If the
total procurement cost of the different renewable resources has to be minimized, we
speak of a resource investment problem. If the cost depends on the smoothness of the
resource utilization over time, the underlying problem is called a resource levelling
problem.

In this paper we consider a new tree-based enumeration method for solving re-
source investment and resource levelling problems exploiting some fundamental prop-
erties of spanning trees. The enumeration scheme is embedded in a branch-and-bound
procedure using a workload-based lower bound and a depth first search. Preliminary
computational results show that the proposed procedure is promising for instances
with up to 30 activities.



1 INTRODUCTION

We consider project scheduling problems with schedule-dependent time windows.
The project under consideration is given by an activity-on-node network /N with activ-
ityset V :={0,1,...,n,n+ 1}, arc set E C V x V, and arc weights ¢;;. Activities
0 and n + 1 represent the beginning and completion, respectively, of the underlying
project. Let p; € Z>( be the duration of activity 2 € V/, which is assumed to be carried
out without interruption. Moreover, let S; > 0 be the start time of activity ¢ € V
and d € Z-, be a prescribed maximum project duration. Given Sy := 0 (i.e., the
project always begins at time zero), S,,,; < d represents the project duration. A vector
S = (80,51, -, 1) with S; > 0 (i € V) and Sy = 0 is called a schedule.

Temporal constraints between the activities are specified by so-called minimum
and maximum time lags. For each minimum time lag, claiming that an activity j has
to start at least d;?”‘ time units after the start of activity i, there exists a forward arc
(i, j) with weight ¢;; := dZ’J”” between nodes i and j in project network N. Likewise,
for each maximum time lag, claiming that j starts at most d;;** time units after the
start of 7, N contains a backward arc (j,) with weight d;; := —d7**. Minimum
as well as maximum time lags lead to restrictions S; —S5; > ;5. To ensure that the
project is terminated after d time units at the latest, we introduce a maximum time lag
dynly = d. The set of schedules satisfying the temporal constraints S; — Si > 0ij
for all arcs (i, j) € E, given by the underlying minimum and maximum time lags, is

denoted by Sy and called the feasible region of the underlying network.

Assume that a set R of renewable resources (e.g., machines, manpower, or equip-
ment) are required for carrying out the activities of the underlying project. Resource
types different from renewable ones are not considered in this work. Let I, € Z>( be
the capacity of renewable resource k available and r;, € {0,1,. .., Ry} be the amount
of resource k used by activity i. Given a schedule S = (.5;);ev,

AS ) :={i eV |S; <t<S;+p}

is the set of activities in progress, also called the active set, at time ¢ € [0, d].

is the amount of resource & € R used at time ¢t € [0, d] given schedule S. Figure 1
depicts an activity-on-node network of a project with five real activities and a single
resource.

2 RESOURCE INVESTMENT AND RESOURCE LEVELLING PROBLEMS

In practice, the overall result of a project often depends on how the set of scarce
resources k € R necessary to carry out the activities is utilized. If resources have to be
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Figure 1: AoN project network with a single resource

purchased (e.g., expensive machinery) and we want to minimize the total procurement
cost, we obtain a resource investment problem. Let ¢, > 0 be the procurement cost per
unit of resource k£ € R. Then we minimize the objective function

f(9) = ch max 7(5, 1) (RI)
kER

o<t<d

Often some measure of the variation of resource utilization is to be minimized if the
resources k € R should be used evenly over time. In this case, we consider a resource
levelling problem. Let ¢, > 0 be a cost incurred per utilized unit of resource k € R
and per time unit, then we obtain the objective function

d
£8) =) a /0 r2(S,t) dt (RL)

keER

which represents the total squared utilization cost given schedule S. Since work-

load fod ri(S,t) dt does not depend on schedule S, objective function RL equals the
weighted sum of the variances of the loading profiles (S, -) plus a constant.

Our project scheduling problem now consists of minimizing objective function RI
or RL over the set of all time-feasible schedules, 1.e.

Minimize f(.5)
subject to Sj - SZ > (SZ’]‘ V<Z,j> cF (P)
SO == O
3 STRUCTURAL PROPERTIES

Let O C V x V be a strict order (i.e., an asymmetric and transitive binary relation)
in activity set V. Then

Sr(0) :={S eS| 85; >S5+ p;forall (i,j) € O}
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is called the order polytope of O. As a matter of course, for the empty strict order
O = () we have Sr(0) = Sr, and if O is the (finite) set of all inclusion-minimal
feasible strict orders in activity set V, we have Sp = (Jycp Sr(O). For problem P
with objective function RI (RL), there is always a minimal point (or extreme point,
respectively) S of some order polytope Sr(O) which is a minimizer of f on Sy # ()
(cf. Neumann/Schwindt/Zimmermann [3], Subsections 3.3.7 and 3.3.8).

