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Abstract. What is nowadays called (classic) Clifford analysis consists in the establishment
of a function theory for functions belonging to the kernel of the Dirac operator. While such
functions can very well describe problems of a particle with internal SU(2)-symmetries, higher
order symmetries are beyond this theory. Although many modifications (such as Yang-Mills
theory) were suggested over the years they could not address the principal problem, the need of
a n-fold factorization of the d’Alembert operator.

In this paper we present the basic tools of a fractional function theory in higher dimensions,
for the transport operator (α = 1

2
), by means of a fractional correspondence to the Weyl rela-

tions via fractional Riemann-Liouville derivatives. A Fischer decomposition, fractional Euler
and Gamma operators, monogenic projection, and basic fractional homogeneous powers are
constructed.
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1 INTRODUCTION

In the last decades the interest in fractional calculus increased substantially. This fact is
due to on the one hand different problems can be considered in the framework of fractional
derivatives like, for example, in optics and quantum mechanics, and on the other hand fractional
calculus gives us a new degree of freedom which can be used for more complete characterization
of an object or as an additional encoding parameter.

Over the last decades F. Sommen and his collaborators developed a method for establishing
a higher dimension function theory based on the so-called Weyl relations [1, 3, 2]. In more
restrictive settings it is nowadays called Howe dual pair technique (see [6]). Its focal point is
the construction of an operator algebra (classically osp(1|2)) and the resulting Fischer decom-
position.

The aim of this paper is to present a Fischer decomposition, when considering the fractional
Dirac operator defined via Riemann-Liouville derivatives, where the fractional parameter is
equal to 1

2
(which leads to the case of the stationary transport operator). The results presented

here correspond to a restriction of correspondent ones presented in [7] for the particular case of
α = 1

2
.

In the Preliminaries we recall some basic facts about Clifford analysis and fractional cal-
culus. In Section 3, we introduce the corresponding Weyl relations for this fractional setting
and the notion of a fractional homogeneous polynomial. In the same section we present the
fractional correspondence to the Fischer decomposition. In the final section we construct the
projection of a given fractional homogeneous polynomial into the space of fractional homo-
geneous monogenic polynomials. We also calculate the dimension of the space of fractional
homogeneous monogenic polynomials.

2 PRELIMINARIES

We consider the d-dimensional vector space Rd endowed with an orthonormal basis {e1, · · · ,
ed}. We define the universal real Clifford algebra R0,d as the 2d-dimensional associative algebra
which obeys the multiplication rules eiej + ejei = −2δi,j. A vector space basis for R0,d is
generated by the elements e0 = 1 and eA = eh1 · · · ehk , where A = {h1, . . . , hk} ⊂ M =
{1, . . . , d}, for 1 ≤ h1 < · · · < hk ≤ d. An important subspace of the real Clifford algebra
R0,d is the so-called space of paravectors Rd

1 = R
⊕

Rd, being the sum of scalars and vectors.
An important property of algebra R0,d is that each non-zero vector x ∈ Rd

1 has a multiplicative
inverse given by x

||x||2 . Now, we introduce the complexified Clifford algebra Cd as the tensor
product

C⊗ R0,d =

{
w =

∑

A

wAeA, wA ∈ C, A ⊂M

}
,

where the imaginary unit i of C commutes with the basis elements, i.e., iej = eji for all
j = 1, . . . , d.

An Cd−valued function f over Ω ⊂ Rd
1 has representation f =

∑
A eAfA, with components

fA : Ω → C. Properties such as continuity are understood component-wisely. Next, we recall
the Euclidean Dirac operator D =

∑d
j=1 ej ∂xj , which factorizes the d-dimensional Euclidean

Laplacian, i.e., D2 = −∆ = −∑d
j=1 ∂x

2
j . A Cd-valued function f is called left-monogenic if
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it satisfies Du = 0 on Ω (resp. right-monogenic if it satisfies uD = 0 on Ω). For more details
about Clifford algebras and monogenic function we refer [2].

