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1 INTRODUCTION

Dynamical systems such as the logistic map have an edge to chaos in their
parameter spaces. On one side of this edge the dynamics is chaotic for many
parameter values, on the other side of the edge it is periodic.

Chaos has been studied using signal processing techniques. Signal pro-
cessing is a method of extracting information from the signal which depends
both on the type of signal and the nature of information it carries. If the
signal is stationary, it can be well represented in terms of basis functions
which are sinusoidal. The time series is periodic and the spectrum consists
of discrete lines. On the other hand irregular and chaotic time series all have
a continuous part in their spectrum which indicates that Fourier analysis is
not suitable. The signals or time series where there is chaos are nonlinear
and Fourier analysis does not provide a good description of the location and
spatial distribution of the singularities. A wavelet analysis provides good
localization properties in frequency spaces.

In the next Section we give a brief overview of multiresolution analysis and
its connection with an operator theoretic aspect as the one of representations
on Hilbert spaces. This brings new insight into the study of logistic maps,
attractors and operator relations in Hilbert spaces.

A discrete model for interacting species, one of which is subject to a
disease, is then proposed in Section 3 and its equilibria are theoretically an-
alyzed in Section 4. A preliminary investigation by means of simulations is
then carried out, in Section 5. By means of wavelet decomposition analysis,
we show that at least for the equilibrium corresponding to the single popu-
lation model, it has a similar behavior than the one exhibited by the logistic
map, in view also of its resemblance to it.

2 MATHEMATICAL BACKGROUND

A number of wavelet constructions in pure and applied mathematics have
a common operator-theoretic underpinning, a Hilbert space H, a unitary
operator U : H — H and a unitary representation V : T — U(H) from
the torus T into unitary operators on H.

The operator system satisfies the identity

V(2)'UV(2) = 2U, =ze€U. (1)



U is homogeneous of degree one if it satisfies (1) for some representation
V(2) of T. In the case of standard wavelets with scale N, H = L*(R), the
two operators U and T are the N—adic scaling and the integral translation
operators respectively.

If V, C H is aresolution subspace then Vy, C U V,. Set Wy = U~ 1V,—V,.
Let Qo denote the projection onto Wy and let Q; = U~*Q,U*, for k € Z.
Then V (2) = 52 . 2*Qk, for k € T. Thus (U, V(z)) satisfy (1).

k=—00

Let {¥;};c; be a Parseval frame in Wy. It follows that
{U*T, ¥, v € I,k,n € Z} (2)

is a Parseval frame for H.

Turning the picture around, if we start with (U, V (z)) satisfying (1), then
we reconstruct wavelet (or frame) bases in the form (2). In particular a
construction of a multiresolution/wavelet analysis for the set X where the
dynamics is generated by a function r : X — X. Such analysis could be
accomplished by some kind of wavelet representation induced by a normal
operator T such that UT = r(T)U for some unitary operator U in a Hilbert
space H.

There are consequences and applications of such construction. One of
them is the existence of some special generating functions m; on the set X.
The required relation is

LY mmwh) =0 )h)
yeX(r), r(y)==
almost everywhere, with z € X (r), h is a Perron-Frobenius eigenfunction for
a Ruelle operator R on L (X (r)) and for every set X there exists an infinite-
dimensional group which acts transitively on these systems of functions.
The functions m; on X(r) satisfying quadratic equations analogous to
those of the axioms that define systems of filters in wavelet analysis. In
further investigations we could consider Julia sets where X = Julia(r), which
are examples of chaotic attractors for iterative discrete dynamical systems,
in the framework of the ecoepidemiological models presented in the next
Sections.

3 THE ECOEPIDEMIOLOGICAL MODEL

Continuous ecoepidemiological models have been recently proposed and an-
alyzed, see for instance [6], [7]. Here we consider an interacting population
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system given by two species, a predator y and a prey, in which the latter is
affected by a disease spreading by contact between an infectious individual z
and a sound one z, with incidence rate A\. Both subpopulations are subject to
predation, at the same rate ¢, but we assume that the disease does not spread
to the predator’s population. Furthermore, let A denote the environment’s
prey carrying capacity.

