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Abstract. New foundations for geometric algebra are proposed based upon the existing 
isomorphisms between geometric and matrix algebras. Each geometric algebra always has a 
faithful real matrix representation with a periodicity of 8. On the other hand, each matrix algebra 
is always embedded in a geometric algebra of a convenient dimension. The geometric product is 
also isomorphic to the matrix product, and many vector transformations such as rotations, axial 
symmetries and Lorentz transformations can be written in a form isomorphic to a similarity 
transformation of matrices. We collect the idea that Dirac applied to develop the relativistic 
electron equation when he took a basis of matrices for the geometric algebra instead of a basis of 
geometric vectors. Of course, this way of understanding the geometric algebra requires new 
definitions: the geometric vector space is defined as the algebraic subspace that generates the rest 
of the matrix algebra by addition and multiplication; isometries are simply defined as the 
similarity transformations of matrices as shown above, and finally the norm of any element of the 
geometric algebra is defined as the thn  root of the determinant of its representative matrix of 
order nn× . The main idea of this proposal is an arithmetic point of view consisting of reversing 
the roles of matrix and geometric algebras in the sense that geometric algebra is a way of 
accessing, working and understanding the most fundamental conception of matrix algebra as the 
algebra of transformations of multilinear quantities. 
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1    INTRODUCTION 
 
 In his memoir On multiple algebra [1], Josiah Willard Gibbs explored the algebras proposed 
by several authors in the XIX century in order to multiply multiple quantities (vectors), and he 
reviewed Grassmann’s extension theory, Hamilton’s quaternions and Cayley’s matrices among 
others as well as the relations between them. Many kinds of products of vectors have been 
proposed since then, including Gibb’s skew product of vectors in the room space [2, p. 21]. What 
called strongly my attention was the following phrase of Gibbs [3, p.179]: 

 “We have, for example, the tensor of the quaternion1, which has the 
important property represented by the equation: ( ) rqrq TTT = . 
 There is a scalar quantity related to the linear vector operator which 
I have represented by the notation Φ  and called the determinant of Φ . It 
is in fact the determinant of the matrix by which Φ  may be represented, 
just as the square of the tensor of q  (sometimes called the norm2 of q ) is 
the determinant of the matrix by which q  is represented. It may also be 
defined as the product of the latent roots3 of Φ , just as the square of the 
tensor of q  might be defined as the product of the latent roots of q . Again, 
it has the property represented by the equation ψΦ=ΨΦ.  which 
corresponds exactly with the preceding equation with both sides squared.” 

That is, he pointed out that the relation between the determinant of the matrix representation of a 
quaternion and its norm was a power. Gibbs said that the determinant was the square, but it is the 
4th power of the present norm for the regular 4×4 matrix representation: 
 

dkcjbiaq +++=   ⇒ ( )222224det dcbaqq +++==       (1) 
 
I wish to quote another phrase of Gibbs [4, p. 157]: 

 “The quaternion affords a convenient notation for rotations. The notation 
1)( −qq , where q  is a quaternion and the operand is to be written in the 

parenthesis, produces on all possible vectors just such changes as a (finite) 
rotation of a solid body.” 

That is, if q  is represented by a matrix, a rotation is a similarity transformation. In fact, many 
vector transformations such as rotations, axial symmetries and Lorentz transformations can be 
written in the form qvqv' 1−=  [5,  6,  7,  8 p. 19], which is isomorphic to a similarity 
transformation of matrices. It can be applied not only to vectors, but also to the other elements of 
geometric algebra. 

While searching a square root of the Klein-Fock equation in order to find the relativistic 
electron equation, Paul Adrien Maurice Dirac [9] surprisingly took a basis of complex matrices 
for the space-time geometric algebra instead of taking geometric elements (vectors) as the 
fundamental entities. Later on, Ettore Majorana [10] found a real 4×4 matrix representation4 
equivalent to Dirac’s matrices. The isomorphism between geometric algebras and matrix algebras 

                                                 
1 William Rowan Hamilton called tensor to what we take as the norm nowadays (See Elements of Quaternions, vol. 
I, p. 163). 
2 Hamilton called norm to the square of our norm, that is, to the sum of the squares of the components of a 
quaternion. 
3 Latent roots means eigenvalues. 
4 It is curious that the smaller faithful representation of the non-physical Euclidean four dimensional geometric 
algebra 4Cl  is included in the complex matrices ( )C44×M  or, by expansion, in the real ( )R88×M . 
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is well known. Each geometric algebra always has a faithful real matrix representation with a 
periodicity of 8 [11]: 
 