The most widely known definition of the fractional derivative is the so-called Riemann-
Liouville definition:

(Dα
a+f) (x) =

(
d

dx

)n
1

Γ(n− α)

∫ x

a

f(t)

(x− t)α−n+1
dt, n = [α] + 1, a, x > 0. (1)

where [α] means the integer part of α. In [4] fractional derivative (1) was successfully applied
in the definition of the fractional correspondent of the Dirac operator in the context of Clifford
analysis. In fact, for the particular case of α = 1

2
, the fractional Dirac operator corresponds

to D =
∑d

j=1 ej Dj =
∑d

j=1 ej (Dj + Yj), where Dj = ∂xj and Yj = 1
2(ξj−xj)

with ξ =

(ξ1, . . . , ξd) the observer time vector. Moreover, we have that DD = D with D the Euclidian
Dirac operator, i.e., the stationary transport operator. A Cn-valued function f is called fractional
left-monogenic if it satisfies Du = 0 on Ω (resp. fractional right-monogenic if it satisfies
uD = 0 on Ω). We observe that due to the definition of D we have that

D

(
d∏

i=1

(ξi − xi)
1
2

)
= 0, (2)

i.e.,
∏d

i=1(ξi − xi)
1
2 is a fractional monogenic function. The fractional power (ξi − xi)

1
2 corre-

sponds to (ξj − xj)
1
2 if ξj ≥ xj , or (xj − ξj)

1
2 i if ξj < xj , with j = 0, 1, . . . , d. From now until

the end of the paper, we consider paravectors of the form x = x0 + x, where x =
∑d

j=1 ej xj

with xj =
ξj−xj

2
.

3 WEYL RELATIONS AND FRACTIONAL FISCHER DECOMPOSITION

The aim of this section is to provide the basic tools for a function theory for the fractional
Dirac operator defined via fractional Riemann-Liouville derivatives for the particular case of
α = 1

2
.

3.1 Fractional Weyl relations

Now we introduce the fractional correspondence of the classical Euler and Gamma opera-
tors. Furthermore, we show that the two natural operators D and x, considered as odd elements,
generate a finite-dimensional Lie superalgebra in the algebra of endomorphisms generated by
the partial fractional Riemann-Liouville derivatives, the basic vector variables xj (seen as mul-
tiplication operators), and the basis of the Clifford algebra ej .

In order to obtain our results, we use some standard technique in higher dimensions, namely
we study the commutator and the anti-commutator between x and D. We start proposing the
following fractional Weyl relations

[ Di,xi ] = Di xi − xi Di = −1

2
, (3)

with i = 1, . . . , d. This leads to the following relations for x and D:

{D,x} = Dx + xD = −2E +
d

2
, [x,D] = xD−Dx = −2Γ− d

2
, (4)
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where E, Γ are, respectively, the fractional Euler and Gamma operators of order 1
2
, and have the

following expressions

E =
d∑

i=1

xi Dj, Γ =
∑

i<j

eiej (xi Dj −Di xj) . (5)

From (5) we derive

[x,E] =
1

2
x, [D,E] = −1

2
D, (6)

which allow us to conclude that we have a finite dimensional Lie superalgebra generated by x
and D, isomorphic to osp(1|2). Now we introduce the definition of fractional homogeneity of
a polynomial by means of the fractional Euler operator.

Definition 3.1 A polynomial Pl is called fractional homogeneous of degree l ∈ N0, if and only
if EPl = − l

2
Pl.

We observe that from the previous definition the basic fractional homogeneous powers are given
by
∏d

j=1 x
βj
j , with l = |β| = β1 + . . . + βd. In combination with the first relation in (6) this

definition also implies that the multiplication of a fractional homogeneous polynomial of degree
l by x, results in a fractional homogeneous polynomial of degree l+ 1, and thus may be seen as
a raising operator. Moreover, we can also ensure that for a fractional homogeneous polynomial
Pl of degree l, DPl is a fractional homogeneous polynomial of degree l − 1. Furthermore,
Weyl’s relations (3) enable us to construct fractional homogeneous polynomials, recursively.

3.2 Fractional Fischer decomposition

A fractional Fischer inner product of two fractional homogeneous polynomials P and Q
would have the following form

〈P (x), Q(x)〉 = Sc
[
P (∂x) Q(x)

]
, (7)

where ∂x represents Dj , and P (∂x) is a differential operator obtained by replacing in the poly-
nomial P each variable xj by the corresponding fractional derivative, i.e. Dj +Yj . From (7) we
have that for any polynomial Pl−1 of homogeneity l−1 and any polynomial Ql of homogeneity
l the relation 〈x Pl−1, Ql〉 = 〈Pl−1,DQl〉. This fact allows us to obtain the following result:

Theorem 3.2 For each l ∈ N0 we have Πl = Ml + x Πl−1, where Πl denotes the space
of fractional homogeneous polynomials of degree l and Ml denotes the space os fractional
monogenic homogeneous polynomials of degree l. Moreover, the subspacesMk and x Πl−1 are
orthogonal with respect to the Fischer inner product (7).

