
Elements of an Agent-based Mediative Communication Protocol for
Design Objects

Jamal A. Abdalla, American University of Sharjah (jabdalla@ausharjah.edu)

Summary
Integrated structural engineering system usually consists of large number of design objects that
may be distributed across different platforms. These design objects need to communicate data
and information among each other. For efficient communication among design objects a
common communication protocol need to be defined. This paper presents the elements of a
communication protocol that uses a mediator agent to facilitate communication among design
objects. This protocol is termed the Mediative Communication Protocol (MCP). The protocol
uses certain design communication performatives and the semantics of an Agent
Communication language (ACL) mainly the Knowledge and Query Manipulation Language
(KQML) to implement its steps. Details of a Mediator Agent, that will facilitate the
communication among design objects, is presented. The Unified Modeling Language (UML) is
used to present the Meditative protocol and show how the mediator agent can be use to execute
the steps of the meditative communication protocol. An example from structural engineering
application is presented to demonstrate and validate the protocol. It is concluded that the
meditative protocol is a viable protocol to facilitate object-to-object communication and also has
potential to facilitate communication among the different project participants at the higher level
of integrated structural engineering systems.

1 Introduction
A typical integrated structural engineering system is likely to consist of several application
modules such as modeling, analysis, design and detailing. Each module may contain a large
number of design objects and the application modules themselves may be distributed across
different platforms (Abdalla 1991, Fenves et al. 1990). In general, the design objects of the
same or different application modules need to communicate data and information among each
other (Kandlur et al. 1996, Abdalla and Powell 1995, IEEE 1994, ACM 1991). Such data will
be communicated through the communication Channels that exist among design objects due to
the inherent relationships among them (Abdalla 2002). Certain means of communications will
be used to communicate the data and information among design objects. The means assumed in
this paper are the Messenger objects which are mainly Argument objects and Response objects
(Abdalla 2002). There are several types of communication protocols for object-to-object
communication that have recently emerged such as the Prescriptive protocol and
Conversational protocol (Abdalla 2002). Almost all object-oriented programming languages
have a built-in Prescriptive communication protocol that uses the message sending paradigm as
its back-bone. The Prescriptive protocol, though efficient, nevertheless it produces coupled
software, among many other drawbacks. The Conversational protocol requires all design
objects to have enough built-in intelligence for them to hold converstion inorder to be able to
communicate information each other. Brief description of these protocols will be presented. The
proposed Mediative protocol requires the intelligence to be built in the Mediative agent which is
the main facilitator for communication among design objects

This paper presents the elements of the Mediative communication protocol. This protocol uses a
Mediator agent to facilitate communication among design objects. The Mediative protocol uses
certain design communication performatives and the semantics of an Agent Communication
language (ACL) mainly the Knowledge and Query Manipulation Language (KQML) to

implement its steps (Finin et al. 1994). Details of a Mediator Agent, that will facilitate the
communication among design objects, is presented together with some notes on its
implementation. The Unified Modeling Language (UML) (Booch et al. 1999) is used to present
the Meditative protocol and show how the Mediator agent can be use to execute the steps of the
Meditative communication protocol. An example from structural engineering application will be
presented to demonstrate and validate the protocol. It is concluded that the meditative protocol
is a viable protocol to facilitate object-to-object communication and also has potential to
facilitate communication among the different project participants at the higher level of
integrated structural engineering systems.

2 Objects and Agents
In recent years, software engineering researchers have viewed agent-oriented paradigm as a
natural supplement or even a successor to object-oriented paradigms (Wooldridge and Jennings
1995, Muller 1997). This stem from the fact that integrated engineering systems are
characterized by distribution, that are dynamics in nature and requires high level of interaction,
therefore they are more amenable to agents-which are more active than objects.

Although two decades or so had passed since the object-oriented model had taken the software
community by storm, the object-oriented model is still evolving, and several enhancements can
be made (OOPSLA 1987-2003; Booch 1994). The essential features of the object-oriented
model have been well established. In short, all entities, whether physical or conceptual, are
represented by objects that are instance of classes. Objects communicate by sending messages
and receiving responses. Messages and responses are the basic ingredients of the object-oriented
model for communication among objects.

