10 Anhang

10.1 Tabellen

10.1.1 Charakterisierung Ausgangsstoffe

Tabelle A 1Rohdichte und Wasseraufnahme der Gesteinskörnungen, Bestimmung gemäß
Pyknometer-Verfahren nach DIN EN 1097-6

Gesteinskörnung	M ₂	M_3	M ₁	M_4	ρa	ρ_{rd}	$ ho_{ssd}$	WA ₂₄
	[g]	[g]	[g]	[g]	[Mg/m ³]	[Mg/m ³]	[Mg/m ³]	%
Sauerländer Grauwacke-Splitt	2300,8	1987,4	496,9	494,2	2,73	2,69	2,71	0,5
Kies-Edelsplitt vom Oberrhein	2325,7	2000,4	520,4	517,4	2,69	2,65	2,67	0,6
Quarzporphyr- Splitt	2328,4	1998,7	529,7	527,1	2,67	2,64	2,65	0,5

M₁ Masse der wassergesättigten und oberflächentrockenen Gesteinskörnung in Luft, in Gramm

M₂ Masse des Pyknometers mit der Probe der gesättigten Gesteinskörnung (24 ± 0,5) h, in Gramm

M₃ Masse des nur mit Wasser (22 ± 3) °C gefüllten Pyknometers, in Gramm

M₄ Masse der ofengetrockneten Messprobe in Luft, in Gramm

ρ_a Scheinbare Rohdichte, in Megagramm je Kubikmeter M₄/(M₄-(M₂-M₃))

ρ_{rd} Rohdichte auf ofentrockener Basis, in Megagramm je Kubikmeter M₁/(M₁-(M₂-M₃))

ρ_{ssd} Rohdichte auf wassergesättigter und oberflächentrockener Basis, in Megagramm je Kubikmeter

WA₂₄ Wasseraufnahme nach Eintauchen für 24h, in Prozent

Tabelle A 2Chemische Zusammensetzung der Zemente, Ergebnisse Z0 [Datenblatt Prüfzement] und Z1 [Müller et al. 2010] vom FIZ

		Zement Z0	Zement Z1	Zement Z2	Zement Z3
		CEM I 32,5R	CEM I 42,5R	CEM I 32,5R	CEM I 42,5 N (sd)
	Silizium(IV)-oxid	18,97	19,4	20,73	20,8
	Aluminiumoxid	5,36	5,46	4,59	4,22
	Titandioxid	0,27	0,24	0,36	0,29
Chemische	Eisen(III)-oxid	3,87	3,41	3,29	3,95
Zusammen-	Magnesiumoxid	1,80	1,66	1,54	1,60
glühverlusthaltig	Calciumoxid	61,80	62,1	61,39	61,65
[M%]	Sulfat als SO ₃	2,92	3,75	2,49	3,00
	Kaliumoxid	1,55	1,44	0,41	0,79
	Natriumoxid	0,18	0,23	0,14	0,21
	Natriumäquivalent	1,20	1,18	0,41	0,73
Glühverlust [M%]	Glühverlust gesamt	2,11	1,95	2,14	2,16
Klinkornhooon	C ₃ S	-	58,68	50,5	51,3
alühverlustfrei:	C ₂ S	-	12,56	22,7	22,3
berechnet nach	C ₃ A	-	8,86	6,7	4,6
воgue) [M%]	C ₄ AF	-	10,58	10,3	12,3

		Zement Z0	Zement Z1	Zement Z2	Zement Z3	Prüfung
		CEM I 32,5 R	CEM I 42,5 R	CEM I 32,5 R	CEM I 42,5N (sd)	nach
Reindichte	g/cm³	3,12	3,14	3,14	3,13	DIN EN 196-6
Spezifische Ober- fläche nach Blaine	cm²/g	3125	4330	3155	3280	DIN EN 196-6
Wasseranspruch	M%	28,5	30,5	n.b.	26,2	DIN EN 196-3
Erstarren Beginn	min	295	220	n.b.	148	DIN EN 196-3
Erstarren Ende	min	330	n.b.	n.b.	n.b.	DIN EN 196-3
Normsteifemaß	Mm	7,0	5,0	n.b.	n.b.	
Druckfestigkeit 2d	MPa	24,2	40,7	19,7	28,0	DIN EN 196-1
Druckfestigkeit 7d	MPa	41,1	52,8	43,8	38,8	DIN EN 196-1
Druckfestigkeit 28d	MPa	49,1	60,6	53,3	54,3	DIN EN 196-1

Tabelle A 3Normeigenschaften der verwendeten Portlandzemente, Ergebnisse Z0 [Daten-
blatt Prüfzement] und Z1 [Müller et al. 2010] vom FIZ

10.1.2 Hohes internes Schädigungspotenzial

 Tabelle A 4
 Frischbetonkennwerte hohes int. Schädigungspotenzial [Müller et al. 2010]

Bezeichnung Beton	Rohdichte	Luftgehalt	Ausbreitmaß	Verdichtungsmaß
-	[kg/m³]	[Vol%]	[mm]	[-]
GW-Z1-0,35 I	2490	1,2	-	1,64
GW-Z1-0,35 II	2500	1,0	-	1,63
GW-Z1-0,35 W	2480	1,2	-	1,61
GW-Z1-0,35 W2 I	2480	1,5	-	1,65
GW-Z1-0,35 W2 II	2490	1,5	-	1,65
GW-Z1-0,45 I	2440	0,6	-	1,25
GW-Z1-0,45 II	2450	0,5	-	1,33
GW-Z1-0,45 W	2430	0,7	-	1,35
GW-Z1-0,55 I	2370	0,4	470	-
GW-Z1-0,55 II	2380	0,4	465	-
GW-Z1-0,55-W	2380	0,6	430	-
GW-Z1-0,45-LP I	2340	4,2	-	1,25
GW-Z1-0,45-LP II	2340	4,2	-	1,25
OR-Z1-0,35 I	2460	1,3	-	1,63
OR-Z1-0,35 II	2470	1,3	-	1,61
OR-Z1-0,45 I	2410	0,9	340	1,20
OR-Z1-0,45 II	2410	1,0	340	1,23
QP-Z1-0,35 I	2430	1,6	-	1,57
QP-Z1-0,35 II	2430	1,6	-	1,64
QP-Z1-0,45 I	2400	1,1	-	1,27
QP-Z1-0,45 II	2380	1,4	-	1,30
QP-Z1-0,55 I	2330	1,0	470	-
QP-Z1-0,55 II	2330	0,9	515	-

I = erste Herstellung, II = zweite Herstellung, W = Wiederholung der Herstellung

	Festbetonrohdichte [g/cm ³]					
Bezeichnung Beton	Zylinder	Balken	Würfel			
	Ø 70 L 280 [mm]	75 x 75 x 280 [mm]	300 x 300 x 300 [mm]			
GW-Z1-0,35	2,48	2,30	2,47			
GW-Z1-0,35-W	2,45	2,45	2,46			
GW-Z1-0,35-W2 I	2,47	-	-			
GW-Z1-0,35-W2 II	2,46	-	-			
GW-Z1-0,45	2,44	2,41	2,42			
GW-Z1-0,45-W	2,44	2,40	2,41			
GW-Z1-0,55	2,39	2,35	2,37			
GW-Z1-0,55-W	2,38	2,36	2,36			
GW-Z1-0,45-LP	2,36	2,35	2,34			
OR-Z1-0,35	2,48	2,47	2,45			
OR-Z1-0,45	2,42	2,41	2,39			
QP-Z1-0,35	2,45	2,44	2,43			
QP-Z1-0,45	2,39	2,37	2,35			
QP-Z1-0,55	2,32	2,31	2,31			

Tabelle A 5Rohdichte der Probekörper gemäß [Alkali-Richtlinie 2007] für ein hohes internes
Schädigungspotenzial im Alter von 2 Tagen nach Ausschalen und Versand

Tabelle A 6Rel. Porositäten von Betonzylindern \emptyset 70 mm, I 280 mm im Alter von 28 Tagen
bei 20 °C über Wasser; ermittelt mittels Quecksilberhochdruckporosimetrie

	Relative Porositäten in Abhängigkeit von Porenradienverteilung [Vol%]						
Porenart	Gelporosität		Kapillarporosität	:	Gesamtporosität		
Porenradius	2 - 10 nm	10 - 100 nm	100 nm - 1 µm	1 - 50 µm	2 nm - 50 µm		
GW-Z1-0,35-W	1,5	4,4	0,9	0,9	7,7		
GW-Z1-0,35-W2	1,8	4,7	0,8	1,1	8,5		
GW-Z1-0,45-W	2,3	5,9	0,8	0,7	9,7		
GW-Z1-0,45-LP	2,4	4,9	1,8	1,2	10,2		
GW-Z1-0,55-W	2,6	8,6	1,2	1,0	13,3		
OR-Z1-0,45	2,7	5,0	0,8	0,9	9,4		
QP-Z1-0,45	2,2	4,4	0,9	0,9	8,4		
QP-Z1-0,55	2,8	7,7	1,3	1,2	12,9		

Tabelle A 7Rel. Porositäten von Betonzylindern Ø 70 mm, I 280 mm im Alter von 140 Tagen
bei 20 °C über Wasser; ermittelt mittels Quecksilberhochdruckporosimetrie

	Relative Por	Relative Porositäten in Abhängigkeit von Porenradienverteilung [Vol%]						
Porenart	Gelporosität		Kapillarporosität Gesamtporos					
Porenradius	2 - 10 nm	10 - 100 nm	100 nm - 1 µm	1 - 50 µm	2 nm - 50 µm			
GW-Z1-0,35-W	2,2	4,0	0,9	0,4	7,5			
GW-Z1-0,35-W2	1,2	4,3	0,6	0,3	6,3			
GW-Z1-0,45-W	1,7	4,6	1,0	0,7	8,0			
GW-Z1-0,55-W	3,3	5,6	1,0	0,4	10,2			

Tabelle A 8	Anzahl und Ort der Risse basierend auf quantitativen Auswertung der CT-Daten-
	sätze mittels automatischem Risserkennungssystem und "Region Statistics"-
	Tool der Zylindern (Ø 70 mm, L 280 mm) aus 300 mm ³ -Betonwürfeln mit Grau-
	wacke-Splitt bei variierendem w/z-Wert nach 40 °C-Nebelkammerlagerung

Anzahl der Risse (basierend auf Auswertetool "Region Statistics")							
Serie)	GW-Z1-0,35-W GW-Z1-0,45-W		GW-Z1-0,55-W			
CT-File		5524	5521	5469			
	Korn	5.761	9.689	7.136			
sort	ITZ	48	86	1.578			
Riss	Zementsteinmatrix	7.915	16.655	16.609			
	undefiniert	262	728	5.907			
Risse gesamt		13.986	27.158	31.230			

Tabelle A 9Volumen der Risse basierend auf quantitativen Auswertung der CT-Datensätze
mittels automatischem Risserkennungssystem und "Region Statistics"-Tool der
Zylindern (Ø 70 mm, L 280 mm) aus 300 mm³-Betonwürfeln mit Grauwacke-Splitt
bei variierendem w/z-Wert nach 40 °C-Nebelkammerlagerung

Volumen der Risse [voxel-Einheiten] (basierend auf Auswertetool "Region Statistics")							
Serie)	GW-Z1-0,35-W GW-Z1-0,45-W		GW-Z1-0,55-W			
CT-File		5524	5521	5469			
	Korn	173,3	987,8	642,4			
sort	ITZ	0,2	0,3	16,3			
Riss	Zementsteinmatrix	316,4	271,8	360,5			
	undefiniert	0,1	0,4	1,3			
Risse gesamt		13.986	490,0	1.260,3			

Tabelle A 10Mittelwerte verschiedener Rissparameter basierend auf quantitativen Auswer-
tung der CT-Datensätze mittels automatischem Risserkennungssystem und
"TMSingleSpreadSheet"-Tool der Zylindern (Ø 70 mm, L 280 mm) aus 300 mm³-
Betonwürfeln mit Grauwacke-Splitt bei variierendem w/z-Wert nach 40 °C-Nebel-
kammerlagerung

Rissparameter (basierend auf Auswertetool "TMSingleSpreadSheet")							
Serie		GW-Z1-0,35-W	GW-Z1-0,45-W	GW-Z1-0,55-W			
CT-File		5524	5521	5469			
Mittleres Volumen		0,19	0,37	0,38			
Mittlere Anisotropie		0,95 0,99		0,99			
Mittlere Ausdehnung		0,33 0,34		0,34			
Mittlere Flachheit		0,15	0,03	0,03			
-ss-	x	-0,99	-1,00	-1,00			
erur	У	0,10	0,01	-0,01			
z Ienti	Z	0,14	-0,08	0,04			
οĞ	sphärische Varianz	0,50	0,48	0,46			

Tabelle A 11:Relative Porosität und Dehnung von Betonzylindern Ø 70 mm, I 280 mm im Alter
von 140 Tagen nach 60 °C-Betonversuch; ermittelt mittels Quecksilberhoch-
druckporosimetrie

