
17th International Conference on the Application of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck and C. Könke (eds.)
Weimar, Germany, 12–14 July 2006

TEMPLATE MATCHING ON VECTOR FIELDS USING CLIFFORD
ALGEBRA

J. Ebling, and G. Scheuermann

FB Informatik, University of Leipzig
04315 Leipzig, Germany.

E-mail:{ebling,scheuer}@informatik.uni-leipzig.de

Keywords: Flow visualization, template matching, Clifford algebra, Fourier transform

Abstract. Due to the amount of flow simulation and measurement data, automatic detection,
classification and visualization of features is necessary for an inspection. Therefore, many
automated feature detection methods have been developed in recent years. However, one feature
class is visualized afterwards in most cases, and many algorithms have problems in the presence
of noise or superposition effects. In contrast, image processing and computer vision have robust
methods for feature extraction and computation of derivatives of scalar fields. Furthermore,
interpolation and other filter can be analyzed in detail. An application of these methods to
vector fields would provide a solid theoretical basis for feature extraction. The authors suggest
Clifford algebra as a mathematical framework for this task.

Clifford algebra provides a unified notation for scalars and vectors as well as a multiplica-
tion of all basis elements. The Clifford product of two vectors provides the complete geometric
information of the relative positions of these vectors. Integration of this product results in Clif-
ford correlation and convolution which can be used for template matching on vector fields.
Furthermore, for frequency analysis of vector fields and the behavior of vector-valued filters,
a Clifford Fourier transform has been derived for 2 and 3 dimensions. Convolution and other
theorems have been proved, and fast algorithms for the computation of the Clifford Fourier
transform exist. Therefore the computation of Clifford convolution can be accelerated by com-
puting it in Clifford Fourier domain. Clifford convolution and Fourier transform can be used
for a thorough analysis and subsequent visualization of vector fields.
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1 INTRODUCTION

Visualization and analysis of vector fields from flow simulations and measurements is an
important step in engineering processes, e.g. during the design phase of airplanes, cars, trains,
and combustion chambers. A specific role in these visualizations play features, which are often
defined as ”phenomena, structures or objects in a data set, that are of interest for a certain
research or engineering problem” [19]. It is not possible to give a list of all features of interest
in a flow field as these differ from application to application and small changes of one feature
lead to a variety of new features. Nevertheless, most features can be categorized into a few
groups like vortices and other swirling flows, shock waves, shear flow and boundary layers,
reversed flow, saddle points, separation and attachment lines or surfaces, areas with convergent
or divergent behavior, and regions with homogeneous or constant flow.

Most flow simulations and measurements want to study overall structure and specific fea-
tures, i.e. patterns of streamlines with conspicuous behavior. Flow visualization intends to help
the user to find and analyze features and structures. Direct visualization methods like hedge-
hogs do not always reveal the features. Streamline based methods may lead to missing features,
too, especially without knowing the right starting points. Texture based methods like line inte-
gral convolution [5] do a quite good job in 2D, but a convincing solution in 3D is still missing.
Topology [15,6,24,23,27,28,26], on the other hand, is directed to the overall structure since not
all features are easily connected to it. Furthermore, the presentation of 3D topology produces
visibility problems. Another, quite different, approach for the visualization is to use information
visualization methods like brushing for interactive exploration of the data sets [7].

A huge amount of data is generated nowadays by flow simulations and measurements. The
resulting vector fields often contain millions of data values, but even for small datasets with
only thousands of values, direct inspection by the user is tedious and features are missed easily.
Therefore, many automated feature detection methods have been developed in recent years
(e.g. [8, 14, 18, 25, 22, 19]. Streamlines can be used in a second step to study the features.
Earlier attempts usually try to give an analytic model of a feature and create an algorithm for
feature detection from there. Besides the limitations of the models, most approaches have severe
robustness problems.

Image processing and computer vision are mature fields and have produced methods for
analysis, feature extraction and derivative computation [16, 17]. Convolution based approaches
are robust in terms of white noise because of the inherent averaging present in the convolution
method. Furthermore, many image processing methods allow precise analysis of accuracy for
operations including sampling, interpolation and smoothing. Noise is also suitably modeled and
dealt with. Therefore, it is be sensible to apply these methods to vector fields. The convolution
operation has already been extended to vector fields which has lead to the creation of pattern
matching algorithms for vector fields.

One of the difficulties of applying, for example, correlation based methods to vector fields
lies in the definition of a suitable multiplication of vectors. Clifford algebra can resolve this
problem as a unified multiplication of scalar, vectors and general elements of this algebra
(called multivectors) does exist. By using this algebra, Clifford convolution and a corresponding
Fourier transform for 2D and 3D can be defined [8, 9].

The depth and precision of flow field analysis based on template matching and Clifford
convolution is studied in detail for two different applications. The first application are flow
fields measured in the wake of a helicopter rotor [3, 4, 20, 29, 11]. Determining the features and
their parameters in this data is an important step for a better understanding of the observed flow.
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Specific techniques dealing with subpixel accuracy and the parameters to be determined are
developed on the way. To regard the flow as a superposition of simpler features is a necessity
for this application as close vortices influence each other. Convolution is a linear system, so
it is suited for this kind of analysis. The next application is a gas furnace chamber. The flow
in this chamber is quite turbulent due do the desired mixing of air and gas. Based on Clifford
correlation, a feature based segmentation of the flow is computed and visualized [10]. The
resulting visualization displays important structures of the flow and highlights the interesting
features.

In Section 2, related work on template matching and Fourier transforms of vector valued is
discussed. An introduction to Clifford algebra is given in Section 3 and the Clifford convolution
is described in Section 4. In Section 5, the Clifford Fourier transform is defined along with
the theorems. Examples of Clifford convolution and Clifford Fourier transform are given in
Section 6. Analysis and visualization of vector fields using template matching is described for
two different applications in Section 7, and the conclusion can be found in Section 8.

