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Abstract

The aim of this paper we discuss explicit series constructions for the
fundamental solution of the Helmholtz operator on some important
examples non-orientable conformally flat manifolds. In the context of
this paper we focus on higher dimensional generalizations of the Klein
bottle which in turn generalize higher dimensional Möbius strips that
we discussed in preceding works. We discuss some basic properties of
pinor valued solutions to the Helmholtz equation on these manifolds.

1 Introduction

Clifford and Harmonic analysis deal with the analysis of the Dirac operator
resp. the Laplace operator on manifolds in n variables. A lot of progress has
been made for orientable manifolds over the past three decades. In partic-
ular, much attention has been paid to orientable conformally flat manifolds
with spin structures, such as oriented cylinders and tori as their simplest
representants.

In contrast to the cases of the oriented tori and cylinder that we discussed
extensively in a series of papers, see for example, [8, 3, 5], which indeed are
all examples of spin manifolds, we cannot construct the fundamental solution
of the Helmholtz equation on higher dimensional generalizations of the non-
oriented Klein bottle in terms of spinor valued sections that are in the kernel
of D − iα.

One obstacle is the lack of orientability. This does does not allow us to
construct spinor bundles over these manifolds. Secondly, it is not possible
either to construct non-vanishing solutions in the class Ker D − iα in Rn

that have the additional pseudo periodic property to descend properly to
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these manifolds. A successful way is to start directly from special classes
of harmonic functions that take values in bundles of the +Pin(n) group or
−Pin(n) group.

By means of special classes of pseudo-multiperiodic harmonic functions
we develop series representations for the Green’s kernel of the Helmholtz
operator for some n-dimensional generalizations of Klein bottle with values
in different pin bundles. These functions represent a generalization of the
Weierstraß ℘-function to the context of these geometries.

This functions that can be used to present Green type integral formulas
that provide us with the basic stones for doing harmonic analysis in this
geometrical context. This has been worked out in detail in [6].

The case of the Klein bottle has interesting particular features. In con-
trast to the Möbius strips considered earlier in our paper [7] the Klein bottle
is a compact manifold.

The compactness allows us to prove that every solution of the Helmholtz
operator having atmost unsessential singularities can be expressed as a finite
linear combination of the fundamental solution and a finite amount of its
partial derivatives. The proof of this statement represents also a central
topic in our forthcoming paper [6].

In this paper here we focus ourselves to establish that the only entire
solution of the Helmholtz equation on the Klein bottle is reduced to the
constant function f ≡ 0.

2 Pin structures on conformally flat mani-

folds

Conformally flat manifolds are n-dimensional Riemannian manifolds that
possess atlases whose transition functions are conformal maps in the sense of
Gauss. For n > 3 the set of conformal maps coincides with the set of Möbius
transformations. In the case n = 2 the sense preserving conformal maps are
exactly the holomorphic maps. So, under this viewpoint we may interpret
conformally flat manifolds as higher dimensional generalizations of holomor-
phic Riemann surfaces. On the other hand, conformally flat manifold are
precisely those Riemannian manifolds which have a vanishing Weyl tensor.

As mentioned for instance in the classical work of N. Kuiper [10], concrete
examples of conformally flat orbifolds can be constructed by factoring out a
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simply connected domain X by a Kleinian group Γ that acts discontinuously
on X. In the cases where Γ is torsion free, the topological quotient X/Γ,
consisting of the orbits of a pre-defined group action Γ×X → X, is endowed
with a differentiable structure. We then deal with examples of conformally
flat manifolds.

In the case of oriented manifolds it is natural to consider spin structures.
In the non-oriented case, this is not possible anymore. However, one can
consider pin structures instead. For details about the description of pin
structures on manifolds that arise as quotients by discrete groups. we refer
the reader for instance to [1]. See also [2] and [4] where in particular the
classical Möbius strip and the classical Klein bottle has been considered.