	Rel. Porositäten in Abhängigkeit von Porenradienverteilung [Vol%]					
Bezeichnung Beton	Gelporosität	K	apillarporosität	Gesamtporosität	Dennung	
Boton	2 - 10 nm	10 - 100 nm	100 nm - 1 µm	1 - 50 µm	2 nm - 50 µm	mm/m
GW-Z1-0,35-W2	3,4	1,4	0,3	0,2	5,3	2,48
GW-Z1-0,45-W	3,3	4,3	0,7	0,2	8,5	2,22
GW-Z1-0,55-W	3,4	5,6	0,7	0,3	9,9	0,84

Tabelle A 12: Gesamtporosität gemäß DIN 66137-1 von Betonzylindern \varnothing 70 mm, I 280 mm im Alter von 336 Tagen bei 20 °C über Wasser

Bozoichpung Boton		Rohdichte	Reindichte	Gesamtporosität
Bezeichnung Bei	Bezeichnung Beton		g/cm³	Vol%
	oben	2,38	2,63	9,53
GW-Z1-0,35-W	unten	2,43	2,60	6,45
	$\frac{-}{x}$	2,40	2,61	7,99
	oben	2,35	2,63	10,7
GW-Z1-0,45-W	unten	2,35	2,61	10,0
	$\frac{-}{x}$	2,35	2,62	10,3
GW-Z1-0,45-LP	GW-Z1-0,45-LP		2,64	13,4
	oben	2,25	2,61	13,6
GW-Z1-0,55-W	unten	2,27	2,60	12,8
	\overline{x}	2,26	2,61	13,2

x Mittelwert

Tabelle A 13Rel. Porositäten von Betonzylindern Ø 70 mm, I 280 mm im Alter von 336 Tagen
bei 20 °C über Wasser; ermittelt mittels Quecksilberhochdruckporosimetrie

D		Relative Porositäten in Abhängigkeit von Porenradienverteilung [Vol%]								
Bezeichr	nung	Gelporosität		:	Gesamtporosität					
Boton		3 - 10 nm	10 - 100 nm	100 nm - 1 µm	1 - 75 µm	3 nm - 75 µm				
	oben	0,7	2,2	0,5	0,4	3,8				
GW-Z1-	unten	0,7	2,2	0,5	0,6	4,0				
0,00-002	$\frac{1}{x}$	0,7	2,2	0,5	0,5	3,9				
	oben	0,7	5,6	0,8	0,6	7,7				
GW-Z1-	unten	0,9	4,1	0,9	0,5	6,4				
0,43-11	$\frac{1}{x}$	0,8	4,8	0,9	0,6	7,1				
GW-Z1-0	,45-LP	1,0	5,5	2,4	1,1	10,0				
	oben	1,3	7,2	1,5	1,0	11,0				
GW-Z1-	unten	1,5	7,6	1,3	0,7	11,1				
0,00-11	$\frac{1}{x}$	1,4	7,4	1,4	0,9	11,0				

x Mittelwert

		Rel. Porosit	täten in Abhär	ngigkeit von Pore	enradienvert	eilung [Vol%]	
Bezeichnung Beton		Gel- porosität	ŀ	Gesamt- porosität	Dehnung		
		3 - 10 nm	10 - 100 nm	100 nm - 1 µm	1 - 75 µm	3 nm - 75 µm	mm/m
	oben	1,3	1,9	0,5	0,7	4,4	
GW-Z1-	unten	1,0	1,6	0,4	0,5	3,5	0,72
0,35-77	\overline{x}	1,1	1,8	0,4	0,6	3,9	
	oben	1,8	4,6	0,5	0,8	7,7	
GW-Z1-	unten	1,8	5,0	0,5	0,4	7,7	0,39
0,40-00	$\frac{1}{x}$	1,8	4,8	0,5	0,6	7,7	
GW-Z1-0),45-LP	0,8	4,8	0,8	0,7	7,2	0,44
	oben	1,9	7,5	0,8	0,6	10,8	
GW-Z1-	unten	2,4	7,5	0,9	0,8	11,6	0,37
0,00-00	\overline{x}	2,2	7,5	0,8	0,7	11,1	

Tabelle A 14:Relative Porosität und Dehnung von Betonzylindern Ø 70 mm, I 280 mm im Alter
von 336 Tagen nach kontinuierlicher 40 °C-Nebelkammerlagerung; ermittelt am
Granulat 4/8 mm mittels Quecksilberhochdruckporosimetrie

x Mittelwert

Tabelle A 15: Gesamtporosität nach DIN 66137-1 und Rissweite von 300 mm³-Würfeln im Alter von 336 Tagen nach 40 °C-Nebelkammerlagerung

Pozoiobnung P	oton	Rohdichte	Reindichte	Gesamtporosität	Rissweite	
Bezeichnung B	eton	g/cm³	g/cm³	Vol%	mm	
	oben	2,34	2,60	10,0		
	Mitte	2,35	2,61	9,6		
GVV-Z1-0,35-VV	unten	2,36	2,61	9,4	0,20	
	$\frac{-}{x}$	2,35	2,61	9,7		
GW-Z1-0,45-W	oben	2,26	2,59	12,7		
	Mitte	2,27	2,60	12,6		
	unten	2,27	2,59	12,2	1,10	
	$\frac{-}{x}$	2,27	2,59	12,5		
	oben	2,20	2,61	15,8		
	Mitte	2,21	2,61	15,4		
GW-Z1-0,45-LP	unten	2,22	2,61	14,6	0,60	
	$\frac{-}{x}$	2,21	2,61	15,3		
	oben	2,18	2,58	15,4		
	Mitte	2,18	2,58	15,7	1,40	
GVV-∠1-0,55-VV	unten	2,21	2,59	14,8		
	$\frac{1}{x}$	2,19	2,58	15,3		

x Mittelwert

Tabelle A 16:	Relative Porosität und Rissweite von 300 mm ³ -Würfeln im Alter von 336 Tagen
	nach 40 °C-Nebelkammerlagerung; ermittelt am Granulat 4/8 mm mittels Queck-
	silberhochdruckporosimetrie

		Rel. Porositäten in Abhängigkeit von Porenradienverteilung [Vol%]									
Bezeich Beton	nung	Gel- porosität	ŀ	Kapillarporosität		Gesamt- porosität	Rissweite				
		3 - 10 nm	10 - 100 nm	100 nm - 1 µm	1 - 75 µm	3 nm - 75 µm	mm				
	oben	0,7	2,0	0,3	0,7	3,9					
GW-Z1-	Mitte	1,4	3,3	0,4	0,7	6,0					
0,35-W	unten	0,9	2,5	0,4	0,8	4,6	0,20				
	$\frac{-}{x}$	1,0	2,6	0,4	0,8	4,7					
	oben	1,2	3,7	0,7	0,9	6,5	1,10				
GW-Z1-	Mitte	1,4	4,7	0,8	1,0	8,0					
0,45-W	unten	1,8	5,2	0,8	0,8	8,6					
	$\frac{-}{x}$	1,5	4,6	0,8	0,9	7,7					
	oben	0,9	4,4	1,8	1,0	8,1					
GW-Z1-	Mitte	1,0	5,9	1,8	1,2	10,1					
0,45-LP	unten	1,0	4,6	1,4	1,2	8,2	0,60				
	$\frac{-}{x}$	0,9	5,0	1,7	1,1	8,7					
	oben	1,3	6,0	1,4	1,3	10,1	1,40				
GW-Z1-	Mitte	1,3	5,7	0,9	0,9	8,9					
0,55-W	unten	1,9	8,0	1,3	0,9	12,2					
	$\frac{1}{x}$	1,5	6,6	1,2	1,0	10,3					

x Mittelwert

Tabelle A 17:Relative Porosität und Rissweite von 300 mm³-Würfeln im Alter von 336 Tagen
nach 40 °C-Nebelkammerlagerung; ermittelt am Miniaturzylinder (Ø 10 mm,
l 15 mm) mittels Quecksilberhochdruckporosimetrie

		Rel. Porositäten in Abhängigkeit von Porenradienverteilung [Vol%]									
Bezeichnung Beton		Gel- porosität	ŀ	Capillarporosität		Gesamt- porosität	Rissweite				
		3 - 10 nm	10 - 100 nm	100 nm - 1 µm	1 - 75 µm	3 nm - 75 µm	mm				
	oben	1,1	2,5	0,3	0,1	4,1					
GW-Z1-	Mitte	1,3	3,3	0,8	0,5	6,0	0,20				
0,35-W	unten	1,3	3,0	0,4	0,2	4,9					
	$\frac{-}{x}$	1,3	2,9	0,5	0,3	5,0					
	oben	1,8	5,2	0,7	9,7 1,1 8,9						
GW-Z1-	Mitte	1,8	5,1	0,8	0,4	8,1					
0,45-W	unten	2,0	5,4	0,7	0,6	8,7	1,10				
	$\frac{-}{x}$	1,8	5,2	0,7	1,1	8,9					
	oben	1,7	7,1	1,0	0,2	10,1					
GW-Z1-	Mitte	2,0	7,6	0,7	0,5	10,8	1,40				
0,55-W	unten	2,2	7,5	1,0	0,5	11,3					
	\overline{x}	1,7	7,1	1,0	0,2	10,1					

x Mittelwert

Tabelle A 18:Spaltzugfestigkeit am Betonbalken 75 mm x 75 mm x 280 mm nach verschie-
denen Lagerungsarten (Referenzlagerung von 20 °C über Wasser, 40 °C-Nebel-
kammer, 60 °C-Betonversuch) und Lagerungszeiten sowie am Spaltzugfestigkeit
am aus 300 mm³-Betonwürfel gewonnenen Betonbalken 75 mm x 75 mm x
280 mm nach 365 Tagen 40 °C-Nebelkammer

Spaltzugfestigkeit [N/mm ²							
				Balken			Würfel
75 x 75 x 280 [mm]							300 x 300 x 300 [mm]
Temperatur	°C	20	20	20	40	60	40
Alter	Tage	28	140	336	336	140	336
GW-Z1-0,35-	W	6,9	7,3	7,8	7,3	6,4	6,2
GW-Z1-0,45-W 5,4		5,4	5,7	5,9	6,2	4,7	4,0
GW-Z1-0,45-LP -		-	-	-	6,5	-	4,7
GW-Z1-0,55-	4,5	5,2	5,5	5,8	4,2	3,9	

Tabelle A 19:relative Spaltzugfestigkeit am Betonbalken 75 mm x 75 mm x 280 mm nach
verschiedenen Lagerungsarten (20 °C über Wasser, 40 °C-Nebelkammer, 60 °C-
Betonversuch) und Lagerungszeiten sowie am Spaltzugfestigkeit am aus
300 mm³-Betonwürfel gewonnenen Betonbalken 75 mm x 75 mm x 280 mm nach
365 Tagen 40 °C-Nebelkammer bezogen auf Spaltzugfestigkeit am Betonbalken
75 mm x 75 mm x 280 mm nach 20 °C und 28 Tagen

		Relative Spaltzugfestigkeit bezogen auf 20 °C und 28 Tage [%]						
				Balken			Würfel	
			300 x 300 x 300 [mm]					
Temperatur	°C	20	20	20	40	60	40	
Alter	Tage	28	28 140 336 336 140				336	
GW-Z1-0,35-W		100	106	113	106	93	90	
GW-Z1-0,45-W		100	106	109	115	87	74	
GW-Z1-0,55-W		100	116	122	129	93	86	

Tabelle A 20:relative Spaltzugfestigkeit am Betonbalken 75 mm x 75 mm x 280 mm nach
verschiedenen Lagerungsarten (20 °C über Wasser, 40 °C-Nebelkammer, 60 °C-
Betonversuch) und Lagerungszeiten sowie am Spaltzugfestigkeit am aus
300 mm³-Betonwürfel gewonnenen Betonbalken 75 mm x 75 mm x 280 mm nach
365 Tagen 40 °C-Nebelkammer bezogen auf Spaltzugfestigkeit am Betonbalken
75 mm x 75 mm x 280 mm nach 20 °C und entsprechendes Prüfalter

		Relative Spaltzugfestigkeit bezogen auf 20 °C und 28 Tage [%]						
			Balken		Würfel			
		-	75 x 75 x 280 [mm]					
Temperatur	°C	20	40					
Alter	Tage	28	28 336 140					
GW-Z1-0,35-W		100	94	88	79			
GW-Z1-0,45-W		100	105	82	68			
GW-Z1-0,55-W		100	105	81	70			

Tabelle A 21: Arbeitsvermögen von Betonzylindern Ø 70 mm, I 280 mm mit Grauwacke-Splitt bei variierendem w/z-Wert im Alter von 28, 140 und 336 Tagen nach Referenzlagerung im Klimaraum (20 °C, 60 % rel. Luftfeuchte) - errechnet basierend auf Ergebnissen des verformungsgesteuerten Druckversuchs

