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Abstract

In this thesis we study some complex and hypercomplex function spaces and classes

such as hypercomplex Qp, Bq
s, Bq and Bp,q spaces as well as the class of basic sets of

polynomials in several complex variables. It is shown that each of Bq
s and Bp,q spaces

can be applied to characterize the hypercomplex Bloch space. We also describe a ”wider”

scale of Bq
s spaces of monogenic functions by using another weight function. By the help

of the new weight function we construct new spaces (Bq spaces) and we prove that these

spaces are not equivalent to the hyperholomorphic Bloch space for the whole range of q.

This gives a clear difference as compared to the holomorphic case where the corresponding

function spaces are same. Besides many properties for these spaces are considered. We

obtain also the characterization of Bq-functions by their Fourier coefficients. Moreover,

we consider BMOM and VMOM spaces.

For the class of basic sets of polynomials in several complex variables we define the

order and type of basic sets of polynomials in complete Reinhardt domains. Then, we

study the order and type of both basic and composite sets of polynomials by entire

functions in theses domains. Finally, we discuss the convergence properties of basic sets

of polynomials in hyperelliptical regions. Extensions of results on the effectiveness of basic

sets of polynomials by holomorphic functions in hyperelliptical regions are introduced.

A positive result is established for the relationship between the effectiveness of basic sets

in spherical regions and the effectiveness in hyperelliptical regions.
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Preface

For more than one century Complex Analysis has fascinated mathematicians since

Cauchy, Weierstrass and Riemann had built up the field from their different points of

view. One of the essential problems in any area of mathematics is to determine the

distinct variants of any object under consideration. As for complex and hypercomplex

functional Analysis, one is interested, for example, in studying some function spaces and

classes. The theory of function spaces plays an important role not only in Complex Anal-

ysis but in the most branches of pure and applied mathematics, e.g. in approximation

theory, partial differential equations, Geometry and mathematical physics.

Clifford Analysis is one of the possible generalizations of the theory of holomorphic

functions in one complex variable to Euclidean space. It was initiated by Fueter [37] and

Moisil and Theodoresco [66] in the early thirties as a theory of functions of a quaternionic

variable, thus being restricted to the four dimensional case. Nef [71], a student of Fueter,

was the first Mathematician introduced the concept of a Cauchy-Riemann operator in

Euclidean space of any dimension and he studied some properties of its null solutions.

The concept of the hyperholomorphic functions based on the consideration of functions in

the kernel of the generalized Cauchy-Riemann operator. The essential difference between

the theory of hyperholomorphic functions and the classical theory of analytic functions

in the complex plane C lies in their algebraic structure. Analytic functions in C form

an algebra while the same does not true in the sense of hyperholomorphic functions.

Mathematicians became interested in the theory of Clifford algebras from 1950’s, we

mention C. Chevalley with his book ” The algebraic theory of spinors (1954) ”.

From the second half of the sixties, the ideas of Fueter School were taken up again inde-

pendently, by Brackx, Delanghe and Sommen [23], Hestenes and Sobczyk [47], Gürlebeck

and Sprössig [45, 46], Ryan [80] , Kravchenko and Shapiro [55], and others, thus giving

the starting point of what is nowadays called Clifford Analysis and which in fact noth-

ing else but the study of the null solutions of Dirac operator, called hyperholomorphic

(monogenic) functions.

Recently a big number of articles, monographs, high level conference proceedings on
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Clifford Analysis and it’s applications have been published, so this subject becomes more

and more important to attract Mathematicians around the world.

This thesis deals with some aspects in the theory of function spaces of holomorphic

and hyperholomorphic functions. The study of holomorphic function spaces began some

decades ago. Recently, Aulaskari and Lappan [15], introduced Qp spaces of complex-

valued functions. While Stroethoff [85] studied Bq spaces of complex-valued functions.

On the other hand Whittaker (see [88], [89] and [90]) introduced the theory of bases in

function spaces. Several generalizations of these spaces and classes have been considered.

The generalizations of these types of function spaces have two directions:

The first one in Cn (see e.g. [6], [26], [53], [55], [67], [68], [69], [74], [75], and [85]).

The second direction by using the concept of quaternion-valued monogenic functions

(see e.g. [1], [2], [3], [4], [27], [43], and [44]).

Our study will cover the previous ways for generalizing some function spaces and

classes.

In the theory of hyperholomorphic function spaces we study Qp spaces and Besov-

type spaces. The importance of these types of spaces is that they cover a lot of famous

spaces like hyperholomorphic Bloch space and BMOM space, the space of monogenic

functions of bounded mean oscillation as it was shown in [22]. The study of Qp spaces of

hyperholomorphic functions started by Gürlebeck et al. [43] in 1999. The Qp spaces are

in fact a scale of Banach H−modules, which connects the hyperholomorphic Dirichlet

space with the hyperholomorphic Bloch space. One of our goals in this thesis is entirely

devoted to the study of Qp spaces of hyperholomorphic functions and their relationships

with other spaces of hyperholomorphic functions defined in this thesis. So, in our study

of the spaces Bq
s, B

q, Bp,q and BMOM we will throw some lights on these relations.

These weighted spaces can be used to consider boundary value problems with singu-

larities in the boundary data.

In the theory of several complex-valued function we study the class of basic sets of

polynomials by entire functions. Since, it’s inception early last century the notion of

basic sets of polynomials has played a central role in the theory of complex function the-
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ory. Many well-known polynomials such as Laguerre, Legendre, Hermite, and Bernoulli

polynomials form simple basic sets of polynomials. We restrict ourselves to the study of

bases of polynomials of several complex variables.

There is not any doubt that these types of spaces and classes were and are the backbone

of the theory of function spaces from the beginning of the last century up to our time

for a great number of groups around the world. So, it is quite clear that we restrict our

attention to spaces and classes of these types.

The thesis consists of six chapters organized as follows:

Chapter 1 is a self-contained historically-oriented survey of those function spaces and

classes and their goals which are treated in this thesis. This chapter surveys the rather

different results developed in the last years without proofs but with many references and

it contains description of basic concepts. The goal of this introductory chapter is two-

fold. Firstly and principally, it serves as an independent survey readable in the theory

of Qp and Bq spaces as well as the class of basic sets of polynomial of one and several

complex variables. Secondly, it prepares from a historical point of view what follows and

it emphasizes the main purpose of this thesis, that is, to clear how we can generalize

those types of function spaces and classes by different ways.

In Chapter 2, we define Besov type spaces of quaternion valued functions and then

we characterize the hypercomplex Bloch function by these weighted spaces. By replacing

the exponents of the weight function by another weight function of power less than

or equal two we prove that there is a new scale for these weighted spaces. We give

also the relation between Qp spaces and these weighted Besov-type spaces. Some other

characterizations of these spaces are obtained in this chapter by replacing the weight

function by the modified Green’s function in the defining integrals.

In Chapter 3, we define the spaces Bp,q of quaternion valued functions. We obtain

characterizations for the hyperholomorphic Bloch functions by Bp,q functions. Further,

we study some useful and effective properties of these spaces. We also obtain the exten-

sion of the general Stroethoff’s results (see [85]) in Quaternionic Analysis.
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In Chapter 4, we study the problem if the inclusions of the hyperholomorphic Bq

spaces within the scale and with respect to the Bloch space are strict. Main tool is

the characterization of Bq-functions by their Taylor or Fourier coefficients. Our rigorous

statement of these characterization was done with series expansions of hyperholomorphic

Bq functions using homogeneous monogenic polynomials. This gives us the motivation

to look for another types of generalized classes of polynomials in higher dimensions, as

it is given in the next two chapters. We also study the space BMOM, the space of

all monogenic functions of bounded mean oscillation and the space VMOM, the space

of all monogenic functions of vanishing mean oscillation. So, we start by giving the

definition of the spaces BMOM and VMOM in the sense of modified Möbius invariant

property. Then we obtain the relations between these spaces and other well-known spaces

of quaternion valued functions like Dirichlet space, Bloch space and Q1 space.

Chapter 5 is devoted to study the order and type of basic and composite sets of

polynomials in complete Reinhardt domains. We give a relevant introduction of the

previous work around the order and the type of both entire functions and basic sets of

polynomials in several complex variables. We define the order and the type of basic sets

of polynomials in complete Reinhardt domains. Moreover, we give the necessary and

sufficient condition for the Cannon set to represent in the whole finite space C
n all entire

functions of increase less than order p and type q, where 0 < p < ∞ and 0 < q < ∞.

Besides, we obtain the order of the composite Cannon set of polynomials in terms of

the increase of it’s constituent sets in complete Reinhardt domains. We append this

chapter, by defining property the Tρ in the closed complete Reinhardt domain, in an open

complete Reinhardt domain and in an unspecified region containing the closed complete

Reinhardt domain. Furthermore, we prove the necessary and sufficient conditions for

basic and composite set of polynomials to have property Tρ in closed, and open complete

Reinhardt domains as well as in an unspecified region containing the closed complete

Reinhardt domain.

Finally in Chapter 6, we study convergence properties of basic sets of polynomials
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in a new region. This region will be called hyperelliptical region. We start by a suitable

introduction to facilitate our main tools for the proofs of our new results, then we obtain

the necessary and sufficient conditions for the basic set of polynomials of several complex

variables to be effective in the closed hyperellipse and in an open hyperellipse too. Finally,

we give the condition of the representation of basic sets of polynomials of several complex

variables by entire regular function of several complex variables, namely effectiveness in

the region D
(

Ē[R+]

)

, which means unspecified region contained the closed hyperellipse.

We conclude by briefly indicating how our new conditions for the effectiveness can be

used to obtain the previous effectiveness conditions (conditions for convergence) in hy-

perspherical regions.

These investigations are in closed relationship to the study of monogenic homogenous

polynomials in the hypercomplex case. The Taylor series defined according to Malonek by

the help of the symmetric product have polycylinders as a natural domain of convergence.

The first study of basic sets of polynomials using hyperholomorphic functions were

proposed by Abul-Ez and Constales (see e.g. [3 , 4]). A complete development would

require an adaptation of the underlying function spaces.
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Chapter 1

Introduction and Preliminaries

The intention of this chapter is to provide suitable groundwork to the type of function

spaces needed to understand the remaining chapters in this thesis. This chapter is divided

into five sections.

In section 1.1, we begin with some notation and definitions of different classes of

analytic functions which recently have been studied intensively in the theory of complex

function spaces, while the theory of such spaces like Bq spaces and Qp spaces is still far

from being complete. All these function spaces are of independent interest. In section

1.2, we recall some basic terminology and properties of quaternions and then we pass to

the study of Qp spaces in Clifford Analysis. Section 1.3 is concerned with the properties

and the main previous results of Qp spaces of quaternion-valued functions obtained by

using the conjugate Dirac operator. In section 1.4, we give briefly some basic definitions

and properties of basic sets of polynomials in one complex variable. Finally in section

1.5, brief estimations from the previous work in functions of several complex variables

by maximum modulus and Taylor coefficients are considered.

1.1 Some function spaces of one complex variable.

We start here with some terminology, notation and the definition of various classes of

analytic functions defined on the open unit disk ∆ = {z : |z| < 1} in the complex plane

C (see e.g. [9], [10], [11], [15], [18], [57], [63], [85], [93] and [95]).

Recall that the well known Bloch space (see e.g. [8], [15] and [28]) is defined as follows:

B =

{

f : f analytic in ∆ and sup
z∈∆

(1 − |z|2)|f ′(z)| <∞
}

. (1.1)

and the little Bloch space B0 is given as follows

lim
|z|→1−

(1 − |z|2)|f ′(z)| = 0.



-10-

As a simple example one can get that the function f(z) = log(1 − z) is a Bloch function

but f(z) = log2(1 − z) is not a Bloch function.

The Dirichlet space (see e.g. [8] and [95]) is given by

D =

{

f : f analytic in ∆ and

∫

∆

∣

∣f ′(z)
∣

∣

2
dσz <∞

}

, (1.2)

where dσz is the Euclidean area element dxdy.

The Hardy space Hp (0 < p <∞) is defined as the space of holomorphic functions f

in ∆ which satisfy

‖f‖p
Hp = sup

0<r<1

1

2π

∫ π

−π

|f(reiθ)|pdθ <∞.

We refer to [29] for the theory of these spaces.

Functions of bounded mean oscillations (BMO) were introduced by John and Niren-

berg [48] in the context of functions defined in cubes in Rn and they applied them to

smoothness problems in partial differential equations. Recall the definition: A locally

integrable function f : Rn → R (n ≥ 1) belongs to BMO(Rn), provided

‖f‖BMO := sup
G1

1

|G1|

∫

G1

∣

∣

∣

∣

f − 1

m1(G1)

∫

G1

f dm1

∣

∣

∣

∣

dm1 < ∞,

where the supremum ranges over all cubes G1 in Rn, parallel to the coordinate axis, and

m1 denotes the n−dimensional Lebesgue measure. The space BMO can be defined also

on the unit circle as it is given below.

For more information about BMO functions we refer to [19], [38], [39] [57] and [58].

The space BMOA, which means the space of analytic functions of bounded mean

oscillation, consists of functions f ∈ H1 for which

‖f‖BMO = sup
1

|I|

∫

I

|f − fm|dθ <∞,

where fm denotes the averages of f over I; be an interval of the unit circle T = {z1 ∈
C : |z1| = 1}. It is known that the dual of H1 is BMOA (see e.g. [39]). The interest of
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Complex Analysis in this subject comes not only because of the duality theorem but also

because it is possible to define BMO in away which makes it a conformally invariant

space which has been found to be connected with a lot of distinct topics in Complex

Analysis. For further studies about BMOA functions we refer to [18], [39], and [92].

Let 0 < q <∞. Then the Besov-type spaces

Bq =

{

f : f analytic in ∆ and sup
a∈∆

∫

∆

∣

∣f ′(z)
∣

∣

q(
1 − |z|2

)q−2(
1 − |ϕa(z)|2

)2
dσz <∞

}

(1.3)

are introduced and studied intensively (see [85]). From [85] it is known that the Bq

spaces defined by (1.3) can be used to describe the Bloch space B equivalently by the

integral norms of Bq. On the other hand there are some papers employing the weight

function
(

1 − |ϕa(z)|2
)

instead of
(

1 − |ϕa(z)|2
)2

(see e.g. [17] and [63]). This changing

has reserved the equivalent between the Bloch space and Bq spaces (see [85]). Also, if

the exponent of
(

1 − |ϕa(z)|
)

is equal to zero, then we will get the Besov paces Bp,

1 < p < ∞ which were studied by many authors (see e.g. [12], [86], [95] and others).

Here, ϕa always stands for the Möbius transformation ϕa(z) = a−z
1−āz .

In 1994, Aulaskari and Lappan [15] introduced a new class of holomorphic functions,

the so called Qp-spaces as follows:

Qp =

{

f : f analytic in ∆ and sup
a∈∆

∫

∆

∣

∣f ′(z)
∣

∣

2
gp(z, a)dσz <∞

}

, (1.4)

where the weight function g(z, a) = ln
∣

∣

1−āz
a−z

∣

∣ is defined as the composition of the Möbius

transformation ϕa and the fundamental solution of the two-dimensional real Laplacian.

One idea of this work was to ”close” the gap between the Dirichlet space and the Bloch

space. Main results are

D ⊂ Qp ⊂ Qq ⊂ BMOA, 0 < p < q < 1 (see [18])

where, BMOA is the space of analytic functions of bounded mean oscillation,

Q1 = BMOA (see [15]),
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Qp = B, for p > 1 (see [15]).

This means that the spaces Qp form a scale as desired and for special values of the scale

parameter p these spaces are connected with other known important spaces of analytic

functions. Surveys about special results, boundary values of Qp functions, equivalent

definitions, applications, and open problems are given in [34, 93].

For more information about the study of Qp spaces of analytic functions we refer to

[14], [15], [16], and [18]. It should be mentioned here also that several authors (see e.g.

[26], [74], [75], and [85]) tried to generalize the idea of these spaces to higher dimensions

in the unit ball of Cn. Essen et al. [33] studied also Qp spaces in Rn.

In 1999 Gürlebeck et al. [43] defined Qp spaces of hyperholomorphic functions instead

of analytic functions.

1.2 The Quaternionic extension of Qp spaces

For a long time W.R. Hamilton tried to extend the concept of pairs for any complex

variable to triples of real numbers with one real and two imaginary units. He could himself

well imagine operations of addition and multiplication of triples, but he was unable to

find a suitable rule for the division of such triples which he called later ”vectors”. By

leaving the commutative structure this work was succeeded in October, 1843.

To introduce the meaning of hyperholomorphic functions let H be the set of real

quaternions. This means that elements of H are of the form:

a =

3
∑

k=0

akek, {ak|k ∈ N
0
3 := N3 ∪ {0}; N3 := {1, 2, 3}} ⊂ R;

e0 = 1 the unit; e1, e2, e3 are called imaginary units, and they define arithmetic rules

in H; by definition e2k = −e0, k ∈ N3; e1e2 = −e2e1 = e3; e2e3 = −e3e2 = e1; e3e1 =

−e1e3 = e2 .

Natural operations of addition and multiplication in H turn it into a skew-field. The

main involution in H, the quaternionic conjugation, is defined by

ē0 := e0; ēk := −ek; for k ∈ N3,
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and it extends onto H by R-linearity, i.e., for a ∈ H

ā :=
3
∑

k=0

akek =
3
∑

k=0

akēk = a0 −
3
∑

k=1

akek.

Note that

āa = aā =

3
∑

k=0

a2
k = |a|2

R4 =: |a|2H

Therefore, for a ∈ H \ {0} the quaternion

a−1 :=
1

|a|2 a

is an inverse to a. Whereas the above mentioned properties are analogous to the complex

one-dimensional case we have for the quaternionic conjugation that for any a, b ∈ H

āb = b̄ ā.

Let Ω be a domain in R3, then we shall consider H-valued functions defined in Ω (de-

pending on x = (x0, x1, x2)):

f : Ω −→ H.

The notation Cp(Ω; H), p ∈ N∪{0}, has the usual component-wise meaning. On C1(Ω; H)

we define a generalized Cauchy-Riemann operator D by

D(f) :=

2
∑

k=0

ek
∂f

∂xk
=:

2
∑

k=0

ek ∂kf.

D is a right-linear operator with respect to scalars from H. The operator D

D(f) :=
2
∑

k=0

ēk
∂f

∂xk
=:

2
∑

k=0

ēk ∂kf

is the adjoint Cauchy-Riemann operator. The solutions of Df = 0, x ∈ Ω are called (left)

hyperholomorphic (or monogenic) functions and generalize the class of holomorphic func-

tions from the one-dimensional complex function theory. Let 4 be the three-dimensional
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Laplace operator 4 :=
2
∑

k=0

∂2
k. Then on C2(Ω; H) analogously to the complex case the

following equalities hold:

4 = DD = DD.

Using the adjoint generalized Cauchy-Riemann operatorD instead of the derivative f ′(z),

the quaternionic Möbius transformation ϕa(x) = (a − x)(1 − āx)−1, and the modified

fundamental solution g(x) = 1
4π

(

1
|x| − 1

)

of the real Laplacian in [43] generalized Qp-

spaces are defined by

Qp =

{

f ∈ kerD : sup
a∈B1(0)

∫

B1(0)

∣

∣Df(x)
∣

∣

2(
g(ϕa(x))

)p
dBx <∞

}

, (1.5)

where B1(0) stands for the unit ball in R3 also, some times we use the expression g(x, a)

instead of g(ϕa(x)). Here, the generalizations of the Green function and of the higher

dimensional Möbius transformation seem to be naturally; that − 1
2D plays the role of a

derivative is shown in [44] for arbitrary dimensions and in [64] and [87] for dimension

four.

From the consideration of Qp spaces as p → ∞ in [43] is introduced the following

definition of the Bloch norm in three dimensional case:

B(f) = sup
x∈B1(0)

(1 − |x|2)
3
2 |Df(x)|.

which leads to the following definitions:

Definition 1.2.1. The spatial (or three-dimensional) Bloch space B is the right H-

module of all monogenic functions f : B1(0) 7→ H with B(f) <∞.

Definition 1.2.2. The right H-module of all quaternion-valued functions f defined on

the unit ball, which are monogenic and satisfy Qp(f) <∞, is called Qp-space.

Remark 1.2.1. Obviously, these spaces are not Banach spaces. Nevertheless, if we

consider a small neighborhood of the origin Uε, with an arbitrary but fixed ε > 0, then
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we can add the L1-norm of f over Uε to our semi norms and B as well as Qp will become

Banach spaces.

In the same way as in the complex case, the definition of the little quaternionic Bloch

space B0 is given as the set of hyperholomorphic functions on B1(0), such that

lim
|x|→1−

(1 − |x|2)
3
2 |Df(x)| = 0 (see [76]).

So, B0 ⊂ B and B0 contains for instance all the hyperholomorphic functions f ∈
C1(B1(0)). Based on these definitions it is proved in [43] that

D ⊂ Qp ⊂ Qq ⊂ B for 0 < p < q ≤ 2 and Qq = B for q > 2,

where D is the hyperholomorphic Dirichlet space, and given by (see [43]):

D =

{

f : f ∈ kerD and

∫

B1(0)

|Df(x)|2dBx <∞
}

. (1.6)

For more information about the study of Qp spaces of hyperholomorphic functions, we

refer to [27], [31], [42], [43] and [44]. For more details about quaternionic analysis and

general Clifford analysis, we refer to [23], [45], [46], [55], [80] and [87].

1.3 Properties of quaternion Qp-functions

First we refer to the main steps (see [43]) to show that the Qp-spaces form a range of

Banach H-modules (with our additional term added to the semi norm), connecting the

hyperholomorphic Dirichlet space with the hyperholomorphic Bloch space. In order to

do this several lemmas are needed. Although some of these lemmas are only of technical

nature we will at least state these results to show that the approach to Qp-spaces in

higher dimensions which is sketched in this section is strongly based on properties of

monogenic functions.

Proposition 1.3.1. Let f be monogenic and 0 < p < 3, then we have

(1 − |a|2)3|Df(a)|2 ≤ C1

∫

B1(0)

|Df(x)|2
(

1

|ϕa(x)| − 1

)p

dBx,
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where the constant C1 does not depend on a and f .

The inequality has the same structure as in the complex one-dimensional case (see e.g.

[18]). Only the exponent 3 on the left hand side shows how the real dimension of the

space influences the estimate. To prove this proposition we need a mean value formula

coming from properties of the hypercomplex Cauchy integral (see [46]), some geometrical

properties of the Möbius transformation and the equality

1 − |ϕa(x)|2
1 − |x|2 =

1 − |a|2
|1 − āx|2

which links properties of the (special) Möbius transformation ϕa with the weight function

1 − |x|2. This equality generalizes in a direct way the corresponding property from the

complex one-dimensional case. Considering Proposition 1.3.1, we obtain the following

corollary.

Corollary 1.3.1. For 0 < p < 3 we have Qp ⊂ B.

This corollary means that all Qp-spaces are subspaces of the Bloch space. We recall

that in the complex one-dimensional case all Qp-spaces with p > 1 are equal and coincide

with the Bloch space. This leads to a corresponding question in the three-dimensional

case considered here. In [43] the following theorem is proved.

Theorem 1.3.1. Let f monogenic in the unit ball. Then the following conditions are

equivalent:

1. f ∈ B.

2. Qp(f) <∞ for all 2 < p < 3.

3. Qp(f) <∞ for some p > 2.

Theorem 1.3.1 means that all Qp-spaces for p > 2 coincide and are identical with the

quaternion Bloch space.

The one-dimensional analogue of Definition 1.2.2 was the first definition of Qp-spaces.

This was motivated by the idea to have a range of spaces ”approaching” the space

BMOA and the Bloch space. Comparing the original definition and one of the equivalent
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characterizations of BMOA in [19] it is obvious that Q1 = BMOA. Another motivation

is given by some invariance properties of the Green function used in the definition. Recent

papers (see e.g. [14]) show that the ideas of these weighted spaces can be generalized

in a very direct way to the case of Riemannian manifolds. Caused by the singularity of

the Green function difficulties arise in proving some properties of the scale. One of these

properties is the inclusion property with respect to the index p. Considering ideas from

[15] also the use of polynomial weights seems to be natural and more convenient in case

of increasing space dimension. The idea to relate the Green function with more general

weight functions of the type (1 − |x|2)p is not new. For the complex case it has already

been mentioned in [16] and [18]. Another idea is to prove also a relation of gp(x, a) with

(1−|ϕa|2)p. This way saves on the one hand the advantages of the simple term (1−|x|2)p

and preserves on the other hand a special behaviour of the weight function under Möbius

transforms.

In this subsection we relate these possibilities to characterize Qp-spaces. Among

others, this new (in our case equivalent) characterization implies the proof of the fact

that the Qp-spaces are a scale of function spaces with the Dirichlet space at one extreme

point and the Bloch space at the other.

Theorem 1.3.2 [43]. Let f be monogenic in B1(0). Then, for 1 ≤ p < 2.99,

f ∈ Qp ⇐⇒ sup
a∈B1(0)

∫

B1(0)

|Df(x)|2(1 − |ϕa(x)|2)pdBx <∞.

At first glance, the condition p < 2.99 looks strange. But we have to keep in mind that

Theorem 1.3.2 means that all Qp-spaces for p > 2 are the same, so in fact this condition

is only of technical nature caused by the singularity of gp(x, a) for p = 3.

The same characterization can be shown by a different proof (see [43]) also in the case

of p < 1.

Proposition 1.3.2 [43]. Let f be monogenic in B1(0). Then, for 0 < p ≤ 1,

f ∈ Qp ⇐⇒ sup
a∈B1(0)

∫

B1(0)

|Df(x)|2(1 − |ϕa(x)|2)pdBx <∞.
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Using the alternative definition of Qp-spaces it can be shown that the Qp-spaces form a

scale of Banach spaces. This is a consequence of using the weight function (1−|ϕa(x)|2).

Proposition 1.3.3 [43]. For 0 < p < q < 2, we have that

Qp ⊂ Qq .

Recently, it was proved by Gürlebeck and Malonek [44] all the above inclusions are strict.

1.4 Whittaker’s basic sets of polynomials in one complex variable

Basic sets of polynomials of one complex variable appeared in 1930’s by Whittaker (see

[88, 90]). Since then a great deal of articles and number of monographs and dissertations

were devoted to this theory (see e.g. [24], [36], [60], [72], [73], [81] and others).

Let C[z] be the complex linear space of all polynomials in one complex variable with

complex coefficients. This space with the topology of uniform convergence on all compact

subsets of a simply-connected region Ω1. The completion of C[z] is then the space U(Ω1)

of all analytic functions f(z) which are analytic in Ω1.

