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Abstract. This paper presents a robust model updating strategy for system identification of
wind turbines. To control the updating parameters and to avoid ill-conditioning, the global sen-
sitivity analysis using the elementary effects method is conducted. The formulation of the objec-
tive function is based on Müller-Slany’s strategy for multi-criteria functions. As a simulation-
based optimization, a simulation adapter is developed to interface the simulation software AN-
SYS and the locally developed optimization software MOPACK. Model updating is firstly tested
on the beam model of the rotor blade. The defect between the numerical model and the refer-
ence has been markedly reduced by the process of model updating. The effect of model updating
becomes more pronounced in the comparison of the measured and the numerical properties of
the wind turbine model. The deviations of the frequencies of the updated model are rather
small. The complete comparison including the free vibration modes by the modal assurance
criteria shows the excellent coincidence of the modal parameters of the updated model with the
ones from the measurements. By successful implementation of the model validation via model
updating, the applicability and effectiveness of the solution concept has been demonstrated.
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1 INTRODUCTION

The renewable energy sources have gained high attention due to the current energy crisis
and the urge to get clean energy. Wind energy as a strong contender, therefore, is becoming
more and more popular. As the wind turbine structure, however, suffers from inevitable ageing
and degradation resulting from operational actions, continuous system identification based upon
long term monitoring is indispensable. By that, the current state of the structure can be deter-
mined and possible failures can be revealed in time. To this end, an adequate numerical model is
mandatory to predict the structural behavior. This model needs to be validated by a continuous
model updating to ensure a reliable and accurate estimation of the structural behavior.

According to [1], the model updating methods can be broadly classified into direct meth-
ods, which are essentially non-iterative ones, and iterative methods. A number of methods that
were first to emerge belong to the direct category. These methods update directly the elements
of stiffness and mass matrices and are one step procedures. Although the resulting updated
matrices reproduce measured modal data exactly, they do not generally maintain structural con-
nectivity and the corrections suggested are not always physically meaningful [2]. The methods
in the second category are referred to as iterative methods. Iterative methods use changes in
physical parameters to update the finite element models and, thereby, generate models that are
physically realistic. From earlier work on finite element model updating it is evident that finite
element model updating is essentially an optimization method. Here, the design variables are
the uncertain parameters in the model. The objective is to minimize the distance between the
predicted data by the model and the measured data. Some applications of the iterative optimiza-
tion methods are reviewed in [3, 4, 5, 6, 7].

However, some key issues in the iterative optimization method of model updating are not
fully matured, especially for continuous system identification, e.g. how to control the updating
parameters and to avoid ill-conditioning; how to master the sophisticated simulation-based op-
timization and solve the non-standard optimization problem. To solve these problems, a robust
model updating strategy is proposed in this paper, including four main aspects as described in
the next section.

2 PROPOSED MODEL UPDATING STRATEGY

2.1 Updating parameter determination

Specifying the updating parameters is one of the most difficult yet most critical steps in
the whole updating process. The number of updating parameters should be large enough to
cover all the relevant uncertain parameters, but as low as possible to avoid ill-conditioning. An
initial selection of the parameters depends on clearly engineering insight of the model. Such
parameters typically are associated to unknown material parameters, approximated geometrical
parameters, uncertain boundary conditions, parts with a high level of uncertainty (e.g. joints,
localized mass), and etc. They can be described by a vector x in Equation 1.

x =
(
X1 . . . Xk

)
=


material parameters

geometrical parameters
boundary conditions

. . .

 (1)
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To ensure well-conditioned problem, the number of the updating parameters should not ex-
ceed the number of the measured responses. It needs to be limited to the variation of a few
key model parameters that account for the observable errors. To identify the impact of different
parameters on the model errors, the sensitivity analysis can be conducted. The traditional sen-
sitivity analysis, which is also called local sensitivity analysis, is derivative-based approach and
only efficient for linear models. As for nonlinear and non-additive models, the global sensitivity
analysis should be used, since this method explores the whole space of the input parameters and
includes the interaction effect among parameters as well.