Arbeitsvermögen von Betonzylinder nach Referenzlagerung bei 20 °C über Wasser											
Probenserie		-	GW-Z1-0,35-W			GW	-Z1-0,4	5-W	GW	-Z1-0,5	5-W
Lagerungsdaue	r	Tage	28	140	336	28	140	336	28	140	336
Lagerungstemp	eratur	°C	20	20	20	20	20	20	20	20	20
Art der Messung Lagerung	g und	-	dk	dk	dk	dk	dk	dk	dk	dk	dk
Basis Wertbered	chnung	-	\overline{x}	\overline{x}	\overline{x}	\overline{x}	$\frac{1}{x}$	$\frac{1}{x}$	$\frac{1}{x}$	$\frac{1}{x}$	\overline{x}
Höchstlast	σ_{Bruch}	N/mm²	64,91	73,16	67,11	59,93	65,79	67,33	42,16	44,87	46,62
Dehnung unter Höchstlast	€ _{Bruch}	‰	2,96	2,86	3,05	2,73	2,82	3,37	2,62	2,75	2,91
Arbeitsvermöge	en:										
im Belastungs- ast (bis ε _{Bruch})	bez. AVB	-	1430	1557	1672	1573	1514	1849	1617	1708	1771
im Entlacturga	$\epsilon_{0,6}\sigma_{max}$	‰	3,80	3,51	3,33	4,01	3,62	4,15	4,74	4,77	4,26
ast bei σ_{Grenz}	AV _{ges}	-	2307	2115	1933	2656	2202	2530	3361	3374	2888
= 0,6σ _{max}	AVE	-	877	558	261	1.083	688	681	1.744	1.666	1.117
im Entlastungs-	$\epsilon_{0,6}\sigma_{max}$	‰	4,67	4,30	3,67	5,18	4,65	4,99	6,89	6,64	5,44
ast bei σ_{Grenz}	AV_{ges}	-	2682	2434	2058	3176	2617	2885	4302	4166	3401
= 0,3σ _{max}	AVE	-	1.252	877	386	1.603	1.103	1.036	2.685	2.458	1.630
im Entlastungs- ast bei σ _{Grenz} = 0,6σ _{max}	$\epsilon_{0,6}\sigma_{max}$	‰	8,20	8,90	5,82	6,96	7,98	7,15	8,90	8,90	8,06
	AV _{ges}	-	3245	3210	2405	3488	3171	3258	4764	4658	3845
	AVE	-	1.815	1.653	733	1.915	1.657	1.409	3.147	2.950	2.074
dk diskonti	inuierlich										

diskontinuierlich

 \overline{x} Mittelwert

maximal aufnehmbare Druckspannung, d.h. Bruchspannung σBruch

- Druch	· · · · · · · · · · · · · · · · · · ·
ε _{Bruch}	Längsstauchung bei maximal aufnehmbarer Druckspannung, d.h. Bruchstauchung
bez. AVB	bezogenes Arbeitsvermögen im Belastungsast bis zu σ_{Bruch} und ϵ_{Bruch}
σ _{Grenz}	festgelegte Grenzspannung, bis zu der Berechnung des Arbeitsvermögens erfolgt

gesamtes Arbeitsvermögen, d.h. im Belastungs- und Entlastungsast zusammen AV_{ges} AVE

Arbeitsvermögen im Entlastungsast

Tabelle A 22: Arbeitsvermögen von Betonzylindern Ø 70 mm, I 280 mm mit Grauwacke-Splitt bei variierendem w/z-Wert im Alter von 140 Tagen nach 60 °C-Betonversuch über Wasser - errechnet basierend auf Ergebnissen des verformungsgesteuerten Druckversuchs

Arbeitsvermögen von Betonzylindern nach 140 Tagen 60 °C-Betonversuch über Wasser										
Probenserie		_	GW-Z1-	0,35-W2	GW-Z1	-0,45-W	GW-Z1	-0,55-W		
Lagerungsdaue	r	Tage	140	140	140	140	140	140		
Lagerungstemp	eratur	°C	60	60	60	60	60	60		
Art der Messung Lagerung	g und	-	k	dk	k	dk	k	dk		
Basis Wertbered	chnung	-	$\frac{1}{x}$	$\frac{-}{x}$	$\frac{-}{x}$	$\frac{-}{x}$	$\frac{-}{x}$	$\frac{-}{x}$		
Höchstlast	σ_{Bruch}	N/mm²	67,91	63,30	62,91	62,23	45,03	47,22		
Dehnung unter Höchstlast	ε _{Bruch}	‰	3,87	3,91	3,08	3,83	3,03	3,40		
Arbeitsvermöge	en:									
im Belastungs- ast (bis ε _{Bruch})	bez. AVB	-	2043	2165	1706	2154	1673	1949		
	$\epsilon_{0,6}\sigma_{max}$	‰	4,80	4,90	4,28	4,73	4,85	4,85		
ast bei σ_{Grenz}	AV_{ges}	-	2841	2977	2715	2917	3189	3174		
= 0,6σ _{max}	AVE	-	798	812	1.009	763	1.516	1.225		
im Entlastungs-	$\epsilon_{0,6}\sigma_{max}$	‰	5,31	5,62	5,35	5,77	6,87	6,50		
ast bei σ_{Grenz}	AV_{ges}	-	3049	3302	3157	3338	4039	3884		
= 0,3σ _{max}	AVE	-	1.006	1.137	1.451	1.184	2.366	1.935		
im Entlastungs-	$\epsilon_{0,6}\sigma_{max}$	‰	8,29	8,00	7,80	8,90	8,90	8,90		
ast bei σ_{Grenz}	AV_{ges}	-	3527	3678	3612	3905	4512	4385		
= 0,6σ _{max}	AVE	-	1.484	1.513	1.906	1.751	2.839	2.436		
kontinuierlich										

kontinuierlich

dk diskontinuierlich

 \overline{x} Mittelwert

maximal aufnehmbare Druckspannung, d.h. Bruchspannung σ_{Bruch}

Längsstauchung bei maximal aufnehmbarer Druckspannung, d.h. Bruchstauchung ϵ_{Bruch}

bez. AVB bezogenes Arbeitsvermögen im Belastungsast bis zu σ_{Bruch} und ϵ_{Bruch}

festgelegte Grenzspannung, bis zu der Berechnung des Arbeitsvermögens erfolgt σ_{Grenz} gesamtes Arbeitsvermögen, d.h. im Belastungs- und Entlastungsast zusammen

 $\begin{array}{c} \mathsf{AV}_{\mathsf{ges}} \\ \mathsf{AVE} \end{array}$ Arbeitsvermögen im Entlastungsast

Tabelle A 23: Arbeitsvermögen von Betonzylindern Ø 70 mm, I 280 mm mit Grauwacke-Splitt bei variierendem w/z-Wert im Alter von 336 Tagen nach 40 °C-Nebelkammerlagerung - errechnet basierend auf Ergebnissen des verformungsgesteuerten **Druckversuchs**

Arbeitsvermögen von Betonzylindern nach 336 Tagen Nebelkammerlagerung										
Probenserie		-	GW-Z1-0,35-W		GW-Z1	-0,45-W	GW-Z1-0,55-W			
Lagerungsdaue	r	Tage	336	336	336	336	336	336		
Lagerungstemp	eratur	°C	40	40	40	40	40	40		
Art der Messung Lagerung	g und	-	k	dk	k	dk	k	dk		
Basis Wertbered	chnung	-	$\frac{1}{x}$	$\frac{-}{x}$	$\frac{-}{x}$	$\frac{-}{x}$	$\frac{-}{x}$	$\frac{-}{x}$		
Höchstlast	σ_{Bruch}	N/mm²	90,22	90,62	73,80	71,44	48,40	44,41		
Dehnung unter Höchstlast	ε _{Bruch}	‰	3,78	3,48	3,32	3,24	2,99	2,72		
Arbeitsvermöge	en:									
im Belastungs- ast (bis ε _{Bruch})	bez. AVB	-	2075	1843	1847	1775	1702	1569		
im Entlastungs	$\epsilon_{0,6}\sigma_{max}$	‰	4,20	3,84	4,08	4,05	4,67	4,74		
ast bei σ_{Grenz}	AV_{ges}	-	2431	2169	2500	2466	3056	3201		
= 0,6σ _{max}	AVE	-	356	326	653	691	1.354	1.632		
im Entlastungs-	$\epsilon_{0,6}\sigma_{max}$	‰	4,72	4,47	4,88	5,14	6,42	7,08		
ast bei σ_{Grenz}	AV_{ges}	-	2640	2437	2835	2923	3811	4233		
= 0,3σ _{max}	AVE	-	565	594	988	1.148	2.109	2.664		
im Entlastungs-	$\epsilon_{0,6}\sigma_{max}$	‰	7,27	5,55	7,87	8,90	8,90	8,90		
ast bei σ_{Grenz}	AV_{ges}	-	3075	2604	3339	3584	4297	4642		
= 0,6σ _{max}	AVE	-	1.000	761	1.492	1.809	2.595	3.073		
kontinuierlich										

kontinuierlich diskontinuierlich

dk

 \overline{x} Mittelwert

maximal aufnehmbare Druckspannung, d.h. Bruchspannung σ_{Bruch}

Längsstauchung bei maximal aufnehmbarer Druckspannung, d.h. Bruchstauchung ϵ_{Bruch}

bez. AVB bezogenes Arbeitsvermögen im Belastungsast bis zu σ_{Bruch} und ε_{Bruch}

festgelegte Grenzspannung, bis zu der Berechnung des Arbeitsvermögens erfolgt σ_{Grenz} gesamtes Arbeitsvermögen, d.h. im Belastungs- und Entlastungsast zusammen

 $\begin{array}{c} \mathsf{AV}_{\mathsf{ges}} \\ \mathsf{AVE} \end{array}$ Arbeitsvermögen im Entlastungsast

Tabelle A 24: Arbeitsvermögen von aus 300 mm³-Betonwürfeln gewonnenen Betonzylindern Ø 70 mm, I 280 mm mit Grauwacke-Splitt bei variierendem w/z-Wert im Alter von 336 Tagen nach 40 °C-Nebelkammerlagerung - errechnet basierend auf Ergebnissen des verformungsgesteuerten Druckversuchs

Arbeitsvermögen von Betonwürfeln nach 336 Tagen Nebelkammerlagerung								
	-	GW-Z1-0,35-W	GW-Z1-0,45-W	GW-Z1-0,55-W				
r	Tage	336	336	336				
eratur	°C	40	40	40				
g und	-	dk	dk	dk				
chnung	-	$\frac{-}{x}$	$\frac{-}{x}$	$\frac{-}{x}$				
σ_{Bruch}	N/mm²	85,39	48,44	38,02				
€ _{Bruch}	‰	3,58	3,56	3,62				
n:								
im Belastungs- bez. ast (bis ε _{Bruch}) AVB		1895	2103	2221				
$\epsilon_{0,6}\sigma_{max}$	‰	4,14	5,21	5,70				
AV_{ges}	-	2354	3493	3938				
AVE	-	459	1.390	1.717				
$\epsilon_{0,6}\sigma_{max}$	‰	4,57	6,64	8,66				
AV_{ges}	-	2515	4101	5180				
AVE	-	619	1.998	2.959				
$\epsilon_{0,6}\sigma_{max}$	‰	8,86	8,90	8,90				
AV_{ges}	-	3204	4577	5250				
AVE	-	1.309	2.474	3.029				
	tsvermö r eratur g und chnung σ _{Bruch} δ _{Bruch} n: bez. AVB δο,6σmax AVges AVE δο,6σmax AVges AVE δο,6σmax	tsvermögen vol i i r rage eratur °C gund jund o [*] C gund o [*] C gund o [*] C gund o [*] C gund o [*] C o [*] C <td>Betonwürfeln nach 3 i GW-Z1-0,35-W Tage 336 eratur °C 40 gund - dk gund - dk gund - \overline{x} σ_{Bruch} N/mm² 85,39 ϵ_{Bruch} % 3,58 n: - - beZ. - 1895 αVB - 2354 AVB - 1895 $\epsilon_{0,6}\sigma_{max}$ % 4,14 AVges - 2354 AVE - 459 $\epsilon_{0,6}\sigma_{max}$ % 4,57 AVE - 619 $\epsilon_{0,6}\sigma_{max}$ % 8,86 AVges - 3204 AVE - 3204</td> <td>Itsvermögen von Betonwürfeln nach 336 Tagen Nebelkamm i GW-Z1-0,35-W GW-Z1-0,45-W r Tage 336 336 eratur °C 40 40 g und - dk dk off und - dk dk off und - dk dk off und - \overline{x} \overline{x} σ_{Bruch} N/mm² 85,39 48,44 ϵ_{Bruch} $\%$ 3,58 3,56 n: - - - bez. AVB - 1895 2103 $\epsilon_{0,6}\sigma_{max}$ $\%$ 4,14 5,21 AVges - 2354 3493 AVE - 459 1.390 $\epsilon_{0,6}\sigma_{max}$ $\%$ 4,57 6,64 AVges - 619 1.998 $\epsilon_{0,6}\sigma_{max}$ $\%$ 8,86 8,90 AVges - <th3204< th=""> 4577</th3204<></td>	Betonwürfeln nach 3 i GW-Z1-0,35-W Tage 336 eratur °C 40 gund - dk gund - dk gund - \overline{x} σ_{Bruch} N/mm² 85,39 ϵ_{Bruch} % 3,58 n: - - beZ. - 1895 αVB - 2354 AVB - 1895 $\epsilon_{0,6}\sigma_{max}$ % 4,14 AVges - 2354 AVE - 459 $\epsilon_{0,6}\sigma_{max}$ % 4,57 AVE - 619 $\epsilon_{0,6}\sigma_{max}$ % 8,86 AVges - 3204 AVE - 3204	Itsvermögen von Betonwürfeln nach 336 Tagen Nebelkamm i GW-Z1-0,35-W GW-Z1-0,45-W r Tage 336 336 eratur °C 40 40 g und - dk dk off und - dk dk off und - dk dk off und - \overline{x} \overline{x} σ_{Bruch} N/mm² 85,39 48,44 ϵ_{Bruch} $\%$ 3,58 3,56 n: - - - bez. AVB - 1895 2103 $\epsilon_{0,6}\sigma_{max}$ $\%$ 4,14 5,21 AVges - 2354 3493 AVE - 459 1.390 $\epsilon_{0,6}\sigma_{max}$ $\%$ 4,57 6,64 AVges - 619 1.998 $\epsilon_{0,6}\sigma_{max}$ $\%$ 8,86 8,90 AVges - <th3204< th=""> 4577</th3204<>				