( )R1616,,88, ×++ ⊗≅≅ MClClCl qpqpqp           (2) 
 
On the other hand, each matrix algebra is embedded in a geometric algebra of a convenient 
dimension, while the geometric product is isomorphic to the matrix product. For instance, the 
algebra of square real 2×2 matrices, ( )R22×M , is isomorphic to the geometric algebra of the 
Euclidean plane 0,2Cl  and also to the geometric algebra of the hyperbolic plane 1,1Cl  in virtue of 
the general isomorphism [12]: 
 
  1,1, −+≅ pqqp ClCl             (3) 
 
Another example is Majorana’s representation ( )R44×M , which is a real representation of the 
space-time geometric algebra 1,3Cl . 
 Since all Clifford algebras are included in matrix algebras, I wondered whether matrices or 
geometric vectors were the more fundamental concept and if an arithmetic point of view could 
give us advantage over the geometric point of view with which geometric algebras have been 
studied until now. 
 
 
2    GEOMETRIC ALGEBRA AB INITIO 
 
 Leopold Kronecker stated [13]: 

“God made the integers, and all the rest is the work of man.” 
I do not wish to be as radical as him5 but let us suppose for a moment that the multiple quantities 
of real numbers are the only tangible reality. Let us search for a rule of multiplication of these 
multiple quantities taking Gibbs’ point of view and without any presupposition about this rule, 
although we expect to have two algebraic properties: the distributive property and the associative 
property. The first one is always required for any kind of vector multiplication. The second one is 
not always required, like in the case of the skew (cross) product, but its presence has clear 
advantages, especially for algebraic manipulations and geometric equation solving [14]. The most 
elemental outlining of the transformations of multiple quantities leads us to matrices. If 

( )nvv L1=v  is a multiple quantity with real components, then we can find any other one 
( )'v'v nL1=v'  through a linear transformation represented by a matrix ( )ijm=M : 
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The distinction between operator (matrix) and operand (multiple quantity) is fictitious since any 
operand is also an operator. So, the multiple quantity is also an operator and also has a matrix 
representation a column of which is the column here shown. Note that I am talking about 
“multiple quantities” instead of “vectors” because the word “vector” needs a more precise 

                                                 
5 Perhaps if the development of quantum gravity destroys the fiction of the continuity of room space we shall then 
agree with Kronecker. 
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definition and I wish to avoid confusion between algebraic vectors (elements of a vectorial space) 
and geometric vectors (generators of the Clifford algebra). The composition of two linear 
transformation ( )ijm=M  and ( )ijn=N  leads us naturally to the matrix product: 
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That is: 
 
  vP'v' =   with  MNP =         (6) 
 
and the multiplication rule: 
 
  ∑=

k
kjikij mnp      (7) 

 
Following a similar way, William Rowan Hamilton 
discovered quaternions, as the operators q  which 
transform geometric vectors: 
 
  vqv' =     (8) 
 
and the rules of their product [15]. He was surprised 
by the fact that the transformation of three-
dimensional vectors required four real quantities, a 
quaternion, instead of three quantities, which are the 
inclination θ  of the plane, the declination ϕ , the angle α  between both vectors and the ratio of 
their lengths vv' /  (fig. 1). 

Once stated square matrices as the fundamental concept of geometric algebra, which already 
contain vectors, new definitions must be given in order to work with them. 

 
 

3    NEW DEFINITIONS IN GEOMETRIC ALGEBRA 
 
The necessary new definitions that I propose are the following: 

1) A complete geometric algebra is a square matrix algebra ( )RnnM
22 ×

. Many geometric 
algebras are not complete (such as quaternions or 0,4Cl ) because their smallest faithful 
representation is a subalgebra of a matrix algebra of the same order. The space-time 
geometric algebra is a complete geometric algebra because ( )R441,3 ×≅ MCl .  

2) The generator vector space (the geometric vector space) is the set of matrices and their linear 
combinations (a vectorial subspace) that generate by multiplication the whole geometric 
algebra. The concept is similar to the set of generators of a discrete group, but applied to a 
continuous group. 

3) The norm of every element of a geometric algebra ( )RkkM ×  is the thk  root of the determinant 
of its representative matrix: 

Fig. 1. Quaternion operating upon a vector.



