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Abstract

The polymeric clay nanocomposites are a new class of materials of which recently have

become the centre of attention due to their superior mechanical and physical proper-

ties. Several studies have been performed on the mechanical characterisation of these

nanocomposites; however most of those studies have neglected the effect of the interfa-

cial region between the clays and the matrix despite of its significant influence on the

mechanical performance of the nanocomposites.

There are different analytical methods to calculate the overall elastic material prop-

erties of the composites. In this study we use the Mori-Tanaka method to determine the

overall stiffness of the composites for simple inclusion geometries of cylinder and sphere.

Furthermore, the effect of interphase layer on the overall properties of composites is

calculated. Here, we intend to get bounds for the effective mechanical properties to com-

pare with the analytical results. Hence, we use linear displacement boundary conditions

(LD) and uniform traction boundary conditions (UT) accordingly. Finally, the analytical

results are compared with numerical results and they are in a good agreement.

The next focus of this dissertation is a computational approach with a hierarchical

multiscale method on the mesoscopic level. In other words, in this study we use the

stochastic analysis and computational homogenization method to analyse the effect of

thickness and stiffness of the interfacial region on the overall elastic properties of the

clay/epoxy nanocomposites. The results show that the increase in interphase thickness,

reduces the stiffness of the clay/epoxy naocomposites and this decrease becomes signifi-

cant in higher clay contents. The results of the sensitivity analysis prove that the stiffness

of the interphase layer has more significant effect on the final stiffness of nanocomposites.

We also validate the results with the available experimental results from the literature

which show good agreement.
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Chapter 1

Introduction

1.1 Introduction

Polymeric clay nanocomposites are a new class of materials which have been the sub-

ject of extensive researches recently owing to their outstanding mechanical properties.

These materials have great multifunctional thermo-mechanical properties such as low

permeability and flame retardancy, which are the results of using high aspect ratio clays

inside the polymeric matrix. The high aspect ratios make a huge amount of interfacial

connections between clays and matrix [1, 2, 3]. The interface is defined as the first few

molecular layers close to the solid surface that are responsible for the adhesion between

two materials. Far from the solid surface, the properties of polymer is same as the bulk

polymer, while the properties of the polymer near to the interface differ from that of

the bulk polymer due to the influence of the interface adhesion. This region is called

interphase, see Fig. 1.1. Interfaces and interphases play a significant role in the global

properties of the nanocomposites [4, 5, 6, 7]. The thickness of the interphase region is

in the order of nanometers. Meanwhile this very small thickness makes the experimental

investigations limited, expensive and in some cases impractical to make an estimate of

mechanical properties.

Some analytical models were proposed in the literature to determine the mechanical

properties of the overall composite in the presence of interphase layer for simple geome-

tries. Odegard et al. [8] used the Mori-Tanaka method [9, 10] to determine the elastic

properties of three-phase composites i.e. matrix, inclusion and the interphase zone. They

1



1.1. INTRODUCTION

Figure 1.1: The schematic illustration of the microstructure of the clay/epoxy nanocom-
posite with the interface and interphase layers

also presented the ”effective interface model” for an spherical inclusion. Sevostianov and

Kachanov [11] presented the concept of equivalent homogeneous inclusion method. This

method considers the interphase layer and particle as one-phase and matrix as another.

However, the lack of exact deterministic values for the interfacial behaviours of the poly-

meric nanocomposites limits the use of the analytical methods for deterministic models.

There are comprehensive studies by Molecular Dynamics (MD) to determine the

mechanical characterization of nanocomposites [12, 13, 14, 15]. Chen et al. [16] inves-

tigated the mechanical properties of the interfaces in clay/epoxy nanocomposites based

on the concept of binding energy in the MD simulations. Odegard et al. [8] used Monto

Carlo (MC) and MD simulations to predict the elastic properties of silica nanoparti-

cle/polyimide composites. Tsai et al. also [17] presented a multiscale simulation approach

to characterize the elastic properties of carbon nanotubes (CNTs) reinforced polyimide

nanocomposites. They also introduced an effective interphase between the CNTs and

polyimid polymer to evaluate the degree of non-bonded interaction through MD simu-

lations. Using MD simulations, Arash et al. [18] proposed a method to evaluate elastic

properties of the interfacial region that was developed by examining the fracture be-

haviour of CNTs reinforced polymer composites.

Although MD simulations can provide some insight to the interphase zone in the

nanocomposites, the limitation of RVE size in MD simulations has encouraged the re-

searchers to use finite element method in the meso-scale [19, 20, 21, 22, 23]. Vu-Bac et

al. [24] proposed a stochastic framework based on sensitivity analysis (SA) methods to

quantify the key input parameters influencing the Young's modulus of polymer (epoxy)

clay nanocomposites (PCNs). Silani et al. [25] presented a numerical investigation of

the mechanical properties of exfoliated clay/epoxy nanocomposites. All of these studies

have neglected the effect of interphase region which plays a very important role in the

2



1.1. INTRODUCTION

mechanical properties. Therefore, in this study we investigate the effect of the interphase

layer on the elastic properties of PCNS. We used a combination of the stochastic analysis

and micromechanical method using the finite element method. We have considered an

equivalent model to capture both interface and interphase regions in a finite element

model. The numerical results show that in the elastic region, the interfacial region is

significant when the thickness of the equivalent model is thick enough. We also verify

our numerical results with that of the experimental observations that show a very good

agreement.

The master thesis is organized as follows. Chapter 2 contains an introduction to

nanocomposites and their application areas. Chapter 3 presents the results of different

analytical methods as well as finite element method to predict the overall stiffness of

nanocomposites for simple inclusion geometries. Chapter 4 describes the methodology

to obtain mechanical properties of the clay/epoxy nanocomposites using the stochastic

analysis. This chapter also includes the results and discussion. Finally in Chapter 5 we

conclude the thesis.
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Chapter 2

Nanocomposite materials

2.1 Nanocomposites

Polymeric materials are the class of material that are reinforced by stiff filler to promote

mechanical properties. There are some main factors which are affected on the efficiency

of reinforcement such as the filler aspect ratio, the filler mechanical properties and the

adhesion between the matrix and the filler [26].

Since over the last decades the polymer/clay nanocomposites are widely used due to

their special attributes: light-weight, low-cost, ease production and often ductile nature,

considerable investigation was performed on physical properties of various polymer/clay

nanocomposites [3].

In general view, polymeric nanocomposites were considered as a kind of materi-

alt to improve thermal/mechanical properties over the matrix polymer. Moreover the

productivity of reinforcement depends on different factors including the morphology of

nanocomposites (exfoliated particle structure), the orientation of the clay platelets, the

crystallinity (amorphous or semi-crystalline), the thermophysical properties (thermoplas-

tic, epoxy or elastomer) of the matrix and the adhesion between the matrix and the

nanoclay [26].

Polymer nanocomposites are composed of dispersing a filler material as a flat plates

which are distributed into polymer matrix. Although, there are different type of fillers,

the most common is nanoclay material which is called montmorillonite (a layered semec-

4



2.1. NANOCOMPOSITES

Figure 2.1: TEM micrographs of a clay/expoxy nanocompsoite [28].

tite clay). In nature, clays are hydrophilic while polymers are hydrophobic. In order

to produce nanocomposites with nanofillers, there three common methods: melt com-

pounding, in-situ polymerization and the solvent method [27].

