
18th International Conference on the Application of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck and C. Könke (eds.)
Weimar, Germany, 07–09 July 2009

ON THE GENERATION OF HIERARCHICAL MESHES FOR
MULTILEVEL FEM AND BEM SOLVERS FROM CAD DATA

Maharavo Randrianarivony∗

∗Institute for Numerical Simulation
University of Bonn
Wegelerstrasse 6

Bonn 53115, Germany
E-mail: randrian@ins.uni-bonn.de

Keywords: Nested mesh, geometric processing, CAD, BEM, FEM, hierarchy.

Abstract. As numerical techniques for solving PDE or integral equations become more sophis-
ticated, treatments of the generation of the geometric inputs should also follow that numerical
advancement. This document describes the preparation of CAD data so that they can later be
applied to hierarchical BEM or FEM solvers.

For the BEM case, the geometric data are described by surfaces which we want to decom-
pose into several curved foursided patches. We show the treatment of untrimmed and trimmed
surfaces. In particular, we provide prevention of smooth corners which are bad for diffeo-
morphism. Additionally, we consider the problem of characterizing whether a Coons map is a
diffeomorphism from the unit square onto a planar domain delineated by four given curves. We
aim primarily at having not only theoretically correct conditions but also practically efficient
methods.

As for FEM geometric preparation, we need to decompose a 3D solid into a set of curved
tetrahedra. First, we describe some method of decomposition without adding too many Steiner
points (additional points not belonging to the initial boundary nodes of the boundary surface).
Then, we provide a methodology for efficiently checking whether a tetrahedral transfinite inter-
polation is regular. That is done by a combination of degree reduction technique and subdivi-
sion.

Along with the method description, we report also on some interesting practical results from
real CAD data.

1

u

v

ai bi

ci

di

e
j
i f

j
i

x

y

z

ψiκ
j
i

Di
Si

Figure 1: The boundary of Di ⊂ R
2 is the image of several curves κj

i . Apply ψi to have the trimmed surface Si.

1 INTRODUCTION

Traditionally, solving PDE and integral equations have been done on a very fine triangular or
tetrahedral mesh. Over the last periods, the use of hierarchical methods has emerged and de-
veloped quickly. Hierarchical settings have been demonstrated to be numerically very efficient
because they give rise to subdivision algorithms. Such a hierarchical setting produces in gen-
eral good accuracy with low computational cost [2, 14]. Unfortunately, their applications on
real geometric models cannot seem to have attained maturity if compared to traditional mesh-
based approaches. We address here the problem of processing CAD data for use in hierarchical
BEM and FEM. This document summarizes our earlier works [6, 10, 11, 12] about process-
ing CAD data for numerical applications and it supplements them with new results pertaining
to tetrahedral cases. The structure of this paper is as follows. It starts with a description of
the CAD inputs in Section 2. Afterwards, we concentrate on the BEM treatment which con-
sists of decomposition and regularity in Section 3. We complete the BEM case by presenting
some practical results. As for FEM modeling, we consider the generation of curved tetrahedral
meshes in Section 4. That will be followed by regularity verification for a curved tetrahedron in
Section 5. Finally, we report on some CAD results from IGES files for FEM decomposition.

2 CAD REPRESENTATION AND PROBLEM FORMULATION

2.1 Description of the input CAD models

The initial CAD input is a solid Ω bounded by a closed surface Γ ⊂ R3 that is the union of
M trimmed [1] parametric surfaces S1, · · · , SM defined on the domains D1, · · · , DM which
are multiply connected regions in R2. The external and internal (when relevant) boundary
curves of each domain Di are supposed to be composite curves. That is, there are univariate
smooth functions κj

i defined on [ej
i , f

j
i] such that ∂Di =

⋃
j Im(κj

i). We suppose further that
the parametric functions defining Si

ψi : Di −→ Si (1)

are bijective, regular and smooth [11]. A graphical illustration of this formulation can be found
in Fig. 1. Furthermore, we need that the bounding curves κj

i are sufficiently smooth, regular and
without zero angles. More precisely, we assume that for all i, j, the tangents satisfy κ̇j

i (τ) 6= 0.
Additionally, in order to forbid cusps or zero angles inside each Di, we suppose that if the
terminating point of κj1

i and the starting point of κj2
i coincide, we must have

lim
t→(f

j1
i)

−

κ̇
j1
i (t) 6= −λ lim

t→(e
j2
i)

+
κ̇

j2
i (t) ∀λ > 0. (2)

2

γj(cr)

γi(cq)= γj(cs)

γ
i(cp)=

γ i

γj

Pi

Pj

10

1

10

1

cr

cs

cpcq

A
u

u

v

v

(a)
−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)
−0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c)

Figure 2: (a)Matching condition with affine transformation A. (b)Regular Coons patch. (c)Undesired overspill
phenomenon.

2.2 Problem setting for BEM and FEM

For preparation of BEM geometry, our objective is to tessellate the surface Γ into a collection
of four-sided patches Γi, i.e., Γ = ∪iΓi, where the splitting is conforming [6]. We need also
some regular (differentiable and the Jacobian matrix has maximal rank) functions γi such that
Γi = γi([0, 1]2). Additionally, we require global continuity meaning that for two adjacent
patches Γi and Γj , there is a bijective, affine mapping A : [0, 1]2 → [0, 1]2 such that for all
x = γi(s) on a common edge of Γi and Γj it holds that γi(s) = (γj ◦ A)(s). That is, γi and
γj coincide pointwise at common edges up to some reorientation. Practically, global continuity
means that the images by γ i and γj of u-constant and v-constant isolines match well at the
interface (Fig. 2(a)). Unfortunately, we are not able to solve the problem of global continuity
exactly and we could not find in the literature any method which can do that. As a consequence,
we will only show how to solve that problem numerically without too much computational cost.

As for FEM geometric preparation, we intend to decompose the solid Ω into a set of curved
tetrahedra Ti which again form a conforming decomposition. We want also to find functions
γi : ∆3

ref −→ Ti which are regular. Additionally, we need a global continuity as follows.
Suppose that the curved tetrahedra Ti and Tj share a curved triangular face t. For each x ∈ t, its
preimages γ−1

i (x) and γ−1
j (x) should have the same barycentric coordinates on their respective

triangular face on the unit tetrahedron ∆3
ref .

The results of the geometric operations can be graphically illustrated by Fig. 6 and Fig. 12
where the grids represent the images by γ i of a uniform grid on [0, 1]2 or ∆3

ref .

3 GEOMETRIC PROCESSING FOR BEM

3.1 Decomposition into four-sided patches

A complete detail of decomposing a 3D-model is beyond the scope of this paper. Therefore,
we will summarize only the main steps and point out the principal difficulties [11]. First of all,
we approximate the curved boundaries of {Si} by straight line segments separated by nodes
{Xk} ⊂ R3 as in Fig. 3(c). In order to achieve that approximation while having conforming
splitting in mind, we create planar polygonalizations of {Di}M

i=1 which amount to doing the
following. For each trimmed surface Si, we generate a polygon P (i) whose nodes v

(i)
k are taken

from the curved boundary of the 2D domain Di. We have to make sure that for two adjacent
different surfaces Si and Sj sharing a curve C, if ψi(v

(i)
k) ∈ C, then there must exist a vertex

v
(j)
l ∈ P (j) such that

ψi(v
(i)
k) = ψj(v

(j)
l). (3)

3

α

β

η

δ Q

(a) (b) (c)

Figure 3: (a)Four-sided region. (b)Input 3D model. (c)Polygonal approximation.

