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Abstract. There are many different approaches to simulate the mechanical behavior of RC
frames with masonry infills. In this paper, selected modeling techniques for masonry infills and
reinforced concrete frame members will be discussed — stressing the attention on the damaging
effects of the individual members and the entire system under quasi—static horizontal loading.
The effect of the infill walls on the surrounding frame members is studied using equivalent
strut elements. The implemented model consider in—plane failure modes for the infills, such as
bed joint sliding and corner crushing. These frame member models differ with respect to their
stress state. Finally, examples are provided and compared with experimental data from a real
size test executed on a three story RC frame with and without infills. The quality of the model is
evaluated on the basis of load—displacement relationships as well as damage progression due
to quasi—static horizontal loading.



1 INTRODUCTION

Increasing computational power and sophisticated software entice engineers to rise the com-
plexity of the structural modeling in civil engineering for gaining more accurate results. But
mainly two aspects seem to be notable. Once, more complex models mostly demand a higher
number of input parameters in order to provide more accurate results. Additionally, the deter-
mination of input parameters is accompanied with uncertainties, which consequently affect the
output parameters. This leads to the question of how reasonable such strategy is, what can be
expected from different models and how to evaluate these models. In this paper preliminary an-
swers are given for a reinforced concrete structure with and without masonry infills. Results are
presented for numerical simulations considering different models for the structural elements.
This chosen structure is of particular interest, because it had been built and tested in real size
by DOLSEK AND FAJFAR [1I]. Their modeling strategy including simulation results and several
construction details are used for comparison. A qualitative evaluation is done for the different
formulations of the structural models. Relying on that, further extensions to evaluate structural
models in a more general way will be discussed.

2 STRUCTURAL ELEMENTS OF RC FRAME SYSTEMS

Capturing the mechanical behavior of RC frame systems subjected to lateral loading and
considering damaging effects are still challenging tasks in civil engineering. Reasons for the
problems originate from the combination of two construction techniques — one is the reinforced
concrete frame members, and the other is the infill mostly masonry — into one interactive system.
In the elastic range, such a system is relatively simple to model. Considering different damaging
mechanism of reinforced concrete and masonry members additional effort is required to model
the system and to get reliable results. RC frames are mainly designed to carry loads by bending,
and hence they are relative flexible systems. In contradiction to this, infills act as relative stiff
diaphragms because of their shape and the type of loading by the surrounding frame. Of course,
infilled or partial infilled RC frames are stiffer than bare ones, furthermore the damaging be-
havior can change completely. The degree of mechanical interaction and reciprocal damaging
action of infill and frame depends on the following conditions:

e Properties of the frame members as stiffness and plastic behavior — location of hinging —
which lead to different loading states and restoring forces in the infill.

e Properties of the masonry block or brick units as Young’s modulus, strength, perforation
ratio, perforation shape, size, porosity, moisture content.

e Properties of the masonry mortar as strength, adhesion strength, moisture content, ten-
dency to shrink.

e Bond properties between units and mortar as, adhesion strength, manner of assembling,
workmanship.

e Construction properties of the panel as openings, brickwork bond, workmanship — surface
contact characteristic between infill and frame.

This relative high complexity leads obviously to a conflict in the aim to simulate such structures
numerically concerning the practical aspects. On one side, it has a lot to commend to form a
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Table 1: Models for structural elements used in RC frame structures to capture damaging effects
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The shaded models are used in the example.

complete model for the entire structure with elements that are able to catch nearly all known
effects. In such cases, a huge computational effort is inevitable. Moreover, it is most likely
to get no result at all, because of numerically instabilities, the needed time or the difficulty to
interpret the obtained results. On the opposite side are simulation strategies, which try to avoid
the problems aforementioned by preferring relatively simple models for the structural elements.
These models have only selected capabilities to describe the phenomenological behavior of a
structure. A substantial disadvantage is the need to know the occurring damaging mechanism
a priori in order to implement these extra features. More inside of the behavior the most ap-
propriate modeling technique could be obtained of instrumental testing and reinterpretation of
the observed response under horizontal action (cf. LANG ET AL. [2], ABRAHAMCZYK ET
AL. [3]]). In the following selected modeling techniques for reinforced concrete frame members
and masonry infills are introduced and discussed.