Nanocomposite materials like other heterogeneous materials consist of clearly distin-

guishable constituents which show different mechanical and physical properties. Nano-

scale interactions between components in nanocomposites result in an interesting and

sometimes incredible properties which is not accessible in conventional materials. The

exceptional specific strength (strength-to-weight ratio), enhancement in thermal and me-

chanical properties and multifunctional behaviours in nanocomposites have increased the

global interest in this class of materials. Fig.2.1 shows TEM micrographs of polymeric

clay nanocomposites that are a new class of materials which have been the subject of

extensive researches during the last years. These materials have great multifunctional

thermo-mechanical properties such as low permeability and flame retardancy which are

the results of using high aspect ratio clays inside polymeric matrix. These high aspect

ratio clays make a huge amount of interfacial connections between clays and matrix.

The performances of polymeric nanocomposites are governed by several factors. One

is the large difference in material properties of the clays and the polymer matrix. Another

important factor, of even greater significance given the large surface area to volume

ratio, is the interface between the clays and the polymer matrix which affects the load

transfer and thereby directly impacting the stiffness of the nanocomposite, strength, and

5



2.2. CLASSIFICATION OF NANOCOMPOSITES

the effective thermal and electrical conductivity. Given the challenges associated with

directly probing materials at the nanoscale, it is difficulty to conduct experiments to

directly explore the interface in nanocomposites. Hence, there is increasing interests and

reliance on computational materials science techniques to study the interface between the

clays and the polymer matrix using analytical or numerical techniques such as atomistic

simulation and the continuum models.

2.2 Classification of nanocomposites

Based on engineering application the nanocomposites are classified into two groups: non-

polymer based nanocomposites and polymer based nanocomposites.

2.2.1 Non-polymer based nanocomposites

Non-polymer based nanocomposites can be classified into three major types of nanocom-

posites as below,

Metal/Metal Nanocomposite

Bimetallic nanomaterials is composed of magnetic metals and noble metals. Because of

special properties of biometallic nanomaterials like, their magnetic, catalystic and optical

properties, they have provided much interest application in the field of magnetic sensor,

catalysts, optical detection and biomedical application.

Metal/Ceramic Nanocomposites

In the case of Metal/Ceramic Nanocomposites the electric, magnetic, chemical, optical

and mechanical properties are combined for both phases. By reducing the size of com-

ponents to the nanoscale, above mentioned properties was improved and leads to new

application.

6



2.2. CLASSIFICATION OF NANOCOMPOSITES

Ceramic/Ceramic Nanocomposites

Ceramic Nanocomposites could solve the problem of fracture failures in artificial joint

implants, this will extend patient mobility and discard the high cost of surgery.

2.2.2 polymer based nanocomposites

Polymer nanocomposites are the kinds of composites with internal structure (a polymer

matrix and filler) with at least one dimension less than 100 nm. The inclusions can be

clay, nanotubes, platelets and nanoparticles.

Polymer/Ceramic nanocomposite

Nanocomposites composed of single ceramic layers (1nm thick) homogeneously dispersed

in a continuous matrix. The host ceramic layer tend to orient themselves parallel with

respect to each other due to dipole-dipole interaction.

Inorganic/Organic polymer nanocomposites

Metal polymer nanocomposites attracted considerable attention due to the unique prop-

erties of metal clusters which are dispersed in polymer matrix. For metal cluster the

typical size is approximately 1-10 nm. The size and grains depends on mobility of the

metal atoms on the polymer surface.

Inorganic/Organic hybrid nanocomposite

Inorganic/Organic hybrid nanocomposite are not simply physical mixtures, they can be

widely determined components intimately mixed.

Polymer/ Layered silicate Nanocomposites

Polymer/Layered silicate (PLS) nanocomposites materials are attracting great interest

in polymer science research. In recent years the PLS nanocomposites have attracted

7



2.3. NANOCOMPOSITE PROPERTIES

significant interest both in industry and academia, because they often exhibits noticeable

progressions in materials when compare with virgin polymer and typical macro and macro

composites.

Polymer/polymer Nanocomposites

Polymers are more than ever under pressure to be chip and offered property profiles.

Biocomposites

Metals and metal alloys are used in orthopaedics, dentistry and other load bearing ap-

plications. Because of chemically inert nature or high bioactivity properties, ceramics

are widely used. On the other hand polymers are used in many other non-structural

application such as soft tissue replacements.

2.3 Nanocomposite properties

There are numerous advantages of nanocomposites and possibilities application for pack-

aging industry. Due to the following properties, the nanocomposites are utilized in in-

dustry [27],

-Gas, oxygen, water,etc. barrier properties

-high mechanical strength

-Thermal stability

-Chemical stability

-Recyclability

-Heat resistance

-Good optical clarity (since particles are nano-size).

Fig.2.2 shows some examples of hybrid materials based on nanoparticles (NPs) and

polymer nanocomposites (PNCs). Commercial developments of PNCs involve mainly two

types of nano-objects: oxide-based particles (silica-based particles most of the time) and

clays. This figure also illustrate; (a) interior footwell heater vent (Audi and Volkswagen

models), (b) seat back (Honda Acura TL), (c) hull and deck of personal watercraft

8



2.3. NANOCOMPOSITE PROPERTIES

Figure 2.2: Some commercial products based on polymer nanocomposites (PNCs) [29].

(Yamaha Motor Corporations WaveRunners), (d) trim, centre bridge, sail panel and

box rail protector (GM Hummer H2 SUT), (e) centre console (Chevrolet HHR), (f)

Michelin-Wocos antivibration systems (hybrid silica nanoparticles) and (g) Pirellis tyres

based on cap (hybrid silica nanoparticles-based PNCs) and base (nanoclay-based PNCs)

technology (h) Nanomer, (i) Nanolok and (j) Durethan PNCs [29].

2.3.1 Gas barrier properties

Fig.2.3 shows that clays are believed to increase the barrier properties by creating a maze

or tortuous path that retards the progress of the gas molecules through the matrix resin.

By comparing nanocomposites made with layered silicates of various aspect ratios, the

permeability was seen to decrease with increasing aspect ratio [30].

9



2.3. NANOCOMPOSITE PROPERTIES

Figure 2.3: Formation of tortuous path in polymer/layered silicate (PLS) nanocomposites
[30].

2.3.2 Fire retardant properties

Fire-relevant properties such as the heat release rate (HRR), heat peak HRR, smoke

production, and CO2 yield, are vital to the evaluation of the fire safety of materials. The

amount of smoke evolved and specific extinction area also decrease with the formation

of the nanocomposites. There is some variability in the smoke production. Although

it is observed that the formation of the nanocomposites reduces smoke production, the

presence of additional clay does not continue this smoke reduction [30].

2.3.3 Thermal stability

The thermal stability of polymeric materials is usually studied by thermogravimetric

analysis (TGA). The weight loss due to the formation of volatile products after degrada-

tion at high temperature is monitored as a function of temperature. When the heating

occurs under an inert gas flow, a non-oxidative degradation occurs, while the use of air

or oxygen allows oxidative degradation of the samples. Generally, the incorporation of

clay into the polymer matrix was found to enhance thermal stability by acting as a su-

perior insulator and mass transport barrier to the volatile products generated during

decomposition [30].

2.3.4 Ionic conductivity

Solvent-free electrolytes are of much interest because of their charge-transport mechanism

and their possible applications in electrochemical devices [30].