The well known Whittaker basic set of C[z] is given by

{

1, z, z2, ...
}

=
{

zk : k ∈ N
}

. (1.7)

Now consider {Pn} to be a sequence of polynomials in z which forms the Whittaker basis

for C[z], then we have the following:

1. the set {Pn : n ∈ N} is linearly independent in the space C[z]

2. span {Pn : n ∈ N} = C[z] :

this means that for each polynomial P (z) ∈ C[z] there exist unique finite sequences

Pn1
, Pn2

, ..., Pnk
in
{

Pn : n ∈ N
}

and constants cn1
, cn2

, ..., cnk
∈ C such that

P (z) =
k
∑

j=1

cnj
Pnj

(z).
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The set {Pn : n ∈ N} is said to be an effective basic set in U(Ω1) if and only if each

f ∈ U(Ω1) admits a series expansion in terms of the elements of the set {Pn : n ∈ N}.

Now, starting from the standard basis (1.7) of C[z], we discuss under which condition

infinite row-finite matrices perform a change of basis in C[z].

The change of basis is thus performed by matrix of type P = (Pn,k) : n, k ∈ N such that

(a) P is row-finite: for each n ∈ N fixed, only a finite number of Pn,k ∈ C and this

number is different from zero.

(b) P is invertible: there exists another row-finite matrix Π = Πn,k;n, k ∈ N such that

(P.Π)ij =
∑

k

Pik πkj = I

also,

(Π.P )ij =
∑

k

πik Pkj = I,

where I be the unit matrix. In some times for the above equalities we use the expression

PΠ = ΠP = I.

Remark 1.4.1. Since each basic set of polynomials has a unique representation as a

finite sum P (z) =
∑

cn Pn(z). Then every function f(z) ∈ U(Ω1) is the limit of a

sequence of finite sums of the form
∞
∑

n=0
ak,n Pn, k = 0, 1, 2, ... . Of course this by no

means implies that there are complex numbers cn such that f(z) =
∞
∑

n=0
cn Pn(z) with a

convergent or even summable series.

One way of attaching a series is to a given function is as follows. Since {Pn} is a basis,

in particular there is a row-finite infinite matrix, unique among all such matrices, such

that

Pn(z) =
∑

k

Pn,k z
k, (1.8)
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where {Pn(z), n ∈ N} ∈ C[z]. For the basis {Pn(z)} we have

zk =
∑

n

πk,n Pn(z). (1.9)

If P and Π are row-finite, then P Π is also row-finite. Indeed, for arbitrary n, k ∈ N,

(PΠ)(n,k) =
∑

h∈N
Pn,hΠh,k. Since, there exist hn ∈ N : Pn,h = 0, ∀h ≥ hn. Therefore,

the multiplication is in fact preformed with the elements Π0,k, . . . , Phn,k. So, (P Π) is

row-finite.

Definition 1.4.1. A set of polynomials {Pn(z)}; n ∈ N such that degree Pn(z) = n is

necessarily basis. It is called a simple basic set.

Definition 1.4.2. The basic set {Pn(z)}; n ∈ N is called a Cannon set if the number

Nn of non-zero coefficients in (1.9) is such that limn→∞N
1
n
n = 1, otherwise it is called a

general basic set.

Remark 1.4.2. A few of the simpler properties of basic sets of polynomials follow from

the definition automatically. For example, if P0(z), P1(z), ... are basic sets of polynomials

and c0, c1, ... are any constants then,

1,

∫ z

c0

P0(t)dt,

∫ z

c1

P1(t)dt, ...

are also basic sets of polynomials. Moreover, dP0(z)
dz

, dP1(z)
dz

, ... form also basic sets of

polynomials.

Remark 1.4.3. All familiar sets of polynomials, e.g. those of Laguerre, Legendre,

Hermite, and Bernoulli, form simple basic sets of polynomials (see [24]).

Let Ω1 contains the origin and let f be analytic function at the origin, then we can

write

f(z) =
∞
∑

k=0

f (k)(0)
zk

k!
. (1.10)

If, we formally substitute (1.8) into (1.10), we obtain that

f(z) =
∞
∑

k=0

f (k)(0)

k!

∞
∑

n=0

πk,n Pn(z) =
∞
∑

n=0

∆n Pn(z), (1.11)
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where

∆n =

∞
∑

k=0

πk,n
f (k)(0)

k!
.

The expansion (1.10) with coefficients (1.11) is the so-called basic series introduced by

Whittaker (see [88] and [90]).

1.5 Extension of Whittaker’s sets of polynomials in Cn

There are two natural ways to generalize the theory of basic sets of polynomials to

higher dimensions:

One considers appropriate spaces of holomorphic functions in Cn (see e.g. [51], [53],

[67], [68] and [69]). The second way uses monogenic functions (see e.g. [1], [2], [3] and

[4]).

In the space Cn of the complex variables zs; s ∈ I1 = {1, 2, ..., n}, an open complete

Reinhardt domain ( see [54]) of radii rs(> 0); s ∈ I1 and an open hypersphere of radius

r(> 0) are here denoted by Γ[r] and Sr, their closures by Γ̄[r] and S̄r , respectively.

D(Γ̄[r]) and D(Sr) denote unspecified domains containing the closed polycylinder Γ̄[r]

and closed hypersphere S̄r, respectively.

In terms of the introduced notations, these regions satisfy the following inequalities,

(see e.g. [6], [53], [69], [83])

Γ[r] = Γr1,r2,...,rn
= {z ∈ C

n : |zs| < rs; s ∈ I1},

Γ̄[r] = Γ̄r1,r2,...,rn
= {z ∈ C

n : |zs| ≤ rs},

D(Γ̄[r]) = {z ∈ C
n : |zs| ≤ r+s },

Sr =

{

z ∈ C
n :

( n
∑

s=1

|zs|2
)(1/2)

< r

}

,

Sr =

{

z ∈ C
n :

( n
∑

s=1

|zs|2
)(1/2)

≤ r

}

,
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D(Sr) =

{

z ∈ C
n :

( n
∑

s=1

|zs|2
)(1/2)

≤ r+
}

.

In the last two chapters we shall always deal with single summation of n−suffixed entities.

We shall, therefore first of all, formulate a simple way for such summation. In fact, we

suppose that the sequence of n−suffixed entities em = em1,m2,...,mn
, ms ≥ 0; s ∈ I1 is

one dimensionally lexically arranged in the following manner,

e0,0,...,0, e1,0,...,0, e0,1,...,0, ... , e0,0,...,1, e2,0,...,0, e1,1,...,0, ..., e0,0,...,2, ...,

em,0,...,0, em−1,1,...,0, ..., e0,0,...,m, ... . (1.12)

We denote by m = m1, m2, ..., mn be multi-indices of non-negative integers, as in [51]

for the enumeration number of em among the above sequence, so that

m = m1, m2, ..., mn =

n
∑

s=1

(

(
∑n

r=smr) + n− s

n− s+ 1

)

, (1.13)

where
(

n
r

)

= n!
r!(n−r)!

.

If the indices ms; s ∈ I1 take the values given in the sequence (1.12), then according

to the formula (1.13), the enumeration number m will respectively take on the successive

integers 0, 1, 2, 3, ..., on this basis it is quite natural to represent the sum of terms of the

sequence (1.12) as a single sum as follows

e0,0,...,0 + e1,0,...,0 + e0,1,...,0 + ...+ e0,0,...,1 + e2,0,...,0+

e1,1,...,0 + ...+ e0,0,...,2 + ...+ em1,m2,...,mk
=

m
∑

h=0

eh. (1.14)

and this is the required mode of summation adopted throughout the last two chapters,

where h = (h1, h2, ..., hn) are multi-indices of non-negative integers.

Thus, a function f(z) of the complex variables zs; s ∈ I1, which is regular in Γ[r] can

be represented by the power series

f(z) =
∞
∑

m=0

amzm =
∞
∑

m1,m2,...,mn=0

am1,m2,...,mn
zm1
1 zm2

2 ...zmn
n (1.15)



-23-

where the coefficients {am} (c.f. [5], and [67]) are given by

am = (
1

2πi
)n

∮

|z1|=ρ1

∮

|z2|=ρ2

...

∮

|zn|=ρn

f(z)
n
∏

s=1

dzs

zms+1
s

, (1.16)

where 0 < ρs < rs; s ∈ I1. Then, it follows that

|am| ≤ M(f, [ρ])

ρm
, ms ≥ 0; s ∈ I1, (1.17)

where

M(f, [ρ]) = max
Γ̄[ρ]

|f(z)|. (1.18)

Hence, from (1.17) we get

lim
<m>→∞

sup

{

|am|
n
∏

s=1

r−<m>+ms
s

}
1

<m>

≤ 1
n
∏

s=1
ρs

,

where < m >= m1 +m2 + ...+mn.

Since, ρs can be taken arbitrarily near to rs; s ∈ I1, we conclude that

lim
<m>→∞

sup

{

|am|
n
∏

s=1

r−<m>+ms
s

}
1

<m>

≤ 1
n
∏

s=1
rs

. (1.19)

Also, as in (1.15), (1.16), (1.17), (1.18) and (1.19) if the function f(z) which is regular

in open hypersphere Sr can be represented by the power series (1.15) then,

|am| ≤ σm

M [f, r]

r<m>
, ms ≥ 0; s ∈ I1, (1.20)

where

M [f, r] = max
S̄r

|f(z)|, (1.21)
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σm = inf
|t|=1

1

tm
=

{< m >}<m>
2

n
∏

s=1
(ms)

ms
2

, 1 ≤ σm ≤ (
√
n)<m>, (1.22)

on the assumption that (ms)
ms
2 = 1, whenever ms = 0; s ∈ I1.

On the other hand, suppose that, for the function f(z), given by (1.15),

lim
<m>→∞

sup

{ |am|
σm

}
1

<m>

≤ 1

R
, R > 0. (1.23)

Then, it can be easily proved that the function f(z) is regular in the open sphere SR.

The number R, given by (1.23), is thus conveniently called the radius of regularity of the

function f(z).

Definition 1.5.1 [67, 68]. A set of polynomials

{Pm[z]} = {P0[z], P1[z], ..., Pn[z], ...}

is said to be basic, when every polynomial in the complex variables zs; s ∈ I1, can be

uniquely expressed as a finite linear combination of the elements of the set {Pm[z]}.

Thus, according to ([68] Th.5) the set {Pm[z]} will be basic if, and only if, there exists

a unique row-finite matrix P̄ such that P̄P = PP̄ = I, where P = (Pm,h) is the matrix

of coefficients of the set {Pm[z]}. Thus for the basic set {Pm[z]} and its inverse
{

P̄m[z]
}

,

we have

Pm[z] =
∑

h

Pm,h zh, (1.24)

zm =
∑

h

P̄m,h Ph[z], (1.25)

P̄m[z] =
∑

h

P̄m,h zh, (1.26)

zm =
∑

h

Pm,h P̄h[z], (1.27)
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Thus, for the function f(z) given in (1.15) we get

f(z) =
∑

m

Πm Pm[z], (1.28)

where

Πm =
∑

h

Ph,m ah =
∑

h

Ph,m
f (h)(0)

hs!
(1.29)

The series
∞
∑

m=0

Πm Pm[z] is the associated basic series of f(z).

Definition 1.5.2 [69, 81 , 83]). The associated basic series
∞
∑

m=0

Πm Pm[z] is said to

represent f(z) in

(i) Γ̄[r] (or Sr) when it converges uniformly to f(z) in Γ̄[r] (or Sr),

(ii) Γ[r] (or Sr) when it converges uniformly to f(z) in Γ[r] (or Sr),

(iii) D(Γ̄[r])(or D(Sr)) when it converges uniformally to f(z) in some polycylinder (or

some hypersphere) surrounding the polycylinder Γ̄[r] (or hypersphere Sr), not necessarily

the former polycylinder or hypersphere.

Definition 1.5.3 [69, 81, 83]. The basic set {Pm[z]} is said to be effective

(i) in Γ̄[r] (or Sr) when the associated basic series represents in Γ̄[r] (or Sr) every function

which is regular there,

(ii) in Γ[r] (or Sr) when the associated basic series represents in Γ[r] (or Sr) every function

which is regular there,

(iii) in D(Γ̄[r]) (or D(Sr)) when the associated basic series represents in some polycylin-

der (or some hypersphere) surrounding the polycylinder Γ̄[r] (or hypersphere Sr) every

function which is regular there, not necessarily the former polycylinder or hypersphere,

(iv) at the origin when the associated basic series represents in some polycylinder (or some
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hypersphere) surrounding the origin every function which is regular in some polycylinder

(or some hypersphere) surrounding the origin,

(v) for all entire functions when the associated basic series represents in any polycylinder

Γ[r] (or any hypersphere Sr) every entire function.

Let Nm = Nm1,m2,...,mn
be the number of non-zero coefficients P̄m,h in the represen-

tation (1.25). A basic set satisfying the condition

lim
<m>→∞

{Nm}
1

<m> = 1, (1.30)

is called as in [67] a Cannon set. When lim<m>→∞ {Nm}
1

<m> = c, c > 1, the set

{Pm[z]} is said to be a general basic set. The set {Pm[z]} is said to be simple set (see

e.g. [70]), when the polynomial Pm[z] is of degree < m >, that is to say

Pm[z] =

m
∑

h=0

Pm,hz
h. (1.31)

Constructions of Cannon sums and Cannon functions play important roles in the study

of the convergence properties of basic sets of polynomials.

Now, we state some types of the Cannon sums and Cannon functions in complete

Reinhardt domains and spherical regions.

The Cannon sum for a general or a Cannon basic set of polynomials in open complete

Reinhardt domains is defined as follows:

G(Pm, [r], [ρ]) =
k
∏

s=1

{rs}<m>−ms M(Pm, [ρ]). (1.32)

Let

H(Pm, [r]) =
∑

h

|P̄m,h|M(Pm, [r]), (1.33)

and let

θ(Pm, [r]) = max
α,β,Γ̄[r]

|
β
∑

h=α

P̄m,hPh[z]|, (1.34)
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then, the Cannon sum for a Cannon basic set of polynomials in closed complete Reinhardt

domains is defined by:

Ω(Pm, [r]) =
n
∏

s=1

{rs}<m>−ms H(Pm, [r]), (1.35)

also, the Cannon sum for a general basic set of polynomials in closed complete Reinhardt

domains is given by:

F1(Pm, [r]) =
n
∏

s=1

{rs}<m>−ms θ(Pm, [r]). (1.36)

The Cannon sum for a general or a Cannon basic set of polynomials in open hypersphere

is given by:

G[Pm, r] = σmM [Pm, r], (1.37)

Now, consider

H[Pm, r] =
∑

h

|P̄m,h|M [Ph, r], (1.38)

and let

θ[Pm, r] = max
α,β,Sr

∣

∣

∣

∣

β
∑

h=α

P̄m,hPh[z]

∣

∣

∣

∣

, (1.39)

then, the Cannon sum for a Cannon basic set of polynomials in a closed hypersphere is

defined by

Ω[Pm, r] = σmH[Pm, r], (1.40)

also, the Cannon sum for a general basic set of polynomials in a closed hypersphere is

defined by:

F1[Pm, r] = σmθ[Pm, r]. (1.41)

The Cannon functions for the above Cannon sums can be defined by taking the limit as

< m >→ ∞ of each Cannon sum of power 1
<m> .
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Chapter 2

On Besov-type spaces and Bloch-space in Quaternionic Analysis

In this chapter, we extend the concept of Bq
s (Besov-type) spaces from the one-

dimensional complex function theory to spaces of monogenic (quaternion-valued) func-

tions of three real variables. Moreover, we will study some properties of these spaces

and we prove characterizations for quaternionic Bloch functions in the unit ball of R3

by integral norms of Bq
s functions. We also describe a ”wider” scale of Bq

s spaces of

monogenic functions by using another weight function. By the help of the new weight

function we construct a new spaces and we prove that these spaces are not equivalent to

the hyperholomorphic Bloch space for the whole range of q. This gives a clear difference

as compared to the holomorphic case where the corresponding function spaces are same

(see [85]). Besides, some important basic properties of these weighted Bq spaces are also

considered.

2.1 Holomorphic Bq functions

In 1989, Stroethoff [85] obtained the following theorem:

Theorem A. Let 0 < p <∞, and 1 < n <∞. Then, for an analytic function f on the

unit disk ∆ we have that,

(i)

‖ f ‖p
B≈ sup

a∈∆

∫

∆

∣

∣f ′(z)
∣

∣

q(
1 − |z|2

)q−2(
1 − |ϕa(z)|2

)2
dσz and

(ii)

f ∈ B0 ⇐⇒ lim
|a|→1−

sup
a∈∆

∫

∆

∣

∣f ′(z)
∣

∣

q(
1 − |z|2

)q−2(
1 − |ϕa(z)|2

)2
dσz = 0.

It should be mentioned here that, two quantities Af and Bf , both depending on analytic

function f on ∆, are said to be equivalent, written as Af ≈ Bf , if there exists a finite
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positive constant C not depending on f such that

1

C
Bf ≤ Af ≤ CBf .

If the quantities Af and Bf are equivalent, then in particular we have Af < ∞ if and

only if Bf <∞.

Let D(a, r) be the pseudo hyperbolic disk with center a and pseudo hyperbolic radius

r. This disk is an Euclidean disk: its Euclidean center and Euclidean radius are (1−r2)a
(1−r2|a|2)

and (1−|a|2)r
(1−r2|a|2) , respectively. Also A denote the normalized Lebesgue area measure on the

unit disk ∆, and for a Lebesgue measurable set X ⊂ ∆, let |X | denote the measure of

X with respect to A. It follows immediately that

|D(a, r)| =
(1 − |a|2)2

(1 − r2|a|2)2
r2.

Stroethoff [85] introduced the Bq spaces of holomorphic functions (see (1.3)) and he

obtained the following results:

Theorem B. Let 0 < p < ∞, 0 < r < 1, and n ∈ N. Then for an analytic function

f : ∆ → C the following conditions are equivalent:

1. ‖ f ‖B< ∞;

2.

sup
a∈∆

(

1

|D(a, r)|1−np
2

∫

D(a,r)

|f (n)(z)|p dA(z)

)
1
p

+
n−1
∑

k=1

|f (k)(0)| < +∞

3.

sup
a∈∆

(

∫

D(a,r)

|f (n)(z)|p(1 − |z|2)np−2 dA(z)

)
1
p

+
n−1
∑

k=1

|f (k)(0)| < +∞,

4.

sup
a∈∆

(
∫

∆

|f (n)(z)|p(1 − |z|2)np−2(1 − |ϕa(z)|2)2 dA(z)

)
1
p

+
n−1
∑

k=1

|f (k)(0)| < +∞.
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Note that for n = 1, p = 2 condition (4) of the theorem means

‖f‖B ≈ sup
a∈∆

(
∫

∆

|f ′(z)|2(1 − |ϕa(z)|2)2
)

1
2

= ‖f‖Q2
.

In the case n = 1 condition (3) and (4) are of interest because the condition

∫

∆

|f ′(z)|p(1 − |z|2)p−2 dA(z)

is invariant under Möbius transformations of f .

The equivalences of Theorem A carry over the little Bloch space, as it is shown the

following theorem.

Theorem C. Let 0 < p < ∞, 0 < r < 1, and n ∈ N. Then for an analytic function

f : ∆ → C the following quantities are equivalent:

(a) f ∈ ‖B0‖;

(b)

lim
|a|→1−

1

|D(a, r)|1−np
2

∫

D(a,r)

|f (n)(z)|p dA(z) = 0 ;

(c)

lim
|a|→1−

∫

D(a,r)

|f (n)(z)|p(1 − |z|2)np−2 dA(z) = 0;

(d)

lim
|a|→1−

∫

∆

|f (n)(z)|p(1 − |z|2)np−2(1 − |ϕa(z)|2)2 dA(z) = 0 .

Now using the generalized Cauchy-Riemann operatorD, its adjoint D, and the hypercom-

plex Möbius transformation ϕa(x), we define Bq
s spaces of quaternion-valued functions

as follows:

Bq
s =

{

f ∈ kerD : sup
a∈B1(0)

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)s
dBx <∞

}

,

(2.1)
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where 0 < s < ∞ and 0 < q < ∞. For the structure of these spaces: 3 is here related

to the real space dimension and 2 = 3 − 1(= n − 1). The range of q is similar to the

complex case as given in (1.3). The values of s depend on the existence of the integrals

after taking the sup
a∈B1(0)

for all integrals (with all q’s), so we have got that 0 < s <∞.

Note that if s = 3 we obtain the analogue definition for Bq spaces of analytic functions

in the sense of quaternionic analysis. Also, if q = 2 and s = p we obtain Qp spaces of

quaternion valued functions studied in (see [43]).

In the next section, we study these Bq
s spaces and their relations to the above men-

tioned quaternionic Bloch space. The concept may be generalized in the context of

Clifford Analysis to arbitrary real dimensions. We will restrict us for simplicity to R3

and quaternion-valued functions as a model case.

We will need the following lemma in the sequel:

Lemma 2.1.1 [44]. Let 0 < q ≤ 2, |a| < 1, r ≤ 1. Then

∫

∂B1(0)

1

|1 − āry|2q dΓy ≤ λ
1

(

1 − |a|r
)q ,

where λ be a constant not depending on a.

2.2 Inclusions for quaternion Bq
s functions

Proposition 2.2.1. For 0 < p < q <∞ and 2 < s <∞, we have that

Bq
s ⊂ Bp

s . (2.2)

Proof. Let f ∈ Bq
s, for any 0 < q <∞. Then for any 0 < p < q <∞, we obtain

∫

B1(0)

∣

∣Df(x)
∣

∣

p(
1 − |x|2

)
3
2 p−3(

1 − |ϕa(x)|2
)s
dBx

=

∫

B1(0)

∣

∣Df(x)
∣

∣

p(
1 − |x|2

)

p
q
( 3
2 q−3)(

1 − |ϕa(x)|2
)

sp
q

·
(

1 − |x|2
)

3
q
(p−q)(

1 − |ϕa(x)|2
)s

(q−p)
q dBx,
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which implies, by using Hölder’s inequality that,

∫

B1(0)

∣

∣Df(x)
∣

∣

p(
1 − |x|2

)
3
2 p−3(

1 − |ϕa(x)|2
)s
dBx

=

∫

B1(0)

{(

∣

∣Df(x)
∣

∣

p(
1 − |x|2

)

p
q
( 3
2 q−3)(

1 − |ϕa(x)|2
)s p

q

)

q
p
}

p
q

·
{

(

1 − |x|2
)−3(

1 − |ϕa(x)|2
)s
}

(q−p)
q

dBx

≤
{
∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)s
dBx

}

p
q

·
{
∫

B1(0)

(

1 − |ϕa(x)|2
)−3(

1 − |x|2
)s

(

1 − |a|2
)3

|1 − āx|6
dBx

}

q−p
q

. (2.3)

Here, we have used that the Jacobian determinant is

(

1 − |a|2
)3

|1 − āx|6
. (2.4)

Now, using the equality

(

1 − |ϕa(x)|2
)

=

(

1 − |a|2
)(

1 − |x|2
)

|1 − āx|2
(2.5)

we obtain that,

∫

B1(0)

∣

∣Df(x)
∣

∣

p(
1 − |x|2

)
3
2 p−3(

1 − |ϕa(x)|2
)s
dBx

≤  L
p
q

{
∫ 1

0

(1 − r2)n−3

∫

∂B1(0)

dΓx r dr

}

q−p
q

= (4πJ1)
q−p

q  L
p
q

where, J1 =
∫ 1

0
(1 − r2)s−3rdr and

 L =

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|
)s
dBx.
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Then, taking the supremum over a ∈ B1(0) on both sides, we obtain that

‖ f ‖Bp
s
≤ η‖ f ‖Bq

s
<∞,

where η be a constant not depending on a. Thus f ∈ Bp
s for any p, 0 < p < q <∞ and

our proposition is proved. �

Proposition 2.2.2. Let f be a hyperholomorphic function in B1(0) and f ∈ B. Then

for 0 < q <∞ and 2 < s <∞, we have that

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)s
dBx ≤ 4π J1 Bq(f).

Proof. Since,

(1 − |x|2
)

3
2
∣

∣Df(x)
∣

∣ ≤ B(f).

Then,

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)s
dBx

≤ Bq(f)

∫

B1(0)

(

1 − |x|2
)−3(

1 − |ϕa(x)|2
)s
dBx

= Bq(f)

∫

B1(0)

(

1 − |ϕa(x)|2
)−3(

1 − |x|2
)s

(

1 − |a|2
)3

|1 − āx|6
dBx

= Bq(f)

∫ 1

0

(1 − r2)s−3

∫

∂B1(0)

dΓx r dr = 4π J1 Bq(f).

Therefore, our proposition is proved. �

Corollary 2.2.1. From Proposition 2.2.2, we get for 0 < q <∞ and 2 < s <∞ that

B ⊂ Bq
s.
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2.3 Bq
s norms and Bloch norm

Lemma 2.3.1. For 1 ≤ q <∞, we have for all 0 < r < 1 and for all f ∈ kerD that

|Df(0)|q ≤ 1

4πr2

∫

∂Br(0)

∣

∣Df(x)
∣

∣

q
dΓx

Proof. Let f ∈ kerD
(

B1(0)
)

and Γx(0) = ∂Br(0). Since we know from the Cauchy

integral formula that

f(y) =

∫

∂Br(0)

K(x− y)α(x) f(x) dΓx, ∀y ∈ Br(0),

where K(x− y) = 1
4π

x−y
|x−y|3

is the usual Cauchy kernel and α(x) is the outward pointing

normal vector at the point x. For the Cauchy kernel we have that

∣

∣K(x)
∣

∣ =
1

4πr2
.

Because, for all f ∈ kerD =⇒ D ∈ kerD, then

|Df(0)| =

∣

∣

∣

∣

∫

∂Br(0)

K(x− y) α(x) f(x) dΓx

∣

∣

∣

∣

≤
∫

∂Br(0)

|K(x− y)| |f(x)| dΓx

which implies by using Hölder’s inequality that

|Df(0)| ≤
(
∫

∂Br(0)

dΓx

)
1
p
(
∫

∂Br(0)

∣

∣Df(x)
∣

∣

q
dΓx

)
1
q

=
1

4πr2
(

4πr2
)p
(
∫

∂Br(0)

∣

∣Df(x)
∣

∣

q
dΓx

)
1
q

(with
1

p
+

1

q
= 1)

=
1

(4πr2)q

(
∫

∂Br(0)

∣

∣Df(x)
∣

∣

q
dΓx

)
1
q

.

Therefore,

|Df(0)|q ≤ 1

4πr2

∫

∂Br(0)

∣

∣Df(x)
∣

∣

q
dΓx. �



-35-

Lemma 2.3.2. Let 1 ≤ q <∞ and 0 < R < 1, then ∀f ∈ kerD, we have that

4π

3
R3|Df(0)|q ≤

∫

BR

∣

∣Df(x)
∣

∣

q
dBx.

