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Abstract. The paper is dedicated to decidability exploration of market segmentation problem
with the help of linear convolution algorithms. Mathematical formulation of this problem rep-
resents interval task of bipartite graph cover by stars. Vertices of the first partition correspond
to types of commodities, vertices of the second – to customers groups. Appropriate method
is offered for interval problem reduction to two-criterion task that has one implemented lin-
ear convolution algorithm. Unsolvability of multicriterion (and, consequently, interval) market
segmentation problem with the help of linear convolution algorithm is proved.

1



1 GRAPH-THEORETICAL MODEL OF MARKET
SEGMENTATION

Market segmentation concept is the key point in marketing theory. Market segmentation con-
sists of division of markets into precise groups of customers. These customers are characterized
by similar reaction at suggested product or set of marketing incentives [12].

In this paper graph-theoretical model is proposed as an adequate mathematical model for
market segmentation problem. Its mathematical description is formulated under the assumption
that a base for market segmentation is defined a priori. It means that the set of would-be users
(individual customers, organizations) is given and segmentation factors (criteria) are chosen.
Besides, a nomenclature of goods of the same type that are presented at the market is deter-
mined. In process of market segmentation modeling, mathematical formulation is stated as a
multicriterion problem in a bipartite graph G = (V1, V2, E) [7] with partitions’ orders |V1| = m
and |V2| = l, m 6 l [2].

Vertices vi ∈ V1 correspond one-to-one to suggested types of product; these types are enu-
merated with the index i = 1,m. Vertices vj ∈ V2 correspond one-to-one to customers groups;
these groups are enumerated with the index j = 1, l.

By nj denote the predicted quantity of commodity pieces purchased by representatives of
the j th group.

The edge e = (vi, vj) belongs to the set E if and only if the ith type of goods can be acceptable
for customers from the j th group (1 6 j 6 l). Each edge e ∈ E in the graph G = (V1, V2, E)
is weighted with numbers wv(e), v = 1, N . Weights wυ (e) reflect expertly defined degree of
consumer usefulness of the ith type of product for customers from the j th group, 0 ≤ wυ (e) ≤ 1,
υ = 1, N , e ∈ E. Here index υ enumerates the criteria of consumer quality of product:
longevity, reliability, convenience in exploitation, etc.

By ki denote minimally admissible number of commodity’s copies of the ith type given a
priori. If the production volume of the ith type commodity is larger than ki, then production of
these goods comes out to be profitable i = 1,m.

A feasible solution of segmentation problem in bipartite graph G = (V1, V2, E) is the sub-
graph x = (V x

1 , V2, Ex), V x
1 ⊆ V1, Ex ⊆ E of G = (V1, V2, E). Every component of the

subgraph is either an edge e ∈ E or a star on (h + 1) vertices h ∈ {2, 3, . . . , l} [7]. This star
has center in some vertex vi ∈ V1 and its edges generate the set Ei

x, i ∈ {1, 2, . . . , m}.

Dangling vertices of some concrete star Ei
x generate subset V x

2 (vi) ⊆ V2 that satisfies in-
equality

∑

vj∈V i
2

nj ≥ ki, vi ∈ V x
1 , (1)

where center vi ∈ V x
1 , i = 1, 2, . . . , m and union

⋃
vi∈V x

1

V x
2 (vi) = V2.

Remark 1. If an edge e = (vi, vj) belongs to Ex, then, taking into consideration condition (1), it
can be viewed as a star on 2 vertices, with center vi and dangling vertex vj . We do not consider
condition (1) for vertices vi ∈ (V1\V x

1 ).
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An illustrative example of bipartite graph G and feasible solution x ∈ X (G) is presented
for given parameters in figure 1a) and 1b). This parameters correspond to condition (1).

