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Abstract. Modern engineering design often considers uncertainties in geometrical and mate-
rial parameters and in the loading conditions. Based on initial assumptions on the stochastic
properties as mean values, standard deviations and the distribution functions of these uncertain
parameters a probabilistic analysis is carried out. In many application fields probabilities of
the exceedance of failure criteria are computed. The out-coming failure probability is strongly
dependent on the initial assumptions on the random variable properties. Measurements are al-
ways more or less inaccurate data due to varying environmental conditions during the measure-
ment procedure. Furthermore the estimation of stochastic properties from a limited number of
realisation also causes uncertainties in these quantities. Thus the assumption of exactly known
stochastic properties by neglecting these uncertainties may not lead to very useful probabilistic
measures in a design process [1].

In this paper we assume the stochastic properties of a random variable as uncertain quanti-
ties caused by so-called epistemic uncertainties. Instead of predefined distribution types we use
the maximum entropy distribution [2] which enables the description of a wide range of distri-
bution functions based on the first four stochastic moments. These moments are taken again as
random variables to model the epistemic scatter in the stochastic assumptions. The main point
of this paper is the discussion on the estimation of these uncertain stochastic properties based
on inaccurate measurements. We investigate the bootstrap algorithm [3] for its applicability to
quantify the uncertainties in the stochastic properties considering imprecise measurement data.
Based on the obtained estimates we apply standard stochastic analysis on a simple example to
demonstrate the difference and the necessity of the proposed approach.
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1 INTRODUCTION

In practical applications of probabilistic models generally a very limited number of obser-
vations is available to choose a suitable distribution type and to estimate the corresponding
stochastic parameters. Due to the small number of samples and varying measurement con-
ditions these distributions can not be estimated exactly. Probabilistic measures as the failure
probability are strongly dependent on the initial assumptions on these distributions. Thus the
assumption of exactly known stochastic properties by neglecting these uncertainties may not
lead to very useful results in a design process as shown by [1]. Thus in this paper we con-
sider these uncertain distributions by using maximum entropy distributions based on uncertain
stochastic moments. In many studies it has been shown that this formulation is very flexible
to model different distribution types. We quantify the parameter uncertainties by the bootstrap
method and use a random variable description of the stochastic parameters to estimate the re-
sulting variation of the failure probability.

2 MAXIMUM ENTROPY DISTRIBUTION

2.1 Determination of density function

Based on the entropy principle proposed by [4] entropy distributions are defined to be those
which maximize the information entropy measure

H = −
∫
Dx

fX(x) log(fX(x))dx (1)

where fX is the probability density function and Dx is the domain of the random variable X .
Introducing m+ 1 moment constraints

µ′i = E[X i] =

∫
Dx

xifX(x)dx i = 0, 1, . . . ,m (2)

with µ′0 = 1, such an entropy distribution can be expressed as

fX(x) = exp

(
λ0 +

m∑
i=1

λix
i

)
. (3)

In many studies e.g. in [5], [6] and [2] it was shown that the first four moments are sufficient
to describe a wide range of distribution types. The formulation using absolute moments in
Equation 2 can be modified for the central moments

µi = E[(X − X̄)i] =

∫
Dx

(x− X̄)ifX(x)dx, i = 1, . . . ,m (4)

where the mean value X̄ of a random variable is its first absolute moment.

X̄ = E[X] =

∫
Dx

xfX(x)dx. (5)

The first central moment µ1 is zero and the second central moment is the variance σ2
X .