2.1 Elastic Beam Elements with Allocated Non-Linear Bending Hinges

Beams and columns are modeled using concentrated plastic hinge models or distributed plas-
tic hinge models to represent important failure characteristics of reinforced concrete beam and
column components subjected to lateral loading. The element model is not capable of represent-
ing inelastic response continuously along the member length. The yielding areas are restricted
to the component ends where the hinge models are placed as illustrated in Table[I} This mod-
els type are commonly recommended for use in codes as FEMA 273 [4] to get an overall
impression of the non—linear failure mechanism of a building. The hinges themselves are usu-
ally defined by a moment—rotation relationship or moment—curvature relationship over a certain
length. Where nonlinear response is expected in a mode rather than flexure, these models can
be established to represent these effects.
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Figure 1: Effect of lateral confinement in reinforced concrete members subjected by normal load according to
MANDER ET AL. [3]]

2.2 Continuously Non-Linear Properties with Beam or Column Elements

Instead of restricting the occurrence of damage to chosen areas by moment—curvature rela-
tionships, these zones could be extended over the whole element length. So it is possible to get
information about the damage distribution for the element. This behavior depends not only on
the mechanical properties of the main reinforcement and the concrete, but also on the normal
force condition and the lateral stiffness of the shear reinforcement influencing the damaging
response. Besides appropriate moment—curvature relationships, there is the possibility to model
the cross section in a discrete manner by distinguishing between main reinforcement, core con-
crete and concrete cover to consider their influence on the structural element separately. An ac-
cordingly method is proposed in MANDER ET AL. [3l], which enables to calculate an equivalent
uniaxial material law for the core concrete depending on the limitation of the Poisson—Effect
due to stiffened lateral reinforcement as shown in Fig.[I] That seems to be not only a simple and
reasonable way to take spatial stress states into the calculation, but also it enables the identifica-
tion of damaged areas observing strain conditions of the cross section. The consideration of the
confining effect in an uniaxial material law for concrete is presented in MANDER ET AL. [3]].
The relations are given as follows,
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Equation [2| calculates the maximum concrete strength f’.. due to the confinement. The value
of f’. is the maximum strength of the non—confined concrete and correspond to results of
standard compression test (H = 20cm, D = 10c¢m specimen). Other input parameters are

given by Egs. [3to[5]
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Equation [5|shows the area of effective confined concrete and is only valid for rectangular shaped
lateral reinforcement. The parameter b., by and s’ depends on geometrical properties of the
section, see Fig.[I}
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Equation [6] describes the non—confined area enclosed by the hoops founded by the arch action
developing in the concrete. Based on the assumption this arch is locally supported by the
reinforcement and the simplification of it shape is parabolic.

A = Ac— Asp (7

Ac - bc*dc (8)

A.. describes the area circumscribed by the centerline of the lateral reinforcement (A.) without
the area of main reinforcement Agy, see Eq.[7]and Fig.[I}

As:}c
= 10
P sxd, (10)
A,
o= (1)

The lateral reinforcement ratio is considered by ps. In Eq. Ay, is the entire amount of
reinforcement distributed over the distance s runs in x—direction. With this the y—direction
is defined as d., see Fig.[Il For A, (Eq. it is inverse. The yield strength of the lateral
reinforcement is given by f,5. In MANDER ET AL. [5] €.o = 0.002 is labeled together.
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According to MANDER ET AL. [5] Young’s modulus can be approximated by the empiric re-
lationship: E. ~ 5000y/f.o [N/mm?]. A further simplification is given in PAPADOPOU-
LOS AND XENIDIS [6] as f'., ~ 0.8 % f’.. to define the criteria for the ultimate strength of
the confined core concrete. Originally in MANDER ET AL. [S] the point of ultimate strength
(' cu, €cu) 1s examined by energy considerations and corresponds to the rupture of lateral rein-
forcement.