A classical way of obtaining pin structures for a given Riemannian mani-
fold is to look for a lifting of the principle bundle associated to the orthogonal
group O(n) to a principle bundle for the pin groups ±Pin(n). As described
in the above cited works, the group +Pin(n) := Pin(n.0) is associated to
the Clifford algebra Cln,0 of positive signature (n, 0). The Clifford algebra
Cln,0 is defined as the free algebra modulo the relation x2 = qn,0(x) (x ∈ Rn)
where qn,0 is the quadratic form defined by qn,0(ei) = +1 for all basis vec-
tors e1, . . . , en of Rn. For particular details about Clifford algebras and their
related classical groups we also refer the reader to [14]. Next we recall that
the group −Pin(n) := Pin(0, n) is associated to the Clifford algebra Cl0,n
of negative signature (0, n). Here the quadratic form qn,0 is replaced by the
quadratic form q0,n defined by q0,n(ei) = −1 for all i = 1, . . . , n. Topologically
both groups are equivalent, however algebraically they are not isomorphic, cf.
for example [4]. The more popular Spin(n) group is a subgroup of ±Pin(n)
of index 2. Here we have Spin(n) := Spin(0, n) ∼= Spin(n, 0). Spin(n) con-
sists exactly of those matrices from ±Pin(n) whose determinant equals +1.
The groups ±Pin(n) double cover the group O(n).

So there are surjective homomorphisms ±θ :± Pin(n) →± Pin(n) with
kernel Z2 = {±1}. Adapting from Appendix C of [13], where spin structures
have been discussed, this homomorphism gives rise to a choice of two local
liftings of the principle O(n) bundle to a principle ±Pin(n) bundle. The
number of different global liftings is given by the number of elements in
the cohomology group H1(M,Z2). See [11] and elsewhere for details. These
choices of liftings give rise to different pinor bundles over M . We shall explain
their explicit construction on the basis of the examples that we consider in
the next section.
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3 n-dimensional generalizations of the Klein

bottle

In this main section we present basic series constructions for the fundamental
solution of the Helmholtz operator on a class of higher dimensional gener-
alizations of the Klein bottle. For simplicity we consider an n-dimensional
normalized lattice of the form Λn := Ze1 + · · ·+ Zen.

We introduce higher dimensional generalization of the classical Klein bot-
tle by the factorization

Kn := Rn/ ∼∗

where the equivalence relation ∼∗ is defined by the map

(x+
n−1∑
i=1

miei + (xn +mn)en) 7→ (x1, · · · , xn−1, (−1)mnxn).

The manifolds Kn can be described as the set of orbits of the group action
Λn × Rn → Rn where the action here is defined by

v ◦ x := (
k−1∑
i=1

xiei +
k−1∑
i=1

miei + ((−1)mkxk +mk)ek, xk+1, . . . , xn−1, xn),

where v = m1e1 + · · · + mnen is a lattice point from Λn. Here, and in the
remaining part of this section, x denotes a shortened vector in Rn−1. In the
case n = 2 we re-obtain the classical Klein bottle. Notice that in contrast
to the Möbius strips treated in our previous paper [7], here the minus sign
switch occurs in one of the component on which the period lattice acts, too.
As for the Möbius strips we can again set up distinct pinor bundles. See also
[2] where pin structures of the classical four-dimensional Klein-bottle have
been considered.

By decomposing the complete n-dimensional lattice Λn into a direct sum
of two sublattices Λn = Ωl⊕Λn−l we can construct in analogy to the oriented
torus case treated in [8], 2n distinct pinor bundles by considering the maps

(x+
n−1∑
i=1

miei, xn +mn, X) 7→ (x1, · · · , xn−1, (−1)mnxn, (−1)m1+···+mlX).

In order to describe the fundamental solution of the Helmholtz operator on
the Klein bottlr we recall from standard literature (see for instance [15]) that
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the fundamental solution to the Klein-Gordon operator ∆−α2 in Euclidean
flat space Rn is given by

Eα(x) = − iπ

2ωnΓ(n/2)
(
1

2
iα)

1
2
n−1|x|1−

1
2
nH

(1)
n
2
−1(iα|x|). (1)

In this formula, ωn stands for the surface measure of the unit sphere in Rn

while H
(1)
m denotes the first Hankel function with parameter m. Furthermore,

we choose the root of α2 such that α > 0. Then, as proposed in [6] we may
introduce the following generalized version of Weierstrass ℘-function adapted
to this class of Klein bottles by

℘Kn
α (x) :=

∑
v∈Λn

Eα(
n−1∑
i=1

(xi +mi)ei, (−1)mnxn + xm). (2)

By similar arguments as applied in the cases of the Möbius strips described
in [7] one may establish

Theorem 3.1. Consider the decomposition of the lattice Λn = Λl ⊕ Λn−l
for some l ∈ {1, . . . , n} and write a lattice point v ∈ Λn in the form v =
m1e1 + · · ·+mlel +ml+1el+1 + · · ·+mnen with integers m1, . . . ,mn ∈ Z. Let
E (q) be the pinor bundle on Kn defined by the map

(x+
n−1∑
i=1

miei, xn +mn, X) 7→ (x1, · · · , xn−1, (−1)mnxn, (−1)m1+···+mlX).