σ2
X = E[(X − X̄)2] =

∫
Dx

(x− X̄)2fX(x)dx. (6)
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According to [5] the entropy distribution based on central moment constraints reads

fX(x) = exp

(
ν0 +

m∑
i=1

νi(x− X̄)i

)
(7)

where exp(ν0) = 1/c is a constant normalizing the area under the density function. If a stan-
dardized random variable is defined

Y =
X − X̄
σX

(8)

the maximum entropy distribution can be obtained from the standardized central moment con-
straints

ki =
µi
σiX

, i = 1, . . . ,m, k1 = 0, k2 = 1, (9)

where the third and fourth standardized central moments are the skewness γ1 and the the kurtosis
γ2

γ1 = k3 =
µ3

σ3
X

, γ2 = k4 =
µ4

σ4
X

. (10)

From this standardized constraints the distribution parameters can be obtained very efficiently
as shown in [2] and [7]. The final maximum entropy distribution is than obtained for the stan-
dardized random variable Y

fY (y) =
1

c′
· exp

(
m∑
i=1

ν ′iy
i

)
, (11)

and finally for the original random variable X as

fX(x) =
1

c′ · σX
· exp

(
m∑
i=1

ν ′i

(
x− X̄
σX

)i)

=
1

c
· exp

(
m∑
i=1

νi(x− X̄)i

)
,

c = c′ · σX , νi =
ν ′i
σiX

.

(12)

Special types of the maximum entropy distribution are the uniform distribution (ν ′1 = ν ′2 =
ν ′3 = ν ′4 = 0, c′ =

√
12), the exponential distribution (ν ′1 = −1, ν ′2 = ν ′3 = ν ′4 = 0, c′ = e) and

the normal distribution (ν ′2 = −0.5, ν ′1 = ν ′3 = ν ′4 = 0, c′ =
√

2π).
In the Figures 1, 2 and 3 the density functions of maximum entropy distributions based

on the first four moments compared to these of other common distribution types are shown.
The figures indicate a very good agreement for the log-normal distribution with a coefficient
of variation of 20% and a sufficient agreement for the log-normal and Gumbel distribution
with higher variation. For the Rayleigh distribution the agreement is sufficient for positive
values above 0.5, but for smaller values a remarkable deviation is observed. Apart from this
case the maximum entropy distribution allows a very flexible representation of random variable
distributions.
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Figure 1: Log-normal and corresponding maximum entropy distributions for different standard deviations
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Figure 2: Gumbel and Max-Ent distributions
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Figure 3: Rayleigh and Max-Ent distributions

2.2 Sampling of realizations

If we want to apply the obtained maximum entropy density function for a probabilistic analy-
sis the generation of discrete samples out of the given distribution is necessary. For an arbitrary
type of distributions we can perform this procedure for example with the Metropolis-Hastings
algorithm [8] by using only the density function itself. If we want to apply more sophisticated
sampling procedures, e.g. Latin Hypercube Sampling, the easiest way to generate samples is to
transform samples from a uniform or normal distribution by the inverse cumulative distribution
function.

For the presented maximum entropy distribution the cumulative distribution function is given
as

FX(x) =

∫ x

−∞
fX(τ)dτ =

∫ x

−∞

1

c
· exp

(
m∑
i=1

νi(τ − X̄)i

)
dτ, i = 1, 2, 3, 4. (13)

For the general case the integral in Equation 13 can not be solved analytically. Thus we apply
a numerical integration to obtain FX . Based on a standard normally distributed variable Z
discrete samples xi of the maximum entropy variable X can be obtained as

xi = F−1
X [Φ(zi)]. (14)

If we consider a pice-wise linear cumulative distribution function obtained by numerical inte-
gration, the values of the inverse distribution function F−1

X can be directly calculated.
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2.3 Extension for multivariate distributions

An arbitrary number of random variables can be arranged in a random vector

X = [X1, X2, . . . , Xn]T (15)

with the mean value vector
X̄ =

[
X̄1, X̄2, . . . , X̄n

]T
. (16)

The corresponding covariance matrix, containing the pair-wise values of the covariance func-
tion, is defined as

CXX = E
[(

X− X̄
) (

X− X̄
)T]

. (17)

This leads to the coefficient of correlation between two random variables X1 and X2 as follows

ρ12 =
E
[(
X1 − X̄1

) (
X2 − X̄2

)]
σX1σX2

. (18)

For a single random variable the maximum entropy distribution is obtained by considering
only the moment constraints. For the multivariate distribution the correlations between each pair
of random variables has to be taken into account as well. This would lead to an optimization
problem with 4n optimization parameters with 4n constraints from the marginal moment condi-
tions and n(n+ 1)/2 constraints from the correlation conditions, where n is number of random
variables. This concept was recently applied in [9] to determine the joint density function. For
a larger number of random variables the solution of this optimization problem is numerically
very demanding.

