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Abstract. For the dynamic behavior of lightweight structures like thin shells and membranes
exposed to fluid flow the interaction between the two fields is often essential. Computational
fluid-structure interaction provides a tool to predict this interaction and complement or eventu-
ally replace expensive experiments.

Partitioned analyses techniques enjoy great popularity for the numerical simulation of these
interactions. This is due to their computational superiority over simultaneous, i.e. fully coupled
monolithic approaches, as they allow the independent use of suitable discretization methods
and modular analysis software. We use, for the fluid, GLS stabilized finite elements on a moving
domain based on the incompressible instationary Navier-Stokes equations, where the formula-
tion guarantees geometric conservation on the deforming domain. The structure is discretized
by nonlinear, three-dimensional shell elements.

Commonly used sequential staggered coupling schemes may exhibit instabilities due to the
so-called artificial added mass effect. As best remedy to this problem subiterations should
be invoked to guarantee kinematic and dynamic continuity across the fluid-structure interface.
Since iterative coupling algorithms are computationally very costly, their convergence rate is
very decisive for their usability.

To ensure and accelerate the convergence of this iteration the updates of the interface posi-
tion are relaxed. The time dependent, ’optimal’ relaxation parameter is determined automat-
ically without any user-input via exploiting a gradient method or applying an Aitken iteration
scheme.
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1 INTRODUCTION

Robust and reliable numerical simulation of complex fluid-structure interaction problems re-
mains challenging. In particular shell structures exhibit highly nonlinear and sensitive physical
behavior which clearly also transfers to the numerical schemes [18].

Within this work a partitioned fluid-structure interaction algorithm is considered. Partitioned
algorithms allow for specificly designed numerical approaches on the single fields and yield a
modular software structure. Finite elements are employed for the spatial discretization of both
fields, i.e. the fluid and structural part. The arbitrary Lagrangian Eulerian (ALE) formulation
is used on the fluid field allowing to track the interface exactly which is crucial for accurate
interaction. The ALE approach demands for the solution of the fluid equations on a moving
domain. Correct determination of coupling information at the interface including geometric
conservation on the entire fluid domain is essential to obtain a robust overall algorithm which is
both stable and accurate [8, 7].

While being attractive in terms of efficiency staggered coupling schemes employed for the
interaction of incompressible flows and slender, lightweight structures may exhibit an inherent
instability. This so-called artificial added mass effect is not an artifact of a particular discretiza-
tion scheme but rather a built-in property of the coupling scheme itself. Consequently the
instability does not decrease when the accuracy of the temporal discretization is increased. An
analysis reveals that the instability stems from too high eigenvalues of the amplification opera-
tor inherent in the coupling scheme. Thus for a robust fluid-structure interaction algorithm the
prize has to be payed and the scheme has to be formulated iteratively.

Iterative fluid-structure interaction schemes for three-dimensional problems demand im-
mense computational resources and easily touch the limit of todays computer power. Thus
efficiency is a major concern in terms of an efficient coupling algorithm as well as efficient
solvers in particular on the fluid domain which consumes by far the largest part of the overall
computing time [17].

The instability of the staggered or weakly coupled scheme transfers to parameter sensitiv-
ity in the iteratively staggered scheme. Parameter combinations which cannot be treated by a
weakly staggered scheme demand for a high number of iterations in the iteratively staggered
case and also induce an upper bound on the relaxation parameter ω to enable convergence [4].
Two methods to automatically determine the proper amount of relaxation required are given.

Numerical examples demonstrate the method.

2 GOVERNING EQUATIONS AND DISCRETIZATION

2.1 Structure field

The problems of interest frequently include large structural deformations which have to be
considered within the structural formulation. The structure is thus described by the equations
of geometrically nonlinear elastodynamics on the structural domain ΩS

ρS ~̈d = ∇ · ~S + ρS~b, (1)

with appropriate initial and boundary conditions. Here ~d represents the vector field of structural
displacements, ρS the structural density and ~b the structural body forces. The over-set dot

represents time derivatives, i.e. ~̈d is the structural acceleration field. ~S denotes the second Piola-
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Figure 1: Sketch of ALE mapping

Kirchhoff stress tensor related to the Green-Lagrange strain tensor ~E through a St. Venant-
Kirchhoff constitutive relation.

