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Abstract. A fast solver method called the multigrid preconditioned conjugate gradient method
is proposed for the mechanical analysis of heterogenous materials on the mesoscale. Even small
samples of a heterogeneous material such as concrete show a complex geometry of different
phases. These materials can be modeled by projection onto a uniform, orthogonal grid of el-
ements. As one major problem the possible resolution of the concrete specimen is generally
restricted due to (a) computation times and even more critical (b) memory demand. It is well
known that this type of problem, especially for volumetric models, quickly tap today’s com-
putational potential. The possibility to increase the model size by resolution in comparison to
standard procedures would be valuable. Direct solver methods require the storage of a global
stiffness matrix and the corresponding memory demand limits the problem size. Iterative solvers
can be based on a local element-based formulation while orthogonal grids consist of geomet-
rical identical elements. The element-based formulation is short and transparent, and therefore
efficient in implementation. A variation of the material properties in elements or integration
points is possible. The multigrid method is a fast iterative solver method, where ideally the
computational effort only increases linear with problem size. This is an optimal property which
is almost reached in the implementation presented here. In fact no other method is known which
scales better than linear. Therefore the multigrid method gains in importance the larger the
problem becomes. But for heterogeneous models with very large ratios of Young’s moduli the
multigrid method considerably slows down by a constant factor. Such large ratios occur in
certain heterogeneous solids, as well as in the damage analysis of solids. As solution to this
problem the multigrid preconditioned conjugate gradient method is proposed. A benchmark
highlights the multigrid preconditioned conjugate gradient method as the method of choice for
very large ratio’s of Young’s modulus. A proposed modified multigrid cycle shows good results,
in the application as stand-alone solver or as preconditioner.
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1 INTRODUCTION

The mesoscale analysis of concrete had been the primary interest of the project in which this
article developed. First, there was the idea to create a realistic geometrical model of concrete
on the mesoscale. Some corresponding methods were published in [7] and mechanical finite
element analysis on small samples was performed. Thereby it quickly turned out that the next
major problem is the computational performance. The large number of inclusions with variable
shape and size requires computation of high resolution in order to reflect the mechanical behav-
ior of the real material. In other words, many degrees of freedom are required and large equation
systems have to be solved. In the complete finite element process the time of the solver is by far
most relevant in comparison to all other required operations. Furthermore, the problem size is
limited by the memory demand in which especially the storage of the global stiffness matrix is
critical.

The present approach is dedicated to a maximum increase of model size and optimal perfor-
mance in the mechanical analysis of heterogeneous solids. At the same time, other important
physical and numerical aspects are out of scope. However, adapted methods for advanced fi-
nite elements are presented in [9] and for damage analysis in [11]. In combination with these
approaches the present concept of grid-based modeling gains in relevance. As a main property
of this concept the storage of a global stiffness matrix is superseded and replaced by element-
based formulations. Several variants to model heterogeneous materials are introduced which
can be adapted to such a local scheme. The methods are short and transparent in implementa-
tion. Beyond the classical and well-known formulations of the multigrid method and the multi-
grid preconditioned conjugate gradient method, this article provides transparent access to these
methods with respect to the defined engineering application.

It is an important property of the multigrid method that the computational effort only in-
creases linear with problem size. This is declared as an optimal property. In fact, therefore the
multigrid method gains in importance the larger the problem becomes. This advantage of the
multigrid method will even be strengthened with increasing computational power. However, for
heterogeneous models with very large ratios of Young’s moduli the multigrid method essen-
tially slows down. Such large ratios of Young’s moduli are expected for certain heterogeneous
materials as well as in damage analysis [11]. A remedy is found in the multigrid preconditioned
conjugate gradient method. Corresponding results are presented. Besides, a modified multigrid
cycle is introduced.

2 PROBLEM STATEMENT AND NOTATION

In the static case the finite element method leads to the linear equation system

K u = f (2.1)

where K denotes the stiffness matrix, f is the vector of prescribed forces and u is the solution,
the displacement vector which is initially unknown. For the mechanical background of the finite
element formulation, it is referred to [9]. The global stiffness matrix K corresponds to the sum
of element stiffness matrices K̄e after rearrangement according to the global degrees of freedom

K =
ne∑

e=1

K̄e , Kij =
ne∑

e=1

K̄e
ij (2.2)
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and the global force vector corresponds to the sum of reordered element force vectors f̄ e.

f =
ne∑

e=1

f̄ e , fi =
ne∑

e=1

f̄ e
i (2.3)

In the case that (also) displacements are prescribed, these predefined displacements can be
eliminated according to the following procedure, which again leads to the form of Eq. 2.1.
Considering all degrees of freedoms at all nodes at a finite element model, then here the index 1
corresponds to degrees of freedom with a prescribed force and the index 2 corresponds to those
of a prescribed displacement.[

K1,1 K1,2

K2,1 K2,2

][
u1

u2

]
=

[
f 1

f 2

]
(2.4)

Then the initially unknowns of this system are u1 and f 2. As the right hand side of the following
equation is known, it is of the same form as Eq. 2.1 and enables analogous computation of u1

K1,1 u1 = f 1 −K1,2 u2 (2.5)

independent of f 2. If the resulting force vector f 2 at rigid degrees of freedom is also of interest,
then it can straightforward be computed by

f 2 = K2,1 u1 + K2,2 u2 (2.6)

In the following discussion of iterative solver methods it is assumed that the problem is of the
form as in Eq. 2.1 and the vector u corresponds to the displacements of the effective degrees of
freedom. In the scalar variable uk

i the superscript k denotes the k-th iteration and the subscript
i indicates the i-th element of the vector. The increment of displacements ∆uk after the k-th
iteration is

∆uk = uk+1 −uk (2.7)

and with
fk = Kuk (2.8)

the increment of forces ∆fk is
∆fk = fk+1 − fk (2.9)

The error ek is defined as the difference between the iterative displacement approximation uk

after the k-th iteration and the solution vector u.

ek = uk −u (2.10)

The residual rk is the difference of the prescribed force vector f and the effective right hand
side fk after the k-th iteration

rk = f − fk (2.11)

Hence, from Eqs. 2.1, 2.9, 2.10 2.11 it can be derived that

−K ek = rk (2.12)
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3 BASIC ITERATIVE SOLVER METHODS

3.1 Stationary iterative methods

As identifying characteristic, stationary iterative methods can be expressed in the simple
form

uk+1 = Quk + q (3.1)

where Q and q are placeholders for a matrix and a vector, respectively, both independent of
iteration step k. Among others, stationary iterative methods, such as e.g. the Gauss-Seidel
method, may act as smoothers within the later proposed multigrid method. Within this engi-
neering framework these methods are briefly introduced. Further mathematical background of
these iterative methods is treated in e.g. [1], [6] and [17].

The considered problem is a linear equation system of the form K u = f . Then it is trivial
to introduce any regular matrix S, called the splitting matrix, as follows

K = S + (K −S) (3.2)

The linear equation system can be rewritten as

Su = (S −K)u + f (3.3)

and the iterative scheme of the splitting method is defined as

uk+1 = S−1
(
(S −K)uk + f

)
(3.4)

For further analysis of this method it is useful to introduce the iteration matrix M as

M = S−1 (S −K) (3.5)

In consideration of Eq. 3.5 the method of Eq. 3.4 corresponds to the scheme of the stationary
iterative method (Eq. 3.1) with Q = M and q = S−1f . From the iteration scheme of Eq. 3.1,
the definition of the error in Eq. 2.10 and the equality u = Qu + q, it follows that

ek+1 = Mek (3.6)

The spectral radius ρ of a matrix is its largest absolute eigenvalue. The stationary iterative
method converges if and only if the spectral radius ρ of the iteration matrix M satisfies the
condition

ρ(M) < 1 (3.7)

This is true for any initial start vector u0 and any right hand side f .