diskontinuierlich

 $\frac{dk}{x}$ Mittelwert

maximal aufnehmbare Druckspannung, d.h. Bruchspannung
Längsstauchung bei maximal aufnehmbarer Druckspannung, d.h. Bruchstauchung
bezogenes Arbeitsvermögen im Belastungsast bis zu σ_{Bruch} und ϵ_{Bruch}
festgelegte Grenzspannung, bis zu der Berechnung des Arbeitsvermögens erfolgt
gesamtes Arbeitsvermögen, d.h. im Belastungs- und Entlastungsast zusammen
Arbeitsvermögen im Entlastungsast

Tabelle A 25: Arbeitsvermögen von Betonzylindern Ø 70 mm, I 280 mm und aus 300 mm³-Betonwürfeln gewonnenen Betonzylindern Ø 70 mm, I 280 mm mit Grauwacke-Splitt, w/z = 0,45 und LP-Bildner im Alter von 140 Tagen nach 60°C-Betonversuch bzw. im Alter von 336 Tagen nach 40 °C-Nebelkammerlagerung - errechnet basierend auf Ergebnissen des verformungsgesteuerten Druckversuchs

		Arbeits	vermögen der	Probenserie G	W-Z1-0,45-LP		
				Betonwürfel			
Probekorpergeometrie		-	Ş	Ø 70 L 280 [mm]	300 x 300 x 300 [mm]	
Lagerungsdaue	r	Tage	140	336	336	336	
Lagerungstemp	eratur	°C	60	20	40	40	
Art der Messung Lagerung	g und	-	k	dk	k	dk	
Basis Wertbere	chnung	-	$\frac{-}{x}$	$\frac{-}{x}$	$\frac{1}{x}$	$\frac{-}{x}$	
Höchstlast	σ_{Bruch}	N/mm²	62,56	59,07	70,87	40,06	
Dehnung unter Höchstlast	ε _{Bruch}	‰	3,50	2,99	3,27	3,75	
Arbeitsvermöge	en:						
im Belastungs- ast (bis ε _{Bruch})	bez. AVB	-	1948	1624,3	1738,82	2263	
im Entlastungs	$\epsilon_{0,6}\sigma_{max}$	‰	4,64	4,23	3,92	6,16	
ast bei σ_{Grenz}	AV_{ges}	-	2896	2671,79	2272,2	4271	
= 0,6σ _{max}	AVE	-	948	1.047	533	2.008	
im Entlastungs-	ε _{0,6} σ _{max}	‰	6,32	6,14	4,98	8,27	
ast bei σ_{Grenz}	AV_{ges}	-	3611	3414,27	2724,12	5180	
= $0.3\sigma_{max}$	AVE	-	1.663	1.790	985	2.917	
im Entlastungs-	$\epsilon_{0,6}\sigma_{max}$	‰	8,90	8,90	8,90	8,90	
ast bei σ_{Grenz}	AV_{ges}	-	4160	4046,25	3447,23	5354	
= 0,6σ _{max}	AVE	-	2.211	2.422	1.708	3.090	

kontinuierlich diskontinuierlich

dk

 \overline{x} Mittelwert

k

maximal aufnehmbare Druckspannung, d.h. Bruchspannung σ_{Bruch}

Längsstauchung bei maximal aufnehmbarer Druckspannung, d.h. Bruchstauchung ϵ_{Bruch} bez. AVB bezogenes Arbeitsvermögen im Belastungsast bis zu σ_{Bruch} und ϵ_{Bruch}

festgelegte Grenzspannung, bis zu der Berechnung des Arbeitsvermögens erfolgt σ_{Grenz} AV_{ges} AVE gesamtes Arbeitsvermögen, d.h. im Belastungs- und Entlastungsast zusammen Arbeitsvermögen im Entlastungsast

Tabelle A 26: Analyseergebnissen der im Edelstahlbehälter enthaltenen Lösung nach 140 Tagen Lagerung im 60 °C-Betonversuch über Wasser zur Verifizierung der Auslaugung an Alkalien und Sulfaten aus Betonbalken 75 x 75 x 280 [mm] bzw. Betonzylindern (Ø 70 mm, I 280 mm) mit Grauwacke-Splitt bei variierendem w/z-Wert

Analyseergebnisse der Lösungen nach 60 °C-Betonversuch über Wasser (Mittelwerte)												
Probense	rie		G	W-Z1-0,	35-W	G	W-Z1-0,	45-W	GW-Z1-0,55-W			
Probekör	ner-	Art	Zylir	nder	Balken	Zyliı	nder	Balken	Zylinder		Balken	
geometrie		mm	Ø 70 L 280		75 x 75 x 280	Ø 70	L 280	75 x 75 x 280	Ø 70 L 280		75 x 75 x 280	
Anzahl Probekörper je Behälter		örper	1	3	3	1	3	3	1	3	3	
Lagerung	sart		k	dk	dk	k	dk	dk	k	dk	dk	
Natrium	mg/	Pk	454	207	204	436	196	213	300	218	230	
Kalium	mg/	Pk	1.583	787	598	1448	606	624	1.262	629	690	
Sulfat	mg/	Pk	618	264	313	570	355	351	727	405	418	
pH-Wert	-		10,2	12,7	12,7	10,6	12,7	12,6	10,4	12,6	12,6	
k	kontir	nuiorlich										

dk diskontinuierlich Ρk

Probekörper

Tabelle A 27: Analyseergebnissen der im Edelstahlbehälter enthaltenen Lösung nach 140 Tagen Lagerung im 60 °C-Betonversuch über Wasser zur Verifizierung der Auslaugung an Alkalien und Sulfaten aus Betonzylindern (Ø 70 mm, I 280 mm) mit Grauwacke-Splitt, w/z = 0,45, Prüfzement (Na₂O_{äqu} = 1,3 M.-%)

Analyseergebnisse der Lösungen nach 60 °C-Betonversuch über Wasser (Mittelwerte)										
Medium im zum Lageru	Behälter ngsbeginn		Wasser	Ca(OH)₂ mit pH-We	Ca(OH) ₂ -Lösung mit pH-Wert von 12					
Anzahl Prob Behälter	ekörper je	1	3	3	1	3				
Lagerungsart		k	k	dk	k	dk				
Natrium	mg/Pk	239	9 147 122		212	91				
Kalium	mg/Pk	1.942	1.301	1.053	2.084	1.115				
Sulfat	mg/Pk	332	142	263	230	187				
pH-Wert	-	11,7	13,0	13,3	11,3	13,3				

kontinuierlich

dk diskontinuierlich Probekörper

Pk

10.1.3 Hohes externes Schädigungspotenzial

Tabelle A 28	Frischbetonkennwerte	der	Straßenbaubetone	für	ein	hohes	externes	Schädi-
	gungspotenzial							

D i . k		Rohdichte)		Luftgehal	Verdichtungsmaß	
Bezeichnung Beton		[kg/m³]			[Vol%]	[-]	
	10'	45'	60'	10'	45'	60'	10'
GW-Z3-0,40_1	2377	2418	2423	4,4	3,7	3,8	1,40
GW-Z3-0,40_2	2380	2409	n.b.	4,4	3,7	n.b.	1,38
GW-Z3-0,45_1	2337	2342	2337	5,7	5,5	5,3	1,14
GW-Z3-0,45_2	2332	2333	2356	5,0	4,8	4,8	1,17
GW-Z3-0,45_3	2350	2353	n.b.	4,6	4,5	n.b.	1,16

Tabelle A 29 Frischbetonrohdichte der Probekörper der Straßenbaubetone direkt nach dem Herstellen

	Frischbetonrohdichte [g/cm³]									
Bezeichnung		Zylinder		Balken	Würfel					
Beton	Ø 75 L 225 [mm]	Ø 100 L 300 [mm]	Ø 150 L 300 [mm]	100 x 100 x 400 [mm]	100 x 100 x 100 [mm]	150 x 150 x 150 [mm]				
GW-Z3-0,40_1	2490	2430	2420	2465	2435	2425				
GW-Z3-0,40_2	2470	2400	2390	2460	2420	2385				
GW-Z3-0,45_1	2390	2320	2300	2410	2355	2320				
GW-Z3-0,45_2	2400	2330	2320	2385	2365	2325				
GW-Z3-0,45_3	-	-	-	2400	-	2330				

Tabelle A 30	Rohdichte der Straßenbaubetone nach dem Ausschalen im Alter von einem Tag	g
--------------	---	---

	Festbetonrohdichte [g/cm³]									
Bezeichnung		Zylinder		Balken	Würfel					
Beton	Ø 75 L 225 [mm]	Ø 100 L 300 [mm]	Ø 150 L 300 [mm]	100 x 100 x 400 [mm]	100 x 100 x 100 [mm]	150 x 150 x 150 [mm]				
GW-Z3-0,40_1	2410	2410	2400	2375	2390	2390				
GW-Z3-0,40_2	2400	2390	2390	2390	2375	2375				
GW-Z3-0,45_1	2320	2320	2300	2320	2315	2310				
GW-Z3-0,45_2	2330	2330	2320	2320	2330	2320				
GW-Z3-0,45_3	-	-	-	2330	-	2320				

10.2 Bilder

10.2.1 Petrografie Gesteinskörnung

Polarisationsmikroskop gekreuzte Polarisatoren Polarisationsmikroskop gekreuzte Polarisatoren

Abbildung A 1 Petrografie Sauerländer Grauwacke-Splitt – helles Korn: feinkörniger Quarz mit Korngrößen größer 25 µm, eingeregelte moskowitische Glimmer und stark verwitterte Alkalifeldspäte und/oder Glimmer

Abbildung A 2 Petrografie Sauerländer Grauwacke-Splitt: Korn mit ton- bzw. schluffhaltigen Lagen

Abbildung A 3 Petrografie Sauerländer Grauwacke-Splitt – dunkles Korn: feinst körnig mit Korngrößen kleiner als 10 µm

Abbildung A 4 Petrografie Sauerländer Grauwacke-Splitt – dunkles Korn mit Agglomerationen größerer Körner in feinkörniger Matrix: feinst körniges Korn (Korngrößen < 10 μm) mit Einschlüssen von Partikeln größerer Korngrößen (ca. 15 – 65 μm)

Abbildung A 5 Petrografie Kies-Edelsplitt vom Oberrhein – Detail 2: sehr feinkörniger, schwach metamorph überprägter Quarzit mit Carbonat; Detail 3: feinkörniger, metamorph überprägter Quarzit

Abbildung A 6 Petrografie Kies-Edelsplitt vom Oberrhein – Detail 4: Kalkarenit; Detail 5: Kalkstein: carbonatische Ooide durch Carbonate verkittet, Ooide teilweise verzwillingt

Abbildung A 7 Petrografie Kies-Edelsplitt vom Oberrhein – Detail 6: kryptokristallines SiO₂ (Calcedon) in Kieselkalk

Abbildung A 8 Petrografie Quarzporphyr-Splitt – Detail 2 und 3: Quarzeinsprengling mit Iddingsit

Abbildung A 9 Petrografie Quarzporphyr-Splitt – Detail 5: stark sericitisierter Feldspat; Detail 6: stark sericitisierter Plagioklas