~S = ~C : ~E with ~E =
1

2

(
~F T · ~F − ~I

)
, (2)

where ~F represents the deformation gradient tensor. A variety of different finite elements is
employed for spatial discretization. Particularly shell elements are used that offer reliable results
even for large deformations [1, 2, 11]. After discretization in space the semidiscrete structural
equation reads

MSd̈ + DSḋ + NS(d) = fS (3)

where damping has been included. In the matrix equation (3) the symbols MS and DS represent
the structural mass and damping matrices while NS and fS denote the internal and external
forces, respectively. The nodal displacement vector is given by d while ḋ and d̈ represents
discrete nodal velocities and accelerations. In the present approach this system is solved using
the ’generalized-α method’ of Chung and Hulbert [5] along with consistent linearization and
a Newton-Raphson iterative scheme. The ’generalized-α method’ is an implicit, one-step time
integration scheme based on Newmark like approximations in the time domain. It exhibits
controllable numerical dissipation and allows for unconditional stable solutions of nonlinear
dynamics.

2.2 Fluid field

A Newtonian fluid is considered governed by the incompressible Navier-Stokes equations.
The flow equations determining the unknown fields of the velocity ~u and the kinematic pressure
p read

∂u

∂t

∣∣∣∣
x

+ ∇ (u⊗ u)− 2ν∇ · ε(u) + ∇p = fF in ΩF × (0, T ), (4)

∇ · ~u = 0 in ΩF × (0, T ). (5)

The parameter ν = µ/ρF denotes the kinematic viscosity where µ represents the viscosity and
ρF density of the fluid. The vector field ~fF denotes the specific body force on the fluid.

In order to formulate the balance of momentum in a deforming ALE frame of reference the
coordinate system χ which follows the motion of the respective boundaries while deforming
arbitrary in between is introduced as sketched in figure 1. The geometrical location of a mesh
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point is obtained from the unique mapping x = ϕ(χ, t). Employing the reference system χ and
Reynolds transport theorem equation (4) can be reformulated on moving grids as

∂(uJt)

∂t

∣∣∣∣
χ

+
{∇ · (u⊗ (u− uG)

)− 2ν∇ · ε(u) + ∇p
}

Jt = fF Jt, (6)

where Jt = det(∂x/∂χ) denotes the time dependent Jacobian of the mapping and uG =
∂x/∂t|χ represents the velocity of the reference system, i.e. in the discretized case the grid
velocity.

It is very common to use the finite volume method for the discretization of flow problems.
In this case equation (6) has to be used as point of departure for a discretization in space which
results in a difficulty with the temporal discretization of the mass term. This difficulty can
be seen in the weighted residual formulation where the mass term yields a time derivative of
an integral over a temporally changing domain. The time discretization of this term is rather
cumbersome. Thus extra effort has to be made in order to satisfy the geometric conservation law
resulting in the need for temporal averaging of either geometries or fluxes within a time step
when a finite volume discretization is applied [7]. Depending on the temporal discretization
scheme different versions of the geometric conservation law, i.e. different discrete geometric
conservation laws (DGCL) and thus averaging schemes, have to be used [12] if (6) is discretized
directly.