3.2 Jacobi Method

In case of the Jacobi method the diagonal D of the system matrix K is chosen as splitting
matrix SJ = D. Then, analogous to Eq. 3.2 the decomposition reads as

K = D + (K −D) or K = D + (−L−U ) (3.8)

where (−U ) denotes the strictly upper triangle and (−L) denotes the strictly lower triangle of
the system matrix K. Thus, in accordance to Eq. 3.4 the matrix form of the Jacobi method is
defined by

uk+1 = D−1
(
(L + U )uk + f

)
(3.9)
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Correspondingly, the index form of the Jacobi method results as

uk+1
i =

1

Kii

(
fi −

n∑
j=1, j 6=i

Kiju
k
j

)
(3.10)

3.3 Gauss–Seidel Method

In case of the Gauss–Seidel method the splitting matrix is chosen as SGS = (D−L). Then,
analogous to Eq. 3.2 the decomposition reads as

K = (D−L) + (K − (D−L)) or K = (D−L) + (−U ) (3.11)

Thus, in accordance to the splitting method of Eq. 3.4 the Gauss–Seidel method is

uk+1 = (D−L)−1 (Uuk + f
)

(3.12)

Some further algebraic transformations of this equation are required for the derivation of the
index form of the Gauss–Seidel method, such as

Duk+1 −Luk+1 = Uuk + f (3.13)

and
uk+1 = D−1

(
Luk+1 + Uuk + f

)
(3.14)

where the index form is evident.

uk+1
i =

1

Kii

(
fi −

i−1∑
j=1

Kiju
k+1
j −

n∑
j=i+1

Kiju
k
j

)
(3.15)

3.4 Comparison of Jacobi- and Gauss–Seidel Method

In the computation of the i-th element uk+1
i in the (k +1)–iteration, the Gauss–Seidel method

already includes all available iterates uk+1
j with j = 1 . . . (i− 1), while the Jacobi method only

uses the uk
j with j = 1 . . .N of the (k)–iteration. This is the only, but momentous difference

in the algorithms of these two methods. In other words, while the Jacobi method adds all in-
crements simultaneously only after cycling through all degrees of freedom, the Gauss–Seidel
method adds all increments successively as soon available. As an advantage of the Gauss-Seidel
method, one vector is sufficient to update its vector elements i successively in contrast to the
Jacobi method where an additional vector is required. However, in practical problems this dif-
ference of memory demand is rather not relevant. As the operations for the iteration of different
vector elements do not coincide in the Jacobi method, it is not dependent on the nodal ordering
and parallelization is straightforward possible. In the Gauss-Seidel method the nodal ordering
influences the convergence behavior. For regular grids specific nodal orderings are summarized
in [5], such as the red–black, lexicographical, zebra-line or four-colour ordering. Advanced al-
gorithms are required for successful parallelization of the Gauss-Seidel method or uncontrolled
splitting of the process leads to the so-called chaotic Gauss-Seidel method. The convergence of
both these stationary iterative methods is dependent on the spectral radius of the corresponding
iteration matrix M as stated in Eq. 3.7. In general, if both methods converge, the convergence of
the Gauss-Seidel method is better as each operation reverts to the latest data. The Jacobi method
converges if the system matrix K is strictly diagonally dominant as a sufficient condition [6].

|Kii| >
n∑

j=1, j 6=i

|Kij| for all i (3.16)
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This does not apply to the considered structural finite element problems. However, convergence
can be achieved by additional damping. The Gauss-Seidel converges if the system matrix K is
strictly diagonally dominant or if the system matrix K is positive definite. The second condition
is true, if the finite element model is properly restrained and stable [2]. Besides the use as
standalone iterative solvers, the damped Jacobi method or the Gauss–Seidel can be applied as
smoothers within the multigrid method.

3.5 Symmetric Gauss-Seidel Method

The symmetric Gauss-Seidel Method bases on two half steps, the classical Gauss-Seidel
iteration, labeled as forward sweep (fGS), and additionally a backward sweep (bGS), with the
splitting matrices

SfGS = D−L and SbGS = D−U (3.17)

The following equations together describe one step of the symmetric Gauss-Seidel method

uk+ 1
2 = (D−L)−1 (Uuk + f

)
(3.18)

uk+1 = (D−U )−1
(
Luk+ 1

2 + f
)

(3.19)

By condensation of uk+ 1
2 , it is straightforward to derive the effective splitting matrix

SsGS = (D−L)D−1(D−U ) (3.20)

of the symmetric Gauss-Seidel method and its effective iteration matrix

M sGS = (D−U )−1L(D−L)−1U (3.21)

Among other things, this matrix form of the iteration matrix is valuable for convergence analy-
sis. However, for implementation issues it is reasonable to consider just the index form of the
symmetric Gauss-Seidel method. The forward sweep corresponds to the Gauss-Seidel method
of Eq. 3.15 assuming that i counts from 1 to n. Then in the subsequent backward sweep i counts
backwards from n to 1. The symmetric Gauss-Seidel method has special properties. Summar-
ily, it is generally not twice as fast convergent as the Gauss-Seidel method which results from
analysis of the iteration matrix. On the other hand by a specific implementation with buffering
of certain data, one iteration step of the symmetric method counts less operations than two of
the Gauss-Seidel method. Nevertheless with respect to advanced solver methods, these details
are rather marginal and will not be considered any further in this work. But as an essential
advantage of the symmetric version, it is well suited as preconditioner.

3.6 Relaxation methods

Relaxation methods are stationary iterative methods. Thus, they can also be presented in the
form of Eq. 3.1. For each of the previously introduced methods, there also exists a corresponding
relaxation method.

In comparison to the precedent methods, the relaxation methods propose to scale each incre-
ment by a constant relaxation factor ω. The general form of the relaxation methods is given by
the following short algorithmic expression

uk+1
i := (1− ω)uk

i + ωŭk+1
i (3.22)
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where for each individual index i, the temporary variable ŭk+1
i is computed as uk+1

i of the
Jacobi method in case of the simultaneous over-relaxation method (JOR method) or as uk+1

i

of the Gauss–Seidel method in case of the successive over-relaxation method (SOR method).
Then, if ω = 1 this relaxation scheme is identical to the Jacobi and the Gauss–Seidel method,
respectively.

The optimum relaxation factor can theoretically be derived from the spectral radius (largest
absolute eigenvalue) of the iteration matrix. But as this is expensive, several methods on the
practical determination of ω are proposed in [6] and [17]. Usually in finite element analysis the
optimum relaxation for the SOR method is between 1.3 and 1.9 [2]. The convergence of the
JOR method in a model case [10] was achieved by a heuristic damping factor of ω = 0.8.

3.7 Conjugate Gradient Method

The conjugate gradient method has been developed by Hestenes & Stiefel [12]. In contrast
to the method described in 3.1, the conjugate gradient method is instationary. It is presumed
that the matrix K ∈ Rn×n and the vector f ∈ Rn are real and that the matrix K is symmetric
(K = KT) and positive definite

uTKu > 0 for allu 6= 0 (3.23)

Then, the minimization problem of the quadratic form F (x) = min

F (u) =
1

2
uTKu− fTu (3.24)

is equivalent to setting its derivative

gradF (u) = Ku− f (3.25)

equal to the zero vector
gradF (u) = 0 (3.26)

The conjugate gradient method is an iterative minimizer of the provided quadratic form and thus
an iterative solver method for the linear equation system Ku = f . As an important characteris-
tic of the corresponding algorithm, the quadratic form is always minimized from an approximate
vector uk in the direction of a provided search vector pk 6= 0, which can be written as

F (uk + λpk) = min (3.27)

with both uk and pk are constant vectors ∈ Rn and a scalar variable λ ∈ R. In detail this leads
to the following parabola function with respect to λ(

1

2
pkT

Kpk

)
λ2 +

(
pkT

Kuk − pkT
f
)

λ +

(
1

2
ukT

Kuk −ukT
f

)
= min (3.28)

This yields that the quadratic form is minimized for

λ =
pkT (

f −Kuk
)

pkTKpk
(3.29)

The ideal search direction pk would be the error ek, but this would presume the knowledge of
the exact solution u. Therefore, the negative gradient of the quadratic form at uk represents the
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best intuitive search direction from the local view of uk. Then, with Eqs. 3.25, 2.8 and 2.11, the
search direction corresponds to the residuum rk

−gradF (uk) = f −Kuk = rk (3.30)

With pk = rk in Eq. 3.29, the following equations can be defined

λk =
rkT

rk

rkTKrk
(3.31)

uk+1 = uk + λkr
k (3.32)

which describe one step of an iterative method which is called the Method of Steepest De-
scent due to the property that for any iteration step k the search direction pk is defined
by
(
−gradF (uk)

)
.