Abbildung A 10 Petrografie Quarzporphyr-Splitt – Detail 7: Matrix bestehend aus Verwachsungen von Quarz und stark sericitisierten Feldspäten

10.2.2 Hohes internes Schädigungspotenzial

Abbildung A 11 Festbetonrohdichten Beton mit Kies-Edelsplitt vom Oberrhein (links) und Quarzporphyr-Splitt (rechts)

Abbildung A 12 Porenradienverteilung von Beton bei variierenden Gesteinskörnungen mit einem w/z-Wert von 0,45 (links) und von Beton mit Quarzporphyr-Splitt bei einem w/z-Wert von 0,45 und 0,55 (rechts) bei einer Lagerung von 28 Tagen über Wasser

Abbildung A 13 Einfluss des w/z-Wertes von Beton mit Grauwacke-Splitt auf die Gesamtporosität mittels Hg-Porosimetrie nach einer 28tägigen Tagen über Wasser (links) und die Porenradienverteilung nach einer 140tägigen Lagerung bei 20 °C über Wasser (rechts)

Abbildung A 14 Einfluss des w/z-Wertes von Beton auf den spezifischer Wasserdampfsättigungsgehalt bei einer relativen Luftfeuchte von 100 % am Beispiel der Betone mit Grauwacke-Splitt (links) und Quarzporphyr-Splitt (rechts)

Abbildung A 15 Spezifische Wasserdampfsättigungsgehalt bei einer relativen Luftfeuchte von 100 % am Beispiel von Beton mit einem w/z-Wert von 0,45 bei variierenden Gesteinskörnungen (links)

Verformungsverhalten Betonzylinder

Abbildung A 16 zeitliche Entwicklung der Spannungs-Stauchungs-Linie von Beton mit Grauwacke-Splitt bei einem w/z-Wert von 0,35 (links) und 0,45 (rechts) nach 28 Tagen Lagerung bei 20 °C über Wasser

Abbildung A 17 zeitlicher Verlauf des Arbeitsvermögens im Entlastungsast - errechnet bis zu 30 % (links) und 10 % (rechts) der maximalen Druckspannung - von Beton mit Grauwacke-Splitt bei variierenden w/z-Werten

40 °C-Nebelkammerlagerung

Masse, Dehnung (manuelle Messung) und dynamischer E-Modul (aus Eigenschwingzeitmessung) von Betonbalken (75 x 75 x 280 [mm]) und Betonzylindern (Ø 70 mm, L 280 mm)

Abbildung A 18 Masse von Betonzylinder \emptyset 70 mm, I = 280 mm (links) und Betonbalken der Geometrie 75 mm x 75 mm x 280 mm (rechts) mit Grauwacke-Splitt in der Nebelkammerlagerung bei 40 °C

Abbildung A 19 Dehnung (links) und dynamischer E-Modul (rechts) von Betonbalken der Geometrie 75 mm x 75 mm x 280 mm mit Grauwacke-Splitt in der Nebelkammerlagerung bei 40 °C

Abbildung A 20 Masse von Betonzylinder \emptyset 70 mm, I = 280 mm (links) und Betonbalken der Geometrie 75 mm x 75 mm x 280 mm (rechts) mit Kies-Edelsplitt vom Oberrhein in der Nebelkammerlagerung bei 40 °C

Abbildung A 21 Dehnung (links) und dynamischer E-Modul (rechts) von Betonbalken der Geometrie 75 mm x 75 mm x 280 mm mit Kies-Edelsplitt vom Oberrhein in der Nebelkammerlagerung bei 40 °C

Abbildung A 22 Dehnung (links) und dynamischer E-Modul (rechts) der Betonzylinder Ø 70 mm, I = 280 mm mit Kies-Edelsplitt vom Oberrhein in der Nebelkammerlagerung bei 40 °C

Abbildung A 23 Masse von Betonzylinder \emptyset 70 mm, I = 280 mm (links) und Betonbalken der Geometrie 75 mm x 75 mm x 280 mm (rechts) mit Quarzporphyr-Splitt in der Nebelkammerlagerung bei 40 °C

Abbildung A 24 Dehnung (links) und dynamischer E-Modul (rechts) von Betonbalken der Geometrie 75 mm x 75 mm x 280 mm mit Quarzporphyr-Splitt in der Nebelkammerlagerung bei 40 °C

Abbildung A 25 Dehnung (links) und dynamischer E-Modul (rechts) von Betonzylinder Ø 70 mm, I = 280 mm mit Quarzporphyr-Splitt in der Nebelkammerlagerung bei 40 °C

Abbildung A 26 Gegenüberstellung der Ergebnisse der kontinuierlichen und diskontinuierlichen Dehnungsmessung der Betonzylinder \emptyset 70 mm, I = 280 mm mit Grauwacke-Splitt bei einem w/z-Wert von 0,45 (links) und 0,55 (rechts) bei 40 °C-Nebelkammerlagerung

Abbildung A 28 Gegenüberstellung der Ergebnisse der kontinuierlichen und diskontinuierlichen Dehnungsmessung der Betonzylinder \emptyset 70 mm, I = 280 mm mit Quarzporphyr-Splitt bei einem w/z-Wert von 0,35 (links) und 0,55 (rechts) bei 40 °C-Nebelkammerlagerung

217

Abbildung A 30 Visualisierung des AKR-Fortschritts anhand des inneren Gefügezustandes eines Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt und w/z-Wert = 0,35 vor, während und nach 40 °C-Nebelkammerlagerung mit μ-3D-CT

Abbildung A 31 Visualisierung des inneren Gefügezustandes eines Betonzylinders (Ø 70 mm, L 280 mm) mit Kies-Edelsplitt vom Oberrhein und w/z-Wert = 0,35 vor und nach 40 °C-Nebelkammerlagerung mit μ-3D-CT

Abbildung A 32 Visualisierung des AKR-Fortschritts anhand des inneren Gefügezustandes eines Betonzylinders (Ø 70 mm, L 280 mm) mit Kies-Edelsplitt v. Oberrhein u. w/z-Wert = 0,35 vor, während, nach 40 °C-Nebelkammerlagerung mit μ-3D-CT

Mikroskopische Ergebnisse

Abbildung A 33 Dünnschliffuntersuchung am Vertikalschnitt eines kontinuierlich gelagerten Zylinders (Ø 70 mm, L 280 mm) nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt + w/z = 0,35; Detail 4/5: Poren halb bzw. ganz mit AKR-Gel gefüllt

Abbildung A 34 Dünnschliffuntersuchung am Vertikalschnitt eines kontinuierlich gelagerten Zylinder (Ø 70 mm, L 280 mm) nach 40 °C-Nebelkammerlagerung; Beton mit Grauwacke-Splitt und w/z-Wert von 0,45; Detail 5 und 6: Riss in ITZ mit AKR-Gel gefüllt und leichter AKR-Belag auf Porenwandung

Abbildung A 35 Dünnschliffuntersuchung am Vertikalschnitt eines kontinuierlich gelagerten Zylinders (Ø 70 mm, L 280 mm) nach 40 °C-Nebelkammerlagerung; Beton mit Grauwacke-Splitt und w/z-Wert von 0,55; Detail 1: Porenwandung leicht mit AKR-Gel belegt; Detail 3: AKR-Gel in Riss

Porosität Betonzylinder

Abbildung A 36 Porenradienverteilung mittels Hg-Porosimetrie an Betonzylindern Ø 70 mm, I 280 mm mit Grauwacke-Splitt bei variierendem w/z-Wert nach 40 °C-Nebelkammerlagerung (links); bei einem w/z-Wert von 0,35 nach 20 C über Wasser und 40 °C-Nebelkammer (rechts)

Abbildung A 37 Porenradienverteilung mittels Hg-Porosimetrie an Betonzylindern Ø 70 mm, I 280 mm mit Grauwacke-Splitt bei einem w/z-Wert von 0,45 (links) und 0,55 (rechts) nach 20 C über Wasser und 40 °C-Nebelkammer (rechts)

Verformungsverhalten Betonzylinder

Abbildung A 38 Einfluss der kontinuierlichen bzw. diskontinuierlichen 40 °C-Nebelkammerlagerung im Vergleich zur Referenzlagerung bei 20 °C über Wasser auf die Spannungs-Stauchungs-Linie (links) und relative Spannung (rechts) von Beton mit Grauwacke-Splitt bei einem w/z-Wert von 0,45

Abbildung A 39 Einfluss der kontinuierlichen bzw. diskontinuierlichen 40 °C-Nebelkammerlagerung im Vergleich zur Referenzlagerung bei 20 °C über Wasser auf die Spannungs-Stauchungs-Linie (links) und relative Spannung (rechts) von Beton mit Grauwacke-Splitt bei einem w/z-Wert von 0,55

Abbildung A 40 Vergleich von Referenz- und 40 °C-Nebelkammerlagerung hinsichtlich des zeitlichen Verlaufs des Arbeitsvermögens im Entlastungsast - errechnet bis zu 30 % (links) und 10 % (rechts) der maximalen Druckspannung - von Beton mit Grauwacke-Splitt bei variierendem w/z-Wert im Alter von 336 Tagen

Verhalten Betonwürfel (300 x 300 x 300 mm³)

Abbildung A 41 Maximale Rissweite am 300 mm³-Betonwürfel mit Quarzporphyr-Splitt (links) bis 336 Tage (links) und 3 Jahre (rechts) Nebelkammerlagerung bei 40 °C

GW-Z1-0,35-W: Rissverlauf während 40 °C-Nebelkammerlagerung

Abbildung A 42 Rissentwicklung am 300 mm³-Betonwürfel mit Grauwacke-Splitt bei einem w/z-Wert von 0,35 während 3, 4 und 5 Monaten 40 °C-Nebelkammerlagerung

GW-Z1-0,35-W: Rissverlauf während 40 °C-Nebelkammerlagerung

Abbildung A 43 Rissentwicklung am 300 mm³-Betonwürfel mit Grauwacke-Splitt bei einem w/z-Wert von 0,35 während 6, 9 und 12 Monaten 40 °C-Nebelkammerlagerung

GW-Z1-0,45-W: Rissverlauf während 40 °C-Nebelkammerlagerung

Abbildung A 44 Rissentwicklung am 300 mm³-Betonwürfel mit Grauwacke-Splitt bei einem w/z-Wert von 0,45 während 3, 4 und 5 Monaten 40 °C-Nebelkammerlagerung

GW-Z1-0,45-W: Rissverlauf während 40 °C-Nebelkammerlagerung

Abbildung A 45 Rissentwicklung am 300 mm³-Betonwürfel mit Grauwacke-Splitt bei einem w/z-Wert von 0,45 während 6, 9 und 12 Monaten 40 °C-Nebelkammerlagerung

GW-Z1-0,55-W: Rissverlauf während 40 °C-Nebelkammerlagerung

Abbildung A 46 Rissentwicklung am 300 mm³-Betonwürfel mit Grauwacke-Splitt bei einem w/z-Wert von 0,55 während 3, 4 und 5 Monaten 40 °C-Nebelkammerlagerung

GW-Z1-0,55-W: Rissverlauf während 40 °C-Nebelkammerlagerung

Abbildung A 47 Rissentwicklung am 300 mm³-Betonwürfel mit Grauwacke-Splitt bei einem w/z-Wert von 0,55 während 6, 9 und 12 Monaten 40 °C-Nebelkammerlagerung

233

Abbildung A 49 Einfluss des w/z-Wertes von Beton mit Quarzporphyr-Splitt auf die Dehnung von Betonbalken 75 x 75 x 280 [mm] und Betonzylindern Ø 70 mm, I = 280 mm sowie die maximale Rissweite am 300 mm-Würfel nach 9 Monaten (rechts) bzw. beim Würfel nach 3 Jahren (links) 40 °C-Nebelkammerlagerung

Abbildung A 50 Visualisierung des inneren Gefügezustandes eines aus einem 300 mm³-Würfel entnommenen Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt und w/z-Wert = 0,35 nach 40 °C-Nebelkammerlagerung mit µ-3D-CT

Abbildung A 51 Visualisierung des inneren Gefügezustandes eines aus einem 300 mm³-Würfel entnommenen Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt und w/z-Wert = 0,45 nach 40 °C-Nebelkammerlagerung mit µ-3D-CT

Abbildung A 52 Visualisierung des inneren Gefügezustandes eines aus einem 300 mm³-Würfel entnommenen Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt und w/z-Wert = 0,55 nach 40 °C-Nebelkammerlagerung mit µ-3D-CT

Abbildung A 53 Visualisierung der Risse von CT-Datensätzen mittels automatischem Risserkennungssystem am Beispiel der aus den 300 mm³-Würfel entnommenen Betonzylinder (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt bei variierendem w/z-Wert nach 40 °C-Nebelkammerlagerung