Proof. From Lemma 2.3.1, for all r < R, we have

|Df(0)|q ≤ 1

4πr2

∫

∂Br(0)

∣

∣Df(x)
∣

∣

q
dΓx.

Multiply both sides by r2 and integrate, then we obtain

|Df(0)|q
R
∫

0

r2dr ≤ 1

4π

R
∫

0

∫

∂Br(0)

∣

∣Df(x)
∣

∣

q
dΓxdr,

which implies that,

4πR3

3
|Df(0)|q ≤

∫

BR

∣

∣Df(x)
∣

∣

q
dBx. �

Proposition 2.3.1. Let f be hyperholomorphic and 1 ≤ q <∞ and 0 < s <∞, then

(

1 − |a|2
)

3q
2
∣

∣Df(a)
∣

∣

q ≤ 1

η∗(R)

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)s
dBx,

where

η∗(R) =
4πk

3(2)3q

(

1 −R2
)

3
2 q+s+3(

1 −R2
)

3
2 q−3

max

{

(1 −R)2q−6, (1 +R)2q−6

}

.

Proof. Let R < 1 and U(a,R) = {x : |ϕa(x)| < R} be the pseudo hyperbolic ball with

radius R. Analogously to the complex case (see [43]), for a point a ∈ ∆ and 0 < R < 1,

we can get that U(a,R) with pseudo hyperbolic center a and pseudo hyperbolic radius R

is an Euclidean disc: its Euclidean center and Euclidean radius are (1−R2)a

1−R2|a|2
and (1−|a|2)R

1−R2|a|2
,

respectively. Then
∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)s
dBx

≥
∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)s
dBx.



-36-

Since,

(

1 − |x|2
)3 ≈

∣

∣U(a,R)
∣

∣, whenever x ∈ U(a,R), (2.6)

where,
∣

∣U(a,R)
∣

∣ stands for the volume of the pseudo hyperbolic ball U(a,R) given as

below.

Then, using (2.5) and (2.6), we obtain

∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3

dBx

≥ k
∣

∣U(a,R)
∣

∣

∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q
dBx

=
k

∣

∣U(a,R)
∣

∣

∫

U(a,R)

∣

∣Df(x)
∣

∣

q
{

(1 − |ϕa(x)|2)(|1 − āx|2)

(1 − |a|2)

}
3
2 q

dBx

≥ k
∣

∣U(a,R)
∣

∣

(

1 − |a|
)2( 3

2 q)(
1 −R2

)
3
2 q

(

1 − |a|2
)

3
2 q

∫

U(a,R)

∣

∣Df(x)
∣

∣

q
dBx

=
k

∣

∣U(a,R)
∣

∣

(

1 − |a|2
)

3
2 q(

1 −R2
)

3
2 q

(

1 + |a|
)3q

∫

U(a,R)

∣

∣Df(x)
∣

∣

q
dBx,

where k be a constant. Since |1 − āx| ≤ 1 + |a| ≤ 2. Then, we deduce that

∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3

dBx

≥ k
∣

∣U(a,R)
∣

∣

(

1 − |a|2
)

3
2 q(

1 −R2
)

3
2 q

(2)3q

∫

BR

∣

∣Df(ϕa(x))
∣

∣

q

(

1 − |a|2
)3

|1 − āx|6
dBx

=
k

∣

∣U(a,R)
∣

∣

(

1 − |a|2
)

3
2 q+3(

1 −R2
)

3
2 q

(2)3q

∫

BR

∣

∣

∣

∣

1 − x̄a

|1 − āx|3
Df(ϕa(x))

∣

∣

∣

∣

q
(

|1 − x̄a|
)3q

|1 − āx|q+6 dBx.

Now, since

∣

∣U(a,R)
∣

∣ =

(

1 − |a|2
)3

(

1 −R2|a|2
)3R

3 (2.7)
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and 1 −R ≤ |1 − āx| ≤ 1 +R. Then, using Lemma 2.3.2, we obtain

∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3

dBx

≥
(

1 − |a|2
)

3
2 q
η(R)

∫

BR

∣

∣

∣

∣

1 − āx

|1 − āx|3
Df(ϕa(x))

∣

∣

∣

∣

q

dBx

≥ 4π

3
R3
(

1 − |a|2
)

3
2 q
η(R)|Df(a)|q,

where

η(R) =
k(1 −R2|a|2)3(1 −R2)

3
2 q

(2)3qR3
max

{

(1 −R)2q−6, (1 +R)2q−6
}

≥ k
(

1 −R2
)

3
2 q+3

(2)3qR3
max

{

(1 −R)2q−6, (1 +R)2q−6
}

= η1(R).

Therefore,
∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)s
dBx

≥
∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)s
dBx

≥ 4π

3
R3
(

1 −R2
)s(

1 − |a|2
)

3
2 q
η(R)|Df(a)|q

= η∗(R)
(

1 − |a|2
)

3q
2 |Df(a)|q,

where η∗(R) = 4π
3 R

3
(

1 −R2
)s
η1(R).

Then, choosing a suitable R, the proof is complete. �

Theorem 2.3.1. Let f be a hyperholomorphic function in the unit ball B1(0). Then the

following conditions are equivalent:

1. f ∈ B.

2. f ∈ Bq
s for all 0 < q <∞ and 2 < s <∞.

3. f ∈ Bq
s for some 1 ≤ q <∞ and 2 < s <∞.
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Proof. The implication (1 ⇒ 2) follows from Proposition 2.2.2. It is obvious that

(2 ⇒ 3). From proposition 2.3.1, we have that (3 ⇒ 1). �

The importance of the above theorem is to give us a characterization for the hyperholo-

morphic Bloch space by the help of integral norms on Bq
s spaces of hyperholomorphic

functions.

By letting |a| → 1−, we obtain the following theorem for characterization of the little

Bloch space by Bq
s spaces.

Theorem 2.3.2. Let f be a hyperholomorphic function in the unit ball B1(0). Then,

the following conditions are equivalent:

(i) f ∈ B0.

(ii) For all 0 < q <∞ and 2 < s <∞

lim
|a|→1−

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)s
dBx <∞.

(iii) For some 1 ≤ q <∞ and 2 < s <∞

lim
|a|→1−

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)s
dBx <∞.

The following theorems are the natural generalizations of Theorems B and C due to

Stroethoff [85] with the extension of the notion of Bq spaces in one complex variable to

the setting of Quaternionic Analysis.

Theorem 2.3.3. Let 0 < R < 1. Then for a hyperholomorphic function f on B1(0) the

following conditions are equivalents

(a) f ∈ B,

(b) For each q > 0

sup
a∈B1(0)

∫

B1(0)

|Df(x)|q(1 − |x|2)
3q
2 −3(1 − |ϕa(x)|2)3 dBx < +∞
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(c) For each q > 0

sup
a∈B1(0)

∫

U(a,R)

|Df(x)|q(1 − |x|2)
3q
2 −3 dBx < +∞

(d) For each q > 0

sup
a∈B1(0)

1

|U(a,R)|1−q/2

∫

U(a,R)

|Df(x)|q dBx < +∞

(e) For some q > 1

sup
a∈B1(0)

1

|U(a,R)|1−q/2

∫

U(a,R)

|Df(x)|q dBx < +∞ .

Proof. (a) implies (b). This follows directly from Proposition 2.2.2 with n=3.

(b) implies (c). For x ∈ U(a,R) we have

(1 −R2)3 < (1 − |ϕa(x)|2)3.

Then,

(1 −R2)3
∫

U(a,R)

|Df(x)|q(1 − |x|2)
3q
2 −3 dBx

≤
∫

B1(0)

|Df(x)|q(1 − |x|2)
3q
2 −3(1 − |ϕa(x)|2)3 dBx

(c) if and only if (d). It follows by using (2.6).

(d) implies (e) is trivial. (e) implies (a). This can be obtained by using Proposition

2.3.1 with n = 3. Our theorem is therefore established. �

Theorem 2.3.4. Let 0 < R < 1. Then for an hyperholomorphic function f on B1(0)

the following conditions are equivalents

(a) f ∈ B0,
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(b) For each q > 0

lim
|a|→1−

∫

B1(0)

|Df(x)|q(1 − |x|2)
3q
2 −3(1 − |ϕa(x)|2)3 dBx < +∞

(c) For each q > 0

lim
|a|→1−

∫

U(a,R)

|Df(x)|q(1 − |x|2)
3q
2 −3 dBx < +∞

(d) For each q > 0

lim
|a|→1−

1

|U(a,R)|1−q/2

∫

U(a,R)

|Df(x)|q dBx < +∞

(e) For some q > 1

lim
|a|→1−

1

|U(a,R)|1−q/2

∫

U(a,R)

|Df(x)|q dBx < +∞ .

2.4 Weighted Bq spaces of quaternion-valued functions

In this section, we study the following weighted Bq spaces of quaternion-valued func-

tions by employing the weight function
(

1−|ϕa(x)|2
)2

in lieu of
(

1−|ϕa(x)|2
)s

as follows:

Bq =
{

f ∈ kerD : sup
a∈B1(0)

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)2
dBx < ∞

}

,
(2.8)

where, 0 < q <∞.

The main aim now is to study these weighted Bq spaces and their relations to the above

mentioned quaternionic Bloch space. It will be shown that this exponent 2 generates a

new scale of spaces, not equivalent to the Bloch space for the whole range of q. This

behaviour is different from that one used in the complex case (see [85]). Furthermore,

we consider the inclusions of these weighted Bq spaces of quaternion-valued functions

as basic scale properties and we will also throw some light in the relations between

the norms of Bq spaces of quaternion-valued functions and the norms of Qp spaces of

quaternion-valued functions.
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Proposition 2.4.1. Let f be a hyperholomorphic function in B1(0) and let f ∈ B.

Then, for 0 < p < q <∞, we will get that

B ∩ Bp ⊂ B ∩ Bq.

Proof. Let f ∈ Bp, for any 0 < p <∞. Then for any 0 < p < q <∞, we obtain
∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)2
dBx

=

∫

B1(0)

∣

∣Df(x)
∣

∣

q−p(
1 − |x|2

)
3
2 (q−p)∣

∣Df(x)
∣

∣

p(
1 − |x|2

)
3
2 p−3(

1 − |ϕa(x)|2
)2
dBx.

Since, f ∈ B and
∣

∣Df(x)
∣

∣

(

1 − |x|2
)

3
2 ≤ B(f),

we get
∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)2
dBx

≤ Bq−p(f)

∫

B1(0)

∣

∣Df(x)
∣

∣

p(
1 − |x|2

)
3
2 p−3(

1 − |ϕa(x)|2
)2
dBx <∞.

Thus f ∈ Bq and f ∈ B for any q, 0 < p < q < ∞ and the proof of our proposition is

therefore finished. �

Later in this chapter we will study under which conditions the additional assumption

f ∈ B can be removed.

Proposition 2.4.2. Let f be a hyperholomorphic function in B1(0). Then,

sup
a∈B1(0)

(

1 − |a|2
)

1
2

1
∫

0

(

M2
2 (Df, r)

)
1
2
(

1 − r2
)

1
2 r2dr <∞ =⇒ f ∈ B1,

with

M2
2 (Df, r) =

π
∫

0

2π
∫

0

∣

∣h(r)Df(r, θ1, θ2)
∣

∣

2
sin θ1dθ2dθ1,

where, h(r) stands for 1
|1−āx|2

in spherical coordinates.
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Proof. Suppose that,

sup
a∈B1(0)

(

1 − |a|2
)

1
2

1
∫

0

(

M2
2 (Df, r)

)
1
2
(

1 − r2
)

1
2 r2dr <∞.

Then,
∫

B1(0)

∣

∣Df(x)
∣

∣

(

1 − |x|2
)− 3

2
(

1 − |ϕa(x)|2
)2
dBx

=

∫

B1(0)

∣

∣Df(ϕa(x))
∣

∣

(

1 − |ϕa(x)|2
)− 3

2
(

1 − |x|2
)2

(

1 − |a|2
)3

|1 − āx|6
dBx.

Here, we have used that the Jacobian determinant given by (2.4). Now, using equality

(2.5), we obtain that
∫

B1(0)

∣

∣Df(x)
∣

∣

(

1 − |x|2
)− 3

2
(

1 − |ϕa(x)|2
)2
dBx

=

∫

B1(0)

∣

∣Df(ϕa(x))
∣

∣

(

1 − |x|2
)

1
2

(

1 − |a|2
)

3
2

|1 − āx|3
dBx

which implies that
∫

B1(0)

∣

∣Df(x)
∣

∣

(

1 − |x|2
)− 3

2
(

1 − |ϕa(x)|2
)2
dBx

=

∫

B1(0)

∣

∣

∣

∣

1

|1 − āx|2
Df(ϕa(x))

∣

∣

∣

∣

(

1 − |x|2
)

1
2

(

1 − |a|2
)

3
2

|1 − āx| dBx

≤ 2
3
2

(

1 − |a|2
)

1
2

1
∫

0

(

M2
2 (Df, r)

)
1
2
(

1 − r2
)

1
2 r2dr.

Taking sup
a∈B1(0)

in both sides of the above inequality, we deduce that f ∈ B1. �

Proposition 2.4.3. Let f be a hyperholomorphic function in B1(0) and f ∈ B; satisfy-

ing the condition

J(a, r) =
(

1 − |a|2
)

1
2

1
∫

0

(

M2
2 (Df, r)

)
1
2
(

1 − r2
)

1
2 r2dr <∞. (2.9)
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Then for 1 < q <∞, we have that

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)2
dBx ≤ 2

3
2Bq−1(f)J(a, r).

Proof. Using equality (2.5) in (2.8), we obtain that
∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)2
dBx

≤ Bq−1(f)

∫

B1(0)

∣

∣Df(x)
∣

∣

(

1 − |x|2
)− 3

2
(

1 − |ϕa(x)|2
)2
dBx

= Bq−1(f)

∫

B1(0)

{

∣

∣Df(ϕa(x))
∣

∣

(

1 − |ϕa(x)|2
)− 3

2
(

1 − |x|2
)2

(

1 − |a|2
)3

|1 − āx|6
}

dBx

= Bq−1(f)

∫

B1(0)

∣

∣Df(ϕa(x))
∣

∣

(

1 − |x|2
)

1
2

(

1 − |a|2
)

3
2

|1 − āx|3
dBx

= Bq−1(f)

∫

B1(0)

∣

∣

∣

∣

1

|1 − āx|2
Df(ϕa(x))

∣

∣

∣

∣

(

1 − |x|2
)

1
2

(

1 − |a|2
)

3
2

|1 − āx| dBx

≤ 2
3
2
√
πBq−1(f)

(

1 − |a|2
)

1
2

1
∫

0

(

M2
2 (Df, r)

)
1
2
(

1 − r2
)

1
2 r2dr.

Our proposition is therefore proved. �

Remark 2.4.1. Proposition 2.4.3 implies that each hyperholomorphic function f ∈
B(B1(0)) with the additional property sup

a∈B1(0)

J(a, r) <∞ belongs to Bq, ∀ 1 < q <∞.

Theorem 2.4.1. Let f be a hyperholomorphic function in B1(0). Then, for 0 < q ≤ 2,

we have that

f ∈ Bq ⇐⇒ sup
a∈B1(0)

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

g(x, a)
)2
dBx <∞.

Proof. At first we suppose that

sup
a∈B1(0)

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

g(x, a)
)2
dBx <∞.
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Since,
(

1 − |ϕa(x)|2
)2 ≤

(

8πg(x, a)
)2
.

Then the assertion ” ⇐= ” follows. i.e., f ∈ Bq .

Secondly, we assume that f ∈ Bq. Now our task is to prove that

J2 =

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

g(x, a)
)2
dBx

≤ µ2

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)2
dBx <∞,

where, µ2 is any constant not depending on a. Since

J∗ =

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

g2(x, a) − µ2(1 − |ϕa(x)|2)2
)

dBx

=

∫

B1(0)

∣

∣Df(ϕa(x))
∣

∣

q(
1 − |ϕa(x)|2

)
3
2 q−3

(

1 − |a|2
)3

|1 − āx|6
(

1 − |x|
)2

Ψ(x)dBx

=

∫

B1(0)

∣

∣

∣

∣

1

|1 − āx|2
Df(ϕa(x))

∣

∣

∣

∣

q
(

1 − |ϕa(x)|2
)

3
2 q−3

(

1 − |a|2
)3

|1 − āx|6−2q

(

1 − |x|
)2

Ψ(x)dBx

where,

Ψ(x) =
1

4π

(

1

|x| − 4πµ(1 + |x|)
)(

1

|x| + 4πµ(1 + |x|)
)

.

Using equality (2.5), we obtain that

J∗ = ζ

∫

B1(0)

∣

∣

∣

∣

1

|1 − āx|2
Df(ϕa(x))

∣

∣

∣

∣

q
(

1 − |x|2
)

3
2 q−3(

1 − |x|
)2 Ψ(x)

|1 − āx|q dBx

= ζ

∫

B 1
10

(0)

∣

∣

∣

∣

1

|1 − āx|2
Df(ϕa(x))

∣

∣

∣

∣

q
(

1 − |x|2
)

3
2 q−3(

1 − |x|
)2 Ψ(x)

|1 − āx|q dBx

− ζ

∫

B1(0)\B 1
10

(0)

∣

∣

∣

∣

1

|1 − āx|2
Df(ϕa(x))

∣

∣

∣

∣

q
(

1 − |x|2
)

3
2 q−3(

1 − |x|
)2 −Ψ(x)

|1 − āx|q dBx

where , ζ =
(

1 − |a|2
)

3
2 q
. Since µ is an arbitrary constant we can assume that µ = 100

44π ,

then Ψ(x) ≤ 0; ∀|x| ∈ ( 1
10
, 1]. Also, we have

1
(

1 + |x|
)q ≤ 1

|1 − āx|q ≤ 1
(

1 − |x|
)q
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Using the above relation in the above equality, then we obtain

J∗ ≤ 1

4π

(

1−|a|2
)

3
2 q

1
10
∫

0

(

Mq(Df, r)
)q(

1− r
)

q
2−1(1

r
+

100

11
(1 + r)

)(1

r
− 100

11
(1 + r)

)

r2 dr

+
(2)

q
2−3

4π

(

1−|a|2
)

3
2 q

1
∫

1
10

(

Mq(Df, r)
)q(

1−r
)

3
2 q−1(1

r
+

100

11
(1+r)

)(1

r
− 100

11
(1+r)

)

r2 dr

which implies that

J∗ ≤ 1

4π

(

1 − |a|2
)

3
2 q

1
10
∫

0

(

Mq(Df, r)
)q(

1 − r
)

q
2−1(

1 +
100

11
r(1 + r)

)(

1 − 100

11
r(1 + r)

)

dr

+
(2)

q
2−3

4π

(

1−|a|2
)

3
2 q

1
∫

1
10

(

Mq(Df, r)
)q(

1−r
)

3
2 q−1(

1+
100

11
r(1+r)

)(

1− 100

11
r(1+r)

)

dr

where,

(

Mq(Df, r)
)q

=

π
∫

0

2π
∫

0

∣

∣h(r)Df(r, θ1, θ2)
∣

∣

q
sin θ1dθ2dθ1,

since, Mq(Df, r) ≥ 0; ∀r ∈ [0, 1] and 1 − 100
11
r(1 + r) ≤ 0; ∀r /∈ [0, 1

10
].

Now we want to compare the integral

1
10
∫

0

(

Mq(Df, r)
)q(

1− r
)

q
2−1

g(r) dr and the inte-

gral (2)
q
2−3

6
10
∫

5
10

(

Mq(Df, r)
)q(

1 − r
)

3
2 q−1

g(r) dr; where g(r) =
(

1 + 100
11
r(1 + r)

)(

100
11
r(1 +

r) − 1
)

.

Then, after simple calculation we can obtain that

1
10
∫

0

(

Mq(Df, r)
)q(

1 − r
)

q
2−1

g(r) dr < (2)
q
2−3

6
10
∫

5
10

(

Mq(Df, r)
)q(

1 − r
)

3
2 q−1

g(r) dr.
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In particular we have Mq(Df, r) is a nondecreasing function, this because Df is harmonic

in B1(0) and belongs to Lq(B1(0)); ∀0 ≤ r < 1. This gives our statement. Hence, the

assertion ” =⇒ ” follows. �

By the help of Theorem 2.4.1, we see that B2 = Q2 and this property is analogous to

the complex one-dimensional case.

Theorem 2.4.2. Let 0 < p < 2, and 0 < q < 2. Then, we have that

∪Qp ⊂ ∩Bq .

Proof. Let f ∈ Qp, for any fixed p, 0 < p < 2. Then by using Hölder’s inequality for

0 < q < 2, we can get that

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)2
dBx

≤
{
∫

B1(0)

[

∣

∣Df(x)
∣

∣

q(
1 − |ϕa(x)|2

)

qp
2

]
2
q

dBx

}

q
2

·
{
∫

B1(0)

[

(

1 − |x|2
)

3
2 q−3(

1 − |ϕa(x)|2
)2− qp

2

]
2

2−q

dBx

}

2−q
2

=

{
∫

B1(0)

∣

∣Df(x)
∣

∣

2(
1 − |ϕa(x)|2

)p
dBx

}

q
2

·
{
∫

B1(0)

(

1 − |x|2
)

3q−6
2−q
(

1 − |ϕa(x)|2
)

4−qp
2−q dBx

}

2−q
2

Since, we have from [43] for any monogenic function f that

f ∈ Qp ⇐⇒ sup
a∈B1(0)

∫

B1(0)

∣

∣Df(x)
∣

∣

2(
1 − |ϕa(x)|2

)p
dBx <∞,
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Then, the last inequality will take the following formula

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)2
dBx

≤
{
∫

B1(0)

∣

∣Df(x)
∣

∣

2(
g(x, a)

)p
dBx

}

q
2

·
{
∫

B1(0)

(

1 − |x|2
)

3q−6
2−q
(

1 − |ϕa(x)|2
)

4−qp
2−q dBx

}

2−q
2

which implies that,

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)2
dBx

≤  L1

q
2

{

(

1 − |a|2
)

3q−6
2−q

+3
.

∫

B1(0)

(

1 − |x|2
)

3q−qp−2
2−q

|1 − āx|2
(

3q−6
2−q

+3
) dBx

}

2−q
2

=  L1

q
2

{

(

1 − |a|2
)

3q−6
2−q

+3

1
∫

0

r2(1 − r2)
3q−qp−2

2−q dr

∫

∂B1(0)

1

|1 − āry|2
(

3q−6
2−q

+3
) dΓy

}

2−q
2

where,

 L1 =

∫

B1(0)

∣

∣Df(x)
∣

∣

2(
g(x, a)

)p
dBx.

Applying Lemma 2.1.1, in the last inequality, we obtain that

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)2
dBx ≤ λ1  L1

q
2

where λ1 be a constant not depending on a. Then, taking sup
a∈B1(0)

, we obtain that

‖ f ‖Bq ≤ ‖ f ‖Qp
<∞.

Thus f ∈ Bq for any q, 0 < q < 2 and our theorem is proved. �



-48-

Proposition 2.4.4. Let f be a hyperholomorphic function in the unit ball B1(0) and

1 ≤ q <∞, then

(

1 − |a|2
)

3q
2
∣

∣Df(a)
∣

∣

q ≤ 1

ξ(R)

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−3(

1 − |ϕa(x)|2
)2
dBx,

where, ξ(R) be a constant depending on R.

Proof. The proof is very similar to the proof of Proposition 2.3.1, so we will omit it.

Corollary 2.4.1. From Proposition 2.4.4, we get for 1 ≤ q <∞ that

Bq ⊂ B.

Proposition 2.4.5. Let f be a hyperholomorphic function in B1(0). Then, for 1 ≤ p <

q <∞, we have that

Bp ⊂ Bq .

Proof. We can obtain the proof of this proposition directly by Proposition 2.4.1 and

Corollary 2.4.1 .

From Bp ⊂ Bq , for 1 ≤ p < q < ∞ , Bq ⊂ B and B2 = Q2 ⊂ B, we get that Bq 6= B
for q ≤ 2.

Remark 2.4.2. It is still an open problem if we can get for some q > 2 that Bq = B
without any restrictions.
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Chapter 3

Characterizations for Bloch space by Bp,q spaces in Quaternionic Analysis

In this chapter, we give the definition of Bp,q spaces of hyperholomorphic functions.

Then, we characterize the hypercomplex Bloch space by these Bp,q spaces. One of the

main results is a general Besov-type characterization for quaternionic Bloch functions

that generalizes a Stroethoff theorem. Further, some important basic properties of these

Bp,q spaces are also considered.

3.1 Quaternion Bp,q spaces

In the present chapter we define Bp,q spaces of quaternion-valued functions as follows:

Bp,q =
{

f ∈ kerD : sup
a∈B1(0)

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx < ∞,

}

(3.1)

where, 0 < q <∞ and 0 < p <∞. If p = 3, we will get the space Bq of hyperholomorphic

functions as defined in chapter 2 (see also [41]). Also, if q = 2 and p = 3 we will get the

space Q2 of hyperholomorphic functions as studied in [43].

Remark 3.1.1. It should be observed that our Bp,q spaces are the generalization of Bq

spaces studied by Stroethoff [85] in two senses. The first one is that our study on these

Bp,q spaces will use Quaternionic Analysis instead of Complex Analysis. The second

difference is the structure of the spaces, since we have used a weight function more

general that one used by Stroethoff [85].

The main aim of this chapter is to study these Bp,q spaces and their relations to the

above mentioned quaternionic Bloch space. It will be shown that these exponents p and

q generate a new scale of spaces, equivalent to the Bloch space for all p and q.

We will need the following lemma in the sequel:

Lemma 3.1.1 [76]. Let f : B1(0) −→ H be a hyperholomorphic function. Let 0 <

R < 1, 1 < q <∞. Then for every a ∈ B1(0)

|Df(a)|q ≤ 3 · 42+q

πR3(1 −R2)2q(1 − |a|2)3

∫

U(a,R)

∣

∣Df(x)
∣

∣

q
dBx .
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3.2 Some basic properties of Bp,q spaces of quaternion valued functions

We will consider now some essential properties of Bp,q spaces of quaternion-valued

functions as basic scale properties and we will also throw some lights in the relations

between the norms of Bp,q spaces of quaternion-valued functions and the norms of Qp

spaces of quaternion-valued functions.

Proposition 3.2.1. Let f be a hyperholomorphic function in B1(0), ∀a ∈ B1(0); |a| < 1

and f ∈ B. Then for 1 ≤ p <∞ and 0 < q <∞, we have that

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx ≤ 4πλBq(f).

Proof. Since,

(1 − |x|2
)

3
2
∣

∣Df(x)
∣

∣ ≤ B(f).