Discretization by means of finite elements allows to circumvent these difficulties. The geo-
metric conservation law itself is given in the strong form by

∂Jt

∂t
= Jt∇ · uG (7)

linking the temporal change of the domain to the domain velocity. Equation (7) can be incor-
porated into (6) yielding a local form of the balance of momentum which can straightforwardly
be discretized in time and space

∂~u

∂t

∣∣∣∣
χ

+
(
~u− ~uG

) ·∇~u−∇ · σ = ~fF in ΩF × (0, T ), (8)

where the stress tensor of a Newtonian fluid is given by

σ = −pI + 2νε(~u) and ε(~u) =
1

2

(∇~u + ∇~uT
)

denotes the strain rate tensor. The local ALE form (8) avoids the difficulties inherent in (6)
and allows to preserve the stability as well as the order of accuracy which a time discretization
scheme exhibits on fixed grids. As the geometric conservation law (7) has been incorporated
prior to discretization the need for different DGCL schemes is removed [8]. The partial differ-
ential equation (8) is subject to appropriate initial and boundary conditions.

After discretization in space equation (8) yields the matrix representation

MF u̇ + NF (u)u + KFu + Gp = fF

GTu = 0, (9)

where MF represents the fluid mass matrix, NF (u) and KF denote the nonlinear convective and
viscous matrix, respectively, and fF is the nodal vector of the integrated body and boundary
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forces. The matrix G represents the discrete gradient operator. All fluid matrices depend on the
unknown velocity u due to additional nonlinearities introduced by stabilization terms [19]. To
evaluate the above matrices the integration of the weak form of all terms is performed over the
actual configuration at time level n+1 ensuring geometric conservation [8] as described above.

Second order accurate backward differencing (BDF2) scheme or the one-step-θ time integra-
tion both fully implicit are used to discretize (9) in time. The occurring nonlinearities are dealt
with using a Newton iteration scheme.

3 PARTITIONED DIRICHLET-NEUMANN ALGORITHM

The overall analysis is based on an element-wise, i.e. non-overlapping partitioned approach.
This allows single field solvers, tailored to meet the needs of structural and fluid fields. The wet
structural surface is thus the ’natural’ coupling interface Γ.

3.1 Coupling boundary conditions

A key requirement for the coupling schemes is to fulfill two coupling conditions: the kine-
matic and the dynamic continuity across the interface at all times. Kinematic continuity requires
that the position of structure and fluid boundary are equal at the interface, while dynamic con-
tinuity means that all tractions at the interface are in equilibrium. In a continuous setting the
boundary conditions at the coupling interface Γ read

dΓ(t) · n = rΓ(t) · n and uΓ(t) · n = uG
Γ (t) · n =

∂rΓ(t)

∂t

∣∣∣∣
χ

· n (10)

σS
Γ(t) · n = σF

Γ (t) · n (11)

with n and r denoting the unit normal vector on the interface and the position of the reference
system, respectively. Here σS

Γ represents the Cauchy stress tensor of the structural field. Satisfy-
ing the kinematic continuity leads to mass conservation at Γ, satisfying the dynamic continuity
yields conservation of linear momentum, and energy conservation requires to simultaneously
satisfy both continuity equations.

Due to different time discretization schemes on the three fields of structure, fluid and mesh
exact satisfaction of all boundary conditions at all times will not be possible in a discrete setting.
Rather discrete versions of the coupling conditions (10) and (11) can be found. Assuming for
brevity a sticking mesh which follows the deformation of the wet surface Γ in normal and
tangential directions the discrete displacement continuity reads

rn+1
Γ = dn+1

Γ ,

i.e. at the end of a new time step the mesh and structural interface displacements are equal.
The new fluid velocity at the interface also depends upon the mesh (and thus the structural)
displacement. For the time discretization schemes considered here namely BDF2 and one-step-
θ, the fluid velocity at the wet interface is given by

un+1
Γ = 2

rn+1
Γ − rn

Γ

∆t
− un

Γ, (12)

which ensures that the discrete velocity function integrated in time yields the actual interface
position and thus geometric conservation and consequently a correct mass balance is satisfied
at the boundary.
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The temporal interpolation of the mesh velocity is crucial to preserve the formal order of
accuracy. In order to guarantee the second order accuracy of the overall algorithm a second
order interpolation of the mesh velocity is required. For either time discretization of the fluid
velocities u BDF2 is used to interpolate the mesh velocity uG