10



2.3. NANOCOMPOSITE PROPERTIES

2.3.5 Other properties

PLS nanocomposites also show improvement in most general polymeric properties. For

example, in addition to the decreased permeability of liquids and gases, nanocompos-

ites also show significant improvement in solvent uptake. Scratch resistance is another

property that is strongly enhanced by the incorporation of layered silicates [31].

11



Chapter 3

Homogenization

3.1 Fundamental Microstructural Definitions

Heterogeneous materials are composed of multiple phases. Fig.3.1a shows these phases

which may be very complex. In Fig.3.1a a dipicted box demonstrate a particular portion

of microstructure for investigation that is refered to as a sample and denoted by S. A

two phases heterogeneous material is considered to introduce the main concepts and

notation. Fig.3.1b shows a sample which is depicted from such material. A sample

consist of two phases, the matrix phase is composed of material M (1) and occupies a

portion of ν
(1)
0 and the inclusion phase of material M (2) and occupies a portion of ν

(2)
0 of

ν, where ν
(1)
0 ∪ ν

(2)
0 = ν0 and ν

(1)
0 ∩ ν

(2)
0 = 0. There are two fundamental microstructure

definition:

Definition 1. The Volume fraction of phase I and II are,

ν1 =

∣∣∣ν(1)
0

∣∣∣
|ν0|

ν2 =

∣∣∣ν(2)
0

∣∣∣
|ν0|

(3.1)

12



3.2. CLASSIFICATION OF MICROSTRUCTURES

(a) (b)

Figure 3.1: A portion of a microstructure: (a) multiple phases, (b) two phases [32].

By definition, ν1 + ν2 = 1 and ν
(1)
0 �= ν1.

Definition 2. The Volume average of quantity Q over a region Ψ is

〈Q〉Ψ =
1

|Ψ|

∫
Ψ

Q dΨ (3.2)

3.2 Classification of Microstructures

3.2.1 Randomness and Periodicity

One method to classify the microstructure is to determine weather it displays randomness

or periodicity. In the case of periodicity, the position and the orientation of particles

are the same, which is shown in Fig.3.2a with 82 particles. Fig.3.2b demonstrates the

randomness, the position and the orientation of particles are random with the same

number of particles (82). Furthermore, they do not overlap and intersection and they

have same size. Fig.3.2c shows that the particles lie over the boundaries and overlap and

intersection are allowed and the size of the particles may vary. Monodisperse presented

the particle system where the size and shape of the particles are the same, otherwise they

are classified as polydisperse.

13



3.2. CLASSIFICATION OF MICROSTRUCTURES

(a) (b) (c)

Figure 3.2: Geometrical classification of the microstructure: (a) periodic, (b) monodis-
perse random, (c) polydisperse random, with flexibility in the positions of the particles
[32].

Figure 3.3: The unit cell from a periodic microstructure [32].

Fig.3.3 shows the unit cell which is related to the periodicity that is the simplest

repeating substructure. As depicted in figure, the choice of unite cell is not unique. It

should be mentioned that the size of unit cell must match with the length of periodicity

(l) or be an integer multiple l. For the particulate composite, the simplest unit cell is

one that encloses a particle.

3.2.2 Statistical Homogeneity

Another classification method is to differentiate features of the microstructures. One

feature is the statistically homogeneous of the distribution of the inclusions which is shown

in Fig.3.4a. Since the geometry of the microstructures does not change from point to

point, the microstructure display the statistical homogeneity. Otherwise, the geometry of

14



3.3. TESTING PROCEDURE

(a) (b)

Figure 3.4: Statistically (a) homogeneous, (b) inhomogeneous microstructures [32].

distribution displays observable and measurable variation and the microstructure exhibits

statistical inhomogeneity. Furthermore, the volume fraction of the particles are varies

througthout the sample as is shown in Fig.3.4b. In both cases, 642 particles distributed

all over the sample randomly.

3.3 Testing procedure

Based on the Hill’s condition in Eq.3.3 the macro/micro criterion used in effective prop-

erty calculations [33]

〈σ : ε〉Ω = 〈σ〉Ω : 〈ε〉Ω (3.3)

In the absence of body force the Hill’s condition were satisfied by two main loading states.

They are

1. Pure linear displacements of the form :

u|∂Ω = ξ.x ⇒ 〈ε〉Ω = ξ (3.4)

15



3.3. TESTING PROCEDURE

2. Pure tractions of the form:

t|∂Ω = L.n ⇒ 〈σ〉Ω = L (3.5)

where the ξ and L are the constant strain and stress tensors, respectively. In order

to compute the effective constitutive tensor E� a testing procedure will be formulated.

The constitutive tensor E� provides the properties of heterogeneous material and the

components of the E� tensor are derived by the relation between the average strain and

stress tensor

〈σ〉Ω = E� : 〈ε〉Ω (3.6)

where

〈·〉 =
1

|Ω|

∫
Ω

· dΩ (3.7)

and where σ and ε are the stress and strain tensor fields within a microscopic sample of

material, with volume |Ω|.

In order to compute the properties of microheterogeneous material,one computes 36 con-

stitutive constants E∗
ijkl, in the following relation between the average of strain and stress

tensor [33]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈σ11〉Ω

〈σ22〉Ω

〈σ33〉Ω

〈σ12〉Ω

〈σ13〉Ω

〈σ23〉Ω

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E∗
1111 E∗

1122 E∗
1133 E∗

1112 E∗
1113 E∗

1123

E∗
2211 E∗

2222 E∗
2233 E∗

2212 E∗
2213 E∗

2223

E∗
3311 E∗

3322 E∗
3333 E∗

3312 E∗
3313 E∗

3323

E∗
1211 E∗

1222 E∗
1233 E∗

1212 E∗
1213 E∗

1223

E∗
1311 E∗

1322 E∗
1333 E∗

1312 E∗
1313 E∗

1323

E∗
2311 E∗

2322 E∗
2333 E∗

2312 E∗
2313 E∗

2323

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈ε11〉Ω

〈ε22〉Ω

〈ε33〉Ω

2〈ε12〉Ω

2〈ε13〉Ω

2〈ε23〉Ω

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

We have 6 linear independent load case according to different directions, it can be

written,

ξ or L =

⎡
⎢⎣
β 0 0

0 0 0

0 0 0

⎤
⎥⎦ , in X direction (3.9)
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ξ or L =

⎡
⎢⎣
0 0 0

0 β 0

0 0 0

⎤
⎥⎦ , in Y direction (3.10)

ξ or L =

⎡
⎢⎣
0 0 0

0 0 0

0 0 β

⎤
⎥⎦ , in Z direction (3.11)

ξ or L =

⎡
⎢⎣
0 β 0

β 0 0

0 0 0

⎤
⎥⎦ , shear in XY plane (3.12)

ξ or L =

⎡
⎢⎣
0 0 0

0 0 β

0 β 0

⎤
⎥⎦ , shear in ZY plane (3.13)

ξ or L =

⎡
⎢⎣
0 0 β

0 0 0

β 0 0

⎤
⎥⎦ , shear in ZXplane (3.14)

Where β is load parameter. It should be mentioned that each independent loading state

provide 6 equations, for a total of 36 which are use to calculate the material matrix that

is the relation between average strain and stress.