We denote by X = X (G) = {x} a set of all feasible solutions (SFS) in graph G =
(V1, V2, E). Vector objective function (VOF) is defined on SFS X

F (x) = (F1 (x) , F2 (x) , . . . , FN+1 (x)) , (2)
and consists of N criteria of the weight form MAXSUM

Fυ (x) =
∑
e∈Ex

wυ (x) → max, υ = 1, N (3)

and one criterion of combinatorial kind

FN+1 (x) = |V x
1 | → max, υ = 1, N ; (4)

this criterion reflects variety of goods, i.e., the number of types (of commodity) that is profitable
to produce.

Figure 1: a) Bipartite graph G = (V1, V2, E), |V1| = m = 3, |V2| = l = 5 and b) example of feasible solution
x = (V x

1 , V2, E), V x
1 ⊂ V1, Ex ⊂ E for given parameters k1 = 2, k2 = k3 = 3, nj = 1, j = 1, 5.

VOF (2)-(3) defines on SFS X Pareto set (PS) X̃ , which consists of all Pareto optima (PO)
x̃ ∈ X̃ [2].

Every pair of PO x̃1, x̃2 ∈ X̃ is considered to be equivalent if an equality takes place:
F (x̃1) = F (x̃2). So, in this work, we deal with an algorithmic problem of finding so called
complete set of alternatives (CSA) [2].

The subset X0 ⊆ X̃ is called CSA if its cardinality |X0| is minimal when equation is held:
F (X0) = F

(
X̃

)
, where F (X∗) = {F (x) : x ∈ X∗} ∀X∗ ⊆ X . Here and later we mean that

PS X̃ and CSA X0 are determined for given graph G, i.e., X̃ = X̃ (G), X0 = X0 (G).

2 INTERVAL SEGMENTATION PROBLEM STATEMENT

The values of the weights wυ(e), υ = 1, N prescribed by experts [6] are of an approximate
kind in real circumstances. So, it is possible to use the apparatus of interval calculus [1] to
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reflect the uncertainty of such kind in mathematical model.

Let minimally possible w1 (e) and maximally possible w2 (e) values of segmentation factor
w (e) be known. Then, the weight of the edge e ∈ E can be represented as interval w(e) =
[w1(e), w2(e)], w1 (e) 6 w2 (e).

We give the definition of interval segmentation problem as a problem of a bipartite graph
G = (V1, V2, E) cover by stars on h vertices, h = {2, 3, . . . , l}, for one-criterion (N = 1) case.

Bipartite graph G = (V1, V2, E) is given, its partitions’ orders are |V1| = m and |V2| = l.
Each edge e ∈ E of graph G is weighted with interval w(e) = [w1(e), w2(e)], w1 (e) 6 w2 (e).

The feasible solution of segmentation problem formulated in bipartite graph G = (V1, V2, E)
is some part x = (V x

1 , V2, Ex), V x
1 ⊆ V1, Ex ⊆ E of graph G = (V1, V2, E). Every component

of this part is either an edge incident to vertices of the first V1 and the second V2 partitions
or a star on (h + 1) vertices, h = {2, 3, . . . , l}, with center in vertex vi ∈ V1 and edges Ei

x,
i ∈ {1, 2, . . . , m}.

At the same time, dangling vertices of concrete star Ei
x generate subset V x

2 (vi) ⊆ V2 and
this subset satisfies inequality (1).

Vector objective function is defined on SFS X so that interval weights are assigned

F (x) = {W (x) , |V x
1 |} , (5)

Vector objective function consists of weight criterion of the form MAXSUM

W (x) =
∑
e∈Ex

w (e) → max, (6)

where w (e) = [w1 (e) , w2 (e)], w1(e) 6 w2(e), W i(x) =
∑

e∈Ex

wi(e), i = 1, 2, and one

criterion of the combinatorial form (similar to (4))

|V x
1 | → max; (7)

this criterion represents variety of goods.

3 REDUCTION OF GRAPH COVER BY STARS INTERVAL PROBLEM TO VEC-
TOR PROBLEM

To solve optimization problem with data in interval representation, we consider reduction of
this problem to derived two-criterion problem stated below. We formulate statements of both
problems in bipartite graph G = (V1, V2, E).