The Method of the Steepest Descent is a relevant step towards the Conjugate Gradient
Method, but it turns out that the choice of the search directions pk is not optimal. As uk+1

is optimized with respect to the previous search direction pk = rk, it is clear that successive
search directions are orthogonal or in symbolic form

(
−gradF (uk+1) ⊥ pk

)
. However, al-

though it can be shown that rk ⊥ rk+1 and rk+1 ⊥ rk+2, it is generally not true that rk ⊥ rk+2.
Therewith uk+2 has lost its optimum with respect to the previously optimized direction rk.

If uk+1 is optimal with respect to pk 6= 0, then this property is passed to uk+2, if and only if

K pk+1 ⊥ pk (3.33)

and the vectors pk+1 and pk are called conjugate. In the conjugate gradient method the search
directions are pairwise conjugate. As each new direction is derived from the actual remaining
residual and conjugate to the prior search direction, it is also conjugate to all previous search
directions. Thus a system of conjugate search directions is obtained or equivalent a system of
orthogonal residuals. This property can be proofed by induction. With the initial values

r0 = f −Ku0 ; p0 = r0 (3.34)

the following equations describe the algorithm of the conjugate gradient method

λk =
rkT

pk

pkTKpk
(3.35)

uk+1 = uk + λkp
k (3.36)

rk+1 = rk − λkKpk (3.37)

pk+1 = rk+1 − rk+1T
Kpk

pkTKpk
pk (3.38)

Eq. 3.35 corresponds to Eq. 3.29. Eq. 3.37 is equivalent to rk+1 = f −Kuk+1. As documented
in e.g. [6] and with regard to an efficient implementation, it is possible to replace Eq. 3.35 by

λ =
rkT

rk

pkTKpk
(3.39)

and Eq. 3.38 by

pk+1 = rk+1 +
rk+1T

rk+1

rkTrk
pk (3.40)
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By exact arithmetic the conjugate gradient method will reach the exact solution of an n-
dimensional problem after n steps. In theory this method can be regarded as a direct solver.
However, due to numerical round-off errors the orthogonality is lost and such an ideal result
is not achieved. In practice, with respect to a reasonable error tolerance the conjugate gradient
method can generally be terminated after considerably less than n steps. This supports the view
of the conjugate gradient method as an iterative method, while an iterative method should not
converge to the exact solution (even or especially in theory) after n steps. Thus the conjugate
gradient method is labeled as semi-iterative method.

4 MULTIGRID METHOD

4.1 Basic ideas of the Multigrid Method

The term multigrid method describes an iterative solver strategy rather than one certain algo-
rithm. It is transparent to the FE practitioner’s intuition that somehow a coarse mesh solution of
a physical problem is a relative good approximation for the same problem on a fine mesh. There-
fore certain operators need to be defined to transfer the problem from the fine to the coarse mesh
and to transfer the solution in reverse direction. While it is clear, that a coarse mesh solution
requires essentially less computational effort than the fine mesh solution. Then, a coarse mesh
solution might provide a good start vector for the iterative process on the fine mesh. In a hier-
archy of meshes one might adaptively step from the coarsest mesh to the finest mesh and start
each iterative process on a certain mesh by an (approximate) solution of the previous coarser
mesh. However, it is important to note that this scheme does not yet really touch the potential
of the multigrid method. Assuming that for each mesh one of the introduced classical iterative
solver methods is applied, the convergence of the iterative process becomes penally slow on
the finest mesh. Then again, the current disequilibrium on the finest mesh, namely the current
residual, can be regarded as a new physical problem and the same adaptive procedure through
all meshes provides a fast approximation and accelerates the solution process on the fine mesh.
This kind of the algorithm is called coarse grid correction. Again, this example rather sketches
the basic idea. The sophisticated algorithm of the multigrid method applies certain schemes of
problem and solution transfers in e.g. so called V- or W-cycles, while on the individual meshes
the solution is improved by one or a few iteration steps of the classical iterative solver meth-
ods. These methods are referred to as smoothers, apparently as local disequilibrium is quickly
improved or smoothed, while the global disequilibrium reduces very slowly when applied on
a fine mesh. The multigrid method can be treated as stationary iterative solver method, as e.g.
illustrated in [16].

4.2 Algorithms of the Multigrid Method

The multigrid method is applied to solve a linear equation system. Here, it is assumed that
this equation system corresponds to a finite element problem on a uniform orthogonal mesh.
This mesh, which defines the problem, is referred to as the finest mesh. It is assumed, that there
exists a hierarchy of m + 1 meshes i = 0 . . .m, where m denotes the finest mesh. The problem
is defined as

Km um = fm (4.1)

The index c refers to any coarser mesh 0 ≤ c < m. The items (a) to (g) outline the algorithm of
one coarse grid correction:
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(a) Pre-Smoothing: The actual vector is uk
m. One or a few classical iteration steps are applied.

(b) Evaluation of residual forces on the finest grid

rk
m = f −Kmuk

m (4.2)

(c) Restriction: Transfer of residual forces from fine grid m to coarse grid c by a correspond-
ing matrix P c

m. In practice, the matrix-vector product corresponds to an algorithm.

rc := P c
m rk

m (4.3)

(d) Correction: The actual coarse grid problem is then

Kc uc = rc (4.4)

Starting by an initial vector u0
c = 0, one or a few iteration steps k∗ of a classical iterative

solver method yield an improved approximation uk∗
c which is also a potential correction

of the problem on mesh m.

(e) Prolongation: Interpolation of the correction uk∗
c of grid c onto the fine mesh m by a

corresponding matrix P m
c . Analogous to step (b) an algorithmic implementation of this

operation is usual.
∆um := P m

c uk∗

c (4.5)

(f) The displacement increment on mesh m is added to the current displacement vector on
mesh m which leads to a temporary variable û.

ûm = uk
m + ∆um (4.6)

(g) Post-Smoothing: Only after one or a few classical iteration steps on ûm the correction is
complete and generates the next approximation uk+1

m .

Equation 4.4 states a problem similar to Equation 4.1. Therefore the algorithm can be
restarted for the problem of Equation 4.4. For m = 4 such a recursive procedure is shown
in the center of Fig. 4.1 and denoted as V-cycle. Generally it is proposed to solve the problem
exactly by a direct solver on the coarsest mesh i = 0. In analogy to the shape of the letter V,
also the possibility of a W-cycle shall only be mentioned (without illustration)[16]. On the left
of Fig. 4.1 a F-cycle is illustrated. By the defined operations of restriction, prolongation and
smoothing, it is straightforward to construct any of these or also other cycles.

In the present approach a modified cycle is implemented. It is illustrated on the right of
Fig. 4.1. It requires mesh transfer operators between the finest and any coarser mesh. It is de-
signed to balance the computational effort on the different meshes. The proposed number of
iteration steps on mesh i is

si = c(m− i)2 (4.7)

where c is a heuristic scalar factor. The observed convergence was good for c = 1 and best for
c = 3 . . .5 in the considered examples.
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i=0 

i=2 

i=3 

i=1 

i=4 

Coarsest mesh 

Finest mesh 

F-Cycle V-Cycle Modified Cycle 

Fig. 4.1: Various multigrid cycles with the following steps: prolongation (↗), restriction (↘), one or a few smooth-
ing iterations (◦) and a large number of smoothing iterations according to length of box (�).