Then,
∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx

≤ Bq(f)

∫

B1(0)

(

1 − |x|2
)−p(

1 − |ϕa(x)|2
)p
dBx

= Bq(f)

∫

B1(0)

(

1 − |ϕa(x)|2
)−p(

1 − |x|2
)p

(

1 − |a|2
)3

|1 − āx|6
dBx.

Here, we used that the Jacobian determinant given by (2.4). Now, using equality (2.5)

and Lemma 2.1.1, we obtain for 1 ≤ p < 3 that,
∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx

≤ Bq(f)

∫

∂B1(0)

(

1 − |a|2
)(3−p)

|1 − āry|2(3−p)
dΓy = 4πλBq(f).

The case for 3 ≤ p <∞ can be followed directly by using the inequality

1 − |a| ≤ |1 − āry| ≤ 1 + |a|,

Therefore, our proposition is proved. �
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Corollary 3.2.1. From proposition 3.2.1, we get for 1 ≤ p <∞ and 0 < q <∞ that

B ⊂ Bp,q.

The next theorem gives us relations between Qp1 norms and Bp,q norms.

Theorem 3.2.1. Let 0 < q < 2; 1 ≤ p− q; 1 < p < 3 and 0 < p1 < 2(1 + 1
q
). Then, we

have that

∪p1
Qp1 ⊂ ∩p,qB

p,q.

Proof. Let f ∈ Qp1, for any fixed 0 < p1 < 2(1 + 1
q ); 0 < q < 2. Then by using Hölder’s

inequality, we obtain that

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx

≤
{
∫

B1(0)

[

∣

∣Df(x)
∣

∣

q(
1 − |ϕa(x)|2

)

qp1
2

]
2
q

dBx

}

q
2

·
{
∫

B1(0)

[

(

1 − |x|2
)

3
2 q−p(

1 − |ϕa(x)|2
)p−

qp1
2

]
2

2−q

dBx

}

2−q
2

=

{
∫

B1(0)

∣

∣Df(x)
∣

∣

2(
1 − |ϕa(x)|2

)p1
dBx

}

q
2

·
{
∫

B1(0)

(

1 − |x|2
)

3q−2p
2−q

(

1 − |ϕa(x)|2
)

2p−qp1
2−q dBx

}

2−q
2

. (3.2)

Since, we have from [43] for any monogenic function f that

f ∈ Qp1
⇐⇒ sup

a∈B1(0)

∫

B1(0)

∣

∣Df(x)
∣

∣

2(
1 − |ϕa(x)|2

)p1
dBx <∞,

Now, by changing variables and using equality (2.5) in the last integral of (3.2), we
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deduce that

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx

≤ L q
2

{

(

1 − |a|2
)

3q−2p
2−q

+3
.

∫

B1(0)

(

1 − |x|2
)

3q−qp1
2−q

|1 − āx|2
(

3q−2p
2−q

+3
) dBx

}

2−q
2

= L q
2

{

(

1 − |a|2
)

3q−2p
2−q

+3

1
∫

0

(1 − r2)
3q−qp1

2−q

∫

∂B1(0)

1

|1 − āry|2
(

3q−2p
2−q

+3
) dΓyr

2dr

}

2−q
2

(3.3)

where,

L =

∫

B1(0)

∣

∣Df(x)
∣

∣

2(
1 − |ϕa(x)|2

)p1
dBx.

Applying Lemma 2.1.1 in (3.3), we obtain that

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx ≤ λ1L

q
2

where λ1 is a constant not depending on a. Then, taking sup
a∈B1(0)

, we obtain that

‖ f ‖Bp,q ≤ ‖ f ‖Qp1
<∞.

Thus f ∈ Bp,q for 0 < q < 2; p− q ≥ 1; 1 < p < 3 and 0 < p1 < 2(1 + 1
q ), so our theorem

is therefore established. �

In the next theorem we obtain some other characterizations of these spaces by replacing

the weight function
(

1 − |ϕa(x)|2
)p

by gp(x, a) in the defining integrals.

Theorem 3.2.2. Let f be a hyperholomorphic function in B1(0). Then, for 1 < q < 4

and 1 ≤ p ≤ 2 + q
4 , we have that

f ∈ Bp,q ⇐⇒ sup
a∈B1(0)

∫

B1(0)

|Df(x)|q(1 − |x|2)
3
2 q−p

(

g(x, a)
)p
dBx <∞.
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Proof. Let us consider the equivalence
∫

B1(0)

|Df(x)|q(1 − |x|2)
3
2 q−p(1 − |ϕa(x)|2)pdBx

'
∫

B1(0)

|Df(x)|q(1 − |x|2)
3
2 q−p

(

g(x, a)
)p
dBx,

with g(x, a) = 1
4π

(

1
|ϕa(x)| − 1

)

. Then, we get

∫

B1(0)

|Dxf(ϕa(w))|q(1 − |ϕa(w)|2)
3
2 q−p(1 − |w|2)p

(

1 − |a|2
|1 − āw|2

)3

dBw

'
∫

B1(0)

|Dxf(ϕa(w))|q(1 − |ϕa(w)|2)
3
2 q−pgp(w, 0)

(

1 − |a|2
|1 − āw|2

)3

dBw.

where Dx means the Cauchy-Riemann-operator with respect to x. The problem here

is, that Dxf(x) is hyperholomorphic, but after the change of variables Dxf(ϕa(w)) is

not hyperholomorphic. But we know from [80] that 1−w̄a
|1−āw|3Dxf(ϕa(w)) is again hy-

perholomorphic. We also refer to Sudbery (see [87]) who studied this problem for the

four-dimensional case already in 1979. Therefore, we get

∫

B1(0)

|ψ(w)|q(1 − |w|2)
3
2 q (1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6
dBw '

∫

B1(0)

|ψ(w)|q 1

(4π)p
ψ1(a, w)dBw,

with ψ(w) = 1−w̄a
|1−āw|3Dxf(ϕa(w)) and ψ1(a, w) =

(

1
|w| − 1

)p
(1−|w|2)

3
2

q−p(1−|a|2)
3
2

q−p+3

|1−āw|q−2p+6 .

This means we have to find constants C1(p) and C2(p) with

C1(p)

∫

B1(0)

|ψ(w)|q 1

(4π)p

(

1

|w| − 1

)p
(1 − |w|2)

3
2 q−p(1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6
dBw

≤
∫

B1(0)

|ψ(w)|q(1 − |w|2)
3
2 q (1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6
dBw

≤ C2(p)

∫

B1(0)

|ψ(w)|q 1

(4π)p

(

1

|w| − 1

)p
(1 − |w|2)

3
2 q−p(1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6
dBw.

Part (a) Let C2(p) = 2p(4π)p. Then, using

1 − |a| ≤ |1 − āw| ≤ 1 + |a| and 1 − |w| ≤ |1 − āw| ≤ 1 + |w|, (3.4)



-54-

we obtain that

J3 =

∫

B1(0)

|ψ(w)|q(1 − |w|2)
3
2 q (1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6
dBw

− 2p

∫

B1(0)

|ψ(w)|q
(

1

|w| − 1

)p
(1 − |w|2)

3
2 q−p(1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6
dBw

=

∫

B1(0)

|ψ(w)|q(1 − |w|2)
3
2 q (1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6

{

1 − 2p(1 − |w|)p

|w|p(1 − |w|2)p

}

dBw

=

∫

B1(0)

|ψ(w)|q(1 + |w|) 3
2 q (1 − |w|) 3

2 q

|1 − āw| q
2 +2

(1 − |a|2)
3
2 q−p+3

|1 − āw| q
2−2p+4

{

1 − 2p

|w|p(1 + |w|)p

}

dBw

≤ (2)3q−p+3(1 − |a|)q+p−1

∫

B1(0)

|ψ(w)|q(1 − |w|)q−2

{

1 − 2p

|w|p(1 + |w|)p

}

dBw

= (2)3q−p+3(1 − |a|)q+p−1

∫ 1

0

(

Mq(Df, r)
)q

(1 − r)q−2

(

1 − 2p

rp(1 + r)p

)

r2 dr ≤ 0

with

(

Mq(Df, r)
)q

=

π
∫

0

2π
∫

0

∣

∣h(r)Df(r, θ1, θ2)
∣

∣

q
sin θ1dθ2dθ1,

where, h(r) stands for 1
|1−āw|2

in spherical coordinates.

Because
(

Mq(Df, r)
)q ≥ 0 ∀r ∈ [0, 1] and ψ3(r) ≤ 0 ∀r ∈ [0, 1], 1 ≤ p < 3 and

1 < q < 4. From this we obtain that

∫

B1(0)

|ψ(w)|q(1 − |w|2)
3
2 q (1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6
dBw

≤ C2(p)

∫

B1(0)

|ψ(w)|q 1

(4π)p

(

1

|w| − 1

)p
(1 − |w|2)

3
2 q−p(1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6
dBw
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Part (b): Let C1(p) =
(

11
100

)p
(4π)p. Then,

J4 =

∫

B1(0)

|ψ(w)|q(1 − |w|2)
3
2 q (1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6
dBw

− C1(p)

(4π)p

∫

B1(0)

|ψ(w)|q
(

1

|w| − 1

)p
(1 − |w|2)

3
2 q−p(1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6
dBw

=

∫

B1(0)

|ψ(w)|q(1 − |w|2)
3
2 q (1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6

{

1 −
(

11

100

)p(
1

|w|(1 + |w|)

)p}

dBw

=

∫

B 1
10

(0)

|ψ(w)|q(1 − |w|2)
3
2 q (1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6

{

1 −
(

11

100

)p(
1

|w|(1 + |w|)

)p}

dBw

+

∫

B1(0)\B 1
10

(0)

|ψ(w)|q(1−|w|2)
3
2 q (1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6

{

1−
(

11

100

)p(
1

|w|(1 + |w|)

)p}

dBw

= J5 + J6.
(3.5)

Since G(|w|) =

{

1 −
(

11
100

)p
(

1
|w|(1+|w|)

)p
}

≤ 0; ∀|w| ∈ [0, 1
10

], then using (3.4) in (3.5)

we obtain that

J5 =

∫

B 1
10

(0)

|ψ(w)|q(1 − |w|2)
3
2 q (1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6

{

1 −
(

11

100

)p
( 1

|w|(1 + |w|)
)p}

dBw

≥ λ2(1 − |a|2)q+p−1

∫ 1
10

0

(

Mq(Df, r)
)q

(1 − r2)q−2
(

1 −
( 11

100

)p 1

rp(1 + r)p

)

r2dr

and

J6

=

∫

B1(0)\B 1
10

(0)

|ψ(w)|q(1−|w|2)
3
2 q (1 − |a|2)

3
2 q−p+3

|1 − āw|q−2p+6

{

1−
(

11

100

)p(
1

|w|(1 + |w|)

)p}

dBw

≥ λ3(1− |a|2)
3
2 q−p+3

∫ 1

0

(

Mq(Df, r)
)q

(1− r2)
3
2 q
(

1−
( 11

100

)p 1

rp(1 + r)p

)

r2dr

where, λ2 and λ3 are positive constants not depending on a.
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Since,
(

Mq(Df, r)
)q ≥ 0; ∀r ∈ [0, 1] and G(r) =

(

1 −
(

11
100

)p 1
rp(1+r)p

)

r2 ≤ 0; ∀r ∈

[0, 1
10 ].

Now, we want to compare the integral

λ2(1 − |a|2)q+p−1

1
10
∫

0

(

Mq(Df, r)
)q(

1 − r2
)q−2

G(r)dr and the integral

λ3(1 − |a|2)
3
2 q−p+3

6
10
∫

5
10

(

Mq(Df, r)
)q(

1 − r2
)

3
2 q
G(r)dr.

Then, after simple calculation we can obtain that

λ2(1 − |a|2)q+p−1

1
10
∫

0

(

Mq(Df, r)
)q(

1 − r2
)q−2

G(r)dr

< λ3(1 − |a|2)
3
2 q−p+3

6
10
∫

5
10

(

Mq(Df, r)
)q(

1 − r2
)

3
2 q
G(r) dr.

In particular we have that Mq(Df, r) is a nondecreasing function, this because Df is

harmonic in B1(0) and belongs to Lq(B1(0)); ∀0 ≤ r < 1. Thus, J4 = J5 + J6 ≥ 0, and

our theorem is therefore established. �

3.3 Monogenic Bloch functions and monogenic Bp,q functions

Proposition 3.3.1. Let f be a hyperholomorphic function in the unit ball B1(0), 1 ≤
q <∞ and 3 ≤ p <∞. Then for |a| < 1, we have

(

1 − |a|2
)

3q
2
∣

∣Df(a)
∣

∣

q ≤ 1

ζ∗(R)

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx,

where,

ζ∗(R) =
4πkR3−p

3(2)3q

(

1 −R2
)

3
2 q+p+3

max

{

(1 −R)2q−6, (1 +R)2q−6

}

;

k is a constant not depending on a and 0 < R < 1.
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Proof. As it was defined in chapter 2, we let U(a,R) = {x : |ϕa(x)| < R} be the pseudo

hyperbolic ball with radius R, where 0 < R < 1. Then,

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx

≥
∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx.

Since,

(

1 − |x|2
)3 ≈

∣

∣U(a,R)
∣

∣, whenever x ∈ U(a,R) and

where,
∣

∣U(a,R)
∣

∣ stands for the volume of the pseudo hyperbolic ball U(a,R) given as

below.

Then,

∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p

dBx

≥ k
∣

∣U(a,R)
∣

∣

p
3

∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q
dBx

=
k

∣

∣U(a,R)
∣

∣

p
3

∫

U(a,R)

∣

∣Df(x)
∣

∣

q
{

(1 − |ϕa(x)|2)(|1 − āx|2)

(1 − |a|2)

}
3
2 q

dBx

≥ k
(

1 − |a|
)2( 3

2 q)(
1 −R2

)
3
2 q

∣

∣U(a,R)
∣

∣

p
3
(

1 − |a|2
)

3
2 q

∫

U(a,R)

∣

∣Df(x)
∣

∣

q
dBx

≥ k
(

1 − |a|2
)

3
2 q(

1 −R2
)

3
2 q

∣

∣U(a,R)
∣

∣

p
3
(

1 + |a|
)3q

∫

U(a,R)

∣

∣Df(x)
∣

∣

q
dBx

=
k
(

1 − |a|2
)

3
2 q(

1 −R2
)

3
2 q

∣

∣U(a,R)
∣

∣

p
3
(

1 + |a|
)3q

∫

BR

∣

∣Df(ϕa(x))
∣

∣

q

(

1 − |a|2
)3

|1 − āx|6
dBx

where k is a constant depending on R but not on a. As in the proof of Theorem 3.2.2,



-58-

we will use the monogenic function 1−x̄a
|1−āx|3Df(ϕa(x)). Then, we get that

∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p

dBx

≥ k
(

1 − |a|2
)

3
2 q(

1 −R2
)

3
2 q(

1 − |a|2
)3

∣

∣U(a,R)
∣

∣

3
2 p(

1 + |a|
)3q

∫

BR

∣

∣

∣

∣

1 − x̄a

|1 − āx|3
Df(ϕa(x))

∣

∣

∣

∣

q |1 − āx|3q

|1 − āx|q+6 dBx

≥ k
(

1 − |a|2
)

3
2 q(

1 −R2
)

3
2 q(

1 − |a|2
)3

23q
∣

∣U(a,R)
∣

∣

p
3

∫

BR

∣

∣

∣

∣

1 − x̄a

|1 − āx|3
Df(ϕa(x))

∣

∣

∣

∣

q |1 − āx|3q

|1 − āx|q+6dBx

Now, since

1 −R ≤ |1 − āx| ≤ 1 +R

and

∣

∣U(a,R)
∣

∣ =

(

1 − |a|2
)3

(

1 −R2|a|2
)3R

3

by using Lemma 2.3.2, one can get

∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1−|x|2

)
3
2 q−p

dBx ≥
(

1−|a|2
)

3
2 q
η(R)

∫

BR

∣

∣

∣

∣

1 − x̄a

|1 − āx|3
Df(ϕa(x))

∣

∣

∣

∣

q

dBx

≥ 4π

3
R3
(

1 − |a|2
)

3
2 q
ζ(R)|Df(a)|q.

where,

ζ(R) =
k

23q

(

1 − |a|2
)3−p(

1 − |a|2R2
)p(

1 −R2
)

3
2 q

Rp
max

{

(1 −R)2q−6, (1 +R)2q−6

}

≥ k

23q

(

1 −R2
)

3
2 q(

1 − |a|2R2
)3

Rp
max

{

(1 −R)2q−6, (1 +R)2q−6

}

≥ k

23q

(

1 −R2
)

3
2 q+3

Rp
max

{

(1 −R)2q−6, (1 +R)2q−6

}

= ζ1(R).

Since we used the inequalities

1 −R2 ≤ 1 − |a|2R2 and 1 − |a|2 ≤ 1 − |a|2R2.
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Therefore,

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx

≥
∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)
3
2 q−p(

1 − |ϕa(x)|2
)p
dBx

≥ 4π

3
R3
(

1 −R2
)p(

1 − |a|2
)

3
2 q
ζ1(R)|Df(a)|q = ζ∗(R)

(

1 − |a|2
)

3q
2 |Df(a)|q,

where

ζ∗(R) =
4π

3
R3
(

1 −R2
)p
ζ1(R). �

Corollary 3.3.1. From proposition 3.3.1, we get for 1 ≤ q <∞ and 3 ≤ p <∞ that

Bp,q ⊂ B.

Theorem 3.3.1. Let f be a hyperholomorphic function in the unit ball B1(0). Then the

following conditions are equivalent:

1. f ∈ B.

2. f ∈ Bp,q for all 0 < q <∞ and 1 ≤ p <∞.

3. f ∈ Bp,q for some q ≥ 1 and 3 ≤ p <∞.

Proof. The implication (1 ⇒ 2) follows from Proposition 3.2.1. It is obvious that

(2 ⇒ 3). From proposition 3.3.1, we have that (3 ⇒ 1).

The importance of the above theorem is to give us a characterization for the hyperholo-

morphic Bloch space by the help of integral norms of Bp,q spaces of hyperholomorphic

functions.

Also, with the same arguments used to prove the previous theorem, we can prove the

following theorem for characterization of little hyperholomorphic Bloch space.

Theorem 3.3.2. Let 0 < R < 1. Then for an hyperholomorphic function f on B1(0)

the following conditions are equivalent
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(i) f ∈ B0.

(ii) For each 0 < q <∞ and 1 ≤ p <∞

lim
|a|→1−

∫

B1(0)

|Df(x)|q(1 − |x|2)
3q
2 −p(1 − |ϕa(x)|2)p dBx < +∞.

(iii) For some 1 ≤ q <∞ and 3 ≤ p <∞

lim
|a|→1−

∫

B1(0)

|Df(x)|q(1 − |x|2)
3q
2 −p(1 − |ϕa(x)|2)p dBx < +∞.

3.4 General Stroethoff’s extension in Clifford Analysis

In this section we will give extensions of general Stroethoff’s results (see [85]) by using

our Bp,q spaces in Clifford Analysis. Our new results in this section extend and improve

a lot of previous results in R3 (see [41], [42], [76] and [85]).

Theorem 3.4.1. Let 0 < R < 1. Then for an hyperholomorphic function f on B1(0)

the following conditions are equivalent

(a) f ∈ B.

(b) For each 0 < q <∞ and 0 < p ≤ 3

sup
a∈B1(0)

∫

B1(0)

|Df(x)|q(1 − |x|2)
3q
2 −p

(

1 − |ϕa(x)|2
)p
dBx < +∞.

(c) For each 0 < q <∞ and 0 < p ≤ 3

sup
a∈B1(0)

∫

U(a,R)

|Df(x)|q(1 − |x|2)
3q
2 −p dBx < +∞.

(d) For each 0 < q <∞ and 0 < p ≤ 3

sup
a∈B1(0)

1

|U(a,R)| p
3−

q
2

∫

U(a,R)

|Df(x)|q dBx < +∞.
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(e) For some 1 < q <∞ and p = 3

sup
a∈B1(0)

1

|U(a,R)|1−q
2

∫

U(a,R)

|Df(x)|q dBx < +∞.

Proof. (a) implies (b): The case p = 3 is already known from chapter 2. For p < 3 by

Hölder’s inequality, we obtain that

sup
a∈B1(0)

∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)

3q
2 −p(

1 − |ϕa(x)|2
)p
dBx

≤ sup
a∈B1(0)

(

1 − |x|2
)

3
2 q∣
∣Df(x)

∣

∣

q
∫

B1(0)

(

1 − |ϕa(x)|2
)p

(

1 − |x|2
)p dBx

≤
( 3

4π

)
3

3−p
(

B(f)
)q

(

∫

B1(0)

(

1 − |ϕa(x)|2
)3

(

1 − |x|2
)3 dBx

)

3
p

.

(b) implies (c). For x ∈ U(a, r) we have (1 −R2)p <
(

1 − |ϕa(x)|2
)p

, so

(1 −R2)p

∫

U(a,R)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)

3q
2 −p

dBx

≤
∫

B1(0)

∣

∣Df(x)
∣

∣

q(
1 − |x|2

)

3q
2 −p(

1 − |ϕa(x)|2
)p
dBx.

(c) if and only if (d) it follows from the fact that (1 − |x|2)3 ≈ |U(a,R)|.
(d) implies (e) is trivial.

(e) implies (a). By Lemma 3.1.1, we have

(1 − |a|2)
3q
2

∣

∣Df(a)
∣

∣

q ≤ 3 · 42+q

πR3(1 −R2)2q(1 − |a|2)3−
3q
2

∫

U(a,R)

∣

∣Df(x)
∣

∣

q
dΓx

=
3 · 42+q

πR3(1 −R2)2q(1 − |a|2)3−
3q
2

(1 − |a|2R2)3−
3q
2

(1 − |a|2R2)3−
3q
2

R3− 3q
2

R3− 3q
2

∫

U(a,R)

∣

∣Df(x)
∣

∣

q
dΓx

which implies that

(1 − |a|2)
3q
2

∣

∣Df(a)
∣

∣

q ≤ 3 · 42+q

πR3(1 −R2)2q|U(a,R)|1−q
2R−3+ 3q

2 (1 −R2)3−
3q
2

·
∫

U(a,R)

∣

∣Df(x)
∣

∣

q
dΓx

≤ 3 · 42+q

πR
3q
2 (1 −R2)3+

q
2 |U(a,R)|1−q

2

∫

U(a,R)

∣

∣Df(x)
∣

∣

q
dΓx
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so the result follows. �

From Theorems 3.3.1, 3.4.1, we directly obtain the following result.

Theorem 3.4.3. Let 0 < R < 1. Then for a hyperholomorphic function f on B1(0) the

following conditions are equivalent

(a) f ∈ B.

(b) f ∈ Bp,q for all 0 < p <∞, 0 < q <∞.

(c) For each 0 < p <∞ and 0 < q <∞

sup
a∈B1(0)

∫

U(a,R)

|Df(x)|q(1 − |x|2)
3q
2 −p dBx < +∞.

(d) For each 0 < q <∞ and 0 < p ≤ ∞

sup
a∈B1(0)

1

|U(a,R)| p
3−

q
2

∫

U(a,R)

|Df(x)|q dBx < +∞.

(e) For some 1 < q <∞ and p = 3

sup
a∈B1(0)

1

|U(a,R)|1−q
2

∫

U(a,R)

|Df(x)|q dBx < +∞.

Now we can formulate the following result for the spaces Bp,q when |a| → 1− and the

space B0.

Theorem 3.4.4. Let 0 < R < 1. Then for a hyperholomorphic function f on B1(0) the

following conditions are equivalent

(a) f ∈ B0.

(b) For each 0 < p <∞ and 0 < q <∞

lim
|a|→1−

∫

B1(0)

|Df(x)|q(1 − |x|2)
3q
2 −p

(

1 − |ϕa(x)|2
)p
dBx = 0.
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(c) For each 0 < p <∞ and 0 < q <∞

lim
|a|→1−

∫

U(a,R)

|Df(x)|q(1 − |x|2)
3q
2 −p dBx = 0.

(d) For each 0 < p <∞ and 0 < q <∞

lim
|a|→1−

1

|U(a,R)| p
3−

q
2

∫

U(a,R)

|Df(x)|q dBx = 0.

(e) For some 1 < q <∞ and p = 3

lim
|a|→1−

1

|U(a,R)|1−q
2

∫

U(a,R)

|Df(x)|q dBx = 0.
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Chapter 4

Series expansions of hyperholomorphic Bq functions

and monogenic functions of bounded mean oscillation

In chapter 2, Bq spaces of hyperholomorphic functions were studied and it was shown

that these spaces form a scale of subspaces, all included in the hypercomplex Bloch space.

Here, in this chapter we study the problem if these inclusions within the scale and with

respect to the Bloch space are strict. Main tool is the characterization of Bq-functions

by their Fourier coefficients. Moreover, we study BMOM and VMOM spaces, so we

give the definitions of these spaces in the sense of a modified Möbius invariant property

and then we investigate the relation between these spaces and other well known spaces

like hyperholomorphic Bloch space, hyperholomorphic Dirichlet space and Q1 space.

4.1 Power series structure of hyperholomorphic functions

The major difference to power series in the complex case consists in the absence of

regularity of the basic variable x = x0 + x1i + x2j and of all of its natural powers

xn, n = 2, . . . . This means that we should expect other types of terms which could be

designated as generalized powers. Indeed, following [61] we use a pair y = (y1, y2) of two

regular variables (c.f. [23] and [45]) given by

y1 = x1 − ix0 and y2 = x2 − jx0

and a multi-index ν = (ν1, ν2), |ν| = (ν1 + ν2) to define the ν-power of y by a |ν|−ary

product.

Definition 4.1.1. Let ν1 elements of the set a1, . . . , a|ν| be equal to y1 and ν2 elements

be equal to y2. Then the ν-power of y is defined by

yν :=
1

|ν|!
∑

(i1,... ,i|ν|)∈π(1,...|ν|)

ai1ai2 · · ·ai|ν|
(4.1)

where the sum runs over all permutations of (1, . . . , |ν|).
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Remark 4.1.1. It is evident that for a fixed value of |ν| = d there exist exactly (d+ 1)

different ν-powers of y. To distinguish between them we sometimes also use the notation

yν = y1
ν1 ×y2ν2 = y2

ν2 ×y1ν1 but the meaning of the last expressions is slightly different

from the usual one in commutative rings and should be understood in the sense of formula

4.1. Although the elements of yν are commutative but it should be observed that these

elements are not associative. We will set parentheses if the separated powers of y1 or y2

have to be understood in the ordinary way. Notice that the algebraic fundamentals for

such a definition of generalized powers lie in the application of the symmetric product

between d elements of a non-commutative ring like discussed in [61]. In this sense the

variables yk, k = 1, 2, themselves are symmetric products of x = x0 + x1i + x2j with

(−i) resp. (−j) in the form

y1 = x1 − ix0 = −1

2
(ix+ xi) and y2 = x2 − jx0 = −1

2
(jx+ xj).