Bipartite graph G = (V1, V2, E) is given and each edge of it is weighted with some interval
w (e) = [w1 (e) , w2 (e)], w1 (e) 6 w2 (e). On SFS X , which is defined by this graph, interval
objective function (IOF) of the weight form MAXSUM is specified:

W (x) =
∑
e∈Ex

w (e) → max, (8)
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where w (e) = [w1 (e) , w2 (e)], w1 (e) 6 w2 (e), W i(x) =
∑

e∈Ex

wi(e), i = 1, 2.

The summation in this IOF is fulfilled subject to properties of interval addition operations [1,
10].

The decision of interval problem is an element x0 ∈ X; IOF (8) attains necessary extreme
value at this element. However, among values W (x), x ∈ X of IOF (8), the mentioned extreme
value can be missing in general case if SFS X contains noncomparable elements. To choose the
most appropriate solution from the set of noncomparable alternatives, it is needed to introduce
the definitions of relations of preference, equivalence and incomparability [10].

Of two decisions x1 and x2, x1, x2 ∈ X , x1 is more preferable than x2 (x1 ≺ x2) if
W i (x1) 6 W i (x2), i = 1, 2 and at least one of these inequalities is absolute.

Solutions x1 and x2 are incomparable (x1 ≈ x2) if strict interval nesting takes place: W i (x1) ⊂
W i (x2) or W i (x2) ⊂ W i (x1).

Solutions x1 and x2 are equivalent (x1 ≡ x2) such that strict interval coincidence takes place:
W i (x1) = W i (x2).

The relations of preference and incomparability generate on SFS X Pareto set (PS) X̃ ⊆ X
consisted of Pareto optima (PO). Let us introduce the concepts of PO and CSA for considered
interval problem.

For the problem with IOF (8), solution x ∈ X is called PO if it does not exist such an element
x∗ ∈ X that x∗ ≺ x̃.

The CSA is the subset of minimal cardinality containing one representative for each value
W (x), x ∈ X̃ , where W (x) is the value of IOF (8).

Now we can formulate two-criterion task, which is derived from earlier presented interval
problem with IOF (8).

SFS X is specified in bipartite graph G = (V1, V2, E) with edges weighted by pair of weights
w1 (e) and w2 (e), w1 (e) 6 w2 (e). Vector objective function (VOF) is defined on SFS X:

F (x) = (F1 (x) , F2 (x)) , (9)

and consists of 2 criteria of the weight form MAXSUM

Fυ(x) =
∑
e∈Ex

wυ(e) → max, υ = 1, 2. (10)

VOF (9)-(10) determines on SFS X PS X̃ and CSA X0 [3], where CSA X0 is taken as a
sought solution of formulated two-criterion problem.

In paper [8], statement is substantiated that every interval problem in graphs with IOF (8)
is equivalent to corresponding derived two-criterion problem with VOF (9)-(10) under the as-
sumption

w1 (e) = w1 (e) , w2 (e) = w2 (e) . (11)

Thus, two formulated earlier problems are equivalent, i.e., VOF (9)-(10) and IOF (8) deter-
mine on SFS of these tasks coincident PO and CSA. Stated equivalency gives an opportunity
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to hold single exploration of algorithmic issues of segmentation problem for vector (2)-(3) and
interval (5)-(6) representations of figure of merit.

4 LINEAR CONVOLUTION ALGORITHM DESCRIPTION

Linear convolution algorithms [2, 9] are the most popular among the methods of determi-
nation Pareto optimal solutions for vector problems, i.e., elements x ∈ X̃ . These algorithms
are based on the fact that element x ∈ X maximizing (minimizing) convolution for positively
defined VOF (9)-(10)

F λ (x) =
N∑

υ=1

λυ·Fυ (x) , (12)

is Pareto optimal. Here vector is λ ∈ ΛN , where ΛN =

{
λ = (λ1, λ2, . . . , λN) :

N∑
υ=1

λυ = 1,

λυ > 0, υ = 1, 2, . . . , N

}
.

Figure 2: Graph G∗ = (V ∗
1 , V ∗

2 , E∗).