5 MULTIGRID PRECONDITIONED CONJUGATE GRADIENT METHOD

The Sections 3 and 4 introduce to the conjugate gradient method and classical iterative solver
methods as a basis of the multigrid method. But before an efficient combination of these meth-
ods, in terms of the multigrid preconditioned conjugate gradient method, is presented, this topic
is motivated with respect to the present engineering application.

The multigrid method is demonstrated as a very effective, iterative solver method for the
mechanical analysis of heterogeneous material samples in [8]. However, an increase of the ratio
of Young’s moduli between inclusion and matrix material leads to a significantly slower solution
process. The reason can be assigned to the worse conditioning of the problem as well as to the
worse material representation on coarse grids. For a similar problem, the Poisson’s equation
with large coefficient jumps, it was shown in [15] that the multigrid preconditioned conjugate
gradient method shows an essentially superior convergence rate over the multigrid method. In
fact, the considered conjugate gradient acceleration can principally be applied to any iterative
method [16]. Such an acceleration is not required or even disadvantageous, if the algorithm of
the multigrid method is well designed and appropriate for the considered problem. Otherwise,
one can try to identify and reduce the essential defect by e.g. additional local smoothing [16] or
advanced algebraic transfer operators [3]. A potential improvement, which is less dependent of
the considered problem, is given by applying the multigrid method as a preconditioner of the
conjugate gradient method. An efficient combined preconditioning by the multigrid method and
an adaption to shell elements has recently been proposed in [4]. In the present context multigrid
preconditioning will be examined with respect to the aforementioned analysis of heterogeneous
materials, whereas all global operations are formulated by effective, element-based procedures
(Sections 7 to 10), such that the storage of a global stiffness matrix is superseded. This leads
to a substantially reduced memory demand which is particularly relevant for achieving a high-
resolution analysis on the material level.

A linear equation system Ku = f can be preconditioned by a matrix H−1 as follows.

H−1Ku = H−1f (5.1)

The matrix H−1 should be symmetric and positive definite [15]. The conditions of the multigrid
preconditioner to match these properties are examined in [15]. According to [16] the multigrid
method will potentially provide a valid preconditioner if the smoother is symmetric1. For a

1In the following study (Section 11) only the plain Gauss-Seidel method (Section 3.3) in connection with the
proposed modified multigrid cycle (Section 4.2) has been applied, instead of e.g. the symmetric Gauss-Seidel
method (Section 3.5). This first implementation of the algorithm also showed stable convergence in our examples.
However, the current implementation will be updated to validate the numerical stability of this method.
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derivation of the preconditioned conjugate gradient method a matrix E is defined which satisfies
H−1 = ETE as exemplified in [16]. However, a final back substitution leads to an algorithm
which only includes H−1.

The convergence is improved by Eq. 5.1 if the condition number of the preconditioned ma-
trix (H−1K) is lower than that of the original matrix K, which can be determined from the
analysis of eigenvalues [6]. If the preconditioning matrix would be H−1 = K−1 then after one
iteration step the exact solution u is found. In this sense, an ideal matrix H−1 is a good, but rea-
sonably efficient approximation of K−1. With respect to the initial search direction, the vector
p0 = H−1r0 would correspond to the error −e0 (Eq. 2.12), if H−1 = K−1 (Section 3.7). An
adequate matrix H−1 leads to an improved initial search direction p0. Therefore the precondi-
tioned conjugate gradient method applies the following start conditions.

r0 = f −Ku0 ; r̃0 = p0 = H−1r0 (5.2)

The following equations of the preconditioned conjugate gradient method are adopted from [15]
in the notation of the conjugate gradient method in Section 3.7.

λk =
r̃kT

rk

pkTKpk
(5.3)

uk+1 = uk + λkp
k (5.4)

rk+1 = rk − λkKpk (5.5)

r̃k+1 = H−1rk+1 (5.6)

pk+1 = r̃k+1 +
r̃k+1T

rk+1

r̃kT
rk

pk (5.7)

In each iteration step preconditioning only takes place in Eq. 5.6 and generates a new vec-
tor r̃k+1. For the present multigrid preconditioning the matrix H−1 is not explicitly build, but
the operation defined in Eq. 5.6 is replaced by a multigrid cycle for the residual rk+1 and its
solution is assigned to r̃k+1. Apart from this final transfer, it is noted that the the multigrid cycle
for Eq. 5.6 needs to be performed on an own, individual set of variables which is independent of
the variables in Eqs. 5.3 to 5.7. The preconditioned version of the method preserves a system of
conjugate directions (Section 3.7), while each increment is optimized for each improved search
direction based on the multigrid method. Thus, with respect to the present application, it follows
that this optimization leads to considerably improved increments, if the stiffness of the coarse
meshes is generally overestimated with further reference to Section 10.1.

6 ERROR MEASURES

Generally it is assumed that the exact error e is not known, such that an error measure is
constructed in terms of the residual r. In the following error measures the set A defines the
sequence of all degrees of freedom with a prescribed force (also if equal to zero) and B all
those with a prescribed displacement. The Euclidean norm of residual forces (in A) is a usual
measure

εk
r =

[∑
i∈A

(rk
i )

2

] 1
2

(6.1)
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It is more objective to use the relative measure

εk
r =

[∑
i∈A

(rk
i )

2

] 1
2

[∑
i∈A

(
fi

)2
+
∑
j∈B

(
fk

j

)2] 1
2

(6.2)

similar to [14]. It is noted that in [14] part of the set B, of degrees of freedom with prescribed
displacements, is probably not included. In [8] the following measure is proposed

εk
E =

∑
i∈A

∣∣rk
i u

k
i

∣∣
∑
i∈A

fiu
k
i +
∑
j∈B

fk
j uj

(6.3)

This measure can be interpreted in terms of relative error in energy. A comparison of these
measures will be part of our further studies. Generally this algebraic error in solving the linear
equation system shall be considerably lower than other error sources as e.g. the discretization
error of finite elements. With respect to an overall error efficiency an error measure in terms of
error in energy would principally be comparable (which is also discussed in [9]).

7 ELABORATE PROPERTIES OF SOLID FINITE ELEMENTS

7.1 Scaling of solid finite elements

A finite element is denoted isoparametric if the displacements U within the finite element
are evaluated by the same interpolation functions, assembled in N (X), as the element coordi-
nates X

X = N (X)x (7.1)
U = N (X)u (7.2)

where it is implied that the nodal coordinates x are arranged in the same order as the coordi-
nates of nodal displacements u. With regard to the multigrid method hierarchical finite element
meshes will be defined with isoparametric finite elements being similar in shape but various in
size. The matrices of these similar finite elements at various scale follow a certain relationship
which will subsequently be evaluated.

It is assumed that the finite element geometry of an initial size is given in a coordinate
system Z. This finite element will be mapped to a coordinate system X . The corresponding
geometry and interpolation is then given by

X = N (Z)x (7.3)
U = N (Z)u (7.4)

The procedure follows [2, 18]. Therefore the following equality of partial derivatives is intro-
duced

∂

∂Z
=

∂X

∂Z

∂

∂X
,

∂

∂Zi

=
∂Xj

∂Zi

∂

∂Xj

(7.5)
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with the Jacobian matrix J defined as

J =
∂X

∂Z
, Jij =

∂Xj

∂Zi

(7.6)

The Jacobian matrix can be calculated by establishing the partial derivatives of X with respect
to Z in terms of N (Z)x according to Equation 7.3. For regular mappings the inverse of the
Jacobian matrix can be created which provides the inverse relationship

J−1 =
∂Z

∂X
(7.7)

For the special case that the element is scaled by a constant factor c, expressed by x = cz, it
follows that

Jij = δijc (7.8)

which directly leads to

∂

∂Zi

= c
∂

∂Xi

and
∂

∂Xi

=
1

c

∂

∂Zi

(7.9)

From the kinematics it follows that the strain-displacement matrix B(X) exactly includes only
terms of first-order partial derivatives with respect to Xi. Then, with Equation 7.9 the following
relationship to B(Z) holds