Γ yielding

uG,n+1
Γ =

3 rn+1
Γ − 4 rn

Γ + rn−1
Γ

2 ∆t
. (13)

The difference of un+1
Γ and uG,n+1

Γ is regarded a discretization error.
The discrete dynamic boundary condition yields

fS,n+1
Γ = ρF fF,n+1

Γ ,

where the fluid forces have to be multiplied by the fluid density in order to account for the nor-
malization of the Navier-Stokes equation (8) by the density. To obtain accurate coupling forces
consistent with the spatial discretization by finite elements nodal forces have to be evaluated.
Assuming that no body forces are present and using BDF2 time discretization the consistent
nodal forces read

fF,n+1
Γ =

3

2 ∆t
MF

Γun+1 +
(
NF

Γ + KF
Γ

)
un+1 + GΓp

n+1 − 1

2 ∆t
MF

Γ

(
4un − un−1

)
(14)

where the subscript Γ denotes the lines of the original matrices belonging to the interface de-
grees of freedom. Consistent nodal forces share the formal order of accuracy of the primary
variable and naturally contain the contribution of viscous forces. In contrast to forces obtained
from the discrete stresses, nodal forces obtained from (14) ensure conservation [13]. They
further fit into a nodal based data structure and are thus easy and efficiently to implement. Con-
sistent nodal fluid forces are a key ingredient for accurate coupling on moderately fine meshes.

3.2 Partitioned schemes

The partitioned analysis schemes under consideration with synchronous time discretizations
in the fluid and structural part can be cast in a unified algorithmic framework. They are dis-
cussed in detail in Mok [21, 16]. In the following, (·)I and (·)Γ denotes variables or coefficients
in the interior of a subdomain Ωj and on the coupling interface, respectively, while a vector
without any of the subscripts I and Γ comprises degrees of freedom on the entire subdomain
including interior and interface. In addition to the structural domain ΩS and the fluid domain
ΩF a mesh domain ΩM is introduced here which coincides with the fluid domain or parts of
it. The mesh automatically determines the position of the internal fluid nodes by solving the
pseudo structural equation

KM r = fM ,

where KM represents the mesh stiffness matrix, r denotes the nodal position vector and the right
hand side vector fM stems from Dirichlet boundary conditions on the mesh domain.

In every time interval [tn, tn+1] the following algorithmic steps have to be performed in order
to compute the new coupled solution at tn+1, starting from a known state of motion at tn.

1. Compute structural predictor dn+1
Γ,0 for the interface displacements at tn+1 (see subsection

3.3). Set i = 0

2a. Solve fluid mesh ΩM for new positions.

KM
II r

n+1
I,i+1 = −KM

IΓr
n+1
I,i+1 with Dirichlet b.c. rn+1

I,i+1 = dn+1
Γ,i
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2b. Derive new grid velocity at time level n+1 in compliance with the geometric conservation
law and the required accuracy1. For second order accuracy equation (13) can be used.

2c. Derive new fluid velocity along wet surface Γ which is used as Dirichlet boundary condi-
tion according to equation (12).

2d. Solve fluid partition ΩF on new mesh configuration (at n + 1) for new fluid velocity and
pressure fields, i.e. solve a temporally discretized version of (9).

3. Determine consistent nodal fluid forces by inserting the obtained fluid solution and Dirich-
let boundary conditions into the equations belonging to the wet surface Γ as done in
equation (14).

4. Solve structure partition ΩS , i.e. a temporally discretized version of equation (3), with

Neumann b.c. fS,n+1
Γ,i+1 for new structural displacements dn+1

i+1 :=
{
d̃

n+1

Γ,i+1 dn+1
I,i+1

}T

.

5a. For iterative schemes only: Determine suitable relaxation parameter ωi ∈ R+ (see sub-
section 3.4).