 5

k
kk MM det=×              (9) 

 
For instance, the subalgebra of quaternions is given by: 
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  whose norm is obtained from the 4th root of the matrix determinant: 
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The norm can be a real number, an imaginary number and also zero since all the complete 
geometric algebras have divisors of zero. According to Frobenius’ theorem [16], the only 
division associative algebras6 are the real numbers, the complex numbers and quaternions. 

4) Isometries are defined as the similarity transformations of matrices: 
 

PMPM' 1−=   with    0det ≠P  ⇒ MM' detdet =      (12) 
 

because they preserve the determinant and hence the norm. 
5) Two elements are said to be equivalent if their matrices can be transformed one into the other 

through an isometry, that is, through a similarity transformation. To have the same norm and 
determinant does not imply to be equivalent since similar matrices have the same eigenvalues 
and the determinant is only their product. For instance, in the space-time algebra  

( )R441,3 ×≅ MCl , we have 321 ~~ eee  but they are not equivalent to 0e  although 
1detdetdetdet 0321 ==== eeee . 

6) A unity is a matrix whose square power is equal to I± , and whose determinant is equal to 1 
(from dimension 4 on). The unities can be found through tensor product of  the four unities of  

( )R22×M , the smallest complete geometric algebra: 
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For instance, a unity of ( )R44×M is: 
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6 Algebras without divisors of zero. 
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Of course, any similar matrix to this one is also a unity. 
 
 

4    CONSEQUENCES OF THE NEW DEFINITIONS 
  
1) Any set of orthogonal unities fulfils the Pythagorean or pseudo-Pythagorean theorem. Let 

{ }iE  and M  be respectively a set of orthogonal unities and a linear combination of them: 
 

ji ≠ ⇒ ijji EEEE −=   IIE ii χ=±=2   ( )RE nni M ×∈     (15) 
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For instance, the determinant of a bivector of the space-time geometric algebra 1,3Cl  does not 
fulfil the Pythagorean theorem: 

 
( ) =+++++ 123123030201det ehegefecebea       

     ( ) ( )22222222 4 hcgbfahgfcba +++−−−++     (19) 
 

because 01232301 eeee =  and so on. However, if the first or the second tern of components 
vanishes, the norm is then given by the Pythagorean theorem: 

 
222

030201 cbaecebea ++=++  222
123123 hgfehegef ++=++    (20) 

 
because the remaining unit bivectors are orthogonal. It happens that the directions 01e  and 23e  
have the same geometric direction. 

2) The expression of isometries as similarity transformation is general and can be applied to any 
element of the geometric algebra. Let us suppose for a moment that this expression can only 
be applied to geometric vectors. Then, it can be applied to geometric products of vectors: 

 
  qvqv' 1−=  ⇒ qvvqqvqqvq'v'v 21

1
2

1
1

1
21

−−− ==       (21) 
 

and also to exterior products of vectors and their linear combinations, that is, to any element 
of second degree: 

 

  ( ) ( ) ( ) qvvqqvvvvq'v'v'v'v'v'v'vv 21
1

1221
1

12212121 2
1

2
1

∧=−=−=∧=∧ −−     (22) 
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and so on for any degree, that is, for any element of the geometric algebra. Nowadays, certain 
isometry operators are written in a form that is only valid for vectors but not for other 
elements of the algebra. For instance, a rotation of angle θ  of a vector in the plane can be 
written as [17, p. 52]: 

 
   ( )θθ sincos 12evv' +=   2211 evevv +=       (23) 
 

but the application of this operator to a complex 
number turns its direction. However, complex 
numbers are geometric products (or quotients) of 
two plane vectors. Both vectors are turned 
through the same angle of rotation θ , so that the 
angle α  between both vectors is preserved, and 
therefore complex numbers must be preserved [7, 
p. 27] (fig. 2). We can only obtain this result with 
the half angle operator: 
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which is a similarity transformation. Now complex numbers are preserved because of their 
commutative property: 
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3) Isometries transform orthogonal vectors into orthogonal vectors, which can be easily proven: 
 

ijji EEEE −=    ⇒ PEPPEPPEPPEP 1111
ijji

−−−− −=     
⇒ 'E'E'E'E ijji −=             (26) 
 
because IPP 1 =− . Both vectors can lie in an Euclidean 
plane or in a hyperbolic plane. In the second case, two 
vectors are orthogonal if we “see” their directions as being 
symmetric with respect to the quadrant bisectors [7, p. 
156]. Fig. 3 shows how an isometry, such as a Lorentz 
transformation, transforms a pair of orthogonal vectors u , 
v  into another pair of orthogonal vectors u' , v'  .  