In our study we avoid this high dimensional optimization problem by applying the Nataf
model [10], [11] to construct multivariate distributions. In this model a vector of standard
normally distributed random variables

Z = [Z1, Z2, . . . , Zn]T (19)

is obtained by the marginal transformation of the original random vector X as

Zi = Φ−1[FXi
(Xi)], i = 1, . . . , n. (20)

By assuming that Z is jointly normal distributed, the joint probability density function of X
reads

fX(x) = fX1(x1) . . . fXn(xn)
φn(z,CZZ)

φ(z1)φ(z2) . . . φ(zn)
, (21)

where zi = Φ−1[FXi
(xi)], φ(.) is the standard normal probability density function and φn(z,CZZ)

is the n-dimensional standard normal density depending on the covariance matrix of Z. The el-
ements of this covariance matrix are the correlation coefficients of Z

CZZ(Zi, Zj) = ρ̃ij, (22)

which are defined in terms of the correlation coefficients ρij of the original random vector X as

ρij =

∞∫
−∞

∞∫
−∞

(
xi − X̄i

σXi

)(
xj − X̄j

σXj

)
fXi

(xi)fXj
(xj)

φ2(zi, zj, ρ̃ij)

φ(zi)φ(zj)
dxi dxj,

=

∞∫
−∞

∞∫
−∞

(
xi − X̄i

σXi

)(
xj − X̄j

σXj

)
φ2(zi, zj, ρ̃ij) dzi dzj.

(23)
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By applying the presented Nataf model the multivariate distribution function is obtained by
solving the optimization problem with four parameters for each random variable independently.
The successful application of the model requires a positive definite covariance matrix CZZ and
continuous and strictly increasing distribution functions FXi

(xi). In our study Equation 23 is
solved iteratively to obtain ρ̃ij for each pair of marginal distributions from the known correlation
coefficient ρij .

3 ESTIMATING PARAMETER UNCERTAINTIES BY THE BOOTSTRAP METHOD

Based on a given number of observations the uncertainties of random parameters shall be
estimated. An infinite number of observations xi of a random variable X is necessary to obtain
the statistical properties as mean value and variance exactly. For a finite number of observa-
tions the estimators of these parameters give only approximate solutions. In our study we want
to estimate these approximation errors of the statistical properties. For this purpose we utilize
the bootstrapping approach which was introduced by [3]. In the bootstrapping method the es-
timating properties of an estimator are obtained by sampling from an approximate distribution
which is generally the empirical distribution of the observed data. This method assumes in-
dependent and identically distributed observations and constructs a number of re-samples by
random sampling with replacement from the observation dataset. Based on this resampling sets
the properties of the estimated parameters including their distribution functions, confidence in-
tervals etc. can be obtained. Generally the number of samples in a single resampling set is taken
equal to the number of observations and the number of resampling sets has to be chosen very
large.

The standard approach uses a fixed set of samples to extract the bootstrap sample sets. This
analysis serves the statistical errors only cause by the small sample observations. In our study
we extend this method for imprecise observations. Each observation is assumed to be an in-
dependent single random variable with known mean and standard deviation and a given dis-
tribution type which is taken here as normally distributed. For each bootstrap sample set first
the observations are sampled from the given random variables and than the standard bootstrap
extraction is applied.