3.3.1 The average strain theorem

Fig.3.5 shows the heterogeneous body has the fowllowing uniform loading on its surface:

u|∂Ω = ξ.x, then [33]
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Figure 3.5: Nomenclature for the average theorems [33].

〈ε〉Ω =
1

2 |Ω|

∫
Ω

(
�u+ (�u)T

)
dΩ

=
1

2 |Ω|

{∫
Ω1

(
�u+ (�u)T

)
dΩ+

∫
Ω2

(
�u+ (�u)T

)
dΩ

}

=
1

2 |Ω|

{∫
∂Ω1

(u⊗ n+ n⊗ u) dA+

∫
∂Ω2

(u⊗ n+ n⊗ u) dA

}

=
1

|2Ω|

{∫
∂Ω

((ξ.x)⊗ n+ n⊗ (ξ.x)) dA+

∫
∂Ω1∩∂Ω2

(‖u‖ ⊗ n+ n⊗ ‖u‖) dA

}

=
1

2 |Ω|

{∫
Ω

(
� (ξ.x) +� (ξ.x)T

)
dΩ +

∫
∂Ω1∩∂Ω2

(‖u‖ ⊗ n+ n⊗ ‖u‖) dA

}

= ξ +
1

2 |Ω|

∫
∂Ω1∩∂Ω2

(‖u‖ ⊗ n+ n⊗ ‖u‖) dA

(3.15)

where (u ⊗ n = uinj) is the tensor product of the tensor u and vector n. ‖u‖

describes the displacement jumps at the interfaces between Ω1 and Ω2. Furthermore, for

the perfectly bonded material,

〈ε〉Ω = ξ (3.16)
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3.4. HOMOGENIZATION METHODS

3.3.2 The average stress theorem

In this case we consider the heterogeneous body with t|∂Ω = L.n. By using the identity

�. (σ ⊗ x) = (�.σ)⊗ x + σ.� x = −f ⊗ x + σ and substitute this into the definition

of the average stress

〈σ〉Ω =
1

|Ω|

∫
Ω

�. (σ ⊗ x) dΩ +
1

|Ω|

∫
Ω

(f ⊗ x) dΩ

=
1

|Ω|

∫
∂Ω

(σ ⊗ x) .ndA+
1

|Ω|

∫
Ω

(f ⊗ x) dA

=
1

|Ω|

∫
∂Ω

(L⊗ x) .ndA +
1

|Ω|

∫
Ω

(f ⊗ x) dA

= L+
1

|Ω|

∫
Ω

(f ⊗ x) dA

(3.17)

If there is no body force f = 0, then

〈σ〉Ω = L (3.18)

Note that considering the interface separation (debonding) has not any effect on the

result.

3.4 Homogenization Methods

3.4.1 Analytical Methods

Mori-Tanaka Method

The assumption of non-interaction of particulates is an unreasonable expectation for

materials which spread in different directions over a volume fraction. Considering of

week interaction between particles by sensitivity make a minor alternation to the dilute

method. It is noticeable that for spherical inclusion the Mori-Tanaka method provid-
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ing the suitable effective properties matches the Hashin-Shtrikman lower bound. The

effective bulk and shear modules is given by [33],

k∗ = κ1 + υ2 (κ2 − κ1) η

μ∗ = μ1 + ν2 (μ2 − μ1) ζ
(3.19)

where, κ1 and μ1 are the bulk and shear moduli of the matrix, κ2 and μ2 are the bulk

and shear moduli of the inclusion, ν2 is the volume fraction of inclusion. According to

the Eq.3.19 k∗ is the effective bulk modulus and μ∗ is the effective shear modulus, where

φ = μ1 +
μ1 (9κ1 + 8μ1)

6 (κ1 + 2μ1)

Θ = κ1 +
4

3
μ1

ζ =
φ

φ+ (1− ν2) (μ2 − μ1)

η =
Θ

Θ+ (1− ν2) (κ2 − κ1)

(3.20)

Dilute Method

According to Eshelby [34] results which means the resulting strain field inside the inclu-

sion is uniform, it is simple as a method of determining the effective material properties

for shaped particles. Furthermore, dilute approximation only apply to extremely low

volume fraction of the heterogeneous materials. We have [33],

k∗ = κ1 + ν2 (κ2 − κ1) γ

μ∗ = μ1 + ν2 (μ2 − μ1) ρ
(3.21)
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3.4. HOMOGENIZATION METHODS

where

α =
3κ1

3κ1 + 4μ1

β =
6

5

κ1 + 2μ1

3κ1 + 4μ1

γ =
κ1

ακ2 + κ1 (1− α)

ρ =
μ1

βμ2 + μ1 (1− β)

(3.22)

The Asymptotic Hashin-Shtrikman Bounds Method

According to the concept of polarization or filtering of micro-macro mechanical fields

the bounds were developed by Hashin and Shtrikman [35, 36]. These bounds depend on

certain factors such as sample size which means when the sample size goes to infinity

size in relation to the micro constituent length scale, they are valuable. In this case we

obtain,

k∗,− = κ1 +
ν2(

1
κ2−κ1

+ 3(1−ν2)
3κ1+4μ1

)
k∗,+ = κ2 +

1− ν2(
1

κ1−κ2

+ 3ν2
3κ2+4μ2

)
μ∗,− = μ1 +

ν2(
1

μ2−μ1

+ 6(1−ν2)(κ1+2μ1)
5μ1(3κ1+4μ1)

)
μ∗,+ = μ2 +

1− ν2(
1

μ1−μ2

+ 6ν2(κ2+2μ2)
5μ2(3κ2+4μ2)

)

(3.23)

where, k∗,− and k∗,+ are the bulk modulus H-S lower bound and the bulk modulus H-S

upper bound, respectively. In addition μ∗,− and μ∗,+ are the shear modulus H-S lower

bound and the shear modulus H-S upper bound respectively.
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3.4. HOMOGENIZATION METHODS

Reuss Method

The assumption of uniform (constant) stress field within a sample of aggregate of poly-

crystalline material under applying exterior uniform stress (uniform traction boundary

condition) was introduced by Reuss [37] in 1929, where ε is a constant and ν1 + ν2 = 1,

where the ν2 as a volume fraction of inclusion and ν1 is volume fraction of matrix.

k∗ =
κ1κ2

κ2 (1− ν2) + κ1ν2

μ∗ =
μ1μ2

μ2 (1− ν2) + μ1ν2

(3.24)

Voigt Method

The assumption of uniform (constant) strain field within a sample of aggregate of poly-

crystalline material under applying exterior uniform strain (linear displacement boundary

condition) was introduced by Voigt [38] in 1889, where σ is constant and ν1 + ν2 = 1,

where the ν2 as a volume fraction of inclusion and ν1 is volume fraction of matrix.

k∗ = (1− ν2)κ1 + ν2κ2

μ∗ = (1− ν2)μ1 + ν2μ2

(3.25)

Self Consistent Method

The Self Consistent method [33] which is used to consolidate particulate interaction and

it’s another approach which is equal to dilute approximation. It should be noted that

this method make a logical results only for low volume fraction. The effective bulk and

shear modules is given by,

k∗ = κ1

(
1− ν2

γ − 1

α

)

μ∗ = μ1

(
1− ν2

ρ− 1

β

) (3.26)
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Mori-Tanaka method (without interphase layer)

The Mori-Tanaka method [9, 10] was used to determine the elastic properties of two-

phase composites (matrix and inclusion). The overall elastic stiffness tensor of composite

is [8]