Let us examine some individual task with N maximized criteria (3) that are determined on
SFS X = {x}. We denote the sought set of alternatives (SA) of this problem by X∗, X∗ ⊆ X .
If there is a vector λ∗ ∈ ΛN for every element x∗ ∈ X∗ and this vector satisfies equation
F λ∗(x∗) = max

x∈X
F λ∗ (x), then one says that the problem of finding SA X∗ is solvable with

linear convolution algorithm. If solvability defined in such a way is typical for all individual
problems of the examined mass problem [4], then for each of them one can find the sought SA
with linear convolution algorithm. This problem is unsolvable with linear convolution algorithm
if there is, for the examined task, individual problem with SA X∗ containing such element
x∗ ∈ X∗ that at this element convolution F λ (x), ∀λ ∈ ΛN does not attain required extremum,
i.e., for all λ ∈ ΛN inequality F λ(x∗) < max

x∈X
F λ∗ (x) is held.

A range of papers (see references in [5]) are dedicated to the problem of solvability of
certain multicriterion problems with linear convolution algorithms. However, investigations
of solvability of the examined interval and corresponding vector problem (interval problem is
reduced to it) are absent. We also note that the assertions about unsolvability of graph cover
by stars problem with linear convolution algorithm obtained in paper [11] do not affect the
considered formulations of market segmentation problem.
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5 SUBSTANTIATION OF UNSOLVABILITY OF SEGMENTATION PROBLEM WITH
LINEAR CONVOLUTION ALGORITHM

Let us denote by Z1 concrete individual interval problem of full bipartite graph G∗ =
(V ∗

1 , V ∗
2 , E∗) cover that has partitions’ orders |V ∗

1 | = m = 2 and |V ∗
2 | = l = 4 (figure 2)

with IOF (8).

The set of vertices of the first partition is V ∗
1 = {1, 2}, the set of vertices of the second

partition is V ∗
2 = {3, 4, 5, 6}. The set E∗ = {ei}, i = 1, 8 consists of the edges: e1 = (1, 3),

e2 = (1, 4), e3 = (1, 5), e4 = (1, 6), e5 = (2, 3), e6 = (2, 4), e7 = (2, 5), e8 = (2, 6).

Every edge e ∈ E∗ of the graph G∗ is weighted by interval weights w(e) = (w1(e), w2(e)) ⊂
[0; 1]:

w (e1) = (0, 02; 0, 09), w (e2) = (0, 06; 0, 1),

w (e3) = (0, 04; 0, 09), w (e4) = (0, 05; 0, 25),

w (e5) = (0, 1; 0, 12), w (e6) = (0, 07; 0, 08),

w (e7) = (0, 08; 0, 16), w (e8) = (0, 15; 0, 2).

(13)

Let us reduce this interval problem to two-criterion problem with VOF of the form (9)-(10).

We get two-weighted graph G = (V1, V2, E) that is isomorphic to the graph G∗ = (V ∗
1 , V ∗

2 , E),
every edge of which is weighted by corresponding weights according to (11), (13):

w1 (e1) = 0, 02; w2 (e1) = 0, 09; w1 (e2) = 0, 06; w2 (e2) = 0, 1;

w1 (e3) = 0, 04; w2 (e3) = 0, 09; w1 (e4) = 0, 05; w2 (e4) = 0, 25;

w1 (e5) = 0, 1; w2 (e5) = 0, 12; w1 (e6) = 0, 07; w2 (e6) = 0, 08;

w1 (e7) = 0, 08; w2 (e7) = 0, 16; w1 (e8) = 0, 15; w2 (e8) = 0, 2.

The SFS of individual problem is the set X = {xr}, xr = (V xr
1 , V2, Exr). The cardinality of

SFS is |X| = 16, i.e., r = 1, 2, . . . , 16.