Let us note that if we take too few vertices, the resulting polygon P (i) may have imperfec-
tions such that its edges do not form an admissible polygon as illustrated in Fig. 4(a). But if
the polygonal approximation is too fine, then it results in overly many four-sided surfaces. As
a consequence, one has to split the curved edges adaptively while trying to maintain relation
(3) which involves some preimage computations. Let us emphasize that only polygons having
an even number of boundary vertices can be decomposed into quadrilaterals. It is not straight-
forward to convert odd faces into even ones inside a closed surface with arbitrary genus. One
should assemble the adjacency graph which is used in the Dijkstra algorithm to search for the
shortest path joining two odd polygons in order that the number of additional nodes to be in-
serted are not too many. We could theoretically prove that the number of odd faces must be
even for a closed model and that the odd faces can be converted to even ones pairwise.

Our main approach consists in splitting the 2D regions Di into four-sided regions Qk,i ⊂ R2

such that Di =
⋃

k Qk,i. The four-sided patches Pk are therefore the images by ψi of the 2D
domains Qk,i

Pk = ψi(Qk,i). (4)

As for the decomposition into Qk,i, we consider the polygon P (i) which we decompose into a
set of convex quadrilaterals qk,i. The four-sided domains Qk,i are obtained from qk,i by replac-
ing the straight boundary edges of qk,i by the corresponding curve portion of Di as illustrated
in Fig. 4(b) and Fig. 4(c). In the decomposition of a polygon P (i) into quadrilaterals qk,i, we
use only the preimages ψ−1

i (Xk) of the nodes {Xk} as boundary vertices. That is, we do not
use any additional boundary nodes in the course of the quadrangulation (usual term for ”quadri-
lateral mesh” or ”process of quadrilating”) process. We have developed in [11] an approach
that decomposes a polygon with n boundary vertices into O(n) convex quadrilaterals. There
are two main difficulties in that process. First, converting nonconvex quadrilaterals into con-
vex ones requires many cases to be handled individually. Second, finding cuts connecting an
internal boundary and the exterior boundary of a multiply connected polygon is complicated.
The process of replacing a boundary edge with the corresponding curve can generate three seri-
ous problems. First, it is possible that the curve intersects an internal edge causing a boundary
interference. The second problem is that some corners in a four-sided region Qk,i might be
smoothened out. Third, it is possible that the corresponding Coons patch is not regular [11]. In
those cases, we have to make a polygonal refinement. We have developed a method for making
only a small local rectification while keeping the large part of the quadrangulation. The things
about which one has to be careful is that it is not easy to detect those three problems and we
have to guarantee relation (3) when we insert new nodes.

4

(a)

q1

q2

q3 q4

q7 q6 q5

xr xsf

(b)

Q1

Q2

Q3 Q4

Q7 Q6 Q5

xr xsCf

(c)

Figure 4: (a)Inadmissible polygonal approximation. (b),(c)Conversion of a quadrangulation {qk} into subregions
having curved sides {Qk}.

3.2 Transfinite interpolation and subdivision

Let us consider four sufficiently smooth curves α,β,γ, δ : R −→ R
2. We are interested

in their restriction on [0, 1] and we suppose that they fulfill the compatibility conditions at the
corners

α(0) = δ(0), α(1) = β(0), γ(0) = δ(1), γ(1) = β(1). (5)

We assume that besides those four common points in, there are no further intersection points.
We are interested in generating a parametric surface c(u, v) defined on � := [0, 1]2 such that
the image of ∂� by c coincides with the four curves. That is, we have for all u, v ∈ [0, 1],

c(u, 0) = α(u), c(u, 1) = γ(u) c(0, v) = δ(v), c(1, v) = β(v). (6)

This transfinite interpolation problem can be solved by a first order Coons patch which is defined
in matrix form as

c(u, v) := −




−1
F0(u)
F1(u)




T 


0 c(u, 0) c(u, 1)
c(0, v) c(0, 0) c(0, 1)
c(1, v) c(1, 0) c(1, 1)







−1
F0(v)
F1(v)


 , (7)

where F0 and F1 denote two arbitrary smooth functions satisfying [10]:

Fi(j) = δij , i, j = 0, 1 and F0(t) + F1(t) = 1 ∀ t ∈ [0, 1].

For most cases, a Coons patch is already regular. However, when the boundary curves become
too wavy, we observe overlapping isolines indicating that the mapping is not invertible as in
Fig. 2(c). Our next goal is to find an efficient method which can quickly verify if a Coons patch
is regular. In this document, we will treat only the case where the boundary curves are in Bézier
form [3]. For general curves, refer to [6]. Thus, we suppose that the boundary curves α,β,γ, δ
are expressed in terms of their respective control points αi,βi,γi, δi (i = 0, . . . , n) as follows

α(t) =

n∑

i=0

αiB
n
i (t), β(t) =

n∑

i=0

βiB
n
i (t), γ(t) =

n∑

i=0

γiB
n
i (t), δ(t) =

n∑

i=0

δiB
n
i (t).

The polynomial blending function F1 is also expressed in Bézier form F1(t) =
∑n

i=0 φiB
n
i (t) =

1 − F0(t). Furthermore, we suppose that the range of F0 and F1 is [0, 1] and we define

µ := max{|F ′
1(t)| : t ∈ [0, 1]}. (8)

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

κ
j
i (s)

κ
j
i (r)κ

j
i (e

j
i)

κ
j
i (f

j
i)

A
B

Q

Di

(c)

ψ
1 ◦α1

ψ 1
◦ β

1

ψ
1 ◦ η

1

ψ
1
◦ δ

1

ψ2 ◦α2

ψ2 ◦ η2

ψ
2 ◦
β

2ψ
2
◦ δ

2

C
T

S

P1

P2

(d)

Figure 5: (a)Uniform subdivision. (b)Adaptive subdivision. (c)Restriction of κj
i to have boundary of a Coons

patch inside the domain Di. (d)Two Coons maps match well at interface curve C for chord length parametrization.

In order to express the next result, we define τ as the minimum of the following expressions
over i, j = 0, · · · , n

Aij := n2 det[αi+1 −αi, δj+1 − δj], Bij := n2 det[αi+1 −αi,βj+1 − βj],

Cij := n2 det[γi+1 − γi, δj+1 − δj], Dij := n2 det[γi+1 − γi,βj+1 − βj].

Introduce also G := max{G1, G2} where

G1 := maxi{µ‖(βi − δi) + φi(γ0 − γn +αn −α0) + (α0 −αn)‖},
G2 := maxi{µ‖(γi −αi) + φi(γ0 − γn +αn −α0) + (α0 − γ0)‖}.