There are several different methods that belong to the class of global sensitivity analysis,
as described in detail by [8]. The choice of the proper sensitivity analysis technique depends
on such considerations as: the computational cost of running the model; the number of input
factors; features of the model (e.g. linearity, additivity). Considering a modest model compu-
tational expense (e.g. up to 10 minutes per run) and dozens of parameters (e.g. 20 to 100),
the elementary effects (EE) method is recommended as a simple but effective way to identify
the few important factors among the many contained in the model and cope with nonlinearity
and interactions. The fundamental idea behind this method is owed to Morris, who introduced
the concept of elementary effects in 1991 [9]. While adhering to the concept of local varia-
tion around a base point, the EE method makes an effort to overcome the limitations of the
derivative-based approach by introducing wider ranges of variations for the inputs and averag-
ing a number of local measures so as to remove the dependence on a single sample points. An
elementary effect is defined as [8]:

EEi =
Y (X1, X2, . . . , Xi−1, Xi + ∆, . . . , Xk)− Y (X1, X2, . . . , Xk)

∆
(2)

The sensitivity measures, µ and σ, proposed by Morris, are respectively the mean and the
standard deviation of the elementary effects calculated from finite randomly sampled inputs.
The mean µ assesses the overall influence of the factor on the output. The standard deviation
σ estimates the ensemble of the factor’s effects, whether nonlinear and/or due to interactions
with other factors. Campolongo et al. [10] proposed replacing the use of the mean µ with µ∗,
which is defined as the mean of the absolute values of the elementary effects. The use of µ∗

can prevent cancellation effects when the model is nonmonotonic or has interaction effects. µ∗

is a practical and concise measure to use, especially when there are several output variables.
Campolongo et al. [10] have also shown that µ∗ is a good proxy of the total sensitivity index
ST of the variance-based method [8]. With the aid of the global sensitivity analysis, the few
decisive key parameters can be selected as updating parameters for the following process.

2.2 Objective function formulation

The objective function used in model updating evaluates the defect between the model pre-
dicted and the measured data. Typical measurements include the modal model (natural frequen-
cies and mode shapes) and the frequency response functions (FRF). Based on Müller-Slany’s
strategy [11], the error expressions εi(x) between the numerical and measured dynamic proper-
ties are components of the vector objective function f [ε(x)] in Equation 3. To express errors of
natural frequencies and mode shapes, the modal frequency shift [12] and the modal assurance
criterion (MAC) [13] can be utilized.

3



f [ε(x)] =


ε1(x)
ε2(x)
ε3(x)
ε4(x)
. . .

 =


error expression of total mass

error expression of natural frequencies
error expression of mode shapes

error expression of FRF
. . .

 (3)

It is worth noting that the measured and analytical natural frequencies and mode shapes must
relate to the same mode, that is, they must be paired correctly. Arranging the natural frequencies
in ascending order of magnitude is not sufficient, because the mode orders may not be correct
when two modes are close together in frequency, and the finite element model normally provides
more degrees of freedom than those can be identified from measurements. The approach to
pair the modes is by using the modal assurance criterion (MAC). For a reference mode, the
corresponding numerical mode should have the largest MAC value.

After formulating the individual objective functions separately, the linear weighting sum
method (LWS) [14], which is based on the concept of aggregation functions, is adopted to
combine the multi-objective functions into a scalar objective function of Equation 4, using
appropriate weighting factors wi so that the relative importance of the individual objectives can
be reflected:

f(x) =
k∑

i=1

wiεi(x) (4)

With the objective function having been formulated, the model updating is established by
solving the constrained multi-criteria optimization problem of Equation 5, in which h(x)is the
constraint function, while xL and xU are the lower and upper bounds, respectively.

min
x∈Σ
{f(x) | h(x) = 0},Σ := {x ∈ Rn | xL ≤ x ≤ xU} (5)

2.3 Optimization algorithm selection

It is crucial to choose a suitable algorithm for the optimization involved in the model up-
dating, because the existence and correctness of the solution as well as the convergence speed
largely depend on the nature of the optimization problem. The optimization problem in the
model updating has a number of properties, which makes it hard to solve:

• The interdependence between residuals and the updating parameters is highly nonlinear;
therefore the common derivative-based approaches are not fully applicable.

• Since a multi-criteria objective function has been formulated, a large number of local
minima have to be taken into consideration.

• Due to the complexity of the real-world problem, as a rule, the objective function is not
continuously differentiable.

• The presence of numerical noise introduces additional difficulties.

For these reasons, the deterministic techniques, which are efficient for smooth problems, turn
out not to be applicable here because of their gradient-based characteristic. Instead, the evo-
lutionary algorithms (EAs), known as derivative free methods, can be considered as a reliable
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alternative in such situations. Bäck and Schwefel [15] and Eiben [16] give overviews on EAs.
EAs have several advantages compared to gradient-based methods for complex problems. They
require only little knowledge about the problem being solved, and they are easy to implement,
robust, and most important, inherently parallel. Since most real-world problems involve simul-
taneous optimization of several concurrent objectives, parallel approaches are advantageous.
EAs are well suited to multi-objective optimization problems as they are fundamentally based
on multi-membered biological processes which are inherently parallel.