5b Compute relaxed update of predicted interface position.

dn+1
Γ,i+1 = ωid̃

n+1

Γ,i+1 + (1− ωi)d
n+1
Γ,i (15)

5c. Check convergence of interface displacements and/or residual. If not converged, then set
i → i + 1 and go back to step 2.

6. Proceed to next time step by setting n → n + 1.

3.3 Weak coupling approaches and artificial added mass effect

A particularly appealing way to solve the coupled problem is a sequentially staggered for-
mulation which demands for only one solution of either field per time step. While the fluid and
structural domain are solved implicitly the coupling information is exchanged once per time
step which introduces an explicit feature.

While being very promising in the sense of efficiency sequentially staggered algorithms may
exhibit an inherent instability which increases with decreasing time step.

Properties of the instability The problem has been described by Mok [21, 16] and its math-
ematical background has recently been provided by Causin et al. [4].

• With decreasing ∆t the instability occurs earlier.

• The mass ratio between fluid and structure has a significant influence on the stability of
the staggered system. The bigger the mass ratio ρF

ρS the worse the instability.

• Numerical observations indicate that increased fluid viscosity increases the instability
while increased structural stiffness offers a slightly decreasing effect.

1The accuracy of the temporal interpolation of the mesh motion determines the overall temporal accuracy.
Higher order overall accuracy can be sacrificed by using an interpolation of the mesh motion which is just first
order [8].
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• The actual onset of unconditional instability depends upon the particular combination of
temporal discretization items.

Especially the first point indicates that the instability is not due to a lack of temporal accuracy
introduced by the explicit character of the coupling scheme.

Artificial added mass effect As the not fully balanced fluid forces have the effect of an extra
mass on the structural interface degrees of freedom the destabilization has been termed artificial
added mass effect [19]. An analysis shows that the instability is caused by too large eigenvalues
of the amplification operator of the explicit step [4, 9].

Summarizing the steps 2. and 3. within the algorithm given in subsection 3.2 allows to iden-
tify the dimensionless added mass operator MA. This operator directly transfers the predicted
nodal accelerations u̇Γ at the interface Γ into the fluid forces fΓ exerted on the structure by

fΓ = mF MAu̇Γ,

where mF denotes a characteristic fluid mass. The added mass operator MA contains the
solution of the fluid problem in terms of forces along Γ caused by interface accerlation u̇Γ [9].
Introducing this into the discrete linear and undamped structural equations and neglecting struc-
tural forces for the purpose of a stability analysis yields

[
MS

II MS
IΓ

MS
ΓI MS

ΓΓ

] [
d̈I

d̈Γ

]
+

[
KS

II KS
IΓ

KS
ΓI KS

ΓΓ

] [
dI

dΓ

]
=

[
0

−mF MA u̇Γ

]
. (16)

Here the structural system of equations has been split into internal (subscript I) and interface
(subscript Γ) degrees of freedom. Inserting the particular representation of the predictor and
Dirichlet boundary condition allows to analyze the eigenvalue of the operator that transfers
the interface displacements dΓ from time level n to n + 1. Here two different cases can be
distinguished where dn+1

Γ is either a function of a limited number of old interface positions
(for example dn+1

Γ = f(dn
Γ,dn−1

Γ ,dn−2
Γ )) or it depends upon all previously calculated interface

positions dn+1
Γ = f(dn

Γ,dn−1
Γ , . . . ,d0

Γ). As shown in [9] this depends on the time discretization
of the two fields as well as on the specific predictor and the way to obtain the Dirichlet boundary
condition on the fluid field at Γ.

In the first case an ‘instability condition’ of the form

mF

mS
max µi > C1 (17)

can be obtained, where mS represents a characteristic structural mass and µi denotes the ith
eigenvalue of the added mass operator MA. The partitioned scheme is unstable if the con-
dition (17) is satisfied. The limit C1 depends upon the particular details of the temporal dis-
cretization and decreases with increasing accuracy [9]. Thus the more accurate the scheme is
the earlier it gets unstable with respect to the density ratio of fluid and structure. This effect can
be observed when C1 is investigated for a number of different structural predictors used in step
1. of the algorithm given in subsection 3.2. A simple predictor which is zeroth order in time is
given by

dn+1
Γ,P = dn

Γ.