Abbildung A 55 "Mittleres Rissvolumen" (links) und "mittlere Flachheit" basierend auf der quantitativen Auswertung der CT-Datensätze mittels automatischem Risserkennungssystem und "TMSingle SpreadSheet"-Tool der Zylinder (Ø 70 mm, L 280 mm) aus 300 mm³-Betonwürfeln mit Grauwacke-Splitt bei variierendem w/z-Wert nach 40 °C-Nebelkammerlagerung

Abbildung A 56 Dünnschliffuntersuchung am Vertikalschnitt aus 300 mm³-Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z-Wert von 0,35

Abbildung A 57 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt, w/z-Wert = 0,35; Detail 1: Pore mit AKR-Gel und Ettringit

Abbildung A 58 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z = 0,35; Detail 15: Pore und Riss mit AKR-Gel gefüllt

Abbildung A 59 Dünnschliffuntersuchung am Horizontalschnitt aus 300 mm³-Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z-Wert von 0,35

Abbildung A 60 Dünnschliffuntersuchung am Vertikalschnitt aus 300 mm³-Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z-Wert von 0,35; Detail 2: AKR-Gel gefüllter Riss von Gesteinskörnung in Matrix laufend

Abbildung A 61 Dünnschliffuntersuchung Vertikalschnitt Beton mit Grauwacke-Splitt + w/z-Wert von 0,35 nach 60 °C-Betonversuch; Detail 12 und 15: Ettringit in Poren

Abbildung A 62 Dünnschliffuntersuchung am Vertikalschnitt aus 300 mm³-Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z-Wert von 0,45

Abbildung A 63 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z = 0,45; Detail 1: Pore mit AKR-Gel + etwas Ettringit

Abbildung A 64 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z = 0,45; Detail 5: Pore und Riss mit AKR-Gel gefüllt

Abbildung A 65 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z = 0,45; Detail 52: Pore und Riss mit AKR-Gel gefüllt

Abbildung A 66 Dünnschliffuntersuchung am Horizontalschnitt aus 300 mm-Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z-Wert von 0,45

Abbildung A 67 Dünnschliffuntersuchung am Würfel n. 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt, w/z = 0,45 Detail 26: AKR-Gel gefüllter Riss, Pore mit Ettringit

Abbildung A 68 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z = 0,45; Detail 34: breiter Riss mit AKR-Gel gefüllt

Abbildung A 69 Dünnschliffuntersuchung am Vertikalschnitt aus 300 mm-Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z-Wert von 0,55

Abbildung A 70 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt + w/z = 0,55; Detail 10: gelgefüllter Riss, Pore mit Ettringit

Abbildung A 71 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt + w/z = 0,55; Detail 39: große Pore halb mit AKR-Gel gefüllt

Abbildung A 72 Dünnschliffuntersuchung am Horizontalschnitt aus 300 mm-Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt und w/z-Wert von 0,55

Abbildung A 73 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt + w/z = 0,55; Detail 2: gelgefüllter Riss, Ettringit in Pore

Abbildung A 74 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt, w/z = 0,55; Detail 13: gelgefüllter Riss mit großer Rissweite

Abbildung A 75 Tiefenaufgelöste Gesamtporosität mittels Hg-Porosimetrie am Granulat (links) und an Miniaturzylindern (rechts) der 300 mm³-Betonwürfel mit Grauwacke-Splitt bei variierendem w/z-Wert nach Nebelkammerlagerung bei 40 °C

Abbildung A 76 Porenradienverteilung mittels Hg-Porosimetrie am Granulat (links) und an Miniaturzylindern (rechts) im oberen Bereich des 300 mm³-Betonwürfels mit Grauwacke-Splitt bei variierendem w/z-Wert nach Nebelkammerlagerung bei 40 °C

Abbildung A 77 Porenradienverteilung mittels Hg-Porosimetrie am Granulat (links) und an Miniaturzylindern (rechts) im mittleren Bereich des 300 mm³-Betonwürfels mit Grauwacke-Splitt bei variierendem w/z-Wert nach Nebelkammerlagerung bei 40 °C

Abbildung A 78 Porenradienverteilung mittels Hg-Porosimetrie am Granulat (links) und an Miniaturzylindern (rechts) im unteren Bereich des 300 mm³-Betonwürfels mit Grauwacke-Splitt bei variierendem w/z-Wert nach Nebelkammerlagerung bei 40 °C

Abbildung A 79 Einfluss der Probekörpergeometrie während 40 °C-Nebelkammerlagerung im Vergleich zur Referenzlagerung bei 20 °C über Wasser auf die Spannungs-Stauchungs-Linie (links) und relative Spannung (rechts) von Beton mit Grauwacke-Splitt und w/z-Wert von 0,35

Abbildung A 80 Einfluss der Probekörpergeometrie bei 40 °C-Nebelkammerlagerung im Vergleich zur Referenzlagerung bei 20 °C über Wasser auf die Spannungs-Stauchungs-Linie (links) und relative Spannung (rechts) von Beton mit Grauwacke-Splitt und w/z-Wert von 0,55

Abbildung A 81 Einfluss der Probekörpergeometrie bei 40 °C-Nebelkammerlagerung im Vergleich zur Referenzlagerung bei 20 °C über Wasser hinsichtlich des zeitlichen Verlaufs des Arbeitsvermögens im Entlastungsast - errechnet bis zu 30 % (links) und 10 % (rechts) der maximalen Druckspannung - von Beton mit Grauwacke-Splitt bei variierendem w/z-Wert im Alter von 336 Tagen

60 °C-Betonversuch

Masse, Dehnung (manuelle Messung) und dynamischer E-Modul (aus Eigenschwingzeitmessung) von Betonbalken (75 x 75 x 280 [mm]) und Betonzylindern (Ø 70 mm, L 280 mm)

Abbildung A 82 Masse von Betonzylinder \emptyset 70 mm, I = 280 mm (links) und Betonbalken der Geometrie 75 mm x 75 mm x 280 mm (rechts) mit Grauwacke-Splitt im 60 °C-Betonversuch über Wasser

Abbildung A 83 Dehnung (links) und dynamischer E-Modul (rechts) von Betonbalken der Geometrie 75 mm x 75 mm x 280 mm mit Grauwacke-Splitt im 60 °C-Betonversuch über Wasser

Abbildung A 84 Masse von Betonzylinder \emptyset 70 mm, I = 280 mm mit Kies-Edelsplitt vom Oberrhein (links) und Quarzporphyr-Splitt (rechts) im 60 °C-Betonversuch über Wasser

Abbildung A 85 Dehnung (links) und dynamischer E-Modul (rechts) der Betonzylinder Ø 70 mm, I = 280 mm mit Kies-Edelsplitt vom Oberrhein im 60 °C-Betonversuch über Wasser

Abbildung A 86 Dehnung (links) und dynamischer E-Modul (rechts) von Betonzylinder Ø 70 mm, I = 280 mm mit Quarzporphyr-Splitt im 60 °C-Betonversuch über Wasser

Mikroskopische Ergebnisse

Abbildung A 87 Dünnschliffuntersuchung am Horizontalschnitt des diskontinuierlich gelagerten Zylinders (Ø 70 mm, L 280 mm) nach 60 °C-Betonversuch; Beton mit Grauwacke-Splitt und w/z-Wert von 0,35: Porenwandung mit AKR-Gel belegt

Abbildung A 88 Dünnschliffuntersuchung am Horizontalschnitt des diskontinuierlich gelagerten Zylinders (Ø 70 mm, L 280 mm) nach 60 °C-Betonversuch; Beton mit Grauwacke-Splitt und w/z = 0,35: Poren + feine Risse tlw. mit AKR-Gel gefüllt

Abbildung A 89 Dünnschliffuntersuchung am Horizontalschnitt des diskontinuierlich gelagerten Zylinders (Ø 70 mm, L 280 mm) nach 60 °C-Betonversuch; Beton mit Grauwacke-Splitt und w/z-Wert von 0,45: breiter Riss in ITZ AKR-gelgefüllt

Abbildung A 90 Dünnschliffuntersuchung am Horizontalschnitt des diskontinuierlich gelagerten Zylinders (Ø 70 mm, L 280 mm) nach 60 °C-Betonversuch; Beton mit Grauwacke-Splitt und w/z = 0,45: AKR-Gel an Porenwandung + in feinem Riss

Abbildung A 91 Dünnschliffuntersuchung am Horizontalschnitt des diskontinuierlich gelagerten Zylinders (Ø 70 mm, L 280 mm) nach 60 °C-Betonversuch; Beton mit Grauwacke-Splitt und w/z = 0,55: AKR-Gel in Riss und an Porenwandung

Abbildung A 92 Dünnschliffuntersuchung am Horizontalschnitt des diskontinuierlich gelagerten Zylinders (Ø 70 mm, L 280 mm) nach 60 °C-Betonversuch; Beton mit Grauwacke-Splitt und w/z-Wert von 0,55: AKR-Gel in ITZ und Pore

Vergleich der zeitlichen Entwicklung von kontinuierlich erfasster Dehnung, Schallemissions-Aktivität und Schallgeschwindigkeit am Zylinder (Ø 70 mm, L 280 mm) mit w/z-Wert = 0,35 bei variierender Gesteinskörnung während des 60 °C-Betonversuchs über Wasser Abbildung A 93

Ergebnisse mittels µ-3D-CT zur räumlichen und zeitlichen Visualisierung der Risse, etc.

Abbildung A 94 Visualisierung des inneren Gefügezustandes eines kontinuierlich gelagerten Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt und w/z-Wert von 0,35 vor und nach 60 °C-Betonversuch mit μ-3D-CT

Abbildung A 95 Visualisierung des inneren Gefügezustandes eines kontinuierlich gelagerten Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt und w/z-Wert von 0,35 vor und nach 60 °C-Betonversuch mit μ-3D-CT: Details A und B

Abbildung A 96 Visualisierung des inneren Gefügezustandes eines kontinuierlich gelagerten Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt und w/z-Wert von 0,45 vor, während und nach 60 °C-Betonversuch mit μ-3D-CT

Abbildung A 97 Visualisierung des inneren Gefügezustandes eines kontinuierlich gelagerten Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt und w/z-Wert von 0,45 vor, während und nach 60 °C-Betonversuch mit μ-3D-CT: Detail A und B

Abbildung A 99 Visualisierung des inneren Gefügezustandes eines kontinuierlich gelagerten Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt und w/z-Wert von 0,55 vor und nach 60 °C-Betonversuch mit μ-3D-CT: Details A und B

Abbildung A 100 Dünnschliffuntersuchung am Vertikalschnitt des Zylinders (Ø 70 mm, I 280 mm) nach 60 °C-Betonversuch über Wasser; Beton mit Grauwacke-Splitt und w/z-Wert von 0,35

Abbildung A 101 Dünnschliffuntersuchung Vertikalschnitt Beton mit Grauwacke-Splitt + w/z-Wert von 0,35 nach 60 °C-Betonversuch über Wasser; Detail 10: Pore und Riss mit AKR-Gel gefüllt

Abbildung A 102 Dünnschliffuntersuchung Vertikalschnitt Beton mit Grauwacke-Splitt + w/z-Wert von 0,35 nach 60 °C-Betonversuch über Wasser; Detail 20: große Pore mit AKR-Gel gefüllt

Abbildung A 103 Dünnschliffuntersuchung am Horizontalschnitt Zylinder (Ø 70 mm, L 280 mm) nach 60 °C-Betonversuch über Wasser; Beton mit Grauwacke-Splitt und w/z-Wert von 0,45

Abbildung A 104 Dünnschliffuntersuchung Horizontalschnitt von Beton mit Grauwacke-Splitt und w/z-Wert von 0,45 nach 60 °C-Betonversuch über Wasser; Detail 4: AKR-Gel an Porenwandung

Abbildung A 105 Dünnschliffuntersuchung Horizontalschnitt von Beton mit Grauwacke-Splitt und w/z-Wert von 0,45 nach 60 °C-Betonversuch über Wasser; Detail 5: Riss mit AKR-Gel gefüllt

Abbildung A 106 Dünnschliffuntersuchung am Vertikalschnitt des Zylinders (Ø 70 mm, L 280 mm) nach 60 °C-Betonversuch über Wasser; Beton mit Grauwacke-Splitt und w/z-Wert von 0,55

Abbildung A 107 Dünnschliffuntersuchung Vertikalschnitt Beton mit Grauwacke-Splitt und w/z-Wert von 0,55 nach 60 °C-Betonversuch über Wasser; Detail 1: AKR-Gel in Pore und Riss

Abbildung A 108 Dünnschliffuntersuchung Vertikalschnitt Beton mit Grauwacke-Splitt und w/z-Wert von 0,55 nach 60 °C-Betonversuch über Wasser; Detail 3: AKR-Gel gefüllter Riss

Gegenüberstellung kontinuierlicher und diskontinuierlicher Dehnungen

Abbildung A 109 Gegenüberstellung der Ergebnisse der kontinuierlichen und diskontinuierlichen Dehnungsmessung der Betonzylinder \emptyset 70 mm, I = 280 mm mit Grauwacke-Splitt bei einem w/z-Wert von 0,45 (links) und 0,55 (rechts) im 60 °C-Betonversuch über Wasser