B(X) =
1

c
B(Z) (7.10)

The integral over the domain of the mapped geometry ΩX(X) can be replaced by an integral
over the domain of the initial geometry ΩZ(Z)

dΩX = detJdΩZ (7.11)

where detJ is the determinant of the Jacobi matrix. According to Equation 7.8 and the dimen-
sion D of the domains, ΩX and ΩZ , the determinant of the Jacobi matrix is

detJ = cD (7.12)

with D=1, 2 or 3. Therewith the element stiffness matrix of the finite element scaled to X by
the constant factor c results as

KX = CT,D

∫
ΩX

B(X)TCB(X)dΩX (7.13)

where CT,D is a constant term. For three-dimensional elements the constant term is CT,D=3 = 1.
For two-dimensional elements the thickness t is constant and therefore CT,D=2 = t. Analog, for
one-dimensional elements the area A is not included in the integral which leads to CT,D=1 = A.
With Equations 7.10 to 7.12 the stiffness matrix of Equation 7.13 is established in terms of Z

KX = cD−2

(
CT,D

∫
ΩX

B(Z)TCB(Z)dΩZ

)
(7.14)

This means that the stiffness matrix of the scaled element KX is (cD−2)-times the stiffness
matrix of the initial element KZ

KX = cD−2KZ (7.15)
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Herewith, this characteristic is generally shown for solid finite elements of any dimension, in-
dependent of number of nodes per element and independent of the initial element geometry. For
two-dimensional elements (D = 2) this means that the stiffness matrix of an element does not
change, if the element is scaled by a factor c. Otherwise, (D 6= 2), Equation 7.15 establishes a
simple relationship to create stiffness matrices for similar finite elements of different size based
on an initial stiffness matrix.

7.2 Variation of elastic material properties

For linear elastic materials the Young’s modulus E can be factored out of the material ten-
sor C(E,µ)

C(E,µ) = EC(1, µ) (7.16)

in contrast to Poisson’s ratio µ. In straight equivalence this property is also true for the material
matrix C of the finite element method. Under the condition that the Young’s modulus Ee is
constant within the domain of the finite element e, it can as well be factored out of the stiffness
matrix

Ke(Ee, µe) = EeKe(1, µe) (7.17)

For a regular, uniform grid of finite elements which only vary in Young’s modulus Ee, this
characteristic enables a fast evaluation of element stiffness matrices based on one initial ma-
trix Ke(1, µe). The equality of Equation 7.17 can be transfered to linear algebraic operations,
such as the matrix–vector product of Ke(Ee, µe) and an arbitrary vector ve

(EeKe (1, µe))ve = Ee (Ke (1, µe)ve) (7.18)

where the term of the right hand side counts less operations. Thus, it is neither required to ex-
plicitly build nor to store the stiffness matrices for finite elements with various Young’s modulus
to perform such operations on the element level.

The procedure is different for finite elements with various Poisson’s ratio. It is possible to
split the element stiffness matrix into parts, where each part is of equal order with respect
to Poisson’s ratio, such that it is possible to assemble element stiffness matrices of various
Poisson’s ratio efficiently.

The current implementation only includes operations according to Equation 7.18. The theo-
retical range of Poisson’s ratio is limited to µ = [0.00; 0.50]. For phases in concrete this range
usually reduces to µ = [0.15; 0.25]. It would be possible to cover the occurring range by a pre-
defined set of stiffness matrices at equidistant Poisson’s ratios, e.g. fifty-one stiffness matrices
would cover the full range by an accuracy of µ = ±0.005. For a very high number of differ-
ent Poisson’s ratio in the elements, this can be reasonable, as the usual variation of Poisson’s
ratio is less significant for the mechanical behaviour than the usual variation of Young’s mod-
ulus. Furthermore, it is quite seldom that more than two effective digits of the Poisson’s ratio
are provided anyway. Otherwise, ideal for a low number of different Poisson’s ratios, as in the
implementation, a direct representation of initial stiffness matrices for all occurring Poisson’s
ratios is useful.

In fact, with the identities of Equation 7.15 and 7.17 for finite elements of various Young’s
modulus and various element size (but similar shape and equal Poisson’s ratio), only one initial
finite element stiffness matrix is required. On one hand this theoretical aspect is practical for
implementation. Moreover, with respect to various Poisson’s ratios and various element types,
as in the B-spline finite element method [9], the number of initial element stiffness matrices to
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Fig. 8.2: Three-dimensional, uniform, orthogonal, mesh

be built can drastically be reduced. Especially with B-spline finite elements of higher order the
corresponding gain in generation effort and memory requirement will be relevant.

8 DEFINITION OF GLOBAL FINITE ELEMENT PROBLEM ON ORTHOGONAL
GRID

The priorly stated principle of virtual displacements leads to the finite element formulation
which is applicable to problems of structural mechanics in general. Clearly, general finite ele-
ment programs include the possibility to compute finite element problems on orthogonal grids.
Due to their flexibility these programs usually include a element table to store the node numbers
of each element and a node table to store the coordinates of each node. Moreover, the effective
finite element problem will be stored in a global stiffness matrix. The solver method will be
of a general kind for sparse matrices. For all postprocessing during or after computation the
various tables need to be recalled. Thereby all element formulations will be based on a general
description which is flexible in geometry.

Subsequently a special attempt is introduced for two- and three-dimensional finite elements
on orthogonal grids with focus on high computational performance with low memory demand
in respect to this particular problem. It will especially be applicable to the mechanical analysis
of heterogeneous materials on the mesoscale, where a macroscopic simple domain of a corre-
sponding test specimen is sufficient.

Figure 8.1 shows a two-dimensional mesh of nex×ney elements and nnx×nny nodes where

nnx = nex + 1 (8.1)
nny = ney + 1 (8.2)

The variables

ie = 0 . . . (nex − 1) (8.3)
je = 0 . . . (ney − 1) (8.4)

refer to the elements and

in = 0 . . . (nnx − 1) (8.5)
jn = 0 . . . (nny − 1) (8.6)
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refer to the nodes. The coordinates (x,y) of a node located at (in, jn) is defined as

x = in la (8.7)
y = jn lb (8.8)

where la and lb mean the element size in the corresponding direction. It follows that the total
dimensions lx and ly of the mesh are

lx = nex la (8.9)
ly = ney lb (8.10)

The numbering of elements pe and nodes pn is defined according to

pe = ie + je nex (8.11)
pn = in + jn nnx (8.12)

so that pe ∈ [0 ; (nexy − 1)] with nexy = nexney and pn ∈ [0 ; (nnxy − 1)] with nnxy = nnxnny.
The finite element problem can be defined on vectors of corresponding dimensions. Such essen-
tial vectors are the displacements ux and uy, the type of boundary condition2 bTx and bTy and
values of boundary condition bV x and bV y. For each element an individual Young’s modulus
can be defined and therefore a corresponding vector vE is allocated. By an integer vector vI

each element can link to a specified material. The material definition includes the Poisson’s ratio
for linear analysis and may include several other variables such as the stress limit for nonlinear
analysis. Therewith the basic finite element definitions are outlined.

However, a damage state of the structure still requires at least one damage variable for each
element [11]. Iterative solver methods additionally require some vectors such as displacement
increments and other swap memory. Furthermore for graphical processing some additional,
primarily static memory is appropriate. A summary of the overall memory demand is provided
in [8].