A first order predictor is
dn+1

Γ,P = dn
Γ + ∆t ḋ

n

Γ
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while

dn+1
Γ,P = dn

Γ + ∆t

(
3

2
ḋ

n

Γ −
1

2
ḋ

n−1

Γ

)

is a second order accurate predicted interface displacement. The instability limits obtained
in [9] for the different structural predictors and backward Euler (BE) or second order backward
differencing (BDF2) time discretization of the fluid equations are given in table 1. Similar
results can be obtained when the temporal accuracy of other items of the overall algorithm (for
example the interpolation order of the Dirichlet boundary condition required in step 2c.) of
subsection 3.2 is increased.

Table 1: Instability limit C1 for sequentially staggered fluid-structure interaction schemes depending upon the
structural predictor and fluid time discretization scheme.

predictor BE BDF2

0th order 3 3
2

1st order 3
5

3
10

2nd order 1
3

1
6

In the second case where the interface displacements depend on all previously calculated
interface positions dn+1

Γ = f(dn
Γ,dn−1

Γ , . . . ,d0
Γ) the problem gets even worse. Here an instability

condition of the form

mF

mS
max µi >

C2

n

is obtained where n is the number of the time step. Thus the instability limit C2/n decreases
during the simulation and regardless of the density ratio a step will be reached at which the
problem becomes unstable.

When stabilized fluid elements are considered the analysis gets more complicated and the
simple instability limits given in table 1 are not directly applicable any more. It can however
be proven that for every sequentially staggered scheme a density ratio ρF /ρS exists at which
the scheme becomes unstable [9]. Numerical investigations show that the instability limits are
very restrictive when incompressible fluids are considered and stabilized finite elements are
employed, effectively preventing stable computations by means of staggered algorithms.

3.4 Iterative staggered schemes

The only way to obtain a stable and accurate solution without changing the underlying
physics are subiterations. These so-called iterative staggered schemes must then of course be
designed to be as cheap and robust as possible. The iterative scheme described in the above
algorithmic framework for fluid-structure interaction is due to Le Tallec et al. [15]. It can be
interpreted as an iterative Dirichlet-Neumann substructuring scheme based on a preconditioned
nonstationary Richardson iteration. This becomes obvious from the iterative evolution equa-
tion,

dn+1
Γ,i+1 = dn+1

Γ,i + ωiS
−1
S

(
fmod,n+1
Γ ext − (SF + SS)dn+1

Γ,i

)
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which is reduced to the degrees of freedom on the interface Γ. SF and SS denote the Schur
complement matrices of the fluid and structural fields, respectively, and fmod,n+1

Γ ext is the external
load vector resulting after static condensation of the degrees of freedom in the interior of both
subdomains. In this iterative scheme convergence is accelerated and ensured by the relaxed
updates of the interface position. The iteration then converges to the simultaneous solution,
exactly fulfilling the discrete coupling conditions.

However a key question remains: How to choose optimal relaxation parameters ωi? This is a
rather sensitive question as relaxation is not always helpful in order to accelerate convergence.
The instability observed at the sequentially staggered scheme transfers to the iteratively stag-
gered algorithm demanding a relaxation parameter ωi < 1 to enable convergence [4]. The com-
monly used strategy to employ an experimentally (by trial end error) determined fixed parameter
is unsatisfactory, because such a parameter is very problem-dependent, in general suboptimal
especially for nonlinear problems, and it requires a careful, time consuming and difficult deter-
mination. Here two techniques are proposed which are both robust in the sense that they have
problem-independent acceleration properties even for nonlinear systems, and user-friendly in
the sense that relaxation parameters are determined automatically without any user-input being
necessary.