Let us display all feasible decisions xr that are defined by corresponding sets of edges Exr :

Ex1 = {e1, e6, e7, e8} , Ex2 = {e2, e5, e7, e8} , Ex3 = {e3, e5, e6, e8} ,

Ex4 = {e4, e5, e6, e7} , Ex5 = {e1, e4, e6, e7} , Ex6 = {e2, e3, e5, e8} ,

Ex7 = {e1, e2, e3, e8} , Ex8 = {e1, e2, e4, e7} , Ex9 = {e1, e3, e4, e6} ,

Ex10 = {e2, e3, e4, e5} , Ex11 = {e1, e3, e6, e8} , Ex12 = {e3, e4, e5, e6} ,

Ex13 = {e1, e2, e7, e8} , Ex14 = {e2, e4, e5, e7} , Ex15 = {e1, e2, e3, e4} ,

Ex16 = {e5, e6, e7, e8} .

We compute the value of criteria for listed decisions Fυ (xr) =
∑

e∈Exr

wr (e), υ = 1, 2,

VOF (9)-(10) (see Table 1).

According to Table 1, one can conclude about vector incomparability of solutions x2, x3, x4,
x6, x14. These five decisions generate PS with which CSA coincide: X̃ = X0 = {x2, x3, x4, x6, x14}.

7



Table 1.
x1 x2 x3 x4 x5 x6 x7 x8

F1 (xr) 0,24 0,31 0,36 0,30 0,22 0,35 0,27 0,21
F2 (xr) 0,53 0,58 0,49 0,61 0,58 0,51 0,48 0,60

x9 x10 x11 x12 x13 x14 x15 x16

F1 (xr) 0,18 0,25 0,28 0,26 0,23 0,29 0,17 0,32
F2 (xr) 0,51 0,56 0,46 0,54 0,55 0,63 0,53 0,56

Figure 3: Graphic presentation of convolutions F (xr, λ1), r = 2, 3, 4, 6, 14.

Then, we form convolutions (10) according to (12); taking into consideration these convolutions
and λ1 + λ2 = 1, λ2 = 1− λ1, we can state :

F λ (x2) = F (x2, λ1) = 0, 31λ1 + 0, 58λ2 = 0, 58− 0, 27λ1

F λ (x3) = F (x3, λ1) = 0, 36λ1 + 0, 49λ2 = 0, 49− 0, 13λ1

F λ (x4) = F (x4, λ1) = 0, 30λ1 + 0, 61λ2 = 0, 61− 0, 31λ1

F λ (x6) = F (x6, λ1) = 0, 35λ1 + 0, 51λ2 = 0, 51− 0, 16λ1

F λ (x14) = F (x14, λ1) = 0, 29λ1 + 0, 63λ2 = 0, 63− 0, 34λ1

(14)

There is graphical representation of these convolutions F λ(x) = F (x, λ1) as functions of λ1

in figure 3.

From this graphical representation of convolutions F (x2, λ1), F (x3, λ1), F (x4, λ1), F (x6, λ1),
F (x14, λ1), it is clear that convolutions graphs F (x14, λ1), F (x3, λ1) make upper bound. All
the rest graphs are situated strictly below this bound. Here we come to conclusion that maximal

8



Figure 4: Graph G∗2,l =
(
V ∗

1 , V ∗l
2 , E∗2,l

)
.

value of convolutions F λ (xr), r = 2, 4, 6 does not attain this bound under no values λ ∈ Λ.
Now we formulate 2 lemmas based on conducted constructive proof of unsolvability of individ-
ual bipartite graph G = (V1, V2, E) cover by stars on h vertices problem with linear convolution
algorithm for the case of IOF (8) and VOF (9)-(10).

Lemma 1. Interval problem of cover by stars on h vertices, h ∈ {2, 3, 4}, of the bipartite graph
G∗ = (V ∗

1 , V ∗
2 , E∗), |V ∗

1 | = 2, |V ∗
2 | = 4 weighted according to (13) with IOF (8) is unsolvable

with linear convolution algorithm.

Lemma 2. Derived (from problem stated in lemma 1) vector problem of bipartite graph G =
(V1, V2, E), |V1| = 2, |V2| = 4 cover by stars on h vertices, h ∈ {2, 3, 4}, with VOF (9)-(10) is
unsolvable with linear convolution algorithm.