4 NUMERICAL EXAMPLE: RELIABILITY ANALYSIS OF A SHALLOW FOUNDA-
TION

We apply the presented maximum entropy concept within this example for the modeling
of the soil parameters and evaluate the influence of the parameter uncertainties on the failure
probability. The limit state function of the bearing failure of a simple strip foundation with pure
vertical loading can be derived based on [12] and [13] as

g = b · (γs · d ·Nd0 + γs · b ·Nb0 + c ·Nc0)−N − bhγc (24)

where b, d and h are geometrical properties as indicated in Figure 4 and γs and γc are the specific
weights of the soil and the concrete, respectively. The bearing capacity factor are given as

Nd0 = tan2
(

45◦ +
ϕ

2

)
· eπ·tanϕ, Nb0 = (Nd0 − 1) tanϕ, Nc0 =

Nd0 − 1

tanϕ
. (25)

In our investigation we consider the friction angle ϕ and the cohesion c of the soil as random
variables. All other quantities are taken as deterministic values. Based on the measurements
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Figure 4: Bearing failure surface of a shallow foundation with pure vertical loading

published in [14] where several specimen of Frankfurter clay have been analyzed, the variation
of the stochastic parameters are calculated. In the numerical analysis the spatial variability of
the soil parameters has to be locally averaged in order to obtain single random variables for the
soil parameters. According to [15] this averaging can be performed by an integration of the
correlation function. If we assume an isotropic and exponential correlation function

ρ(lH ,∆x) = exp

(
−2
|∆x|
lH

)
(26)

with the correlation length lH the following variance reduction function is obtained

Γ2(lH , lA) =
1

2

(
lH
lA

)2 [
2lA
lH
− 1 + exp

(
−2lA
lH

)]
(27)

where lA specifies the averaging length which is in our case the length of failure surface given
in Figure 4 as

lF = r0 + ls + r2. (28)

The value of the reduction function is obtained using the mean value of the friction angle and the
foundation geometry. The mean value of the friction angle from the samples in [14] is obtained
as 21.2◦. We assume the foundation geometry parameters as b = 3 m and d = h = 1 m
which leads to a failure length of lF = 13.7 m. Together with a correlation length of the soil
parameters of lH = 3.0 m according to [16] the value of the reduction function is obtained as
Γ = 0.44.

Before applying the bootstrap method the original samples from [14] are modified by the
reduction function as follows

ϕ′i = ϕ̄+ Γ(ϕi − ϕ̄), c′i = c̄+ Γ(ci − c̄). (29)

In Figure 5 the histograms of the modified samples are shown together with the correspond-
ing log-normal and maximum entropy density functions. For the friction angle both density
functions are almost identical whereas for the cohesion we remark a significant difference. Ad-
ditionally to the sample distributions the histograms from 10000 bootstrap samples from the

7



0.00

0.05

0.10

0.15

0.20

15 20 25 30

Pr
ob

ab
ili

ty
de

ns
ity

Friction angle ϕ′ [◦]

Modified samples
Pdf Log-Normal

Pdf Max-Ent

0.00

0.01

0.02

0.03

0.04

0.05

0.06

20 30 40 50 60 70 80

Pr
ob

ab
ili

ty
de

ns
ity

Cohesion c′ [kN/m2]

Modified samples
Pdf Log-Normal

Pdf Max-Ent

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

20.0 20.5 21.0 21.5 22.0 22.5

Pr
ob

ab
ili

ty
de

ns
ity

Mean value friction angle ϕ̄′ [◦]

Histogram bootstrap
Pdf TruncNormal

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

36.0 38.0 40.0 42.0 44.0 46.0

Pr
ob

ab
ili

ty
de

ns
ity

Mean value cohesion c̄′ [kN/m2]

Histogram bootstrap
Pdf TruncNormal

0.00

0.50

1.00

1.50

2.00

1.5 2.0 2.5 3.0 3.5

Pr
ob

ab
ili

ty
de

ns
ity

Standard deviation friction angle σϕ′ [◦]