4) Any product of distinct orthogonal unities is linearly 
independent of them and has no intersection with the subspace 
generated by the unities and other products of lower degree. It 
follows immediately from the identity between geometric and 
exterior product:  

 
ji ≠∀       ijji EEEE −=  ⇒    kiki EEEE ∧∧= LL          ki <<L            (27) 

 

Fig. 2. Preservation, upon a rotation,
of the angle between two plane vectors
and their lengths, and therefore of their
product or quotient, a complex
number. 

Fig. 3. Transformation of two
orthogonal vectors u, v into
another pair of orthogonal
vectors u’, v’ under an
isometry in a hyperbolic
plane. 
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because the exterior product is the product by the orthogonal component. We can also prove 
this linear independence in another way. For instance, the complete geometric algebra 

( )R22×M  has two orthogonal generator unities 1E  and 2E : 
 
  1221 EEEE −=   12 ±== ii χE         (28) 
 

Let us suppose that their product is a linear combination of them and the identity: 
 
  2211021 EEIEE ααα ++=           (29) 
 

If we multiply the equality by 1E  on the left and on the right we obtain: 
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If we multiply the equality by 2E  on the left and on the right we obtain: 
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a result which comes in contradiction with the former result. Therefore, this proves that our 
hypothesis that 21EE  is a linear combination of { }21 ,, EEI  is a falsehood, whence it follows 
that the set { }2121 ,,, EEEEI  is a basis of ( )R22×M . 

5) Reflections need a special mention. When talking with Prof. L. Dorst and Prof. H. Pijls during 
the ECM 2008 conference in Amsterdam about my supposition that isometries are similarity 
transformations, they replied to me that the expression for reflections is not a similarity 
transformation since [18]: 

 
avav' 1−−=             (32) 

 
where v  is a geometric vector and a  is a vector perpendicular to 
the plane of reflection (fig. 4). The first objection to this expression 
is the fact that it can only be applied to vectors but not to other 
elements of the geometric algebra such as bivectors. The 
modification which I have proposed [8, p. 36] is to write it as a 
similarity transformation in the following way: 

 
  aer 0=  ⇒ 0

11 ear −− −=          (33) 
 
  avaaevearvrv' 1

00
11 −−− −=−==          (34) 

 
Of course it has a consequence: this operator changes the sign of the time component: 
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1
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1
0 eeaaaeaaeeearer'e −=−==−== −−−−        (35) 

 

Fig. 4. Reflection of a
vector in a plane. 
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That is, a reflection would be an isometry reversing one spatial direction and also the time 
direction. We can discuss widely about whether the reversal of one spatial and the temporal 
components must be linked or not in a reflection. The physical world does not remain 
invariant under reflections because there are physical processes, driven by weak interactions, 
whose mirror image has a very much lower probability [19]. However, physical invariance is 
preserved under the CPT transformation7 [20], that is, if time is also reversed. On the other 
hand, the biological world has chosen one side of the mirror: all the proteins of the superior 
species are built with the L-amino acids while their mirror images, D-amino acids, are absent 
from the most biological structures. Anyway, we may wonder whether a reflection without 
reversal of the time can be a similarity transformation. Let us see how a generic element of 
the space-time geometric algebra 1,3Cl : 
 

1231230302013210 ekejeiehegefeeedecebaw ++++++++++=  
  0123123012031023 epeoenemel +++++        (36) 
 
changes under a reflection in the plane 23e , which produces the reversal 11 ee −→ : 
 
        1231230302013210 ekejeiehegefeeedecebaw' −−+++−++−+=      
  0123123012031023 epeoenemel −−−−+        (37) 
 
The characteristic polynomials of both elements8 are: 
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onjfpmkclhdaigeb
pmkconjfigeblhda

wdet    (38) 
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λ
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λ
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−+−−−−−+−+−−++

=−
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In fact, it reduces to a change of sign of all the matrix elements in the highest right square and 
in the lowest left square. Both determinants are equal, and the characteristic polynomials are 
identical. Therefore, the existence of a similarity transformation for this reflection cannot be 
discarded although it is necessary that both matrices have the same invariant factors [21]. 
This question must be clarified soon. In the case that this reflection be a similarity 
transformation, the operator may not have a simple form, and I believe that it will be a 
combination of elements with different degree and temporal components. That is the reason 
why reflections cannot be written as similarity transformation in the room space geometric 
algebra 3Cl . 