The extension to a three-dimensional mesh as shown in Figure 8.2 is perfectly straightfor-
ward. For the three-dimensional mesh of nex × ney × ney elements and nnx × nny × nny nodes
only the following definitions need to be added.

nnz = nez + 1 analog to Eqs. 8.1, 8.2 (8.13)
ke = 0 . . . (nez − 1) analog to Eqs. 8.3, 8.4 (8.14)
kn = 0 . . . (nnz − 1) analog to Eqs. 8.5, 8.6 (8.15)
z = kn lc analog to Eqs. 8.7, 8.8 (8.16)
lz = nez lc analog to Eqs. 8.9, 8.10 (8.17)

Equivalently, the element numbering pe and node numbering pn is extended.

pe = ie + je nex + ke nexy analog to Eq. 8.11 (8.18)
pn = in + jn nnx + kn nnxy analog to Eq. 8.12 (8.19)

Also the number of vectors needs to be extended, as e.g. by uz, bTz, bV z and so on. With
respect to various operations of the proposed implementation, It is most appropriate to store
these vectors of concurrent meaning, but various orientation (x, y or z), in one continuous data
field. For the displacements this means a continuous vector field3 u of (ux,uy,uz) so that global
vector operations with u are simply defined, while the subvectors remain directly accessible.

2Type of boundary condition is e.g. ”0” for prescribed force or ”1” for prescribed displacement.
3Without consideration of boundary conditions.
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9 ELEMENT-BASED GLOBAL OPERATIONS

A two-dimensional and three-dimensional uniform, orthogonal grid of finite elements is con-
sidered. Due to the prior definitions, for both cases, iterative solver methods can be applied
without storage of the global stiffness matrix. Therefore some global operations will be pre-
pared based on operations of a local finite element topology.

9.1 Global matrix-vector product

For the global matrix vector product Kv, of global stiffness matrix K and arbitrary global
vector v, Equation 2.2 is recalled. It follows that this global matrix-vector product can be for-
mulated as a sum of matrix-vector products on the element level

Kv =
∑

e

(
K̄ev

)
=
∑

e

(
K̄ev̄e

)
(9.1)

with element stiffness matrix K̄e and corresponding displacements v̄e of element e where the
bar over the symbols highlights the assignment to global degrees of freedom. However, it is
more practical to perform these operations on the element level within local degrees of free-
dom, also found in [14]. For the element e the appropriate components of v are gathered in
ve. The local operation Keve is performed and the result is added to the corresponding com-
ponents of the global result vector. This procedure is performed for all elements, in analogy to
Equation 9.1 (r.h.s.).

9.2 Operations on finite elements stencils

As one basic idea of the finite element method a body will be divided into parts such that
each displacement interpolation function has only small support in the domain of the body.
Each displacement interpolation function, or shape function, is assigned to a degree of freedom
at a specific node. Therefore, the direct interaction radius of this node is limited. Considering a
specific node, a direct stiffness relationship will only be defined to nodes which are attached to
the same elements4.

As a result, an adequate global numbering implied, the global stiffness matrix will be sparse.
Among other things, this is an advantageous characteristic for direct solver methods. Special
data structures have been developed to store sparse matrices. The following operation is con-
sidered

fi =
∑

j

Kijuj (9.2)

where i and j refer to the global degrees of freedom. For large matrices K only a small fraction
of entries Kij will not be zero. With data structures of sparse matrices all, or most, zero entries
are not even processed at all to evaluate the product of Equation 9.2. The same effect is achieved
by only including nodal degrees of freedom which refer to the same elements as the degree of
freedom i, which motivates a local node-by-node iterative solver method without storage of a
global stiffness matrix.

Such a local scheme will especially be efficient if it is recurrent. Then, it is labeled as finite
element stencil. This principle will be exemplified for uniform orthogonal grids of four-node
two-dimensional and eight-node three-dimensional finite elements. However, it is noted that

4This is generally true, but with B-spline finite elements [9] the support of the shape functions will increase and
cover several elements dependent on the order of the B-splines.
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Fig. 9.2: Dof of 2x2 element patch

the fundamental idea is more general, as previously introduced, and may be transfered to finite
elements of other shape (e.g. triangular) or of polynomial order, while it can also be regarded
as sparse data structure technique.

On a uniform, orthogonal grid of finite elements, for any inner node the topology to its
neighbouring nodes is identical. The finite element stencil is similar to the finite difference
stencil while the first is based on the principle of virtual displacements and the latter refers to a
direct discretization of the differential equation [5].

9.3 Stencil for grid of two-dimensional four-node elements

For a uniform orthogonal grid of finite elements, the degrees of freedom of any interior
node can locally and temporarily assigned as (9,10) which refers to the horizontal and vertical
component, respectively (Fig. 9.2). The element stiffness matrix with Young’s modulus E = 1
is denoted as basic element stiffness matrix K̄(µ) = Ke(1, µ). Then, the stiffness of the center
node can be assembled as follows

K̂9,9 = EaK̄(µa)1,1 + EbK̄(µb)3,3 + EcK̄(µc)5,5 + EdK̄(µd)7,7 (9.3)

K̂9,10 = EaK̄(µa)1,2 + EbK̄(µb)3,4 + EcK̄(µc)5,6 + EdK̄(µd)7,8 (9.4)

K̂10,10 = EaK̄(µa)2,2 + EbK̄(µb)4,4 + EcK̄(µc)6,6 + EdK̄(µd)8,8 (9.5)

The superscript a to d refers to the system of one element according to Fig. 9.1. The hat-symbol
denotes the reference to the 2× 2 element patch of Fig. 9.2. The corresponding residual forces
r̂9 and r̂10 are calculated by

r̂9 = f̂9 −
8∑

i=1

(
EaK̄(µa)1,iu

a
i + EbK̄(µb)3,iu

b
i + EcK̄(µc)5,iu

c
i + EdK̄(µd)7,iu

d
i

)
(9.6)

r̂10 = f̂10 −
8∑

i=1

(
EaK̄(µa)2,iu

a
i + EbK̄(µb)4,iu

b
i + EcK̄(µc)6,iu

c
i + EdK̄(µd)8,iu

d
i

)
(9.7)

for any interior node, or after correct assignment of ua..d to û and corresponding assembly of
K̂9,i and K̂10,i from Eqs. (9.6) and (9.7) by

r̂9 = f̂9 −
18∑
i=1

K̂9,iûi (9.8)

r̂10 = f̂10 −
18∑
i=1

K̂10,iûi (9.9)
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Boundary nodes can be included by omitting the terms of inexistent neighboring elements.
Local equilibrium at this node with respect to the degree of freedom i only, is achieved by
adding the increment ∆ûi to ûi.

∆ûi =
r̂i

K̂ii

(9.10)

Such an increment can either refer to Eq. 3.10 of the Jacobi method or to Eq. 3.15 of the Gauss-
Seidel method (Section 3, especially 3.4).

Local equilibrium for both degrees of freedom û9 and û10 is established by the local incre-
ment vector [

∆û9

∆û10

]
=

[
K̂9,9 K̂9,10

K̂10,9 K̂10,10

]−1 [
r̂9

r̂10

]
(9.11)

For four rectangular finite elements of same Poisson’s ratio and same shape several prior
equations can be shortened as due to the equalities

K̄(µ)1,1 = K̄(µ)3,3 = K̄(µ)5,5 = K̄(µ)7,7 (9.12)

K̄(µ)1,2 = −K̄(µ)3,4 = K̄(µ)5,6 = −K̄(µ)7,8 (9.13)

K̄(µ)2,2 = K̄(µ)4,4 = K̄(µ)6,6 = K̄(µ)8,8 (9.14)

e.g. the Equations 9.3 to 9.5 can be simplified to

K̂(µ)9,9 = (Ea + Eb + Ec + Ed)K̄(µ)1,1 (9.15)

K̂(µ)9,10 = (Ea −Eb + Ec −Ed)K̄(µ)1,2 (9.16)

K̂(µ)10,10 = (Ea + Eb + Ec + Ed)K̄(µ)2,2 (9.17)

9.4 Stencil for grid of three-dimensional eight-node elements

The extension of the stencil from the two-dimensional to the three-dimensional problem is
straightforward. Nevertheless, the number of degrees of freedoms essentially increases. The
notation is analog. The superscript a to h refers to the system of one brick element according
to Fig. 9.3. The hat-symbol denotes the reference to the eight brick elements of Fig. 9.4. In this
Figure only the degrees of freedom (1,2,3) which are assigned to the highlighted node will
subsequently be relevant. The stiffness of this node is assembled by