2.3 Three-Dimensional Discrete Modeling of RC Frame Members

The modeling is be done by distinguishing between spatial domains of composed materials.
The common mechanical and damaging behavior of a structural element is defined by the single
material behavior and interactions along its boundaries. A cascading approach on several levels
is possibly and named multi—scale approach. To use a model on a higher level, a larger spatial
scale, it is possible to complicate the constitutive relations to grasp more effects (e.g. concrete
cracking) as illustrated in Table[I] A reasonable approach for RC frame member is to model the
concrete apart form the reinforcement bars and to ensure that they interact with each other in the
intended way using contact elements. An advantage of such strategy is that simpler constitutive
relationships for each component can used to describe a complex structural element behavior.
These constitutive relationships of the concrete and reinforcement bars can be obtained from
numerical investigations on a smaller spatial scale. However, a general problem of discrete
modeling arises. The gain over using relative simple material laws is payed by the need of
knowledge of the location and the connection of different domains. On such small spatial scales,
itis common and useful to describe the distribution of the different domains stochastically, but to
perform a numerical simulation a defined distribution is necessary. So, to elevate the stochastic
character up to a larger spatial scale, a sufficient number of calculations has to be performed
resulting in huge numerical effort.

2.4 Three-Dimensional Continuum Modeling of RC Frame Members

Basis of the continuum concept is the assumption that the material properties can be averaged
over a representative volume. Therefore it is only feasible to describe macroscopic phenomena
of such a volume. The modeling of a structural element is executed by dividing it into a cer-
tain number of these representative volumes. Finally, the mechanical response of a structural
element subjected to a load can computed by solving the differential equations describing this
problem. Possibilities to grasp damaging effects are of either the use of plasticity models (with
or without hardening properties) or alternatively damage material models with softening prop-
erties. In application an extension of this method considering damaging effects can lead to some
difficulties such as numerical instability, mesh dependence solutions, increasing computational
effort. Apart from that sufficient material properties are not as simple to determine to represent
the reinforced concrete member in the intended way. In ANTHOINE ET AL. [7] a method is pro-
posed take advantage of periodicity of the lateral reinforcement in RC frames to determine the
homogenized properties of a member. At this the periodicity of the member is characterized by
a basis cell corresponding to the distance between the lateral reinforcement. Since the member
is uniformly loaded, two adjacent cells are subjected to the same loading conditions and thus
deform in the same way. Considering the compatibility of the stress and strain conditions on
their interface it is possible to derive the global behavior of the member and also its associated
material properties.



Table 2: Models for brickwork infills in RC—Frames structures to capture damaging effects
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2.5 One-Dimensional Substitute Brace Element

The infills are substituted by brace elements to consider their stiffening effect on the frame
system approximately. The damage behavior of the infill shall be grasped by assigning non—
linear softening material properties to the brace. Modeling structural elements by substituting
them by systems differ in their load—bearing behavior is very useful in practical application
when the limitations of the model are accepted. It is essential to know that the intention of sub-
stitution is to reflect the phenomenological behavior of the original system, not necessarily con-
sidering its physical mechanism. The relationship mostly is derived from observations obtained
from laboratory test or field data analysis. An equivalent diagonal compression brace model
to represent a masonry infill subjected to horizontal loads is proposed in FAJFAR ET AL. [8].
The brace behavior is approximated by a tri—linear force—deformation relationship, where each
characteristic point is assigned to a damage state. F., u. corresponds to the beginning of shear
failure (bed joint sliding) and F,, u,, corresponds to the initial stage of compression failure (cor-
ner crushing), see Fig.[2] Apart from the damaging process of the infill caused by deformations
of the surrounding frame, the direct interaction between infill and surrounding frame is only
considered as an additional contribution to the stiffness. However, the damaging process of the
frame may be affected by the change of stiffness, which changes the global behavior of the
building and in this way the effect of the impacting load on the frame. The initial stiffness ;
of the compression is the following:

K = DVl (15)
T
where £, is Young’s modulus of the infill panel in vertical direction. The empirical estimated
effective area of the compression zone in the panel is described by w.s and t,, the panels thick-
ness, see Fig.[2]

Wey = 0.175(A\y h) ™ 57 (16)



Figure 2: Typical damage mechanism for masonry infills: corner crushing (a) and bed joint sliding (b). Geom-
etry of the substituted brace element (c) and the schematically force—deformation relationship (d) according to
FAJFARET AL. [8]]
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The fracture force F,, of the brace can be determined by Eq The parameter f;, stands for the
crack strength of the panel, its value can be obtained from the so called diagonal compression
test (cf. FAJFAR ET AL. [8]]).