2 RELATED WORK

An obvious approach to image processing of vector fields is to decompose the field into
its components for subsequent independent processing using known tools such as convolution
and the Fourier transform. Granlund and Knutsson [13] have investigated this approach in 2D.
However, a vector represents more information than its separated components. The scalar fields
of the components are not independent and do not provide insight into the vector as a whole.

Another definition of the convolution is the generalized inner product of pertinent vectors.
Heiberg et al. [14] define convolution on vector fields using the inner (or scalar) product of two
vectors as

(h∗s f)(x) :=
∫

Ed
〈h(x’), f(x−x’)〉dx’, (1)

where f is the normalized vector field and h is the filter. The scalar product provides an approx-
imation to the cosine of the angle between the direction of patterns present in the vector field
and the direction of the filter. Heiberg et al. do not formulate or use a Fourier transform in their
method.

Extensions of the Fourier transform to vector fields arose from a different area of research,
namely texture segmentation. In 1D, an analytic signal is used to analyze the local phase and
amplitude. The analytic signal consists of a signal and its Hilbert transform and is zero for
all negative frequencies. While giving extensions of the analytic signal to 2D, Bülow [2] and
Felsberg [12] defined some Fourier transforms within Clifford algebra.

Bülow [2] used a Clifford algebra where e2
j = −1 and defined the d-dimensional Fourier

transform by using the bases {e1, ...,ed} in the Fourier kernel as

Fb{f}(u) :=
∫

Ed
f(x)

d

∏
k=1

e(−ek2πxkuk)|dx|. (2)

(The product has to be performed in the fixed order of the indices.) The corresponding convolu-
tion theorems are rather complicated. The complex form of the kernel and the non-commutativity
of the multiplication present a problem when trying to establish a fast version of this Fourier
transform.
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Felsberg [12] extended the analytic signal in 1D to the monogenic signal in 2D by using
embedded functions to obtain additional phases. Therefore, he composed vectors by combining
spatial coordinates and a corresponding function value, v(x1,x2) = (x1,x2, f (x1,x2)). He defined
his Fourier transform for arbitrary multivector-valued functions F ∈ G2 (in 1D) and F ∈ G3 (in
2D) as

F{F}(u) :=
∫

x1
e(−2πi2〈x,u〉)F(x)dx1 (3)

with x = xe1 in 1D and

F{F}(u) :=
∫

x1

∫

x2
e(−2πi3〈x,u〉)F(x)dx1dx2 (4)

with x = x1e1 +x2e2 in 2D. The values i2 and i3, which are interpreted as complex numbers, are
defined in Section 3. Felsberg defined the convolution only for quaternion (in 1D) and spinor
(in 2D) valued filters on vector-valued functions [12], thus, no vector-valued filter for pattern
matching on vector fields could be applied. As the convolution was restricted, so was the
convolution theorem. Concerning other theorems like derivative and Parseval’s theorem, only
special cases of the multivector-valued functions were considered. We extend this approach by
using Clifford convolution and proving theorems for arbitrary multivector-valued functions.

Another definition of a Fourier transform within Clifford algebra comes from mathematical
theory. Brackx et al. [1] pursue the idea of refining the Fourier transform by using operator
notation and defining a pair of transformations whose harmonic average is the classical Fourier
transform. They also use a Clifford algebra where the square of the unit-vectors is e2

j = −1.

3 CLIFFORD ALGEBRA

Definition 3.1 For the n-dimensional Euclidean vector space En with basis {e1, ..,en}, the 2n-
dimensional Clifford or geometric algebra Gn is defined as a direct sum V0⊕V1⊕ ...⊕Vn with
the basis elements from the following table

space name grad dimension basiselements

V0 scalars 0
(

n
0

)

= 1 1

V1 vectors 1
(

n
1

)

= n e1, ..,en

V2 bivectors 2
(

n
2

)

e jek, j < k

V3 trivectors 3
(

n
3

)

e jekel, j < k < l
...

...
...

...
...

Vk k− vectors k
(

n
k

)

e j1e j2 ...e jk , j1 < ... < jk ∈ 1, ..,n
...

...
...

...
...

Vn n− vectors n
(

n
n

)

= 1 e1..en = in
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together with the associative, bilinear geometric product

Gn ×Gn → Gn,
(A,B) 7→ AB (5)

given by
1e j = e j, j ∈ {1, ..,n} ,

e je j = 1, j ∈ {1, ..,n} ,

and e jek = −eke j, j,k ∈ {1, ..,n}, j 6= k .

(6)

Definition 3.2 An arbitrary element of Gn is called multivector. An element A ∈Vk which can
be written as A = αe j1e j2 ...e jk , α ∈R is called k-blade.

In Gn, the n-blade e1..en is also called pseudoscalar. It is denoted by i, or in when indicating
that the pseudoscalar of Gn is meant.

Definition 3.3 The canonic projection 〈·〉k : Gn → Gn, A 7→ 〈A〉k is called k-projector.

Definition 3.4 The dual of a multivector A is defined as iA.

Thus, the dual of a r-blade is a (n-r)-blade. Clifford multiplication of two vectors a,b ∈ En

results in
ab = 〈a,b〉+a∧b, (7)

where 〈,〉 is the inner product and ∧ is the outer product. In 2D and 3D, this results in

〈ab〉0 = 〈a,b〉 = ‖a‖‖b‖cosω
and ‖〈ab〉2‖ = ‖a∧b‖ = ‖a‖‖b‖sinω,

(8)

where ω is the angle between a and b and 〈ab〉2 corresponds to the plane through a and b —
the corresponding bivector.

Definition 3.5 The Riemann integral of a multivector-valued function F is defined as
∫

En
F(x)|dx| := lim

|∆x j| → 0
k → ∞

k

∑
i=1

F(x je j)|∆x j| . (9)

The quantity |dx| is used to make the integral grade preserving since dx is a vector within
Clifford algebra.

