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Abstract. The Laguerre polynomials appear naturally in many branches of pure and applied
mathematics and mathematical physics. Debnath introduced the Laguerre transform and de-
rived some of its properties. He also discussed the applications in study of heat conduction and
to the oscillations of a very long and heavy chain with variable tension. An explicit boundedness
for some class of Laguerre integral transforms will be present.
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1 INTRODUCTION

The Laguerre polynomials appear naturally in many branches of pure and applied mathe-
matics and mathematical physics (see e.g. [2, 3, 4, 6]). Debnath [2] introduced the Laguerre
transform and derived some of its properties. He also discussed the applications in study of heat
conduction [4] and to the oscillations of a very long and heavy chain with variable tension [3].

This paper is devoted to the study of the generalized Laguerre transform and some opera-
tional properties. Here we present and prove of the results presented in [1]. In fact, for the
interested reader we refer [1], where it is presented a more detailed study of the generalized
Laguerre transform.

2 PRELIMINARIES

The Laguerre transform of a function f(z) is denoted by f,(n) and defined by the integral

L{f(z)} =fa(n) = / e "z L¥(x) f(x)dx, n =0,1,2, ... (1)
0
provided the integral exists in the sense of Lesbegue, where L& (x) is a generalized Laguerre

polynomial of degree n with order o > —1, and satisfies the following differential equation

d | _, o d _
e at T L (@) | 4 ne 2L (x) = 0. 2
T [e z n(x)] ne "z*L%(x) =0 (2)

The sequence of Laguerre polynomial (L (x))3° , have the following property:
i +
/ e 2L () L (z)dx = (” O‘) T(a + 1)dnm, 3)
n
0

where ¢, is Kronecker function defined by

5 1, if n=m
"0, ifn#m

and
MNa+1) = / x%e ",
0

The inverse of the Laguerre transformation is then

[e.o]

@)= 02 faln) Li(@) (0 < & < o0),

n=0

where

5, = ("+O‘)r(a+ 1).

n
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3 EXPLICIT BOUNDEDNESS FOR SOME CLASS OF LAGUERRE INTEGRAL TRANS-
FORMS

Here, we consider the generalized integral transform defined, for x > 0, by

(apnl’f) (x) = / Oo(t—x)‘s—l e P@t e Lo (e(t, x)) f(t) dt (4)

with 3(x) a non-negative continuous function on ]0,4+o00[. When § = 1,4(z) = 1,z = 0
and such that ¢(¢,0) = t, the integral transform (4) coincide with (1), and when o = 0,n =
0, 5(x) = 0 the integral transform (4) multiplied by ﬁ coincide with the classical Riemann
Liouville fractional integral of order ¢
1
Y = (I°
() ( B —f) () ( ,f) (x)
1 [ee]
_ _/ (t —2) f(t) dt, © >0 5)

I'(9)
with 0 < § < 1 (see [8]).
Now, we will study the generalized fractional integral transforms (4), and two of their mod-
ifications in the space L, , of the complex value Lebesgue measurable functions f on R such
that forv € R

%0 dt\""

e = ([ Tlerer §) <o 1<, ©
0

fllooe = e sup (*17(0)]) < o0 )

In what follows we obtain the boundedness of the fractional integral transform (4) as opera-
tors mapping the space L, , into the spaces L,_s_q .

Theorem 3.1 Ler f(x) = 1, ¢(t,x) = L and 1 < r < oo. The operator o 3,1° f is bounded
from L, , into L,,_s5_, , and

||o¢,,3,n]§f”v—5—oz,r S Ca,ﬁ,5,v||f||v,r- (8)

Proof: Let 1 < r < oo. Using (6) and making the change of variable ¢ = zu, we obtain

s _ * | b s AN
||oc,ﬁ,n]—f||v—(5—a,7‘ - (/0 ’fL’ (oc,ﬁ,nj_f) (I)‘ ?)
-
-

" da 1/r
7)

r 1/r
dx)

gt /:o(t — ) e oL (2) Ft) dt

P /oo(u — 1) teu® Lo(u) f(uz) du
1
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x”’%(u — 1) e u® Lo(u) f(ux)

IN

) ) . 1/r
/1 (/0 da:> du
00 ) 1/r

< [Tumvmere izl ([Ceor ) a

= e [ =1 e L) du
1
From relation (2.19.3.8) in [7], we have

Copow = / (u—1)°"" e u*" L%u)du
1

1 n
:%3(57_044_0_5)
Xoy(a—v+1L1+a+na—v+1+0,1+a;—1)
1+v—9),
JERE

. [(a—v+9)

XoFy(1—0,14v—0+n1l—a+v—0614+v—14;—-1),

where (.),, denote the Pochhammer symbol and B(., .) denote the Beta function.
For r = oo we have

2 sl f] =

v—0—a - -1 -t jara t
V0 /x(t—x)a ethn(E) f(t)dt’

< / = 1 et L) | (1)) du

IN

1 o / (1 — 1) e |12 ()] du

= ||f||v,ooca,/3,5,v'

This completes the proof.
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