2.4 Optimization process implementation

The model updating process constitutes a simulation-based optimization. In the simulation-
based optimization, all or some of the objective and constraint functions depend on the simu-
lation result. In each optimization iteration, the output from simulation is used to compute the
objective and constraint functions. If the objective function does not meet the convergence cri-
teria, new values for updating parameters are created according to the logic of the optimization
method and used to reform the FE model. Then, the simulation is invoked again to compute new
output. Hence, in simulation-based optimization, optimization and simulation work together as
a whole.

The respective simulations are commonly accomplished using commercial finite element
software because they are powerful numerical analysis tools providing high reliability and nu-
merous capabilities. In the present work, the applied simulation tool is the commercial finite
element software ANSYS 11. Regarding the optimization problem, the complex real world
structures often lead to optimization problems difficult to solve. In most of the cases, the ex-
isting simulation software offers no direct support for nonlinear optimization or has no pow-
erful optimization tools. For instance, the optimization methods provided by ANSYS are en-
tirely derivative-oriented, making it impossible to solve non-standard optimization problems,
like nonlinear or discontinues optimization problems. Therefore, in the present work, the java-
based optimization framework, MOPACK, is applied to solve the simulation-based optimization
problem. MOPACK is the abbreviation for multi-method optimization package and has been
implemented by Nguyen et al. [17]. It contains numerous robust optimization strategies, includ-
ing deterministic methods and stochastic methods. More details about the available methods in
MOPACK can be found in [17]. In particular, the graphical user interface (GUI) of MOPACK
provides sophisticated tools for visualization and pre and post-processing. Another important
issue is that MOPACK is extensible such it can be enriched with new methods and applications.

To solve the simulation-based optimization problem with the aid of MOPACK, intensive in-
teractions are required between the external simulation software ANSYS and the optimization
framework MOPACK. Therefore, a simulation adapter is developed for running the optimiza-
tion using external solvers in the simulation software and the optimization framework simul-
taneously [18]. The integration of multiple software in the optimization procedure makes the
proposed model updating approach robust for complex structural optimization problems.

3 TEST IMPLEMENTATION

The proposed approach is substantiated on a real world wind turbine located in Dortmund,
Germany, which has a gearless system and a 40m-diameter rotor. A complete numerical model
of the investigated wind turbine is constructed using ANSYS 11.0. This FE model contains
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a concrete foundation, a steel tower with flanges, rotor blades and a simplified nacelle. Beam
models with coarsely discretized meshes are used for the tower and the blades in order to reduce
the development time and to allow parameters to be easily changed and items to be added.

Instead of considering the complete model, it is more reasonable to validate the model com-
ponents in the first step, in particular the blade model, because several estimations had to be
made due to lack of information from the manufacturer.

(a) (b)

Figure 1: (a) Illustration of the blade geometry (b) Parameters of the cross section

There is no measurement carried out on the blade in the current research project [19], for-
tunately, a test article of almost the same physical properties has been built and dynamically
tested in [20]. Therefore the first five eigenfrequencies provided by [20] are taken as validation
criteria for the current blade model.

Before formulating the optimization problem, sensitivity analysis is conducted on the fol-
lowing six geometrical parameters of the blade cross section:

• X1: thickness t1 of the skin;

• X2: thickness t2 of the two shear webs;

• X3: thickness t3 of the top and bottom spar caps.

• X4: ratio r1 between the height H and the chord length L at position B;

• X5: ratio r2 between the distance of the two shear webs b and the chord length L;

• X6: ratio r3 between the height H and the chord length L at position C;

Some assumptions have been made to reasonably simplify the problem: The parameters
t1, t2, t3 and r2 are considered as constants along the blade. A cosine shape function is used
between position A and B to transform the shape smoothly, while a linear shape function is used
between position B and C. All parts of the cross section are assumed to consist of GRP (Glass
fibre Reinforced Plastic) material having the same modulus of elasticity and shear and the same
material density.

By implementing the elementary effects method, three sensitivity measures µ∗, µ and σ are
calculated to reveal the influences of the six parameters on the output, which is multiple output
including the first five eigenfrequencies. The barplots of µ∗, µ and σ for the multiple output
are shown in Figure 2 to Figure 4. As above mentioned, the value of µ∗ indicates the total
sensitivity, therefore it can be concluded that the flapwise modes are sensitive to parameters X4
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and X5, while the edgewise modes are sensitive to parameters X1 and X6. The influences of
the parameters on the output is monotonic because the distributions of µ∗ and µ are the same.
According to the values of σ, parameters X1, X5 and X6 have large interactions with other
parameters.