Definition 3.6 The directional derivative of F in direction r is

Fr(x) := lim
h→0

[F(x+hr)−F(x)]

h
(10)

with h ∈R.

Definition 3.7 The vector derivative ∇ is defined as

∇ :=
n

∑
j=1

e j
∂
∂x j

(11)
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Note that ∇ is vector valued, and computation of the derivative can now be done using the
geometric product:

Definition 3.8 The (complete) derivative of F from the left is

∇F(x) :=
n

∑
j=1

e jFe j(x), (12)

where Fe j(x) are the directional derivatives. The derivative from the right is

F(x)∇ :=
n

∑
j=1

Fe j(x)e j . (13)

Definition 3.9 Curl and divergence of a 2D or 3D vector-valued function f are defined as

curl f := ∇∧ f =
(∇f−f∇)

2
and div f := 〈∇, f〉 =

(∇f+f∇)
2 .

(14)

This curl operator gives the bivector describing the plane of strongest rotation whereas the
classical curl operator results in the corresponding normal vector. As (i2)2 =−1 and (i3)2 =−1,

{α+ i2β |α,β ∈R} ⊂ G2 (15)

and
{α+ i3β |α,β ∈R} ⊂ G3 (16)

are isomorphic to the complex numbers C.

4 CLIFFORD CONVOLUTION

Definition 4.1 Let f1, f2 : R→C be continuous signals and let t,k ∈R. Convolution of f1 and
f2 is defined as

( f1 ∗ f2)(t) :=
∫

R

f1(k) f2(t − k)dk. (17)

Spatial correlation of f1 and f2 is defined as

( f1 ⋆ f2)(t) :=
∫

R

f1(k) f2(t + k)dk. (18)

Definition 4.2 Let F be a multivector-valued field and H a multivector-valued filter. Then
Clifford convolution based on the geometric product is defined as

(H∗l F)(x) :=
∫

Rn
H(x’)F(x−x’)|dx’| (19)

and analog
(F∗r H)(x) :=

∫

Rn
F(x−x’)H(x’)|dx’| (20)
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Definition 4.3 Let F be a multivector-valued field and H a multivector-valued filter. Then
Clifford correlation based on the geometric product is defined as

(H⋆l F)(x) :=
∫

Rn
H(x’)F(x+x’)|dx’| (21)

and analog
(F⋆r H)(x) :=

∫

Rn
F(x+x’)H(x’)|dx’| (22)

Clifford convolution is, therefore, an extension of the convolution on scalar fields. However,
it is also an extension of the scalar convolution defined by Heiberg et al. [14] since

(h∗s f)(x) :=
∫

Ed
〈h(x’), f(x−x’)〉dx’ (23)

provides
(h∗s f)(x) = 〈(h∗l f)〉0 = 〈(f∗r h)〉0 (24)

for vector fields h, f.

5 CLIFFORD FOURIER TRANSFORM

5.1 Fourier Transform on Scalar Fields

For continuous signals f ,h : Ed →C, the Fourier transform of f is defined as

F{ f}(u) :=
∫

Ed
f (x)e(−2πi〈x,u〉)dx (25)

with i2 = −1 provided the integral exists. The inverse transform is defined as

F
−1{ f}(u) :=

∫

Ed
f (x)e(2πi〈x,u〉)dx . (26)

The convolution theorem is

F{h∗ f}(u) = F{h}(u)F{ f}(u) (27)

and the derivative theorems are

F (∇ f )(x) = 2πiuF{ f}(u) and (28)

F (∆ f )(x) = −4π2u2
F{ f}(u). (29)

5.2 Clifford Fourier Transform in 3D

Definition 5.1 Let F : R3 → G3 be a multivector-valued signal. Let x,u ∈ R3. The Clifford
Fourier transform (CFT) of F is defined as

F{F}(u) :=
∫

R3
F(x)e(−2πi3〈x,u〉)|dx|. (30)

The inverse transformation is then given by

F
−1{F}(x) :=

∫

R3
F(u)e(2πi3〈x,u〉)|du|. (31)
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Note that the Clifford Fourier kernel e(−2πi3〈x,u〉) is multivector valued. To be more exact, it
consists of a scalar and a pseudoscalar.

Lemma 5.2 For every scalar γ , we have

e(i3γ) = cos(γ)+ i3sin(γ) (32)

and for every multivector A ∈ G3
Ae(i3γ) = e(i3γ)A. (33)

Proof:
Ae(i3γ) = Acos(γ)+Ai3sin(γ)

= cos(γ)A+ i3sin(γ)A
= e(i3γ)A .

(34)

Theorem 5.3 The Clifford Fourier transform is a linear combination of four classical Fourier
transforms.
Proof: For a multivector field F : R3 → G3, we have

F(x) = F0(x)+F1(x)e1 +F2(x)e2 +F3(x)e3
+ F23(x)e23 +F31(x)e31 +F12(x)e12 +F123(x)e123
= F0(x)+F1(x)e1 +F2(x)e2 +F3(x )e3
+ F23(x)i3e1 +F31(x)i3e2 +F 12(x)i3e3 +F123(x)i3

(35)

which can be regarded as four complex signals:

F(x) = [F0(x)+F123(x)i3]1
+ [F1(x)+F23(x)i3]e1
+ [F2(x)+F31(x)i3]e2
+ [F3(x)+F12(x)i3]e3

(36)

This can be interpreted as an element of C4. Considering the linearity of the Clifford Fourier
transform, we get

F{F}(u) = [F{F0(x)+F123(x)i3}(u)]1
+ [F{F1(x)+F23(x)i3}(u)]e1
+ [F{F2(x)+F31(x)i3}(u)]e2
+ [F{F3(x)+F12(x)i3}(u)]e3.

(37)

The Fourier kernel consists of a scalar and a pseudoscalar or trivector. Considering the multi-
plication rules for a multiplication with them concludes this proof.