K̂1,1 = EaK̄(µa)1,1 + EbK̄(µb)4,4 + . . . + EhK̄(µh)22,22 (9.18)

K̂2,2 = EaK̄(µa)2,2 + EbK̄(µb)5,5 + . . . + EhK̄(µh)23,23 (9.19)

K̂3,3 = EaK̄(µa)3,3 + EbK̄(µb)6,6 + . . . + EhK̄(µh)24,24 (9.20)
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and the residual forces are

r̂1 = f̂1 −
24∑
i=1

(
EaK̄(µa)1,iu

a
i + EbK̄(µb)4,iu

b
i + . . . + EhK̄(µh)22,iu

h
i

)
(9.21)

r̂2 = f̂2 −
24∑
i=1

(
EaK̄(µa)2,iu

a
i + EbK̄(µb)5,iu

b
i + . . . + EhK̄(µh)23,iu

h
i

)
(9.22)

r̂3 = f̂3 −
24∑
i=1

(
EaK̄(µa)3,iu

a
i + EbK̄(µb)6,iu

b
i + . . . + EhK̄(µh)24,iu

h
i

)
(9.23)

or in a generic form where α = 1 . . .8 means a . . . h in the index.

r̂j = f̂j −
8∑

α=1

Eα

24∑
i=1

K̄(µα)[3(α−1)+j],iu
α
i (9.24)

Analog to Eq. 9.10 the increment according to the stationary iterative method can be computed
for the three-dimensional case.

9.5 Local schemes of advanced finite elements for heterogeneous material

In the prior sections constant material properties are assigned to each element. This leads
to plain pixel or voxel discretization. This method is applicable to obtain reasonable overall
properties of a heterogeneous material sample, but due to the grid discretization there will be
errors in the stress solution along material interfaces.

It is possible to improve the accuracy of the geometrical discretization by advanced finite
elements while maintaining a uniform orthogonal mesh. One option are multiphase B-spline
finite elements as presented in [9]. This discretization type is illustrated in Fig. 9.5 (left). The
large black dots indicate integration points to each of which individual material properties can
be assigned. Thus a smooth transition of material properties is possible within a finite element.
As all finite elements are based on the same topology, similar local schemes as described in
Section 9.1 to 9.4 can be created and the storage of a global stiffness matrix is not required.

   

Fig. 9.5: Discretization of heterogeneous material by a multiphase finite element (left), a finite element enriched
by additional shape functions (center) and an aligned triangular mesh (right).

The same is principally possible for other advanced finite elements with additional shape
functions which are declared as internal degrees of freedom (finite elements with embedded
discontinuities) or as global degrees of freedom (extended finite elements). As a condition the
material interfaces is not completely variable but assigned to a finite predefined number of pos-
sibilities. In Fig. 9.5 (center) from corner to corner of one edge there are nine different settings,
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marked by a short line. According to this pattern there are (23 · 7 + 15)4/2 = 352 different
possible material interfaces which can be assigned to the element. The stiffness matrices need
to be stored decoupled for the different material phases in the element. Then, it is possible to
include such finite elements into a local scheme of a uniform grid, based on a comparatively low
number of predefined element stiffness matrices. And the storage of a global stiffness matrix
would not be required.

9.6 Local schemes of irregular triangular mesh

This section shall only briefly highlight that also for a irregular mesh of triangular finite ele-
ments (Fig. 9.5 (right)), required parts of a global stiffness matrix can efficiently be assembled
based on a comparatively low number of element stiffness matrices. As the element stiffness
matrix is invariate with respect to linear scaling of the finite element (Section 7.1), only the
angles α and β are required to determine the relevant shape of the finite element. With the
definition that α ≤ β ≤ γ it follows that there are the following bounds on α and β

0◦ <α ≤ 60◦ (9.25)
α ≤β < 90◦ (9.26)

Hence, for an allowed tolerance of ±0.5◦ there are only ≈ 3600 different elements stiffness
matrices required. Especially for very large models with ≥ 106 degrees of freedom such an
element library represents an effective alternative to storing a global stiffness matrix. Global
operations on these elements can be performed as illustrated in Fig. 9.6. The global degrees of
freedom ue are transformed into local degrees of freedom ūe. These can be multiplied by the
basic stiffness matrix K̄

e
(α,β) to obtain the effective force vector f̄

e. A multiplication with the
Young’s modulus of this element is also required. Then the force vector can be transformed back
into the global coordinate system f e. In addition for each element only a transformation angle
and a triangle shape type (with respect to α and β) needs to be stored. It is further noted, that
this principle is not limited to the three-node triangular finite elements as long as a definition
is unique (nodes on center of element edge). It is only a matter of model size when it becomes
more efficient to use a predefined library of finite elements. This supports the basic idea of this
article to reduce the memory demand to a minimum.
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Fig. 9.6: Scheme of establishing a product of element stiffness matrix and displacement vector in a global coordi-
nate system X based on a triangular element with angles α and β in a local coordinate system X̄ .
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10 TRANSFER OPERATORS

10.1 Fine-to-coarse mesh transformation of Young’s modulus

A finite element mesh of a heterogeneous material sample is considered. Here, one individ-
ual Young’s modulus is assigned to each element of a uniform orthogonal grid. As an example
in Fig. 10.1 the relevant finite element mesh is at level 7. All coarser grids of finite elements
shall represent a good approximation of the heterogeneous material distribution which is defined
on the finest mesh. Therefore it is possible to define adequate algebraic operators as discussed
in [3]. However, in this approach only the geometric multigrid method is considered such that
the local scheme of finite elements can be applied on each mesh without additional memory de-
mand for storing matrices of operators or coarse grid stiffnesses. A doubling of mesh size means
that four finite elements of the original mesh are represented by one element on the next coarser
mesh. This corresponds to a kind of homogenization. An adequate effective Young’s modulus
of this element is in between the Reuss bound (lower bound) and the Voigt bound (upper bound)
[8]. But as the original patch of elements might have different effective stiffnesses with respect
to different directions, according to the prior definitions, such an anisotropic property can not be
assigned to one coarse finite element. In this approach just the Voigt bound is applied which cor-
responds to the arithmetic mean of the various original Young’s moduli. Therefore the coarser
meshes will effectively be too stiff, which will result in slower but stable convergence. For
larger ratios of Young’s modulus in the heterogeneous material this defective overestimation of
stiffness will become more severe (which explains the remedy by the multigrid preconditioned
conjugate gradient method in connection with the last paragraph of Section 5). For the Reuss
bound the iteration process can become instable. The Hashin-Shtrikman bound as illustrated in
[8] would be an appropriate alternative to define effective Young’s moduli on coarser meshes
based on the finest mesh. This option would establish an approximation which is closest to the
original problem. But for some problems this choice might not be convergent. For the sake of
solving stability, the Voigt bound is applied. A corresponding example is shown in Fig. 10.1.

 
 
 
 

Level           3                                    2                                1           0 

Level           7                                    6                                5           4 

Fig. 10.1: Definition of Young’s modulus on finest mesh (Level 7) and corresponding coarse grid approximations
of Young’s modulus (Level 6 to 0)
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sx,i 

sy,i 

Fig. 10.2: A rectangular four-node finite element of size hx × hy and some selected point loads located
at (sx,i, sy,i), which may result from the nodal disequilibrium of a finer mesh, relevant with respect to the grey
node of the element (lower left corner).

10.2 Restriction: Fine-to-coarse mesh transformation of forces

The starting point is any arbitrary vector of forces on a fine mesh. A best possible, equivalent
representation of such forces on a coarse mesh is intended. There are several different restriction
operators defined in connection with the multigrid method [16]. The applied restriction operator
corresponds to the fundamental finite element definition with respect to the mechanical problem.

f e =
∑

i

(
N e

at Xi

)T
F i (10.1)

The vector F i denotes a point load5 at position X i within the element e. This load is assigned
to the force vector f e of element e by the evaluation of the element shape function N e at
coordinate X i. In Fig. 10.2 a force F i (×-symbol), e.g. from a finer mesh, is assigned to the
nodal force vector of the lower left node f 1 (grey node) of a bilinear finite element. This yields

f 1,i =

(
1− sx,i

hx

)(
1− sy,i

hy

)
F i (10.2)

With respect to an implementation it can further be utilized that in the considered example
the relevant values of the fractions sx,i

hx
and sy,i

hy
are limited to s

h
∈
[
0; 1

4
; 1

2
; 3

4

]
. A correspond-

ing predefined template minimizes the computational effort in contrast to the formal symbolic
definition of Eq. 10.1. An extension to three dimensions is straightforward.