C = (ν1C
m + ν2C

pTp) (ν1I+ ν2T
p)−1 (3.27)

where ν1 and ν2 are the volume fraction of matrix and particle, Cm and Cp are the

stiffness tensor of the matrix and particle, I is the identity tensor and Tp is dilute strain-

concentration tensor of the effective particle,

Tp =
[
I+ Sp (Cm)−1 (Cp −Cm)

]−1
(3.28)

where Sp is the Eshelby tensor [34]. For spherical particle within an isotropic matrix, the

components of Eshelby tensor can be written as [39]

S1111 = S2222 = S3333 =
7− 5ν

15 (1− ν)

S1122 = S2233 = S3311 = S1133 = S2211 = S3322 =
5ν − 1

15 (1− ν)

S1212 = S2323 = S3131 =
4− 5ν

15 (1− ν)

(3.29)
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3.4. HOMOGENIZATION METHODS

where ν is the poisson’s ratio of matrix. The components of the Eshelby tensor for

cylindrical fiber within an isotropic matrix, can be also written [40]

S1111 =
1

2 (1− ν)

[
b2 + 2ab

(a+ b)2
+ (1− 2ν )

b

a+ b

]

S2222 =
1

2 (1− ν)

[
a2 + 2ab

(a+ b)2
+ (1− 2ν )

a

a+ b

]

S3333 = 0

S1122 =
1

2 (1− ν)

[
b2

(a+ b)2
− (1− 2ν )

b

a + b

]

S2233 =
1

2 (1− ν)

2νa

a + b

S2211 =
1

2 (1− ν)

[
a2

(a+ b)2
− (1− 2ν )

a

a + b

]

S3311 = S3322 = 0

S1212 =
1

2 (1− ν)

[
a2 + b2

2 (a+ b)2
+

(1− 2ν)

2

]

S1133 =
1

2 (1− ν)

2νa

a + b

S2323 =
a

2 (a+ b)

S3131 =
b

2 (a+ b)

(3.30)

where a=b are equal to the radius of inclusion.

Mori-Tanaka method (with interphase layer)

Dunn and Ledbetter [41] developed the effective interface model for composites with

two phase particles (inclusion and interphase zone) to predict the overall elastic stiffness

tensor of the composite is

C = Cm +
[
(ν2 + νi)

(
Ci −Cm

)
Tpi + ν2

(
Cp −Ci

)
Tp
]
×
[
ν1I+ (ν2 + νi)T

pi
]−1

(3.31)
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Figure 3.6: The Predictive Effective Bulk Modulus k∗ for an Aluminum matrix and Boron
particle

where νi is the effective volume fraction of interface, Ci is the stiffness tensor for interface

and Tp and Tpi are the dilute strain-concentration tensors for the particle and interphase

given by,

Tp = I− Sp
[
Sp + (Cp −Cm)−1Cm

]−1

Tpi = I− Sp

{
ν2

νi + ν2

[
Sp + (Cp −Cm)−1Cm

]−1
+

νi
νi + ν2

[
Sp +

(
Ci −Cm

)−1
Cm
]−1
}

(3.32)

In this study, we consider aluminum and boron as matrix (κ1 = 77.9GPa , μ1 = 24.9GPa)

and particle (κ2 = 230GPa, μ2 = 172GPa), respectively. This information was used to

calculate the effective bulk modulus (k∗) and the effective shear modulus (μ∗). As seen

in Fig.3.6 and 3.7.
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Figure 3.7: The Predictive Effective Shear Modulus μ∗ for an Aluminum matrix and
Boron particle

3.4.2 Finite Element method

Linear elasticity-3D

Under general conditions with a linear elastic law, we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

τ12

τ13

τ23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1133 D1112 D1113 D1123

D1122 D2222 D2233 D2212 D2213 D2223

D1133 D2233 D3333 D3312 D3313 D3323

D1112 D2212 D3312 D1212 D1213 D1223

D1113 D2213 D3313 D1213 D1313 D1323

D1123 D2223 D3323 D1223 D1323 D2323

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

γ12

γ13

γ23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.33)
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Hooke’s law for isotropic material can be written as,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ13

σ23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ+ 2μ λ λ 0 0 0

λ λ+ 2μ λ 0 0 0

λ λ λ+ 2μ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε12

2ε13

2ε23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.34)

Where, E is Young’s modulus and ν is Poisson’s ratio,

λ =
νE

(1 + ν) (1− 2ν)
(3.35)

and

μ =
E

2 (1 + ν)
(3.36)

The inverse of relation can be written as,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

γ12

γ13

γ23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε12

2ε13

2ε23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2 (1 + ν) 0 0

0 0 0 0 2 (1 + ν) 0

0 0 0 0 0 2 (1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ13

σ23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.37)

Where, γ is shear strain.(γij = 2εij)

In the case of material constitutive models for orthotropic material ,it should be

clear that there are 9 independent components to elasticity matrix along 3 directions.In

other words, we have 3 young’s moduli (E1, E2, E3), 3 shear moduli (G12, G13, G23)and
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3 poisson’s ratios (ν12, ν23, ν13).⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

τ12

τ13

τ23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1133 0 0 0

D1122 D2222 D2233 0 0 0

D1133 D2233 D3333 0 0 0

0 0 0 D1212 0 0

0 0 0 0 D1313 0

0 0 0 0 0 D2323

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

γ12

γ13

γ23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.38)

The fourth order tensor can be represented as σij = Cijklεkl,in addition converting tensor

according to Voigt notation reduced to second order as σi = Cijεj .

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1133 0 0 0

D1122 D2222 D2233 0 0 0

D1133 D2233 D3333 0 0 0

0 0 0 D1212 0 0

0 0 0 0 D1313 0

0 0 0 0 0 D2323

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.39)

With considering Voigt notation,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 0 0 0

D12 D22 D23 0 0 0

D13 D23 D33 0 0 0

0 0 0 D44 0 0

0 0 0 0 D55 0

0 0 0 0 0 D66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.40)

Where, C is the stiffness matrix .The components of stiffness tensor of orthotropic ma-
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terial calculated by using the following formulae,

D1111 = E1 (1− ν23ν32)Υ

D2222 = E2 (1− ν13ν31)Υ

D3333 = E3 (1− ν12ν21)Υ

D1122 = E1 (ν21 − ν31ν23) Υ = E2 (ν12 − ν32ν13) Υ

D1133 = E1 (ν31 − ν21ν32) Υ = E3 (ν13 − ν12ν23) Υ

D2233 = E2 (ν32 − ν12ν31) Υ = E3 (ν23 − ν21ν13) Υ

D1212 = G12

D1313 = G13

D2323 = G23

Υ =
1

1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13

(3.41)

Material stability requires to obey these criteria,

E1, E2, E3, G12, G13, G23 > 0

|ν12| < (E1/E2)
1/2

|ν13| < (E1/E3)
1/2

|ν23| < (E2/E3)
1/2

1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13 > 0

(3.42)

In addition, there are relations between poisson’s ratio based on principle direction we

may write,
νij
Ei

=
νji
Ej

(3.43)

Therefore,we must have

ν12
E1

=
ν21
E2

ν13
E1

=
ν31
E3

ν23
E2

=
ν32
E3

(3.44)
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The inverse of stiffness matrix is commonly written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε12

2ε13

2ε23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν12
E1

−ν13
E1

0 0 0

−ν12
E1

1
E2

−ν23
E2

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ13

σ23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.45)

The fourth order tensor can be represented as εij = Sijklσkl,in addition converting tensor

according to Voigt notation reduced to second order as εi = Sijσj . For illustration of

purpose as written,

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 S12 S13 0 0 0

S12 S22 S23 0 0 0

S13 S23 S33 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 S66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν12
E1

−ν13
E1

0 0 0

−ν12
E1

1
E2

−ν23
E2

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.46)

Where, S is the compliance.