It f 1
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According to FAJFARET AL. [8] the corresponding brace shortening value can be calculated
llSiIlg Uy = Uy; horizontal (COS Spd)_l assuming 0.005 h < Uy; horizontal < 0.006 h. The crack-
ing force, F, of the brace shall be in the range of 0.45 F,, < 0.55 F,. The corresponding
deformation is shown by Eq. 21} The softening stiffness K, can be assumed in the range
—-0.10 K; < K, < —0.05 K.



2.6 Two-Dimensional Continuum Modeling of Infills

Two dimensional shell elements are suitable to model in—plane loaded infills. This requires
that the formulation of the failure criteria of the material captures the behavior of a brick-
work infill as anisotropy, however such modeling does not consider the out—of—plane behavior.
Because of the contact length along the entire infill boundary, a direct damaging interaction
between both, the infills and the frame, is provided by the model. Therefore, additional shear
forces along the length of columns and beams are considered, and these forces may lead to
additional damaging stress conditions on adjacent frame members. Infill is a heterogeneous
component. Thus it has multiple critical modes of failure, and such modes are to be included
in the material model. A plastic model proposed in GANZ [9] has become popular in the last
years, which consider such multiple damage modes. This model uses a combination of yielding
surfaces, where each surface captures one failure mode. Table [2] shows these failure surfaces
in detail. The failure modes are: tensile failure of the bricks (I), compression failure of the
bricks (II), shear failure of the bricks (III), sliding along the mortar beds (IV) and tensile failure
in the mortar beds (V). Only four independent input parameters are needed to define the mate-
rial law, the strength in the main directions, the internal friction angle and the cohesion in the
mortar beds.

2.7 Discrete Modeling of Brickwork Infills

The behavior of a heterogeneous brickwork is predominantly determined by the interaction
of both components of the brickwork, brick and joint. Furthermore, the failure mechanism
strongly depends upon amount and type of loading. Infills are considered to resist compression
and shear forces, but not tensile forces as their adhesion strength in the joints is negligible.
Moreover, there is a significant difference in stiffness between bricks and mortar, which leads
to a failure of the infill caused by three—axial stress conditions. The behavior of the infills in
resisting the applied forces depends on the geometry of the infills, the alignment of the bricks,
the thickness of the mortar and the material description of the brick and mortar. Therefore, a
discrete model is important to consider the combined effect of the geometry and the material of
the brickwork infills. In such a model, the mortar is described by Mohr—Coulomb shear failure
criteria and the bricks are described by a general damage model (cf. SCHLEGEL [10])).

2.8 Model for Out—of-Plane Behavior of Infill Walls

The predominant interaction between RC frame and infill is characterized by effects in plane
direction. In three dimensional structures, infills are subjected to loads perpendicular to their
plane, and the in-plane and out-of-plane forces interact with each other. Therefore, one or two
dimensional models can not grasp out of plane failure modes. In order to consider out of plane
behavior and assess its effect on the in-plane response in one or two dimensional models, a
separate model is needed for the out of plane behavior. Such separate models are not required
for three dimensional representations of the infills. The separate model presented by PRIEST-
LEY [L1], describes the out of plane response of unreinforced infill subjected to uniformly
distributed transverse, out of plane, forces. In this model the infill behavior is explained by an
arch mechanism. A single joint failure is assumed in the middle of the short direction of the
infill, which allows the rotation of the two resulted separated segments. These infill segments
are idealized as truss elements connected by the plastic hinge (joint failure point) as illustrated
in Tab. |2} The failure modes considered in this model are: loss of stability due to excessive
rotation of the truss elements and/or the loss of strength of the infill’s brick.