Moreover, consider Network N (O), which results from the underlying project net-
work N by adding arc (i, j) with weight p; for each pair (i,j) € O. If N already
contains an arc (i, j), its weight ¢;; is replaced by max(d;;, p;). Then each minimal
point (extreme point) .S of some order polytope Sr(O) corresponds to a spanning out-
tree of N (O) with root 0 (to a spanning tree) where the n + 1 arcs of such a spanning
tree T, say arcs (i, j) € ET with weights 67, correspond to n + 1 linearly independent
binding temporal constraints S; — S; = 5T7 ((i,7) € ET). Together with Sy = 0, this
linear system of equations has a unique solutlon namely the vertex in question.

4 SOLUTION PROCEDURE

An optimal solution to problem P with objective function RI or RL can now be
determined as follows. We consecutively fix start times of activities such that, step by
step, temporal constraints S; —.S; > 5 become binding. For objective function RI we
have to ensure that the correspondlng arcs constitute an outtree rooted at node 0 and
for RL an arbitrary spanning tree of some network N (O). Using the bridge concept of
Gabow/Myers [2], it is possible to construct non-redundant spanning trees. Moreover,
to ensure that one and the same schedule (minimal point or extreme pint of some order
polytope) is only constructed once, we use some redundance rules and the concept of
t-minimal spanning trees proposed by Niibel [4].

The sketched enumeration scheme is embedded in a branch-and-bound procedure.
Given two partial schedules S¢ = (.5;);cc with C C V, 7,,(S¢" ) < r(S€°, ) for all
k € Randallt € [0,d] implies f(SC") < f(S) for both objective functions RI and
RL. Thus, LBO(S¢) := f(S€) is a lower bound on objective function value f(S) for
each schedule S € S which can be obtained by extending current partial schedule S¢.
For objective functions RI and RL, the least increase in the objective function value
f(SC) is obtained if we “schedule” some additional workload represented by interrupt-
ible subactivities with resource demand of one at points in time ¢* where r4(S€, t*) is
minimum.

Let C := V' \ C be the set of activities which have not been considered thus far and

let wy(C) := ) 7,1 p; be the workload of those activities on resource k& € R. We
jec _

take workload wy,(C) into account by splitting up the activities ;7 € C into interruptible

subactivities with resource demand one. For each k£ € R, these subactivities are then

scheduled at points in time t* € {0,1,...,d} for which r;(S¢,*) is minimum. For
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Figure 2: Resource profile 7y (S€, -) and workload wy (C)

illustration, we may think of the “ravines” of resource profiles rk(SC, ), k € R, as
containers which are filled “unit by unit” with the workload of the subactivities, see
Figure 2. The resulting resource profiles are denoted by 7}V (S¢,-). LBW(S€) :=
f(rlV(S¢, ) then represents a lower bound on f(.S) for each time-feasible extension S
of S¢ for both objective functions RI and RL.

Let d;; be the longest path length from node 7 to node j in project network N
which can be determined by a label correcting algorithm (cf. Ahuja/Magnanti/Orlin
[1], Sect. 5.4). Then a basic version of our proposed branch-and-bound procedure
reads as follows.

Branch-and-bound procedure
Set Sy :=0and C := {0}

Forall j € V' \ Cdo
ES; :=dy; and LS; := —d;
If ES; = LS; thenset S; := ES;andC :=CU {j}
End (x for )
Initialize stack 2 := {(C, S¢)}
Initialize best solution S* := (ES;);ey and upper bound UB := f(S*)
Repeat
Pop pair (C, S¢) off stack
IfC =V then S* := S¢ and UB := f(S*)
Else if LBW (S¢) < UB then
Initialize list A := ()
Determine all feasible extensions (C’, S¢') of current partial schedule (C, S€)
using some redundance rules and add them to list A

Push partial schedules (C’, S¢) from list A to stack € in order of nonincreasing
values LB0(S¢)

End (xifx)
Until Q =0
Return S*



Preliminary computational results on the “ubo” test instances generated with Pro-
Gen/max (cf. Neumann/Schwindt/Zimmermann [3], Subsections 2.8.1 and 2.8.2), show
that the proposed procedure is promising for instances with up to 30 activities.
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