10.3 Prolongation: Coarse-to-fine mesh interpolation of displacements

The relationship to determine the displacement U at coordinate X i within an element e with
nodal displacements ue is defined by the interpolation or shape function N e.

U at Xi
= N e

at Xi
ue (10.3)

For usual finite elements the displacement at a coordinate of a node corresponds to the nodal
value of the degree of freedom. Therefore the basic Equation 10.3 is sufficient to construct any
coarse-to-fine mesh interpolation operator. Again, specific templates can reduce the computa-
tional effort.

5Point loads are not included in the classical mechanical theory, but their contribution within the principle of
virtual displacements is clear, as e.g. shown in [2]. In present context, for the computation of an equivalent coarse
mesh residual, the problem of a singularity does not apply.
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Fig. 10.3: A piecewise, linear function (•) is approxi-
mated by quadratic B-splines. The values at (◦) denote
the coefficient which are assigned to the individual B-
spline functions.
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Fig. 10.4: Another example, analog to Fig. 10.3.

10.4 Transfer operators for B-spline finite elements

A multigrid method for web-splines6 is presented in [13]. In [9] an alternative method is out-
lined as an extension to the existing multigrid scheme presented here. It includes only transfer
operations between a mesh of classical linear finite elements (B-splines of order k = 1) and
a mesh of B-Spline finite elements of order k = 2 with an identical number of elements. The
B-spline finite element problem is only transfered to the classical finite elements and then the
present multigrid method with classical finite elements can be applied. After each cycle the
displacement increment is transfered to the B-spline mesh again. After that smoothing is per-
formed on the finest mesh of B-spline finite elements. It is assumed that the transfer operators
need to be reasonably adequate, but not exact, as each coarse grid correction step is always an
approximation only.

The restriction operator is not discussed in detail. From the residual forces of a B-spline
finite element one could retrieve corresponding body loads pe

b or surface loads pe
s, which can be

compiled into a corresponding element force vector f e.

f e =

∫
V e

N eTpe
bdV +

∫
Ae

N eTpe
sdA (10.4)

The prolongation operator is more involving. A C0-continuous displacement solution of bilinear
finite elements can not exactly be mapped onto a B-spline finite element space which is contin-
uous in its first partial derivatives by definition. An exact interpolation of B-splines through all
nodal values would require to build and solve an equation system. This would be very costly.
Alternatively an intuitive operator is introduced and exemplified for one-dimensional examples.

For the transfer of a linear displacement field this operator is exact. This will be clear with
respect to the following example and in connection with [9]. Figure 10.3 shows four piece-
wise linear functions with nodal values (•) on U = −1

4
x2 + 2x. The coefficients, or degrees of

freedom, of B-spline shape functions are the mean values (◦) of neighbouring nodal values. At
the boundary the nodal values correspond to the B-spline coefficients. Figure 10.3 shows an

6Web-splines means weighted extended b-splines. Web-splines are introduced to model a curved domain which
is not aligned to a grid. Such an extension of B-splines along the boundary of the domain assures that each finite
element shape function has sufficient support for a stable numerical analysis. In the interior of the domain the
web-spline approach is based on B-spline finite elements similar to [9].
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Fig. 10.5: Coordinates for evaluation of coefficients which are assigned to bivariate B-spline functions; the two-
dimensional analogy to Figs. 10.3 and 10.4.

adequate approximation of the piecewise linear function by B-splines of order k = 2. Another
example is shown in Fig. 10.4. Here, the transformation appears less accurate. However, as a
global approximation it is reasonable and appropriate to the purpose of coarse grid correction.

The two-dimensional counterpart is illustrated in Figure 10.5. The B-spline coefficients cor-
respond to an evaluation of the bilinear solution at coordinates marked by a circle (◦).

11 BENCHMARK

In [8] a benchmark study of the multigrid method for heterogeneous material samples of up
to eight million degrees of freedom is presented. There it turned out that the computation times
for convergence increased with an increasing ratio R of Young’s moduli between inclusions and
matrix, while only ratios R = 2/1, R = 4/1 and R = 8/1 were examined. This article proposes
a remedy by the multigrid preconditioned conjugate gradient method. Therefore the multigrid
method7 and the preconditioned version are compared for ratios of up to R = 200/1.

In Fig. 11.1 the various iterative methods are compared for R = 2/1 with respect to increas-
ing model size. As expected, only for small models the efficiency of the conjugate gradient
method is comparable to that of the both multigrid methods. For this low ratio R the multigrid
method is more efficient than the multigrid preconditioned conjugate gradient method, but not
very significant.

7As the convergence criteria, as well as the computational architecture, of the present study is different to the
conditions of the former study in [8], a direct comparison to these former results is not given.

CG MG MGCG Linear
32000 2,37 0,39 0,62 0,6

132000 19,75 1,66 2,69 2,4
524000 7,6 9,2 9,6
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Fig. 11.1: Computation times of conjugate gradient method (CG), multigrid method (MG) and multigrid precon-
ditioned conjugate gradient method (MGCG) in analysis of concrete material (2D). Ratio of Young’s modulus of
inclusion to matrix is R = 2/1. Inclusion volume is 40%. A well-conditioned problem.
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Fig. 11.2: Same problems as in Fig. 11.1, but increase of ratio of Young’s modulus in the range R = 2/1 to
R = 200/1. The model size is: 32000 (left), 131000 (right) and 524000 (top) degrees of freedom.

The results with respect to increasing ratio of up to R = 200/1 are illustrated in the diagrams
of Fig. 11.2. For all model sizes the multigrid preconditioned conjugate gradient method is
significantly less sensitive to an increasing ratio R and considerably more efficient than the
multigrid method. This is an important improvement with respect to [8]. Such large ratios R
may occur in certain heterogeneous materials or in damage analysis [11] to which this article
contributes herewith. This first study of the multigrid preconditioned conjugate gradient method
is adequate for detecting its relevant positive effect in general. Further more detailed studies are
required. Moreover, it will be interesting to examine these solver methods for three-dimensional
models.

12 CONCLUSIONS

The article introduces to stationary iterative solver methods in the matrix form and prepares
for the later applied index form. For the conjugate gradient method, the multigrid method and
multigrid preconditioning of the conjugate gradient method, some relevant fundamentals for
an implementation of these methods are provided. The complexity of the general problem is
reduced by utilizing certain properties of solid finite elements and defining a clear global num-
bering system. Based on the discussed index form, element-based global operations lead to a
compact and efficient formulation of the heterogeneous finite element problem on orthogonal
grids in two and three dimensions. Moreover, similar local schemes are outlined for advanced
finite elements of an orthogonal mesh or triangular elements of an irregular mesh. The trans-

27



fer operators of the multigrid method are adequately derived by the fundamental equations of
solid finite elements. Besides, also the transfer of the heterogeneous material to coarser grids is
discussed. With regard to B-spline finite elements, an intuitive transfer operator is exemplified
for the one-dimensional problem. It is further highlighted that a modified multigrid cycle with
balanced computational effort between all grids is successfully applied. As a major conclu-
sion of this article, the multigrid preconditioned conjugate gradient method is essentially more
efficient for large and very large ratios of Young’s moduli in the material than the multigrid
method, which is a relevant improvement with regard to [8] and will be significant for damage
analysis [11].
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[10] S. Häfner and C. Könke. A multigrid finite element method for the mesoscale analysis of concrete. In
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