3 EXAMPLE

It is the purpose of the test setup to obtain a horizontal force—deformation relationship of the
structure as a whole. For this the magnitude of a horizontal loading in accordance with a certain
predefined pattern is incrementally increased. Here, uniformly distributed load is applied to all
floor levels as illustrated in Fig.[3]

The tested structure is a partial infilled three story RC frame. Its infills have no openings
and made from vertically perforated bricks with a thickness of 11.2cm. Construction details
as lateral reinforcement and the thickness of the concrete cover are not explicitly mentioned.
But the given information indicates that the RC frame was built in consistence with the rec-
ommendation of the EUROCODE 2 [12] and EUROCODE 8 [13]], therefore, the values for the
lateral reinforcement of @ 8; s=10cm can be used. A concrete cover of 2cm for the lateral
reinforcement is obtained from the following graphs given by DOLSEK AND FAJFAR [1]. The
beam—column joints are assumed elastic during the test, their stiffness is equal to the corre-
sponding concrete cross section. The test evaluation in DOLSEK AND FAJFAR [1]] has shown
that the joints are kept nearly undamaged during the test, which confirms with the assumption
of keeping them elastic. For further simplification, the assigned length of these joints is cho-
sen as 20 cm measured by the static system, which correlates with the real geometry of the
frame. All remaining structural elements of the reinforced—concrete frame are modeled as one—
dimensional continuum elements on element level, whereas, on section level they are described
by a discrete approach as illustrated in Tab. 1| and explained in section It is assumed that
the frame is fully restrained at the base.

The material parameters shown in Table are taken from DOLSEK AND FAJFAR [1]] and they
are the mean of the given values in the mentioned work. To calculate the material properties

Table 3: Considered mean material parameters taken from DOLSEK AND FAJFAR [T

Parameter Symbol Value
Concrete compression strength foi foo | 3.60 kN/cm?
Concrete tension strength fi 0.3 kN /cm?
Reinforcement yield strength fy 55.5 kN /cm?
Masonry panel tension strength Jot 0.048 kN /cm?
Vertical masonry Young’s modulus E, 690 kN /cm?

for the effective confined concrete Eq. [I] to [I4] are considered. Regarding the ultimate com-
pression of the core concrete f’., the relation published in PAPADOPOULOS AND XENIDIS [6]
is applied. Because of the negligible differences of the columns material properties due to
different reinforcement configurations, all columns are assumed to have the same material
properties. As a result, the effective confined concrete of the column sections have the fol-
lowing attributes: E. = 3000 kN/cm?, .. = 0.0048, f!. = 4.6 kN/cm?, e., = 0.0133 and

! = 3.68 kN/cm?. The stress—strain relationship of the non—confined area of the cross sec-
tion, the cover concrete, is the same as mentioned in the EUROCODE 2 [12]]. This material
law is also applied for the core section of the beams. The values are: E. = 3000 kN/cm?,
g0 = 0.0022, f,o = 3.6 kN/cm? and g(f=0) = 0.0044. The tensile strength of the concrete
is taken into account by f; = 0.25kN/cm? where &, = 0.00025 for all section areas. As
aforementioned all beam—column joints behave elastically and have an assigned Young’s mod-
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Figure 3: Example structure; taken from DOLSEK AND FAJFAR [1]]

ulus of E = 3000 kN/cm?. Based on the given information about the yield strength of the
reinforcement, the following parameters can be derived: f, = 55.5kN/cm?, ¢, = 0.00264,
fu = 65.0kN/cm? and ¢, = 0.1, which are valid under tension as well as compression.
The behavior of the compression brace elements substituting the infills is determined by us-
ing Eq. [I5] to 21} The significant points that define their force—deformation curve have the
following values. Brace3x4m: Fi. 5.4 = 112N, Uc3p4m = 0.13cm, Fy3pam = 224 kN,
Uy 3gam = 0.94cm and Upyagz; 304m = 4.3 cm; Brace3x6m: Fi. 3.6, = 138EN, Uc sz6m =
0.15em, Fys06m = 27T5EN, Uy 306m = 0.84cm and Upag: 306m = 4.9 cm; Brace 3.5x4m:
Fesspam = 12TEN, U 355am = 0.15cm, Fy350am = 254 kN, Uy, 3554m = 1.14cm and
Umaz: 3.504m = O.1 cm; Brace 3.5x6m: Fi.5506m = 149EN, Ue3506m = 0.17cm, Fy.3506m =
298 k’N, Uy; 3.506m = 1.01 ¢m and Umaz; 3.526m — 5.7cm.