Only the sound prey is assumed to reproduce, giving sound newborns,
with net birth rate r. The population pressure for the sound prey gives
rise to a logistic term, to which also the infected individuals contribute. We
also assume that the disease is recoverable, i.e. infected become once again
susceptibles at rate v. The disease induces a mortality rate p for infected
individuals.

The predators in absence of prey are assumed to die at an exponential
rate d, i.e. the prey constitute their only source of food, they being turned
into new predators with efficiency e.

We assume that the populations are counted at fixed time intervals, be-
tween which successive generations are born and die out, thus giving rise
to a discrete dynamical system. With these assumptions thus, the model
equations read as follows.

1
Tpt1 = 7”:5'"[1 - _(xn + Zn)] — ATp2p — CTnYn + Y2n (3)

A
Zntl = ATpZpn — C2nYn — VZn — UZn

Yn+1 = Yn|—d + e(xy + 2,)]

4 EQUILIBRIA DETERMINATION

The equilibria are the origin O = E® and the points E® = (2@ 2 @),
1=1,...,4 where

1+d  eA(r—1)—r(1+d
(2)_ 'f'—]_
E¥ = ( A,0,0),

T+y+p T4+y+p MMA—=7r)+7r(1+v+ )
A A ry+ 14+ p) (A +7)

E® = ( ,0),



dvyA d w1l u
2@ Z0a® — 1y — ).
(d(r+)\A)—eA(r+,u)’ e " ’c( v 7= H)

The Jacobian of the dynamical system at these equilibria is easily found:

EW
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) r—2i—-A+L5lZ—cj —-LE-Ai+vy —cZ
J = AZ AT —cy—7vy—p —cZ
ey ey e(z+2)—d

where J = J(E) and E = (%, ,7) denotes either one of the five equilibria
E® i=0,4. .

The eigenvalues 77](-1) , 7 =1,2,3, « =0,...,4 at each possible equilib-
rium in some cases are explicitly found, as follows. Notice that the stability
condition requires that |7;| <1 for each j = 1,2, 3.

At the origin, they are 7, —y — pu and —d. At E®) they are Az — ¢y —
~v — i, and the roots of the quadratic equation

w? —ufr+1— 2%3:(1) — ey +[r - 2%3:(1) — ey M) + ceaMyM = 0.

At the point E®) we find instead ez® —d = eA(1—1)—d, NA(1 = 1) —y—p,
—r. At E®) they are e(z® + 2(¥) — d and the roots of the quadratic

u2—b1u+b0:O

with .
= I C) BN ) NS W ¢ N )
bh=1+r(1 A(:v +2)) — Az 17
and
1
bo =7(1 — Z(x(?’) +2%)) = X2® — %x(?’) + )\z(?’)[(% +2)z® 4 4] = 0.

Finally the interior equilibrium E(® has eigenvalues coming from the solution
of a complete cubic equation.

5 SYSTEM DYNAMICS ANALYSIS

For comparison sake, we recall the classical analysis performed on the single
species logistic equation

Spt1 = TSy (1 — Z) = f(sn). (4)



For the nontrivial equilibrium s* = 4(r — 1), it is well known that the
stability condition reduces to having the birth rate satisfy the inequalities
1 < r < 3. For larger values, period doubling for the map f arises. Thus
two new fixed points for f2 are found, compare the two pictures in Figure 1.
The stability of these new equilibria holds for » > 3 and lying in an interval
of length smaller than 2, say r € [3,7M]. Then for r > r(!), new fixed
points can be found for f*, their stability being confined to r € [r(V), (2],
with interval length still smaller than the former one. The process can be
iterated, finding new equilibria with stability intervals of diminishing length,
until ultimately a value r* is reached after which, i.e. for r > r*, chaotic
behavior arises. In [1] this behavior has been captured by decomposing the
simulations using wavelet filters. Some of our own simulations along these
lines for some selected values of r are reported in Figures 1-9.