Note that dual pairs form Fourier pairs. The multivector space is divided into four orthogo-
nal spaces which are then transformed separately. Because of Lemma (5.2), the 3D Clifford
Fourier kernel commutes with every multivector (although Clifford multiplication is not gener-
ally commutative). All of the well-known theorems hold. Because of the non-commutativity of
the Clifford multiplication, we present theorems for the application of a filter from the left and
right.
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Theorem 5.4 (Shift theorem) Let F : R3 → G3 be multivector valued and let F{F} exist.
Then

F{F(x−x’)}(u) = F{F}(u)e(−2πi3〈x’,u〉)
. (38)

Proof:
F{F(x−x’)}(u)

=
∫

R3 F(x−x’)e(−2πi3〈x,u〉)|dx|
=

∫

R3 F(k)e(−2πi3〈k,u〉)e(−2πi3〈x’,u〉)|dk|
=

∫

R3 F(k)e(−2πi3〈k,u〉)|dk|e(−2πi3〈x’,u〉)

= F{F}(u)e(−2πi3〈x’,u〉) .

(39)

Theorem 5.5 (Convolution theorem) Let F,H :R3 →G3 be multivector valued and let F{F}
and F{H} exist. Then

F{H∗l F}(u) = F{H}(u)F{F}(u)
and F{F∗r H}(u) = F{F}(u)F{H}(u).

(40)

Proof:
F{H∗l F}(u)

=
∫

R3 (
∫

R3 H(x’)F(x−x’)|dx’|)e(−2πi3〈x,u〉)|dx|
=

∫

R3

(

∫

R3 H(x’)F(x−x’)e(−2πi3〈x,u〉)|dx’|
)

|dx|
=

∫

R3

(

∫

R3 H(x’)F(x−x’)e(−2πi3〈x,u〉)|dx|
)

|dx’|
=

∫

R3 H(x’)
(

∫

R3 F(x−x’)e(−2πi3〈x,u〉)|dx|
)

|dx’|
=

∫

R3 H(x’)e(−2πi3〈x’,u〉)F{F}(u)|dx’|
=

∫

R3 H(x’)e(−2πi3〈x’,u〉)|dx’|F{F}(u)
= F{H}(u)F{F}(u) .

(41)

Because of the commutativity of the Clifford Fourier kernel, see Equation (5.2), the proof of the
other cases is analog to the one above.

Theorem 5.6 (Derivative theorem) Let the preconditions be the same as in 5.5. Then

F{∇F}(u) = 2πi3uF{F}(u) ,

F{F∇}(u) = F{F}(u)2πi3u ,

F{∆F}(u) = −4π2u2F{F}(u) ,

and F{F∆}(u) = −4π2u2F{F}(u) .

(42)

Proof: Since
(∇F)(x) = ∇F−1{F{F}}(x)

= ∇
∫

R3 F{F}(u)e(2πi3〈x,u〉)|dx|
=

∫

R3 ∇
(

F{F}(u)e(2πi3〈x,u〉)
)

|dx|
=

∫

R3 ∇
(

e(2πi3〈x,u〉)
)

F{F}(u)|dx|
=

∫

R3 2πi3ue(2πi3〈x,u〉)F{F}(u)|dx|
= F−1(2πi3uF{F}(u))

(43)

we get
F{∇F}(u) = 2πi3uF{F}(u) (44)
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and
F{∆F}(u) = 2πi3uF{∇F}(u) = −4π2u2

F{F}(u) . (45)

The application of the derivative from the right can be proved analogously.

Theorem 5.7 (Parseval’s theorem) Let the preconditions be the same as in 5.4. Then

‖F‖2 = ‖F{F}‖2 . (46)

This is also true for the different grades of the multivector-valued signal F such that

‖〈F〉 j‖2 = ‖F{〈F〉 j}‖2, j = 0, ..,3 . (47)

Proof: The theorem for the classical Fourier transform is ‖ f‖2 = ‖F{ f}‖2. The proof for
the Clifford Fourier transform follows directly since the CFT is a linear combination of several
classical Fourier transforms.

5.3 Clifford Fourier transform in 2D

Definition 5.8 Let F : R2 → G2 be a multivector-valued signal. Let x,u ∈ R2. The Clifford
Fourier transform (CFT) of F is defined as

F{F}(u) :=
∫

R2
F(x)e(−2πi2〈x,u〉)|dx|. (48)

The inverse transformation is then given by

F
−1{F}(x) :=

∫

R2
F(u)e(2πi2〈x,u〉)|du|. (49)

Note that this Clifford Fourier kernel e(−2πi2〈x,u〉) again consists of a scalar and a pseudoscalar.
In G2 this implies that the kernel is spinor-valued.

Theorem 5.9 The Clifford Fourier transform is a linear combination of two classical Fourier
transforms.
Proof: For a multivector field F : R2 → G2, we have

F = F0 +F1e1 +F2e2 +F12e12, (50)

which can be regarded as two complex signals

F(x) = 1[F0(x)+F12(x)i2]
+ e1[F1(x)+F2(x)i2, ]

(51)

which can be interpreted as an element of C2. Considering the linearity of the Clifford Fourier
transform, we get

F{F}(u) = 1[F{F0(x)+F12(x)i2}(u)]
+ e1[F{F1(x)+F2(x)i2}(u)]

(52)

which means that the 2D Clifford Fourier transform is the linear combination of two classical
Fourier transforms.
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Again, dual pairs form Fourier pairs. This time, the Fourier kernel does not commute with
every multivector, rather it commutes with the spinor part and anti-commutes with the vector
part. Therefore, we present convolution theorems for vector and spinor-valued fields separately.
Note also that the multiplication of the Fourier kernel from the right is not quite the same as
that from the left as in 3D.