Fig. 4 shows the allocation and dimensions of the modeled structural elements. Because
of symmetry only one bay was considered, the stiffness of the lateral beams was neglected,
since these beams rotate freely at both ends and show no resistance to the applied forces. An
effective width of the slab is considered with the beam cross section (CS—1/2) in resisting the
applied forces. The slab contribution is assumed to be 70 cm with a thickness of 10cm. For
simplification, a constant configuration of the reinforcement in the beams is assumed. The
vertical reinforcement is taken constant over the height of the frame’s columns. The column-
beam joints are modeled as elastic beam elements with a length of 20 cm starting at the joint
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Figure 4: Allocation and dimensions of the modeled structural elements

intersection. The cross section dimensions are the same as the adjacent elements (beam or
column). Compression brace representing the infill is a diagonal component connecting the
intersection points of the frames’s columns and beams. To apply the different material laws to
the belonging areas of the cross section, the discretization of the columns and beams is done
by so called fiber cross sections. A limited number of areas with their location over the cross
section is defined. These fibers are 'rigid connected’ according to Bernoulli-Navier hypothesis.

The dead load is calculated using a density of 25.0 kN/m? for the reinforced concrete mem-
bers. The weight of the lateral beams and the slabs are distributed equally between the adjacent
joints and beams. The additional load of the infills has a value of 3.43 kK N/m, which is applied
to the subjacent beam.

The simulation is performed by non—linear static analysis, where the vertical load is applied
first, and afterwards the horizontal load (push—over load) is applied incrementally till a building
drift of 0.05 is reached. During the calculation, the shape of the horizontal load is kept constant.
As a result the force—deformation relationships (horizontal capacity) of the bare and the infilled
frame systems are obtained. Fig.[5|and Fig. [f] shows the simulation results compared with the
published ones in FAJFARET AL. [§8]. In Fig. [7] the difference between the simulation and the
test results. It can be said that the simulation of the RC-Frame with the applied models of the
structural members is satisfactory. The differences between the simulation and the test results
are less than 20 % for roof displacements less than 10 cm. which is apromising result. Without
infills the maximum difference of 20 % is not exceeded till a roof displacement of 25 cm. Certain
points (I to IX) on the curves can correlate directly with deformation states of the cross section
fibers. The governing cross section fiber is located at the line between core- and cover concrete
and the center of the reinforcement bars.
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e Tensile strength in all columns is reached (I)

e Yielding of first main reinforcement bar (II)

e Spalling of concrete cover (III)

e Rupture of the first main reinforcement bar (IV)

e Tensile strength in all columns is reached (V)

e Maximum strength of the core concrete in one member is reached (VI)
e Rupture of the first main reinforcement bar (VII)

e Initial shear failure in one infill (VIII)

e Initial compression failure in one infill (IX)

In general, the calculated stiffness of the structure without infills match these of the tested ones,
but the first loss in stiffness occurs later in the simulation, Fig. [5 (I). There are two possible
explanations. Firstly, the assumed value of the tensile strength of the concrete is too high in
the simulation. Secondly, the location of point (I) depends on the normal stresses acting on the
section and this could lead to differences between the simulation and the test results. However,
the load distribution of the test is known and well applied in the simulation. Thus the first
possibility is more probable. This effect is also recognizable in the capacity curve of the infilled
frame (cf. Fig.[6). Additionally, the elastic stiffness of the simulated and the tested frame results
differ by 240 kN /cm, which indicates that the sum of the infills initial horizontal stiffness taken
into consideration is higher by a value of 240 kN /cm. Meanwhile the stiffness of the RC frame
is equal to the bare one. The displacement corresponding to the maximum base shear force of
the infilled RC frame is ~ 7 ¢m and fits the test value relatively good. Therefore the non—linear
deformation properties of the brace are relatively good determined.
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Figure 5: Comparison of the horizontal capacity of simulated bare frame with the results published in FAJ-
FAR ET AL. [8]]
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Figure 7: Comparison of the deviation of own results with the published ones.