3.4.1 Iterative substructuring scheme accelerated via gradient method

The first technique is an acceleration via the application of the gradient method (method of
steepest descent) to the iterative substructuring scheme. This method also guarantees conver-
gence. In every iteration a relaxation parameter ωi is computed by

ωi =
gT

i gi

gT
i SS−1 (

SF + SS
)
gi

=
gT

i gi

gT
i

(
SS−1

SFgi + gi

) (18)

which is locally optimal with respect to the actual search direction, i.e. the residual

gi = SS−1
(
fmod,n+1
Γ ext − (

SF + SS
)
dn+1

Γ,i

)
= d̃

n+1

Γ,i+1 − dn+1
Γ,i .

A procedure for evaluating equation (18) without explicitly computing and storing the Schur
complements SF and SS has been proposed in Wall et al. [20].

3.4.2 Iterative substructuring scheme accelerated via the Aitken method

A second technique for explicitly calculating a suitable relaxation parameter is the applica-
tion of Aitken’s acceleration scheme for vector sequences according to Irons et al. [14]. To
obtain ωi the interfacial displacement difference is computed

∆dn+1
Γ,i+1 := dn+1

Γ,i − d̃
n+1

Γ,i+1.

The Aitken factor is obtained from

µn+1
i = µn+1

i−1 +
(
µn+1

i−1 − 1
) (

∆dn+1
Γ,i −∆dn+1

Γ,i+1

)T
∆dn+1

Γ,i+1(
∆dn+1

Γ,i −∆dn+1
Γ,i+1

)2
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and yields the relaxation parameter

ωi = 1− µn+1
i .

Even though a rigorous analysis of its convergence properties does not exist, numerical stud-
ies have shown that the Aitken acceleration for vector sequences applied to the fluid-structure
interaction problems considered here shows a performance which is at least as good as the ac-
celeration via the gradient method. Furthermore the evaluation of the relaxation parameters
via the Aitken method is extremely cheap in terms of both CPU and memory and simple to
implement.

4 EXAMPLES

4.1 Vibrating U-pipe

Coriolis flowmeters are an elegant way to measure the mass flow rate in a pipe. The mea-
suring unit inside such a flowmeter is a flexible tube which classically is U-shaped, clamped at
both ends and passed by the flow. The pipe is subject to a forced vibration at angular frequency
ωf which induces opposite and time dependent Coriolis forces within the fluid in the inflow and
outflow part of the tube. Thus the resulting vibration is not just the enforced bending but ac-
companied by an amount of torsion depending upon the frequency ratio ft/ff where ft denotes
the eigenfrequency of the torsional mode.

Geometry and material parameters of the sample tube are given in figure 2 where the tube
is fully clamped at the in- and outflow boundaries. In contrast to technical flowmeters the
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Figure 2: Geometry and material of flowmeter tube

tube material is a rubber like compressible neo-Hookean type of material which yields large
deflections of the overall system and thus allows to highlight the physical effect. Gravity points
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in negative z-direction while the gravitational forces of the shell are neglected. The inflow
velocity of the water inside the tube is prescribed to uy = 15 cm/s.

The mesh of the tube itself consists of 5120 quad4 shell elements [1] enriched by means
of the enhanced assumed strain method (EAS) to remove membrane shear locking inherent
in linear elements. Further the Assumed Natural Strains method (ANS) is employed to avoid
parasitic transverse shear strains, i.e. removing shear locking. Scaled director conditioning
with C = 10.0 is employed to improve the conditioning of the resulting structural system of
equations [10, 11].

The fluid domain is meshed by 11520 trilinear hex8 elements with residual based stabiliza-
tion [19]. A major part of the fluid domain is accompanied by a mesh field consisting of 10240
pseudo structural hex8 elements. Thus the overall mesh while still being quite coarse for the
problem consists of 26880 elements yielding a total of 94924 degrees of freedom on three fields.
To adequately resolve the higher frequencies of interest a small time step of ∆t = 0.005 s is
used.