With this the definition of the ν-power of y, Theorem 2 in [61], implies that all polyno-

mials in yk, k = 1, 2, homogeneous of degree |ν| and of the form

fν(y1, y2) = yν

with ν = (ν1, ν2) an arbitrary multi-index, are both left and right monogenic and

H−linearly independent. Therefore they can serve as basis for generalized power se-

ries. In particular, we are interested in left power series with center at the origin and

ordered by such homogeneous polynomials. It was shown in [61], that the general form

of the Taylor series of left monogenic functions in the neighborhood of the origin is given

by

P (x) =

∞
∑

n=0

(
∑

|ν|=n

yνcν), with cν ∈ H. (4.2)

From above we can see that the homogeneous components in the power series represent-

ing a monogenic (regular) function are themselves monogenic; thus it is important to

consider monogenic homogeneous polynomials, the basic functions from which all mono-

genic functions are constructed. The corresponding functions of a complex variable are

just the powers of the variable, but the situation with quaternions is more complicated.
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In section 4.3 we need the following results.

Theorem 4.1.1. Let g(x) be left monogenic in a neighborhood of the origin with the

Taylor series given in the form (4.2). Then there holds

|1
2
Dg(x)| ≤

∞
∑

n=1

n(
∑

|ν|=n

|cν |)|x|n−1. (4.3)

For the proof of this theorem we refer to [44]. From the expansions (4.3) the series

converge uniformally in any ball with |x| = r < 1.

In order to formulate the next theorem we introduce the abbreviated notation:

Hn(x) :=
∑

|ν|=n y
νcν for such a homogeneous monogenic polynomial of degree n and

consider monogenic functions composed by Hn(x) in the following form:

f(x) =
∞
∑

n=0

Hn(x) bn, ( bn ∈ H).

Taking into account formula (4.3), we see that

|1
2
Df(x)| ≤

∞
∑

n=1

n(
∑

|ν|=n

|cν |)|bn||x|n−1. (4.4)

This is the motivation for another shorthand notation, namely

an := (
∑

|ν|=n

|cν |)|bn|, (an ≥ 0)

and we get finally

|1
2
Df(x)| ≤

∞
∑

n=1

nan|x|n−1. (4.5)

4.2 Coefficients of quaternion Qp functions

In 2001, Gürlebeck and Malonek [44] obtained the following results for Qp spaces of

quaternion valued functions:
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Theorem A. Let In = {k : 2n ≤ k < 2n+1 , k ∈ N}, f(x) =
∞
∑

n=0
Hn(x)bn, bn ∈ H,

Hn be a homogeneous monogenic polynomial of degree n of the aforementioned type,

and an be defined as before, 0 < p ≤ 2. Then

∞
∑

n=0

2n(1−p)

(

∑

k∈In

ak

)2

<∞ =⇒ f ∈ Qp.

Theorem B. Let 0 < p ≤ 2 and let

f(x) =
(

∞
∑

k=0

H2k,α

‖H2k,α‖L2(∂B1)
ak

)

∈ Qp.

Then
∞
∑

k=0

2k(1−p)|ak|2 <∞.

Remark 4.2.1. Theorem A and Theorem B prove for 0 < p ≤ 2, that

f(x) =

∞
∑

k=0

H2k,α

‖H2k,α‖L2(∂B1)
ak ∈ Qp ⇐⇒

∞
∑

k=0

2k(1−p)|ak|2 <∞.

We will need the following lemmas in the sequel:

Lemma 4.2.1 [44]. Let |a| < 1. Then

∫

∂B1(0)

1

|1 − āry|4
dΓy =

4π
(

1 − |a|2
)
2 .

Lemma 4.2.2 [62]. Let α > 0, p > 0, n ≥ 0, an ≥ 0, In = {k : 2n ≤ k < 2n+1, k ∈ N},

tn =
∑

k∈In

ak and f(r) =
∞
∑

n=1
an r

n . Then there exists a constant K depending only on p

and α such that

1

K

∞
∑

n=0

2−nα tpn ≤
∫ 1

0

(1 − r)α−1f(r)p dr ≤ K

∞
∑

n=0

2−nα tpn.
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4.3 Fourier coefficients of hyperholomorphic Bq functions

From the study of Qp spaces of quaternion valued functions in the three dimensional

case it is known that a certain class of monogenic functions belonging to Qp spaces

can be characterized by their Taylor or Fourier coefficients (see Theorems A, B and

Remark 4.2.1). This makes it natural to look for similar properties for Bq spaces of

quaternion valued functions. The main results are characterizations of Bq-functions

by the coefficients of quaternionic Fourier series expansions. Besides, we obtain the

equivalents of our quaternion Bq-functions and their Taylor coefficients by using certain

series expansions of homogeneous monogenic polynomials. Our results obtained in this

section is much more different from those results obtained by Miao (see [63]). The

essential difference between the complex analysis and our quaternioninc analysis is that

in the complex case characterizing a certain class of functions by their Taylor or Fourier

series expansions are the same but in our quaternionic case this is not ture because of

the transformations (for the Taylor or Fourier coefficients) from the orthogonal system

to the orthonormal system in the quaternion case are not the same while for the complex

case are the same.

Theorem 4.3.1. Let 0 < q <∞, In =
{

k : 2n ≤ k < 2n+1; k ∈ N
}

,

f(x) =
∞
∑

n=1

Hn(x)bn, (bn ∈ H)

be homogeneous monogenic polynomial as defined before and let an defined as above.

Then, if

∞
∑

n=0

2q(1−n
2 )

(

∑

k∈In

ak

)q

<∞ =⇒ f ∈ Bq.

Proof. Suppose that

∞
∑

n=0

2q(1−n
2 )

(

∑

k∈In

ak

)q

<∞.
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Then, using Lemma 4.2.1 and the equality (2.5), we obtain that
∫

B1(0)

∣

∣

1

2
Df(x)

∣

∣

q
(

1 − |x|2
)

3
2 q−3(

1 − |ϕa(x)|2
)2
dBx

=

∫

B1(0)

∣

∣

∣

∣

1

2
D

( ∞
∑

n=0

Hn(x)bn

)
∣

∣

∣

∣

q (
1 − |x|2

)
3
2 q−1(

1 − |a|2
)2

|1 − āx|4dBx

≤
∫

B1(0)

( ∞
∑

n=1

n an |x|n−1

)q
(

1 − |x|2
)

3
2 q−1(

1 − |a|2
)2

|1 − āx|4
dBx,

which implies that,

∫

B1(0)

∣

∣

1

2
Df(x)

∣

∣

q
(

1 − |x|2
)

3
2 q−3(

1 − |ϕa(x)|2
)2
dBx

≤
1
∫

0

( ∞
∑

n=1

n an r
n−1

)q

(1 − r2)
3
2 q−1(1 − |a|2)2

∫

∂B1(0)

1

|1 − āry|4
dΓy r

2 dr

≤ 2
3
2 q−1

1
∫

0

( ∞
∑

n=1

n an r
n−1

)q

(1 − r)
3
2 q−1(1 − |a|2)2.

4π

(1 − |a|2)2
dr

≤ η

1
∫

0

( ∞
∑

n=1

n an r
n−1

)q

(1 − r)
3
2 q−1dr, (4.6)

where η = π2
3
2 q+1. Using Lemma 4.2.2 in (4.6), we get that

∫

B1(0)

∣

∣

1

2
Df(x)

∣

∣

q
(

1 − |x|2
)

3
2 q−3(

1 − |ϕa(x)|2
)2
dBx ≤ ηK

∞
∑

n=0

2−
3
2 nq

(

∑

k∈In

k ak

)q

Since tn =
∑

k∈In

ak < 2n+1
∑

k∈In

ak, then we have

∫

B1(0)

∣

∣

1

2
Df(x)

∣

∣

q
(

1 − |x|2
)

3
2 q−3(

1 − |ϕa(x)|2
)2
dBx ≤ ηK

∞
∑

n=0

2q(1−n
2 )

(

∑

k∈In

ak

)q

Therefore,

‖f‖q
Bq ≤ λ

∞
∑

n=0

2q(1−n
2 )

(

∑

k∈In

ak

)q

<∞,
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where λ is a constant. Hereafter in this chapter, λ stands for absolute constants, which

may indicate different constants from one occurrence to the next.

The last inequality implies that f ∈ Bq and the proof of our theorem is completed. �

In the following theorem, our aim is to consider the converse direction of Theorem

4.3.1 . We will restrict us to monogenic homogeneous polynomials of the form

Hn,α(x) =
(

y1α1 + y2α2

)n
=

n
∑

k=0

y1
n−k × y2

kα1
n−kα2

k, (4.7)

where αi ∈ R, i = 1, 2. The hypercomplex derivative is given by

(

−1

2
D
)

Hn,α(x) = nHn−1,α(x)
(

α1i+ α2j
)

. (4.8)

Proposition 4.3.1. Let α = (α1, α2), αi ∈ R, i = 1, 2 be the vector of real coefficients

defining the monogenic homogeneous polynomial Hn,α(x) =
(

y1α1 + y2α2

)n
. Suppose

that |α|2 = α1
2 + α2

2 6= 0. Then,

‖Hn,α‖q
Lq(∂B1)

= 2π
√
π |α|nq Γ(n

2 q + 1)

Γ(n
2
q + 3

2
)
, where 0 < q <∞.

Proof. Since,

‖Hn,α‖q
Lq(∂B1)

=

2π
∫

0

π
∫

0

[(

sin2 φ1(α1 cosφ2 + α2 sinφ1)2 + (α1
2 + α2

2) cos2 φ1

)n
]

q
2 sinφ1dφ1dφ2

=

2π
∫

0

π
∫

0

[(

|α|2 + |α|2 sin2 φ1

[

sin2(φ2 + ω) − 1
)n]

q
2 sinφ1dφ1dφ2

=

2π
∫

0

π
∫

0

[(

|α|2 − |α|2 sin2 φ1 cos2(φ2 + ω)
])n] q

2 sinφ1dφ1dφ2

= |α|nq

2π
∫

0

π
∫

0

[(

1 − sin2 φ1 cos2(φ2 + ω)
])n] q

2 sinφ1dφ1dφ2,
(4.9)
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where ω is defined by

sinω :=
α1√

α1
2 + α2

2
and cosω :=

α2√
α1

2 + α2
2
.

Then equation (4.9) will reduce to

‖Hn,α‖q
Lq(∂B1)

= |α|nq
∞
∑

k=0

(−1)k

(nq
2

k

)(

2π
∫

0

[cos(φ2 + ω)]2kdφ2

)(

π
∫

0

[sin(φ1)]2k+1dφ1

)

.

(4.10)

Using integration by parts, it follows that

Ik :=

2π
∫

0

[cos(φ2 + ω)]2kdφ2 = π
(2k − 1)!!

2k−1(k)!
.

Also,

I∗k :=

π
∫

0

[sin(φ1)]2k+1dφ1 =
2k+1(k)!

(2k + 1)!!
.

Therefore, we obtain that

‖Hn,α‖q
Lq(∂B1)

= π|α|nq
∞
∑

k=0

(−1)k

(nq
2

k

)(

(2k − 1)!!

2k−1(k)!

2k+1(k)!

(2k + 1)!!

)

= 4π|α|nq
∞
∑

k=0

(−1)k

(nq
2

k

)

1

2k + 1
. (4.11)

Now, we calculate the sum of the series

∞
∑

k=0

(−1)k

(nq
2

k

)

1

2k + 1
.

Let

F (t1) =
∞
∑

k=0

(−1)k

(nq
2

k

)

1

2k + 1
t2k+1
1 .
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Then,

dF (t1)

dt1
= F ′(t1) =

∞
∑

k=0

(−1)k

(nq
2

k

)

t2k
1 = (1 − t21)

nq
2

and

F (1) =
∞
∑

k=0

(−1)k

(nq
2

k

)

1

2k + 1
=

∫ 1

0

(1 − t21)
nq
2 dt1

=

∫ 1

0

t−
1
2 (1 − t)

n
2 qdt = B(

1

2
,
n

2
q + 1) =

1

2

√
π

Γ(n
2 q + 1)

Γ(n
2 q + 3

2 )
.

We obtain

‖Hn,α‖q
Lq(∂B1) = 2π

√
π |α|nq Γ(n

2 q + 1)

Γ(n
2 q + 3

2 )

and our proposition is proved. �

Now, using formula (4.8), we obtain

‖ − 1
2DHn,α‖q

Lq(∂B1)

‖Hn,α‖q
Lq(∂B1)

= nq B( 1
2
, n−1

2
q + 1)

B( 1
2 ,

n
2 q + 1)

≥ λnq

where,
B( 1

2 , n−1
2 q+1)

B( 1
2 , n

2 q+1)
> 0, ∀ n and

lim
n→∞

B( 1
2
, n−1

2
q + 1)

B( 1
2 ,

n
2 q + 1)

= 1.

It should be remarked here that the case q = 2 in Proposition 4.3.1 is already known

from [44].

Corollary 4.3.1. We have

‖ − 1
2
DHn,α‖Lq(∂B1)

‖Hn,α‖Lq(∂B1)

≥ λn, ∀q, 0 < q <∞. (4.12)
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Corollary 4.3.2. Suppose that q ≥ 2. Then,

‖ − 1
2
DHn,α‖

2

L2(∂B1)

‖Hn,α‖2
Lq(∂B1)

≥ λn
2+3q
2q .

Proof. To prove this corollary, we consider the following:

‖ − 1
2
DHn,α‖

2

L2(∂B1)

‖Hn,α‖2
Lq(∂B1)

=
‖ − 1

2
DHn,α‖

2

L2(∂B1)

‖ − 1
2
DHn,α‖

2

Lq(∂B1)

.
‖ − 1

2
DHn,α‖

2

Lq(∂B1)

‖Hn,α‖2
Lq(∂B1)

Then, using (4.8) and Proposition 4.3.1, we obtain

‖ − 1
2DHn,α‖

2

L2(∂B1)

‖ − 1
2DHn,α‖

2

Lq(∂B1)

= λ
Γ(n)

Γ(n+ 1
2
)

(

Γ
( (n−1)

2
q + 3

2

)

Γ
( (n−1)

2 q + 1
)

)
2
q

.

Using Γ(n)

Γ(n+ 1
2 )
n

1
2 → 1 as n→ ∞, we conclude that

Γ(n)

Γ(n+ 1
2
)
n

1
2

(

Γ
( (n−1)

2
q + 3

2

)

Γ
( (n−1)

2 q + 1
)
n− 1

2

)
2
q

→ 1

and, applying Corollary 4.3.1, we proved that

‖ − 1
2DHn,α‖

2

L2(∂B1)

‖Hn,α‖2
Lq(∂B1)

≥ λn
2+3q
2q ,

where λ is a constant not depending on n. �

Theorem 4.3.2. Let 2 ≤ q <∞ and let

f(x) =

( ∞
∑

k=0

Hn,α

‖Hn,α‖Lq(∂B1)

ak

)

∈ Bq .

Then,

∞
∑

n=0

2q
(

1−n
2 (1+ 3q−2

2q
)
)

|an|q <∞.
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Proof. From the definition of quaternion Bq functions, we have

‖f‖q
Bq ≥

∫

B1(0)

∣

∣−1

2
Df(x)

∣

∣

q
(

1 − |x|2
)

3
2 q−1

dBx

=

∫

B1(0)

∣

∣

∣

∣

∞
∑

n=0

[

(

−1
2DHn,α

)

‖Hn,α‖Lq(∂B1)

]

an

∣

∣

∣

∣

q
(

1 − |x|2
)

3
2 q−1

dBx = J . (4.13)

Since,

[
(

− 1
2 DHn,α

)

‖Hn,α‖
Lq(∂B1)

]

is a homogeneous monogenic polynomial of degree n− 1, then it

can be written in the form

[

(

−1
2DHn,α

)

‖Hn,α‖Lq(∂B1)

]

= rn−1Φn(φ1, φ2), (4.14)

where,

Φk(φ1, φ2) :=

([

(

−1
2DHn,α

)

‖Hn,α‖Lq(∂B1)

])

∂B1

. (4.15)

Now, using the quaternion-valued inner product

〈f, g〉∂B1(0) =

∫

∂B1(0)

f(x) g(x) dΓx,

the orthogonality of the spherical monogenic Φn(φ1, φ2) (see [23]) in L2(∂B1(0)), and

substitute from (4.14) and (4.15) to (4.13), we obtain

J =

1
∫

0

∫

∂B1(0)

(
∣

∣

∣

∣

∞
∑

n=0

rn−1Φn(φ1, φ2) an

∣

∣

∣

∣

2)
q
2

r2(1 − r2)
3
2 q−1dΓxdr

=

1
∫

0

∫

∂B1(0)

( ∞
∑

n=0

∞
∑

j=0

anr
2(n−1) Φn(φ1, φ2)Φj(φ1, φ2)aj

)

q
2

r2(1 − r2)
3
2 q−1dΓx dr (4.16)

Using Hölder’s inequality, for 1 ≤ q <∞, we have

∫

∂B1(0)

∣

∣f(x)
∣

∣

q
dΓx ≥ (4π)1−q

∣

∣

∣

∣

∫

∂B1(0)

f(x)dΓx

∣

∣

∣

∣

q

.
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From the last inequality, we obtain for 2 ≤ q <∞ that

J ≥ (4π)1−
q
2

1
∫

0

( ∞
∑

n=0

|an|2r2(n−1)‖Φn(φ1, φ2)‖2
L2(∂B1)

)

q
2

r2(1 − r2)
3
2 q−1 dr

≥ (4π)1−
q
2

1
∫

0

( ∞
∑

n=0

|an|2r2(n−1)‖Φn(φ1, φ2)‖2
L2(∂B1)

)

q
2

r3(1 − r2)
3
2 q−1 dr. (4.17)

Using Corollary 4.3.2 , we obtain

‖Φn(φ1, φ2)‖2
L2(∂B1)

=
‖ − 1

2DHn,α‖
2

L2(∂B1)

‖Hn,α‖2
Lq(∂B1)

≥ λn
2+3q
2q .

Then (4.17) will reduce to,

J ≥ (4π)1−
q
2 λ1

1
∫

0

( ∞
∑

n=0

n
2+3q
2q |an|2r2(n−1)

)

q
2

r3(1 − r2)
3
2 q−1dr

= λ2

1
∫

0

( ∞
∑

n=0

n
2+3q
2q |an|2r2(n−1)

)

q
2

r3(1 − r2)
3
2 q−1dr

=
λ2

2

1
∫

0

( ∞
∑

n=0

n
2+3q
2q |an|2r(n−1)

1

)

q
2

r1(1 − r1)
3
2 q−1 dr1

≥ λ3

1
∫

0

( ∞
∑

n=0

n
2+3q
2q |an|2rn

1

)

q
2

(1 − r1)
3
2 q−1 dr1 (4.18)

where λ1, λ2, and λ3 are constants not depending on n. Then applying Lemma 4.2.2 in

(4.18), we obtain

‖f‖q
Bq ≥ J ≥ λ3

K

∞
∑

n=0

2−
3
2 qn

(

∑

k∈In

k
2+3q
2q |ak|2

)

q
2

.

Since,
∑

k∈In

k
2+3q
2q |ak|2 > (2n)

2+3q
2q

∑

k∈In

|ak|2.
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Then,

‖f‖q
Bq ≥ J ≥ C

∞
∑

n=0

2−
nq
2 ( 3q−2

2q
)

(

∑

k∈In

|ak|2
)

q
2

,

where C is a constant not depending on n. Using Hölder’s inequality, we obtain

∑

k∈In

|ak|2 ≥ 1

2n

(

∑

k∈In

|ak|
)2

Therefore,

‖f‖q
Bq ≥ J ≥ C1

∞
∑

n=0

2q
(

1−n
2 ( 3q−2

2q
)
)

1

2n

(

∑

k∈In

|ak|
)q

≥
∞
∑

n=0

2q
(

1−n
2 ( 3q−2

2q
)
)

1

2n q
2

(

∑

k∈In

|ak|
)q

=

∞
∑

n=0

2q
(

1−n
2 ( 3q−2

2q
+1)
)

(

∑

k∈In

|ak|
)q

,

where C1 is a constant not depending on n. Hence we deduce that,

∞
∑

n=0

2q
(

1−n
2 ( 3q−2

2q
+1)
)

(

∑

k∈In

|ak|
)q

<∞. �

Corollary 4.3.3. Let f be a hyperholomorphic function in B1(0). Then for 2 ≤ q <∞
and 1 < |α| <∞, we have that

f(x) =

( ∞
∑

n=0

Hn,α

‖Hn,α‖Lq(∂B1)

an

)

∈ Bq ⇐⇒
∞
∑

n=0

2q(1−n
2 ( 5

2−
1
q
))

(

∑

k∈In

|ak|
)q

<∞.

Proof. ” =⇒ ” This direction can be proved directly from Theorem 4.3.2 .

” ⇐= ” The proof of this direction can be followed as in the proof of Theorem 4.3.1

by employing the function
Hn,α

‖Hn,α‖
Lq(∂B1)

(where 1 < |α| <∞) instead of Hn(x).
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So we obtain
∫

B1(0)

∣

∣

1

2
Df(x)

∣

∣

q
(

1 − |x|2
)

3
2 q−3(

1 − |ϕa(x)|2
)2
dBx

≤ k1

1
∫

0

( ∞
∑

n=1

n an r
n−1

n
1
2 |α|n

)q

(1 − r2)
3
2 q−1(1 − |a|2)2

∫

∂B1(0)

1

|1 − āry|4
dΓy r

2 dr

≤ 2
3
2 q−1 k1

1
∫

0

( ∞
∑

n=1

n

|α|n an r
n−1

)q

(1 − r)
3
2 q−1(1 − |a|2)2

4π

(1 − |a|2)2
dr

= k2

1
∫

0

( ∞
∑

n=1

n

|α|n an r
n−1

)q

(1 − r)
3
2 q−1 dr

≤ k3(α)

1
∫

0

( ∞
∑

n=1

anr
n−1

)q

(1 − r)
3
2 q−1 dr

where k2 = π2
3
2 q+1 k1 and k1 is a constant not depending on n, also k3(|α|) is a constant

depending on k2 and |α|. Using Lemma 4.2.2 in the last inequality, we get

∫

B1(0)

∣

∣

1

2
Df(x)

∣

∣

q
(

1 − |x|2
)

3
2 q−3(

1 − |ϕa(x)|2
)2
dBx ≤ k2K

∞
∑

n=0

2−
3
2 nq

(

∑

k∈In

ak

)q

which implies that,

∫

B1(0)

∣

∣

1

2
Df(x)

∣

∣

q
(

1 − |x|2
)

3
2 q−3(

1 − |ϕa(x)|2
)2
dBx ≤ k2K

∞
∑

n=0

2q(1−n
2 ( 5

2−
1
q
))

(

∑

k∈In

ak

)q

Therefore,

‖f‖Bq ≤ λ

∞
∑

n=0

2q(1−n
2 ( 5

2−
1
q
))

(

∑

k∈In

|ak|
)q

<∞. �

Corollary 4.3.4. Let f be a hyperholomorphic function in B1(0). Then for q = 2, we

have that

f(x) =

∞
∑

n=0

H2n,α

‖H2n,α‖L2(∂B1)
a2n ∈ B2 = Q2 ⇐⇒

∞
∑

n=0

22(1−n
2 )|a2n |2 <∞,
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Proof. The proof of this corollary can be followed directly from Theorem 4.3.1 and by

using the same steps of Theorem 4.3.2 with keeping in mind that we have only |a2n| not
∑

k∈In

|ak|. �

4.4 Strict inclusions of hypercomplex Bq functions

In this section we give the equivalence between hypercomplex Bq functions and their

coefficients by using series expansions of homogeneous monogenic polynomials. Finally,

we prove that the inclusions Bq1 ⊂ Bq, 2 ≤ q1 < q <∞ are strict.

Theorem 4.4.1. Let 2 ≤ q <∞ and let

f(x) =

( ∞
∑

n=0

nHn,α

‖Hn,α‖Lq(∂B1)

an

)

∈ Bq.

Then,

∞
∑

n=0

2q(1−n
2 )

(

∑

k∈In

|ak|
)q

<∞.

Proof. This theorem can be proved by using the following inequality

‖ − n
(

1
2DHn,α

)

‖2

L2(∂B1)

‖Hn,α‖2
Lq(∂B1)

≥ λn3

and the same steps used in the proof of Theorem 4.3.2 . �

The rigorous statement of our idea is given by the next theorem.

Theorem 4.4.2. Let f be a hyperholomorphic function in B1(0). Then for 2 ≤ q <∞,

we have that

f =
∞
∑

n=0

nHn,α

‖Hn,α‖Lq(∂B1)
an ∈ Bq ⇐⇒

∞
∑

n=0

2q(1−n
2 )

(

∑

k∈In

|ak|
)q

<∞.

The proof can be followed from Theorems 4.3.1 and 4.4.1. �
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Remark 4.4.1. It should be remarked here that our function

f(x) =
∞
∑

n=0

nHn,α

‖Hn,α‖Lq(∂B1)
an

is more stronger than the function introduced in [44]. This means that we have con-

sidered more general class of homogeneous monogenic polynomials. Moreover, we can

characterize Bq functions (where 2 ≤ q < ∞) by their coefficients for the product of

non-normalized functions with these coefficients as it was shown in Theorem 4.4.2 for

general α (0 < |α| <∞).

Corollary 4.4.1. The inclusions Bq1 ⊂ Bq are strict for all 2 ≤ q1 < q <∞.

Proof. We can prove this corollary as follows:

Let

f(x) =
∞
∑

n=0

nHn,α

‖Hn,α‖Lq(∂B1)
an, Hn,α(x) = (y1α1 + y2α2)n, |α|2 = α2

1 + α2
2 6= 0,

and |an| =
1

2
q1
q

(1−n
2 )
.

Then,

∞
∑

n=0

2q(1−n
2 )|an|q =

∞
∑

n=0

1

2(q−q1)(
n
2 −1)

<∞, ∀q > q1

and
∞
∑

n=0

2q(1−n
2 )|an|q =

∞
∑

n=0

1 = ∞.