Plane Stress

In the case of isotropic material,under condition of plane stress ,there is a requirement

that must be met ,(σ33=σ13=σ31=σ23=σ32=0). In the x-y plane we have,

⎡
⎢⎣
ε11

ε22

γ12

⎤
⎥⎦ =

⎡
⎢⎣

1 −ν 0

−ν 1 0

0 0 2 (1 + ν)

⎤
⎥⎦
⎡
⎢⎣
σ11

σ22

τ12

⎤
⎥⎦ (3.47)
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Where, τ12 = 2ε12. The inverse relation is,

⎡
⎢⎣
σ1

σ2

τ12

⎤
⎥⎦ =

E

1− ν2

⎡
⎢⎣
1 ν 0

ν 1 0

0 0 1−ν
2

⎤
⎥⎦
⎡
⎢⎣
ε1

ε2

γ12

⎤
⎥⎦ (3.48)

In the case of orthotropic material,under condition of plane stress,there is a require-

ment that must be met ,(σ33=σ13=σ23=0). In the x-y plane we have,

⎡
⎢⎣
ε1

ε2

γ12

⎤
⎥⎦ =

⎡
⎢⎣

1
E1

−ν12
E1

0

−ν12
E1

1
E2

0

0 0 1
G12

⎤
⎥⎦
⎡
⎢⎣
σ11

σ22

τ12

⎤
⎥⎦ (3.49)

Where, τ12 = 2ε12. The inverse relation is,

⎡
⎢⎣
σ1

σ2

τ12

⎤
⎥⎦ =

1

1− ν12ν21

⎡
⎢⎣

E1 ν21E1 0

ν12E2 E2 0

0 0 G12 (1− ν12ν21)

⎤
⎥⎦
⎡
⎢⎣
ε1

ε2

γ12

⎤
⎥⎦ (3.50)

In this study, we consider the copper as a matrix (Em) with the Young’s modulus

of 126.5 GPA and the poisson’s ratio of 0.35, whereas these constant for inclusion (Ep)

that is diamond are 1148.3 GPA and 0.068 for Yong’s modulus and poisson’s ratio of

the particle, respectively. Furthermore, it was assumed that the Young’s modulus and

poisson’s ratio of interphase are 80 GPA and 0.1, respectively. Note that the thickness

of interphase layer is h which is shown in Fig.3.8. We suppose two kinds of geometric

particles: sphere and cylinder. Fig.3.9 show the details of RVE with dimensions of

1m*1m*1m. It should be mentioned that radius of sphere and cylinder inclusion are 0.2

m and 0.1 m, respectively. Fig.3.10 shows the comparison between the numerical and

analytical results for sphere inclusion. Moreover, in order to obtain a precise bounds,

the LD boundary condition (upper bounds) and UT boundary condition (lower bounds)

are simulated using FEM models. Since the assumptions of Mori-Tanaka method are

based on the spherical shape and fully embedded inclusion, the analytical results are

in a very good agreement with numerical results. Fig.3.10a illustrate the normalized

homogenized Young’s modulus of diomends which reinforced in copper matrix versus
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3.4. HOMOGENIZATION METHODS

Figure 3.8: The schematic shape of spherical inhomogeneity of radius r with interphase
zone of thickness h.

(a) (b)

Figure 3.9: A detailed view of 3D finite element RVE for evaluate the elastic modulus of
composite, (a) frame model of sphere with interphase layer , (b) frame model of cylinder
with interphase layer .

the change of volume fraction of sphere inclusion. Fig.3.10b demonstrates the effect of

interphase layer on the overall elastic modulus of composite, for the constant particle

volume fraction of ν2 = 0.0335. Furthermore, with increasing the thickness of interphase

region the homogenized Young’s modulus are decreasing. The result of homogenized

Young’s modulus for cylinder inclusion are shown in Fig.3.11 and Fig.3.12 according to

the transverse direction of cylinder and direction of cylinder.
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Figure 3.10: Normalized homogenized Young's modulus (E∗/Em) of diamond reinforced
copper matrix vs: (a) volume fraction of sphere inclusion (ν2), (b) normalized interphase
thickness (h/r), for the constant particle volume fraction of ν2 = 0.0335.
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Figure 3.11: Normalized homogenized Young's modulus (E11∗/Em and E22∗/Em) of
diamond reinforced copper matrix in transverse direction of cylinder vs: (a) volume
fraction of cylinder inclusion (ν2), (b) normalized interphase thickness (h/r), for the
constant particle volume fraction of ν2 = 0.0314.
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Figure 3.12: Normalized homogenized Young's modulus (E33∗/Em) of diamond rein-
forced copper matrix in transverse direction of cylinder vs: (a) volume fraction of cylin-
der inclusion (ν2), (b) normalized interphase thickness (h/r), for the constant particle
volume fraction of ν2 = 0.0314.
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Chapter 4

Numerical investigation of

interfacial effects

Beside the experimental methods, there are some analytical and numerical methods to

calculate the overall effective elastic properties of nanocomposites. In this study, the

finite element method was used to predict the elastic properties of nanocomposites in

presence of the interphase layer. In essence this method is called the hierarchical multi-

scale method [42]. The hierarchical multiscale method has three main components: the

approximation method (here we use finite elements), the upscaling method (computa-

tional homogenization) and the boundary conditions which are explained in the sequel.

4.1 Finite element model

We first create a finite element model of the representative volume element (RVE) from

the system in hand which contains also the interfacial region along with the clays and the

epoxy matrix. The clays are randomly distributed in the RVE. We used a quadrilateral

plane stress (CPS4) elements with global approximate element size of 5nm to mesh the

RVEs. Fig. 4.1 shows a detailed view of the mesh around the clays. The mesh has a

single element through the thickness of interphase zone as well as clay thickness.
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Figure 4.1: The finite element mesh of a sample RVE with a detailed view of the mesh
near to the interphase layer

4.2 Boundary Conditions

There are three types of widely used boundary conditions (BCs) that are utilizable in

homogenization procedures: linear displacement (LD) boundary condition, uniform trac-

tion (UT) boundary condition and periodic (PR) boundary condition [32]. LD and UT

can provide upper and lower bounds for the elastic material constants respectively. In

this study linear displacement boundary conditions was used to apply desirable amount

of strain on the RVE. Please note that since the relative size of the clays to RVE di-

mensions and the volume ratio of the clays inside the RVE is small, the upper and lower

bounds for Young's modulus of nanocomposites provided by LD and UT methods are

very close to each other in the current study.

4.3 Stochastic Analysis

Fig.4.2 shows the flowchart of the stochastic analysis which is used in the current study.