Histogram bootstrap
Pdf TruncNormal

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

6.0 7.0 8.0 9.0 10.0 11.0 12.0

Pr
ob

ab
ili

ty
de

ns
ity

Standard deviation cohesion σc′ [kN/m2]

Histogram bootstrap
Pdf TruncNormal

0.00

0.50

1.00

1.50

-1.0 -0.5 0.0 0.5 1.0 1.5

Pr
ob

ab
ili

ty
de

ns
ity

Skewness friction angle γ1,ϕ′

Histogram bootstrap
Pdf Normal

0.00

0.50

1.00

1.50

2.00

-0.5 0.0 0.5 1.0 1.5

Pr
ob

ab
ili

ty
de

ns
ity

Skewness cohesion γ1,c′

Histogram bootstrap
Pdf Normal

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Pr
ob

ab
ili

ty
de

ns
ity

Kurtosis friction angle γ2,ϕ′

Histogram bootstrap
Pdf TruncNormal

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Pr
ob

ab
ili

ty
de

ns
ity

Kurtosis cohesion γ2,c′

Histogram bootstrap
Pdf TruncNormal

Figure 5: Maximum entropy distributions of the modified soil parameter samples and obtained distributions of the
uncertain stochastic parameters from the bootstrap approach assuming exact measurements
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fixed observation sets are shown for the mean value, the standard deviation, the skewness and
the kurtosis. The figure indicates a very good agreement of these histograms with a normal dis-
tribution except for the kurtosis where an un-symmetric distribution seems to be more suitable.
Since negative values are not possible for the mean value, the standard deviation and the kurtosis
of the soil parameters, the normal distribution is truncated below zero. In Table 1 the calculated
numerical values from the standard bootstrap samples are given. Additionally the results as-
suming imprecise measurements with the observation errors σϕ′

i
= 2.0◦ and σc′i = 5.0kN/m2

are given. The table indicates that some of the stochastic parameters obtained from the classical
bootstrap method are strongly correlated. Due to the observation noise these correlation values
are reduced and the variation of the mean value and of the standard deviation are increased. The
values of the skewness and kurtosis are slightly changed in the direction of a normal distribution
while their variation remains almost unchanged.

Friction angle ϕ′ [◦] Cohesion c′ [kN/m2]

Samples
Mean value X̄ 21.19 41.04
Standard deviation σX 2.68 9.01
Skewness γ1 0.32 0.43
Kurtosis γ2 3.15 2.26

Bootstrap results assuming exact measurements
Bootstrap estimates Mean Std. Mean Std.
X̄ 21.19 0.37 41.03 1.26
σX 2.64 0.27 8.88 0.73
γ1 0.29 0.31 0.42 0.23
γ2 3.09 0.51 2.28 0.43
Bootstrap correlations
ρX̄σX

0.21 0.37
ρX̄γ1 0.01 -0.59
ρX̄γ2 -0.13 -0.43
ρσXγ1 0.14 -0.09
ρσXγ2 -0.28 -0.36
ργ1γ2 0.48 0.78

Bootstrap results assuming imprecise measurements
Bootstrap estimates Mean Std. Mean Std.
X̄ 21.19 0.46 41.04 1.44
σX 3.30 0.33 10.18 0.91
γ1 0.14 0.33 0.27 0.27
γ2 2.96 0.61 2.55 0.47
Bootstrap correlations
ρX̄σX

0.09 0.23
ρX̄γ1 0.01 -0.27
ρX̄γ2 -0.2 -0.21
ρσXγ1 0.09 0.02
ρσXγ2 -0.04 -0.18
ργ1γ2 0.25 0.49

Table 1: Soil parameter estimation: classical and bootstrap results from exact and imprecise measurements
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Parameter distributions N [kN] βFORM PF

