
18th International Conference on the Application of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck and C. Könke (eds.)
Weimar, Germany, 07–09 July 2009

ON THE KLEIN-GORDON EQUATION ON THE 3-TORUS

D. Constales, R.S. Kraußhar∗

∗Department of Mathematics, Katholieke Universiteit Leuven
Celestijnenlaan 200-B, B-3001 Heverlee (Leuven), Belgium

E-mail: soeren.krausshar@wis.kuleuven.be

Keywords: Klein-Gordon equation, hypercomplex integral operators, conformally flat cylin-
ders and tori, multiperiodic functions

Abstract. We consider the time independent Klein-Gordon equation (∆ − α2)u = 0 (α ∈ R)
on some conformally flat 3-tori with given boundary data. We set up an explicit formula for the
fundamental solution. We show that we can represent any solution to the homogeneous Klein-
Gordon equation on the torus as finite sum over generalized 3-fold periodic elliptic functions
that are in the kernel of the Klein-Gordon operator. Furthermore we prove Cauchy and Green
type integral formulas and set up a Teodorescu and Cauchy transform for the toroidal Klein-
Gordon operator. These in turn are used to set up explicit formulas for the solution to the
inhomogeneous Klein-Gordon equation (∆− α2)u = f on the 3-torus.
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1 INTRODUCTION

The Klein-Gordon equation is a relativistic version of the Schrödinger equation. It describes
the motion of a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles.
The Klein-Gordon equation describes the quantum amplitude for finding a point particle in
various places, cf. for instance [4, 16]. It can be expressed in the form

(∆x − α2 − 1

c2

∂2

∂t2
)u(x; t) = 0,

where α = mc
~ . Here, m represents the mass of the particle, c the speed of light and ~ is

the Planck number. This equation correctly describes the spin-less pion. This is one of the sub
atomic particles and has the property that it can propagate both forwards and backwards in time.
However, according to the current state of knowledge, it has the nature of a composite particle.

Since a long time it is well known that any solution to the Dirac equation, which describes
the spinning electron, satisfies the Klein-Gordon equation. However the converse is not true. In
the time-independent case the homogeneous Klein-Gordon equation simplifies to

(∆x − α2)u(x) = 0.

After this equation has been solved one can apply for instance time-discretization methods to
compute the solutions for the time-dependent case. Therefore, the study of the time-independent
solutions is very important. As explained extensively in the literature, see for example [7, 8, 10,
11] and elsewhere, with the quaternionic calculus one can factorize the Klein-Gordon operator
viz

∆x − α2 = −(Dx − iα)(Dx + iα)

where Dx :=
∑3

i=1
∂
∂xi
ei is the Euclidean Dirac operator and where the elements e1, e2, e3 are

the elementary quaternionic imaginary units. The study of the solutions to the original scalar
second order equation is thus reduced to study vector valued eigensolutions to the first order
Dirac operator associated to purely imaginary eigenvalues. For eigensolutions to the first order
Euclidean Dirac operator it was possible to develop a powerful higher dimensional version of
complex function theory, see for instance [7, 10, 17, 18, 15]. By means of these function theoret-
ical methods it was possible to set up fully analytic representation formulas for the solutions to
the homogeneous and inhomogeneous Klein-Gordon in the three dimensional Euclidean space
in terms of quaternionic integral operators. In this paper we present analogous methods for the
Klein-Gordon equation on the three-dimensional conformally flat torus associated to the trivial
spinor bundle. We give an explicit formula for the fundamental solution in terms of an appro-
priately adapted three-fold periodic generalization of the Weierstraß ℘-function associated to
the operator (Dx − iα). Then we show that we can represent any solution to the homogeneous
Klein-Gordon equation on the torus as a finite sum over generalized three-fold periodic elliptic
functions that are in the kernel of the Klein-Gordon operator. Furthermore we give a Green type
integral formula and set up a Teodorescu and Cauchy transform for the toroidal Klein-Gordon
operator. These in turn are used to set up explicit formulas for the solution to the inhomoge-
neous Klein-Gordon equation on the 3-torus. A non-zero right-hand side in the Klein-Gordon
equation naturally arises in the context when including for instance quantum gravitational ef-
fects into the model.

In turn, the results of this paper refer to a very particular subcase that appears within the the-
ory of generalized Helmholtz type equations with arbitrary complex parameters that we develop
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for the general framework of k dimensional cylinders in Rn with arbitrary spinor bundles in our
forthcoming paper [3]. However, from the quantum mechanical view the case treated here in
great detail has a very special meaning and in the three-dimensional case the Bessel functions
simplify significantly to ordinary trigonometric functions.