Agents are autonomous software components (Muller 1997, Tveit 2001), according to
Woodridge and Jennings (1995), a software agent, in the weak sense, are those that possess the
following properties: (1) autonomy, i.e., operate without intervention and have control over their
states and actions; (2) reactivity, i.e., perceptive and are aware of their environment and have
the ability to respond in a timely manner to the changes and actions that occur; (3) pro-
activeness, i.e., take the initiative and are able to exhibit goal-directed behavior; and (4) social
ability, i.e., co-operative or have the ability to interact with other agents and objects with some
kind of language. In addition to these, agents in the strong sense, may possess additional
characteristics that include: (5) mobility, i.e., ability to move around; (6) rationality, i.e., ability
to perform in optimal manner to achieve goals; (7) benevolence, i.e., obey; and (8) veracity, i.e.,
truthful. There are several software agents that are currently in use such as the animated
paperclip agent in Microsoft office, computer viruses, web spiders, artificial players in computer
games, among others.

In spite of the fact that Agent-oriented programming has been viewed as an extension to object-
oriented programming, nevertheless, there are many differences between objects and agents as
follows (Wooldridge and Jennings 1995): (a) objects are mainly passive entities while agents
are active and autonomous entities with beliefs, commitments and interactions capabilities; (b)
the decision about whether to execute an action lies with the object that sends (invoke) the
method in the case of object-oriented model, however, in the case of agents, the decision lies
with the agent that receive the message or request ; (c) Agents have their own thread of control-
continually observing their environment, updating their internal state, selecting and executing
actions as they desire.

3 Agents Communication Languages and Protocols
Knowledge Query and manipulation Language (KQML) is a language and a protocol for
exchanging knowledge and information to support communication between software agents.
Based on ideas from speech act theory, Finin et al. (1994) proposed a semantic description for
KQML that associated descriptions of the cognitive states of agents with the use of the
language's primitives (performatives). KQML consists of three layers – content layer, message
layer and communication layer. The content layer specifies the proposal of the message based
on specific ontology – common terms and their real world meaning that is common among the
communicating agents. The message layer provides a set of performatives that can be sent
between agents such as ask, reply, tell. The communication layer defines the protocol for
delivering the message and its contents. KQML performatives are classified into seven
categories: (1) basic queries – for asking basic questions (ask-if, ask-one, ask-in, etc); (2) multi-
response queries – for handling long answers (stream-in, stream-out, etc.); (3) responses – for
simple answers to queries (sorry, reply, etc.); (4) generic informational – for informing other
agents without preceding query (achieve, tell, cancel, etc.); (5) generators – for synchronizing
matters (ready, standby, next, disrecard, etc.); (6) capability-definitions for managing services
between agents (subscribe, advertise, monitor, import, etc.); and (7) networking – for net-
organizational purposes.

Agent Communication Language (ACL) was developed by the Foundation for the Intelligent
Physical Agents (FIPA) to offset the shortcomings of KQML such the lack of precise semantics
of the defined performatives. Several agent communication languages have emerged over the
years. Examples are Actors (Agha 1996, Agha et al. 1995, Genesereth and Ketchpel 1994).

4 Objects Communication Protocols
The framework for communication protocols between a client (requester) and a server
(provider), as an extension to the well known Contract Net Protocol (Parunak 1987), involves at
least six stages as shown in Figure 1: (1) preparation of the proposal or request by the client; (2)
sending of the proposal or request from the client to the server; (3) acceptance of the proposal
by the server; (4) execution by the server of what is proposed by the client; (5) preparation by
the server of the result of the proposal; (6) returning of the results of the execution back to the
client by the server; (7) acceptance of the results by the client. In object-to-object
communication the client is the message sender object and the server is the message receiver
object. The proposal is the message sent (Argument object) and the result of the proposal is the
response received (Response object). The seven stages outlined above are the fundamentals of
communication protocols between any two parties. Based on this framework the Mediative
protocol will be presented.

Before presenting the details of the Mediative protocol, the following rules and principles which
govern the use and ownership of Response and Argument objects should be emphasized.

(1) The arguments for any message from a design object to another design object are
passed via an object of type Messenger class, called the Argument object.

(2) The response items are passed back by an object of type Messenger class, also, called
the Response object.