                                                 
7 Charge conjugation, parity or spatial inversion, and time reversal. 
8 I have built these determinants with the matrix basis given in [8, p. 11]. Notwithstanding this, all the bases 
of Cl3, 1 are equivalent and they therefore have the same characteristic polynomial (38) although the matrix 
elements can change depending on the chosen basis. 
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6) In a complete geometric algebra ( )RnnM
22 ×

 the maximum number of orthogonal unities is 
nk 2= . It is well known that a geometric algebra generated by a geometric space of 

dimension k  has dimension k2  because: 
 

k
qp k

kkk
Cl 2

10
dim , =








++
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= L   qpk +=      (40) 

 
Then, the dimension of this geometric algebra must be equal to the dimension of the linear 
space of the matrix algebra so that: 

 
nnk 222 ×=   ⇒ nk 2=          (41) 

 
For instance, in ( )R44×M  the maximum number of orthogonal unities is 4 while in ( )R88×M  
the maximum number of orthogonal unities is 6 because 8826 ×= . However, in virtue of the 
isomorphisms 1,1, −+≅ pqqp ClCl  and 4,4, +−≅ qpqp ClCl  for 4≥p  [12], there are two or more 
non-equivalent sets of unities generating these geometric algebras [11]: 

 
  ( ) 2,21,344 ClClM ≅≅× R           (42) 
 
  ( ) 2,43,36,088 ClClClM ≅≅≅× R          (43) 
 
 Those statements outlined in this section but not proven yet should be rigorously 
demonstrated as well as some definitions given in section 3 should be improved in future work. 
The knowledge we have on Clifford algebras will be very helpful in this task. 
 
 
5    CONCLUSIONS 
 
 If we take multiple quantities as the fundamental entities, then the matrix theory follows 
naturally from their transformations, and the matrix product from the composition of 
transformations. In this framework, a geometric algebra is defined as a matrix algebra or 
subalgebra that is closed under addition and multiplication of a set of generating unities obtained 
from tensor product of the unities of ( )R2,2M . A complete geometric algebra is defined as a 
matrix algebra isomorphic to a geometric algebra over the real numbers, which only happens for 

( )RnnM
22 ×

. Searching for a generalization of the norm of a complex numbers or a quaternion, we 
wish that the norm of a product of two elements be equal to the product of their norms. The 
unique quantity that fulfils this equality is the determinant, because the determinant of a product 
of two matrices is equal to the product of their determinants. In order to fit this new norm to the 
norms of complex numbers or quaternions, or to the length of a vector, the kth root of the 
determinant must be taken, where kk ×  are the dimensions of the matrix algebra. Since k  is 
always an even number, the norm M  of a matrix M can be a real or an imaginary positive 

number, which fulfils NMNM ±= . This definition of the norm of an element of a geometric 
algebra fills a void in Clifford algebras theory, since the norm of elements with mixed degree 
have not been unambiguously defined until now, except for special cases such as quaternions. 
 On the other hand, an isometry is defined as a matrix similarity transformation, which 
preserves the determinant and therefore the norm. The advantage of this definition is the fact that 
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the same operator can be applied to any element of geometric algebra. A new definition for 
unities is also given as matrices with square power equal to I±  and determinant equal to 1 (for 

4≥n ). In fact, they are obtained by tensor product of the unities of ( )R22×M . Any matrix 
equivalent (through a similarity transformation) to a given unity is also a unity. 
 Two elements (matrices) of a geometric algebra are said to be orthogonal if they 
anticommute. In this case, it is deduced that their norm fulfils the Pythagorean or pseudo-
Pythagorean theorem. In a complete geometric algebra ( )RnnM

22 ×
 there are a maximum of n2  

orthogonal unities. Isometries transform orthogonal vectors into orthogonal vectors. Finally, it is 
shown that these n2  orthogonal unities and their products induce the structure of Clifford algebra 
inside the matrix algebra (which we are calling geometric algebra) and form a basis of the 
algebra. 
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