We prove some lemma for obtained results generalization.

Lemma 3. Interval problem of cover by stars on h vertices, h ∈ {2, 3, . . . , l} of bipartite
graph G∗

2,l =
(
V ∗

1 , V ∗l
2 , E∗2,l

)
, |V ∗

1 | = 2,
∣∣V ∗l

2

∣∣ = l weighted according to (13) with IOF (8) is
unsolvable with linear convolution algorithm.

Proof. We extend lemma’s 1 proof for the case l > 4. For that, we transform the graph G∗ =(
V ∗

1 , V ∗l
2 , E∗), |V ∗

1 | = 2, |V ∗
2 | = 4 to graph G∗

2,l =
(
V ∗

1 , V ∗l
2 , E∗2,l

)
with partitions’ orders

|V ∗
1 | = 2,

∣∣V ∗l
2

∣∣ = l by entering (l − 4) additional vertices vj in second partition’s V ∗
2 set of

vertices. The set of edges is:

E∗2,l = E∗ ∪∆E∗, where ∆E∗ = {e = (2, j)} , j = 7, 8, . . . , l + 2, (15)

i.e., cardinality |∆E∗| = l− 4 (figure 4). Denote derived problem by symbol Z2 and its SFS by
symbol X2,l =

{
x2,l

r

}
.

Remark 2. It is easy to notice a bijection between elements of SFS X = {xr}, r = 1, 2, . . . , 16
of problem Z1 and SFS X2,l =

{
x2,l

r

}
, r = 1, 2, . . . , 16 of problem Z2.

In fact, if the feasible solution xr = (V1, V2, Exr) ∈ X consists of two stars E1
xr

and E2
xr

with
centers respectively in vertices 1 and 2 of the first partition V ∗

1 of graph G∗, then corresponding
admissible decision x2,l

r =
(
V ∗

1 , V ∗l
2 , E2,l

r

)
also consists of two stars E2,l,1

r , E2,l,2
r with centers
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respectively in vertices 1 and 2 of the first partition of the graph G∗
2,l. In other words, the first

stars coincide in these feasible solutions and the second star of decision x2,l
r is obtained by the

addition of the set of edges ∆E∗ to the second star of solution xr ∈ X .

Interval unit weight w (e) is assigned to every edge e ∈ ∆E∗ =
(
E∗

2,l\E∗) that is incident
to any of the added vertices vj ∈ V ∗

2 , i.e., the length of interval w(e) = (w1(e), w2(e)) is zero:
w1 (e) = w2 (e) = 1.

Let us use the same reasoning that was performed when we proved lemmas 1 and 2. We
compute the values of criteria Fυ

(
x2,l

r

)
=

∑
e∈E∗2,l

wr (e), υ = 1, 2. The found values of criteria

Fυ

(
x2,l

r

)
, υ = 1, 2, that compose VOF (9)-(10), differ from corresponding values in Table 1

in constant c = l − 4. So, the increase of the second partition’s cardinality l does not change
PS and CSA for the task Z2 in comparison with the task Z1. Making linear convolutions, we
get formulas that differ from similar ones (14) in constant c. Hence, graphical representation
of these convolutions F λ (x) = F (x, λ1) as functions against λ1 differ from figure 3 by bias of
all graphs upwards in constant c; this distinction does not affect correctness of conclusions of
lemma 1.

Lemma 4. Interval problem of cover by stars on h vertices, h ∈ {2, 3, . . . , l}, of bipartite graph
weighted according to (13) G∗

m,l =
(
V ∗m

1 , V ∗l
2 , E∗m,l

)
, |V ∗m

1 | = m,
∣∣V ∗l

2

∣∣ = l with IOF (8) is
unsolvable with linear convolution algorithm.