4 CONCLUSIONS

During the collation and analysis of the present models, it became clearer that there are
many possibilities to model RC frame members. The reason may be that the models used in en-
gineering applications aim to represent very specific aspects of a structure. However, it seems
useful to apart such models into two categories. Firstly, the models developed directly from
observations with the aim to represent the phenomenological behavior of a system, for instance
the substituted brace model for the masonry infill. Secondly, models which try to explain the
phenomenological behavior by analyzing the mechanism, for example the uniaxial stress—strain
model for confined concrete. Both approaches are able to provide reasonable results as shown
in the example explained previously in the paper. Nevertheless, such a conclusion can not be
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generalized, as its applicability is limited to the explained example where measured data were
available. Further studies should focus on speeding up the simulation to be able to test differ-
ent models for complete building structures. A promising possibility is trying to encapsulate
and build the different models in a common framework and test their responses under unique
conditions. The advantage of such framework is that the macroscopic behavior of the struc-
tural models can be determined and evaluated independently. Furthermore, the description of
the macroscopic behavior can be used directly as a constitutive relationship in the simulation.
Finally, an evaluation procedure for the models is needed, however, an evaluation or an assess-
ment procedure is nothing but a model, consequently the results of an evaluation model depend
on the chosen strategy. This aspect require an understanding of the purpose for evaluation of
the different models.

REFERENCES

[1] M. DolSek and P. Fajfar, Mathematical Modelling of an Infilled RC-Frame Structure Based
on the Results of Pseudo-Dynamic Tests. Earthquake Engineering & Structural Dynam-
ics, Vol. 31, 1215-1230, 2002.

[2] D.H. Lang, C. Ende, J. Schwarz, Vulnerability of RC—frame structures in Turkish earth-
quake regions (Part I): Instrumental testing. Proceedings of the 13th World Conference on
Earthquake Engineering, Vancouver/Canada, paper 216, 2004.

[3] L. Abrahamczyk, C. Schott, J. Schwarz, T.M. Swain, Vulnerability of RC—frame struc-
tures in Turkish earthquake regions (Part 1I): Modeling and analysis. Proceedings of the
13th World Conference on Earthquake Engineering, Vancouver/Canada, paper 216, 2004.

[4] FEMA 273 NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emer-
gency Management Agency, 1997.

[5] J. B. Mander, M. J. N. Priestley and R. Park, Theoretical Stress - Strain Model for Confined
Concrete. Journal of Structural Engineering, Vol. 114, 1804—1826, 1989.

[6] P. O. Papadopoulos and H. C. Xenidis, A Trussmodel with Structural Instability for the
Cconfined of Concrete Columns. European Earthquake Engineering, 1999.

[7] A. Anthoine, J. Guedes and P. Pegon, Non-Linear Behaviour of Reinforced Concrete
Beams: From 3D Continuum to 1D Member Modelling, Computers & Structures, Vol. 65,
No. 6, 949-963, 1994.

[8] P. Fajfar, M. Dolsek, R. Zarni¢ and S. Gosti¢, Towards European integration in seismic
design and upgrading of building structures. EUROQUAKE, 2001.

[9] H.R. Ganz, Mauerwerksscheiben unter Normalkraft und Schub, Institut fiir Baustatik und
Konstruktion, ETH Ziirich, Bericht Nr. 148, Birkhéduser Verlag Basel, 1985.

[10] R. Schlegel, Numerische Berechnung von Mauerwerkstrukturen in homogenen und
diskreten Modellierungsstrategien, Bauhaus—Universitit Weimar, 2004.

15



[11] M.J.N. Priestley, Seismic Behaviour of Unreinforced Masonry Walls, Bulletin of the New
Zealand Society for Earthquake Engineering, 1985.

[12] DIN EN 1992-1-1: Bemessung und Konstruktion von Stahlbeton- und Spannbetontrag-
werken — Teil 1-1: Allgemeine Bemessungsregeln und Regeln fiir den Hochbau; Deutsche
Fassung EN 1992-1-1:2004.

[13] DIN EN 1998-1: Auslegung von Bauwerken gegen Erdbeben — Teil 1: Grundlagen, Erd-
bebeneinwirkungen und Regeln fiir Hochbauten; Deutsche Fassung EN 1998-1:2004.

16



	Introduction
	Structural Elements of RC Frame Systems
	Elastic Beam Elements with Allocated Non-Linear Bending Hinges
	Continuously Non-Linear Properties with Beam or Column Elements
	Three–Dimensional Discrete Modeling of RC Frame Members
	Three–Dimensional Continuum Modeling of RC Frame Members
	One–Dimensional Substitute Brace Element
	Two–Dimensional Continuum Modeling of Infills
	Discrete Modeling of Brickwork Infills
	Model for Out–of–Plane Behavior of Infill Walls

	Example
	Conclusions