A harmonic force with a frequency of ff = 7.685 Hz which is close to the eigenfrequency of
the torsional mode ft is applied on the tip of the clamped tube pointing in z-direction. The force
is distributed over the area of the part of the pipe which is parallel to the x-axis. The induced
oscillation is not just the expected bending but also an increasing torsional replay which is due
to the Coriolis forces induced in the two arms of the pipe during the up and down cycles. In
figure 3 the evolution of the vertical displacements at the points A and B is depicted along with
the displacement difference.
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Figure 3: Vertical displacements at the two points A and B along with displacement difference between the re-
spective points

In order to ensure the well-posedness of the problem the flow passing the tube as well as the
gravitational forces have to be built up over a period in time. This startup was finished at 4.0 s
when the system oscillated in the first bending mode and its corresponding eigenfrequency as
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it can be seen in the first part of the diagram in figure 3. At 5.5 s the periodic vertical tip
force is switched on creating a forced vibration on the first, the bending eigenmode of the
structure. The evolution of the increasing contribution of the torsional mode can be detected
from the increasing displacement difference of the two reference points A and B of the shell.
In every cycle a portion of the bending energy is transfered to the torsional mode resulting in an
increasing torsional oscillation.

In figure 4 the deformed tube at different time instants is depicted. The figures show the
x-z plane of the problem. The non-symmetric part of the structural response is entirely due to
the interaction with the flowing water inside the tube. If the water is resting inside the tube no
torsional displacement results.

t = 9.87 s t = 9.945 s t = 10.005 s

t = 10.07 s t = 10.13 s t = 10.20 s

Figure 4: Deformation of the tube at different time instants

4.2 Flow in a collapsible tube

This example is concerned with the problem of viscous flow in an elastic tube. Elastic tubes
collapse (buckle non-axisymmetrically) when the transmural pressure (internal minus external
pressure) falls below a critical value. The tube’s large deformation during the buckling leads to
a strong interaction between the fluid and the solid mechanics. To illustrate the tube’s behavior
we consider its deformation in a procedure in which the flow rate is prescribed by means of a
volumetric pump attached to the tube’s upstream end (see figure 5). We keep the fluid pres-
sure at the tubes far downstream end constant, pdown = 0.0 and induce the tube’s collapse by
increasing the chamber pressure. As the chamber pressure is increased, the transmural pres-
sure decreases and first becomes negative (compressive) at the tube’s downstream end. When
the compressive load exceeds a critical value, the axisymmetric deformation looses its stability
and the tube buckles non-axisymmetrically. Figure 6 shows the tube’s wall deformation as the
non-axisymmetric collapse increases.
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5 CONCLUSIONS

Partitioned coupling schemes are a viable approach to deal with fluid-structure interaction
problems. However due to the artificial added mass effect which is an inherent cause for po-
tential instabilities sequentially staggered schemes fail to work. In particular in the context of
slender structures interacting with an incompressible flow the instability may exhibit a devas-
tating effect. Thus subiterations have to be invoked.

The instability of the sequential scheme transfers to the iteratively staggered scheme in de-
manding a relaxation parameter strictly smaller than a bound in order to enable convergence of
the iteration between fluid and structural field. A suitable relaxation parameter can be obtained
by either a steepest descent based approached or by convergence acceleration via the Aitken
method. While convergence can be proven only in the first case the second on the other hand is
very cheap in terms of CPU and memory and simple to implement.

The correct exchange of coupling information is crucial for the accuracy of partitioned
schemes for coupled problems. In the present case second order accuracy demands for ad-
equately formulated coupling velocities, consistent nodal fluid forces on the structure and a
mesh velocity interpolation which is at least second order in time. The discrete coupling infor-
mation has to be formulated in conjunction with the respective discretization schemes on the
single fields.

A examples the proposed method is used to simulate a long time fluid-structure interaction
problem including large deflections of a thin structures.
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