Log-normal 1000 3.84 6.1 · 10−5

1100 3.42 3.1 · 10−4

1200 3.05 1.1 · 10−3

1300 2.70 3.4 · 10−3

Maximum entropy 1000 4.04 2.7 · 10−5

1100 3.55 1.9 · 10−4

1200 3.12 8.9 · 10−4

1300 2.74 3.1 · 10−3

Table 2: Results of classical reliability analysis with increasing loading

Based on the mean values of the bootstrap results from the exact measurements we perform
a classical reliability analysis using the FORM approach. We apply log-normal and maxi-
mum entropy distribution types for the soil parameters ϕ′ and c′ and assume no correlation
between both. Using the geometry values b = 3 m and d = h = 1 m and the specific weights
γs = 17.7 kN/m3 and γc = 25.0 kN/m3 the reliability index and the corresponding failure prob-
ability are calculated for an increasing load N . The obtained results are given in Table 2. The
results indicate that with decreasing load the deviation of the failure probability between both
distribution types increases since the tails of the distributions become more significant. Thus
for small values of the failure probability the choice of the distribution type has an enormous
influence on the results of the reliability analysis.

In our final analysis we consider the variation in the stochastic parameters. Based on a
first order Taylor series approximation the variation of the failure probability can be computed
directly as

PF (p) ≈ PF (p0) + (p− p0)T
∂PF (p)

∂p

∣∣∣∣
p0

, (30)

where p is the vector of the uncertain stochastic parameters

p = [ϕ̄′, σϕ′ , γ1,ϕ′ , γ2,ϕ′ , c̄′, σc′ , γ1,c′ , γ2,c′ ] . (31)

The required derivatives can be obtained for the FORM approach very efficiently as reported
in [17]. Based on this Taylor series approximation the failure probability can be calculated
quite accurate for each specific sample of the stochastic parameters close to the mean value
vector p0. This calculation is performed here for all 10000 bootstrap samples. The resulting
histogram of the reliability index is shown in Figure 6 using log-normally distributed ϕ′ and c′

and in Figure 7 based on the maximum entropy distributions whereby for both cases exact and
imprecise measurements are investigated.

Based on the assumption of almost normally distributed stochastic parameters p the vari-
ance of the failure probability can be directly estimated from the covariance matrix of these
parameters

σ2
PF
≈ ∂PF (p)

∂p

∣∣∣∣T
p0

Cpp
∂PF (p)

∂p

∣∣∣∣
p0

. (32)

In the Figures 6 and 7 the resulting normal density function of the reliability index is shown
additionally. The figure indicates a very good agreement of the sample analysis and the Gaus-
sian approximation. In Table 3 the resulting standard deviations of the reliability index for both
methods including the 90% confidence intervals are given. The values clearly indicate, that
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Figure 6: Variation of the reliability index using log-normally distributed soil parameters
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Figure 7: Variation of the reliability index based on maximum entropy distributions

the calculated variation based on log-normally distributed soil parameters is much less as with
the maximum entropy distribution. This is caused by the fact that the obtained variation of the
skewness and kurtosis from the bootstrap analysis has no influence on the log-normal distribu-
tion. Thus the uncertainty in the distribution function itself can be much better represented with
the presented concept if the maximum entropy distribution is used. Additionally to the values
from the coupled analysis with correlated stochastic parameters the variation of the reliability
index is estimated assuming these parameters as uncorrelated. The obtained results, shown ad-
ditionally in Table 3, indicate that especially for the maximum entropy distribution type this
assumption leads to an over-estimation of the variation.

The consideration of imprecise measurements decreases the mean reliability index for both
distributions types whereas for the log-normal distribution its variation remains almost un-
changed but for the maximum entropy distributions the variation of the reliability index de-
creases.