Abbildung A 110 Gegenüberstellung der Ergebnisse der kontinuierlichen und diskontinuierlichen Dehnungsmessung der Betonzylinder Ø 70 mm, I = 280 mm mit Kies-Edelsplitt vom Oberrhein (links) und Quarzporphyr-Splitt (rechts) bei einem w/z-Wert von 0,45 im 60 °C-Betonversuch über Wasser

Abbildung A 111 Gegenüberstellung der Ergebnisse der kontinuierlichen und diskontinuierlichen Dehnungsmessung der Betonzylinder \emptyset 70 mm, I = 280 mm mit Quarzporphyr-Splitt bei einem w/z-Wert von 0,35 (links) und 0,55 (rechts) im 60 °C-Betonversuch über Wasser

Ergebnisse kontinuierlicher und diskontinuierlicher Dehnungen und Einfluss der Lösung im Edelstahlbehälter

Abbildung A 112 Massenänderung (links) und dynamischer E-Modul (rechts) von Betonzylindern Ø 70 mm, I = 280 mm mit Grauwacke-Splitt bei einem w/z-Wert von 0,45 im 60 °C-Betonversuch über Wasser bzw. Ca(OH)₂-Lösung mit pH12

> Spaltzugfestigkeiten Betonbalken

Abbildung A 113 Spaltzugfestigkeiten der diskontinuierlich und kontinuierlich gelagerten Betonzylinder Ø 70 mm, I = 280 mm mit Grauwacke-Splitt bei einem w/z-Wert von 0,45 im 60 °C-Betonversuch über Wasser (links) bzw. Ca(OH)₂-Lösung mit pH12 (rechts) bei Variation der Probekörperanzahl je Behälter (Pk/B)
REM: Zusammensetzung AKR-Gel

Abbildung A 114 Beispiel für die Analyse von AKR-Gel der diskontinuierlich (links) und kontinuierlich (rechts) gelagerten Betonzylinder Ø 70 mm, I = 280 mm mittels EDX im REM am Beispiel eines Betons mit Grauwacke-Splitt bei w/z-Wert von 0,35 im 60 °C-Betonversuch über Wasser

Verbindung [Gewichts-%]						Verbindung [Gewichts-%]					
Na ₂ O	SiO ₂	K ₂ O	CaO	gesamt		Na ₂ O	SiO ₂	K ₂ O	CaO	gesamt	
0,7	55,0	8,0	36,3	100		0,6	67,1	17,9	14,4	100	

Abbildung A 115 Beispiel für die Analyse von AKR-Gel der diskontinuierlich (links) und kontinuierlich (rechts) gelagerten Betonzylinder Ø 70 mm, I = 280 mm mittels EDX im REM am Beispiel eines Betons mit Grauwacke-Splitt bei w/z-Wert von 0,45 im 60 °C-Betonversuch über Wasser

REM: Ettringitbildung >

100 µm

Abbildung A 116 Ettringitbildung am Beispiel von Betonzylindern \emptyset 70 mm, I = 280 mm mit Grauwacke-Splitt bei einem w/z-Wert von 0,35 (links) und 0,45 (rechts) bei Referenzlagerung von 20 °C über Wasser (oben) sowie kontinuierlicher (Mitte) bzw. diskontinuierlicher Lagerung im 60 °C-Betonversuch über Wasser (unten)

Porosität Betonzylinder

Abbildung A 118 Veränderung der mittels Hg-Porosimetrie ermittelten Porosität am Beispiel von Betonzylindern Ø 70 mm, I 280 mm mit Grauwacke-Splitt bei Variation des w/z-Werts in Abhängigkeit von der Art der Lagerung: 140 Tage kontinuierliche (links) und diskontinuierliche (rechts) Lagerung im 60 °C-Betonversuch über Wasser

Spaltzugfestigkeit Betonbalken

Abbildung A 119 absolute Spaltzugfestigkeit von Beton mit Grauwacke-Splitt in Abhängigkeit vom w/z-Wert bei 20 °C über Wasser bis zu Alter von 365 Tagen (links) und relative, auf 28tägige 20 °C-Lagerung bezogene Spaltzugfestigkeit nach 60 °C-Betonversuch über Wasser bei Probenalter von 140 Tagen (rechts)

Verformungsverhalten Betonzylinder

Abbildung A 120 Einfluss der kontinuierlichen bzw. diskontinuierlichen Lagerung im 60 °C-Betonversuch über Wasser im Vergleich zur Referenzlagerung bei 20 °C über Wasser auf die Spannungs-Stauchungs-Linie (links) und relative Spannung (rechts) von Beton mit Grauwacke-Splitt bei einem w/z-Wert von 0,45

Abbildung A 121 Einfluss der kontinuierlichen bzw. diskontinuierlichen 40 °C-Nebelkammerlagerung im Vergleich zur Referenzlagerung bei 20 °C über Wasser auf die Spannungs-Stauchungs-Linie (links) und relative Spannung (rechts) von Beton mit Grauwacke-Splitt bei einem w/z-Wert von 0,55

Abbildung A 122 Vergleich von Referenzlagerung und 60 °C-Betonversuch hinsichtlich des zeitlichen Verlaufs des Arbeitsvermögens im Entlastungsast - errechnet bis zu 30 % (links) und 10 % (rechts) der maximalen Druckspannung - von Beton mit Grauwacke-Splitt bei variierendem w/z-Wert im Alter von 140 Tagen

10.2.2.2 Zugabe LP-Bildner

40 °C-Nebelkammerlagerung

Masse, Dehnung (manuelle Messung) und dynamischer E-Modul (aus Eigenschwingzeitmessung) von Balken (75 x 75 x 280 [mm]) und Zylindern (Ø 70 mm, L 280 mm)

Abbildung A 123 Einfluss der Zugabe von LP-Bildner auf die Masseänderung von Betonbalken 75 mm x 75 mm x 280 mm (links) und Betonzylindern Ø 70 mm, I = 280 mm (rechts) mit Grauwacke-Splitt bei einem w/z-Wert von 0,45 in der Nebelkammerlagerung bei 40 °C

Abbildung A 124 Einfluss der Zugabe von LP-Bildner auf die Dehnung (links) und den dynamischen E-Modul (rechts) von Betonbalken der Geometrie 75 mm x 75 mm x 280 mm mit Grauwacke-Splitt bei einem w/z-Wert von 0,45 in der Nebelkammerlagerung bei 40 °C

> Gegenüberstellung kontinuierlicher und diskontinuierlicher Dehnungen

Abbildung A 125 Gegenüberstellung der Ergebnisse der kontinuierlichen und diskontinuierlichen Dehnungsmessung der Betonzylinder Ø 70 mm, I = 280 mm mit Grauwacke-Splitt bei einem w/z-Wert von 0,45 ohne LP-Bilder (links) und mit LP-Bildner (rechts) bei 40 °C-Nebelkammerlagerung

Ergebnisse mittels μ-3D-CT zur räumlichen und zeitlichen Visualisierung der Risse, etc.

Abbildung A 126 Visualisierung des inneren Gefügezustandes eines kontinuierlich gelagerten Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt, w/z-Wert = 0,45 und LP-Bildner vor und nach Nebelkammerlagerung bei 40 °C mit μ-3D-CT

Abbildung A 127 Visualisierung des inneren Gefügezustandes eines kontinuierlich gelagerten Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt, w/z-Wert = 0,45 und LP-Bildner vor, während und nach Nebelkammerlagerung bei 40 °C mit μ-3D-CT: Details A und B

Mikroskopische Ergebnisse

Abbildung A 128 Dünnschliffuntersuchung am Vertikalschnitt eines Betonzylinders (Ø 70 mm, I 280 mm) mit Grauwacke-Splitt, w/z-Wert von 0,45 und LP-Bildner nach Nebelkammerlagerung bei 40 °C

Abbildung A 129 Dünnschliffuntersuchung Vertikalschnitt Beton mit Grauwacke-Splitt, w/z-Wert von 0,45 und LP-Bildner nach 40 °C-Nebelkammer; Detail 5: Pore mit AKR-Gel gefüllt; Detail 6: dünne Schicht AKR-Gel an Porenwandung

Abbildung A 130 Dünnschliffuntersuchung Vertikalschnitt Beton mit Grauwacke-Splitt, w/z-Wert von 0,45 und LP-Bildner nach 40 °C-Nebelkammer; Detail 8: Ettringit in Poren bzw. an Porenwandung

> Porosität Betonzylinder

Verformungsverhalten Betonzylinder

Abbildung A 132 Einfluss der kontinuierlichen 40 °C-Nebelkammerlagerung im Vergleich zur Referenzlagerung bei 20 °C über Wasser auf die Spannungs-Stauchungs-Linie (links) und relative Spannung (rechts) von Beton mit Grauwacke-Splitt und LP-Bildner bei einem w/z-Wert von 0,45

Abbildung A 133 Vergleich von Referenz- und 40 °C-Nebelkammerlagerung hinsichtlich des zeitlichen Verlaufs des Arbeitsvermögens im Entlastungsast - errechnet bis zu 30 % (links) und 10 % (rechts) der maximalen Druckspannung - von Beton mit Grauwacke-Splitt, w/z = 0,45 mit/ohne LP-Bildner im Alter von 336 Tagen

Verhalten Betonwürfel (300 x 300 x 300 mm³)

Abbildung A 134 Rissentwicklung am 300 mm³-Betonwürfel mit Grauwacke-Splitt, w/z = 0,45 und LP-Bildner während 3, 4 und 5 Monaten 40 °C-Nebelkammerlagerung

GW-Z1-0,45-LP: Rissverlauf während 40 °C-Nebelkammerlagerung

Abbildung A 135 Rissentwicklung am 300 mm³-Betonwürfel mit Grauwacke-Splitt, w/z = 0,45 und LP-Bildner während 6, 9 und 12 Monaten 40 °C-Nebelkammerlagerung

Abbildung A 136 Visualisierung des inneren Gefügezustandes eines aus einem 300 mm³-Würfel entnommenen Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt, w/z-Wert = 0,45 und LP-Bildner nach 40 °C-Nebelkammerlagerung mit μ -3D-CT

Abbildung A 137 Visualisierung der Risse von CT-Datensätzen mittels automatischem Risserkennungssystem am Beispiel der aus den 300 mm³-Würfel entnommenen Betonzylinder (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt, w/z-Wert = 0,45 mit/ohne LP-Bildner nach 40 °C-Nebelkammerlagerung

Abbildung A 138 Dünnschliffuntersuchung am Vertikalschnitt aus 300 mm-Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt, w/z-Wert von 0,45 und LP-Bildner

Abbildung A 139 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt, w/z-Wert von 0,45 und LP-Bildner; Detail 12: kleine und große Poren sowie Risse vollständig mit AKR-Gel gefüllt

Abbildung A 140 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt, w/z-Wert von 0,45 und LP-Bildner; Detail 16: Poren und Risse teilweise mit AKR-Gel gefüllt und Pore mit Ettringit an Wandung

Abbildung A 141 Dünnschliffuntersuchung am Würfel nach 40 °C-Nebelkammer; Beton mit Grauwacke-Splitt, w/z = 0,45 und LP-Bildner; Detail 32: Pore mit AKR-Gel gefüllt & Ettringit an Porenwandung; Detail 51: kleine Poren mit Ettringit gefüllt

Abbildung A 143 Porenradienverteilung mittels Hg-Porosimetrie im oberen (links) und mittleren (rechts) Bereich des 300 mm³-Betonwürfels mit Grauwacke-Splitt, w/z = 0,45 mit/ohne LP-Bildner nach 40 °C-Nebelkammerlagerung

Abbildung A 144 Porenradienverteilung mittels Hg-Porosimetrie im unteren Bereich des 300 mm³-Betonwürfels (links) und gemittelte Gesamtporosität des 300 mm³-Betonwürfels (rechts) mit Grauwacke-Splitt, w/z = 0,45 mit/ohne LP-Bildner nach 40 °C-Nebelkammerlagerung

Abbildung A 145 Einfluss der Probekörpergeometrie nach 336 Tagen 40 °C-Nebelkammerlagerung im Vergleich zur Referenzlagerung bei 20 °C über Wasser hinsichtlich des zeitlichen Verlaufs des Arbeitsvermögens im Entlastungsast - errechnet bis zu 30 % (links) und 10 % (rechts) der maximalen Druckspannung - von Beton mit Grauwacke-Splitt mit/ohne LP-Bildner bei einem w/z-Wert von 0,45

60 °C-Betonversuch über Wasser

Masse von Zylindern (Ø 70 mm, L 280 mm)

Abbildung A 146 Masse von Betonzylindern \emptyset 70 mm, I = 280 mm mit Grauwacke-Splitt beim w/z-Wert von 0,45 mit/ohne LP-Bildner im 60 °C-Betonversuch über Wasser

Ergebnisse mittels µ-3D-CT zur räumlichen und zeitlichen Visualisierung der Risse, etc.