The fundamental solution of the Helmholtz operator on Kn (induced by p∗(∆−
α2) ) for sections with values in the pinor bundle E (q) can be expressed by

E ′α,q(x
′) = p∗

( ∑
v∈Λl⊕Λn−l

(−1)m1+···+mlEα(
n−1∑
i=1

(xi +mi)ei, (−1)mnxn + xm)

)
,

(3)
where p∗ denotes the projection from Rn to Kn = Rn/ ∼∗. The symbol ′

represents the image under p∗.

The detailed proof is given in our forthcoming paper [6]. To recall the
main idea of proof, without loss of generality we may consider the trivial bun-
dle, as the arguments can easily be adapted to the other bundles that we also
considered, namely by taking into account the parity factor (−1)m1+···+ml .
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This parity factor has no influence on the convergence property of the series.
Now one can apply the same argumentation as applied for the Möbius strips
to estimate each term of the series which turn out to be asymptotically ex-
ponentially decreasing, as a consequence of the Bessel functions. Further, it
is a simple exercise to establish that the function ℘Kn

α is an element from Ker
∆− α2 in Rn\Λn.

An important feature however is to show:

Lemma 3.2. For all k := k1e1 + · · ·+ knen ∈ Λn we have

℘Kn
α (x+ k) = ℘Kn

α (x1, . . . , xn−1, (−1)knxn).

Proof. To prove this statement it is important to use the following decom-
position

℘Kn
α (x) =

∑
(m1,...,mn)∈Zn

Eα(x1 +m1, . . . , xn−1 +mn−1, (−1)mnxn +mn)

=
∑

(m1,...,mn−1)∈Zn−1,mn∈2Z

Eα(x1 +m1, . . . , xn−1 +mn−1, xn +mn)

=
∑

(m1,...,mn−1)∈Zn−1,mn∈2Z+1

Eα(x1 +m1, . . . , xn−1 +mn−1,−xn +mn).

First we note that

℘Kn
α (x1 + k1, . . . , xn−1 + kn−1, xn) = ℘Kn

α (x1, . . . , xn)

for all (k1, . . . , kn−1) ∈ Zn−1. This follows by the direct series rearrangement

℘Kn
α (x1 + k1, . . . , xn−1 + kn−1, xn)

=
∑

(m1,...,mn)∈Zn

Eα(x1 + k1 +m1, . . . , xn−1 + kn−1 +mn−1, (−1)mnxn +mn)

=
∑

(p1,...,pn)∈Zn

Eα(x1 + p1, . . . , xn−1 + pn−1, (−1)pnxn + pn)

where we put pi := mi+ki ∈ Z for i = 1, . . . , n−1 and pn := mn. Notice that
rearrangement is allowed because the series converges normally on Rn\Λn.

It thus suffices to show

℘Kn
α (x1, . . . , xn−1, xn + 1) = ℘Kn

α (x1, . . . , xn−1,−xn).
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We observe that

℘Kn
α (x1, . . . , xn−1, xn + 1)

=
∑

(m1,...,mn)∈Zn

Eα(x1 +m1, . . . , xn−1 +mn−1, (−1)mn(xn + 1) +mn)

=
∑

(m1,...,mn−1)∈Zn−1,mn∈2Z

Eα(x1 +m1, . . . , xn−1 +mn−1, xn +mn + 1︸ ︷︷ ︸
odd

)

+
∑

(m1,...,mn−1)∈Zn−1,mn∈2Z+1

Eα(x1 +m1, . . . , xn−1 +mn−1,−xn +mn − 1︸ ︷︷ ︸
even

)

=
∑

(p1,...,pn−1)∈Zn−1,pn∈2Z+1

Eα(x1 + p1, . . . , xn−1 + pn−1, xn + pn)

=
∑

(p1,...,pn−1)∈Zn−1,qn∈2Z

Eα(x1 + p1, . . . , xn−1 + pn−1,−xn + qn)

= ℘Kn
α (x1, . . . , xn−1,−xn).