Theorem 5.10 (Shift theorem) Let F be multivector valued and let F{F} exist. Then, we
have

F{F(x−x’)}(u) = F{F}(u)e(−2πi2〈x’,u〉)
. (53)

Proof: Analogous to the 3D equivalent (Theorem 5.4).

Theorem 5.11 (Convolution theorem) Let F,H be multivector valued, f,h be vector valued
and f,h be spinor valued. Note that F, f and f are fields and H,h and h are filters. Let F{F},
F{H}, F{f}, F{h}, F{f} and F{h} exist. Then, we have

F{H∗l f}(u) = F{H}(u)F{f}(u) ,

F{H∗l f}(u) = F{Ḣ}(u)F{f}(u) ,

F{F∗r h}(u) = F{F}(u)F{h}(u) ,

and F{F∗r h}(u) = F{Ḟ}(u)F{ḣ}(u) .

(54)

Proof: Let f be spinor valued. Then we have

F{H∗l f}(u)

=
∫

R2 (
∫

R2 H(x’)f(x−x’)|dx’|)e(−2πi2〈x,u〉)|dx|
=

∫

R2

(

∫

R2 H(x’)f(x−x’)e(−2πi2〈x,u〉)|dx’|
)

|dx|
=

∫

R2 H(x’)
(

∫

R2 f(x−x’)e(−2πi2〈x,u〉)|dx|
)

|dx’|
=

∫

R2 H(x’)F{f}(u)e(−2πi2〈x’,u〉)|dx’|
=

∫

R2 H(x’)e(−2πi2〈x’,u〉)|dx’|F{f}(u)
= F{H}(u)F{f}(u) .

(55)

Let f be vector valued, we have

F{H⋆l f}(u)

=
∫

R2 (
∫

R2 H(x’)f(x+x’)|dx’|)e(−2πi2〈x,u〉)|dx|
=

∫

R2

(

∫

R2 H(x’)f(x+x’)e(−2πi2〈x,u〉)|dx’|
)

|dx|
=

∫

R2 H(x’)
(

∫

R2 f(x+x’)e(−2πi2〈x,u〉)|dx|
)

|dx’|
=

∫

R2 H(x’)F{f}(u)e(2πi2〈x’,u〉)|dx’|
=

∫

R2 H(x’)e(−2πi2〈x’,u〉)F{f}(u)|dx’|
=

∫

R2 H(x’)e(−2πi2〈x’,u〉)|dx’|F{f}(u)
= F{H}(u)F{f}(u) .

(56)

and therefore
F{H∗l f}(u) = F{Ḣ}(u)F{f}(u) . (57)

The other cases of the convolution theorem can be proved analogously.
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Theorem 5.12 (Derivative theorem) Let the preconditions be as in 5.11. Then, we have

F{∇f}(u) = −2πi2uF{f}(u) ,

F{f∇}(u) = 2πi2uF{f}(u) ,

F{∇f}(u) = 2πi2uF{f}(u) ,

F{f∇}(u) = 2πi2uF{f}(u) ,

F{F∇}(u) = F{F}(u)(−2πi2u) ,

F{∆F}(u) = 4π2u2F{F}(u) ,

and F{F∆}(u) = 4π2u2F{F}(u) .

(58)

Proof: For spinor f, the proof of the derivative theorem is analogous to that of (5.6). For vector
valued f, we have

(∇f)(x) = ∇F−1{F{f}}(x)

= ∇
∫

R2 F{f}(u)e(2πi2〈x,u〉)|dx|
=

∫

R2 ∇
(

e(−2πi2〈x,u〉)F{f}(u)
)

|dx|
=

∫

R2 ∇
(

e(−2πi2〈x,u〉)
)

F{f}(u)|dx|
=

∫

R2 −2πi2ue(−2πi2〈x,u〉)F{f}(u)|dx|
=

∫

R2 −2πi2uF{f}(u)e(2πi2〈x,u〉)|dx|
= F−1(−2πi2uF{f}(u))

(59)

and
F{∇f}(u) = −2πi2uF{f}(u). (60)

Since ∇ is a vector and anti-commutes with the 2D Clifford Fourier kernel, the derivative the-
orem for the application of the derivative from the right can be proved analogously. Thus, we
have

F{∆F}(u) = F{F∇}(u) = 4π2u2
F{F}(u). (61)

Note that the frequency u is vector valued and anti-commutes with i2.

Theorem 5.13 (Parseval’s theorem) Let the preconditions be as in 5.10. Then, we have

‖F‖2 = ‖F{F}‖2. (62)

Proof: Analogous to the 3D equivalent (Theorem 5.7).

6 EXAMPLES

6.1 Clifford Correlation

To demonstrate Clifford correlation, an ICE train travelling with a velocity of 250 km/h was
chosen. The wind comes directly from the left. Due to the movement of the train, the angle of
attack is 15 degree. The wind hits the ICE train front and left, and then rolls up on the right side
of the train forming several vortices. A section plane with dimensions 51×51 through three of
these vortices was computed (Figure 1), and used as an example of a simple flow with only a
few features. Both flow topology and Clifford correlation with a rotational mask clearly depict
the three vortices present in this section plane.
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Figure 1: A section plane through vortices alongside an ICE train. Left: Topology, and results of Clifford corre-
lation of the normalized data set, e.g. all vectors have same length, and a 5×5 rotational template. Color coding
from dark blue (high negative similarity, clockwise rotation) to red (high positive similarity, counter-clockwise ro-
tation). Right: Color-coding of the magnitude of the velocity from zero (blue) to high values (red), and topology.
Note that the vortices are within an area of low velocity magnitudes.

6.2 Clifford Fourier Transform

The Clifford Fourier transform leads to the analysis of vector valued flow patterns in fre-
quency domain. Therefore, the Clifford Fourier transforms of some 3D patterns (Figure 2) were
studied. 3D patterns are easier to understand due to the interpretation of the 3D vector as three
complex numbers in contrast to the 2D vector which is interpreted as only one complex number.