(9)

Theorem 3.1 [6] Let M be a constant such that

n‖φj(γi+1 − γi +αi −αi+1)+(αi+1 −αi)‖≤ M,

n‖φj(βi+1 − βi + δi − δi+1) +(δi+1 − δi)‖ ≤ M,
(10)

for all i = 0, . . . , n − 1 and j = 0, . . . , n. If 2MG + G2 < τ and τ > 0, then c is regular.

In order to employ the technique of adaptive subdivision, let us introduce two notions. First, one
can show [10] that a Bézier surface

∑n
i,j=0 EijB

n
i (u)Bn

j (v) has as Jacobian a Bézier function
of degree 2n with the next control coefficients:

Jpq :=
∑

i+k=p

j+l=q

C(i, j, k, l)

(
n

i

)(
n

k

)
(

2n

i+k

)
(

n

j

)(
n

l

)
(

2n

j+l

) , p, q = 0, . . . , 2n, (11)

where

C(i, j, k, l) :=
l

n

[
i

n
D(i − 1, j, k, l − 1) +

(
1 − i

n

)
D(i, j, k, l − 1)

]

+

(
1 − l

n

) [
i

n
D(i − 1, j, k, l) +

(
1 − i

n

)
D(i, j, k, l)

]

and
D(i, j, k, l) := n2 det[Ei+1,j −Eij,Ek,l+1 − Ekl].

On the other hand, a Bézier surface F defined on [a, b] × [c, d] can be subdivided into four

6

Bézier surfaces F A, F B, F C , F D which are respectively defined on

IA := [a, (a + b)/2] × [c, (c + d)/2], IB := [a, (a + b)/2] × [(c + d)/2, d],

IC := [(a + b)/2, b] × [c, (c + d)/2], ID := [(a + b)/2, b] × [(c + d)/2, d],

by using the following recursions. Suppose the control points of F are Fij, i, j = 0, . . . , n. We
define for i, j = 0, . . . , n, k ≥ 1





F
[0]
ij := Fij and F

[k]
ij := 0.5

(
F

[k−1]
i−1,j + F

[k−1]
ij

)

P
[0]
ij := F

[i]
ij and P

[k]
ij := 0.5

(
P

[k−1]
i,j−1 + P

[k−1]
ij

)

Q
[0]
ij := F

[n−i]
nj and Q

[k]
ij := 0.5

(
Q

[k−1]
i,j−1 + Q

[k−1]
ij

) (12)

The control points of F A, F B, F C and F D are respectively Aij := P
[j]
ij , Bij := P

[n−j]
in , Cij :=

Q
[j]
ij , Dij := Q

[n−j]
in . We have in particular

F (u, v) = F r(u, v) for (u, v) ∈ Ir, where r = A, B, C, D.

We can apply the same subdivision technique to each of the resulting 4 Bézier surfaces. A
recursive application of that subdivision on the unit square generates a uniform grid consisting
of σ2 little squares as illustrated in Fig. 5(a).

Theorem 3.2 [6] Suppose that the Coons patch c defined with α,β,γ, δ is regular. Suppose
that its Jacobian function J has been subdivided into σ2 functions J ij defined on

I ij := [(i − 1)/σ, i/σ] × [(j − 1)/σ, j/σ], i, j = 1, . . . , σ, (13)

and with Bézier coefficients J ij
pq, p, q = 0, . . . , 2n. Then, for a sufficiently large σ all coefficients

J ij
pq have the same sign.

Theorem 3.3 [6] Let c be a Coons patch that is not regular. Then, for sufficiently large σ (see
Theorem 3.2), there must exist (i1, j1) and (i2, j2) such that

J i1,j1
pq > 0

J i2,j2
pq < 0

}
∀ p, q = 0, . . . , 2n. (14)

In practice, we do not need to subdivide the Jacobian uniformly because we can perform adap-
tive subdivision. We start from a single Jacobian function written in Bézier form defined on the
unit square. Then, we split it recursively by adaptively using the former subdivision techniques.
That is, we subdivide only those Bézier functions that have Bézier coefficients J ij

pq with different
signs. The preceding two theorems serve as abortion conditions for that recursion. An instance
of that adaptive subdivision process is illustrated in Fig. 5(b). For more structured description
about that adaptive process refer to [6].

3.3 Global continuity

In order to obtain a mapping γk from the unit square [0, 1]2 to Pk ⊂ R3, we need to find a
mapping xk,i from [0, 1]2 to the planar four-sided domain Qk,i ⊂ R2 of relation (4) and we take
the composition:

Pk = ψi(Qk,i) = ψi ◦ xk,i([0, 1]2). (15)

7

Now, we will discuss about the construction of the mapping x := xk,i from [0, 1]2 to each
of the four-sided domains Q := Qk,i ⊂ R2 by means of Coons maps. On account of the
decomposition algorithm of Section 3.1, we note that the boundaries α, β, η, δ of the Coons
maps are either straight lines or restrictions of the 2D boundary curves κj

i . Since the Coons
patch (7) requires α, β, η, δ to be defined on [0, 1], we use one of the next two representations:

µ(t) = tB + (1 − t)A, ∀µ = α,β,η, δ,

µ(t) = κ
j
i (tr + (1 − t)s), ∀µ = α,β,η, δ.

(16)

The first representation is used when µ is a straight internal edge joining two interior points A
and B while the second one applies if µ is a restriction of κj

i on some [s, r] ⊂ [ej
i , f

j
i] as seen

in Fig. 5(c).
An arbitrary parametrization ofκj

i does not guarantee the global continuity. Additionally, we
cannot modify the base surfaces ψi because they are given as input in the initial CAD storage.
Therefore, our objective is to replace the 2D curves κj

i by κ̃j
i so that their 3D images by ψi

agree pointwise as long as they are incident. Let us introduce the length function

χj
i (t) :=

∫ t

e
j
i

∥∥∥∥∥
d(ψi ◦ κj

i)

dθ
(θ)

∥∥∥∥∥ dθ. (17)

This function is defined from [ej
i , f

j
i] to [0, L] where L is the total length of the curve ψi ◦ κj

i .
On account of the properties of κj

i and ψi that we met in Section 2, let us observe that

dχj
i

dθ
(θ) =

∥∥∥∥∥
d(ψi ◦ κj

i)

dθ
(θ)

∥∥∥∥∥ 6= 0 ∀ θ ∈ [ej
i , f

j
i]. (18)