Proof. We inspect the graph G∗
m,l =

(
V ∗m

1 , V ∗l
2 , E∗m,l

)
on (m + l) vertices, |V ∗m

1 | = m,∣∣V ∗l
2

∣∣ = l, which was obtained on a base of bipartite graph G∗
2,l =

(
V ∗

1 , V ∗l
2 , E∗2,l

)
, |V ∗

1 | = 2,∣∣V ∗l
2

∣∣ = l by completion of its first partition V ∗
1 with additional vertices vi, i = l + 3, l + m.

Then, the set E∗2,l of edges of the graph G∗
2,l is enlarged with (m− 2) edges of the kind

e = (i, 3), i = l + 3, l + m. We assign zero intervals w (e) = (w1 (e) , w2 (e)) = (0, 0) to
these edges. The set of these edges we denote by E0 = {e = (i, 3)}, i = l + 3, l + m.

Let denote interval problem of the examined graph G∗
m,l cover by stars by Z3. The SFS Xm,l

of this task can be divided into 2 subsets

Xm,l = X1
m,l ∪X2

m,l, (16)

where X1
m,l consists only of those feasible solutions that have two components. These compo-

nents are the stars with centers in vertices 1 and 2 of the first partition.

It follows from this definition that one-to-one correspondence exists between feasible so-
lutions xm,l

r ∈ X1
m,l and feasible solutions x2,l

r ∈ X2,l of the task Z2. At the same time, de-
cision xm,l

r consists of 2 stars that constitute solution xm,l
2 and of (m− 2) isolated vertices,

i = l + 3, l + m. From edge weight definition e ∈ E∗m,l and separation (16), it is clear that
every decision from subset X2

m,l is other than Pareto optimal.

Thus, from given statements, it turns out that the problem Z3 inherits PS and CSA of the task
Z2 in some strictly determined sense. Forming linear convolutions on these PS and CSA, we get
expressions that completely coincide with linear convolutions of the kind (14) for the task Z2.
Using graphical representation of these convolutions, we get the proof of lemma 4 analogously
to lemma 3.
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Substituting in proofs of lemma 3 and lemma 4 w1 (e) = w1 (e), w2 (e) = w2 (e) and formu-
lating problems Z4, Z5 analogous correspondingly to problems Z2, Z3, we come to conclusion
that the next lemma 5 and lemma 6 are correct.

Lemma 5. Derived (from problem presented in lemma 1) vector problem of bipartite graph
G = (V1, V2, E), |V1| = 2, |V2| = l cover by stars on h vertices, h ∈ {2, 3, . . . , l}, with
VOF (9)-(10) is undecidable with the help of linear convolution algorithm.
Lemma 6. Derived (from problem presented in lemma 1) vector problem of bipartite graph
G = (V1, V2, E), |V1| = m, |V2| = l cover by stars on h vertices, h ∈ {2, 3, . . . , l}, with
VOF (9)-(10) is undecidable with the help of linear convolution algorithm.

Utilizing received results, let get back to segmentation problem in interval and multicriterion
formulation.

Theorem 1. Interval segmentation problem with regard to inequality (1) and IOF (5)-(7) is
unsolvable with linear convolution algorithm.
Proof. It is necessary to extend the result obtained in lemma 4 with regard to criterion of
combinatorial kind (7) that is about maximal number of connected components in the graph
G∗

m,l =
(
V ∗m

1 , V ∗l
2 , E∗m,l

)
with partitions’ cardinalities |V ∗m

1 | = m,
∣∣V ∗l

2

∣∣ = l.

Let us consider the graph G∗
m,l =

(
V ∗m

1 , V ∗l
2 , E∗m,l

)
on (m + l) vertices with partitions’

cardinalities |V ∗m
1 | = m,

∣∣V ∗l
2

∣∣ = l, which was received on a base of the bipartite graph
G∗ = (V ∗

1 , V ∗
2 , E∗), |V ∗

1 | = 2, |V ∗
2 | = 4, that was discussed in the task Z1, by completion

of its first partition V ∗
1 with additional vertices vi, i = 7, 8, . . . , m+4 and entering (l − 4) addi-

tional vertices vj , j = m + 5,m + l into the set of vertices of the second partition V ∗
2 . Then, we

enlarge the set E∗ of edges of the graph G∗ with the set of edges El so that one of the added ver-
tices vi of the first partition V ∗