(3) A transaction begins when the Argument object is constructed and ends when the
Response object is destroyed. Argument and Response objects are thus temporary.

(4) Transactions will frequently be nested. That is, the message receiver object may
itself send messages to other objects, and hence will act as an intermediate message
sender object. The message receiver object may create several sub-transactions before
it returns the final Response object to the original message sender object.

Figure 1 UML Sequence Diagram for a Framework for Client-Server Communication Protocol

4.1 The Prescriptive Protocol
This protocol of communication assumes that the message sender object and the message
receiver object knows each other's needs. I.e., the message sender object knows exactly what
arguments the message it intends to send needs in order to perform its task, and also the
message receiver object knows the format of the response items that is requested by the message
sender object. The steps of the prescriptive protocol are graphically depicted in Figure 2.

Get Values Set Values Initialize Slots
Extract Slots Destroy Object Any Message

Figure 2 The Prescriptive Communication protocol

 Client

 Server

 Prepare proposal

 Send Proposal

 Accept Results

 Accept Proposal

 Execute Proposal

 Prepare Result

 Return Result

2

 7

 1

 2

6

 1

6
5

4
3

 3

 4

 5

7

 Sender Object

 Receiver Object

Argument
Object (A)

Response
Object (R)

Return R with values

Send A with values
 2

 4 7 8

10 1

 3

 9

 5

11

 6

Legend

4.2 The Conversational Protocol
This protocol of communication is envisaged when the message sender object does not know
what arguments the message it intends to send needs to accomplish its task, and the message
receiver object does not know what data the message sender wants and in what form the
response should be (i.e., no previous knowledge about each other's need). This protocol is of
conversational type in which the message sender object and the message receiver object will
engaged in a dialogue in order for each to provide the other with what it actually needs. The
steps of the conversational protocol are graphically depicted in Figure 3.

Get Values Set Values Initialize Slots
Extract Slots Destroy object Any Message

Figure 3 The Conversational Communication protocol

4.3 The Mediative Protocol
This type of protocol involves a third party or an agent, the Mediator agent that mediates
between the two communicating objects. The Mediator agent knows more about the needs of
the two communicating objects than they do know about each other’s need. Therefore, the
communication between design objects, sender and receiver, and the Mediator agent is done
using the Prescriptive protocol based on the assumption that the Mediator object and the design
objects know about each others need. However, communication between two design objects is
not done directly, instead through the Mediator agent. Figure 4 shows the Mediative protocol
and the corresponding steps involved.

4.3.1 Elements of the Mediative Communication Protocol
Based on Figure 4, the steps of the Mediative protocol can be outlined as follows:

1. The sender object constructs the first Argument object using the Construct method
and initializes its data slots using the Initialize method.

2. The sender object then populates the first Argument object using the Set method.
The message sender object then sends a message to the Mediator agent expressing
its desire to send a particular message and inquiring about the arguments needed
for executing this particular message.

 Sender Object

 Receiver Object

Argument
Object (A)

Response
Object (R)

 2

 1

 3

 5

 8 12

Send Empty R

Return Empty A Send A with Values

Return R with Values

 7

 9

 10

 13

 14 15

 4

 6

 11

Legend

3. The Mediator agent extracts the data slots from the first Argument object using the
Extract method. The Mediator agent then retrieves data values from the first
argument object using the Get method.

4. The Mediator agent, knowing the message and what arguments it needs, constructs
the second Argument object using the Construct method and initializes its empty
data slots using the Initialize method. It then returns this empty Argument object to
the sender object as a response to its message (A).

5. The message sender object, with the given information from the Mediator agent,
extracts the data slots from the second Argument object using the Extracts method.

6. The sender object, knowing the data slots Argument object, populates them with
data values using the Set method. The sender object then send the message to the
Mediator agent (Argument object with data values).