Three main boxes can be distinguished in the flowchart: design of experiments box, RVE

generation box and homogenization box.
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4.3.1 Design of Experiments (DoE)

There are different schemes to scan the space of the input variables. Regular arrange-

ment of the samples (deterministic DoE) usually increases the number of the samples

exponentially with increasing dimension. These approach are not efficient when the cost

of each realization is high. As an alternative, stochastic DoE can be used. Mont Carlo

Simulation (MCS) is a very comon option which is based on the random independent sam-

pling in the given design space. MCS suffers from the existence of undesired correlations

between the input variables which can affect the sensitivity measure significantly [43].

Latin Hypercube Sampling (LHS) [44] method was introduced as a remedy against this

undesirable correlation. This method is recommended when the cost of each realization is

high and we have less than 50 input parameters. LHS represents the input distributions

very accurately even for small number of samples. LHS also minimize the unwanted

correlation of the input variables. Advanced Latin Hypercube Sampling (ALHS) uses

the stochastic evolution strategies [45] to minimize the correlation errors.

In this study, ALHS algorithm provided by Optislang software [46] was employed.

We coupled Optislang with Abaqus [47] through Batch Jobs. Here the focus is only to

study the effect of interphase layer on the Young's modulus of clay/epoxy nanocomposites

and hence, we only considered the Young's modulus and thickness of the interphase layer

as the stochastic inputs and set other parameters to be deterministic inputs with their

mean value (the clay aspect ratio is considered to be 300 [28, 48] and the Young's modulus

and Poisson’s ratio of the epoxy and clays are considered as 1.96GPa, ν = .25, 221.5GPa

and ν = .25 [49, 28] respectively). To evaluate the effect of other inputs on the Young's

modulus of clay/epoxy nanocomposites, refer to [24, 25]. Based on MD simulations and

analytical results available in the literature the thickness and the Young's modulus of

the interphase layer vary from 0.5nm to 2nm [17, 50] and 0.35Gpa to 1.96GPa [11],

respectively.

4.3.2 RVE generation algorithm

The second dashed box in Fig.4.2 shows the RVE generation algorithm for PCNs with

interphase layer. We used python scripting inside Abaqus/CAE to generate the RVEs.

Having the values for the Young's modulus and thickness of interphase layer from Op-
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tislang software as well as the other deterministic inputs, the RVE generation can be

started.

Based on the RVE dimensions, volume ratio and clay dimensions, the number of clays

inside the RVE can be determined. We used the random sequential addition algorithm

(RSA) to position and orient the clays inside the RVE. The condition of non-overlapping

and non-intersecting between clays was also satisfied. Since we have random generation

algorithm for positioning and orienting the clays inside matrix, the RVEs do not show

complete isotropic behaviour which is not consistent with the macroscopic isotropic be-

haviour of the PCNs. To overcome the undesirable anisotropic behaviour of the RVEs, a

pairwise positioning algorithm was used to generate the clays in a sequential way. Fig.4.3

shows schematically this process. In each step, a pair of orthogonal clays was generated

and positioned inside the RVE. This algorithm guarantees the isotropic behaviour of the

RVEs.
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Figure 4.2: Flowchart of stochastic modeling processes.

Figure 4.3: Schematic representation of pairwise positioning algorithm to generate
isotropic RVEs.
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4.4 Results and discussion

4.4.1 Ensemble averaging

To remove the effect of randomness of the positioning and orienting clays inside matrix

on the outputs, the process of ensemble averaging should be performed. Accordingly, the

following saturation criterion should be met:

|
〈〈E〉〉(2J) − 〈〈E〉〉(J)

〈〈E〉〉(2J)
|< Tol (4.1)

where 〈〈 〉〉(J) implies an ensemble average using j realisations, and 〈〈 〉〉(2J) represent the

same quantity obtained using twice this number of realisations. Tol is a convergence

tolerance for ensemble averaging and determines the accuracy of the operation. To sim-

plify the numerical procedure, a 2 wt% clay/epoxy nanocomposite was considered and

an ensemble averaging test was conducted. The dimension of the RVE is considered as

1500×1500nm2 [25]. Fig. 4.4 shows the average Young's modulus for 2 wt% clay/epoxy

nanocomposite versus the realization number. The figure clearly shows that the conver-

gence would be guaranteed for 50 realizations with a convergence error of less than 0.03

%.

0 5 10 15 20 25 30 35 40 45 50
2.15

2.2

2.25

2.3

< 
E 

> 
(G

Pa
)

Number of realizations

Figure 4.4: The average Young's modulus for 2 wt% clay/epoxy nanocomposite versus
realization number.
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4.4.2 Young’s modulus of clay/epoxy nanocomposites

Table.4.1 summarises the results of the stochastic analysis. The table shows the mean

values and standard deviation of the Young's modulus for 0.5 wt%, 1 wt%, 2 wt%

and 3 wt% clay/epoxy nanocomposites. As it is expected, the Young's modulus of the

clay/epoxy nanocomposites increases with increasing in the clay contents.

Table 4.1: The mean value and standard deviation (SD) of the Young's modulus for
different weight percentage of the clay

Clay percentage (wt%) Mean value of E (GPa) Standard deviation of E (GPa)

0.5% 2.042 0.0443
1% 2.1065 0.0435
2% 2.2303 0.0507
3% 2.3375 0.0836

To validate the results of stochastic analysis with experimental results, Fig.4.5 plots

the results of Table.4.1 as well as experimental results of Wang et al.[28]. The predicted

numerical results are in good agreement with the experimental values with the maximum

error less than 6%. This figure also includes the numerical results of Silani et al. [25]

for the same problem but neglecting the interphase layer. The figure represents that

the Young's modulus of clay/epoxy nanocomposite rises gradually with increasing in

the clay percentage both in the experimental and in the numerical results. It also shows

considering interphase layer in the numerical simulations reduces the Young's modulus of

clay/epoxy nanocomposite and this decrease becomes significant in higher clay contents

which means that the effect of intephase layer is considerable in high clay weight ratios.

Fig. 4.6 shows the histograms of the Young's modulus of clay/epoxy nanocompos-

ites based on the current stochastic analysis. To find and fit an appropriate probability

distribution function to these results, the chi-square goodness-of-fit test [51] was per-

formed for lognormal, weibull and logistic distribution. The results demonstrate that

the Chi-square test accepts the logistic distribution function at 4% significance level and

hence, we used logistic distribution fit in Fig. 4.6. The respective logistic probability

plot for different clay concentration are drawn in the Fig.4.7.
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Figure 4.5: Experimental and numerical Young's modulus of clay/epoxy nanocomposite
with considering the effect of interphase layer versus clay concentration. Experimental
results are from [28] and numerical results without interphase layer are from [25].