The proof is analogous to the proof of Theorem 3.5 in [7] but considering α = 1
2
, and therefore

we omit it from the paper. As a result of the previous theorem we obtain the fractional Fischer
decomposition with respect to the fractional Dirac operator D.

Theorem 3.3 Let Pl be a fractional homogeneous polynomial of degree l. Then

Pl = Ml + x Ml−1 + x2 Ml−2 + . . .+ xl M0, (8)

where each Mj denotes the fractional homogeneous monogenic polynomial of degree j. More
specifically, M0 = P0 and Ml = {u ∈ Pl : Du = 0}.
The spaces represented in (8) are orthogonal to each other with respect to the Fischer inner
product (7). This a consequence of the construction of the fractional Euler operator E (see (5)),
and in particular of (4).
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3.3 Explicit formulae

Here we obtain an explicit formula for the projection πM(Pl) of a given fractional homo-
geneous polynomial Pl into the space of fractional homogeneous monogenic polynomials. We
start with the following auxiliary result:

Theorem 3.4 For any fractional homogeneous polynomial Pl and any positive integer s, we
have DxsPl = gs,lx

s−1Pl + (−1)sxsDPl, where g2k,l = k and g2k+1,l = k + l + d
2
.

Proof: The proof follows, by induction and straightforward calculations, from the commuta-
tion between D and xs using the relations Dx = −2E + d

2
− x D and Ex = x E− 1

2
x.

�
Let us now compute an explicit form of the projection πM(Pl).

Theorem 3.5 Consider the constants cj,l defined by c0,l = 1, and cj,l =
(−1)j Γ( d

2
+l−1−[ j

2 ])
Γ( d

2
+1) Γ(1+2[ j

2 ])
,

where j = 1, . . . , l and [·] represents the integer part. Then the map πM given by

πM(Pl) := Pl + c1,l x D Pl + c2,l x2D2 Pl + . . .+ cl,l xlDl Pl

is the projection of the fractional homogeneous polynomial Pl into the space of fractional ho-
mogeneous monogenic polynomials.

Proof: Let us consider the linear combination

r = a0 Pl + a1 x D Pl + a2 x2 D2 Pl + . . .+ ak xl Dl Pl,

with a0 = 1. If there are constants aj , j = 1, . . . , l, such that r ∈Ml, then r is equal to πM(Pl).
Indeed, we know that Pl = Ml ⊕ xPl−1 and r = Pl + Ql−1, with Ql−1 =

∑l
i=1 ai xi Di Pl.

Applying Theorem 3.4, we get

0 = D(πM(Pl))

= D Pl + a1 D x D Pl + a2 D x2 D2 Pl + . . .+ al D xlDl Pl

= (1 + a1 g1,l−1) D Pl + (−a1 + a2 g2,l−2)x D2 Pl + (a2 + a3 g3,l−3) x2 D3 Pl

+ . . .+ ((−1)l−1al−1 + al gl,0) xl−1 Dl Pl.

Hence if the relation (−1)j−1aj−1 + aigj,l−j = 0 holds for each j = 1, . . . , l, then the function

r is fractional monogenic. By induction we get aj =
(−1)j Γ( d

2
+l−1−[ j

2 ])
Γ( d

2
+1) Γ(1+2[ j

2 ])
.

�
Theorem 3.6 Each polynomial Pl can be written in a unique way as Pl =

∑l
j=0 xj Ml−j(Pl),

where Ml−j(Pl) = c′j
∑j

n=0 cj,l−n xn DnDl−j Pl with j = 0, . . . , l, and the coefficients c′j are

defined by c′j =
(−1)j Γ( d

2
+l−1−[ j

2 ])
Γ( d

2
+1) Γ(1+2[ j

2 ])
.

The proof of this result is analogous to the proof of Theorem 3.9, for α = 1
2
, in [7], and therefore

we omit it from the paper.
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