Get Values Set Values Initialize Slots
Extract Slots Destroy object Any Message

Figure 4 UML Sequence Diagram for the Mediative Communication Protocol

A
rg

um
en

t
O

bj
ec

t (
A

)

R
es

po
ns

e

O
b j

ec
t (

R
)

 2

 3
4

5

6

 1

R
ec

ei
ve

r
O

bj
ec

t

Se
nd

er

O
bj

ec
t

 7

 8

 9

10

11

12

13

14

15

M
ed

ia
to

r
A

ge
nt

A
rg

um
en

t
O

bj
ec

t (
A

1)

A
rg

um
en

t
O

bj
ec

t (
A

2)

16

17

18

19

20

21

22

23

24

25

26

27

28

Legend

7. The Mediator agent, given the response data and form, constructs a Response
object using the Construct method and initializes its empty data slots using the
Initialize method. It then sends the message, with the populated Argument object
and the empty Response object to the receiver object.

8. The Mediator agent constructs the third Argument object using the Construct
method and initializes its empty data slots using the Initialize method.

9. The Mediator agent then populate the third Argument object with values using the
Set method. It then sends the message, with this Argument object to the receiver
object. This Argument object contains the populated second Argument object and
the empty Response object.

10. The message receiver object, with the given information from the Mediator agent,
extracts the data slots from the third Argument object using the Extracts method.

11. The message receiver object then retrieves the data values from the third Argument
object using the Get method and destroys it using the Destruct method.

12. The message receiver object then extracts the data slots from the second Argument
object using the Extract method.

13. The message receiver object then retrieves the data values from the second
Argument object using the Get method and destroys it using the Destruct method.

14. The receiver object then extracts the data slots from the Response object R sent by
the Mediator agent using the Extract method.

15. The message receiver object then proceeds in its routine calculations assuming that
all the data it needs is now available. The receiver then populates the Response
object with the requested response values using the Set method and returns the
message to the Mediator agent with the populated Response object R. The
Mediator agent will then return the populated Response object R to the message
sender object.

16. The message sender object extracts the data slots from the Response object using
the Extract method.

17. The message sender object retrieves the data values from the Response object using
the Get method and destroys the Response object using the Destruct method. This
signals the end of the transaction.

4.3.2 Language Description of the Steps of the Mediative Protocol
Using the protocol performatives, the steps of the Mediative protocol can be represented. There
are three Argument that need to be constructed for the executing the steps of the Mediative
protocol. Let A1 = Argument object for the first message; A = Argument object for the second
message, which is the primary argument object; and A3 = Argument object for the third
message, R = Response object. The steps of the Mediative protocol can be represented as shown
in Table 1 Below.

4.3.3 Example Illustrating the Mediative Protocol
To illustrate the Mediative protocol, a message that involves interaction with several design
objects with be used as an example. Consider the equation for checking the flexural design
strength Mu at a given cross section of a Rectangular Reinforced Concrete Beam (RCBeam)
object with effective depth d , width bw , area of steel As , steel yield strength fy and concrete

crushing strength f c
' .

Table 1. Language Description of the Steps of the Mediative Protocol
Sender:
 (Beginning of First Transaction)

Step 1: Construct A1 and Initialize its Data Slots
Step 2: Set Data Values of A1
Step 3: Send message to Mediator indicating its intend.
(This analogous to steps 1-6 of Prescriptive protocol)

Mediator: (after receiving the first message from Sender)
 Step 4: Extract Slots of A1

Step 5: Get Data Values from A1
Step 6: Destruct A1
Step 7: Construct A and Initialize its Data Slots
Step 8: Return A as a Response to Sender
(End of First Transaction)

Sender: (after receiving first response from Mediator)
(Beginning of Second Transaction)
Step 9: Extract Data Slots from A
Step 10:Set Data Values of A
Step 11:Send A with the Message to Mediator

Mediator: (after receiving the second message from Sender)
(Beginning of Third Transaction)
Step 12:Construct R and Initialize its Data Slots
Step 13:Construct A3 and Initialize its Data Slots
Step 14:Send the Message to the Reciever with A3
(A3 containing both A and R)
(A with Data Values, R with Data Slots only)

Receiver: (after receiving the message from the Mediator)
Step 15:Extract Data Slots from A3
Step 16:Get Data Values from A3
Step 17:Destruct A3
Step 18:Extract Data Slots from A
Step 19:Get Data Values from A
Step 20:Destruct A
Step 21: Execute the Method
Step 22:Extract Data Slots from R
Step 23:Set Data Values of R
Step 24:Return Response R to Mediator
(End of Third Transaction)

Mediator: (after receiving the response from the Receiver)
Step 25:Return Response R to Sender

Sender: (after receiving second response from Mediator)
Step 26:Extract Data Slots from R
Step 27:Get Data Values from R
Step 28:Destruct R
(End of Second Transaction)

As given by (ACI 2002), the flexural design strength can be written as follows:

−Φ=Φ≤

c
'
y

y
2

wnu
f
f0.591fdbMM ρρ (1)

where: Mn = Nominal Flexural Strength, Φ = Resistance Factor,
db

A
w

s
=ρ = Steel ratio.