This split of the components of a 3D vector can be found in the DCFTs of the three patterns
showing rotation and a saddle along one axis, and a convergence to a point (Figure 2). Rotation
and saddle line, which are a repetition of the corresponding 2D pattern along the third axis, have
no non-zero Clifford Fourier coefficients corresponding to this third direction as the values do
not change in this direction. The DCFT of the convergence, on the other hand, has non-zero
coefficients for the third direction as convergence takes also place in this direction.

Note that all patterns are real valued. Thus, the real or vector valued parts of DCFTs are
symmetric, that is 〈F{ f}(u)〉1 = 〈Fr{ f}(−u)〉1. The imaginary or bivector parts are antisym-
metric, 〈Fi{ f}(u)〉2 = −〈Fi{ f}(−u)〉2. This is in contrast to the visual perception of these
patterns, which would rate the vector part as antisymmetric and the bivector part as symmetric
due to the orientation of the vectors. However, this visual perception of the symmetry of vector
fields is in contrast to the mathematical definition of symmetry and antisymmetry.

The interpretation of the DCFTs of these patterns is odd at first. A careful distinction between
the direction of the waveforms, and the direction of the resulting vectors given by the component
of the vector in which the waveform is present, has to be made. An example is the DCFT of
the rotation. The rightmost vector and bivector correspond to the waveform with direction x.
As the vector is ae2 = ay and the bivector −bie2 = −biy, the wave is in the second component
of the vector. Out of the complex number (a− ib) corresponding to the second component of
the multivectors, the amplitude and phase of the signal in this component of the vector can be
determined. Note that for the determination of the properties of this waveform, the leftmost
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Figure 2: Top: Various 3D patterns. Middle: The vector part of their DCFT. Bottom: The bivector part of their
DCFT, displayed as normal vector of the plane. Left: 3×3×3 rotation in one coordinate plane. Middle: 3×3×3
convergence. Right: 3× 3× 3 saddle line. The mean value of the DCFT is situated in the center of the field. In
3D, the waves forming the patterns can be easily seen in the frequency domain. The magnitude of the bivectors of
the DCFT is only half the magnitude of the corresponding vectors, though both are displayed with same length.

vector and bivector can be ignored due to symmetry properties.

6.3 Fast Clifford Fourier Transform

One of the reasons the Fourier transform is so successful in image processing is the existence
of fast Fourier transforms (FFT). Algorithms for the fast computation of the Fourier transform
take a divide and conquer approach based on recursively dividing even and odd elements. The
basic approach assumes that the dimensions of the images are of the form 2k. Since the Clifford
Fourier Transform can be computed as a linear combination of several regular Fourier trans-
forms, FFT-like algorithms can be applied directly for acceleration of the CFT. The Clifford
Fourier transforms for Figure 3 have been computed using a fast Clifford Fourier transform.
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Thus, the computational time of the CFT for this data set was reduced from hours to mere
seconds.

For vector-valued data we chose a turbulent swirling jet entering a fluid at rest. The simu-
lation consists of a cylinder and a planar cut along the axis of the cylinder defines the domain.
The domain has been discretized by a 124×101 rectilinear grid with smaller rectangles near the
cylinder axis. Since several small and large vortices are present in the flow, a discrete numerical
simulation (DNS), using a higher order finite difference scheme, was used to solve the incom-
pressible Navier-Stokes equations. For demonstration of the fast Clifford Fourier transform,
we performed a uniform resampling of the grid having dimensions of 256× 128 = 28 × 27.
Note that the resampled data set is smaller in height than the original one. Figure 3 shows the
application of a fast discrete Clifford Fourier transform to the resampled field. A 2D vector
field transforms into a 2D vector field since it forms one complex signal. A 3D vector field

Figure 3: Swirling jet entering fluid at rest. Top left: Color coding of the absolute magnitude of the vectors. The
colors are scaled from zero (blue) to the maximal magnitude (red). Top right: (Fast) Discrete Clifford Fourier
transform of the dataset. Zero frequency is located in the middle of the image. Vectors transform to multivectors
when using Clifford algebra in frequency domain, thus, color coding is based on the magnitude of the multivectors.
Scaling of the colors is the same as the left image. Bottom left: Correlation with a counter-clockwise 5× 5
rotational pattern. The data set has been normalized to emphasize small structures. The image shows correlation
computed in frequency domain with the result transformed back to spatial domain. Color coding of the scalar part
is blue for high negative similarities (-0.94) and a left-handed rotation and red for high positive similarities (0.94)
and a right-handed rotation. Bottom right: Difference in the computation of the correlation operation in spatial
domain using a periodic boundary condition. The colors are scaled from −1×10−13 (blue) to 1×10−13 (red).
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transforms into a multivector field with vector and bivector parts nonzero.

7 APPLICATION

7.1 Similarity Value

As used by Heiberg et al. [14], the similarity of two vector-valued patterns is defined by the
sum of the scalar products of their vectors:

s(x) = 〈(h∗ f)(x)〉0 (63)

The similarity value itself depends on the magnitude of both the patterns in the field and the
template itself. Therefore, the obtained similarity values are usually scaled by the magnitude of
the template pattern:

s(x) =
(h∗ f)(x)

∑x’∈h |h(x’)| (64)

Often, this similarity is influenced more by the velocity of the vectors than their orientations.
Then, it can be sensible to normalize the similarity by the velocities of the pattern in the data
set as well. It can be achieved quite easily by unifying the vector magnitudes of the field be-
forehand. Matching on a data set thus normalized corresponds to a matching of the streamlines
rather than the vectors themselves (Figure 4).

Figure 4: Superposition of two Vatistas vortices [30] with both radius 5, radial velocity 1 and N=1. The original
vortex centers are displayed (black dots) as well as the grid (green) and hedgehogs (black arrows). Color coding
of similarity values from high negative values (blue) to high positive values (red). Left: Template matching with a
3×3 rotational mask detects the true vortex centers. Right: Normalizing the field and matching afterwards yields
results more similar to streamline behavior.