5 CONCLUSIONS

In this paper we have presented an approach to model uncertainties in the distributions of
random variables by maximum entropy formulations based on the first four stochastic moments.
Since these moments can not be estimated exactly for small-sample observations we model them
as uncertain parameters. Based on a given set of observations we estimated the uncertainties
utilizing the bootstrap method. We observed an almost normal distribution of the mean value,
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Analysis method Mean value Stand. dev. 90% confidence interval

Exact measurements

Log-normal distributions
Classical FORM 3.840 - -
Bootstrap samples 3.841 0.288 3.362 - 4.319
Gaussian estimate correlated 3.840 0.290 3.363 - 4.317
Gaussian estimate uncorrelated 3.840 0.336 3.287 - 4.393

Maximum entropy distributions
Classical FORM 4.040 - -
Bootstrap samples 4.053 0.583 3.142 - 5.075
Gaussian estimate correlated 4.040 0.579 3.088 - 4.992
Gaussian estimate uncorrelated 4.040 0.966 2.451 - 5.629

Imprecise measurements

Log-normal distributions
Classical FORM 3.172 - -
Bootstrap samples 3.172 0.285 2.713 - 3.642
Gaussian estimate correlated 3.172 0.286
Gaussian estimate uncorrelated 3.172 0.310

Maximum entropy distributions
Classical FORM 2.855 - -
Bootstrap samples 2.855 0.347 2.28 - 3.415
Gaussian estimate correlated 2.855 0.347
Gaussian estimate uncorrelated 2.855 0.430

Table 3: Variation of the reliability index β using the bootstrap samples and Gaussian estimation by assuming
exact and imprecise measurements

the standard deviation and the skewness but a skewed distribution of the kurtosis.
We have estimated the variation of the computed failure probability for a bearing failure

problem of a shallow foundation based on the obtained variation of the stochastic parameters.
As an outcome we can summarize that the consideration of the uncertainties in the skewness and
kurtosis, which can be represented with the maximum entropy formulation, leads to remarkable
larger variations of the failure probability as obtained with a standard distribution type, where
only the mean value and the standard deviation are uncertain.

An approximation of the parameter distributions by a Gaussian density enables an efficient
estimation of the failure probability variation which agreed very well with the results of the
sample analysis in the investigated example.

Finally we can conclude that the presented extension of the bootstrap method is a very suit-
able and simple method to consider imprecise measurements even if varying measurement er-
rors and distributions are assumed.

6 ACKNOWLEDGMENT

This research has been supported by the German Research Council (DFG) through Research
Training Group 1462, which is gratefully acknowledged by the author.

12



REFERENCES

[1] A. Der Kiureghian. Analysis of structural reliability under parameter uncertainties. Prob-
abilistic Engineering Mechanics, 23:351–358, 2008.

[2] M. Rockinger and E. Jondeau. Entropy densities with an application to autoregressive
conditional skewness and kurtosis. Journal of Econometrics, 106:119–142, 2002.

[3] B. Efron. Bootstrap methods: another look at the Jackknife. The Annals of Statistics,
7(1):1–26, 1979.

[4] C.E. Shannon. The mathematical theory of communication. Bell Systems Technical Jour-
nal, 27:379–423, 1948.

[5] P.C. Basu and A.B. Templeman. An efficient algorithm to generate maximum entropy
distributions. International Journal for Numerical Methods in Engineering, 20:1039–
1055, 1984.

[6] A. Zellner and R.A. Highfield. Calculation of maximum entropy distributions and ap-
proximation of marginal posterior distributions. Journal of Econometrics, 37:195–2009,
1988.

[7] N. van Erp and P. van Gelder. Introducing entropy distributions. In C.-A. Graubner et al.,
editors, Proc. 6th Inter. Probabilistic Workshop, November 26-27, 2008, Darmstadt, Ger-
many. 2008.

[8] W.K. Hastings. Monte Carlo sampling methods using Markov chains and their applica-
tions. Biometrika, 57:97–109, 1970.

[9] C. Soize. Construction of probability distributions in high dimension using the maximum
entropy principle: Application to stochastic processes, random fields and random matrices.
International Journal for Numerical Methods in Engineering, 76:1583–1611, 2008.
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