The message for checking the flexural strength (CheckFlexuralSrength), will be sent to a
RCBeam object, from the design application Driver object, to check the flexural design strength
at one or a number of cross sections for a given object (Abdalla 1996, Abdalla 2002). Figure 5
shows the ingredients of the message for checking flexural strength, where the data values
needed to compute the final response of the message are the nodes and leaves of the message
tree. The argument to the CheckFlexuralStrength message is an Argument object (A)
which contains information about the location where the flexural strength need to be checked.
The response to the message is a Response object (R) containing the M

M
u

nΦ ratio at this
location. The ingredient data for executing this message are shown schematically in Figure 5.

Figure 5 Use Case Diagram for the Ingredients for Checking Flexural Strength at a Section

The steps of the Mediative protocol can be described using the following set of messages. As
shown in Figure 6, it takes three messages before the final response is returned:

A = Mediator CheckFlexuralStrength(A1)
R = Mediator CheckFlexuralStrength(A)
R = RCBeam CheckFlexuralStrength(A3)

Using KQML performatives the last message can be expressed as follows. This syntax can be
expanded to write all the steps of the mediative protocol.

(CheckFlexuralStrength
 :content <Argument Object A3>
 :language <Protocol performatives>
 :ontology <word>
 :reply-with <Response Object R>
 :sender <Driver Object>
 :receiver <RCBeam Object>
)

CheckFlexuralStrength

Capacity
Reduction

factor
 (Φ)

Nominal
Flexural
Strength

(Mn)

Ultimate
Flexural
Strength

(Mu)

Steel
Area
(As)

Steel
Strength

(fy)

Section
Width
(bw)

Effective
depth
(d)

Concrete
Strength

(fc
')

The first message is from a Driver (sender) object to the Mediator agent with intention to send
the CheckFlexuralStrength message to RCBeam (receiver), A is the returned Argument
object with slots. The second message is from Driver (sender) to the Mediator agent with
populated A and populated R is returned. The third message is from the Mediator agent to
RCBeam (receiver) with A containing populated A and empty R and returns R with values. It is
clear that the third message is nested within the second message, i.e., it will be sent before the
response of the second message is returned to the message sender object.

Figure 6 shows a message tree where the data values needed to evaluate the message are the
nodes and leaves of the tree. However, an RCBeam object has channels of communication with
other objects that hold this data, but these channels are through the Mediator agent. Therefore,
channels of communications are established between the RCBeam object and the objects related
to it via a Mediator agent. As a result, messages must be send to these objects to get the data
values as shown above. Remember also, three messages, similar to the those above, are sent to
retrieve each data value needed for computing the final response as shown in Figure 6.

Figure 6 Collaboration Diagram of the Mediative Protocol for Message CheckFlexuralStrength

 RCBeam

 Analysis Steel Mat. Flexure Conc. Mat. Geometry

 Reinf. Sets

Get Mu Get fy Get fc'

Get As

CheckFlexuralStrength CheckFlexuralStrength

(Without Values) (With Values)

Driver Object

 A R M

AB

C
CheckFlexuralStrength

(With Values)

 Get b dw &

 M R1 A1 M R2 A2 M R5 A5 M R3 A3 M R4 A4

 M R6 A6

5 Summary and Conclusions
This paper clearly identified the needs for having a standardized protocol to provide a uniform
scheme for object-to-object communication. It also identified the major elements of the
meditative communication protocol. Performatives for executing the steps of the Mediative
protocols, for object-to-object communication, have been defined. The steps of the Meditative
communication protocol have been outlined based on Messenger objects (Argument and
Response) and protocols performatives. Although the Mediative protocol provides a uniform
mean for object-to-object communication, however, it involves some computational overhead
that results from the construction and destruction of Argument and Response objects and
population and retrieval of data from these objects. This is likely to hinder the performance and
compromise efficiency.