We have attempted the use of the same technique on the proposed ecoepi-
demiological model (3), focusing on the corresponding equilibrium counter-
part of s*, the disease and predator-free point E®). In Figures 10-18 the
simulations and corresponding signal decomposition about E() are reported.
From these results, it seems that the same chaotic behavior arises in both
cases. A careful comparison of Figures 2 and 11 for instance, shows only small
differences. Notice indeed that the vertical scale, automatically adjusted by
the MATLAB Wavelet Toolbox package used for these computations, is dif-
ferent in the two cases. Figures 3 and 12 i.e. for the periodic maps, show
some slight differences in the decomposition in the components d3 and ds.
These discrepancies appear much more marked in the chaotic regime, com-
pare Figures 5 and 14, in which all components essentially differ, while they
are still present, but less relevant, in the range past the critical one, r = 4.05,
compare Figures 6 and 15. Here a5 and d5 are basically the same, again pay
attention to the vertical scale which is of the order of 10® in both cases. For
r = 5.8 the differences are contained in the components do, d3 and dj4, see
Figures 9 and 18. This apparently occurs in spite of the presence of the other
model equilibria, which are clearly absent in the one-dimensional formula-
tion (4). While the dynamics in the one dimensional case is pushed away
from s*, in a sense wandering around, in principle in the ecoepidemic model
the other equilibria could function as further stable attractors, thus prevent-
ing the occurrence of the chaotic behavior of the system trajectories from
the destabilized equilibrium E®. We have shown that this is not the case,
though. It should also be remarked that some other preliminary simulations
do not show similar chaotic phenomena to arise near the other equilibria of



the ecoepidemic model. Further investigation is needed.

6 CONCLUSIONS

Certain special representations of the Cuntz algebras in Hilbert spaces serve
as a tool in generating orthonormal bases in the context of wavelets and more
generally for iterated function systems, [4], [5]. Since the representations of
the Cuntz algebras naturally yield bases with n-fold scaling, from further
investigations we expect different and new operator relations arising from
the problem at hand in view of the wavelet multiresolution algebra used to
detect chaos in logistic maps.
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Figure 1: Simulation for the one population logistic model, r = 2.3 (top) and
for r = 3.3 (bottom)
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Figure 2: Analysis of the one population logistic model, r = 2.3
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Figure 3: Analysis of the one population logistic model, r = 3.3
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Figure 4: Simulation for the one population logistic

and for r = 4.05 (bottom)

model, 7 = 3.92 (top)
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Figure 5: Analysis of the one population logistic model, » = 3.92
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Figure 6: Analysis of the one population logistic model, » = 4.05
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Figure 7: Simulation for the one population logistic model, r
for r = 5.8 (bottom)

= 4.7 (top) and
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Figure 8: Analysis of the one population logistic model, r = 4.7
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Figure 9: Analysis of the one population logistic model, r = 5.8
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Figure 10: Simulation for the ecoepidemic model, r

r = 3.3 (bottom)

2.3 (top) and for
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Figure 11: Analysis of the sound prey in the ecoepidemic model, r = 2.3
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Figure 12: Analysis of the sound prey in the ecoepidemic model, r = 3.3
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Figure 13: Simulation for the ecoepidemic model, » = 3.92 (top) and for

r = 4.05 (bottom)
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Figure 14: Analysis of the sound prey in the ecoepidemic model, r = 3.92



10 T T T T T T T T T

i e o e

Figure 15: Analysis of the sound prey in the ecoepidemic model, r = 4.05
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Figure 16: Simulation for the ecoepidemic model, r

r = 5.8 (bottom)

4.7 (top) and for
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Figure 17: Analysis of the sound prey in the ecoepidemic model, r = 4.7
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Figure 18: Analysis of the sound prey in the ecoepidemic model, r = 5.8