Hence, there is an inverse function φj
i := (χj

i)
−1 and our approach is to replace the function κj

i

by κ̃j
i := κ

j
i ◦ φj

i . In [10], we have shown that the use of the chord length [5] parametrization
φj

i ensures the matching condition at the interface curve of two adjacent Coons patches. To
that end, let us consider two adjacent four-sided patches Pk,i and Pp,j. We will treat only the
non-obvious case where those two patches belong to two nonidentical trimmed surface Si and
Sj . In order to facilitate the presentation, we may suppose that they are S1, S2, P1, P2 and we
omit the superscripts. In the sequel, we denote the corresponding length functions by χ1 and
χ2, the two Coons maps from relation (15) by x1 and x2 such as P1 = ψ1 ◦ x1([0, 1]2) and
P2 = ψ2 ◦ x2([0, 1]2) which share only one curved edge because of the conforming condition.
Further, we denote by [e1, f1] and [e2, f2] the intervals of definition ofψ1◦κ1 andψ2◦κ2 which
have coinciding images upon which P1 and P2 are incident:

(ψ1 ◦ κ1)([e1, f1]) = (ψ2 ◦ κ2)([e2, f2]) =: C. (19)

That is, we reparametrize the 2D curves κi from which the boundary of the planar Coons maps
are obtained in order that the 3D curves ψ1 ◦ κ1 and ψ2 ◦ κ2 agree pointwise. In fact, by using
the chain rule and λ := (ψ2 ◦ κ2)

−1 ◦ψ1 ◦ κ1, we obtain

χ1(t) =

∫ t

e1

∥∥∥∥
d(ψ1 ◦ κ1)

dθ
(θ)

∥∥∥∥ dθ =

∫ t

e1

∥∥∥∥
d(ψ2 ◦ κ2)

dθ
[λ(θ)]

∥∥∥∥ λ′(θ)dθ.

=

∫ λ(t)

λ(e1)

∥∥∥∥
d(ψ2 ◦ κ2)

dσ
(σ)

∥∥∥∥ dσ =

∫ λ(t)

e2

∥∥∥∥
d(ψ2 ◦ κ2)

dσ
(σ)

∥∥∥∥ dσ = χ2(λ(t)).

8

Models Nb. trimmed surfaces Nb. patches Total runtimes
Fig. 6(a) 16 38 1.919 sec.
Fig. 6(b) 26 90 6.588 sec.
Fig. 6(c) 243 727 44.232 sec.

Table 1: Number of initial surfaces, number of patches, run times for decomposition and evaluation

Hence, we obtain χ−1
2 ◦ χ1 = λ. Therefore, if we denote the total length by L := χ1(f1) =

χ2(f2), we have

ψ2 ◦ κ̃2(t) = ψ2 ◦ κ2 ◦ φ2(t) = ψ1 ◦ κ1 ◦ φ1(t) = ψ1 ◦ κ̃1(t) ∀ t ∈ [0, L]. (20)

The former sections imply that we have to evaluate chord lengths many times and accurately.
In [10], we proposed a length computation algorithm with exponential speed.
We have applied the former methods to real CAD objects. The initial CAD models correspond-
ing to the mechanical parts which are found in Fig.6 have been designed with a CAD system. In
Table 1, we gather the number of entities corresponding to the mechanical parts. We see there
also the required time to generate the decomposition together with the evaluation to obtain the
gridpoints at level J = 6.

4 CURVED DECOMPOSITION FOR FEM

In this section, we would like to describe the process of generating a tetrahedral mesh contain-
ing tetrahedra which might have curved edges and non-planar faces of a domain Ω. Such a
generation will be performed in several steps. As a starting step, we create a conforming curved
triangular mesh M of the boundary of Ω. That can be obtained for examples by using a method
similar to that in Section 3.1 but instead of quadrangulations, one uses triangulations. Another
alternative is to create a curved quadrilateral boundary mesh as in the BEM case and then one
inserts a diagonal edge inside each quadrilateral to obtain two triangular patches. According to
our experience, that second method does not give quality results. Generating a curved triangu-
lar mesh directly from the CAD models gives better results. Note that we require also a global
continuity for the curved triangular boundary mesh M. That is obtained by using the method
from Section 3.3.

4.1 Straight tetrahedral mesh

Consider the triangular mesh M that is obtained from the curved mesh M in which one replaces
every curved edge e of M by a straight edge joining the two endpoints of e. The next step now
consists in generating a tetrahedral mesh bounded by M. Note that in two dimensions, it is
possible to decompose a nonconvex polygon directly into triangles. That can be theoretically
proved by using the 2-ear theorem [11]. That is, one can always chop off a triangle from the
polygon recursively until the polygon becomes empty. Unfortunately, that nice fact does not
generally hold in higher dimension. To treat a nonconvex polyhedron M in 3D, one needs a
constrained tetrahedralization as follows. First, one tetrahedralizes the set V of vertices xi of
the polyhedron M. Thus, one obtains a tetrahedralization of the convex hull of V. At this point,
some faces of the polyhedron M might be crossed by some tetrahedra. That is, there might
be some tetrahedra which are partly inside and partly outside the polyhedron M. Therefore,
the second step consists in modifying the tetrahedralization so that one recovers the faces of

9

(a) (b)

(c)

Figure 6: CAD decomposition for BEM.

the polyhedron M. At this step every tetrahedron is either inside or outside the polyhedron.
Finally, the tetrahedra outside M are discarded. An illustration of those steps are depicted in
Fig. 8. Now, we will describe each of those steps briefly.

In order to generate a tetrahedral mesh of the convex hull of V, one utilizes Delaunay tetra-
hedralization [17] or any other methods. One of the most stable ways of generating a quality
tetrahedral mesh is using the parabolic lifting map

Π(x, y, z) := (x, y, z, x2 + y2 + z2). (21)

This has a good property [17] that the image by Π of a sphere S ⊂ R
3 centered at A and

with radius r is contained in a hyperplane H is R
4. In fact, Π(S) is the intersection of the

paraboloid corresponding to Π and the hyperplane H. Thus, a point Q ∈ R
3 is not inside the

sphere S as long as Π(Q) is above (points to positive axis of fourth coordinate) that hyperplane.
Computing the tetrahedralization of V amounts to computing the boundary of the convex hull
C of x̃i = Π(xi) and projecting the lower part of C onto R

3. A software such as QHULL for
computing convex hulls in R

4 is helpful in performing such a task.
Let us now see the recovery of the initial boundary to obtain a tetrahedral mesh of nonconvex

polyhedra. At this position, we suppose that we have a tetrahedralization T of the convex hull

10

(a) (b) (c)

Figure 7: Coarse tetrahedralization of polyhedra where the triangular faces are planar.

(a) (b) (c) (d)

Figure 8: (a) is an unconstrained tetrahedral mesh for (b). (c) is an unconstrained tetrahedral for (d).

of the triangular boundary M. Some tetrahedra of T might not respect the boundary M. That
is, they are partly outside and partly inside the domain Ω. That facial recovery is performed in
two steps. First, we need to recover the edges of M. Afterwards, we recover the triangles of
M.