By Theorem 4.4.2, we have that f ∈ Bq but f /∈ Bq1 , so the inclusions are strict. �

Remark 4.4.2. We would like to emphasize that the motivation for this work lies in

the definition of weighted Bq spaces as given in section 2.4 (see also [41]) and not the Bq
s

spaces studied in sections 2.2 and 2.3. The strict inclusions ensure that the Bq-spaces

form a scale consisting in spaces, all different from the Bloch space.
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4.5 BMOM, VMOM spaces and modified Möbius invariant property

In 2001, Bernstein (see e.g. [20, 21]) studied the space BMOM in the sense of Carleson

measure and she gave the following definitions:

Definition 4.5.1 [20]. An integrable function f on S2 belongs to BMOM(S2) if the

Poisson integral of f

P [f ](a) =

∫

S2

P (a, x)f(x)dS2
x P (a, x) =

1 − |a|2
|x− a|3 , x ∈ S2, a ∈ B1(0),

is a hyperholomorphic function in the unit ball B1(0) and ||f ||∗ <∞, where

||f ||∗ := sup
a∈B1(0)

P [|f − P [f ](a)|](a) = sup
a∈B1(0)

∫

S2

|f − P [f ](a)|dµa,

with

dµa =
1

m(S2)

1 − |a|2
|x− a|3 dS

2.

Definition 4.5.2 [20]. We denote by BMOM(B1(0)) the space of those hyperholomor-

phic functions in the unit ball B1(0) which can be represented by a Poisson integral of a

function which belongs to BMO(S2).

In [20] and [21] it is proven that the norm ||.||∗ is equivalent to the standard BMO

norm on the unit sphere S2 for hyperholomorphic (monogenic) functions of bounded mean

oscillation. Thus: Definition 4.5.1 tells us that f ∈ BMOM(S2) if and only if F = P [f ]

is a hyperholomorphic function in B1(0) and f ∈ BMO(S2). But this equivalent to

Definition 4.5.2. In this sense the spaces BMOM(B1(0)) and BMOM(S2)describe the

same set of functions.

Clifford algebras are extremely well studied to describe conformal mappings in R3 in

a way like that one used in the complex plane C (see [7]). The transformation of the

Dirac operator is quite different from the complex plan. We mention here the attempt

by Cnops and Delanghe to describe this property in higher dimensions (see [23]).
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We know from [79] that, if f is monogenic function, then so is 1−x̄a
|1−āx|3 f(ϕa(x)). By this

transformation, we can define the modified Möbius invariant property in R3 as follows:

For a ∈ B1(0) let the Möbius hyperholomorphic function ϕa(x) : B1(0) → H be

defined by:

ϕa(x) = (a− x)(1 − āx)−1.

For a hyperholomorphic function f on the unit ball of R
3 and a point a ∈ B1(0), we will

call 1−x̄a
|1−āx|3 f(ϕa(x)) a modified Möbius transform of a function f.

Analogously to the complex case, the Hardy space Hp (0 < p < ∞) of monogenic

functions in R3 is defined as follows:

‖f‖p
Hp = sup

0<r<1

∫

∂Br(0)

|f(x)|pdΓx <∞.

We refer to [65] for more information about the theory of these spaces.

In Clifford Analysis as stated in [65], we recall that a locally integrable function f

belongs to BMO(R3) if

sup
G

1

|G|

∫

G

|f(x) − fG|dx < +∞,

where the supremum is taken over all cubes G in R3, and fG is the integral mean of f

on G.

We recall that the Poisson integral of f is denoted by P [f ] and defined by

P [f ](a) =

∫

∂B1(0)

f(x)P (a, x)dBx, (4.19)

where the Poisson kernel in R3 is given by

P (a, x) =
1 − |a|2
|1 − āx|3 .

The space BMOM(B1(0)) is the space of those hyperholomorphic functions in the unit

ball B1(0) which can be represented by a Poisson integral of a function which belongs to

BMO(∂B1(0) = S2). Now, given p ∈ (0,∞) and f ∈ kerD, we define
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Definition 4.5.3.

‖f‖BMOMp
= sup

a∈B1(0)

∣

∣

∣

∣

∣

∣

∣

∣

1 − x̄a

|1 − āx|3Df(ϕa(x))

∣

∣

∣

∣

∣

∣

∣

∣

Hp

. (4.20)

Thus in view of (4.19), for 0 < p < ∞ and f ∈ kerD, the following conditions are

equivalent:

1. ‖f‖BMOMp
<∞.

2. The family

{

1−x̄a
|1−āx|3Df(ϕa(x))

}

is bounded subset of Hp.

It is clear that BMOM ⊂ H1.

Definition 4.5.4. For 1 ≤ p <∞, we define

BMOMp =
{

f : f ∈ kerD with ‖f‖BMOMp
<∞

}

. (4.21)

Definition 4.5.5. For 1 ≤ p <∞, we define

VMOM =

{

f : f ∈ kerD with lim
|a|→1−

∣

∣

∣

∣

∣

∣

∣

∣

1 − x̄a

|1 − āx|3Df(ϕa(x))

∣

∣

∣

∣

∣

∣

∣

∣

Hp

= 0

}

. (4.22)

Theorem 4.5.1. Let f be a hyperholomorphic function in the unit ball B1(0). Then for

all a ∈ B1(0), we have that

BMOM ⊂ Q1.

Proof. Since,

∫

B1(0)

|Df(x)|2
(

1 − |ϕa(x)|2
)

dBx ≤
∫

B1(0)

|Df(x)|2dBx.

Then by using a change of variables in the right integral, we obtain

∫

B1(0)

|Df(x)|2
(

1 − |ϕa(x)|2
)

dBx ≤
∫

B1(0)

∣

∣Df(ϕa(x))
∣

∣

2

(

1 − |a|2
)3

|1 − āx|6
dBx.
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Here, we used the Jacobian determinant given by (2.4). As in the previous chapters we

will use the hyperholomorphic function 1−x̄a
|1−āx|3

Df(ϕa(x)). Then,

∫

B1(0)

|Df(x)|2
(

1 − |ϕa(x)|2
)

dBx

≤
∫

B1(0)

∣

∣

∣

∣

1 − x̄a

|1 − āx|3Df(ϕa(x))

∣

∣

∣

∣

2
∣

∣1 − x̄a
∣

∣

(

1 − |a|2
)3

|1 − x̄a|3
dBx. (4.23)

Substituting from (3.4) to (4.23), we obtain

∫

B1(0)

|Df(x)|2
(

1 − |ϕa(x)|2
)

dBx ≤ (1 + |a|)4
∫

B1(0)

∣

∣

∣

∣

1 − x̄a

|1 − āx|3Df(ϕa(x))

∣

∣

∣

∣

2

dBx

≤ 16

∫

B1(0)

∣

∣

∣

∣

1 − x̄a

|1 − āx|3Df(ϕa(x))

∣

∣

∣

∣

2

dBx.

Our theorem is therefore established. �

Corollary 4.5.1. Let f be a hyperholomorphic function in B1(0), then we have that

VMOM ⊂ Q1,0

where

Q1,0 =

{

f ∈ kerD : lim
|a|→1−

∫

B1(0)

|Df(x)|2
(

1 − |ϕa(x)|2
)

dBx = 0.

}

Since Qp ⊂ B, ∀0 < p < 3, then we obtain the following corollary.

Corollary 4.5.2. For the spaces BMOM and VMOM, we have

BMOM ⊂ B

and

VMOM ⊂ B0.

Remark. We want to say that in the mean time there is an article in preparation to

connect the definition of BMOM in the sense of the modified Möbius invariant property

together with the definition used Carleson measure sense ([22]).
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Chapter 5

On the order and type of basic sets of polynomials

by entire functions in complete Reinhardt domains

In this chapter we define the order and type of basic sets of polynomials of several

complex variables in complete Reinhardt domains. Then, we study the order and type

of both basic and composite sets of polynomials by entire functions in theses domains.

The property Tρ of basic and composite sets of polynomials of several complex variables

in these domains is also discussed.

5.1 Order and type of entire functions in Cn

In 1930’s , Whittaker [88] gave the definitions of the order and type of basic sets of

polynomials of a single complex variable (see also [89]). While in 1971, Nassif (see [69])

defined the order and type of basic sets of polynomials of several complex variables in

a closed hypersphere. Since that period, many results concerning the order and type of

basic sets of polynomials of one or several complex variables in the unit disk or in a closed

hypersphere were introduced (see e.g. [59] and [82]). It is of fundamental importance

in our study in the theory of basic sets of polynomials of several complex variables to

define the order and type of basic sets of polynomials of several complex variables in

complete Reinhardt domains. This is one of our main goals of this chapter. Naturally,

the following question can be considered:

If we replace the monomial polynomials in several complex variables by other infinite

set of polynomials (still providing a basis of the vector space C[z1, . . . , zn]), what sort of

entire functions can be written in a generalized type of power series where again in the

sum these polynomials replace the monomials?. Defining the order and type of such a

set of polynomials, our answers are Theorems 5.3.1, 5.3.2, 5.3.3 and 5.3.4. The answer

is that any entire function with order smaller than a given number can be represented

by this set of polynomials if their order is appropriate. Depending on what regions we

want to get (uniform) convergence, one gets the different conditions.
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It should be mentioned that this question in complete Reinhardt domains was open

for long time, while Nassif [69] has answered this question in spherical regions only.

Let C represent the field of complex variables. Let z = (z1, z2, ..., zn) be an element of

C
n; the space of several complex variables, a closed complete Reinhardt domain of radii

αsr(> 0); s ∈ I1 = {1, 2, 3, ..., n} is here denoted by Γ̄[αr] and is given by

Γ̄[αr] = Γ̄[
α1r,α2r,...,αnr

] =
{

z ∈ Cn : |zs| ≤ αsr ; s ∈ I1
}

,

where αs are positive numbers.

The open complete Reinhardt domain is here denoted by Γ[αr] and is given by

Γ[αr] = Γ[
α1r,α2r,...,αnr

] =
{

z ∈ Cn : |zs| < αsr ; s ∈ I1
}

.

Consider unspecified domain containing the closed complete Reinhardt domain Γ̄[αr].

This unspecified domain will be of radii αsr1; r1 > r, then making a contraction to this

unspecified domain, we will get the domain D̄([αr+]) = D̄([α1r
+, α2r

+, ..., αnr
+]), where

r+ stands for the right-limit of r1 at r.

Now let m = (m1, m2, ..., mn) be multi-indices of non-negative integers. The entire

function f(z) of several complex variables has the following representation:

f(z) =

∞
∑

m=0

amzm.

The order and type of entire functions of several complex variables in complete Reinhardt

domains are given as follows:

Definition 1.5.1 [40, 77]. The order ρ of the entire function f(z) for the complete

Reinhardt domain Γ̄[αr] is defined as follows:

ρ = lim
r→∞

sup
ln lnM [αr]

ln r
, (5.1)

where

M [αr] = M [α1r, α2r, ..., αnr] = max
Γ̄[αr]

∣

∣f(z)
∣

∣.
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Definition 1.5.2 [40, 77]. The type τ of the function f(z) in the closed complete

Reinhardt domain Γ̄[αr] is defined by

τ = lim
r→∞

sup
lnM [αr]

rρ
, (5.2)

where 0 < ρ < ∞. Also, as given in [40] and [77], we state the following fundamental

results about the order and type of the entire function f(z) in the closed complete

Reinhardt domain Γ̄[αr] as follows:

Theorem A [40, 77]. The necessary and sufficient condition that the entire function

f(z) of several complex variables should be of order ρ in the closed complete Reinhardt

domain Γ̄[αr] is that

ρ = lim
<m>→∞

sup
< m > ln< m >

− ln
(

|am|
∏n

s=1 α
ms
s

) , (5.3)

where < m >= m1 +m2 + ...+mn.

Theorem B [40, 77]. The necessary and sufficient condition that the entire function

f(z) of several complex variables of order ρ in the closed complete Reinhardt domain

Γ̄[αr] should be of type τ is that

τ =
1

eρ
lim

<m>→∞
sup< m >

{

|am|
n
∏

s=1

αms
s

}

ρ
<m>

, (5.4)

where 0 < ρ <∞.

For more details about the study of order and type of entire functions in several

complex variables we refer to [56], [77] and [84]. It should be mentioned here also the

work of both order and type by using monogenic functions (see [4]).

The Cannon sum for this set in the complete Reinhardt domains with radii αsr is

given as follows:

Ω
(

Pm, [αr]
)

=
n
∏

s=1

α−ms
s

∑

h

∣

∣P̄m,h

∣

∣M
(

Pm, [αr]
)

,
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where

M
(

Pm, [αr]
)

= max
Γ̄[αr]

∣

∣Pm[z]
∣

∣.

The Cannon function is defined by:

Ω
(

P, [αr]
)

= lim
<m>→∞

{

Ω
(

Pm, [αr]
)

}
1

<m>

.

5.2 Order and type of basic sets of polynomials in complete Reinhardt do-

mains.

The aim of this section is to define the order and type of basic sets of polynomials of

several complex variables zs; s ∈ I1 in the closed complete Reinhardt domain Γ̄[αr], then

we deduce the order of the composite set of polynomials of several complex variables in

the same domain.

Now, we define the order of a basic set of polynomials of several complex variables in

the closed complete Reinhardt domain Γ̄[αr] as follows:

Definition 5.2.1. The order Ω of the basic set of polynomials of several complex vari-

ables in the closed complete Reinhardt domain Γ̄[αr] is given by:

Ω = lim
r→∞

lim
〈m〉→∞

sup
ln Ω

(

Pm, [αr]
)

< m > ln< m >
.

If 0 < Ω <∞, then the type G of the basic set {Pm[z]} is defined as follows:

Definition 5.2.2. The typeG of the basic set of polynomials of several complex variables

in the closed complete Reinhardt domain Γ̄[αr] is given by

G = lim
r→∞

e

Ω
lim

<m>→∞
sup

1

< m >

{

Ω
(

Pm, [αr]
)

}
1

<m> Ω

.

The significance of the order and type of the basic set {Pm[z]} of polynomials of several

complex variables zs; s ∈ I is realized from the following theorem.
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Theorem 5.2.1. A necessary and sufficient condition for the Cannon set {Pm[z]} to

represent in the whole finite space Cn all entire functions of increase less than order p

and type q, is that

lim
<m>→∞

sup

{

epq

< m >

}
1
p
{

Ω
(

Pm, [αr]
)

}
1

<m>

≤ 1, for every r > 0,

where 0 < p <∞ and 0 < q <∞.

Proof. The proof can be carried out very similar to that given by Cannon in the case

of a single complex variable (c.f. [25]), therefore it will be omitted.

Kishka [50] defined the composite set of polynomials of several complex variables

whose constituent sets are basic sets of polynomials of several complex variables as the

following product element:

Q1,m(1) [z1]Q2,m(2) [z2] = Qm∗ [z1, z2] = Qm∗ [z1, z2, ..., zν, ..., zν+µ] = Qm∗ [z∗], (5.5)

where, m(1) = (m1, m2, m3, ..., mν), m(2) = (mν+1, mν+2, mν+3, ..., mν+µ) and m∗ =

(m1, m2, m3, ..., mν, mν+1, ..., mν+µ) are multi-indices of non-negative integers,

z1 = (z1, z2, ..., zν), z2 = (zν+1, zν+2, ..., zν+µ) and z∗ = (z1, z2, ..., zν , zν+1, ..., zν+µ).

The sequence {Qm∗ [z∗]} is a set of polynomials of the several complex variables

z∗. This set is here defined as the composite set of polynomials whose constituents are

the sets {Q1,m(1) [z1]} and {Q2,m(2) [z2]} and this set is basic when the constituent sets

{Q1,m(1) [z1]} and {Q2,m(2) [z2]} are basic.

Now, since {Q1,m(1) [z1]} and {Q2,m(2)[z2]} are basic, then

zm(1)

1 =
∑

i

Q̄1,(m(1),i)Q1,i[z1], (5.6)

zm(2)

2 =
∑

j

Q̄2,(m(2),j)Q2,j[z2], (5.7)

zm(1)

1 zm(2)

2 =
∑

i,j

Q̄1,(m(1),i)Q̄2,(m(2),j)Q1,i[z1]Q2,j[z2]

=
∑

i,j

Q̄(m(1),m(2);i,j)Qi,j[z
∗] =

∑

h∗

Q̄(m∗,h∗)Qh∗ [z∗], (5.8)
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where i are multi-indices of non-negative ν integers, j are multi-indices of non-negative

µ integers and h∗ are multi-indices of non-negative ν + µ integers.

To establish the fundamental inequality concerning the Cannon function of the com-

posite set of polynomials of the several complex variables z∗, we can proceed very similar

as in Kishka [50] to obtain

Ω
(

Qm∗ , [α∗r∗]
)

= Ω
(

Q1,m(1) , [α(1)r(1)]
)

Ω
(

Q2,m(2) , [α(2)r(2)]
)

, (5.9)

where, α(1)r(1) = α1r, α2r, ...., ανr, α(2)r(2) = αν+1r, αν+2r, ..., αν+µr and α∗r∗ =

α1r, α2r, ..., ανr, ..., αν+µr. Replacing r by R, we can obtain the definitions of α(1)R(1),

α(2)R(2) and α∗R∗, all of these quantities will be used in section 5.3.

Now, suppose that for the Cannon sets {Q1,m(1)[z1]} and {Q2,m(2)[z2]}, the first set

of polynomials has order Ω1 and type G1 and the other set of polynomials has order Ω2

and type G2. We shall take the first set {Q1,m(1)[z1]} to be the greater increase. That

is to say either Ω1 > Ω2 or Ω1 = Ω2 and G1 > G2.

We shall evaluate in what follows the order Ω of the composite set in terms of the

increase of the constituent sets.

Theorem 5.2.2. Let {Q1,m(1) [z1]} and {Q2,m(2)[z2]} be Cannon sets of polynomials

of several complex variables of respective orders Ωl , l = 1, 2. Then the composite set

{Qm∗ [z∗]} is of order Ω = max
{

Ω1,Ω2

}

.

Proof. We first show that the order Ω of the composite set

{Qm∗ [z∗]} is equal to the greater order Ω1. In fact, from equality (5.9), we have

lim
<m∗>→∞

sup
ln Ω

(

Qm∗ , [α∗r∗]
)

< m∗ > ln < m∗ >

≥ lim
<m(1)>→∞

sup
ln
(

Ω
(

Q1,m(1) , [α(1)r(1)]
)

Ω
(

Q1,0 , [0]
))

< m(1) > ln < m(1) >

= lim
<m(1)>→∞

sup
ln Ω

(

Q1,m(1) , [α(1)r(1)]
)

< m(1) > ln < m(1) >
. (5.10)
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Thus, as r → ∞, it follows that

Ω = lim
r→∞

lim
<m∗>→∞

sup
ln Ω

(

Qm∗ , [α∗r∗]
)

< m∗ > ln < m∗ >

≥ lim
r→∞

lim
<m(1)>→∞

sup
ln Ω

(

Q1,m(1) , [α(1)r(1)]
)

< m(1) > ln < m(1) >
= Ω1. (5.11)

Now, if Ω1 = ∞, there is nothing to prove ; if Ω1 < ∞, let Ω∗ be any finite number

greater than Ω, then we obtain







Ω
(

Q1,m(1) , [α(1)r(1)]
)

< k1

(

< m(1) >
)<m(1)>Ω∗

Ω
(

Q2,m(2) , [α(2)r(1)]
)

< k2

(

< m(2) >
)<m(2)>Ω∗

(5.12)

where, k1, k2 be constants > 1. Finally, introducing (5.12) in (5.9), we obtain

Ω
(

Qm∗ , [α∗r∗]
)

≤ k
(

< m∗ >
)<m∗> Ω∗

. (5.13)

Hence, as < m∗ >→ ∞, using (5.9) and (5.13) yields

Ω = lim
r→∞

lim
<m∗>→∞

sup
ln Ω

(

Qm∗ , [α∗r∗]
)

< m∗ > ln < m∗ >
≤ Ω∗,

since Ω∗ can be chosen arbitrary near to Ω1, it follows that

Ω∗ ≤ Ω1. (5.14)

So, from (5.11) and (5.14) we obtain Ω∗ = Ω1, as required. �

5.3 Tρ property of basic sets of polynomials in complete Reinhardt domains

The subject of Tρ property of basic sets of polynomials of a single complex variable

was initiated by Eweida [35]. In this section a study concerning Tρ property of basic

and composite sets of polynomials of several complex variables in complete Reinhardt

domains is carried out.

Now, we define Tρ property in complete Reinhardt domains as follows:
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If 0 < ρ <∞, then

1. A Cannon set is said to have property Tρ in the closed complete Reinhardt domain

Γ̄[αr] ; r > 0, if it represents all entire functions of order less than ρ in Γ̄[αr].

2. A Cannon set is said to have property Tρ in the open complete Reinhardt domain

Γ[αr] ; r > 0, if it represents all entire functions of order less than ρ in Γ[αr].

3. A Cannon set is said to have property Tρ in the domain D̄([αr+]) =

D̄([α1r
+, α2r

+, ..., αnr
+]); r ≥ 0(r+ is defined as above), if it represents every entire

function of order less than ρ in some complete Reinhardt domains surrounding D̄[αr].

Let

Ω
(

P, [αr]
)

= lim
<m>→∞

sup
ln Ω

(

Pm, [αr]
)

< m > ln< m >
. (5.15)

Then the order ρ of the Cannon set {Pm[z]} is

ρ = lim
r→∞

Ω
(

P, [αr]
)

. (5.16)

Since Ω
(

P, [αr]
)

is an increasing function of αsr; s ∈ I1, then we have

lim
r→R−

Ω
(

P, [αr]
)

= Ω
(

P, [αR−]
)

and

lim
r→R+

Ω
(

P, [αr]
)

= Ω
(

P, [αR+]
)

which implies that,

Ω
(

P, [αR−]
)

≤ Ω
(

P, [αR]
)

≤ Ω
(

P, [αR+]
)

,

where R+ stands for the right-limit of r at R and R− for the left-limit of r at R.
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Theorem 5.3.1. Let {Pm[z]} be a Cannon set of polynomials of the several complex

variables zs; s ∈ I1 and suppose that the function f(z) is an entire function of order less

than ρ. Then the necessary and sufficient condition for the set {Pm[z]} to have

(i) property Tρ in Γ̄[αr] is Ω
(

P, [αr]
)

≤ 1
ρ

,

(ii) property Tρ in Γ[αr] is Ω
(

P, [αr−]
)

≤ 1
ρ , where αr− = α1r

−, α2r
−, ..., αnr

− mean the

left limits of the radii of Γ[αr] at α1r, α2r, ..., αnr respectively,

(iii) property Tρ in the domain D̄([αr+]) is Ω
(

P, [αr+]
)

≤ 1
ρ .

Proof. To prove case(i), we suppose that the function f(z) is of order ρ1(< ρ), take

two numbers ρ2 and ρ3 such that

ρ1 < ρ2 < ρ3 < ρ. (5.17)

From (5.16), there exists an integer k1 such that

Ω
(

Pm, [αr]
)

<
{

< m >
}

<m>
ρ3 for < m > > k1. (5.18)

If we write

f(z) =

∞
∑

m=0

amzm,

then according to (5.3), there exists an integer k2 such that

|am|
n
∏

s=1

αms
s <

{

< m >
}

−<m>
ρ2 for < m > > k2. (5.19)

Let k3 = max{k1, k2}, then (5.17), (5.18) and (5.19) together yield for < m > > k3 that,

|am|
n
∏

s=1

αms
s α−ms

s

∑

h

∣

∣P̄m,h

∣

∣M
(

Ph, [αr]
)

<
{

< m >
}

−<m>
ρ2 Ω

(

Pm, [αr]
)

<
{

< m >
}<m>( 1

ρ3
− 1

ρ2
)
.
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Hence,

lim
<m>→∞

sup

{

|am|
∑

h

∣

∣P̄m,h

∣

∣M
(

Ph, [αr]
)

}
1

<m>

< lim
<m>→∞

sup
{

< m >
}( 1

ρ3
− 1

ρ2
)

= 0.

Therefore, the set {Pm[z]} represents the function f(z) in Γ̄[αr].

To show condition (i) is necessary, suppose that

Ω
[

P, [αr]
]

> 1
ρ
, then there exists k1 and k2 such that

Ω
[

P, [αr]
]

≥ 1

k1
>

1

k2
>

1

ρ
.

Hence, there exists a subsequence m → ∞ of multi-indices, such that

Ω
(

Pm, [αr]
)

≥
{

< m >
}

<m>
k1 for < m > > N, (5.20)

where, N be an integer.

Suppose now that f(z) is an entire function of increase less than order k2 and type q,

then (5.20) yields

lim
<m>→∞

sup

{

ek2q

< m >

}
1

k2
{

Ω
(

Pm, [αr]
)

}
1

<m>

≥ lim
<m>→∞

sup
[

ek2q
]

1
k2
{

< m >
}

1
k2

− 1
k1 = ∞. (5.21)

Thus , according to Theorem 5.2.1, there is at least one entire function of order k2 < ρ,

which is not represented by the basic set in Γ̄[αr]. This completes the proof of (i).

Case(ii) :

If Ω
(

P, [αR−]
)

≤ 1
ρ , then Ω

(

P, [αr]
)

≤ 1
ρ ; 0 < r < R. Thus the set {Pm[z]} has

property Tρ in Γ̄[αr] ; i.e., in Γ[αR] and hence the condition (ii) is sufficient.

To show condition (ii) is necessary suppose that Ω
(

P, [αR−]
)

> 1
ρ

; then

Ω
(

P, [αr]
)

> 1
ρ ; 0 < r < R ; i.e., the set {Pm[z]} can’t have property Tρ in Γ̄[αr] ; i.e.,

in Γ[αR] and hence the condition (ii) is necessary.
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Case(iii) :

If Ω
(

P, [αR+]
)

≤ 1
ρ , then we can choose r > R, such that Ω

(

P, [αr]
)

≤ 1
ρ .

Thus the set {Pm[z]} has property Tρ in Γ̄[αr] ; i.e., the set represents every entire

function of order less than ρ in some complete Reinhardt domains surrounding D̄([αR])

and the condition (iii) is sufficient.

If Ω
(

P, [αR+]
)

> 1
ρ ; then Ω

(

P, [αr]
)

> 1
ρ for all r > R. Hence the set {Pm[z]}

can’t have property Tρ in Γ̄[αr] for all r > 0 ; i.e., in any complete Reinhardt domain

surrounding D̄([αR]). Therefore the proof is completely established. �

Now, we introduce property Tρ of composite sets of polynomials of several complex

variables in terms of Tρ property of their constituents. The following result is concerning

with this property.

Theorem 5.3.2. Let {Q1,m(1) [z1]} and {Q2,m(2)[z2]} be two Cannon sets of polynomials

of several complex variables and suppose that {Qm∗ [z∗]} is their composite set. Then

the set {Qm∗ [z∗]} has property Tρ in Γ̄[α∗r∗] ; if and only if , the set {Q1,m(1)[z1]} has

property Tρ1
in Γ̄[α(1)r(1)] and the set {Q2,m(2) [z2]} has property Tρ2

in Γ̄[α(2)r(2)] , where

ρ = min{ρ1, ρ2}.