7.2 Rotation Invariant Matching

The angle between the directions of the template and the structure in the field can be com-
puted by a Clifford correlation. A basic idea for a rotation invariant matching algorithm would
thus be to rotate the template into this direction, and compute one Clifford correlation for the
similarity.

As annihilation effects the approximation of the direction, it is not enough to compute only
one Clifford correlation for stable results. Thus, additional templates with different directions
have to be used [8]. A possible template distribution, which results in a stable, rotation invariant
matching algorithm, is:

1. 2D: a = 0.5 and b =
√

3
2
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n1 = (1,0)T

n2 = (−a,b)T , that is n1 rotated 120◦ counterclockwise.
n2 = (−a,−b)T , that is n1 rotated 240◦ counterclockwise.

2. 3D: The directions of the principal axes of the coordinate system are used:

n1 = (1,0,0)T , n2 = (−1,0,0)T ,
n3 = (0,1,0)T , n4 = (0,−1,0)T ,
n5 = (0,0,1)T , n6 = (0,0,−1)T ,

The algorithm also works with other directions and other numbers of directions. As usual, one
can trade precision for computational speed. The templates are rotated in the desired direction
using Clifford algebra and linear interpolation.

For an easier computation of the angles unhindered by the magnitudes of the vectors, both
vector fields are normalized. Then, correlation with each rotated template is computed. Now,
the approximations n’k(x) of the direction of the structure in the field at x given by the cor-
relations with the different templates are computed. Out of these directions, a single direction
n’(x) has to be determined. In 2D, the template response with the smallest angle to the structure
can be used directly. In 3D, the direction is computed analog to the computation of a center of
gravity. Only the directions n’k calculated out of the template responses (h ⋆ f)(x) with scalar
part 〈(h ⋆ f)(x)〉0 ≥ 0 are used, as they point into the right hemisphere. These directions are
weighted with the scalar part of their filter response. The resulting vector is normalized and
gives the direction n’ of the structure. For patterns which are rotational symmetric for all ro-
tation directions, this approach can fail as all filter responses will result in the same similarity
value. This has to be considered in the implementation, simple queries concerning the simi-
larity values can detect this case. For these structures, any direction is correct, so the original
direction of the template can be chosen.

In a last step, the template is rotated into the computed direction, and another vector correla-
tion is computed as the final similarity value. Note that for this last vector correlation, field and
template need not be normalized.

7.3 Determination of Parameters

This far, the similarity values are only given at the nodes of the grid, and local maxima of
the similarity determine existence and position of the features. To get subpixel accuracy, two
different methods are proposed here. First of all, the center of similarity can be computed:

Definition 7.1 Let p(i) denote the positions in Ω, and let s(i) be the similarity value at pi. Then
the center of similarity (CoS) of Ω is defined as

CoS =
∑i p(i)∗ s(i)
∑ ip(i)

.

CoS result in exactly the same positions. To determine the neighborhood before the CoS compu-
tation automatically, the size of the feature (without subpixel accuracy) should be approximated
first. The region thus defined, or a multiple thereof, can be used before the computation of CoS.

Another approach is to use a kind of bisection method. Note that linear interpolation, which
is most often used in grids, can be computed via a convolution with a triangle filters and that
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Figure 5: Similarity with a pure rotational template (y-axis) vs. template size (x-axis) for three positions. Shown
are the position with maximal similarity to the 52 rotational template (red), the template with maximal similarity
within the size computation (green), and the position with maximal template size within the region defined by a
percentage threshold (blue). The maximal similarity of the green line (black arrow) determines position and size
of the vortex.

(scalar) convolutions are commutative. That means that computing the similarity at an arbitrary
point in a cell of the grid results in the same value as computing the similarity at the nodes
and then interpolating the results. Thus, the maximal similarity can only be at a grid node.
However, templates can be generated with the rotation center at every arbitrary point in space.
So, the template is not moved for subpixel accuracy, but the center of the features within the
template. It has the disadvantage that the template has to be computed for every new position,
but the similarity values of different subpixel positions are nearly equal within a few iterations.
This bisection method needs less data than CoS. For simple test cases, if the neighborhood for
the CoS computation is large enough and well behaved, the bisection method is less precise.
As soon as the data becomes complex, the bisection method produces results which are more
reasonable than the CoS approach.

Another issue which should not be neglected is the connection between scale and position,
computing the position of a feature at different scales can yield quite different results. Thus,
position and size can only be determined accurately when their detection is coupled. The com-
putation of the size of the feature should be done within a small region of the assumed center
of the feature. The region can be detected automatically by using all positions in the neigh-
borhood which have similarity measures above a certain percentage of the maximal similarity
value. There is a relationship between computational effort and a stable threshold, but the re-
gions are not that large, and, for example, 33% gives stable results for all datasets tested. The
position which gave the largest similarity in the computation of the size of the feature is the
grid node next to the true center of the feature and thus both determine the position, though not
with subpixel accuracy, and the size of the feature. It is not automatically the position where the
maximal size was computed as can be seen in Figure 5. Note that it is not sensible to determine
subpixel accuracy of position and size before the true center has thus been identified.

Again, the size is only determined with an accuracy of edge length so far. For subpixel
accuracy, the trick from the last subsection has to be used again. Here, this means that the size
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of the template stays the same but the assumed core radius is changed. This way, an accuracy
of one tenth of the edge length can be achieved.

For the example of a vortex, the previous parameters can be determined using a pure rota-
tional template. For subpixel accuracy of the size, this is no longer optimal. A Rankine [21]
template, with linear behavior within the vortex core and exponential drop-off outside, behaves
not bad. However, for subpixel accuracy, the velocity at the core radius should be enlarged to
get a significant drop-off in the similarity values once the radius is bigger than the vortex core
radius. Another possibility is to use only the vectors within half an edge or less of the core
radius and zero the rest. With this template, the velocity at the core radius vr can be read of
directly from the similarity values. Because of the averaging, the result is a little bit smaller
than the actual values, but not significantly.