4.4.3 Polynomial based sensitivity analysis

Polynomial regression is a common approximation method in which the model response

is generally approximated by a polynomial basis function of linear or quadratic order

with or without coupling terms. The estimated regression line is defined as [52]:

ŷ = β̂0 + β̂1x, (4.2)

with β̂0 and β̂1 defined as:

β̂0 = ȳ − β̂1x̄, β̂1 =
Sxy

Sxx
, Sxx =

n∑
i=1

x2
i − nx̄2, Sxy =

n∑
i=1

yixi − nx̄ȳ. (4.3)

In Eq. 4.3, xi and yi are inputs and outputs, x̄ and ȳ are mean values of the inputs

and outputs and n is the number of observations. Coefficients β̂0 and β̂1 are the intercept

and the slope of regression line respectively.
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Figure 4.6: Histogram of Young's modulus for (a) 0.5 wt% (b) 1 wt% (c) 2 wt% (d) 3
wt% clay/epoxy nanocomposite. The solid line corresponds to Logistic distribution fit.
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Figure 4.7: Logistic probability plot for the distribution of Young's modulus E for (a)
0.5 wt% (b) 1 wt% (c) 2 wt% (d) 3 wt% clay/epoxy nanocomposite.
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In order to quantify the effect of interphase layer on the Young's modulus of clay/epoxy

nanocomposites, the sensitivity analysis was performed. The linear regression model was

used to compute the intercept (β̂0) and slope (β̂1) of regression line for different clay

weight ratios. The intercept and slope of the linear regression model for Young's modu-

lus of clay/epoxy nanocomposites are listed in Table 4.2 and 4.3 respect to the thickness

and Young's modulus of interphase layer respectively. The results clearly shows that

the Young's modulus of interphase layer has more significant effect on the stiffness of

clay/epoxy nanocomposites.

Table 4.2: The intercept and the slope of linear regression model for Young's modulus
of clay/epoxy nanocomposites versus thickness of interphase.

0.5% clay 1%clay 2%clay 3%clay

Intercept (β̂0) 2.0572 2.1225 2.2744 2.4035

Slope (β̂1) −0.0157 −0.0105 −0.0400 −0.0596

Table 4.3: The intercept and the slope of linear regression model for Young's modulus
of clay/epoxy nanocomposites versus Young's modulus of interphase.

0.5% clay 1%clay 2%clay 3%clay

Intercept (β̂0) 2.0155 2.0538 2.1402 2.1824

Slope (β̂1) 0.0191 0.0481 0.0728 0.1268

In order to estimate the approximation quality of a polynomial regression model, the

Coefficient of Determination (CoD) can be used. This measure is defined as the relative

amount of variation explained by the approximation [52]

R2 =
SSR

SST

= 1−
SSE

SST

, 0 ≤ R2 ≤ 1, (4.4)

where SSE is the error sum of squares

SSE =
n∑

i=1

e2i =
n∑

i=1

(yi − ŷi)
2 = SST − β̂1Sxy, (4.5)
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SST is the total sum of squares

SST =
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

(yi − ŷi)
2, (4.6)

and SSR is the regression sum of squares

SSR =

n∑
i=1

(ŷi − ȳ)2. (4.7)

Accordingly, the variance of error term ε (n− 2 degrees of freedom) can be expressed as

σ̂2 =
SSE

n− 2
. (4.8)

Table 4.4 and 4.5 show the values of CoD (R2) and the variance error (σ̂2) of the re-

gression line for different clay weight ratio respect to thickness and modulus of interphase

layer respectively.

Table 4.4: CoD result summary with respect to thickness of interphase.

0.5% clay 1%clay 2%clay 3%clay

SST 0.0164 0.0508 0.1578 0.3133
SSR 0.0023 0.0011 0.0151 0.0336
SSE 0.0141 0.0498 0.1427 0.2797
R2 0.1412 0.0207 0.0956 0.1071
σ̂2 0.0003 0.0010 0.0030 0.0058

Table 4.5: CoD result summary with respect to modulus of interphase.

0.5% clay 1%clay 2%clay 3%clay

SST 0.0164 0.0508 0.1578 0.3133
SSR 0.0040 0.0249 0.0572 0.1735
SSE 0.0125 0.0259 0.1006 0.1398
R2 0.2408 0.4902 0.3626 0.5539
σ̂2 0.0003 0.0005 0.0021 0.0029
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The confidence interval of mean response at x = x0 can also be written as

μ̂Y |x0
− tα/2,n−2

√√√√σ̂2

[
1

n
+

(x0 − x̄)2

Sxx

]
≤ μY |x0

≤ μ̂Y |x0
+ tα/2,n−2

√√√√σ̂2

[
1

n
+

(x0 − x̄)2

Sxx

]

(4.9)

where tp,ν is the inverse of Student’s t cdf using the degrees of freedom in ν for the

corresponding probabilities in p [52].

Figs. 4.8, 4.9, 4.10, 4.11 show the scater plot of Young's modulus of clay/epoxy

nanocomposite versus the interphase thickness and the Young's modulus of interphase

region for different clay weight ratios. The regions with 95% Confidence intervals (CIs)

and 95% Prediction intervals (PIs) are also depicted in these figures. The 95% CIs

corresponds to the area which lies between the red lines while the region between the

green lines corresponds to the 95% PIs. CIs demonstrate how well we have determined

the mean and tell the likely location of the true population parameter while PIs tell

about the distribution of values and where we can expect the next data point. Since

that prediction interval accounts for both the uncertainty in knowing the value of the

population mean plus data scatter, the PIs is always wider than CIs.
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Figure 4.8: Young's modulus of 0.5 wt% clay/epoxy nanocomposites versus (a) interphse
thickness and (b) Young's modulus of interphase region.
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Figure 4.9: Young's modulus of 1 wt% clay/epoxy nanocomposites versus (a) interphse
thickness and (b) Young's modulus of interphase region.
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Figure 4.10: Young's modulus of 2 wt% clay/epoxy nanocomposites versus (a) interphse
thickness and (b) Young's modulus of interphase region.
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Figure 4.11: Young's modulus of 3 wt% clay/epoxy nanocomposites versus (a) interphse
thickness and (b) Young's modulus of interphase region.
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Chapter 5

Conclusions and future works

5.1 Conclusions

In this thesis, different analytical methods are first introduced, and Mori-Tanaka method

is then utilized to investigate the overall elastic properties of simple inclusion geome-

tries of cylinder and sphere. Furthermore, the effect of interphase region on the overall

properties of composites is studied. We obtain a precise bound for the effective mechan-

ical properties of the composites using FEM analysis. For this, the linear displacement

boundary conditions (LD) and uniform traction boundary conditions (UT) are simulated

using FEM models. The numerical results are in excellent agreement with those obtained

from analytical results.

In this study we used the computational homogenization along with the stochastic

analysis to study the effect of the interphase between the clays and the epoxy matrix on

the overall mechanical properties of the clay/epoxy nanocomposite. The finite element

models of the representative volume elements (RVEs) were generated according to a

procedure which guaranties the randomness and also the isotropic behaviour of the RVEs.

A total number of 200 RVEs were simulated for a stochastic analysis and the resultant

Young's modulus were computed using computational homogenisation.

To approximate the Young's modulus, we used the polynomial regression model

and investigated the approximation quality with the Coefficient of Determination (CoD)

measure. The results of this study prove that the interphase layer becomes significant
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only in high clay weight ratios. The sensitivity analysis also show that the stiffness

of interphase layer has more significant effect on the final stiffness of nanocomposites

compare to thickness of interphase layer. The results of this study were validated with

available experimental results with the maximum error less than 6%.

5.2 Future Works

In this work, we used 2D RVEs to investigate the effects of interphase layer on the me-

chanical properties of clay/epoxy nanocomposites. Using the 3D models give a more

realistic results especially for disc shape clays. Here, we coupled FEM with stochastic

analysis to predict the Young's modulus clay/epoxy nanocomposites. Coupling analyt-

ical methods such as Mori-Tanaka with the stochastic scheme can also give valuable

information about the effects of inputs. Finally, the extension current study to model

the fracture and damage in nanocomposites is proposed.
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