Suppose that we have a triangular edge [N1, N2] of M which does not coincide with any of
the tetrahedral edges of T . Consider a tetrahedron τ = [a, b, c, d] which is traversed by the edge
[N1, N2]. Let us denote by n1, n2 the part of [N1, N2] which overlaps with τ . There are several
cases to consider in order that we have a tetrahedralization such that [n1, n2] becomes an edge of
the tetrahedralization. Those cases are defined according to whether ni is located on a node, on
an edge or on a face of the tetrahedron τ as illustrated in Fig. 9. The case where both n1 and n2

are on nodes of τ does not occur because [N1, N2] is not an edge of the tetrahedralization. Some
cases where the line segment [N1, N2] touches an edges of the closure of τ but [N1, N2] does
not traverse the interior of τ are also treated similarly. For those five situations, the tetrahedron
τ is decomposed into several subtetrahedra as follows
Case a: [n1, n2, c, d], [n1, n2, b, c], [n1, n2, a, b].
Case b: [a, n1, b, c], [n1, b, c, n2], [n1, c, d, n2], [n1, b, d, n2].
Case c: [n2, n1, d, c], [n2, n1, a, c], [n2, n1, a, d], [a, c, b, n2], [a, c, b, n2], [a, d, b, n2].
Case d: [n1, n2, c, d], [n1, b, c, n2].
Case e: [a, b, n2, d], [a, b, c, n2], [a, c, n2, d].
Suppose now that the above process has been applied to every tetrahedron τ of T which is

11

a

b

c

d

n1

n2

(a)

a

b

c

d

n1 n2

(b)

a

b

c

d

n1 n2

(c)

a = n1

b

c

d

n2

(d)
b

c

d

n1 = a

n2

(e)

Figure 9: Some cases where a line segment [n1, n2] traverses a tetrahedron [a, b, c, d].

traversed by a certain edge of a boundary triangle. Thus, all nodes and edges of every triangle
of the boundary M are among the nodes and edges of the tetrahedralization of T . Hence, the
property of the resulting tetrahedral mesh from the previous step is that if a triangle t from M
and a tetrahedron τ from T intersect, then they intersect completely. That is, the intersection
t ∩ τ is the same as the intersection between τ and the plane P passing through t. In such a
situation, there are only two cases which may occur. In the first case, one node of τ lies on one
side P+ of P and three other nodes are on the other side P−. The second case occurs when two
nodes of τ are on one side P+ while the other two are on the other side P−.

For the former case, let [O1, O2, O3] be the three nodes in P− and let [I1, I2, I3] be the inter-
section of τ and the plane P . Such an indexation is illustrated in Fig. 10(a). In order that all
tetrahedra are either completely in P+ or completely in P−, one needs to refine τ as follows.
In P−, the subtetrahedra are [O1, I1, I2, I3], [O1, O2, I2, I3] and [O1, O2, O3, I3]. The only new
tetrahedron on the other side is of course [I1, I2, I3, A].

For the second case, let a1 and b1 be two nodes of τ in P+. The four intersections of the
edges of τ with the plane P are designated by n1, n2, n3, n4. Suppose also that ni are given
in the ordering shown as in Fig. 10(b). From those nodes, the obtained local tetrahedra are
[a1, b1, n3, n4], [n1, n3, n4, b1] and [n1, n2, n3, b1]. The same construction can be repeated to the
nodes a2 and b2 on the other side P−.

At this point, we have a tetrahedral mesh where a tetrahedron is either completely inside or
completely outside the mesh M. To generate the nonconvex tetrahedralization, one needs to
discard the tetrahedra which are outside the mesh M. One generates a connectivity graph G
whose nodes are represented by the tetrahedra. An edge between two nodes n1 and n2 of the
graph G is inserted if the corresponding two tetrahedra share a triangular face. One then selects
the connected component of G for which the union of the corresponding tetrahedra are covered
by a triangular surface which coincides with the triangular boundary mesh M. The above
process was only performed to recover the triangular boundary mesh M. After that recovery
process, one can improve the tetrahedral mesh T by using shifting and flipping operations [4, 8].

4.2 Curved tetrahedral mesh

The purpose of this section is the deduction of the curved tetrahedralization T̃ from the curved
triangulation M and the straight tetrahedralization T . Thus, the process consists in converting
the straight tetrahedral mesh into a curvilinear one. The first step in that convertion consists
of course in replacing the boundary triangles of T by the triangular faces of M. Thus, the
boundary edges of T̃ are defined to correspond to the boundary edges of M while the internal
edges of T̃ are exactly the same as those of T . Afterwards, we need to generate the internal
triangular faces of T̃ . Note that it is possible that some triangular faces could be nonplanar

12

O1

O2

O3

I1

I2

I3

A

(a)

a1

b1

a2 b2

n1 n2

n3n4

(b)

x

y

z

∆2
ref

∆3
ref

s

t

Fi

u

v

w

X

(c) (d)

Figure 10: (a)Three nodes of the tetrahedron are on one side and one on the other of a cutting plane. (b)Two nodes
on each side of the cutting plane. (c)Tetrahedral transfinite interpolation. (d)Triangular Bézier function for n = 3.

although they are completely inside the domain Ω. That occurs when some of their edges are
boundary edges which are curved. To that end, one uses transfinite interpolations to combine
three edges of T̃ . For instance, one can use the Coons map of three spatial curves.

Now that all curved edges and faces are set, we generate then the curvilinear tetrahedral mesh
T̃ in which we replace every straight tetrahedron τ of T by τ̃ that is obtained from τ by taking
the transfinite interpolation (see Section 5.1) of the four corresponding curved triangular faces.
Due to that construction the global continuity introduced in Section 2.2 follows because every
two adjacent tetrahedra have common triangular faces which possess the same parametrization.

At this stage, there might of course be some interference problems. Some curvilinear trian-
gular faces of one tetrahedron in T̃ might have an internal intersection. Some edges which are
certainly sharp from the tetrahedral mesh T might be smoothened out in T̃ after the convertion
process. These interference problems can be detected by using the process which we describe
in section 5. Generally speaking, the existence of such interferences inccurs that the approxi-
mation of the curved triangular mesh M by the straight triangular mesh M in the vicinity of the
interference is too coarse. That is, they usually occur next to the boundary. Below, we propose
an approach for circumventing that conflicting interference.

We keep a graph which stores the adjacency information of the whole tetrahedralization
T̃ . Suppose that τ is a curvilinear tetrahedron of T̃ such that the transfinite interpolation with
respect to τ is not regular. The remedy is processed in two attempts. First, we search for
neighboring tetrahedra to τ by using the adjacency graph. We try then to apply some flipping
operations [4] to them. Afterwards, we retry to check regularity of the flipped tetrahedra. If that
process solves the problem then we stop. Otherwise, we group all the tetrahedra adjacent to τ
and insert a new node on each curved boundary edge between every two of them. The next step
consists in the local retetrahedralization of the grouping and in replacing the old local tetrahedra
from the grouping by the new ones. By repeating the above steps the curved edge are getting
more and more straight and after sufficient application of that process, all consisting tetrahedra
must become regular.