7.4 Application I - HART II

In 2001, a major international cooperative research program was conducted to investigate
the physics of blade pressure, noise radiation, and vibrations caused by the wake of helicopter
rotors [3, 29]. Concurrently, a comprehensive experimental database for code development and
validation has been generated. There are three major sources for blade pressure fluctuations,
noise and vibrations – the superposition of flight speed and blade rotation, the aerodynamic
interference between the rotor and the main body of the helicopter, and the wake vortices of
the rotor hitting other blades. This research program concentrates on the latter phenomena. It
is called HART II for Higher-harmonic-control (HHC) Aeroacoustics Rotor Test II and it is a
follow up on the HART program of 1994. (HHC describes the process of influencing the blade
pitch angle, 3,4 or 5 times per revolution, to reduce noise and vibration.) The German DLR, the
French ONERA, the Netherlands DNW, the US Army Aeroflightdynamics (AFDD) and NASA
Langley all take part in the cooperation.

Three-component Particle Image Velocimetry (3-C PIV) [20] were part of the measurements.
These resulted in 3-component vector fields on a 2D uniform grid describing the flow in the
wake of the rotor within one image plane (Figure 6). To understand the wake of the rotor
blades, and to be able to create a model of it, all vortices and other features have to be detected
and their parameters have to be determined as precisely as possible. For accurate determination
of the parameters, superposition effects and their consequences for the accuracy of the analysis
methods have to be taken into account.

Using Clifford correlation on this data is advantageous. First of all, the data is already aligned
on a uniform grid. As these vector fields were gained by measurements, the amount of noise
present in the data presents a problem for many analysis methods. Due to the averaging of the
integral, Clifford correlation is robust in terms of noise. And last but not least, as correlation
with a template is a linear, shift invariant system, the proposed approach is inherently suited to
approximate the flow with simpler, abstract models of vortices and other features. Some results
can be seen in Figure 7.

7.5 Application II - Gas Furnace Chamber

An interesting flow data set is a gas furnace chamber as it is used for heating a house. The
simulation solves compressible Navier-Stokes equations using a turbulent model applied on an
irregular grid consisting of 174341 tetrahedra with 32440 vertices. For template matching, the
data was resampled onto a uniform grid with dimensions 126× 65× 57. In Figure 8, top, the
swirling gas enters the chamber in the center of the left face while the air enters from 9 openings
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Figure 6: The HART II test. Left: Measurement configuration of the helicopter model in the wind channel. Right
top: PIV measurement positions in the wake of the helicopter rotor blades. The red blade is at the rear position,
and the wind comes from the right. Right bottom: A raw PIV image. Out of a stereo pair of these images, 3-C
vector fields are computed. All figures courtesy of DLR Braunschweig.

on the top and 9 openings on the bottom, so that the combustion takes place in the center area of
the chamber. The products of the combustion leave the chamber on the right. The flow is highly
turbulent and exhibits a lot of different scale vortices. This is desirable, as the combustion will
be more efficient the longer gas and air mix.

The structures in the flow can easily be identified by a segmentation of the flow based on
Clifford correlation (Figure 8, bottom). Note that the shear flow at the front bottom (in yellow)
is a misclassification, it is actually an elliptical vortex. This is one reason why the vortex core
itself (in red) extends into this area. Note also the saddle line behind these vortices (in green),
it is clearly visible in the bottom image.

Additional information of the gas furnace chamber can be gained by displaying an isosurface
of the velocity of the original data set (Figure 8, blue isosurface). Using this isosurface, the gas
and air inflow streams are clearly visible. Note the vortices besides them, and how they follow
the shape of adjacent air streams.

8 CONCLUSION

Clifford convolution and correlation provide a technique for templates matching of vector
fields as well as a unified notation for further processing including scalar-valued data. A Clif-
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Figure 7: One vector field of the HART II test. Top left: LIC and Vorticity. The flow-through component hides
all features. Vorticity is Galilean invariant and thus detects the vortices. Top right: LIC of the flow with average
removed shows only one vortex. The similarity to a 52 rotational template, where blue denotes high similarity to a
counter-clockwise rotation and red a high similarity to a clockwise rotation, is shown. The results are similar to a
smoothed version of the vorticity. Bottom: Position and size of all detected vortices. Blue denotes high similarity
to a counter-clockwise rotation and red a high similarity to a clockwise rotation. The recently produced tip vortex
has the highest similarity and a small size, and the vortices in the wake area in the left of the image are weak.
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Figure 8: A gas furnace chamber. Top: Color coding of the velocity of the boundary to show the inflow areas.
Streamlines (red) started at the top and bottom gas inflow. The gas leaves the chamber in the rear. Streamlines
(blue) seeded by matching results of a 5x5x5 rotational template (threshold 0.5) display large vortices. Bottom:
Segmentation of the normalized gas furnace chamber. Isosurfaces of the results (value 0.5): Red: rotations, yellow:
shear flow, green: saddles. The cores of the regions are also displayed. The velocity of the original data set is
displayed at an isovalue of 15 in blue.
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ford Fourier transform has been defined for 2D and 3D, the common cases in flow fields. The
corresponding theorems extend those applicable to the Fourier transform on scalar fields while
still remaining reasonably simple. The existence of fast algorithms for the computation of the
Clifford Fourier transform as well as a convolution theorem allow an acceleration of Clifford
convolution and related template matching algorithms. Furthermore, analyzing flow pattern in
frequency domain allows new insights into the flow. Template matching based on Clifford cor-
relation has been successfully applied for the detection and analysis of flow features in several
complex data sets. Thus, a major step towards robust and automatic detection, analysis and
visualization of flow fields has been taken.
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