1 becomes the center of the star on (l −m) vertices with edges in-
cident to the added vertices vj , j = m + 5,m + l of the second partition V ∗

2 , and the remaining
(m− 3) vertices of the first and the second partitions are connected by edges. The cardinality of
the set is

∣∣El
∣∣ = (l − 4). So, the set of edges of the graph G∗

m,l =
(
V ∗m

1 , V ∗l
2 , E∗m,l

)
is the union

of two sets E∗m,l = E1 ∪E∗. We assign interval unit weight w (e) = (w1 (e) , w2 (e)) = (1, 1)
to the edges e of the set E1. Consequently, the received graph G∗

m,l =
(
V ∗m

1 , V ∗l
2 , E∗m,l

)
,

|V ∗m
1 | = m,

∣∣V ∗l
2

∣∣ = l consists of ((m− 2) + l) connected components: one star on (l −m)
vertices, graph G∗ = (V ∗

1 , V ∗
2 , E∗), |V ∗

1 | = 2, |V ∗
2 | = 4, and (m− 3) edges e ∈ El. The

formulated problem we denote by Z6.

Let us consider SFS XZ6 =
{
xZ6

r

}
of the problem Z6. According to the definition of

SFS X of market segmentation problem, it can be concluded that all solutions xZ6
r contain

all ((m− 2) + 1) augmented connected components of the graph G∗
m,l and one feasible solu-

tion xr of the task Z1. Then, holding reasoning analogous to ones that were made when solving
problems Z1 and Z2, we find PS with which CSA coincides: X̃ = X0 = {x2, x3, x4, x6, x11}.

Now it is necessary to optimize this solution according to criterion (7). Maximal number of
stars for the given graph G∗

m,l =
(
V ∗m

1 , V ∗l
2 , E∗m,l

)
, |V ∗m

1 | = m,
∣∣V ∗l

2

∣∣ = l is equal to cardinality
of the set of vertices of the first partition |V ∗m

1 | = m. All found solutions xZ6
r ∈ XZ6 fit this

criterion. So, inferences from lemma 1 are correct with regard to criterion (7).

It is necessary to prove the obtained result with regard to inequality (1). Let us assume
ki = nj = c1 = const. Under this suggestion, the condition (1) would be fulfilled on all SFS
XZ6 =

{
xZ6

r

}
of the task Z6. So, the result obtained above remains in force.
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Lemma 7. Vector problem of bipartite graph G = (V1, V2, E), |V1| = m, |V2| = l cover by
stars on h vertices, h = 2, 3, . . . , l, with VOF (2)-(4) is unsolvable with linear convolution
algorithm.

Proof. Basing on the results of lemma 6, we can infer that lemma 7 is proved for the case
N = 2.

When N > 2 we admit for i > 2 the weights from G∗. After linear convolution algorithm
usage, the same result as in the task Z5 is obtained.

Theorem 2. Multicriterion segmentation problem under condition (1) and with VOF (2)-(4) is
unsolvable with convolution algorithm.

Proof. Lemma 7 proves unsolvability of segmentation problem as the problem of bipartite
graph G = (V1, V2, E), |V1| = m, |V2| = l cover by stars on h vertices, h = 2, 3, . . . , l,
with VOF (2)-(4). In some cases the embedding of restriction (1) does not change neither PS
nor CSA, and it was shown in theorem’s 1. Therefore, theorem 2 is proved.

6 CONCLUSION

In this paper explorations were conducted to find out the applications of convolution algo-
rithms for market segmentation problem. According to the results of the research, one can make
a decision that every method based on convolution algorithm cannot guarantee the obtaining of
precise solution for market segmentation problem both in interval and multicriterion formula-
tions. Pareto optima received with convolution algorithm in general case generate eigensubset
of the sought CSA. In other words, convolution algorithm usage gives an opportunity to get the
approximation of the sought set of solutions for segmentation problem in interval and multicri-
terion statements.
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