2 PRELIMINARIES, NOTATIONS AND THE GEOMETRIC SETTING

Let {e1, e2, e3} be the standard basis of R3. We embed R3 into the quaternions H whose
elements have the form a = a0e0 + a with a = a1e1 + a2e2 + a3e3. In the quaternionic calculus
one has the multiplication rules e1e2 = e3 = −e2e1, e2e3 = e1 = −e3e2, e3e1 = e2 = −e1e3,
and eje0 = e0ej and e2

j = −1 for all j = 1, 2, 3. By H ⊗R C we obtain the complexified
quaternions. These will be denoted by H(C). Their elements have the form

∑3
j=0 ajej where

aj are complex numbers aj = aj1 + iaj2. The complex imaginary unit satisfies iej = eji for
all j = 0, 1, 2, 3. The scalar part a0e0 of a (complex) quaternion will be denoted by Sc(a). On
H(C) one considers a standard (pseudo)norm defined by ‖a‖ = (

∑3
j=0 |aj|2)1/2 where | · | is the

usual absolute value. In this paper we consider conformally flat 3-tori that arise from factoring
out R3 by the standard lattice Z3 = Ze1 + Ze2 + Ze3. This manifold is denoted by T3. It is a
spin manifold. Here, we consider the trivial spinor bundle on T3. It is also a simple example
of a Bieberbach manifold. For more information on conformally flat spin manifolds, its spinor
structures and particular information on Dirac operators on Bieberbach manifolds, we refer the
interested reader for instance to [6, 12, 13].

Notice that R3 is the universal covering space of T3. Consequently, there exists a well-defined
projection map p : R3 → T3. As explained for example in [9] every 3-fold periodic open set
U ⊂ R3 and every 3-fold periodic function with respect to Z3 defined on U descends to a well-
defined open set U ′ = p(U) ⊂ T3 and a well-defined function f ′ := p(f) : U ′ ⊂ T3 → H,
respectively.

3 THE KLEIN-GORDON EQUATION ON THE 3-TORUS

The study of the null-solutions to the first order operator D− iα leads to a full understanding
of the solutions to the Klein-Gordon equation. The null-solutions to this equation are also often
called iα-holomorphic, see for instance [10].

Following for instance [7, 17], in the three-dimensional case, the fundamental solution to
D− iα has the special form

eiα(x) =
1

4π
e−α‖x‖2

( iα

‖x‖2

− x

‖x‖3
2

(1 + α‖x‖2)
)
.

The projection map p induces a shifted Dirac operator and a Klein-Gordon operator on the
torus T3 viz D′iα := p(D− iα) resp. ∆′iα := p(∆−α2). The projection of the 3-fold periodiza-
tion of the function eiα(x) denoted by

℘iα;0(x) :=
∑
ω∈Z3

eiα(x + ω)

provides us the fundamental solution to the toroidal operator D′iα. From the function theoret-
ical point of view the function ℘iα;0(x) can be regarded as the canonical generalization of the
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classical elliptic Weierstraß ℘ function to the context of the shifted Dirac operator D − iα in
three dimensions.

To prove the convergence of the series we use the following asymptotic estimate. We have

‖eiα(x)‖2 ≤ c
e−α‖x‖2

‖x‖2

(1)

supposed that ‖x‖2 ≥ r′ where r′ is a sufficiently large real. Now we decompose the period
lattice Z3 into the the following union of lattice points Ω =

⋃+∞
m=0 Ωm where

Ωm := {ω ∈ Z3 | ‖ω‖max = m}.

We further consider the following subsets of this lattice Lm := {ω ∈ Z3 | ‖ω‖max ≤ m}.
Obviously the set Lm contains exactly (2m+1)3 points. Hence, the cardinality of Ωm is ]Ωm =
(2m + 1)3 − (2m − 1)3. The Euclidean distance between the set Ωm+1 and Ωm has the value
dm := dist2(Ωm+1,Ωm) = 1.