Abbildung A 147 Visualisierung des inneren Gefügezustandes eines kontinuierlich gelagerten Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt, w/z-Wert = 0,45 und LP-Bildner vor und nach 60 °C-Betonversuch mit μ-3D-CT

Abbildung A 148 Visualisierung des inneren Gefügezustandes eines kontinuierlich gelagerten Betonzylinders (Ø 70 mm, L 280 mm) mit Grauwacke-Splitt, w/z-Wert = 0,45, LP-Bildner vor, während, nach 60 °C-Betonversuch mit μ-3D-CT: Details A+B

Abbildung A 149 Dünnschliffuntersuchung am Vertikalschnitt des Betonzylinders (Ø 70 mm, I 280 mm) nach 60 °C-Betonversuch; Beton mit Grauwacke-Splitt und LP-Bildner bei einem w/z-Wert von 0,45

Abbildung A 150 Dünnschliffuntersuchung am Vertikalschnitt von Beton mit Grauwacke-Splitt, w/z-Wert von 0,45 und LP-Bildner nach 60 °C-Betonversuch; Detail 6: AKR-Gel in Pore und Riss

Abbildung A 151 Dünnschliffuntersuchung am Vertikalschnitt von Beton mit Grauwacke-Splitt, w/z-Wert von 0,45 und LP-Bildner nach 60 °C-Betonversuch; Detail 8: AKR-Gel in Pore und Riss

Verformungsverhalten Betonzylinder

Abbildung A 153 Einfluss der Probekörpergeometrie nach 140 Tagen 60 °C-Betonversuch im Vergleich zu 20 °C über Wasser hinsichtlich Spannung unter Höchstlast (links) und zeitlichem Verlauf des Arbeitsvermögens im Entlastungsast errechnet bis zu 60 % der maximalen Druckspannung - (rechts) am Beispiel von Beton mit Grauwacke-Splitt, w/z = 0,45 mit/ohne LP-Bildner

Abbildung A 154 Vergleich von Referenzlagerung und 60 °C-Betonversuch hinsichtlich des zeitlichen Verlaufs des Arbeitsvermögens im Entlastungsast - errechnet bis zu 30 % (links) und 10 % (rechts) der maximalen Druckspannung - von Beton mit Grauwacke-Splitt, w/z = 0,45 mit/ohne LP-Bildner im Alter von 140 Tagen

10.2.3 Hohes externes Schädigungspotenzial

- 10.2.3.1 Variation w/z-Wert
- Masse und dynamischer E-Modul von Balken (100 x 100 x 400 [mm])

Abbildung A 155 Masse von Betonbalken 100 mm x 100 mm x 400 mm mit Grauwacke-Splitt bei w/z-Wert von 0,40 (links) und 0,45 (rechts) während FIB-Klimawechsellagerung mit Nebelphase bei 40 °C

Abbildung A 156 Dynamischer E-Modul (errechnet aus Eigenschwingzeiten) von Betonbalken 100 x 100 mm x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,40 (links); 0,45 (rechts) während FIB-Klimawechsellagerung mit Nebelphase bei 40 °C

Abbildung A 157 Dynamischer E-Modul (errechnet aus Ultraschalllaufzeiten) von Betonbalken 100 x 100 mm x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,40 (links) 0,45 (rechts) während FIB-Klimawechsellagerung mit Nebelphase bei 40 °C

Abbildung A 158 Relativer dynamischer E-Modul (errechnet aus Ultraschalllaufzeiten) von Betonbalken 100 x 100 mm x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,40 (links) und 0,45 (rechts) während FIB-Klimawechsellagerung mit Nebelphase bei 40 °C bezogen auf Wert nach 4tägiger Trocknung

Abbildung A 159 Vergleich des relativen dynamischen Elastizitätsmoduls aus Eigenschwingund Ultraschalllaufzeiten von Betonbalken 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,40 (links) und 0,45 (rechts) während FIB-Klimawechsellagerung mit Nebelphase bei 40 °C bezogen auf Wert nach viertägiger Trocknung

> Elementverteilung von Alkalien, Schwefel und Chlor in Betonbalken

Abbildung A 160 Verteilung von Natrium und Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,40 mittels LIBS

Abbildung A 161 Verteilung an Natrium und Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,40 mit Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 40 °C-Nebelphase bei Beaufschlagung mit demineralisiertem Wasser mittels LIBS

Abbildung A 162 Verteilung an Natrium und Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,40 mit Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 40 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mit μ-RFA

Abbildung A 163 Verteilung an Kalium und Schwefel eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,40 mit Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 40 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mit μ-RFA

Abbildung A 164 Verteilung an Natrium und Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,40 mit Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 40 °C-Nebelphase bei Beaufschlagung mit 3,6% iger NaCI-Lösung mittels LIBS

Abbildung A 165 Verteilung an Kalium und Schwefel eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,40 mit Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 40 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mittels LIBS

Abbildung A 166 Verteilung an Natrium und Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 mittels LIBS

Abbildung A 167 Verteilung an Natrium u. Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 mit Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 40 °C-Nebelphase bei Beaufschlagung mit demineralisiertem Wasser mittels LIBS

Abbildung A 168 Verteilung an Natrium und Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 mit Zemdrain® nach 12 Zyklen FIB-Klimawechsellagerung mit 40 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mit μ-RFA

Abbildung A 169 Verteilung an Kalium und Schwefel eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 mit Zemdrain® nach 12 Zyklen FIB-Klimawechsellagerung mit 40 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mit μ-RFA

Abbildung A 170 Verteilung an Natrium und Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 mit Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 40 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mittels LIBS

Abbildung A 171 Verteilung an Kalium und Schwefel eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 mit Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 40 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mittels LIBS

Mikroskopische Untersuchungen am Betonbalken

Abbildung A 172 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain[®] bei einem w/z-Wert von 0,40 nach Klimawechsellagerung bei 40 °C-Nebelphase mit 3,6%iger NaCI-Lösung

Abbildung A 173 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain[®] bei einem w/z-Wert von 0,40 nach Klimawechsellagerung bei 40 °C-Nebelphase mit 3,6%iger NaCI-Lösung, Detail 1: AKR-Gel in Riss und mehrere Poren gelgefüllt

Abbildung A 174 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain[®] bei einem w/z-Wert von 0,40 nach Klimawechsellagerung bei 40 °C-Nebelphase mit 3,6%iger NaCI-Lösung, Detail 4: feine nadelige Kristalle (vermutlich Ettringit) in Poren

Abbildung A 175 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain[®] bei einem w/z-Wert von 0,45 nach Klimawechsellagerung bei 40 °C-Nebelphase mit 3,6%iger NaCI-Lösung

Abbildung A 176 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain® bei einem w/z-Wert von 0,45 nach Klimawechsellagerung bei 40 °C-Nebelphase mit 3,6%iger NaCI-Lösung, Detail 7: AKR-Gel und vermutlich Ettringit in Poren

Abbildung A 177 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain® bei einem w/z-Wert von 0,45 nach Klimawechsellagerung bei 40 °C-Nebelphase mit 3,6%iger NaCI-Lösung, Detail 8: AKR-Gel in Poren unterschiedlichen Durchmessers

10.2.3.2 Variation Temperatur der Nebelphase

Abbildung A 178 Masse von Betonbalken 100 mm x 100 mm x 400 mm mit Grauwacke-Splitt bei w/z-Wert von 0,45 während FIB-Klimawechsellagerung mit Nebelphase bei 40 °C (links) und 45 °C (rechts)

Abbildung A 179 Dynamischer E-Modul (errechnet aus Eigenschwingzeiten) von Betonbalken 100 x 100 mm x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 während FIB-Klimawechsellagerung mit Nebelphase bei 40 °C (links) bzw. 45 °C (rechts)

Abbildung A 180 Dynamischer E-Modul (errechnet aus Ultraschalllaufzeiten) von Betonbalken 100 x 100 mm x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 während FIB-Klimawechsellagerung mit Nebelphase bei 40 °C (links) bzw. 45 °C (rechts)

Abbildung A 181 Relativer dynamischer E-Modul (errechnet aus Ultraschalllaufzeiten) von Betonbalken 100 x 100 mm x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 während FIB-Klimawechsellagerung mit Nebelphase bei 40 °C (links) bzw. 45 °C (rechts) bezogen auf Wert nach 4tägiger Trocknung

Abbildung A 182 Vergleich des relativen dynamischen Elastizitätsmoduls aus Eigenschwingund Ultraschalllaufzeiten von Betonbalken 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 während FIB-Klimawechsellagerung mit Nebelphase bei 40 °C (links) und 45 °C (rechts) bezogen auf Wert nach viertägiger Trocknung

Elementverteilung von Alkalien, Schwefel und Chlor in Betonbalken

Abbildung A 184 Verteilung an Natrium und Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 mit Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 45 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mit μ-RFA

Abbildung A 185 Verteilung an Kalium und Schwefel eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 mit Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 45 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mit μ-RFA

Abbildung A 186 Verteilung an Natrium und Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 mit Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 45 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mittels LIBS

Abbildung A 187 Verteilung an Kalium und Schwefel eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 mit Zemdrain® nach 12 Zyklen FIB-Klimawechsellagerung mit 45 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mittels LIBS

Mikroskopische Untersuchungen am Betonbalken

Abbildung A 188 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain[®] bei einem w/z-Wert von 0,45 nach Klimawechsellagerung bei 45 °C-Nebelphase mit 3,6%iger NaCI-Lösung

Abbildung A 189 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain[®] bei einem w/z-Wert von 0,45 nach Klimawechsellagerung bei 45 °C-Nebelphase mit 3,6%iger NaCI-Lösung, Detail 4: Poren und Riss mit rötlich braunem Gel gefüllt

Abbildung A 190 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain[®] bei einem w/z-Wert von 0,45 nach Klimawechsellagerung bei 45 °C-Nebelphase mit 3,6%iger NaCI-Lösung, Detail 16: Poren und Riss mit weißem AKR-Gel gefüllt

Abbildung A 191 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain[®] bei einem w/z-Wert von 0,45 nach Klimawechsellagerung bei 45 °C-Nebelphase mit 3,6%iger NaCI-Lösung, Detail 19: vereinzelt feine nadelige Kristalle (Ettringit)

10.2.3.3 Variation Oberflächenbehandlung

Masse (links) und aus Eigenschwingzeiten errechneter dynamischer E-Mo-Abbildung A 192 dul (rechts) von Betonbalken 100 x 100 x 400 [mm] mit Grauwacke-Splitt, mit/ohne Oberflächenbehandlung mittels Zemdrain[®] bei w/z-Wert von 0,45 während FIB-Klimawechsellagerung mit Nebelphase bei 45 °C

Abbildung A 193 aus Ultraschalllaufzeiten errechneter, dynamischer Elastizitätsmodul (links) und auf Wert nach viertägiger Trocknung bezogener relativer dynamischer Elastizitätsmodul (rechts) von Betonbalken 100 x 100 x 400 [mm] mit Grauwacke-Splitt, mit/ohne Oberflächenbehandlung mittels Zemdrain[®] bei w/z-Wert von 0,45 während FIB-Klimawechsellagerung mit Nebelphase bei 45 °C

Elementverteilung von Alkalien, Schwefel und Chlor in Betonbalken

Abbildung A 194 Verteilung an Natrium und Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 ohne Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 45 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mit μ-RFA

Abbildung A 195 Verteilung an Kalium und Schwefel eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 ohne Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 45 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mit μ-RFA

Abbildung A 196 Verteilung an Natrium und Chlor eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 ohne Zemdrain[®] nach 12 Zyklen FIB-Klimawechsellagerung mit 45 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mittels LIBS

Abbildung A 197 Verteilung an Kalium und Schwefel eines Betonbalkens 100 x 100 x 400 [mm] mit Grauwacke-Splitt bei w/z-Wert von 0,45 ohne Zemdrain® nach 12 Zyklen FIB-Klimawechsellagerung mit 45 °C-Nebelphase bei Beaufschlagung mit 3,6%iger NaCI-Lösung mittels LIBS

Mikroskopische Untersuchungen am Betonbalken

Abbildung A 198 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt ohne Zemdrain[®] bei einem w/z-Wert von 0,45 nach Klimawechsellagerung bei 45 °C-Nebelphase mit 3,6%iger NaCI-Lösung

Abbildung A 200 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain® bei einem w/z-Wert von 0,45 nach Klimawechsellagerung bei 45 °C-Nebelphase mit 3,6%iger NaCI-Lösung, Detail 9: viele AKR-gelgefüllte Poren und vereinzelt Ettringit

Abbildung A 201 Dünnschliffuntersuchung am Vertikalschnitt des Fahrbahndeckenbetons mit Grauwacke-Splitt und Zemdrain[®] bei einem w/z-Wert von 0,45 nach Klimawechsellagerung bei 45 °C-Nebelphase mit 3,6%iger NaCI-Lösung, Detail 21: vereinzelt nadelige Kristalle (vermutl. Ettringit)