It is observed that the Mediator agent, like a switch board, facilitates the communication
between objects. The Mediator agent constructs both the final Argument and Response objects
and sets their slots. That is due to its knowledge of the needs of the communicating objects. The
message sender object destroys the Response object and the message receiver object destroys
the Argument object.

While the Mediative protocol suggested here is for object-to-object communication, however,
this protocol can be modified and used for communication among project participants and
application programs across different levels and layers of the integrated engineering systems.
Certainly to achieve such integration in engineering systems, more elaborate work of sufficient
rigor and wider scope is to be carried out in the area of formalization, specification, and testing
of communication protocols.

6 References
Abdalla, J. A. (2002). "Towards an Object Communication Model for Structural Engineering
Design." In the proceedings of The 9th International Conference on Computing in Civil and
Building Engineering (ICCCBE-IX), Taiwan, April.

Abdalla, J. A. and Powell, G. H. (1995). “Object Design Framework for Structural
Engineering.” The Journal of Engineering with Computers, 11(4), 213-226.

Abdalla, J. A. (1991). An Object-Oriented Architecture and Concept for an Integrated Structural
Engineering System. Proceedings of the Second International Conference on Application of
Artificial Intelligence Techniques to Civil and Structural Engineering. Oxford, England,
September 3rd-5th, 1991.

ACI (2002). Building Code Requirement for Reinforced Concrete, ACI committee 318,
American Concrete Institute, Detroit, MI.

ACM (1991). Communication of the ACM, Special Issue in Collaborative Computing,34(12).

Agha, G. (1996). Modeling Concurrent Systems: Actors, Nets and the Problem of
Abstraction and Composition. Application and Theory of Petri Nets 1996: Proceedings
of the 17th International Conference, Lecture Notes in Computer Science, vol. 1091, pp
1-10, J. Billington and W. Reisig (Editors), Springer-Verlag.

Agha, G., Kim, W. Y. and Panwar, R. (1995). Actor Languages for Specification of
Parallel Computations. DIMACS Series in Discrete Mathematics and Computer
Science, vol. 18, pp 239-258, G. E. Blelloch, K. Mani Chandy and S. Jagannathan
(editors), American Mathematical Society.

Booch, B. Rumbaugh, J. Jacobson, I. (1999). The Unified Modeling Language User Guide,
Addison-Wesley.

Booch, G. (1994) Object-Oriented Design with Applications, Benjamin/Cummings Pub. Co.
Redwood City, CA.

Fenves, S. J., Flemming, U., Hendrickson, C., Maher, M. L., and Schmitt, G. (1990) "An
Integrated Software Environment for Building Design and Construction." Computer-Aided
Design, 22, 27-36.

Finin, T., Fritzson, R., McKay, D. and McEntire, R. (1994). “KQML as an Agent
Communication Language.” The Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM'94), ACM Press, November 1994.

Genesereth, M. R. and Ketchpel, S. P. (1994). “Software Agents.”Communication of the ACM,
Vol. 38, No.7, pp. 54-67.

IEEE (1994). “Reliable Software and Communication I, II, and II.” IEEE Journal on Selected
Areas in Communications, 12(1), 23-32.

Kandlur, D. D., Saha, D. and Wilkbeek-LeMair, M. (1996). “Protocol Architecture for
Multimedia Applications over ATM Networks.” IEEE Journal on Selected Areas in
Communication, 14(7), 1349-1359.

Muller, H. J. (1997). “Towards agent systems engineering.” KNOWLEDGE AND Data
Engineering Vol. 23, pp. 217-245.

OOPSLA (1987-2003). Object-Oriented Programming, Systems, Languages and Applications.

Parunak, H. V. D. (1987). “Manufacturing experience with the contract net, in M. Huhns (eds),
Distributed Artificial Technology (Pitman Pubs. And Morgan Kaufman, pp.285-310.

Tveit, A. (2001). A survey of Agent-Oriented Software Engineering. First NTNU CSGSC, May
2001.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent Agents: Theory and Practice. The
Knowledge Engineering Review, Vol. 10, No. 2, pp.115-152.