The fact that

℘Kn
α (x1, . . . , xn−1, xn + kn) = ℘Kn

α (x1, . . . , xn−1, (−1)knxn)

is true for all kn ∈ Z now follows by a direct induction argument on kn.

With this property we may infer that ℘Kn
α descends to a well-defined pinor

section on Kn by applying the projection p∗(℘
Kn
α ). The result of this pro-

jection will be denoted by E ′α(x′). E ′α(x′) is the canonical skew symmetric
periodization of Eα(x) that is constructed in such a way that it descends to
the manifold. Therefore, the reproduction property of E ′α(x′ − y′) on Kn
follows from the reproduction property of the usual Green’s kernel Eα(x−y)
in Euclidean space, where we apply the usual Green’s integral formula for
the Helmholtz operator.

Remarks. The fundamental solution of the Helmholtz operator on the
usual Klein bottle in two real variables (for pinor sections with values in the
trivial bundle) has the form

p∗

(∑
v∈Λ2

Eα((x1 +m1), (−1)m2x2 +m2)

)
.

In terms of this formula for the fundamental solution of the Helmholtz op-
erator on the manifolds Kn we can deduce similar representation formulas
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for the solutions to the general inhomogeneous Helmholtz problem with pre-
scribed boundary conditions on these manifolds as presented in the context
of the Möbius strips in [7]. This is also a topic treated in detail in [6].

The fact that the manifolds Kn are compact manifolds has some inter-
esting special function theoretical consequences. As also shown in our forth-
coming paper [6], one can express any arbitrary solution of the Helmholtz
equation with unessential singularities on these manifolds as a finite sum of
linear combinations of the fundamental solution E ′α and its partial deriva-
tives.

In this paper we restrict ourselves to show that there are no non-vanishing
entire solutions to the Helmholtz equation on the Klein bottle. To establish
the latter statement one first has to show

Lemma 3.3. Let α 6= 0. Suppose that f : Rn → C is an entire solution of
(∆− α2)f = 0 on the whole Rn. If f additionally satisfies

f(x1 +m1, · · · , xn +mn) = f(x1, . . . , xn−1, (−1)mnxn) (4)

for all (m1, . . . ,mn) ∈ Zn, then f vanishes identically on Rn.

Proof. Since f satisfies the relation

f(x1 +m1, · · · , xn +mn) = f(x1, . . . , xn−1, (−1)mnxn),

it takes all its values in the n-dimensional period cell [0, 1]n−1× [0, 2], because

f(x1 +m1, x2 +m2, . . . , xn−1 +mn−1, xn + 2mn) = f(x1, x2, . . . , xn−1, xn)

for all (m1, . . . ,mn) ∈ Zn. The set [0, 1]n−1 × [0, 2] is compact. Since f is an
entire solution of (∆−α2)f = 0 on the whole Rn, it is in particular continuous
on [0, 1]n−1× [0, 2]. Consequently, f must be bounded on [0, 1]n−1× [0, 2] and
therefore it must be bounded over the whole Rn, too.

Since f is an entire solution of (∆− α2)f = 0, it can be expanded into a
Taylor series of the following form, compare with [3],

f(x) =
∞∑
q=0

|x|1−q−n/2Jq+n/2−1(α|x|)Hq(x).

This Taylor series representation holds in the whole space Rn.
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Here, Hq(x) are homogeneous harmonic polynomials of total degree q.
These are often called spherical harmonics, cf. for example [12].

Since the Bessel J functions are exponentially unbounded away from the
real axis, f can only be bounded if all spherical harmonics Hq vanish identi-
cally. Hence, f ≡ 0.

Notice that all constant functions f ≡ C with C 6= 0 are not solutions of
(∆− α2)f = 0. As a direct consequence we obtain

Corollary 3.4. There are no non-vanishing entire solutions of (∆−α2)f = 0
on the manifolds Kn (in particular on the Klein bottle K2).

This is a fundamental consequence of the compactness of the manifolds
Kn. Notice that this argument cannot be carried over to the context of the
manifolds that we considered in the previous section, since those are not
compact.

Remark. The statement can be adapted to the harmonic case α = 0. In
this case one has a Taylor series expansion of the simpler form

f(x) =
∞∑
q=0

Hq(x),

where only the spherical harmonics of total degree q = 0, 1, . . . are involved.
The only bounded entire harmonic functions are constants. Applying the
same argumentation leads to the fact that the only harmonic solutions on
Kn are constants.
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