5 REGULARITY FOR TETRAHEDRAL INTERPOLATION

Let us first introduce some notations. Multi-indices will be denoted by bold Greek letters α =
(α1, · · · , αm) such as αi ∈ N0 in which we have |α| :=

∑m

p=1 αp. We introduce the following

13

definitions:
Ωm−1

n := {α = (α1, ..., αm) ∈ N
m
0 : |α| = n}. (22)

uα = (u1, ..., um)(α1,...,αm) := uα1

1 · · ·uαm

m , and ∂αf :=
∂α1

∂uα1

1

· · · ∂αm

∂uαm
m

f. (23)

5.1 Tetrahedral transfinite interpolation

Let us first introduce the notion of transfinite interpolation where we consider the following
reference domains:

∆2
ref := {σ = (s, t) ∈ R

2 : s ≥ 0, t ≥ 0, s + t ≤ 1}, (24)
∆3

ref := {u = (u, v, w) ∈ R
3 : u ≥ 0, v ≥ 0, w ≥ 0, u + v + w ≤ 1}. (25)

Suppose that we have four triangular surfaces Fi : ∆2
ref −→ R

3 where i = 1, · · · , 4. A
transfinite interpolant is a function X : ∆3

ref −→ R
3 which verifies the following boundary

conditions:

X(u, v, 0) = F1(v, u) X(u, 0, w) = F2(u, w)
X(0, v, w) = F4(w, v) X(u, v, 1− u − v) = F3(v, 1 − u − v).

(26)

In order that these conditions can be fulfilled, it is necessary to assume compatibility conditions
which are generalization of 5 for tetrahedra. They consists of 6 conditions at the edges of
∆3

ref and 4 conditions at the corners of ∆3
ref . We consider also blending functions pi which are

polynomials defined on ∆3
ref . Each one of them takes zero value at one side of ∆3

ref and they
sum to unity. The complete form of tetrahedral transfinite interpolation is

X(u) := p3(u)F4(u + w, v) + p2(u)F4(w, u + v) + p1(u)F1(v, u + w)

+p2(u)F1(v + w, u) + p4(u)F1(v, u) + p4(u)F4(w, v) + p4(u)F2(u, w)

+p1(u)F1(u + v, w) − p4(u)F2(0, w) + p1(u)F3(v, w) + p1(u)F3(0, 0)

−p1(u)F3(0, 0) − p3(u)F4(1 − v, v) − p2(u)F4(w, 1 − w) − p4(u)F4(0, v)

−p2(u)F4(0, u + v + w) + p3(u)F1(u, v + w) − p3(u)F2(0, u + v + w)

−p1(u)F3(0, w) − p2(u)F1(1 − u, u) − p1(u)F1(v, 1 − v) − p4(u)F1(0, u)

+p3(u)F2(0, 1) + p2(u)F1(1, 0) + p4(u)F4(0, 0) + p3(u)F3(v, 1 − v − u)

+p2(u)F1(1 − w − u, w)− p1(u)F1(0, u + v + w) − p3(u)F3(0, 1 − u).

In practical hierarchical mesh generation, it is important that the transfinite mapping X is regular

J (u, v, w) = det[X(u, v, w)] 6= 0 ∀ (u, v, w) ∈ ∆3
ref . (27)

5.2 Blossom and multivariate Bézier representation

Since we suppose that the triangular faces Fi are represented in Bézier form [15], we will
introduce the definition and certain properties of Bézier in this section. Consider a d-simplex
(d = 2, 3) of definition ∆ with apices t0,...,td. By using the barycentric coordinates λi(u) of
each point u ∈ ∆, we define

B∆,n

(β0,...,βd)(u) :=
n!

β0! · · ·βd!
λ0(u)β0 · · ·λd(u)βd. (28)

14

We have the identity B∆,n

(β0,...,βd)(u) = λ0(u)B∆,n−1
(β0−1,...,βd)(u) + · · ·+ λd(u)B∆,n−1

(β0,...,βd−1)(u). For
the particular case where the simplex of definition ∆ is the unit simplex, the above definition
reduces to

n!

β0!β1! · · ·βd!
(1 − u1 − · · · − ud)

β0uβ1

1 · · ·uβd

d . (29)

A Bézier function defined for u ∈ ∆ is given by

Y(u) =
∑

|(β0,...,βd)|=n

b(β0,...,βd)B∆,n

(β0,...,βd)(u) (30)

where the points bβ = b(β0,...,βd) ∈ R
3 are the control points. The corelation between the

control points and the polynomials can be expressed with the help of the blossoming which we
recall briefly now. A function P is a polar form or a blossom function [15] if it is multiaffine:
for all λa ≥ 0 and λb ≥ 0 such that λa + λb = 1, we have P(u1, · · · , λau

a
i + λbu

b
i , · · · ,un) =

λaP(u1, · · · ,ua
i , · · · ,un) + λbP(u1, · · · ,ub

i , · · · ,un) and symmetric: for any permutation π
of {1, ..., n}, we have P(u1,u2, · · · ,un) = P(uπ(1),uπ(2), · · · ,uπ(n)). For each multivariate
polynomial f of degree n, there is a unique blossom function P(f) such that we have the next
diagonal property:

P(f)(u, · · · ,u︸ ︷︷ ︸
n

) = f(u) ∀u ∈ R
d. (31)

The blossom P(Y) of the simplex Bézier function Y can be evaluated at (u1, · · · ,un) with the
help of the next pyramid algorithm in which ek is the multi-index of Ωd

n having unity at the k-th
entry and zeros at all other entries.

Algorithm: Pyramid algorithm for multivariate blossom
1: Initialize b0

δ := bδ for all δ ∈ Ωd
n

2: for (l = 1, · · · , n)

3: bl
δ :=

∑d
k=0 λk(ul)b

l−1
δ+ek

∀ δ ∈ Ωd
n−l

4: enddo
5: Define P(Y)(u1, · · · ,un) := bn

0
where 0 = (0, · · · , 0) ∈ Ωd

0

The blossom function of the simplex Bézier in (30) and the control points are related with the
following relation

bβ = P(Y)(t0, · · · , t0︸ ︷︷ ︸
β0

, t1, · · · , t1︸ ︷︷ ︸
β1

, · · · , td, · · · , td︸ ︷︷ ︸
βd

). (32)

Above, we use tetrahedral transfinite interpolation as a combination of the triangular faces
which are Bézier functions. In [16], one can find a method of representing the blossom of a
product in terms of the blossom of each factor. By using that together with the pyramid al-
gorithm, one can represent the transfinite interpolation on the tetrahedron ∆3

ref as a tetrahedral
Bézier (30).

5.3 Subdivision of tetrahedral Bézier

Now, we want to carry over the subdivision techniques from the BEM case to tetrahedra. Let
us first formulate the expression of a Bézier function inside a smaller tetrahedron. Let Y be a

15

b400

b310
b220

b130

b040

b301

b211 b121
b031

b202 b112 b022

b103

b013

b004

(a) (b) (c)

A+ A−

(d)

Figure 11: (a)Control net with its control points. (b)Uniform subdivision. (c)Adaptive subdivision. (d)Sign
distribution on the subdivided triangle.