Proof. Suppose that the set {Q1,m(1)[z1]} has property Tρ1
in Γ̄[α(1)r(1)], then according

to Theorem 5.3.1, we have

Ω
(

Q1, [α
(1)r(1)]

)

≤ 1

ρ1
, and Ω

(

Q2, [α
(2)r(2)]

)

≤ 1

ρ2
, (5.22)

where

Ω
(

Q1, [α
(1)r(1)]

)

= lim
<m(1)>→∞

sup
ln Ω

(

Q1,m(1) , [α(l)r(1)]
)

< m(1) > ln< m(1) >
and (5.23)

Ω
(

Q2, [α
(2)r(2)]

)

= lim
<m(2)>→∞

sup
ln Ω

(

Q2,m(2) , [α(2)r(2)
)

< m(2) > ln< m(2) >
. (5.24)

If ρ′ < ρ = min{ρ1, ρ2}, then from (5.22), (5.23) and (5.24), we get

Ω
(

Q1,m(1), [α(1)r(1)]
)

< k1

{

< m(1) >
}

<m
(1)>
ρ′ and (5.25)
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Ω
(

Q2,m(2) , [α(2)r(2)]
)

< k2

{

< m(2) >
}

<m
(2)>
ρ′ . (5.26)

Introducing (5.25) and (5.26) in (5.19) it follows that

Ω
(

Qm∗ , [α∗r∗]
)

< k
{

< m(1) >
}

<m
(1)>
ρ′

{

< m(2) >
}

<m
(2)>
ρ′ . (5.27)

Hence , as < m(∗) >→ ∞, we see that

Ω
(

Q, [α∗r∗]
)

= lim
<m∗>→∞

sup
ln Ω

(

Qm∗ , [α∗r∗]
)

< m∗ > ln< m∗ >
≤ 1

ρ′
,

since, ρ′ can be chosen arbitrary near to ρ, we infer that

Ω
(

Q, [α∗r∗]
)

≤ 1

ρ
,

thus in view of Theorem 5.3.1 case (i), the composite set {Qm∗ [z∗]} has property Tρ in

Γ̄[α∗r∗] ; r > 0. To complete the proof , suppose that the set {Q1,m(1) [z1]} for example

does not have property Tρ1
in Γ̄[α(1)r(1)] , then

Ω
(

Q1, [α
(1)r(1)]

)

>
1

ρ1
.

Hence,

Ω
(

Q, [r∗]
)

= lim
<m∗>→∞

sup
ln Ω

(

Qm∗ , [α∗r∗]
)

< m∗ > ln< m∗ >

≥ lim
<m(1)>→∞

sup
ln Ω

(

Q1,m(1) , [α(1)r(1)]
)

〈m(1)〉 ln< m(1) >
= Ω

(

Q1, [α
(1)r(1)]

)

>
1

ρ1
.

Therefore, according to Theorem 5.3.1 (ii), the set {Qm∗ [z∗]} can’t have property Tρ1
in

Γ̄[α∗r∗] ; r > 0, accordingly the composite set can’t have property Tρ in Γ̄[α∗r∗] ; r > 0

for any ρ ≤ ρ1, hence in the case where ρ2 ≥ ρ1, the composite set can’t have property

Tρ, where ρ = min{ρ1, ρ2}.

In the case where ρ2 < ρ1, we have ρ = min{ρ1, ρ2} = ρ2 and hence the compos-

ite set can’t have property Tρ in Γ̄[α∗r∗] ; r > 0. Thus Theorem 5.3.2 is completely

established. �
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Theorem 5.3.3. The necessary and sufficient condition for the composite set {Qm∗ [z∗]}
of polynomials of several complex variables to have property Tρ in Γ[α∗R∗] ; R > 0 is

that their constituent Cannon sets {Q1,m(1) [z1]} and {Q2,m(2)[z2]}, have properties Tρ1

and Tρ2
in Γ[α(1)r(1)] and Γ[α(2)r(2)] respectively, where ρ = min{ρ1, ρ2}.

Proof. Suppose that the sets {Q1,m(1)[z1]} and {Q2,m(2) [z2]} have properties Tρ1
and

Tρ2
in Γ[α(1)R(1)] and Γ[α(2)R(2)] respectively, then according to Theorem 5.3.1 , it follows

that

Ω
(

Q1, α
(1)R−]

)

≤ 1

ρ1
and Ω

(

Q2, α
(2)R−]

)

≤ 1

ρ2
.

Hence , Ω
(

Q1, [α
(1)r(1)]

)

≤ 1
ρ1

and Ω
(

Q2, [α
(2)r(2)]

)

≤ 1
ρ2

for a positive number r < R,

thus the set {Q1,m(1) [z1]} has property Tρ1
in Γ[α(1)r(1)] and the set {Q2,m(2)[z2]} has

property Tρ2
in Γ[α(2)r(2)] ; 0 < r < R. Thus according to Theorem 5.3.1 the composite

set {Qm∗ [z∗]} has property Tρ in Γ[α∗R∗] ; R > 0.

To prove that the condition is necessary, suppose for example that the set {Q1,m(1) [z1]}
does not have property Tρ1

in Γ[α(1)R(1)]. Then there exists a positive number r(< R) such

that Ω
(

Q1, [α
(1)r(1)]

)

> 1
ρ1
, that is to say , the set {Q1,m(1)[z1]} does not have property

Tρ1
in Γ[α(1)r(1)] and consequently the composite set {Qm∗ [z∗]} can’t have property Tρ

in Γ[α∗r∗] ; i.e. in Γ[α∗R∗]; R > 0. Therefore, Theorem 5.3.3 is proved. �

Theorem 5.3.4. The necessary and sufficient condition for the composite basic set

{Qm∗ [z∗]} of polynomials of several complex variables to have property Tρ in the domain

D̄([α∗R∗+]) is that their constituent sets {Q1,m(1)[z1]} and {Q2,m(2) [z2]} each of which is

a Cannon set, and these sets have properties Tρ1
and Tρ2

in the domains D̄([α(1)R+(1)
])

and D̄([α(2)R+(2)
]) respectively, where ρ = min{ρ1, ρ2}, D̄([α(1)R+(1)

]) and

D([α(2)R+(2)
]) mean unspecified domains containing the closed complete Reinhardt

domains Γ̄[α(1)R+(1)] and Γ̄[α(2)R+(2)] respectively.

Proof. Suppose that the sets {Q1,m(1)[z1]} and {Q2,m(2) [z2]} have properties Tρ1
and

Tρ2
in D̄([α(1)R(1)]) and D̄([α(2)R(2)]) respectively. Then there exists a positive number
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β > R , such that

Ω
(

Q1, [α
(1)β(1)]

)

≤ 1

ρ1
and Ω

(

Q1, [α
(1)β(1)]

)

≤ 1

ρ1
.

Consequently, the sets {Q1,m(1) [z1]} and {Q2,m(2)[z2]} have properties Tρ1
and Tρ2

in

the domains D̄([α(1)β(1)]) and D̄([α(2)β(2)]) respectively, that is to say the composite

set {Qm∗ [z∗]} has property Tρ in D̄([α∗β∗]); where β(1),β(2) and β∗ are positive num-

bers running analogously to R(1), R(2) and R∗ respectively. Hence the composite set

{Qm∗ [z∗]} has property Tρ in the domain D̄([α∗R∗+]) and the condition is sufficient.

Suppose now for example that, the set {Q1,m(1) [z1]} does not have property Tρ1
in

the domain D̄([α(1)R+(1)
]), then it follows that

Ω
(

Q1, [α
(1)R+(1)

]
)

>
1

ρ1

from which we get,

Ω
(

Q, [α∗R∗+]
)

≥ Ω
(

Q1, [α
(1)R+(1)

]
)

>
1

ρ1
,

then the composite set can’t have property Tρ1
in the domain D̄([α∗R∗+]), i.e. the

composite set can’t have property Tρ in the domain D̄([α∗R∗+]). Therefore, Theorem

5.3.4 is completely established. �
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Chapter 6

On the representation of holomorphic functions

by basic series in hyperelliptical regions

The representation of holomorphic functions of several complex variables by basic sets

of polynomials of several complex variables in hyperelliptical regions is the subject of

this chapter. Various conditions relating to the convergence properties (effectiveness) of

basic sets of polynomials in Cn are treated here with particular emphasis on distinction

between the spherical and hyperelliptical regions. The treatment needs more cautious

handling, for example, the power series expansion of a function holomorphic on the

hyperellipse is considered and its monomials are replaced by infinite series of basic sets

of polynomials, and formation of the associated series of such basic sets is taken for

granted without due regard in particular, to the conditions that ensure the convergence

of the series which give the coefficients (this means we will use the maximum modulus

of the holomorphic function to obtain the convergence properties of the basic sets of

polynomials in hyperelliptical regions). Also, constructions for Cannon function and

Cannon sum were given in hyperelliptical regions. However Corollary 6.3.1 obtained in

the end of this chapter do enlighten one of the extent to which the ideas are workable.

6.1 Convergence properties of basic sets of polynomials in Cn

In this chapter we aim to establish certain convergence properties of basic sets of

polynomials of several complex variables in an open hyperellipse, in a closed hyperel-

lipse and in the region D
(

Ē[R+]

)

which means unspecified domain containing the closed

hyperellipse E[R+]. Such study was initiated by Mursi and Makar [67, 68], Nassif [69,

70] and Kishka and others (see e.g. [50, 51, 52, and 53]), where the representation in

polycylinderical and spherical regions has been considered. Also, we should mention that

there have been some studies on basic sets of polynomials such as in Clifford Analysis

(cf. [1, 2, 3, 4]) and in Faber regions (cf. [70] and [83]). This study will here modified

on the assumption that the regions of representation will be hyperelliptical regions.
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The problem we dealt with may be described as follows:

Given a linearly independent set of polynomials of several complex variables in hyper-

elliptical regions, under which conditions can each function belonging to a certain class

of holomorphic functions of several complex variables be expanded into these basic sets

of polynomials.? We call these conditions, conditions for effectiveness, or conditions for

convergence. One can see the answers in sections 6.2 and 6.3 of this chapter.

A terminology which proceeds from Whittaker, who started the theory of basic sets

of polynomials of one complex variable in the early thirties. A significant contribution

to this theory was made shortly afterwards by Cannon (see [25]), who gave necessary

and sufficient conditions for the effectiveness of basic sets of polynomials in classes of

holomorphic functions with finite radius of regularity and of entire functions.

Definition 6.1.1[5]. The base {zn} is called an absolute base for the Banach space T ,

if and only if the series

∞
∑

n=0

zn(x)Si(zn)

is convergent in R, for all integers i ≥ 0 and for all x ∈ T . Thus in this case we can write

∞
∑

n=0

∣

∣zn(x)Si(zn)
∣

∣ = Qi(x) <∞.

where T denotes a Banach space and L = (Si)
∞
0 is countable set of continuous norms

defined on T such that i < j ⇒ Si(x) ≤ Sj(x), where, x ∈ T.

Adepoju [5] obtained the following result:

Theorem A [5]. Suppose that {zn} is an absolute base for T . Then the basic set {Pn}
will be effective for T , if and only if, for each norm Si ∈ L, there is a norm Sj ∈ L and

positive finite number Ki,j such that

Qi(zn) ≤ Ki,j Sj(zn) ; n ≥ 0. (6.1)

Now, suppose that the Banach space T is a subspace of a Banach space T ∗ with contin-

uous norm δ which is such that

δ(x) ≤ Si(x) ; (x ∈ T , i ≥ 0),
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where L =
(

Si

)∞

0
is the family of norms defined; as before, in the space T . A set

{

Pn

}∞

0
is said to be effective for T in T ∗ if the basic series x =

∞
∑

n=0
πn(x)Pn, where

πn(x) =
∞
∑

k=0

πn(zk)zn(x); k ≥ 0 (πn(x) be the coefficients and Pn be polynomials, then

the space T consists of polynomials) associated with the element x converges in T ∗ to

the element x for all x ∈ T . Write

Qi(x) = max
µ,ν

Si

{ ν
∑

n=µ

πn(x)Pn

}

.

With the above notation, Adepoju [5] obtained the following result which is concerning

with the effectiveness of the basic set {Pn} for T in T ∗.

Theorem B [5]. Suppose that {zn} is an absolute base for T . Then the basic set {Pk}
will be effective for T in T ∗, if and only if, there is a norm Si ∈ L and a constant Ki

such that

Qδ(zn) ≤ KiSi(zn) ; n ≥ 0.

We will need the following result in the sequel:

Theorem C [51, 67, 68, 69]. A necessary and sufficient condition for a Cannon (or

general) basic set {Pm[z]} to be effective

(i) in Sr is that

Ω[P, r] = r (or χ1[P, r] = r),

(ii) in SR is that

Ω[P, r] < R ∀ r < R (or (χ1[P, r] < R ∀ r < R),

(iii) for all entire functions is that

Ω[P, r] <∞ (or (χ1[P, r] <∞ ∀ r <∞),

(iv) in D(Sr) is that Ω[P, r+] = r (or χ1[P, r+] = r),
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(v) at the origin is that Ω[P, 0+] = 0 (or χ1[P, 0+] = 0).

In the space of several complex variables Cn, an open hyperelliptical region

n
∑

s=1

|zs|
2

r2
s

< 1 is here denoted by E[r] and its closure
n
∑

s=1

|zs|
2

r2
s

≤ 1, by E[r], where rs;

s ∈ I1 are positive numbers. In terms of the introduced notations these regions satisfy

the following inequalities:

E[r] = {w : |w| < 1} (6.2)

E[r] = {w : |w| ≤ 1}, (6.3)

where w = (w1, w2, w3, ..., wk) , ws = zs

rs
; s ∈ I1.

Suppose now that the function f(z), is given by

f(z) =
∞
∑

m=0

amzm, (6.4)

is regular in E[r] and

M
[

f ; [r]
]

= sup
E[r]

∣

∣f(z)
∣

∣, (6.5)

then it follows that
{

|zs| ≤ rsts ; |t| = 1
}

⊂ E[r], hence it follows that

|am| ≤ M
[

f ; [ρ]
]

ρm tm
=

M
[

f ; [ρ]
]

n
∏

s=1
ρs

msts
ms

≤ inf
|t|=1

M
[

f ; [ρ]
]

n
∏

s=1

(

ρsts
)ms

= σm

M
[

f ; [ρ]
]

n
∏

s=1
ρs

ms

(6.6)

for all 0 < ρs < rs; s ∈ I1 , where

σm = inf
|t|=1

1

tm
=

{

< m >
}

<m>
2

n
∏

s=1
m

ms
2

s

(see [69]), (6.7)

and 1 ≤ σm ≤ (
√
n)<m> on the assumption that m

ms
2

s = 1, whenever ms = 0 ; s ∈ I1.

Thus, it follows that

lim
<m>→∞

sup

{ |am|

σm

n
∏

s=1

(

rs
)<m>−ms

}
1

<m>

≤ 1
n
∏

s=1
ρs

; ρs < rs. (6.8)
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Since ρs can be chosen arbitrary near to rs; s ∈ I1, we conclude that

lim
〈m〉→∞

sup

{ |am|

σm

n
∏

s=1

(

rs
)<m>−ms

}
1

<m>

≤ 1
n
∏

s=1
rs

. (6.9)

Similar to Definitions 1.5.2 and 1.5.3, we give the following definition:

Definition 6.1.2. The associated basic series
∞
∑

m=0

Πm Pm[z] is said to represent f(z) in

1. E[r] when it converges uniformly to f(z) in E[r]

2. E[r] when it converges uniformly to f(z) in E[r],

3. D(E[r]) when it converges uniformally to f(z) in some hyperellipse surrounding the

hyperellipse E[r].

Definition 6.1.3. The basic set {Pm[z]} is said to be effective

(i) in E[r] when the associated basic series represents in E[r] every function which is

regular there,

(ii) in E[r] when the associated basic series represents in E[r] every function which is

regular there,

(iii) in D(E[r]) when the associated basic series represents in some hyperellipse surround-

ing the hyperellipse E[r] every function which is regular there, not necessarily the former

hyperellipse

(iv) at the origin when the associated basic series represents in some hyperellipse sur-

rounding the origin every function which is regular in some hyperellipse surrounding the

origin

6.2 Effectiveness of basic sets of polynomials in open and closed hyperellipse

In this section we study the representation of holomorphic (regular) functions of several

complex variables (see e.g. [78]) by basic sets of polynomials of several complex variables
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whereas the study of effectiveness of basic sets of polynomials in an open hyperellipse

and in a closed hyperellipse has been carried out.

To investigate the effectiveness in the open hyperellipse E[r], rs > 0; s ∈ I1, we take the

space T to be the class H[r] of functions regular in E[r] and L be the family of norms on T ,

then the sets of numbers
{

r
(1)
i , r

(2)
i , r

(3)
i , ..., r

(n)
i } in such away that 0 < r

(s)
0 < rs ; s ∈ I1

and

r
(s)
0

r
(j)
0

=
rs
rj

; s, j ∈ I1, (6.10)

r
(s)
1 =

1

2

[

rs + r
(s)
0

]

, r
(s)
2 =

1

2

[

rs + r
(s)
1

]

, ..., r
(s)
i+1 =

1

2

[

rs + r
(s)
i

]

, (6.11)

where, s ∈ I1 and i ≥ 0. It follows easily from (6.10) and (6.11) that

r
(j)
i

r
(s)
i

=
rj
rs

; s, j ∈ I1. (6.12)

Define the norms
{

Si

}∞

0
on L as follows:

Si(f) = M
[

f ; [r
(1)
i , r

(2)
i , r

(3)
i , ..., r

(n)
i ]
]

= max
|t|=1

max
|zs|=r

(s)
i ts

∣

∣f(z)
∣

∣. (6.13)

Since E
[r

(1)
i ,r

(2)
i ,r

(3)
i ,...,r

(n)
i ]

contains the open connected set E
[r

(1)
i ,r

(2)
i ,r

(3)
i ,...,r

(n)
i ]

, it follows

that Si is actually a norm. Therefore, the space L can be easily shown to be a Banach

space.

The base {zν} of the space L is taken to be the monomial {zm1
1 zm2

2 ...zmn
n } with a

definite mode of ordering (see [51]).

Now, for any function f ∈ L, we see in view of (6.8) that

∑

m

|am|

σm

n
∏

s=1

{

r
(s)
i

}ms

< K
∑

m

n
∏

s=1

{

r
(s)
i

rs

}ms

< K

∞
∑

η=0

(

η + n− 1

n− 1

)

γη = (1 − γ)−n <∞,

where γ = max
s∈I

{ r
(s)
i

rs

}

< 1.
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So the base {zν} = {zm1
1 zm2

2 ...zmn
n } is an absolute base.

Now suppose that {Pm[z]} be a basic set of polynomials of several complex variables

for the space T , such that the monomial zm admit the unique representation

zm =
∑

j

Pm,j Pj[z] , ms ≥ 0 ; s ∈ I1.

Therefore, the basic series associated with the function f given by (6.4) belonging to T

will be

f(z) ∼
∞
∑

j=0

Πj(f)Pj[z], (6.14)

where, Πj(f) =
n
∑

m=0
am (f)Pm,j are the basic coefficients of f .

On account to the above discussion , Theorem A about the effectiveness of the basic

set {Pn} in T, that is to say the effectiveness of the basic set {Pj[z]} in E[r] can be

applied. Now, write

G
(

Pm; [R]
)

= max
µ,ν

sup
E(R)

∣

∣

∣

∣

ν
∑

j=µ

Pm;jPj[z]

∣

∣

∣

∣

, (6.15)

where, Rs; s ∈ I are positive numbers.

The Cannon sum of the set {Pm[z]} for E[R] will be

F
(

Pm; [R]
)

= σm

n
∏

s=1

{

Rs

}<m>−ms
G
(

Pm; [R]
)

(6.16)

and the Cannon function for the same set is

χ
(

P ; [R]
)

= lim
<m〉>→∞

{

F
(

Pm; [R]
)}

1
<m> . (6.17)

Thus (6.13),(6.15), (6.16) and (6.17) together yield

χ
(

P ; [R]
)

≥
n
∏

s=1

Rs. (6.18)

The following result is concerning with the effectiveness of the basic set {Pm[z]} in E[r].
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Theorem 6.2.1. The necessary and sufficient condition for the effectiveness of the basic

set {Pm[z]} in E[r] is that

χ
(

P ; [R]
)

< α
(

[r], [R]
)

, (6.19)

where

α
(

[r], [R]
)

= max

{

r1

n
∏

s=2

Rs, rν

ν−1
∏

s=1

Rs

n
∏

s=ν

Rs, rn

n−1
∏

s=1

Rs

}

,

Proof. Given the numbers Rj < rj ; j ∈ I1 , we can choose the numbers
{

r
(s)
i }; s ∈ I1

of the sequences (6.10) such that

Rj < r
(j)
i < rj ; j ∈ I1.

Now, if the basic set {Pm[z]} is effective in E[r], then by Theorem A, given the norm Si;

determined by
{

r
(s)
i }; s ∈ I1 and there is a norm Sj ; j > i and a constant Ki,j such

that

Qi(zν) = max
µ,ν′

Si

ν′
∑

h=µ

Ph(zν)Ph[z] = max
µ,ν′

sup
E[r′]

∣

∣

∣

∣

ν′
∑

h=µ

Pm;hPh[z]

∣

∣

∣

∣

= G
(

Pm; [r′]
)

< Ki,jSj(zν) ; (ν ≥ 0), (6.20)

where E[r′] = E
[r

(1)
i ,r

(2)
i ,r

(3)
i ,...,r

(n)
i ]

.

Since,

G
(

Pm; [R]
)

< G
(

Pm; [r]
)

,

then (6.20) leads to

G
(

Pm; [R]
)

<
Ki,j

σm

n
∏

s=1

{

r
(s)
j

}ms
, (6.21)

where, Rs < r
(s)
i < rs; s ∈ I1. Hence from (6.21) and (6.16) , we get

F
(

Pm; [R]
)

≤ σm

n
∏

s=1

{

Rs

}<m>−ms
max
µ,ν′

sup
E[r′]

∣

∣

∣

∣

ν′
∑

h=µ

Pm;hPh[z]

∣

∣

∣

∣

< Ki,j

n
∏

s=1

{

Rs

}<m>−ms

n
∏

s=1

{

r
(s)
j

}ms
. (6.22)
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Now, for the numbers rs , Rs; s ∈ I1, we have at least one of the following cases

(i) R1

Rs
≤ r1

rs
; s ∈ I1 or

(ii) Rν

Rs
≤ rν

rs
; s ∈ I1 , ν = 2 or 3 or ... or n− 1, or

(iii) Rn

Rs
≤ rn

rs
; s ∈ I1

and there exists no other cases which can be obtained other than those mentioned in

(i), (ii) and (iii). Suppose now, that relation (i) is satisfied, then from the construction

of the set
{

r
(s)
i

}

, we see that

R1

Rs
≤ r1
rs

=
r
(1)
j

r
(s)
j

; s ∈ I1. (6.23)

Thus (6.22) in view of (6.23) leads to

F
(

Pm; [R]
)

≤ Ki,j

n
∏

s=1

{

r
(s)
j

ms

[

R1

Rs

]ms
} n
∏

k=2

{

Rk

}<m>

< Ki,j

n
∏

s=1

{

r
(s)
j

ms

[

r1
rs

]ms
} n
∏

k=2

{

Rk

}<m>

= Ki,j

n
∏

s=1

{

r
(s)
j

ms

[

r
(1)
j

r
(s)
j

]ms
} n
∏

k=2

{

Rk

}<m>

= Ki,j

{

r
(1)
j

n
∏

s=2

Rs

}<m>
,

which implies that

χ
(

P ; [R]
)

= lim
<m>→∞

{

F
(

Pm; [R]
)}

1
<m> ≤ r

(1)
j

n
∏

s=2

Rs < r1

n
∏

s=2

Rs. (6.24)

Also, if relation (ii) is satisfied for ν = 2 or 3 or ... or n− 1, then we shall have

Rν

Rs
≤ rν
rs

=
r
(ν)
j

r
(s)
j

; s ∈ I1. (6.25)
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Thus (6.24) in view of (6.25) leads to

F
(

Pm; [R]
)

≤ Ki,j

n
∏

s=1

{

r
(s)
j

ms[

Rs

]<m>−ms

}

< Ki,j

n
∏

s=1

{

r
(s)
j

ms

[

Rν

Rs

]ms
}{ν−1

∏

s=1

Rs

n
∏

s=ν+1

Rs

}<m>

≤ Ki,j

n
∏

s=1

{

r
(s)
j

ms

[

rν
rs

]ms
}{ν−1

∏

s=1

Rs

n
∏

s=ν+1

Rs

}<m>

= Ki,j

n
∏

s=1

{

r
(s)
j

ms

[

r
(ν)
j

r
(s)
j

]ms
}{ν−1

∏

s=1

Rs

n
∏

s=ν+1

Rs

}<m>

= Ki,j

{

r
(ν)
j

ν−1
∏

s=1

Rs

n
∏

s=ν+1

Rs

}<m>

.

Therefore,

χ
(

P ; [R]
)

≤ r
(ν)
j

ν−1
∏

s=1

Rs

n
∏

s=ν+1

Rs < rν

ν−1
∏

s=1

Rs

n
∏

s=ν+1

Rs, (6.26)

where ν = 2 or 3 or ... or n − 1. Similarly if relation (iii) is satisfied , we can

proceed very similar as above to prove that

χ
(

P ; [R]
)

< rn

n−1
∏

s=1

Rs. (6.27)

Thus, it follows in view of (6.24), (6.26) and (6.27) that

χ
(

P ; [R]
)

< α
(

[r], [R]
)

.

This proves that the condition (6.19) is necessary.

Now, suppose that
{

r
(s)
i

}

; s ∈ I1 is a set of the sequences (6.10) so that in view of

(6.11), we have r
(s)
i < rs and

r1

n
∏

s=2

r
(s)
i = r

(1)
i r2r

(3)
i ...r

(n)
i = ... = r

(1)
i r

(2)
i r

(3)
i ...r

(n−1)
i rn.
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Hence, if the condition (6.10) is satisfied , then we have

χ
(

P ; [r′]
)

= η′r
(1)
i r

(2)
i r

(3)
i ...r

(n−1)
i ; η′ < rn.

Choose
{

r
(s)
j

}

of the sequences (6.20) to satisfy η′ < r
(n)
j < rn, hence we have

χ
(

P ; [r′]
)

< r
(n)
j

n−1
∏

s=1

r
(s)
i .

Therefore, from (6.20) and (6.16), it follows that

σm

n
∏

s=1

{

r
(s)
i

}<m>−ms
G
(

Pm; [r′]
)

< K

{

r
(n)
j

n−1
∏

s=1

r
(s)
i

}<m>

.