Figure 2: Barplot of µ∗ for the first five eigenfrequencies

Figure 3: Barplot of µ for the first five eigenfrequencies

Figure 4: Barplot of σ for the first five eigenfrequencies

Since the number of the initially selected parameters is not large in this case, all of the six
parameters are considered in the optimization process. The total weight of the blade serves as a
constraint, and the first five eigenfrequencies are computed to compose the objective function.
In addition, the modal assurance criterion (MAC) is applied to pair the modes correctly.

Referring to the optimization algorithm, the differential evolution (DE) method, which be-
longs to the class of EAs, is employed in the present test. The DE is a fairly fast and reasonably
robust method with the capability of handling nondifferentiable, nonlinear and multimodal ob-
jective functions. It is originally described in [21]. Books [22, 23, 24] have been published on
theoretical and practical aspects of using DE in parallel computing, multi-objective optimiza-
tion and constrained optimizations. The crucial idea behind the DE is using vector differences
for perturbing the vector population.
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The simulation-based optimization of the blade model has been successfully implemented.
Table 1 lists the natural frequencies of the blade model and the deviations (in the parentheses)
from the reference before and after model updating. It can be noticed that the defect between the
FE model and the reference model has been significantly reduced within the process of model
updating.

blade mode shape reference frequency FE model
f [Hz] before updating after updating

1 1st flapwise mode 1.64 Hz 1.503 Hz (8.35%) 1.617 Hz (1.41%)
2 1st edgewise mode 2.94 Hz 3.313 Hz (12.68%) 2.648 Hz (9.94%)
3 2nd flapwise mode 4.91 Hz 5.158 Hz (5.05%) 4.790 Hz (2.45%)
4 3rd flapwise mode 9.73 Hz 12.054 Hz (23.88%) 10.428 Hz (7.18%)
5 2nd edgewise mode 10.62 Hz 15.708 Hz (47.91%) 12.607 Hz (18.71%)

Table 1: Model updating results of the blade model

To validate the complete wind turbine model, an agent-based monitoring system has been
established on the tower of the investigated wind turbine for continuous measurement and au-
tomated signal processing [25]. By virtue of operational modal analysis (OMA), the modal
properties of the wind turbine have been identified from the measured acceleration time histo-
ries using the commercial OMA software ARTeMIS Extractor [26]. As listed in Table 2, the
first 6 mode shapes are configured in the global coordinate system, whose origin is at the bot-
tom of the tower, X axis is parallel to the rotation plane, Y axis is perpendicular to the rotation
plane and Z axis is up. In association with the updated blade model, the complete FE model of
the wind turbine provides modal properties quite close to those identified from on-site measure-
ment. Small deviations of frequencies and high MAC values demonstrate very good consistency
between the numerical and measured modes. Considering a certain extent of deviation like 5%
(normally not avoidable in OMA result due to measurement errors), the FE model can be taken
as a very good approximation for representing the dynamic behavior of the real world wind
turbine structure.

mode shape measured f [Hz] FE model f [Hz] deviation MAC
1 1st bending in X-Z plane 0.3753 0.3595 4.22% 0.9993
2 1st bending in Y-Z plane 0.3779 0.3611 4.44% 0.9994
3 2nd bending in Y-Z plane 2.217 2.242 1.11% 0.9951
4 2nd bending in X-Z plane 2.171 2.380 9.63% 0.9981
5 3rd bending in Y-Z plane 5.837 5.598 4.09% 0.9724
6 3rd bending in X-Z plane 5.857 6.223 6.25% 0.9944

Table 2: Comparison of the measured and numerical modal properties

4 CONCLUSION

The model updating problem serving as a pivot for system identification has been solved
by a novel procedure using simulation-based multi-criteria optimization. The crucial aspects
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of the solution concept include: updating parameter determination by global sensitivity anal-
ysis; objective function formulation using multi-criteria; optimization process implementation
on the basis of an interface between the MOPACK package and the simulation software; and
employment of the evolutionary algorithms for complicated optimization problems. The pro-
posed solution concept has been successfully implemented on a real world wind turbine. The
numerical models have been validated by measuring the dynamic response of the rotor blade
test article, and of the wind turbine in operation.

In continuous system identification, the numerical model could be successively updated if the
system has been subjected to structural modification (damage), which opens new opportunities
for modern residual lifetime estimation.
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