Bézier function with respect to ∆ = HULL{t0, ..., t3} as in (30). Consider another tetrahedron
∆̃ = HULL{t̃0, ..., t̃3} such that ∆̃ ⊂ ∆. We want to express Y with respect to ∆̃ such that

Y(u) =
∑

β∈Ω
3
n

b̃βB∆̃
β (u) =

∑

β∈Ω
3
n

bβB∆
β (u) ∀u ∈ ∆̃ ⊂ ∆. (33)

For each multi-index β = (β0, ..., β3) ∈ Ω3
n, in order to find the control points b̃β with respect

to the new tetrahedron of definition ∆̃, we apply the pyramid algorithm from Section 5.2 to

(w1, ...,wn) := (̃t0, · · · , t0︸ ︷︷ ︸
β0

, t̃1, · · · , t̃1︸ ︷︷ ︸
β1

, · · · , t̃3, · · · , t̃3︸ ︷︷ ︸
β3

) (34)

by using the blossom of the original Bézier function (30). The new control points b̃β are then
obtained from the connection formula (32). That is to say, we have b̃β = P(Y)(w1, ...,wn).
In order to introduce the notion of recursive subdivisions, suppose that a Bézier function has
a tetrahedron of definition ∆ ⊂ R

d where the apices are tp. The subdivision scheme consists
in decomposing ∆ into several subtetrahedra as follows. First, a new node is introduced at the
middle of each edge of ∆. Then, one decomposes the parent tetrahedron into several subtetrahe-
dra as illustrated in Fig. 11(b). The same subdivision process can be applied to each one of the
resulting subtetrahedra. By doing that repeatedly, let us denote by ωN the number of tetrahedra
after N subdivisions. That is, we have tetrahedra ∆N,k where the apices are denoted by tN,k

p

for k = 1, 2, ..., ωN . Additionally, we will denote the control point by bN,k
β . That is, we have on

each tetrahedron ∆N,k the following representation

YN,k(u) =
∑

β∈Ω
d
n

bN,k
β B∆N,k

β (u). (35)

The maximal length of the initial edges will be denoted by h := maxp 6=q ‖tp − tq‖. In our case
of tetrahedral transfinite interpolation, we suppose that the apices ti of the first tetrahedron of
definition are composed of the corners of the unit reference tetrahedron ∆3

ref , that is ∆ := ∆3
ref .

A tetrahedral mapping is regular if the determinant is of constant sign. Throughout this paper,
we suppose it is positive. Additionally, although the determinant is positive but very small, we
consider that as irregularity. As a consequence, the regularity definition in (27) can be replaced
by

J (u) = det[X(u, v, w)] ≥ δ ∀u = (u, v, w) ∈ ∆3
ref , (36)

16

for some prescribed constant δ > 0. By using the above techniques, we will suppose that J is
given as tetrahedral Bézier with scalar control points bN,k

β .

Theorem 5.1 Suppose that we have regularity and that J (u) ≥ δ > 0. Then, for sufficiently
many subdivisions, for all k ∈ {1, ..., ωN} and β ∈ Ωd

N the Bézier control points bN,k
β on each

subtetrahedron verify:

bN,k
β = P(J)(T) + O

(
max
i6=j

‖tN,k
i − tN,k

j ‖2
)
. (37)

Thus, the expected number of subdivisions to ensure the positivity of those Bézier coefficients
bN,k
β is of the following order

N ∼
⌈
log2

(√δ

h

)⌉
(38)

where ⌈x⌉ denotes the smallest integer which is larger than x.

PROOF. Consider the k-th subtetrahedron ∆N,k on the N-th subdivision. For each multi-
index γ = (γ0, · · · ,γd) ∈ Ωd

n, we define qγ :=
∑d

j=0(γj/n)tN,k
j . Consider the following two

sequences of the same length

T := (tN,k
0 , · · · , tN,k

0︸ ︷︷ ︸
γ0

, · · · , tN,k
d , · · · , tN,k

d︸ ︷︷ ︸
γd

) (39)

T̃ := (qγ, · · · ,qγ︸ ︷︷ ︸
n

) (40)

We apply a multi-variate Taylor expansion of second order to the blossom P(J):

P(J)(T̃) = P(J)(T) +
∑

|α|=1

(T − T̃)α∂αP(J)(T) + O
(

max
i6=j

‖tN,k
j − tN,k

j ‖2
)
. (41)

Since the blossom is symmetric, the first partial derivatives are the same such that for all |α| = 1
we have ∂αP(J)(T) = K. Moreover, for |α| = 1 we have α = (0, ..., 0, 1, 0, ..., 0) where the
unity is at some i-th entry. Thus, by using the notation from (23), we have (T−T̃)α = t

N,k
i −qγ.

As a consequence, the above Taylor expansion becomes

P(J)(T̃) = P(J)(T) + K

3∑

i=0

γi(t
N,k
i − qN,k

γ) + O
(

max
p 6=q

‖tN,k
p − tN,k

q ‖2
)
. (42)

On the other hand, we have
3∑

i=0

γi(t
N,k
i − qN,k

γ) =
3∑

i=0

γi

[(
1 − γi

n

)
tN,k
i −

∑

j 6=i

γj

n
tN,k
j

]

=
[3∑

i=0

γi

∑

j 6=i

γj

n
tN,k
i

]
−

[3∑

j=0

∑

j 6=i

γj

n
γjt

N,k
i

]
= 0.

Thus, the sum with respect to |α| = 1 in (41) vanishes and we obtain

P(J)(T̃) = P(J)(T) + O
(

max
i6=j

‖tN,k
i − tN,k

j ‖2
)

= P(J)(T) + O
(1

22N
max
i6=j

‖ti − tj‖2
)
.

17

We use the relation (32) between the control points and the blossom in order to deduce

bN,k
γ ≥ δ + O

(1

2N
h
)2

. (43)

The coefficients bγ are therefore positive for sufficiently many subdivisions. Moreover, the
expected number of subdivision N verifies 2−N ∼

√
δ/h.

�

The above method for tetrahedra gives rise to an adaptive subdivision technique which is similar
to the one in Section 3.2 and [6] (see also Figs.11(c) and 11(d)).

5.4 Efficiency improvment and practical results

Let us now see the improvment of the efficiency of the former algorithm. When the degree n
is large and we have many control points, the former method might become computationally
expensive. As a consequence, we want to show here a method of reducing the degree n while
still achieving regularity check. In our next description, we will need the Jacobi polynomials
[9, 7]. Since they are defined on [−1, +1] but we need results in [0, 1], we introduce the modified
Jacobi polynomials J

(α,β)
n (t) := P

(α,β)
n (2t − 1) for t ∈ [0, 1]. In fact, we will need only Jacobi

polynomials for the ultraspherical case α = β where we denote P
(α)
n := P

(α,α)
n and J

(α)
n :=

J
(α,α)
n . Additionally, we use only the case where α > (1 +

√
2)/4 and α ∈ N. We need a

norm for the polynomials on the unit tetrahedron. Consider a function f which is a multivariate
polynomial of degree n:

f(x1, x2, x3) =
∑

|γ|≤n

bγxγ1

1 xγ2

2 xγ3

3 x = (x1, x2, x3) ∈ ∆3
ref . (44)

Let us introduce for the polynomial f the quantity

‖f‖∆3
ref

:= max
x∈∆3

[
3∏

i=1

(1 − xi)
kxk

i

]
|f(x)|. (45)

By using continuity argument, we can show that ‖ · ‖∆3
ref

defines a norm on the polynomials
of ∆3

ref . In order to reduce the computational cost, we would like to find f̃ which has the
same shape as f but which has a lower degree m < n. Without loss of generality we suppose
m = n − 1. The definition of f̃ will be done by using the Jacobi polynomial and the error
‖f − f̃‖∆3

ref
will be analyzed. Consider the case k ∈ N such that k ≥

⌈
α
2

+ 1
4

⌉
. Consider a

multivariate polynomial f ∈ Πn(R3) with bounded n-th derivatives such that for all |γ| = n,
we have:

1

γ!