To show the normal convergence of the series, let us consider an arbitrary compact subset
K ⊂ R3. Then there exists a positive r ∈ R such that all x ∈ K satisfy ‖x‖max ≤ ‖x‖2 < r.
Suppose now that x is a point of K. To show the normal convergence of the series, we can
leave out without loss of generality a finite set of lattice points. We consider without loss of
generality only the summation over those lattice points that satisfy ‖ω‖max ≥ [R] + 1, where
R := max{r, r′} In view of ‖x+ω‖2 ≥ ‖ω‖2−‖x‖2 ≥ ‖ω‖max−‖x‖2 = m−‖x‖2 ≥ m− r
we obtain

+∞∑
m=[R]+1

∑
ω∈Ωm

‖eiα(x + ω)‖2

≤ c
+∞∑

m=[R]+1

∑
ω∈Ωm

e−α‖x+ω‖2

‖x + ω‖2

≤ c
+∞∑

m=[R]+1

[(2m+ 1)3 − (2m− 1)3]
eα(R−m)

m−R
,

where c is an appropriately chosen positive real constant, because m− R ≥ [R] + 1− R > 0.
This sum clearly is absolutely uniformly convergent. Hence, the series

℘iα;0(x) :=
∑
ω∈Z3

eiα(x + ω),

which can be written as

℘iα;0(x) :=
+∞∑
m=0

∑
ω∈Ωm

eiα(x + ω),

converges normally on R3\Z3. Since eiα(x) belongs to Ker (D− iα) in each x ∈ R3\{0} and
has a pole of order 2 at the origin and exponential decrease for ‖x‖ → +∞, the series ℘iα;0(x)
satisfies (D− iα)℘iα;0(x) = 0 in each x ∈ R3\Z3 and has a pole of order 2 in each lattice point
ω ∈ Z3.
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Remark: In the general n-dimensional case we will have estimates of the form
+∞∑

m=[R]+1

∑
ω∈Ωm

‖eiα(x + ω)‖2

≤ c

+∞∑
m=[R]+1

∑
ω∈Ωm

e−α‖x+ω‖2

‖x + ω‖(n−1)/2
2

≤ c
+∞∑

m=[R]+1

[(2m+ 1)n − (2m− 1)n]
eα(R−m)

(m−R)n−1
.

This provides a correction to the convergence proof given in [3] for the corresponding n-
dimensional series for general complex λ. Notice that the majorant series

+∞∑
m=[R]+1

[(2m+ 1)n − (2m− 1)n]
eα(R−m)

(m−R)

is also still convergent. This is a consequence of the exponentially fast decreasing factor in
the nominator. Therefore, all the claimed results in [3] remain valid in its full extent. In the
convergence proof of [3] one simply has to replace the square root in the denominator by the
(n − 1) power of that square root. This replacement however makes the convergence of the
series even stronger, so that all constructions proposed in [3] remain well-defined and are true
in its full extent.

Further elementary non-trivial examples of 3-fold periodic iα-holomorphic functions are the
partial derivatives of ℘iα;0. These are denoted by ℘iα;m(x) := ∂|m|

∂xm℘iα;0(x) where m ∈ N3
0 is

a multi-index. For each x,y ∈ R3\Z3 the function ℘iα;0(y − x) induces the Cauchy kernel
for D′iα viz Giα(y′ − x′) on T3 where x′ := p(x),y′ := p(y). This attributes a key role to the
function ℘iα;0(x).

From the 3-fold periodic basic toroidal iα-holomorphic function ℘iα;0 we can easily obtain
3-fold periodic solutions to the Klein-Gordon operator ∆ − α2 = −(D − iα)(D + iα). Let
C1, C2 be arbitrary complex quaternions from H(C). Then the functions

Sc(℘iα;0(x)C1)

and
Sc(℘−iα;0(x)C2)

as well as all its partial derivatives are 3-fold periodic and satisfy the homogeneous Klein-
Gordon equation (∆− α2)u = 0 in the whole space R3\Z3.

As a consequence of the Borel-Pompeiu formula proved in [7, 17] for the Euclidean case we
can readily prove a Green’s formula for solutions to the homogeneous Klein-Gordon equation
on the 3-torus of the following form:

Theorem 1 Suppose that h : U ′ → H(C) is a solution to the toroidal Klein-Gordon operator
∆′iα in U ′ ⊂ T3. Let V ′ be a relatively compact subdomain with cl(V ′) ⊂ U ′. Then provided
the boundary of V ′ is sufficiently smooth we have

h(y) =
∫
∂V ′

(G−iα(x′ − y′)(dxp(n(x)))h(x) + [Sc(G)−iα](y′ − x′)(dxp(n(x)))D′+iαh(x
′))dS(x′)

(2)
for each y′ ∈ V ′. Here dx stands for the derivative of p(n(x)) with respect to x.
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Notice that we only have one point singularity in each period cell. The reproduction of the
function by the Green’s integral hence follows by applying Cauchy’s theorem and the Almansi-
Fischer type decomposition. See also [15] for details.