Applying condition (6.11), we can write this relation in the form

G
(

Pm; [r′]
)

<
K

σm

n
∏

s=1

{

r
(s)
j

}ms
. (6.28)

Since Qi(z) = G
(

Pm; [r′]
)

, then (6.28) in view of (6.12) takes the form

Qi(zν) < KSj(zν).

Therefore, according to Theorem A, the basic set {Pm[z]} will be effective in E[r]. Thus

Theorem 6.2.1 is completely established. �

The effectiveness in the closed hyperellipse E[r] for the class H
(

r1, r2, ..., rn
)

is now

considered. For this purpose we take the space T ∗ to be the class H(R1, R2, ..., Rn) of

functions regular in E[r], with the norm δ defined by

δ(f) = sup
E[R]

∣

∣f(z)
∣

∣ = M
[

f ;R1, R2, ..., Rn

]

; (f ∈ T ∗). (6.29)

The subspace T of T ∗ is taken to be the class H
(

r1, r2, ..., rn
)

of functions regular in

E[R]; where Rs < rs ; s ∈ I1. Choosing the set
{

r
(s)
0

}

of numbers in such a way that

Rs ≤ r
(s)
0 < rs ;

r
(s)
0

r
(j)
0

=
rs
rj

; s, j ∈ I1,
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and construct the sequences
{

r
(s)
i

}

of numbers in the same way as in (6.10), so that

(6.11) is still satisfied. The norms L on the space T are defined as in (6.12).

If the sequence {Pm[z]} is a basic set for the space T ∗, we form as usual the basic

series associated with each f ∈ T and construct the expressions

Qδ(zν) = G
(

Pm; [R]
)

, (6.30)

F
(

Pm; [R]
)

= σm

n
∏

s=1

{

Rs

}<m>−ms
G
(

Pm; [R]
)

= σm

n
∏

s=1

{

Rs

}<m>−ms
Qδ(zν). (6.31)

Also, the Cannon function χ
(

P ; [R]
)

can be defined as in (6.17) and (6.20).

On account of the above result, Theorem 6.2.1 will be applicable to give the following

result:

Theorem 6.2.2. When the basic set {Pm[z]} is effective in the closed hyperellipse E[R];

Rs > 0 for H
(

r1, r2, ..., rn
)

, then

χ
(

P ; [R]
)

< α
(

[r], [R]
)

. (6.32)

Proof. Since the basic set {Pm[z]} is effective in the closed hyperellipse E[R] ; Rs > 0

for H
(

r1, r2, ..., rn
)

, then according to Theorem B, we have that

Qδ(zν) ≤ KiSi(zν), (6.33)

which can be written in view of (6.12) and (6.20) in the form

G
(

Pm; [R]
)

≤ Ki

σm

n
∏

s=1

{

r
(s)
i

}ms
. (6.34)

Hence from (6.16) and (6.34) we get

F
(

Pm; [R]
)

≤ Ki

n
∏

s=1

{

r
(s)
i

}ms

n
∏

s=1

{

Rs

}<m>−ms
. (6.35)
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Thus, we can proceed very similar as in (6.24), (6.26) and (6.27) to obtain the following

relations:

χ
(

P ; [R]
)

≤ r
(1)
i

n
∏

s=2

Rs < r1

n
∏

s=2

Rs,

where R1

Rs
≤ r1

rs
=

r
(1)
i

r
(s)
i

,

χ
(

P ; [R]
)

≤ r
(ν)
i

ν−1
∏

s=1

Rs

n
∏

s=ν+1

Rs < rν

ν−1
∏

s=1

Rs

n
∏

s=ν+1

Rs

where ν = 2 or 3 or ... or n− 1 ; Rν

Rs
≤ rν

rs
=

r
(ν)
i

r
(s)
i

; s ∈ I1 and

χ
(

P ; [R]
)

≤ r
(n)
i

n−1
∏

s=1

Rs < rn

n−1
∏

s=1

Rs,

where , Rn

Rs
≤ rn

rs
=

r
(n)
i

r
(s)
i

; s ∈ I1. Therefore, we deduce that

χ
(

P ; [R]
)

< α
(

[r], [R]
)

.

Thus relation (6.32) is established.

Now, for the sufficiency of the condition (6.32), the numbers rs > Rs; s ∈ I1 ; have to

accord to the restriction

r`
rs

=
R`

Rs
; `, s ∈ I1. (6.36)

Also, in this case the sequences {r(s)i } are constructed as in (6.11) with r
(s)
0 = Rs and

therefore we have from (6.12) and (6.36) the following relation:

r
(`)
i

r
(s)
i

=
r`
rs

=
R`

Rs
; `, s ∈ I1 , i ≥ 0. (6.37)

So, we obtain the following theorem:
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Theorem 6.2.3. If the numbers {rs}; s ∈ I1 are governed by the restriction (6.36),

then the basic set {Pm[z]} will be effective in the closed hyperellipse E[R] ; Rs > 0 for

H
(

r1, r2, ..., rn
)

, if and only if,

χ
(

P ; [R]
)

< α
(

[r], [R]
)

. (6.38)

Proof. The necessity of the condition (6.38) follows from Theorem 6.2.2 above.

To prove the sufficiency of the condition (6.38), we suppose that the condition is

satisfied. Then we have

χ
(

P ; [R]
)

< β

n−1
∏

s=1

Rs ; Rn ≤ β < rn.

Hence, there is a set {r(s)i }; s ∈ I1 of the sequence (6.11) for which

χ
(

P ; [R]
)

< r
(n)
i

n−1
∏

s=1

Rs ; Rn ≤ β < rn. (6.39)

Applying (6.17) ,(6.20) and (6.37) we can easily deduce from (6.39) that

G
(

Pm; [R]
)

≤ K

σm

n
∏

s=1

{

r
(s)
i

}ms
,

which in the notations (6.29) and (6.30) is equivalent to

Qδ(zν) ≤ KSi(zν).

Therefore, using Theorem B, we infer that the basic set {Pm[z]} is effective in E[R] for

H
(

r1, r2, ..., rn
)

and the theorem is completely established. �

The following results are concerning with the effectiveness of the basic set {Pm[z]} in

E[R] for H
(

r1, r2, ..., rn
)

, Rs ≤ rs; s ∈ I1.
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Theorem 6.2.4. If the basic set {Pm[z]} is effective in the closed hyperellipse E[R];

Rs > 0 for H
(

r1, r2, ..., rn
)

, then

χ
(

P ; (R)
)

≤ α
(

[r], [R]
)

. (6.40)

Proof. The proof of Theorem 6.2.4 is very similar to that of Theorem 2.4 in [51].

Theorem 6.2.5. If the numbers {rs}; s ∈ I1 are governed by the restriction (6.36),

then the basic set {Pm[z]} will be effective in the closed hyperellipse E[R]; Rs > 0 for

H
(

r1, r2, ..., rn
)

, if and only if,

χ
(

P ; (R)
)

≤ r1

n
∏

s=2

Rs

(

= rν

ν−1
∏

s=1

Rs

n
∏

s=ν+1

Rs = rn

n−1
∏

s=1

Rs

)

, (6.41)

where ν = 2 or 3 or ... or n− 1.

Proof. The proof of Theorem 6.2.5 is very similar to that of Theorem 2.5 in [51], so we

will omit the proof.

Now, making rs in (6.41) decrease to Rs; s ∈ I1, we can obtain in view of (6.19), the

necessary and sufficient condition for effectiveness of the basic set {Pm[z]} in the closed

hyperellipse E[R] as follows:

Theorem 6.2.6. The necessary and sufficient condition for the basic set {Pm[z]} of

polynomials of several complex variables to be effective in the closed hyperellipse E[R] is

that

χ
(

P ; [R]
)

=

n
∏

s=1

Rs. (6.42)

If one of the radii Rs; s ∈ I1 is equal to zero, then we will obtain the effectiveness at the

origin as in the following corollary:

Corollary 6.2.1. The necessary and sufficient condition for the basic set {Pm[z]} of

polynomials of several complex variables to be effective at the origin is that

χ
(

P ; [0+]
)

= lim
Rs→0+

χ
(

P ; [R]
)

= 0.
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6.3 Effectiveness of basic sets of polynomials in D
(

Ē[R+]

)

In this section, we consider another type for the representation of basic sets of polyno-

mials of several complex variables by entire regular function of several complex variables,

namely effectiveness in the region D
(

Ē[R+]

)

. Let D
(

Ē[R+]

)

means unspecified domain

containing the closed hyperellipse E[R+]. The basic set {Pm[z]} of polynomials of several

complex variables zs; s ∈ I1 is said to be effective in D
(

Ē[R+]

)

, if the basic series as-

sociated with every function f(z) regular in Ē[R+], represents f(z) in some hyperellipse

surrounding E[R+].

Using a similar proof to Theorem 25 of Whittaker [89] in the case of one complex

variable, we give the following theorem:

Theorem 6.3.1. Let {Pm[z]} be basic set of polynomials of several complex variables.

If

χ
(

P ; [R+]
)

≥
n
∏

s=1

ρs >

n
∏

s=1

Rs,

then, there exists a function f(z) regular in E[R+] with radii ρs such that the basic series

does not represent in any hyperellipse enclosing E[R+].

Theorem 6.3.2. The basic set {Pm[z]} of polynomials of several complex variables will

be effective in D
(

Ē[R+]

)

, if and only if,

χ
(

P ; [R+]
)

=
n
∏

s=1

Rs, (6.43)

where

χ
(

P ; [R+]
)

= lim
ρs↓Rs

χ
(

P ; [ρ]
)

.

Proof. Suppose that χ
(

P ; [R+]
)

>
n
∏

s=1
Rs, then by Theorem 6.3.1, there are numbers

ρs; s ∈ I1 such that

χ
(

P ; [R+]
)

≥
n
∏

s=1

ρs >

n
∏

s=1

Rs ∀ρs > Rs.
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Also, we have the function f(z) of radii ρs; s ∈ I1 which is regular in E[R+] and this

function and this function is associated to a basic set of polynomials. This basic set

of polynomials does not represent the function f(z) in any hyperellipse in the domain

D
(

Ē[R+]

)

, i.e., the set is not effective in D
(

Ē[R+]

)

, and hence the condition (6.43) is

necessary.

Now, suppose that

χ
(

P ; [R+]
)

=

n
∏

s=1

Rs

Let f(z) be any function regular in E[R+]. Then for some ρs > Rs; s ∈ I1, we have

χ
(

P ; [ρ]
)

≤
n
∏

s=1

ρs,

hence

χ
(

P ; [ρ]
)

=

n
∏

s=1

ρs

and so the set is effective in E[ρ], ρs > Rs; s ∈ I1. Thus the basic set represents f(z) in

D
(

E[R+]

)

and hence the condition (6.43) is sufficient. �

To get the results concerning the effectiveness in hyperspherical regions as in Theorem

C (see e.g. [6], [52], [55], [69], and [81]) as special cases from the results concerning

effectiveness in hyperelliptical regions, write rs = r; s ∈ I1 and the Cannon sum F1

[

Pm, r
]

of the set {Pm[z]} for the hypersphere Sr can be written in terms of the Cannon sum

F
[

Pm; [r]
]

of the set {Pm[z]} for the hyperellipse E[r] in the form

F1

[

Pm, r
]

=
F
[

Pm; [r∗]
]

n
∏

s=1

{

rs
}<m>−ms

=
F
[

Pm; [r∗]
]

{

r
}(n−1)<m>

,

where [r∗] = (r, r, r, ..., r) ; r is repeated n-times. Thus, if we write

χ1

[

P, r
]

= lim
<m>→∞

sup

{

F
[

Pm; [r∗]
]

r(n−1)<m>

}
1

<m>

,

we can arrive to the following result.
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Corollary 6.3.1. The effectiveness of the set {Pm[z]} in the equi-hyperellipse

1. E[r∗] implies the effectiveness of the set {Pm[z]} in the hypersphere Sr.

2. E[r∗] implies the effectiveness of the set {Pm[z]} in the hypersphere Sr and in

3. the region D
(

Ē[r∗]

)

implies the effectiveness of the set {Pm[z]} in the region D(Sr).

Since,

(a) F
[

Pm; [r∗]
]

= rn <m> =⇒ χ1

[

P, r
]

= r.

(b) F
[

Pm; [r∗]
]

<
(

rn−1ρ
)<m>

, ∀ r < ρ =⇒ χ1

[

P, r
]

< ρ, ∀ r < ρ.

(c) F
[

Pm; [r∗]
]

= rn <m> =⇒ χ1

[

P, r+
]

= r.
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List of Symbols

Bq Besov (Bq) spaces

B Bloch space
B0 littel Bloch space

Bp,q Bp,q spaces

BMOA the space of all analytic functions of bounded mean oscillation
BMOA the space of all analytic functions of bounded mean oscillation

BMOH the space of all harmonic functions of bounded mean oscillation
BMOM the space of all monogenic functions of bounded mean oscillation

� set of complex variables

� n set of several complex variables
C`n Clifford algebra over

�
n

D Dirac operator

D Dirichlet space
D Dirac operator

D(E[r]) unspecified region containing the closed hyperellipse

D(Γ̄[αr]) unspecified region containing a closed complete Reinhardt domain

E[r] open hyperellipse

E[r] closed hyperellipse

Γ[αr] open complete Reinhardt domain

Γ̄[αr] closed complete Reinhardt domains

F � Pm; [R] � Cannon sum for the general basic set in hyperellipse

F � Pm; [R] � Cannon sum for the general basic set in hyperellipse

Hp Hardy space�
set of Hamiltonian quaternions

Sr closed hypersphere
Sr closed hypersphere

Sr open hypersphere

Ker(D) kernel of the Dirac operator D

max maximum

min minimum�
set of natural numbers�

0 set of non-negative integers

{Pm[z]} basic set of polynomials of several complex variables
Qp Qp spaces

Ω � Pm, [αr] � Cannon sum for the Cannon basic set in Reinhardt domains

Ω � P, [αr] � Cannon function for the Cannon basic set in Reinhardt domains
�

set of real numbers

ρ order

τ type
< ., . > scaler product

sup supremum
χ � P ; [R] � Cannon function for the general basic set in hyperellipse

‖.‖ norm
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Zusammenfassung

Geschichte und Einordnung der Arbeit.

These 1
Länger als ein Jahrhundert hat die komplexe Analysis die Mathematiker fasziniert, seit Cauchy, Weier-

strass und Riemann dieses Feld von ihren unterschiedlichen Gesichtspunkten her aufbauten. Sowohl in
der komplexen als auch in der hyperkomplexen Funktionalanalysis liegt das Interesse zum Beispiel darin,

Funktionenräume und -klassen zu untersuchen. Die Theorie der Funktionenräume spielt nicht nur in der

komplexen Analysis eine wichtige Rolle, sondern auch in den meisten Bereichen der abstrakten und ange-
wandten Mathematik, zum Beispiel in der Approximationstheorie, bei partiellen Differentialgleichungen,

in der Geometrie und in der mathematischen Physik.

These 2

Die Clifford Analysis ist eine der möglichen Verallgemeinerungen der Theorie holomorpher Funktionen
in einer komplexen Variablen auf höherdimensionale euklidische Räume. Analytische Funktionen in �
bilden eine Algebra, während das Gleiche hinsichtlich hyperholomorpher Funktionen nicht der Fall ist.
In letzter Zeit wurden eine grosse Anzahl von Arbeiten auf dem Gebiet der Clifford-Analysis und ihrer

Anwendungen veröffentlicht, so dass dieses Thema trotz der algebraischen Schwierigkeiten mehr und

mehr an Bedeutung gewann.

These 3
In der Theorie komplexwertiger Funktionen mehrerer komplexer Variabler werden Klassen von poly-

nomialen Basismengen mittels ganzer Funktionen untersucht.

Seit den Anfängen zu Beginn des letzten Jahrhunderts spielt der Begriff der Basismenge von Poly-
nomen eine zentrale Rolle in der Theorie komplexer Funktionen. Viele bekannte Polynome wie z. B.

Laguerre-, Legendre-, Hermite- und Bernoulli-Polynome bilden einfache Basismengen von Polynomen.

Diese Dissertation beschränkt sich auf die Untersuchung von Polynom-Basen mehrerer komplexer Vari-
abler. Beziehungen zwischen polynomialen Basen im � n und Basissystemen monogener Funktionen sind

zu studieren.

Zielstellung.

These 4

Die vorliegende Untersuchung nutzt zwei Wege, um einige Funktionenräume und klassen zu ver-
allgemeinern. Diese Dissertation beschäftigt sich mit der Theorie der Funktionenräume holomorpher

und hyperholomorpher Funktionen. In den letzten 10 Jahren wurden verschiedene gewichtete Räume

komplexwertiger Funktionen eingeführt. Andererseits wurde etwa 1930 die Theorie der Basen in Funk-
tionenräumen begründet. Mehrere Verallgemeinerungen dieser Räume und Klassen werden in Erwägung

gezogen. Die Verallgemeinerungen dieser Typen von Funktionenräumen gehen in 2 Richtungen:

– Die erste Richtung konzentriert sich auf Verallgemeinerungen in � n.

– Die zweite Richtung verwendet das Konzept quaternionenwertiger Funktionen.

These 5

Im Rahmen der Theorie hyperholomorpher Funktionenräume sind Qp-Räume und Räume vom Besov-
Typ zu untersuchen. Die Bedeutung dieser Raumtypen liegt darin, dass sie eine Reihe bekannter Räume

wie den hyperholomorphen Bloch-Raum und den BMOM-Raum überdecken. Eines der Ziele dieser

Dissertation ist die Untersuchung von Qp-Räumen hyperholomorpher Funktionen und ihrer Beziehungen
zu anderen Räumen, welche in dieser Dissertation definiert werden.
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Resultate.

These 6

Ein abgeschlossener, historisch orientierter Überblick dieser Funktionenräume und -klassen und der

Ziele, die in dieser Dissertation behandelt werden, motiviert die folgenden Untersuchungen und ordnet

sie ein.

Die relativ unterschiedlichen Ergebnisse, die sich in den letzten Jahren zum Teil ohne Beweise, aber

mit vielen Referenzen entwickelt haben, werden diskutiert und Grundkonzepte beschrieben. Diese Be-

trachtung dient als Einführung sowohl in die Theorie von Qp und Bq-Räumen als auch in die Klassen
der Basismengen von Polynomen einer und mehrerer komplexer Variabler. Aus einem historischen Blick-

punkt heraus wird an die Frage herangeführt, zu klären, wie solche Typen von Funktionenräumen und
-klassen auf verschiedenen Wegen verallgemeinert werden können und wie sie mit bekannten Räumen

zusammenhängen. Das stellt ein Hauptziel der vorliegenden Dissertationsschrift dar.

These 7

Räume quaternionenwertiger Funktionen vom Besov-Typ werden definiert und hyperkomplexe Bloch-
Funktionen durch diese gewichteten Räume charakterisiert.

Durch Variation der Exponenten der Gewichtsfunktion werden verschiedene, schwächere Gewichte

eingeführt und es wird bewiesen, dass auf diesem Wege neue Skalen gewichteter Räume entstehen.
Die schon bekannten Qp Räume werden zu den neu eingeführten gewichteten Räumen vom Besov-

Typ in Beziehung gesetzt. Einige andere Charakterisierungen dieser Räume werden erhalten, indem

die Gewichtsfunktion durch eine modifizierte Greensche Funktion des reellen Laplace-Operators im
� 3

ersetzt wird.

These 8

Durch Einbeziehung eines zweiten Gewichtes werden die Räume Bp,q quaternionenwertiger Funktio-

nen definiert. Dieses kombinierte Gewicht vereinigt das Abstandsmaß und das bisher verwendete Möbius-
invariante Gewicht. Man erhält Charakterisierungen für die hyperholomorphen Bloch-Funktionen durch

Bp,q-Funktionen.

These 9

Die Skala der hyperholomorphen Bq-Räume wird unter strenger Beachtung ihrer Beziehung zum
Bloch-Raum studiert. Dabei interessiert vom Standpunkt der Interpolationstheorie vor allem, ob die

Räume der Skala echt ineinander enthalten sind. Das hauptsächliche Werkzeug ist die Charakterisierung

von Bq-Funktionen durch ihre Fourierkoeffizienten. Die Fourierentwicklung wird bezüglich eines Systems
orthogonaler homogener monogener Polynome vorgenommen. In der Folge werden diese Reihenentwick-

lungen auch auf Basissysteme homogener, monogener Polynome ausgedehnt, die nicht mehr orthogonal
und auch nicht normiert sein müssen. Diese Untersuchungen lösen ein wichtiges ”praktisches” Problem.

Auf Grund der Nichtkommutativität der Quaternionenalgebra existieren keine einfachen monogenen

Potenzen in Analogie zu den Potenzen zn im komplexen Fall. Folglich ist die Theorie der Potenzreihen
nicht so gut ausgebaut, wie das im Komplexen der Fall ist und es fiel bisher schwer, Reihenentwicklun-

gen für monogene Funktionen mit bestimmten Wachstumseigenschaften anzugeben, die ein bestimmtes

und bekanntes Konvergenzverhalten haben. Für die in dieser Arbeit betrachteten Skalen ist das Prob-
lem durch die Charakterisierung der Koeffizienten weitgehend gelöst. Das gibt die Motivation, nach

anderen Typen generalisierter Klassen von Polynomen im höherdimensionalen Fall zu suchen. Derartige
Reihenentwicklungen wurden für mehrere komplexe Veränderliche mit Hilfe polynomialer Basismengen

untersucht.

Ausserdem wird der Raum BMOM , der Raum aller monogenen Funktionen mit beschränkter mit-
tlerer Oszillation und der Raum V MOM , der Raum aller monogenen Funktionen mit verschwindender

mittlerer Oszillation untersucht.

Die Räume BMOM und V MOM werden im Sinne von Möbius-invarianten Eigenschaften definiert.
Daraus werden Beziehungen zwischen diesen Räumen und anderen bekannten Räumen quaternionen-
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wertiger Funktionen, wie zum Bloch-Raum und zur Skala der Qp Räume abgeleitet.

These 10

Ordnung und Typ einfacher und zusammengesetzter Reihen von Polynomen in vollständigen

Reinhardt-Gebieten (Polyzylinder) werden untersucht. Eine Einführung in vorausgehende Arbeiten
zur Ordnung und zum Typ von ganzen Funktionen als auch in die Theorie der Basismengen von

Polynomen verschiedener komplexer Variabler sind gegeben. Definitionen von Ordnung und Typ von

Polynom-Basismengen in vollständigen Reinhardt-Gebieten werden vorgeschlagen. Weiterhin wird eine
eine notwendige und hinreichende Bedingung für die Cannon-Reihe angegeben, um im gesamten Raum

� n alle ganzen Funktionen zu repräsentieren, die langsamer als mit der Ordnung p und dem Typ q wach-

sen, wobei 0 < p < ∞ und 0 < q < ∞. Ausserdem wird das System zusammengesetzter Cannon-Reihen
von Polynomen in Termen des Wachstums seiner erzeugenden Reihe in vollständigen Reinhardt-Gebieten

erhalten.

These 11

Konvergenzeigenschaften einfacher Polynomreihen werden in einem neuen Typ von Gebieten studiert.
Diese Gebiete werden hyperelliptische Gebiete genannt. Notwendige und hinreichende Bedingungen für

Basismengen von Polynomen verschiedener komplexer Variabler, um konvergent in der geschlossenen Hy-

perellipse und ebenso in einer offenen Ellipse zu sein, werden hergeleitet. Schliesslich wird die Bedingung
für die Darstellung einfacher Basen von Polynomen mehrerer komplexer Variabler durch ganze reguläre

Funktionen in einem unspezifischen Gebiet angegeben, das eine geschlossene Hyperellipse enthält. Die
neuen Bedingungen für die Konvergenz können benutzt werden, um die bekannten Konvergenzbedin-

gungen in hypersphärischen Gebieten zu erhalten.

These 12

Die Potenzreihenentwicklung einer Funktion, die analytisch in einer Hyperellipse ist, wird betrachtet

und ihre Monome werden durch unendliche Reihen von Basismengen von Funktionen ersetzt. Die En-
twicklung der dazugehörigen Reihen derartiger Basisfunktionen wird dabei ohne spezielle Annahmen für

die Konvergenz der Reihen der Koeffizienten vorausgesetzt. Ebenfalls werden Cannon-Funktionen und
Cannon-Summen für hyperelliptische Bereiche angegeben.

Diese Untersuchungen stehen in engem Bezug zum Studium monogener homogener Polynombasen

im hyperkomplexen Fall. Die mit Hilfe des symmetrischen Produktes definierten Taylorreihen haben als

natürliche Konvergenzbereiche Polyzylinder. Erste Untersuchungen von Basismengen hyperholomorpher
Funktionen sind um 1990 vorgenommen worden. Eine vollständige Übertragung würde eine Anpassung

der zugrundeliegenden Funktionenräume erfordern.

Schlussfolgerungen und Ausblick.

These 13

Die Skalen der Räume B
q

s , Bq, Bp,q wurden studiert und ihre Beziehungen zum Bloch- und zum

Dirichlet-Raum sowie zum Raum BMOM dargestellt. Dabei geht es einerseits um die Erzeugung von
echten Skalen, um zwischen zwei bekannten Räumen zu interpolieren und andererseits wird versucht,

den Bloch-Raum in Anlehnung an Ergebnisse der komplexen Analysis äquivalent durch Integralnor-

men der Räume einer der untersuchten Skalen zu beschreiben. Allen in der Arbeit studierten Räumen
ist gemeinsam, dass es sich um gewichtete Räume handelt, deren Gewichtsfunktion das Wachstum von

Ableitungen der Funktionen des Raumes in der Nähe des Randes kontrolliert. Solche gewichteten Räume
können ausser zur Interpolation von Räumen auch zur Untersuchung von Randwertproblemen mit Sin-

gularitäten in den Randdaten benutzt werden. Damit können Aufgaben studiert werden, bei denen

klassische energetische Methoden versagen.

These 14

Die Einbeziehung von BMO−Räumen monogener Funktionen in die Theorie gewichteter Räume hat
Anwendung auf das Studium von singulären Integraloperatoren. Damit wird eine Basis für die Lösung
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von Rand-Kontaktaufgaben mit Hilfe hyperkomplexer Riemann-Hilbert-Probleme geschaffen.

These 15

Es ist zu untersuchen, inwieweit sich Charakterisierungen der Koeffizienten monogener Funktionen in

geeigneten Räumen durch Basismengen monogener Polynome gewinnen lassen. Diese Charakterisierun-
gen werden benötigt, um die Beziehungen zwischen hyperholomorphen Funktionen und holomorphen

Funktionen meherer komplexer Veränderlicher besser beschreiben zu können.
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