∣∣∂γf(x)
∣∣ =

1

γ1! · · ·γ3!

∣∣∣∣
∂γ1

∂xγ1

1

· · · ∂γ3

∂xγ3

3

f(x1, x2, x3)

∣∣∣∣ ≤ C ∀x ∈ ∆3
ref . (46)

It is shown in [13] that there is a polynomial f̃ ∈ Πn−1(R
3) of the following form

f̃(x) :=
∑

|γ|≤n−1

cγ

3∏

j=1

x
γj

j −
∑

|γ|=n

cγ

3∑

q=1

Rγq
(xq)

q−1∏

j=1

x
γj

j

3∏

j=q+1

(x
γj

j − Rγj
(xj)) (47)

18

(a) (b)

Figure 12: CAD decomposition for FEM

such that the error is given by

‖f − f̃‖∆3
ref

≤ K
1

22n

∑

|γ|=n

3∏

i=1

2−2k+α+0.5 (1 + α/ max{1, γi})
(2γi+2α

γi
)

, (48)

where the constant K depends only on α. It is beyond this article to detail the proof [13] but
mainly we use the next idea. Since the leading coefficient of the Jacobi polynomial P

(α)
q is lq :=∏q

j=1(q + j +2α)/2j, the polynomial J̃
(α)
q := J

(α)
q /(2qlq) is monic. The result is obtained from

Taylor expansion of f at 0 = (0, · · · , 0). Note that in the previous analysis, the multivariate
function f from relation (44) is given in monomial basis but we need results in Bézier structure
as discussed in the former sections. That holds also for the degree reduced polynomial f̃ . In
order to obtain Bézier representation, one can represent the Jacobi polynomials in terms of
Bézier as discussed in [9]:

P (α)
n (t) =

n∑

i=0

(−1)n−i
(n+α

i
)(n+α

n−i
)

(n

i
)

Bn
i (t). (49)

Then, one needs only to transform that in the appropriate simplex of definition as we described
in (33). Afterwards, the function f̃ can be represented in Bézier of degree (n − 1) by using
the pyramid algorithm of Section 5.2. The Bézier control points of f̃ can be deduced from the
blossom and the pyramid algorithm by applying formula (32). In [13], we have presented some
numerical results about the estimates in (48).

Finally, let us now present some practical results of the above curved tetrahedral mesh gen-
eration. We have used the two models which are found in Fig.12 where the input CAD data are
obtained from IGES formats. The CAD models have respectively 50 and 201 surfaces (trimmed
and untrimmed). The resulting hierarchical meshes have respectively 374 and 1451 coarse
curved tetrahedra. Our software is not yet optimal but for now the first model requires less than
2 minutes and the second one less than 3 minutes for decomposition with points evaluation at
level 3. The computation has been performed on a machine with processor Intel Core 2.16GHz
running Windows Vista.

19

REFERENCES

[1] G. Brunnett, Geometric Design with Trimmed Surfaces. Computing Supplementum, 10,
101–115, 1995.

[2] W. Dahmen and A. Kunoth, Adaptive Wavelet Methods for Linear–Quadratic Elliptic Con-
trol Problems: Convergence Rates. SIAM J. Contr. Optim., 43, No. 5, 1640–1675, 2005.

[3] C. de Boor, A Practical Guide to Splines. Springer-Verlag, New York, 1978.

[4] H. Edelsbrunner and N. Shah, Incremental topological flipping works for regular triangu-
lations. Algorithmica, 15, No. 3, 223–241, 1996.

[5] M. Floater, Arc Length Estimation and the Convergence of Polynomial Curve Interpola-
tion. BIT, 45, No. 4, 679–694, 2005.

[6] H. Harbrecht and M. Randrianarivony, From Computer Aided Design to Wavelet BEM.
To appear in Journal Computing and Visualization in Science (article in press), 2009.

[7] H. Kim and Y. Ahn, Good Degree Reduction of Bézier Curves Using Jacobi Polynomials.
Pergamon, 40, 1205–1215, 2000.

[8] H. Ledoux, C. Gold and G. Baciu, Flipping to Robustly Delete a Vertex in a Delaunay
Tetrahedralization. ICCSA, 1, 737–747, 2005.

[9] A. Rababah, Jacobi-Bernstein Basis Transformation. Comput. Methods Appl. Math. 4,
No. 2, 206–214, 2004.

[10] M. Randrianarivony, On Global Continuity of Coons Mappings in Patching CAD Surfaces.
To appear in Computer-Aided Design (article in press), 2009.

[11] M. Randrianarivony, Geometric Processing of CAD Data and Meshes as Input of Integral
Equation Solvers, Ph.D. thesis, Technische Universität Chemnitz, 2006.

[12] M. Randrianarivony and G. Brunnett, Molecular Surface Decomposition using Geometric
Techniques, Conf. Bildverarbeitung für die Medizine, Berlin, pp. 197–201, 2008.

[13] M. Randrianarivony, Tetrahedral Transfinite Interpolation with B-patch faces: construc-
tion and regularity, INS Preprint 0803, University of Bonn, 2008.

[14] R. Schneider, Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden
zur Lösung grosser vollbesetzter Gleichungssysteme. Teubner, Stuttgart, 1998.

[15] H.–P. Seidel, Polar Forms for Geometrically Continuous Spline Curves of Arbitrary De-
gree, ACM Trans. Graph. 12, No. 1, 1–34, 1993.

[16] K. Strøm, Products of B-patches. Numer. Algorithms 4, No. 4, 323–337, 1993.

[17] H. Zimmer, Voronoi and Delaunay Techniques, Lecture Notes, Computer Sciences VIII,
RWTH Aachen, 2005.

20

	INTRODUCTION
	CAD REPRESENTATION AND PROBLEM FORMULATION
	Description of the input CAD models
	Problem setting for BEM and FEM

	Geometric processing for BEM
	Decomposition into four-sided patches
	Transfinite interpolation and subdivision
	Global continuity

	Curved decomposition for FEM
	Straight tetrahedral mesh
	Curved tetrahedral mesh

	Regularity for tetrahedral interpolation
	Tetrahedral transfinite interpolation
	Blossom and multivariate Bézier representation
	Subdivision of tetrahedral Bézier
	Efficiency improvment and practical results