One really striking property is that we can represent any solution to the homogeneous Klein-
Gordon equation on T3 as a finite sum over generalized three-fold periodic elliptic functions
that are in the kernel of the Klein-Gordon operator. We can prove

Theorem 2 Let a′1, a
′
2, . . . , a

′
p ∈ T3 be a finite set of points.

Suppose that f ′ : T3\{a′1, . . . , a′p} → H(C) is a function in the kernel of the toroidal Klein-
Gordon operator which has at most isolated poles at the points a′i of the order Ki. Then there
are constants b′1, . . . , b

′
p ∈ H(C) such that

f ′(x′) =

p∑
i=1

Ki−1∑
m=0

∑
m=m1+m2+m3

[
Sc

∂|m|

∂xm
Giα,0(x′ − a′i)

]
b′i. (3)

To establish this result we first need to prove the following lemmas:

Lemma 1 Suppose that f is a 3-fold periodic function that satisfies (D−iα)f = 0 in the whole
space R3. Then f vanishes identically.

Proof. Since f is 3-fold periodic it takes all its values in the fundamental period cell which is
compact. Since f is continuous it must be bounded on the fundamental cell. As a consequence
of the 3-fold periodicity, f must be a bounded function on the whole space R3. Since f is entire
iα-holomorphic, adapting from [17], the Taylor series representation

f(x) =
+∞∑
q=0

‖x‖−q−1/2
(
eπi(q/2+1/4)Iq+1/2(α‖x‖)− x

‖x‖
eπi(q/2+3/4)Iq+3/2(α‖x‖)

)
Pq(x), (4)

where Pq are the well-known inner spherical monogenics, as defined for instance in [5], is valid
on the whole space Rn. Since the Bessel functions I with real arguments are exponentially un-
bounded the expression f can only be bounded if all spherical monogenics Pq vanish identically.
Hence f ≡ 0. �

Lemma 2 Let a′1, a
′
2, . . . , a

′
p ∈ T3 be a finite set of points.

Suppose that f ′ : T3\{a′1, . . . , a′p} → H(C) is a solution to D′iαf
′ = 0 which has at most

isolated poles at the points a′i of the order Ki. Then there are constants b′1, . . . , b
′
p ∈ H(C) such

that

f ′(x′) =

p∑
i=1

Ki−2∑
m=0

∑
m=m1+m2+m3

[
∂|m|

∂xm
Giα,0(x′ − a′i)

]
b′i. (5)

Proof. Since f is supposed to be iα-holomorphic with isolated poles of order Ki at the points
ai, the singular parts of the local Laurent series expansions are of the form eiα,m(x − ai)bi in
each point ai + Ω, where eiα,m(y) := ∂|m|

∂ym eiα(y). As a sum of 3-fold periodic λ-holomorphic
functions, the expression

g(x) =

p∑
i=1

Ki−2∑
m=0

∑
m=m1+m2+m3

[
℘iα,m(x− ai)bi

]
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is also 3-fold periodic and has also the same principal parts as f . Hence, the function h :=
g − f is also a 3-fold periodic and iα-holomorphic function, but without singular parts, since
these are canceled out. So, the function h is an entire iα-holomorphic 3-fold periodic function.
Consequently, it vanishes identically as a consequence of the preceding lemma. �

The statement of Theorem 2 now follows as a direct consequence.

4 THE INHOMOGENEOUS KLEIN-GORDON EQUATION

We round off with discussing the inhomogeneous Klein-Gordon equation (∆′ − α2)u′ = f ′

on a strongly Lipschitz domain on the surface of the torus Ω′ ⊂ T3 with prescribed boundary
data u′ = g′ at ∂Ω′. Non-zero terms on the right-hand side naturally appear for instance when
we include gravitational effects in our consideration. To solve inhomogeneous boundary value
problems of this type one can introduce a toroidal Teodorescu transform and an appropriate
singular Cauchy transform for the operator D′iα by replacing the kernel eiα by the projection
of the 3-fold periodic function ℘iα,0 in the corresponding integral formulas given in [7] for the
Euclidean flat space. By means of these operators one can then also solve the inhomogeneous
Klein-Gordon equation on the torus with given boundary data explicitly using the same method
as proposed in [1, 7, 8, 10] for analogous problems in the Euclidean flat space. Precisely, the
proper analogies of the operators needed to meet these ends are:

T T3
iα : W p

l,H(C)(Ω
′)→ W p+1

l,H(C)(Ω
′); [T T3

iα f
′(x′)] = −

∫
Ω′

G−iα(x′ − y′)f ′(y′)dV ′(y′)

where x′ and y′ are distinct points on the 3-torus from Ω′. The toroidal iα-holomorphic Cauchy
transform has the mapping properties

F T3
iα : W p−1

l,H(C)(∂Ω′)→ W p
l,H(C)(Ω

′) ∩Ker D′iα;

[F T3
iα f

′(y′)] =

∫
∂V ′

G−iα(x′ − y′)n(x′)dxp(n(x))f ′(x′)dS ′(x′),

where dS ′ is the projected scalar surface Lebesgue measure on the surface of the torus. Using
the toroidal Teodorescu transform, a direct analogy of the Borel-Pompeiu formula for the shifted
Dirac operator D′iα on the 3-torus can now be formulated in the classical form

f ′ = F T3
iα f

′ + TCk
iα D′iαf

′,

as formulated for the Euclidean case in [7, 8]. Adapting the arguments from [7] p. 80 that were
explicitly worked out for the Euclidean case, one can show that the space of square integrable
functions over a domain Ω′ of the 3-torus, admits the orthogonal decomposition

L2(Ω′,H(C)) = KerD′iα ∩ L2(Ω′,H(C))⊕D′iα
◦
W

1

2,H(C)(Ω
′).

The space KerD′iα ∩ L2(Ω′,H(C)) is a Banach space endowed with the L2 inner product

〈f ′, g′〉 :=

∫
Ω′
f ′(x′)

]
g(x′)dV (x′),
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as used in [2].
As a consequence of the Cauchy integral formula for the toroidal iα-holomorphic functions

and of the Cauchy-Schwarz inequality we can show that this space has a continuous point
evaluation and does hence possess a reproducing kernel, say B(x′,y′). If f ′ is any arbitrary
function from L2(Ω′,H(C)), then the operator

[P T3
iα f

′(y′)] =

∫
V ′

B(x′,y′)f(x′)dV (x′)

produces the ortho-projection from L2(Ω′,H(C)) into Ker D′iα∩L2(Ω′,H(C)). It will be called
the toroidal iα-holomorphic-Bergman projector. With these operators we can represent in com-
plete analogy to the Euclidean case treated in [7] the solutions to the inhomogeneous Klein-
Gordon equation on the 3-torus:

Theorem 3 Let α > 0. Let Ω′ be a domain on the flat 3-torus T3 with a strongly Lipschitz
boundary. Let f ;∈ W p

2,H(C)(Ω
′) and g′ ∈ W p+3/2

2,H(C)(∂Ω′). Let ∆′iα stand for the toroidal Klein-
Gordon operator. Then the system

∆′iαu
′ = f ′ in V ′ (6)
u′ = g′ at ∂V ′ (7)

always has a unique solution u ∈ W p+2,loc
2,H(C) (V ′) of the form

u′ = F T3
λ g′ + T T3

−iαP
T3
iα D′iαh

′ − T T3
−iα(I − P T3

iα )T T3
iα f

′ (8)

where h′ is the unique W p+2
2,H(C) extension of g′.

To the proof one can apply the same calculation steps as in [7] pp. 81 involving now the
properly adapted version of the Borel-Pompeiu formula for the toroidal shifted Dirac operator
D′iα and the adapted integral transform. Notice that we have for all values α > 0 always
a unique solution, because the Laplacian has only negative eigenvalues. Notice further that
we can represent any solution to the toroidal Klein-Gordon equation by the scalar parts of a
finite number of the basic iα-holomorphic generalized elliptic functions ∂|m|

∂xm℘iα,0(x − a)bm,
such as indicated in Theorem 2. The Bergman kernel can be hence approximated by applying
for instance the Gram-Schmidt algorithm to a sufficiently large set of those iα-holomorphic
generalized elliptic functions series that have no singularities inside the domain.

Alternatively, as proposed in [7] p. 83 we can also represent the iα-holomorphic Bergman
projector in terms of algebraic expressions involving only the toroidal Cauchy and Teodorescu
transform for the operator D′iα, viz

P T3
iα = F T3

iα (trT T3
iα F

T3
iα )−1trT T3

iα ,

where tr is the usual trace operator. This formula allows us to represent the solutions to the
inhomogeneous toroidal Klein-Gordon equation in terms of the adapted version of the singu-
lar Cauchy integral operator, involving the projection of the three-fold periodic function ℘iα,0
instead of the kernel eiα.
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